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Summary

Macroeconomic data are subject to data revisions. Yet, the usual way of gener-
ating real-time density forecasts from Bayesian Vector Autoregressive (BVAR)
models makes no allowance for data uncertainty from future data revisions. We
develop methods of allowing for data uncertainty when forecasting with BVAR
models with stochastic volatility. First, the BVAR forecasting model is estimated
on real-time vintages. Second, the BVAR model is jointly estimated with a model
of data revisions such that forecasts are conditioned on estimates of the ‘true’
values. We find that this second method generally improves upon conventional
practice for density forecasting, especially for the United States.
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1 INTRODUCTION

Decision makers employ probabilistic forecasts of macroeconomic variables to compute the probability of future outcomes
of interest as an aid to determining which course of action to take. For example, based on density forecasts, one can
quantify the probability of sluggish growth (say lower than 1%) and/or of deflation to support a monetary policy decision.
This paper considers whether it is important to make an allowance for data uncertainty when computing probabilistic
forecasts in real-time, given that most macroeconomic variables are subject to data revisions.

The literature addresses this question for models that assume the variances of the disturbances are homoscedastic but
does not consider time-varying volatility. Clements (2017) shows that the standard real-time approach, which estimates
the forecasting model on the vintage of data available at the forecast origin, will likely give an inaccurate assessment of
the uncertainty surrounding future values of the variables, especially of the early-vintage estimates of those values. He
considers autoregressive models with constant-variance disturbances, and his work follows on from the work on point
forecasts of Koenig et al. (2003) and Clements and Galvão (2013b), inter alia. Yet the recent literature on macroeconomic
forecasting strongly supports the use of multivariate models with time-varying conditional volatility to deliver accurate
density forecasts in real time (see, e.g., Carriero et al., 2020; Clark, 2011; Clark & Ravazzolo, 2014; Diebold et al., 2017).
We consider the impact of data uncertainty for multivariate models with time-varying volatility.

Although the literature on forecasting with multivariate models with time-varying volatility uses real-time data, that
is, the vintages of macroeconomic time series that were actually available at the time the forecast was made, it does not
explicitly consider the impact of data revisions on the measurement of forecasting uncertainty. The conventional approach
to real-time forecasting that underlies this literature—using the vintage of data available at the forecast origin—fails
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2 CLEMENTS AND GALVÃO

to make an allowance for data uncertainty in the estimation of the model, or in the generation of forecasts from the
model. The conventional approach is sometimes known as end-of-sample, abbreviated to EOS. It regards the data as given,
and does not allow for the consequences of the data being revised over time. However, making an allowance for data
uncertainty in the evaluation of the forecasts from the model is commonplace: Forecasts are routinely compared with
advance estimates of the actual data, or first-finals, or the latest vintage of data available when the study is undertaken.

Our main aim is to assess whether the conventional way of forecasting in real-time can be improved upon for Bayesian
Vector Autoregressive (BVARs; see, e.g., Doan et al., 1984; Sims, 1980) with stochastic volatility. These are multivari-
ate models that are popular in probabilistic macro forecasting (Clark, 2011; Clark & Ravazzolo, 2014; Carriero et al.,
2020). Our first major contribution facilitates this assessment by adapting existing modelling approaches to allow for
revision-driven data uncertainty. We consider two ways of allowing for revision-driven data uncertainty, and these are
compared with the conventional approach of using the latest vintage of the time series available at each point in time.

The first of our two approaches is the use of real-time-vintage (RTV) data, advocated by Koenig et al. (2003) and
Clements and Galvão (2013b) for point forecasting, and shown by Clements (2017) to be a simple and effective way
of delivering more accurate assessments of forecasting uncertainty in univariate AR models when the error variance is
homoscedastic. The second approach is based on Kishor and Koenig (2012) (KK), who propose estimating the VAR on
the ‘true values’ of the variables at the same time as modelling the revisions.1 The extension of this approach to allow
for stochastic volatility is more involved, and we develop a Bayesian approach to accomplish this task. We detail how the
Bayesian approach allows the KK approach to be applied to quarterly data with more rounds of revisions than in the appli-
cation of Kishor and Koenig (2012) to annual data with few revisions, how it allows the generation of density forecasts,
and how it allows for stochastic volatility. We also detail our precise empirical implementation of the extended approach,
setting out how modelling choices are guided by the properties of the data revisions to the series we consider.

Our second main contribution is empirical. We undertake a thorough examination of the forecast performance of pro-
totypical BVAR models for the United States and United Kingdom, to determine the relevance of revision-driven data
uncertainty. In principle such data uncertainty should matter: We establish this in Appendix A. However, the analytical
results necessarily abstract from certain aspects of the actual forecasting environment, such as parameter nonconstancies
and small-sample parameter estimation uncertainty. The simplified settings we consider analytically serve to illustrate
some of the factors that may shape the empirical findings, such as the properties of the revisions, but we regard it as first
and foremost an empirical matter as to whether allowing for data uncertainty has a large effect on forecast accuracy. Our
empirical findings are supplemented with a Monte Carlo designed to further explore the factors that determine the impact
of data uncertainty on forecast performance.

Because we are interested in potential improvements from allowing for data uncertainty, our focus is on relative mea-
sures of density forecasting performance (compared with a benchmark that ignores data uncertainty), rather than absolute
tests for correct specification such as the ones considered in Rossi and Sekhposyan (2013).2 In simplified settings, we
can show that RTV maximizes the out-of-sample real-time log score, and this motivates our interest in RTV as a method
to deal with data uncertainty when forecasting with BVARs in real-time. Clearly, if the KK model provides an accurate
description of the real-time forecasting environment, by explicitly modelling data revisions, it will correctly account for
data uncertainty, and so should also provide improved density forecasts.

To anticipate our empirical findings, we find that allowing for data uncertainty using the KK approach generally
improves the accuracy of density forecasts of BVAR models with stochastic volatility for variables subject to revisions
such as output growth and inflation. For the United States, we generally find statistically significant improvements. For
the United Kingdom, we only find significant improvements at the year ahead horizon. The RTV approach significantly
improves the performance of BVAR models with constant volatility for these variables, but is not advantageous for mod-
els with stochastic volatility. A simulation exercise suggests that the inclusion of stochastic volatility compensates for
some of the detrimental effects of data revisions on BVAR density forecasting that would arise were we to use real-time
end-of-sample data rather than the RTV approach. That is, the inclusion of SV tempers the gains that would otherwise
accrue to RTV.

The plan of the remainder of the paper is as follows. Section 2 describes ways of allowing for revision-driven data uncer-
tainty, with a discussion of our Bayesian method of estimating the KK model extended to allow for stochastic uncertainty,
and of the factors that guide the empirical implementation of this method. Section 3 sets out the empirical forecasting

1In a sense, ‘true’ values are never observed, and the definition is usually used pragmatically to refer to the maturity after which further revisions are
unpredictable and largely inconsequential.
2For a survey of these techniques, see Corradi and Swanson (2006).
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CLEMENTS AND GALVÃO 3

comparisons we undertake and considers the implications of accounting for data uncertainty for measuring the predictive
variance (or forecasting uncertainty). The forecasting comparisons mainly focus on the value of allowing for data uncer-
tainty in models with stochastic volatility. Section 4 also presents a Monte Carlo study to evaluate the expected relative
performance of RTV applied to BVAR models. Section 5 offers some concluding remarks.

2 METHODS TO DEAL WITH DATA UNCERTAINTY IN BVAR FORECASTING

Clements and Galvão (2013b) show that if real-time data are reorganized into ‘real-time vintages’ (RTV) for model esti-
mation, instead of employing the conventional end-of-sample approach, the real-time accuracy of point forecasts from
autoregressive models may be improved. This is one of the methods we consider here to improve real-time forecasting
with BVARs by taking into account data uncertainty. The other method is based on Kishor and Koenig (2012) (KK), who
propose estimating the VAR using ‘true’ values of the variables subject to revision, as part of a system that also includes
equations to model the dynamics of data revisions. We extend KK to incorporate stochastic volatility (SV) to allow for
time-variation in expected forecast uncertainty. This puts the KK approach on the same footing as the BVAR models
with SV.

Below we consider the BVAR with RTV, followed by the KK approach, including the extension to allow for SV.

2.1 BVAR with real-time vintages

Consider the simple case of a forecaster using a vector autoregressive model of order p for forecasting in real time. If the
forecaster employs the latest-available vintage, that is, EOS, she will estimate the following model:

yT+1
t = 𝜷EOSxT+1

t−1 + eEOS
t , for t = p + 1, ..,T, (1)

where yT+1
t is a N × 1 vector of the vintage T + 1 estimate of each variable for the reference period t value, where t runs

from p + 1 up to T. The lags are also obtained from the latest vintage as xT+1
t−1 = (1, yT+1′

t−1 , … , yT+1′
t−p )′, implying that 𝜷EOS

is N × (Np + 1) matrix. We assume the data are published with a one period delay.
If the forecaster has access to T − 1 past vintages of the endogenous variables, that is, she has access to a real-time

database, then RTV for the VAR(p) model is given by estimation of

yt+1
t = 𝜷RTV xt

t−1 + eRTV
t , for t = p + 1, ..,T, (2)

where yt+1
t is the first estimate of each endogenous variable for reference period t such that

{
yt+1

t
}t=T

t=p+1 is the time series
of first releases for each variable. The Np + 1 vector of right-hand side variables consist of

xt
t−1 = (1, yt′

t−1, y
t′
t−2, … , yt′

t−p)
′, for t = p + 1, … ,T;

that is, all lags are taken from the vintage at t, so for more than one lag (p > 1), at least partially revised data are used.
When forecasting in real-time, the forecasts are typically conditioned on initial and early releases, that is, on xT+1

T
(and xT+1

T−1 etc. depending on p).3 As described by Clements and Galvão (2013b), estimating the VAR with RTV data gives
theoretically optimal forecasts for the first-release, as opposed to using EOS. Hence the use of RTV is a promising way
of dealing with variables subject to data revisions. Clements and Galvão (2013b) apply RTV to univariate models and
predictive regressions, but they do not evaluate the forecasting performance of RTV applied to VAR models.

As discussed in Clements (2017) for autoregressive forecasting models, the predictive densities of EOS and
RTV-estimated models will differ, and will depend on the nature of the data revisions. Based on the statistical model of
data revisions described in Clements (2017), the one-step-ahead predictive variance of an AR(1) estimated with EOS data,
𝜎2,EOS

T+1|T , will be larger than the predictive variance of the same AR(1) model estimated with RTV data, 𝜎2,RTV
T+1|T , if data revi-

sions are news, as defined by Mankiw and Shapiro (1986). News revisions are driven by the incorporation of information
that was not available when the earlier estimates was made. In the case of noise, revisions embody a reduction in the ear-
lier estimates' measurement error, and the variance of the more mature estimates will be smaller than that of the earlier

3By ‘real time’, we mean feasible forecasts that could have been made at the time the forecasts are assumed to have been made.
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4 CLEMENTS AND GALVÃO

estimates. Clements (2017) shows that the predictive variances will satisfy 𝜎2,RTV
T+1|T > 𝜎2,EOS

T+1|T for noise. Whether revisions
are news or noise, if the aim is to forecast the first estimate of a macroeconomic variable, the predictive variance estimate
using RTV data ought to be more accurate, and so produce more accurate density forecasts.

In the Appendix, we extend this analysis. We show that RTV will deliver better one-step-ahead density forecasting per-
formance (as measured by the logscore) than EOS if the target is the first estimate. The expected improvement in density
forecasting performance, measured by the log score, holds for news and noise revisions, and the relative improvement
over EOS is increasing in the size of revision (as measured by their variance). The analysis for an AR(1) forecasting model
is a motivation to consider RTV as alternative to EOS when employing VAR forecasting models for density forecasting of
variables subject to data revisions.

2.1.1 Adding stochastic volatility

In the macroeconomic forecasting literature, stochastic volatility has been found to play a key role in density forecasting
(see in particular Clark & Ravazzolo, 2014). Hence, we allow for time-variation in the volatility of the disturbances in
Equations (1) and (2) by allowing for a random walk process for the conditional variances. We choose the BVAR-SV
specification and estimation algorithm used by Carriero et al. (2019), including the corrections described in Carriero
et al. (2022).4 The specification is such that the variance of each disturbance in the VAR may change slowly over time,
but the covariances are fixed.

We apply the same estimation algorithm to obtain the SV specifications of (1) and (2).5 Draws from the predicted density
are obtained using 5000 draws from the posterior densities of the parameters (including the variance-covariance matrix
of the disturbances) after the initial 5000 Gibbs draws were discarded with multistep forecasts obtained by iteration,
including draws from the disturbances. We compute point forecasts and their forecasting uncertainty using the mean and
the variance of the predicted density draws for each horizon.

2.2 The KK BVAR approach

An alternative to RTV to deal with data uncertainty, when forecasting variables subject to data revisions, is the approach
proposed by Kishor and Koenig (2012), henceforth KK. KK propose estimating the VAR(p) on the ‘true values’ of the
endogenous variables, that is:

yt = cKK + 𝜷KKxt−1 + eKK
t , for t = p + 1, ..,T, (3)

where xt−1 = (y′
t−1, … , y′

t−p)
′. The problem of course is that we do not observe true (or even the revised) values of all

the observations at time T + 1, the forecast origin. The solution is to simultaneously model data revisions to provide ‘true
values’ up to T. The main assumption is that the true values, or an efficient estimate of these, is available l quarters after
the reference quarter, that is, yt = yt+l

t for t = p + 1, … ,T − l + 1. For the remaining observations, yT−l+2, … , yT , KK
suggest using a system of equations and the Kalman Filter.

At t + 1, we assume we observe l estimates of N × 1 vector yt: zt+1
t = (yt+1′

t , yt+1′
t−1 , … , yt+1′

t−l+1)
′ for t = l, … ,T, where the

assumption that true values are observed imply that yt+1
t−l+1 = yt−l+1. Let revt denote the N(l − 1) × 1 vector of revisions

defined as the difference between the first (l− 1) vectors of observed values (yt+1′
t , yt+1′

t−1 , … , yt+1′
t−l+2)

′ and true values yt as

revt = ((yt+1
t − yt)′, (yt+1

t−1 − yt−1)′, . … , (yt+1
t−l+2 − yt−l+2)′)′

= (rev(1)′
t , rev(2)′

t−1, . … , rev(l−1)′
t−l+2)

′
(4)

for l > 2. If the second estimate reveals true values as in Kishor and Koenig (2012), l = 2, then, revt = (yt+1
t − yt).

We model the (l − 1) data revisions processes for each endogenous variable in yt using a VAR(q):

revt = k0 + K1revt−1 + ... + Kqrevt−q + wt. (5)

4We use the code made available by Todd Clark.
5We assume a Minnesota prior for the VAR dynamic parameters, and the overall tightness prior is chosen by maximizing the marginal data density
of the BVAR (with constant variance) as in Carriero et al. (2015). After the overall prior tightness is set, we apply the BVAR-SV estimation algorithm
described in Carriero et al. (2022).

 10991255, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.2944 by U

niversity of R
eading, W

iley O
nline L

ibrary on [23/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CLEMENTS AND GALVÃO 5

Because data revisions may add new information (as reviewed by Mankiw & Shapiro, 1986, and Clements &
Galvão, 2019), then cov(eKK

t ,wt) is not a zero matrix. Define 𝜁t as the Nl vector of disturbances that include the innova-
tions eKK

t from Equation (3) and wt from Equation (5) such that var(𝜁t) = Q. News revisions then imply that off-diagonal
elements of Q may be nonzero, as the revisions disturbances are correlated with the disturbances to the true values.

KK propose estimating the parameters in Equations (3) and (5) jointly using the seemingly unrelated regression esti-
mator (SUR) with observations up to T − l + 1. Then using observations on zt+1

t for t = T − l + 2, … ,T, filtered values
for yt for t = T − l+ 2, … ,T are obtained using the Kalman filter. The Kalman filter is applied to a state-space represen-
tation of the model with state equations given by (3) and (5), and with the assumption that 𝜁t ∼ N(0,Q). The observation
equations, assuming that l > p and q = 1 to simplify the exposition, are given by

zt+1
t = d +

[
IN(l−1) IN(l−1)

IN 0N

] [
z̃t

(revt − k0)

]
, (6)

where the Nl vector of intercepts is d=
[
(cKK + k0,(1))′, … , (cKK + k0,(l−1))′, cKK′]′ , where k0,(l−1) is a N ×1 vector included

in k0 referring to revisions to the (l − 1)th estimate, and z̃t =
[(

yt − cKK)′, (yt−1 − cKK)′, … , (yt−l+1 − cKK)′
]′

.
We propose instead to apply Bayesian methods to estimate the parameters in (3) and (5). In particular, we use Gibbs

sampling to obtain posterior densities for cKK , 𝜷KK , k0, K, and Q and also for the values of the unobserved state variables
yt and revt for t = T − l + 2, … ,T. The algorithm to sample draws 𝑗 = 1, … , J for parameters is as follows.

First, we obtain draws for the cKK,( 𝑗), 𝜷KK,( 𝑗), k( 𝑗)
0 , K( 𝑗), and Q( 𝑗) , conditional on the ( 𝑗 − 1) draw of the time series

of true values {y( 𝑗−1)
t }T

t=1 and revisions {rev( 𝑗−1)
t }T

t=1, using the SUR model strategy described by Greenberg ((2013), ch.
10.1). Assume that s = N + N(l − 1) is the size of the vector 𝜉t = (y′

t , rev′
t)
′ and that 𝛽 is k × 1 vector of parameters where

k = (Np + 1)N + (N(l − 1)q + 1)N(l − 1). Note that 𝛽 is the vectorized version of parameters in cKK , 𝜷KK , k0, K. Then we
can create a block-diagonal s × k matrix Xt such that the system of equations can be written as

𝜉t = Xt𝛽 + 𝜁t, 𝜁t ∼ N(0,Q). (7)

Now assume Gaussian 𝛽 ∼ N(𝛽0,B0) and inverse-Wishart priors Q−1 ∼ W(v0,R0).6 Then the Gibbs draws are obtained
using the closed-form conditional densities, that is,

𝛽( 𝑗) ∼ N(𝛽1,B1) (8)

where

B1 =
[∑T

t=p+1
X′

t(Q
−1)( 𝑗−1)Xt + B−1

0

]−1

𝛽1 = B1

[∑T

t=p+1
X′

t(Q
−1)( 𝑗−1)𝝃t + B−1

0 𝛽0

]−1
,

and for the variance-covariance matrix as

(Q−1)( 𝑗) ∼ W(v1,R1)

where
v1 = v0 + T

R1 =
[

R−1
0 +

∑T

t=p+1
(𝜉t − Xt𝛽

( 𝑗))(𝜉t − Xt𝛽
( 𝑗))′

]−1
.

(For notational convenience, we assume that p > q).

6The values for 𝛽0 and B0 are set using a Minnesota prior as in Carriero et al. (2019). We compute the overall prior tightness, 𝜆1, using the values that
maximize the marginal data density of a VAR(p) of the true values as in (3), which are available up to T − l + 1. We set 𝜆2 = 0.9 and the prior for the
intercepts is set to zero with a large variance. The value for v0 is s + 2 and R0 = TΣ, where Σ is a diagonal matrix with elements equal to the variance
of the residuals of a AR(1) applied to each variable in 𝝃t . We use a similar strategy to obtain the priors for the revisions block, as (5) is a VAR(q) with
revisions observable up T − l + 1.
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6 CLEMENTS AND GALVÃO

The next step of the algorithm is to jointly obtain {y( 𝑗)
t }T

t=1 and {rev( 𝑗)
t }T

t=1 by using the state-space representation of
the model with parameters set as cKK,( 𝑗), 𝜷KK,( 𝑗), k( 𝑗)

0 , K( 𝑗) and Q( 𝑗). As suggested by Carter and Kohn (1994), we use the
Kalman smoother values for the state variables and their variances to draw {y( 𝑗)

t }T
t=1 and {rev( 𝑗)

t }T
t=1 from multivariate

Gaussian densities.7
We run the Gibbs sampler over 10,000 draws, remove the first 50%, and compute multistep forecasts for each one of

the kept draws by iteration including draws from the disturbances. We compute point forecasts and forecast uncertainty
by iteration as described earlier for the BVAR specifications. The KK BVAR model will deliver multiple-horizon forecasts
that vary with the data maturity; that is, the forecast ‚yT+h+1

T+h|T will differ from ‚yT+h+l
T+h|T .

2.2.1 Adding stochastic volatility

A novelty of our paper is to allow for time-varying conditional error variances in the KK model. Our precise empirical
implementation is motivated by the properties of the data revisions of the UK and US series we consider (see Section 2.3).

For the KK BVAR model, we add stochastic volatility by assuming that

var
[

eKK
t

wt

]
= var(𝜁t) = Qt = A−1𝜦tA−1,

where 𝜦t is a diagonal matrix and A−1 is lower triangular with ones on its main diagonal, as in Carriero et al. (2019).
This specification permits time-varying volatilities for the disturbances in the equations for both the true values and the
revisions. Allowing for SV in this form implies that

𝜁t = A−1𝜦0.5
t 𝜂t, 𝜂t ∼ N(0, INl).

The fact that 𝜦t is diagonal implies that the 𝑗th element of the rescaled disturbances, 𝜁t = A𝜁t, can be written as 𝜁𝑗,t =√
𝜆𝑗,t𝜂𝑗,t. The observational link between the disturbances of the KK model (Equation 7) and the unobserved volatility

processes is
ln 𝜁2

𝑗,t = ln 𝜆𝑗,t + ln 𝜂2
𝑗,t. (9)

The process for 𝜆𝑗,t is given by
ln 𝜆𝑗,t = ln 𝜆𝑗,t−1 + 𝜖𝑗,t, (10)

where 𝜖𝑗,t is the 𝑗th element of 𝜖t, and 𝜖t ∼ N(0,Φ), with no constraints imposed on the variance-covariance matrix Φ.
We estimate the KK BVAR-SV model by adding additional steps to the Gibbs sampler described earlier to implement

the Kim et al. (1998) algorithm to draw values for the time-varying volatilities using the state-space form implied by
equations (9) and (10). The additional steps draw the values in A from a a Gaussian density, andΦ from an inverse Wishart,
as in Carriero et al. (2019).

A Gibbs sampler is then employed to obtain the posterior distribution of the constant parameters cKK , 𝜷KK , k0, K, the
time-varying variance-covariance matrix Qt (which requires draws of A and Φ), and for the unobserved variables yt and
revt for t = T − l + 2, … ,T. The algorithm has then three blocks. In the first block we obtain a draw for the parameters
cKK , 𝜷KK , k0, K using the SURE strategy described earlier, that is, by obtaining draws for 𝛽( 𝑗) using (8) conditional on
Q( 𝑗−1)

t , {y( 𝑗−1)
t }T

t=1, and {rev( 𝑗−1)
t }T

t=1. In the second block we use the algorithm in Carriero et al. (2019) to obtain draws for
A, 𝜦t and Φ, conditional on 𝛽( 𝑗), {y( 𝑗−1)

t }T
t=1 and {rev( 𝑗−1)

t }T
t=1. The third block obtains draws for {y( 𝑗)

t }T
t=1 and {rev( 𝑗)

t }T
t=1,

conditional on 𝛽( 𝑗) and Q( 𝑗)
t , by using a multivariate Gaussian density with mean and variance obtained from the Kalman

smoother equations. We run the Gibbs sampler over 10,000 draws, remove the first 50%, and compute multistep forecasts
for each one of the kept draws. We compute forecasts by iteration as in Clark and Ravazzolo (2014), so draws from the
disturbances are included at each horizon. These draws use 𝜁t ∼ N(0,QT+h|T), that is, the variance-covariance matrix
may change with the horizon, as we compute ln 𝜆𝑗,T+1, … , ln 𝜆𝑗,T+h using Equation (10) with draws from the variance
equation disturbances. We apply a similar approach to calculate forecasts from the BVAR-SV models.

7This step makes provision for the fact that the values of these state variables are observed up to T − l + 1.
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CLEMENTS AND GALVÃO 7

2.3 Empirical implementation of the KK BVAR approach

The KK was used for forecasting by Kishor and Koenig (2012), Kishor and Koenig (2014), and Clements and
Galvão (2013a). But these studies were based on more restricted specifications: They did not allow for stochastic volatil-
ity and did consider the case of more than one variable being subject to revisions. In this section, we discuss how we
implement the KK BVAR approach, guided by the properties of the data.

The approach is applied to the 4-variable BVAR in Clark and Ravazzolo (2014), who established the benefits of allowing
for SV when forecasting with BVAR models. The VAR comprises four key quarterly macroeconomic variables: the first
differences of the logs of real GDP and the GDP deflator (so that these variables are effectively growth rates), the unem-
ployment rate and an interest rate. As in Clark and Ravazzolo (2014), we set the autoregressive order of the VAR in (3)
to four.

We estimate the KK BVAR model for the United States and the United Kingdom. For the United States, the real-time
data for real GDP, the GDP deflator and unemployment are all obtained from the Philadelphia Fed Real-Time Database,8
and we consider quarterly vintages. Prior to 1991, GDP is in fact GNP. The interest rate is the 3-month Treasury Bill rate.
For the United Kingdom, we obtain monthly real-time vintages from the Office of National Statistics (ONS) website on
real GDP (GDP in chained volume measures) and on nominal GDP (GDP at current prices).9 We compute the implied
GDP deflator using the ratio between the nominal and real GDP values, and use the monthly vintages that include first
releases as the quarterly vintages.10 UK data on the unemployment rate and the 3-month interbank rate are taken from
the St Louis FRED dataset.11 The sample period starts in 1965Q4 for US data and only in 1990Q1 for UK data, because
the UK time series are limited by the availability of the real-time nominal GDP data.

We do not model revisions for all the endogenous variables. The interest rate is not subject to revisions, and revisions to
unemployment are small and infrequent. Hence, the vector yt is partitioned into N1 and a N2 vectors, yt = (𝑦′1t, 𝑦

′
2t)

′. The
number of equations in the system given by (3) and (5) is then s = N + (l − 1)N1, where N1 is the number of endogenous
variables for which we model revisions.

We assume that the true values are observed about 2 years after the first estimate, that is, 𝑦t+8
1t = 𝑦1t as l = 8. Figure 1

presents the first two revision processes, that is, rev(1)
t = (yt+1

1t − y1t) and rev(2)
t = (yt+2

1t − y1t),12 for the sample period
for which we have 𝑦t+8

1t . The top panel graphs the revisions to US output growth and inflation, while the bottom panel
shows the same for the United Kingdom. Revisions have little first-order serial correlation except for the revisions to UK
inflation, which have negative serial correlation of about −0.2.13 The correlation between US output growth and inflation
revisions are large at −28% for revisions to the first estimate, and as much as −48% for revisions to the second estimate.
Correlations for the UK are smaller than 5%. The KK BVAR approach allows the innovations to the true values yt and the
revisions processes revt to be correlated, and the approach is able exploit the empirical correlations between the revisions
to output growth and inflation reported here.

Figure 2 presents the standard deviations of these revisions computed over rolling windows of 20 observations, that is,
over five year periods, and Figure 3 presents the standard deviations of the 1st, 8th and latest-vintage (2019Q4) estimates.
Taken together, these figures suggest a role for stochastic volatility in modelling data revisions. The size of the revisions
between the 1st–8th estimates, and the 2nd–8th estimates, fluctuate over the period, and are larger for the US than the
UK for growth, whereas for inflation the relative magnitudes are reversed. The variability of revisions to UK inflation
display an upward trend, whereas those to US inflation have generally been decreasing. For the US, the variability of the
estimates for all maturities has moved closely together over time, on a downward trend, for both variables. There was a
sharp increase in the variability of estimates of UK growth in 2008, and a halving in the variability of final-vintage UK
estimates around 2008. In addition, these results are consistent with the well-documented Great Moderation in the United

8https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/.
9https://www.ons.gov.uk/economy/grossdomesticproductgdp/datasets/realtimedatabaseforukgdpabmi and https://www.ons.gov.uk/economy/
grossdomesticproductgdp/datasets/realtimedatabaseforukgdpybha.
10We use the implicit deflator here for comparability with US data. The Bank of England targets the CPI measure of inflation, which is not subject to
revisions because of UK regulations.
11https://fred.stlouisfed.org/.
12To ease comparison, we plot rev(2)

t instead of rev(2)
t−1 as it is included in (4).

13As indicated in the note to the figure, all the other first-order autocorrelations are no larger in absolute value than 0.12.
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8 CLEMENTS AND GALVÃO

FIGURE 1 Time series of revisions for US and UK first and second estimates assuming the eighth estimates are ‘true’ values. Notes:
Correlation between output and deflator revisions: −28% (1st–8th) and −48% (2nd–8th) for the United States; −2% (1st–8th), and 5% (2nd–8th)
for the United Kingdom. First-order autocorrelations for US 1st–8th revisions for output and inflation are 0.01, 0.01, and for 2nd–8th are 0.09
and 0.01. For the United Kingdom, the comparable figures are 0.08, −0.21 (1st–8th) and −0.12, −0.21 (2nd–8th)

FIGURE 2 Revision size: standard deviation of revisions computed for a rolling window of 5 years. Notes: Date indicates the reference
quarter of the last observation in the rolling window

States, as the variance for both output growth and inflation declines in the 80s. The variance of GDP increases in 2008/9
recession. This appears more dramatic for the United Kingdom, but note for the United Kingdom the more volatile period
of the previous century is not shown.
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CLEMENTS AND GALVÃO 9

FIGURE 3 Standard deviation of the first, eighth and EOS (2019Q4) estimates computed using rolling windows of 5 years. Notes: Date
indicates the reference quarter of the last observation in the rolling window

This initial data analysis indicate that the KK BVAR-SV may be a useful model for real-time forecasting, as the model is
able to capture time-variation in the innovations to both true values and revision processes in addition to accommodate
the contemporaneous correlation between revisions to different variables. Because our analysis suggests only limited
serial correlation in the revisions, we restrict the dynamics in Equation (5) to a single lag.14 The number of elements of
the matrix K1 in Equation (5) increases quickly with l, as the matrix captures the dynamics of l − 1 revisions process for
each variable in 𝑦1t allowing for nonzero cross dynamic correlations. We consider two KK BVAR-SV specifications. The
first one assumes l = 8, but K1 is assumed to be diagonal, limiting the scope of the cross variable-revision dynamics as
there is limited serial correlation in the data revisions. The second specification assumes that l = 2, following Kishor and
Koenig (2012) but does not impose any restrictions on K1. This last specification works well for the US data because initial
revisions to output growth and inflation are large relative to subsequent ones, but less well for the UK data where later
revisions are more important.15

As a consequence, we only apply this last specification to US data. In both specifications, the contemporaneous
correlation across revision variables are considered to be nonzero in Qt.

3 APPLICATIONS TO US AND UK REAL-TIME DENSITY FORECASTING

In this section, we use BVAR models estimated by both RTV and KK to forecast US and UK macroeconomic variables. Our
aims are to assess the relevance of accounting for data uncertainty when making probabilistic forecasts of macrovariables
using BVARs and to determine whether one of the two approaches we consider is superior to the other. However, before

14Note in the footnote of Figure 1, we have reported serial correlation coefficients for revisions between the 1st–8th estimates, and the 2 nd–8th estimates,
but would expect serial correlation to matter even less for revisions to later releases (e.g., sth-8th, for 8 > s > 2) as differences to the true values are
frequently zero.
15Figure 3 provides evidence supporting this statement. The differences between the characteristics of eighth-release data and the 2019Q4 vintage are
large for the UK before 2007.
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10 CLEMENTS AND GALVÃO

FIGURE 4 One-step-ahead predictive variance (out-of-sample) for three forecasting models: BVAR-SV EOS, BVAR-SV RTV, KK-BVAR-SV
(l = 8). Notes: The values are the variance of the one-step-ahead predictive density at each forecast origin (computed using 5000 draws from
the parameters' posterior at each origin (after the first 5,000 draws were removed as burn-in), where models were re-estimated with
increasing windows of data at each origin). The predictive variances of the KK-BVAR-SV model are ‘first’ (first release) and ‘eight’ (last
release). RTV and EOS are from a BVAR-SV model estimated with the indicated approach

presenting the forecast comparisons in Section 3.3, Section 3.2 considers the predictive variances. These are a major driver
of the results for the densities and provide insights into the effects of the data revisions on density forecast performance.

3.1 Forecasting exercise design

We set the US out-of-sample period to the forecast origins (vintages) of 2000Q2 to 2017Q1 (a total of 68), while for the
United Kingdom, it is 2004Q4 to 2017Q1 (50 origins). These sample periods are constrained by the fact that we look at
both one-quarter-ahead and 1-year forecasts that are evaluated using both the first and the eighth estimates. As the latest
vintage we have is 2019Q4, with data up to 2019Q3, we can only evaluate forecasts computed up to the 2017Q1 origin. For
both countries we use increasing estimation windows (a ‘recursive scheme’), because larger sample sizes are helpful when
forecasting with models with SV. Nonetheless, estimation periods are clearly markedly shorter for the United Kingdom.

We evaluate the forecasting accuracy of each BVAR specification for the four variables, for two vintages of actual values.
These are: the first release, such that the target is 𝑦T+2

T+1 for one-step-ahead forecasts, and 𝑦T+5
T+4 for four-step-ahead forecasts

and the eighth release with 1 and 4-step horizon targets of 𝑦T+9
T+1 and 𝑦T+12

T+4 .
Two measures of forecast performance are reported. For point forecasts, we use the root mean squared forecast error

(RMSFE). For density forecast evaluation, we calculate minus the log of the predictive density score (logscore), such that
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CLEMENTS AND GALVÃO 11

TABLE 1A Relative density forecasting performance (logscore) of RTV and KK approaches to BVAR benchmark:
stochastic volatility specifications, BVAR-SV: US Dataset—2000Q2–2017Q1 (forecasting origins, 68 obs)

One-quarter-ahead forecasts, h = 1 One-year-ahead forecasts, h = 4
EOS RTV KK, l = 2 KK, l = 8 EOS RTV KK, l = 2 KK, l = 8

Output growth
First release 0.781 0.008 −0.073 −0.096 0.919 0.065 −0.041 0.018

[0.141] [−1.338] [−2.185] [0.719] [−0.791] [0.421]
Eighth release 0.988 0.158 0.004 −0.030 1.119 0.149 0.017 −0.045

[1.385] [0.058] [−0.610] [1.266] [0.294] [−1.380]
GDP deflator inflation
First release 0.141 −0.049 −0.084 −0.112 0.100 0.054 0.006 0.070

[−0.707] [−1.077] [−1.381] [1.470] [0.158] [1.871]
Eighth release 0.148 −0.012 −0.111 −0.123 0.130 0.053 0.019 0.056

[−0.161] [−1.422] [−1.403] [1.421] [0.522] [1.593]
Additional variables
Unemp 0.127 0.008 −0.060 −0.085 2.307 0.014 −0.352 −0.345

[0.145] [−0.672] [−0.875] [0.195] [−1.572] [−1.686]
3-mon rate 0.193 0.022 −0.048 0.024 1.805 0.117 −0.053 −0.054

[0.433] [−0.589] [0.577] [1.162] [−0.466] [−1.034]

Note: Models are re-estimated at each new quarterly forecasting origin by extending the sample period that starts in 1965Q3 for
the United States and 1989Q4 for the United Kingdom. Entries are the logscore in the EOS (benchmark) column, differences to
the logscore in the other columns. Values in brackets and t-statistics of the DM test with the null that the alternative model is as
accurate as the benchmark. Values in bold suggest rejection at 10% in a one-sided test with the indicated model under the
alternative (CV = −1.282).

TABLE 1B Relative density forecasting performance (logscore) of RTV and KK approaches to BVAR benchmark:
stochastic volatility specifications, BVAR-SV: UK Dataset—2004Q4–2017Q1 (forecasting origins, 50 obs)

One-quarter-ahead forecasts, h = 1 One-year-ahead forecasts, h = 4
EOS RTV KK, l = 8 EOS RTV KK, l = 8

Output growth
First release 0.824 −0.012 −0.080 3.548 0.446 −1.568

[−0.187] [−0.674] [1.099] [−1.286]
Eighth release 1.238 0.100 −0.143 4.849 0.629 −1.944

[0.813] [−1.193] [1.156] [−1.322]
Implicit deflator inflation
First release 0.921 −0.086 −0.068 0.798 0.009 −0.004

[−0.670] [−0.610] [0.073] [−0.079]
Eighth release 1.097 0.005 0.072 1.044 0.041 −0.024

[0.030] [0.885] [0.408] [−0.445]
Additional variables
Unemployment −0.122 0.139 0.113 1.554 0.068 −0.117

[1.005] [1.273] [0.620] [−0.592]
3-month rate 0.352 −0.024 −0.114 1.601 0.384 0.092

[−0.156] [−0.763] [2.190] [0.751]

Note: Models are re-estimated at each new quarterly forecasting origin by extending the sample period that starts in 1965Q3 for the
United States and 1989Q4 for the United Kingdom. Entries are the logscore in the EOS (benchmark) column, differences to the
logscore in the other columns. Values in brackets and t-statistics of the DM test with the null that the alternative model is as
accurate as the benchmark. Values in bold suggest rejection at 10% in a one-sided test with the indicated model under the
alternative (CV = −1.282).

a smaller (more negative) value is preferred. If pT+h|T(.) is the h-step ahead density of 𝑦 made at time T, the logscore is
− ln(pT+h|T(𝑦T+h) for realization 𝑦T+h. We compute the logscore using its closed-form solution for Gaussian densities (as
in Clark & Ravazzolo, 2014), using the mean and the variance obtained using the predictive density draws. When the
mean and variance are given by 𝜇T+h|T and 𝜎2

T+h|T , the (negative) score is

− ln(pT+h|T(𝑦T+h)) =
(𝑦T+h − 𝜇T+h|T)2

2𝜎2
T+h|T

+ 1
2

ln(𝜎2
T+h|T) + 1

2
ln(2𝜋). (11)
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12 CLEMENTS AND GALVÃO

The negative of the logscore computed analytically for a normal predictive density is equivalent to the Dawid–Sebastiani
score function. It is a proper score function, meaning that the optimal forecast is to deliver the true density function—there
is no incentive to gameplay (as discussed in Gneiting & Katzfuss, 2014).

We test whether the differences in forecast performance between the models are statistically significant using the
Diebold and Mariano (1995) (DM) test statistic. Values of the DM statistic in bold in the tables signify rejection of the null
hypothesis of equal accuracy in favour of the alternative (to the benchmark, either the BVAR-SV EOS or BVAR EOS) at
the 5% level (with critical values from a Gaussian distribution, and the Newey–West variance estimator).

3.2 Data uncertainty and the predicted variances

The analytical results in Appendix A suggest that when data revisions are news, we would expect that 𝜎2,EOS
T+1|T < 𝜎2,RTV

T+1|T .
If data revisions are noise, we should observe 𝜎2,EOS

T+1|T > 𝜎2,RTV
T+1|T . In terms of the predictive densities obtained from the

KK BVAR-SV models, we expect that the predictive variance for the first estimate, 𝜎2,T+2,KK
T+1|T , will be lower than the pre-

dictive variance for the mature estimate, 𝜎2,T+l+1,KK
T+1|T , if data revisions are news. Opposite inequalities are expected if

data revisions are noise. Although the classification of data revisions as news and noise has implications for the predic-
tive variances of the RTV and the KK approaches, these modelling approaches do not require us to explicitly identify
the news and noise components, as in Jacobs and van Norden (2011). Nevertheless, in this section, we calculate the
time-series of predictive variances from the BVAR-SV over the out-of-sample period, when the model is estimated by EOS,
RTV, and KK.

Figure 4 presents the one-step-ahead predictive variances, 𝜎2
T+1|T computed at each forecast origin of the out-of-sample

period. These are the variances of the one-step-ahead predictive densities obtained by using 5000 draws of the param-
eters' posteriors (after the first 5000 Gibbs draw are removed) and are calculated using all data up to T (resulting in
increasing sample periods at successive forecast origins), by the iterative procedure described in Section 2. We graph
the predictive variances for the KK BVAR-SV model (l = 8), and the BVAR-SV model estimated with EOS and
RTV data.

The variation of the RTV one-step predictive variances for UK inflation is attenuated compared with EOS, in particular
during the turbulent 2009–2011 period, when the RTV variances are almost a half of EOS values. This suggests that
data revisions are likely to be linked to new information as 𝜎2,EOS

T+1|T > 𝜎2,RTV
T+1|T . Similar behaviour, but with more modest

differences, is observed for US output growth. For UK output growth, we find similar results to US output, except for 2012,
when the RTV estimated volatility is higher than EOS. For US inflation, we find that for most time periods, 𝜎2,EOS

T+1|T < 𝜎2,RTV
T+1|T ,

compatible with noise revisions. In all cases, sizeable differences in predictive variances are usually observed during
turbulent periods (e.g., 2009–2011), suggesting that accounting for data uncertainty may have an episodic impact on the
density forecasting performance of the BVAR-SV model.

Turning now to the KK predictive variances which target first or eighth estimates, we find that 𝜎2,T+2,KK
T+1|T < 𝜎2,T+9,KK

T+1|T for
output growth, which is to be expected if revisions ‘add news’. For both inflation series, we find that 𝜎2,T+2,KK

T+1|T > 𝜎2,T+9,KK
T+1|T

for forecast origins after 2012, which may indicate that data revisions are noise. These results support the view that the
KK modelling approach can accommodate both news and noise revisions, that the estimated differences between first
and final releases predictive variance is usually moderate, but that the sign of their differences may change over time.

3.3 Relative forecasting performance

As the literature suggests the inclusion of SV improves density forecasting (see Clark, 2011; Clark & Ravazzolo, 2014;
Diebold et al., 2017), our first set of results evaluate the impact of data uncertainty by comparing the performance of the
RTV and KK approaches against EOS for BVAR-SV models. We then contrast these results to those for constant volatility
specifications. Tables 1A and 1B show results using the logscore to measure density forecasting accuracy, with Tables 2A
and 2B presenting equivalent results for point forecasts using RMSFE as the loss function. The tables record results for
both datasets (United States and United Kingdom), two horizons (h = 1, 4), and two data maturities (first and eighth).
For the US data, we consider two KK specifications (l = 2 and l = 8). The tables include the t-statistics of the DM test of
equal accuracy against the benchmark (EOS).

We find no evidence of statistically significant improvements in density forecasting performance from estimating
BVAR-SV models by RTV, relative to EOS. However, the KK (l = 8) approach does improve the accuracy of BVAR-SV
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CLEMENTS AND GALVÃO 13

TABLE 2A Relative point forecasting performance (RMSFE) of RTV and KK approaches to BVAR benchmark:
stochastic volatility specifications, BVAR-SV: US Dataset—2000Q2–2017Q1 (forecasting origins, 68 obs)

One-quarter-ahead forecasts, h = 1 One-year-ahead forecasts, h = 4
EOS RTV KK, l = 2 KK, l = 8 EOS RTV KK, l = 2 KK, l = 8

Output growth
First release 0.558 0.968 0.951 0.937 0.622 0.988 0.957 0.956

[−0.887] [−0.881] [−1.741] [−0.524] [−0.970] [−1.217]
Eighth release 0.626 0.987 0.993 0.972 0.687 1.000 0.995 0.976

[−0.489] [−0.200] [−1.126] [0.004] [−0.118] [−0.757]
GDP deflator inflation
First release 0.250 1.007 0.989 1.024 0.265 1.004 0.996 1.022

[0.237] [−0.282] [0.732] [0.116] [−0.176] [0.329]
Eighth release 0.258 1.022 0.990 1.030 0.279 1.027 1.006 1.043

[0.966] [−0.233] [0.809] [0.811] [0.344] [1.419]
Additional variables
Unemp 0.283 1.031 1.025 1.100 1.078 1.006 0.971 1.017

[1.248] [0.883] [1.484] [0.460] [−1.272] [0.925]
3-month rate 0.385 0.977 0.971 0.946 1.352 1.036 1.003 0.985

[−0.462] [−0.775] [−1.170] [1.104] [0.114] [−0.456]

Note: Models are re-estimated at each new quarterly forecasting origin by extending the sample period that starts in 1965Q3 for
the United States and 1989Q4 for the United Kingdom. Entries are RMSFE in the EOS (benchmark) column, ratios to the
benchmark RMSFE in the other columns. Values in brackets and t-statistics of the DM test with the null that the alternative model
is as accurate as the benchmark. Values in bold suggest rejection at 10% in a one-sided test with the indicated model under the
alternative (CV = −1.282).

TABLE 2B Relative point forecasting performance (RMSFE) of RTV and KK approaches to BVAR benchmark:
stochastic volatility specifications, BVAR-SV: UK Dataset—2004Q4–2017Q1 (forecasting origins, 50 obs)

One-quarter-ahead forecasts, h = 1 One-year-ahead forecasts, h = 4
EOS RTV KK, l = 8 EOS RTV KK, l = 8

Output growth
First release 0.613 0.952 0.864 0.747 1.083 0.875

[−0.760] [−1.359] [1.355] [−2.142]
Eighth release 0.685 0.920 0.871 0.802 1.047 0.909

[−1.296] [−1.538] [1.113] [−2.346]
Implicit deflator inflation
First release 0.626 0.833 0.942 0.536 0.997 0.946

[−1.957] [−0.638] [−0.099] [−0.797]
Eighth release 0.683 0.871 1.021 0.582 1.021 1.028

[−1.382] [0.383] [0.789] [0.557]
Additional variables
Unemployment 0.232 1.039 1.055 0.794 1.047 1.046

[0.838] [1.079] [1.563] [1.433]
3-month rate 0.425 0.999 0.930 1.310 1.224 0.999

[−0.006] [−1.312] [2.386] [−0.019]

Note: Models are re-estimated at each new quarterly forecasting origin by extending the sample period that starts in 1965Q3 for
the United States and 1989Q4 for the United Kingdom. Entries are RMSFE in the EOS (benchmark) column, ratios to the
benchmark RMSFE in the other columns. Values in brackets and t-statistics of the DM test with the null that the alternative
model is as accurate as the benchmark. Values in bold suggest rejection at 10% in a one-sided test with the indicated model
under the alternative (CV = −1.282).

density forecasts, in particular the one-step-ahead forecasts of output growth and inflation for the US data, and the
h = 4 UK output growth forecasts. There is less evidence that KK is beneficial for point forecasting, for the United
States, although for the UK KK generates more accurate h = 4 forecasts, and RTV more accurate one-step-ahead
points forecasts.

Although our main focus is on SV models, the results for constant volatility models are illuminating. Tables 3A and
3B report results for point forecasting, and Tables 4A and 4B result for density forecasting, both for constant-volatility
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14 CLEMENTS AND GALVÃO

TABLE 3A Relative point forecasting performance (RMSFE) of RTV and KK approaches to BVAR benchmark:
constant volatility specifications, BVAR: US Dataset—2000Q2–2017Q1 (forecasting origins, 68 obs)

One-quarter-ahead forecasts, h = 1 One-year-ahead forecasts, h = 4
EOS RTV KK, l = 2 KK, l = 8 EOS RTV KK, l = 2 KK, l = 8

Output growth
First release 0.644 0.924 0.973 0.875 0.729 0.943 0.985 0.908

[−1.575] [−0.380] [−2.752] [−2.531] [−0.703] [−1.993]
Eighth release 0.691 0.965 1.039 0.957 0.787 0.950 1.012 0.954

[−1.059] [0.741] [−1.413] [−2.261] [0.480] [−1.122]
GDP deflator inflation
First release 0.277 0.952 0.937 0.913 0.304 0.907 0.913 0.879

[−2.043] [−1.705] [−2.471] [−2.372] [−1.727] [−2.159]
Eighth release 0.281 0.942 0.911 0.894 0.315 0.897 0.901 0.878

[−2.006] [−2.100] [−2.591] [−2.269] [−1.894] [−2.101]
Additional variables
Unemp 0.293 1.069 1.055 1.031 1.174 1.042 1.050 1.002

[1.460] [1.300] [1.124] [2.529] [2.315] [0.086]
3-month rate 0.458 0.908 0.912 0.889 1.365 1.002 1.004 1.003

[−1.268] [−0.954] [−1.360] 0.067 [0.095] [0.087]

Note: Models are re-estimated at each new quarterly forecasting origin by extending the sample period that starts in 1965Q3 for the
United States and 1989Q4 for the United Kingdom. Entries are RMSFE in the EOS (benchmark) column, ratios to the benchmark
RMSFE in the other columns. Values in brackets and t-statistics of the DM test with the null that the alternative model is as
accurate as the benchmark. Values in bold suggest rejection at 10% in a one-sided test with the indicated model under the
alternative (CV = −1.282).

TABLE 3B Relative point forecasting performance (RMSFE) of RTV and KK approaches to BVAR benchmark:
constant volatility specifications, BVAR: UK Dataset—2004Q4–2017Q1 (forecasting origins, 50 obs)

One-quarter-ahead forecasts, h = 1 One-year-ahead forecasts, h = 4
EOS RTV KK, l = 8 EOS RTV KK, l = 8

Output growth
First release 0.571 0.933 0.957 0.705 0.989 0.970

[−1.561] [−0.817] [−0.285] [−0.384]
Eighth release 0.655 0.906 0.947 0.765 0.979 1.006

[−2.002] [−1.250] [−0.572] [0.096]
Implicit deflator inflation
First release 0.598 0.955 0.993 0.607 0.996 0.925

[−0.764] [−0.105] [−0.110] [−1.303]
Eighth release 0.592 1.024 1.100 0.610 1.035 1.025

[0.447] [1.076] [1.308] [0.527]
Additional variables
Unemployment 0.231 1.027 1.072 0.801 0.999 1.089

[0.976] [2.063] [−0.042] [1.851]
3-month rate 0.504 0.881 0.901 1.516 0.951 1.017

[−1.052] [−0.962] [−0.959] [0.137]

Note: Models are re-estimated at each new quarterly forecasting origin by extending the sample period that starts in 1965Q3 for
the United States and 1989Q4 for the United Kingdom. Entries are RMSFE in the EOS (benchmark) column, ratios to the
benchmark RMSFE in the other columns. Values in brackets and t-statistics of the DM test with the null that the alternative
model is as accurate as the benchmark. Values in bold suggest rejection at 10% in a one-sided test with the indicated model under
the alternative (CV = −1.282).

BVARs. In line with the empirical results in Clements and Galvão (2013b) and Clements (2017) for autoregressive
models, we find that RTV and KK improve the forecasting performance of the BVAR point forecasts for output growth
and inflation for the United States (Table 3A). There are also some improvements to US and UK output growth density
forecasts (Tables 4A and 4B) for KK, but also now for RTV. Hence contrasting the findings for the specifications with, and
without, SV, a clear difference is that RTV loses its value for density forecasting when the models exhibit SV. In the next
section, we investigate this using Monte Carlo, to better understand the factors that contribute to modelling data revisions
adding value.
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CLEMENTS AND GALVÃO 15

TABLE 4A Relative density forecasting performance (logscore) of RTV and KK approaches to BVAR benchmark:
constant volatility specifications: US Dataset—2000Q2–2017Q1 (forecasting origins, 68 obs)

One-quarter-ahead forecasts, h = 1 One-year-ahead forecasts, h = 4
EOS RTV KK, l = 2 KK, l = 8 EOS RTV KK, l = 2 KK, l = 8

Output growth
First release 0.997 −0.098 −0.035 −0.122 1.121 −0.063 −0.001 −0.067

[−1.575] −0.853 [−3.355] [−1.741] [−0.065] [−2.126]
Eighth release 1.062 −0.040 0.024 −0.021 1.194 −0.048 0.014 −0.020

[−0.598] [0.585] [−0.886] [−1.010] [0.855] [−0.738]
GDP deflator inflation
First release 0.119 −0.016 0.004 0.004 0.276 −0.022 0.042 0.036

[−0.464] [0.012] [0.075] [−0.938] [1.328] [1.077]
Eighth release 0.137 −0.029 −0.031 −0.032 0.300 −0.034 0.025 0.023

[−0.626] [−0.484] [−0.490] [−1.105] [0.693] [0.623]
Additional variables
Unemp 0.203 0.050 0.013 0.004 2.134 0.120 −0.049 −0.252

[1.031] [0.205] [0.056] [2.652] [−0.608] [ −1.290]
3-month rate 0.791 −0.061 −0.066 −0.021 1.765 −0.002 0.006 0.034

[−2.529] [−2.186] [−0.842] [−0.097] [0.217] [1.647]

Note: Models are re-estimated at each new quarterly forecasting origin by extending the sample period that starts in 1965Q3 for the
United States and 1989Q4 for the United Kingdom. Entries are the logscore in the EOS (benchmark) column, differences to the
logscore in the other columns. Values in brackets and t-statistics of the DM test with the null that the alternative model is as
accurate as the benchmark. Values in bold suggest rejection at 10% in a one-sided test with the indicated model under the
alternative (CV = −1.282).

TABLE 4B Relative density forecasting performance (logscore) of RTV and KK approaches to BVAR
benchmark: constant volatility specifications: UK Dataset—2004Q4–2017Q1 (forecasting origins, 50 obs)

One-quarter-ahead forecasts, h = 1 One-year-ahead forecasts, h = 4
EOS RTV KK, l = 8 EOS RTV KK, l = 8

Output growth
First release 0.948 −0.066 −0.126 1.917 −0.231 −0.453

[−0.792] [−1.031] [−1.300] [−1.460]
Eighth release 1.328 −0.124 −0.195 2.412 −0.302 −0.479

[−1.123] [−1.405] [−1.389] [−1.323]
Implicit deflator inflation
First release 0.888 −0.070 −0.023 0.871 0.006 −0.055

[−1.197] [−0.406] [0.103] [−0.818]
Eighth release 0.886 0.026 0.069 0.950 0.025 −0.023

[0.389] [0.840] [0.609] [−0.428]
Additional variables
Unemployment −0.047 0.072 0.047 1.553 0.111 −0.125

[1.500] [1.125] [1.549] [−0.878]
3-month rate 0.693 −0.093 −0.009 1.838 −0.003 −0.038

[−1.300] [−0.115] [−0.058] [−0.568]

Note: Models are re-estimated at each new quarterly forecasting origin by extending the sample period that starts in
1965Q3 for the United States and 1989Q4 for the United Kingdom. Entries are the logscore in the EOS (benchmark)
column, differences to the logscore in the other columns. Values in brackets and t-statistics of the DM test with the null
that the alternative model is as accurate as the benchmark. Values in bold suggest rejection at 10% in a one-sided test
with the indicated model under the alternative (CV = −1.282).

4 A MONTE CARLO EXERCISE

In this section, we report the results of a Monte Carlo exercise designed to further explore when we might expect gains
from allowing for data uncertainty when forecasting with BVAR models in real time. The exercise focuses on RTV versus
EOS, given that RTV is a simple alternative to EOS, whereas KK is more complicated and entails a number of modelling
choices, as illustrated in Section 2. We consider the effects of the forecast horizon and forecast target on the relative
performance of the two approaches. As in the empirical exercise, we measure forecast performance using the RMSFE
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16 CLEMENTS AND GALVÃO

and the logscore, and we evaluate relative forecasting performance using the Diebold–Mariano test for equal forecasting
accuracy with the BVAR EOS. We also consider the BVAR-SV as forecasting model to account for the fact that SV may
accommodate the effect of different data maturities in the EOS data as described below.

The data generation process (DGP) is the KK model estimated on US data for output growth and GDP deflator inflation.
We suppose 𝑦t+14

t reveals the true values, so that the DGP includes the initial revisions but also the subsequent annual
rounds of revisions.16 An advantage of having the KK model as the DGP is that data revisions may be a combination of
news and noise revisions. We consider a VAR(1) for the (l − 1) = 13 data revisions processes for each variable (output
growth and inflation), and we allow revisions across variables and maturity to be contemporaneously and dynamically
correlated. For the true values, we consider a VAR(4), and we estimate the KK VAR model with data from 1985, that is,
for the period after the Great Moderation. This lends support to the assumption that the volatility of the disturbances is
constant, that is, we do not allow for SV in the DGP.

Using data generated from the KK model, the end-of-sample vintage available at the forecasting origin T + 1
{

yT+1
t

}t=T
t=1

is given by yT+1
t = yt for t = 1, … ,T − l + 1, then yT+1

T−l+2 = yT−l+2 + rev(l−1)
T−l+2 and so on up to yT+1

T = yT + rev(1)
T . This

implies that the variability of the most recent l − 1 observations which are still subject to revision will differ from that of
the fully-revised earlier values. As a consequence, it may be that allowing for stochastic volatility in the BVAR estimated
on

{
yT+1

t
}t=T

t=1 will result in better forecasts, even though stochastic volatility is not intrinsic to the DGP. The rationale is
that SV may help to accommodate the changing data variability due to the different maturities of the observations. In
contrast to the empirical exercise, the simulation allows us to remove the potentially confounding effects of time-varying
volatilities in the process for the true values and data revisions, to isolate the effects of data maturities on relative forecast
performance.

For comparison purposes, we consider both the BVAR-SV EOS and BVAR-SV RTV, in addition to the BVAR RTV. We
consider a relatively short sample period, matching that of the empirical exercise. The in-sample period T = 150, and the
out-of-sample period is set to P = 50.17 We evaluate forecasts for both first (𝑦T+h+1

T+h ) and final releases (𝑦T+h), and for two
horizons: one-step-ahead and four-steps-ahead. We set the number of draws to approximate the posterior distribution and
the predictive density to 8000 (as first 4000 are removed as burn-in) and the number of Monte Carlo replications is 288.
The number of replications is small because of the computational time required to re-estimate each forecasting model
with increasing samples over the out-of-sample period, P. Our estimates for accuracy measures (RMSFE and logscore) are
actually over 50× 288 realizations. The number of replications is used to calculate the rejection rates for the DM statistic.
On each replication, DM is computed using P − h observations, as a 5% level one-sided test against the BVAR EOS. The
percentage of rejections across replications estimates the rejection frequency against equality with the BVAR EOS, the
same benchmark as in the empirical exercises. We also use the results across replications to count the number of times
that one of the candidate models is better than the benchmark using either the RMSE or the logscore.

Tables 5A and 5B present the results of the Monte Carlo exercise. As in the case of the empirical exercises, the values for
the BVAR EOS column are either the RMSFE or the logscore. For the remaining models, we report ratios to these values
(RMSFE) or differences with (logscore).

The results in Tables 5A and 5B suggest that we are more likely to find significant improvements from RTV over EOS for
one-step-ahead forecasts, evaluated against the first estimate of output growth. Gains from RTV decline with the horizon.
The gains for inflation are in general less marked than for output growth. The allowance for stochastic volatility tends to
worsen forecasting performance of one-step-ahead forecasts. But for four-step-ahead forecasts, we find a large proportion
of replications (more than 50%) where the inclusion stochastic volatility (as in the BVAR-SV EOS) is beneficial, when
forecasts are evaluated against first releases. Indeed at h = 4, the BVAR-SV EOS has a similar performance to the BVAR
(-SV) RTV.

These results lend some support to the claim that models with stochastic volatility may capture some of the data matu-
rity effects for forecasting the first estimate at longer horizons. They also indicate that RTV is more likely to be beneficial
for one-step-ahead point forecasting of initial estimates.

16See, for example, Fixler et al. (2014) on US data releases.
17At each replication, we simulate 150 + 50 + 100 = 300 observations and discard the first 100, so as to remove the effects of the initial values on our
results.
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5 CONCLUSIONS

In this paper, we consider whether it is possible to improve on the standard practice of effectively ignoring data uncertainty
when generating density forecasts from Bayesian VAR models. By ‘data uncertainty’, we mean that the recent observations
at the time a forecast is made will be subject to future data revisions. Such observations are therefore uncertain. Two
methods are considered as offering potential improvements—the use of real-time-vintage data (RTV), and simultaneously
modelling data revision along with the true or fully revised values of the data. The first is simple to implement. The
second requires a Bayesian implementation of the approach of Kishor and Koenig (2012) to allow for stochastic volatility,
as well as to allow for the increased number of parameters when we model the multiple rounds of revisions that arise
with quarterly data. We provide such an approach, and detail its empirical implementation guided by the properties of
the data revisions to the series.

We explore the forecast performances of these approaches, relative to the conventional approach, applied to small VAR
models with stochastic volatility, for output growth and inflation for the United States and the United Kingdom. We find
that accounting for data uncertainty via the second method—the Bayesian implementation of the approach of Kishor
and Koenig (2012), improves the density forecasting performance of BVAR-SV models in some instances: chiefly for the
United States. Perhaps just as usefully, we show when allowing for data uncertainty might not work. We find that the
extensive point forecasting gains from using RTV in constant-volatility models does not carry over to BVAR-SV models.

A Monte Carlo allows us to investigate the factors which might affect the relative performance of RTV and EOS, and the
role played by stochastic volatility when data uncertainty is ignored. We find that RTV frequently improves one-step-ahead
BVAR forecasts, but is less successful for four-step-ahead forecasts. Allowing for stochastic volatility in the BVAR improves
one-year-ahead forecasts of first releases, even in the absence of underlying stochastic volatility. The BVAR-SV captures
the heteroscedasticity resulting from the different data maturities at the end of the estimation sample when the traditional
approach to real-time forecasting is used.
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APPENDIX A: TECHNICAL APPENDIX

In the data generating process, the true values 𝑦t follow an AR(1):

𝑦t = 𝜙𝑦t−1 + 𝜂t + vt, |𝜙| < 1, (12)

where 𝜂t is the underlying disturbance, and vt is a news revision, and the first estimate is given by

𝑦t+1
t = 𝑦t − vt + 𝜀t, (13)

with 𝑦t+n
t = 𝑦t for n = 2, 3, … . Further,

𝜂t = 𝜎𝜂𝜉1t; vt = 𝜎v𝜉2t; 𝜀t = 𝜎𝜀𝜉3t,

𝜉it ∼ iidN(0, 1) for i = 1, 2, 3.
(14)

Let 𝑦t+1
t = 𝑦t + revt, and define 𝛿 as the relative size of the data revision process, that is,
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𝛿 = var(revt)
𝜎2
𝜂

,

implying that if data revisions are news, 𝛿 = 𝜎2
v∕𝜎2

𝜂 , and if data revisions are noise, 𝛿 = 𝜎2
𝜀∕𝜎2

𝜂 .

A.1 News revisions

The EOS and RTV forecasts of the mean and the variance are given by

𝜇EOS
T+1|T = 𝜙𝑦T+1

T = 𝜙(𝑦T − 𝜎v𝜉2T),

𝜎2,EOS
T+1|T = 𝜎2

𝜂 + 𝜎2
v = 𝜎2

𝜂 (1 + 𝛿),

𝜇RTV
T+1|T = 𝜙𝑦T+1

T = 𝜙(𝑦T − 𝜎v𝜉2T),

𝜎2,RTV
T+1|T = 𝜎2

𝜂 + 𝜙2𝜎2
v = 𝜎2

𝜂 (1 + 𝜙2𝛿),

(15)

using results in Clements and Galvão (2013b) and Clements (2017).

A.2 Noise revisions

The EOS and RTV forecasts of the mean are given by

𝜇EOS
T+1|T = 𝜙𝑦T+1

T = 𝜙(𝑦T + 𝜎𝜀𝜉3T),

𝜇RTV
T+1|T = B𝜙𝑦T+1

T = B𝜙(𝑦T + 𝜎𝜀𝜉3T).

where (see Clements & Galvão, 2013b)

B =
𝜎2
𝑦

𝜎2
𝑦 + 𝜎2

𝜀

=
𝜎2
𝜂∕(1 − 𝜙2)

𝜎2
𝜂∕(1 − 𝜙2) + 𝜎2

𝜂 𝛿
= (1 − 𝜙2)−1

((1 − 𝜙2)−1 + 𝛿)
.

The EOS and RTV forecasts of the variances are given by

𝜎2,EOS
T+1|T = 𝜎2

𝜂 , (16)

𝜎2,RTV
T+1|T = 𝜎2

𝜂 (1 + 𝛿 + 𝜚), (17)

with 𝜚 = [𝜙2(B − 1)2∕(1 − 𝜙2) + 𝛿B2𝜙2]. Equation (17) is derived as

𝜎2,RTV
T+1|T = var(𝑦T+1 + 𝜎𝜀𝜉3T+1 − B𝜙𝑦T − B𝜙𝜎𝜀𝜉3T)

= var(𝑦t) + B2𝜙2var(𝑦t) + (1 + B2𝜙2)𝜎2
𝜀 − 2B𝜙Cov (𝑦t𝑦t−1)

= 𝜎2
𝑦(1 + B2𝜙2 − 2B𝜙2) + (1 + B2𝜙2)𝜎2

𝜀

= 𝜎2
𝜂 (1 + 𝛿 + 𝜚).

Because B < 1 and |𝜙| < 1, then 𝜚 > 0, implying that for the same 𝛿 and 𝜙, 𝜎2,RTV
T+1|T for noise is greater than 𝜎2,EOS

T+1|T for
news. If there are no revisions (𝛿 = 0), then 𝜚 = 0 since B = 1.

A.3 Proposition 1

Proposition 1. The difference between the EOS and RTV logscores (where the logscore is given by 11), ΔscoreNews, for an
AR(1) model, when the target is the initial release 𝑦T+2

T+1, data revisions are pure news, and the DGP is given by (12), (13)
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and (14), is given by

ΔscoreNews = 1
2

[
𝛿(𝜙2 − 1)

1 + 𝛿
+ ln[(1 + 𝛿) ∕(1 + 𝜙2𝛿)]

]
≥ 0. (18)

Proof. The difference between EOS and RTV log score when revisions are news:

ΔscoreNews = E[− ln(pEOS
T+1|T(𝑦T+2

T+1))] − E[− ln(pRTV
T+1|T(𝑦T+2

T+1))]

= E[− ln(pEOS
T+1|T(𝑦T+1 − 𝜎v𝜉2T+1))] − E[− ln(pRTV

T+1|T(𝑦T+1 − 𝜎v𝜉2T+1))]

=
[

1 + 𝜙2𝛿

2(1 + 𝛿)
+ 1

2
ln(𝜎2

𝜂 (1 + 𝛿))
]
−
[1

2
+ 1

2
ln 𝜎2

𝜂 (1 + 𝜙2𝛿)
]

= 1
2

[
𝛿(𝜙2 − 1)

1 + 𝛿
+ ln[(1 + 𝛿) ∕(1 + 𝜙2𝛿)]

]
,

and we need to show that ΔscoreNews ≥ 0 in order to establish the dominance of RTV over EOS on log score. If we take
the derivative of the expression in brackets with respect to𝜙2, we find 𝛿∕(1+𝛿)−𝛿∕(1+𝜙2𝛿). Because (1+𝛿) > (1+𝜙2𝛿),
since 𝜙2 < 1 and 𝛿 ≥ 0, the derivative is always negative. This means that the minimum value of ΔscoreNews will be at
the maximum value of 𝜙2, that is, 𝜙2 ≈ 1. Based on the expression above, it is clear that if 𝜙2 = 1, ΔscoreNews = 0. If
ΔscoreNews is equal to zero at its minimum, then for values such that 0 ≤ 𝜙2 < 1, we have ΔscoreNews ≥ 0.

A.4 Proposition 2

Proposition 2. The difference between the EOS and RTV log scores, ΔscoreNoise, for an AR(1) model, when the target is
the initial release 𝑦T+2

T+1, data revisions are pure noise, and the DGP is given by (12), (13), and (14), is given by

ΔscoreNoise = 1
2
[
(𝛿(1 + 𝜙2)) − ln(1 + 𝛿 + 𝜚)

]
≥ 0. (19)

Proof. The difference between EOS and RTV log score when revisions are noise:

ΔscoreNoise = E[− ln(pEOS
T+1|T(𝑦T+2

T+1))] − E[− ln(pRTV
T+1|T(𝑦T+2

T+1))]

= E[− ln(pEOS
T+1|T(𝑦T+1 + 𝜎𝜀𝜉3T+1))] − E[− ln(pRTV

T+1|T(𝑦T+1 + 𝜎𝜀𝜉3T+1))]

=
[1

2
(1 + 𝛿(1 + 𝜙2)) + 1

2
ln(𝜎2

𝜂 )
]
−
[1

2
+ 1

2
ln(𝜎2

𝜂 (1 + 𝛿 + 𝜚))
]

= 1
2
[
(𝛿(1 + 𝜙2)) − ln(1 + 𝛿 + 𝜚)

]
.

To show that ΔscoreNoise ≥ 0, we use the concavity of the logarithm function. But first note that we can rewrite 𝜚 as

𝜚 = [𝜙2(B − 1)2∕(1 − 𝜙2) + 𝛿B2𝜙2]

= 𝜙2(1 − 𝜙2)−1
[

𝛿2

((1 − 𝜙2)−1 + 𝛿)2

]
+ 𝛿𝜙2

[
(1 − 𝜙2)−2

((1 − 𝜙2)−1 + 𝛿)2

]

= 𝜙2(1 − 𝜙2)−1𝛿

((1 − 𝜙2)−1 + 𝛿)
= 𝜙2𝛿B.

Recall that x ≥ ln(1+ x) if x ≥ 0. In the case that B = 1, 𝜚 = 𝛿𝜙2, and then 𝛿(1+𝜙2) > ln(1+ 𝛿(1+𝜙2)). When 𝜎2
𝜀 > 0,

then B < 1, and we have
ΔscoreNoise = 1

2
(𝛿(1 + 𝜙2)) − ln(1 + 𝛿(1 + 𝜙2B)).

Since 𝜙2B < 𝜙2, then it must be the case that ΔscoreNoise ≥ 0, establishing the dominance of RTV over EOS on log
score for noise revisions.
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