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ABSTRACT 1 

Considerable uncertainties are associated with precipitation characteristics over the western 2 

Himalayan region (WHR). These are due to typically small-scale but high intensity storms caused 3 

by the complex topography which are und-er-resolved by a sparse gauge network. Additionally, 4 

both satellite and gauge precipitation measurements remain subject to systematic errors, typically 5 

resulting in underestimation over mountainous terrains. Reanalysis datasets provide prospective 6 

alternative but are limited by their resolution, which has so far been too coarse to properly resolve 7 

orographic precipitation. In this study, we evaluate and cross-compare Indian Monsoon Data 8 

Assimilation and Analysis (IMDAA), the first high-resolution (12 km) regional reanalysis over 9 

India, against various precipitation products during winter season over WHR. We demonstrate 10 

IMDAA’s efficiency in representing winter precipitation characteristics at seasonal, diurnal, 11 

interannual scales, as well as heavy precipitation associated with western disturbances (WDs). 12 

IMDAA shows closer agreement to other reanalyses than to gauge-based and satellite products in 13 

error and bias analysis. Although depicting higher magnitudes, its fine resolution allows a much 14 

closer insight into localized spatial patterns and diurnal cycle, a key advantage over other datasets. 15 

Mean winter precipitation over WHR shows a significant decreasing trend in IMDAA, despite no 16 

significant trend in the frequency of WDs tracked in either IMDAA or ERA5. The study also 17 

exhibits the potential use of IMDAA for characterizing winter atmospheric dynamics, both for 18 

climatological studies and during WD activity such as localized valley winds. Overall, these 19 

findings highlight the potential utility for IMDAA in conducting monitoring and climate change 20 

impact assessment studies over the fragile western Himalayan ecosystem. 21 

Keywords: Precipitation, Western Himalayas, IMDAA reanalysis, Western Disturbances 22 

 23 
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 1. Introduction 24 

North India receives one-third of its annual precipitation (Dimri et al., 2016; Hunt et al., 2018) 25 

during the winter season (December through March), in the form of snowfall and rainfall, primarily 26 

associated with synoptic-scale extra-tropical cyclonic systems, known as western disturbances 27 

(WDs) (Lang and Barros, 2004; Dimri and Mohanty, 2009; Yadav et al., 2013; Dimri, 2013). 28 

These extra-tropical cyclonic storms typically originate over the Mediterranean region and travel 29 

eastward along the subtropical westerly jet (Dimri et al., 2016, Hunt et al., 2018). Moreover, winter 30 

WDs are further known to contribute to approximately 40-50% of the total annual precipitation 31 

over the western Himalayas (Madhura et al., 2015; Cannon et al., 2015; Krishnan et al., 2019). 32 

Winter precipitation is an important source of irrigation for Rabi crops and plays a critical role in 33 

recharging the water resources in the northern plains as well as maintaining the snow cover of the 34 

western Himalayan glaciers, which feed major north Indian rivers (Yadav et al., 2013; Dimri et 35 

al., 2015). Accurate and precise measurement of precipitation is essential for studies involving 36 

monitoring and assessing climate change impacts (Hussain et al., 2017). Most products, including 37 

gauge-based, satellite, and reanalysis datasets, often face difficulty estimating orographic 38 

precipitation over the Himalayas (Sun et al., 2018), since the complex and steep orography of the 39 

Himalayas substantially modulates the spatio-temporal variability of regional precipitation on fine 40 

scales (Andermann et al., 2011). Thus, reliable precipitation measurements for such complex and 41 

heterogeneous landscapes demand high-resolution datasets.  42 

Conventionally, in-situ observational data – i.e. gauges – are considered to be one of the 43 

most reliable and accurate measurements for precipitation fields at a point scale (e.g. Wang et al., 44 

2019). However, uncertainties resulting from measurement errors (e.g. Ye et al., 2004), missing 45 

data, insufficient spatial and temporal coverage, etc. (Dahri et al., 2021) offer significant 46 
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challenges for station-based data analysis. Furthermore, underestimation of precipitation is a key 47 

issue associated with rain gauges (e.g. Immerzeel et al., 2015). This can be caused by instrument 48 

wetting, pre-measurement evaporation (WMO, 2008), and wind-driven under-catchment, which 49 

enhances up to 50 % during snowfall (Dahri et al., 2018, Baudouin et al., 2020). In addition, the 50 

network of in-situ observations over the WHR is quite sparse due to varying topography and land 51 

cover such as bare rocky surfaces where the possibility of natural hazards including rock falls, 52 

avalanches or glacial lake outburst floods create difficulties for gauge installation (e.g. Juen 2006; 53 

Carey 2010). Moreover, the spatial distribution of snow cover increases over the region during the 54 

winter season and data is missing when stations are buried under snow (e.g. Joshi and Ganju, 2010; 55 

Escher-Vetter et al., 2012; Cullen and Conway, 2015; Choudhury et al. 2021). Moreover, 56 

conventional rain gauges struggle to measure snowfall accurately (Strangeways 2004). Such 57 

adverse conditions combined with large orographic variability make it difficult to set up and 58 

maintain a dense precipitation-gauge network. As a result, these gauges are generally placed at the 59 

foot of the mountains or in valleys, which are relatively drier than elevated regions (Singh and 60 

Kumar, 1997; Winiger et al. 2005; Dimri and Ganju 2007; Immerzeel et al., 2015; Dahri et al., 61 

2018), thus introducing additional uncertainties into gridded datasets, apart from the ones added 62 

due to interpolation. Overall, the discontinuity and insufficiency of available observational data 63 

reduces the representativeness of gridded observational precipitation products over the region and 64 

hinders the production of accurate precipitation estimates and subsequent climate change impact 65 

assessment studies over the area. 66 

Various remotely sensed and reanalysis precipitation products have been used to 67 

compensate for these disadvantages. Often, however, these datasets differ considerably in their 68 

spatiotemporal resolution, making intercomparison challenging (Andermann et al., 2011). Satellite 69 
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precipitation estimates are indirect and often associated with a large degree of variability (Sun et 70 

al., 2018). Although precipitation retrieval techniques in satellite products have evolved a lot in 71 

recent decades (Maggioni et al., 2016), the reliability and degree of precision for these datasets in 72 

mountainous regions are still questionable (e.g. Meng et al., 2014; Xia et al., 2015, Xu et al., 2017). 73 

An underestimation of orographic precipitation is quite common in infrared (IR) retrievals, given 74 

their inability to capture light precipitation events. Detection of cold season orographic 75 

precipitation is also challenging for passive microwave retrievals (e.g. Derin and Yilmaz, 2014). 76 

In addition, satellite-based microwave retrievals of precipitation rates are inaccurate above snow 77 

cover (Derin et al., 2016). Moreover, errors associated with sampling, geo-referencing, and applied 78 

algorithms lead to various uncertainties and affect the accurate estimation of precipitation at higher 79 

elevations (Hussain et al., 2017). Besides, these products require rain-gauge calibration implying 80 

a dependence on the quality and density of station data (Baudouin et al. 2020), and thus associated 81 

discrepancy gets enhanced over orographic regimes like WHR, where station coverage is quite 82 

sparse. In addition, these gridded datasets are typically available only at relatively coarse 83 

resolutions, where the leeward and windward sides of mountain areas are generally embedded into 84 

a single gridbox, exacerbating the unrepresentative nature of and uncertainties associated with 85 

these measurements. 86 

Reanalysis datasets provide prospective alternatives for estimating precipitation. These are 87 

produced by assimilating observations from a wide range of sources into numerical weather 88 

prediction models to generate atmospheric and surface fields. They provide significant advantages 89 

in terms of data consistency, homogeneity and coherency, which makes them suitable for 90 

atmospheric and climate research (Dee et al., 2014). Globally, reanalysis datasets have been 91 

extensively used in precipitation studies owing to their homogeneous nature (Trenberth and 92 
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Guillemot, 1998; Bengtsson et al., 2004; Bao and Zhang, 2013; Murakami 2014). However, the 93 

spatial resolution (more than tens of kilometres) of global reanalysis datasets is often inadequate 94 

for effectively capturing localized and regional precipitation distribution, specifically over 95 

complex topography, and thus relatively high-resolution regional reanalysis datasets are required 96 

to adequately represent regional hydroclimate (Wang et al., 2019; Ashrit et al., 2020).  97 

High-resolution data is particularly important in regions with complex topography due to 98 

large spatial variability (Gampe et al., 2017). Various studies have highlighted the enhancement 99 

of temporal and intensity-related variability associated with WDs over the Himalayan regions due 100 

to increased baroclinicity with adverse implications in terms of increased frequency and duration 101 

of extreme precipitation events (e.g. Madhura et al., 2015; Midhuna et al., 2020). Such events are 102 

often a result of supportive synoptic and mesoscale atmospheric conditions prevailing over the 103 

region and the interaction of other processes, including intraseasonal oscillations, local convective 104 

dynamics (Gouda et al., 2018) and orographic forcing. The localized nature of these events hinders 105 

their accurate assessment in coarse resolution datasets. Therefore, high resolution datasets are 106 

crucial for precise understanding of extreme weather related hydrometeorological hazards such as 107 

landslides, avalanches and floods over complex topography. 108 

 Recently, the first high resolution (12 km) regional atmospheric reanalysis dataset, Indian 109 

Monsoon Data Assimilation and Analysis (IMDAA), focusing on the South Asian region, has been 110 

released (Rani et al., 2021). This state-of-the-art reanalysis is generated by the National Centre for 111 

Medium Range Weather Forecasting (NCMRWF) in collaboration with the India Meteorological 112 

Department (IMD) and UK Met Office under the National Monsoon Mission project, Government 113 

of India. The reanalysis spans the modern meteorological satellite era (1979–present) and outputs 114 

atmospheric data at 63 vertical levels. This is now one of the highest resolution regional reanalyses 115 
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available over India, providing the important advantage of improved representation of orographic 116 

features. Ashrit et al. (2020) and Aggarwal et al. (2022) explored the efficiency of IMDAA in 117 

representing precipitation characteristics as well as atmospheric thermodynamics and circulation 118 

during the Indian summer monsoon, but wintertime precipitation characteristics are yet to be 119 

evaluated using IMDAA.  120 

 Some validation studies of different multi-source datasets have been carried out previously 121 

over the Himalayan region. Andermann et al. (2011) evaluated various precipitation datasets along 122 

the Himalayan front and reported a significant variation in performance among the evaluated 123 

datasets along the orography, however, the datasets show higher consistency, with respect to each 124 

other, along with the lower relief realms. Palazzi et al. (2013) showed that various category gridded 125 

precipitation datasets adequately captured the interannual variability of precipitation over the 126 

Hindukush-Karakoram region. Dahri et al. (2018) reported underestimation in the rain gauge 127 

measurements in the high-altitude Indus basin during the winter season and underpinned the 128 

necessity of bias adjustment to reduce errors. A cross-validation for different categories of 129 

precipitation datasets in the Indus River basin was performed by Baudouin et al. (2020), reporting 130 

a large difference in average precipitation between the rain gauge and the reanalyses, most likely 131 

resulting from opposite biases from both dataset types and not only from the reanalysis, as often 132 

suggested. While precipitation in ERA-Interim (ERAI) is found to be well correlated with 133 

observational data across the Karakoram (Immerzeel et al., 2015; Dahri et al., 2016), Hussain et 134 

al. (2017) reported a poor spatial correlation for TRMM-3B42 with in-situ observations, however, 135 

an increase in the correlation was observed with decreasing temporal resolution from daily to 136 

monthly scale. Furthermore, it was found that the estimation of summer precipitation compared to 137 

winter precipitation in TRMM-3B42 was more accurate in the Hindu Kush-Karakoram Himalayan 138 
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region. The effect of elevation on the performance of gridded precipitation datasets has also been 139 

observed (Andermann et al., 2011; Hussain et al., 2017). A statistical performance evaluation 140 

study for different precipitation gridded datasets was conducted by Kanda et al. (2020), which 141 

highlighted the need for bias correction in different datasets over the WHR.  142 

The present study focuses on evaluating winter precipitation variability using high 143 

resolution Indian reanalysis (IMDAA, 1979-2018) over diurnal, subseasonal, seasonal and 144 

interannual timescales across the WHR. In this study, we will cross-compare and validate the 145 

performance of IMDAA against a range of different precipitation datasets from various sources, 146 

including gridded observational data, satellite-based and reanalysis products. The results will then 147 

be contextualised by comparing the western Himalayan atmospheric dynamics in IMDAA and the 148 

fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 149 

(ERA5) dataset (Hersbach et al., 2018) during the winter monsoon, with an additional focus on 150 

the trend and variability of WDs. 151 

2. Data and Methods 152 

a. Data 153 

Our study focuses on the validation of IMDAA using different categories of gridded precipitation 154 

datasets, discussed below, and summarized in Table 1, for the respective periods of their 155 

availability from 1979-2018 during the winter season (December to March) over the WHR (29°N-156 

37.5°N and 72.5°E-80.5°E, see Figure 1a). The selection criteria for different categories of datasets 157 

in this evaluation study are the availability of long-term (~20 years) precipitation estimates, and at 158 

least daily temporal resolution, which is consistent with the availability period of IMDAA. The 159 

types of datasets evaluated in the present study include reanalysis products, satellite and gridded 160 
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observational datasets, as well as combinations thereof. We also use various atmospheric fields 161 

from IMDAA and ERA5 for the assessment of wintertime meteorological conditions. 162 

1) Gauge-based Datasets 163 

Three commonly used daily precipitation datasets generated through the interpolation of only rain-164 

gauge measurements have been utilised in our study. IMD precipitation data (0300 UTC-0300 165 

UTC) provides daily gridded rainfall (Pai et al., 2014) generated from a dense network of 6955 166 

rain gauge stations with varying periods of availability. Daily rainfall estimates are interpolated 167 

from gauges to a 0.25°×0.25° grid, following Shepard (1968). However, the station network suffers 168 

from low spatial coverage of gauges over the western Himalayan belt, with almost non-existent 169 

stations over the rugged terrains of the upper Himalayan and Karakoram ranges. We selected 170 

another gauge-based daily precipitation product (0000 UTC-0000 UTC) provided by the Climate 171 

Prediction Centre (CPC) of the National Oceanic and Atmospheric Administration (NOAA) which 172 

is constructed from a global gauge-network of around 30,000 stations (Xie et al., 2007; Chen et 173 

al., 2008). However, limited rain-gauge stations have been considered from the WHR. Covering 174 

an extended period of over 50 years, the Asian Precipitation Highly-Resolved Observational Data 175 

Integration towards Evaluation of Water Resources (APHRODITE) dataset provides long-term 176 

daily precipitation data (0000 UTC-0000 UTC) generated from a dense network of in-situ rain 177 

gauges (5000–12000 stations), interpolated at a resolution of 0.05° with an orographic correction 178 

for precipitation, and further re-gridded to 0.25°×0.25° resolution using area-weighted mean 179 

(Yatagai et al., 2012). Our study combines APHRO_V1101 (1951–2007) and its extended version 180 

APHRO-V1101EX_R1 (2007–2015) to obtain long term precipitation records over the region, 181 

following previous literature (Ji et al., 2020; Guan et al., 2020; Lalande et al., 2021; Liaqat et al., 182 

2021; Phung et al., 2021). 183 
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2) Reanalysis Datasets 184 

Precipitation estimates in different reanalyses can vary from each other based on the assimilation 185 

scheme used, the underlying model (including parameterizations) and assimilated observations. 186 

The Indian Monsoon Data Assimilation and Analysis (IMDAA) is a high resolution (12km) 187 

regional atmospheric reanalysis over the South Asian region, developed by NCMRWF in 188 

collaboration with UK Met Office and IMD. IMDAA obtains lateral boundary conditions from 189 

ERAI and precipitation estimates are generated by the Unified atmospheric model and the four-190 

dimensional variational (4D-Var) data assimilation technique, which assimilates various 191 

conventional and satellite observations from the ECMWF, NCMRWF and IMD archives, 192 

including surface observations (land and ocean), aircraft data, upper air observations from 193 

radiosondes and pilot balloons. However, no precipitation measurements are assimilated in 194 

IMDAA. For further information, the reader is referred to Rani et al. (2021). Our study utilizes 195 

IMDAA-generated precipitation at 0000 UTC. The dataset provides advantages in better 196 

representation of orographic features owing to its high resolution.  197 

We also used a state-of-the-art global reanalysis dataset, ERA5 (0000 UTC-0000 UTC), 198 

developed by ECMWF with a new version of their NWP model (IFS Cycle 41r2; Hersbach et al., 199 

2020). Using 4D-Var, ERA5 assimilates observations from the ECMWF data archive, National 200 

Centers for Environmental Prediction (NCEP), as well as other conventional datasets such as ISPD 201 

and ICOADS, satellite observations, and precipitation measurements. ERAI, an older ECMWF 202 

reanalysis product (Dee et al., 2011) and predecessor of ERA5 has also been used in this study, 203 

but only for tracking WDs since it is used to provide lateral boundary conditions in IMDAA. In 204 

addition, NCEP’s Climate Forecast System Reanalysis (CFSR, 0000 UTC-0000 UTC) is used, 205 

which provides precipitation estimates using a coupled atmosphere–ocean model comprising the 206 
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Global Forecast System and the Geophysical Fluid Dynamics Laboratory Modular Ocean Model 207 

(Saha et al., 2010, 2014).  208 

Another reanalysis used for validation is the Modern-Era Retrospective Analysis for 209 

Research and Applications version-2 (MERRA-2, 0000 UTC-0000 UTC), published by the 210 

National Aeronautics and Space Administration (NASA)’s Global Modeling and Assimilation 211 

Office. This reanalysis is generated using the Goddard Earth Observing System Model-5, which 212 

assimilates various land surface and satellite observations. The advanced data assimilation 213 

techniques used in MERRA-2 provide an advantage over topographic regions with sparse gauges, 214 

though an underestimation for winter seasonal precipitation has been reported (Hamal et al., 2020). 215 

3) Satellite and Merged Datasets 216 

Our study also utilises five satellite datasets. The widely used Tropical Rainfall Measuring Mission 217 

(TRMM)-Multi-Satellite Precipitation Analysis (0300 UTC-0300 UTC), is developed through a 218 

collaboration between NASA and Japan's National Space Development Agency. It combines 219 

precipitation data from various satellite instruments (TRMM Microwave Imager, Precipitation 220 

Radar, Visible and IR Scanner, Special Sensor Microwave Imager), blended with geostationary IR 221 

data, with further calibration using monthly gauge data (Huffman et al., 2007).  222 

We also used the Precipitation Estimation from Remotely Sensed Information using 223 

Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) developed by NOAA in 224 

collaboration with the Centre for Hydrometeorology and Remote Sensing, University of 225 

California, Irvine. The precipitation estimates (0000 UTC-0000 UTC) are generated by applying 226 

the PERSIANN algorithm on GridSat-B1 IR satellite data followed by a training of the artificial 227 

neural network using NCEP Stage IV hourly precipitation data and finally calibrating and 228 

adjustment of biases is done using the Global Precipitation Climatology Project (GPCP) monthly 229 
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precipitation dataset (GPCPv2.2). Daily precipitation records are also produced by GPCP Version 230 

1.3 (0000 UTC-0000 UTC), from the World Climate Research Programme, by merging estimates 231 

from IR, microwave, and sounder data of precipitation-related satellites and gauge-based analyses.  232 

A merged high-resolution satellite product, Integrated MultisatellitE Retrievals (V3) for 233 

Global Precipitation Measurement (GPM), generates precipitation estimates (0000 UTC-0000 234 

UTC) by the day-1 IMERG algorithm, through intercalibrating, merging, and interpolating 235 

microwave and IR estimates of GPM satellite constellation with gauge-based observational data 236 

(Huffman et al., 2015). The data is specifically useful over regions with a lack of ground-based 237 

precipitation-measuring instruments.  238 

Lastly, we also use the Climate Hazards Group InfraRed Precipitation with Station data 239 

(CHIRPS). This is a merged, daily, land-only precipitation product (0000 UTC-0000 UTC) by the 240 

U.S. Geological Survey in association with Earth Resources Observation and Science Centre and 241 

is prepared by merging 0.05°×0.05° and 0.25°×0.25° resolution satellite IR cold cloud duration 242 

measurements with in-situ gauge observations. 243 

b. Methodology 244 

1) EVALUATION INDICES 245 

Generally, precipitation datasets are utilised without any modifications or prior adjustments for 246 

analysing localized precipitation patterns, and it has been now established that the spatial 247 

resolution strongly affects dataset performance (Zandler et al., 2019). Moreover, interpolation 248 

techniques can generate substantial variations and uncertainties in the computed statistical metrics, 249 

especially when precipitation is considered over a complex region. Therefore, we choose to include 250 

this information in our evaluation, since the focus is on whether there are advantages offered by 251 

the high resolution of IMDAA. We thus compare different datasets in their native resolutions 252 
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without any interpolation, similar to previous literature (e.g. Dinku et al., 2008; Liu et al., 2015; 253 

Beck et al., 2017; Bayissa et al., 2017; Zandler et al., 2019). Different statistical metrics, including 254 

mean, standard deviation, coefficient of variation and pattern correlation coefficient (PCC), have 255 

been computed to understand how the representation of regional precipitation varies between 256 

datasets. All the metrics have been calculated for a common time period (2000–2015), using 257 

regionally averaged seasonal mean precipitation at the native spatial resolution of each product, 258 

except PCC, for which datasets have been re-gridded using bilinear interpolation to IMDAA’s 259 

resolution. We also investigate the total number of heavy precipitation events per year exceeding 260 

selected percentile (90th, 95th and 99th) thresholds in each dataset. The number of events has been 261 

counted by considering precipitation estimates from all grids between the period 2000-2015, 262 

therefore, the datasets have been re-gridded here to a common resolution of 0.25˚, to avoid 263 

additional counts from higher resolution datasets. 264 

To quantify IMDAA’s skill, we further computed different skill scores of the model 265 

agreement with the data, using area-averaged (though at original spatial resolution) daily time 266 

series of precipitation in different datasets for a common time period 2000-2015. The definitions 267 

for commonly known evaluation indices such as correlation coefficient, root mean square 268 

difference (RMSD), mean absolute difference (MAD) and BIAS have been summarized in the 269 

Appendix, except for less widely used metrics including index of agreement (IOA), adjusted R-270 

squared, and pattern correlation coefficient (PCC), which are discussed below. 271 

 (i) Index of agreement 272 

Index of agreement (IOA) is widely used to measure how well model-produced estimates simulate 273 

observed data (Willmott 1981) and thus has been used here to quantify the similarity between 274 

IMDAA and other datasets (Gebregiorgis et al., 2018). It is defined as:  275 
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∑ (|𝑦! −	𝑥̅| + |𝑥! −	𝑥̅|)#)$
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		,																																																																					276 

Where, n is the total number of observations (daily time series of precipitation), 𝑦! are the values 277 

for target dataset (i.e., IMDAA) and,	𝑥! and 𝑥 are the values and mean for the corresponding 278 

evaluation dataset, respectively. 279 

(ii) Adjusted R-squared 280 

Adjusted R-squared is a statistical measure to indicate the amount of variance in the dependent 281 

variable by the regression model in the population by replacing biased estimators with their 282 

unbiased counterparts (Karch 2020). It considers the number of variables in the predictor 283 

(IMDAA) and penalizes the supplementary explanatory variables by adjusting the degrees of 284 

freedom while estimating the error variance. It provides the statistical quantification of variability 285 

amounts associated with a dataset compared to a reference dataset with an adjustment for bias. 286 

Additional details have been provided in the Appendix.  287 

(iii) Pattern Correlation Coefficient (PCC) 288 

PCC is the Pearson product-moment coefficient of linear correlation between two variables with 289 

values at corresponding locations on two different maps (Anand et al., 2018).  290 

2) CLIMATOLOGY, VARIABILITY AND TRENDS 291 

The spatial distribution of seasonal (DJFM) winter precipitation climatology and variability in all 292 

datasets, considering their respective native spatial resolution and temporal availability between 293 

1979–2018 over the study region has been investigated. Full available time periods for each dataset 294 

between 1979-2018 have been considered for the evaluation of the geographical distribution of 295 

precipitation estimates, since spatial patterns of precipitation tend to be less affected by the 296 
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averaging period. We further analysed spatial patterns of seasonal mean precipitation differences 297 

in IMDAA with respect to different datasets, after rescaling all datasets to the grid used in IMDAA. 298 

The spatial patterns on trends of seasonal mean precipitation are computed through seasonal mean 299 

precipitation series at each grid point for different precipitation products for a common period of 300 

35 years (1984–2018), at their native spatial resolutions, using the non-parametric Mann-Kendall 301 

test (Roxy et al., 2015). The datasets with at least an available time period of 35 years have been 302 

selected for spatial trends considering that at least 30 years or more is a minimal period to provide 303 

considerable climatological trend information. To investigate the interannual variability of the 304 

seasonal mean precipitation, standardized precipitation anomalies over the WHR have been 305 

utilized to categorize excess and deficit precipitation years, considering the standardized anomalies 306 

exceeding ±0.5, respectively.  307 

3) IDENTIFICATION OF WDs 308 

The tracking of WDs over the study region was carried out using the WD tracking algorithm from 309 

Hunt et al. (2018). The algorithm involves the computation of mean relative vorticity in the 450–310 

300 hPa layer followed by filtration of short-wavelength noise using the desired spectral truncation 311 

(T63 and T42) and further identification of positive-definite vorticity regions to determine the 312 

centroid locations for each candidate WD. The linkage of these centroids in time, with steering 313 

wind-biased distance constraints, allows the identification of potential WD tracks. Lastly, the 314 

database is refined by rejecting those tracks which do not pass-through north India (20◦N–36.5◦N, 315 

60◦E–80◦E), last less than 48 hours, or dissipate at a point westward of their genesis. WDs were 316 

tracked in IMDAA (1980–2018) and ERA5 (1979–2018) at spectral truncations of T42 and T63 317 

and in ERAI (1979–2015) at T63. The interannual frequency of identified winter WDs was 318 

compared for IMDAA (T42 and T63), ERA5 (T42 and T63) and ERAI to analyse the interannual 319 
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variability of WDs at seasonal scale. ERAI is used as a lateral boundary condition in both IMDAA 320 

(Rani et al., 2021) thus, ERAI tracks have also been considered to analyse the frequency of WDs. 321 

The T63 ERAI tracks are identical to those used in Hunt et al. (2018). 322 

4) WINTER ATMOSPHERIC DYNAMICS  323 

In order to evaluate the performance of IMDAA in capturing the mean circulation features during 324 

the winter season, the climatology of various atmospheric variables such as upper-level winds (200 325 

hPa), outgoing longwave radiation (OLR), geopotential heights (200 hPa, 500 hPa, 850 hPa) and 326 

2-m air temperature have been compared with ERA5. Further, the fidelity of IMDAA in simulating 327 

localized dynamics associated with WD activity over the WHR has been examined through a case 328 

study for an intense WD which affected WHR during 16–19 February 2003 and caused widespread 329 

precipitation over the region. 330 

3. Results and Discussion 331 

a. Climatology and Variability  332 

The spatial distribution of multi-year seasonal mean precipitation in different gridded datasets over 333 

WHR is presented in Figure 1 and regionally averaged seasonal precipitation estimates, including 334 

mean and variability for a common temporal period (2000–2015) are provided in Table 2. Table 2 335 

also details the pattern correlations and the number of heavy precipitation events (exceeding the 336 

90th, 95th, and 99th percentiles) during the common period. Considerable heterogeneity for mean 337 

winter precipitation amounts and variability is evident among different categories of datasets 338 

(Table 2), with all reanalyses (IMDAA, ERA5, CFSR, MERRA-2) showing higher magnitudes 339 

than the satellite products (GPCP, TRMM, PERSIANN, CHIRPS, IMERG) and gauge-based 340 

datasets (IMD, CPC, APHRODITE). IMDAA, with a mean of 2.38 mm/day and standard deviation 341 
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of 0.74 mm/day (Table 2), shows a good agreement overall with the other reanalyses ERA5 and 342 

CFSR, albeit with a slightly higher magnitude. Among the reanalyses, MERRA-2 has the lowest 343 

mean and largest variability, which might be associated with the use of dry-biased CPC data for 344 

surface precipitation flux (Reichle et al., 2017; Baudouin et al., 2020). The realistic representation 345 

of the mean amounts of winter precipitation of IMDAA is evident through its observed similarity 346 

to the ERA5 reanalysis, which has been revealed to perform best with observations in the 347 

surrounding upper Indus Basin in previous studies (Baudouin et al., 2020; Dahri et al., 2021). It is 348 

evident that all reanalyses, including IMDAA, are wetter and exhibit large spatial variability 349 

compared to other types of datasets. Among the observational datasets, mean precipitation in 350 

IMDAA is closest to IMD, followed by APHRODITE (Table 2), whereas it shows largest 351 

differences compared to CPC. Insufficient observations and uncertainties arising from 352 

interpolation techniques generally lead to dry biases in observational datasets (e.g. Dahri et al., 353 

2021). An overall general agreement within the satellite data category can be observed. However, 354 

IMDAA shows an overestimation compared to satellite products, the exception being IMERG with 355 

higher resolution. The precipitation amount and variability for IMERG is highest among satellite 356 

datasets, much closer to IMDAA. As satellite observations generally exhibit higher accuracy for 357 

convective precipitation over flat terrains (Ebert et al., 2007; Baudouin et al., 2020), their 358 

usefulness is limited over the elevated western Himalayan terrain that typically receives more 359 

stratiform precipitation (Fig. S2). 360 

Wide discrepancies in the geographical seasonal mean precipitation patterns (Fig. 1) among 361 

the different categories of datasets can be seen, though with an agreement across the regions of the 362 

highest precipitation – the lower Himalayas and foothills. As indicated by the statistics (Table 2), 363 

IMDAA stands much closer to all reanalyses compared to other data categories in depicting 364 
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regional spatial precipitation patterns (Fig. 1), having lower spatial precipitation differences with 365 

IMDAA (Fig. 2). The IMD observational dataset shows a similar spatial distribution of 366 

precipitation magnitude in the lower Himalaya and the western Karakoram range, but considerable 367 

discrepancies are noticeable along the foothills and in eastern Ladakh (Fig. 1), where the IMD data 368 

set has a marked positive difference compared to all other data sets (Fig. 2). Since IMD includes 369 

almost no measurements over these locations (Kishore et al., 2016), the precipitation estimates 370 

here are derived from extrapolation of higher values downslope, resulting in higher precipitation 371 

estimates. Relatively wetter patterns (Fig. 1) and a large positive difference are seen in IMDAA 372 

(Fig. 2) compared to APHRODITE and CPC, both of which rely on the WMO Global 373 

Telecommunication System, which covers few observations in WHR, generally collected from 374 

stations present over dry valley locations in the study region, thus, additionally suffering from 375 

under-catchment of solid precipitation at higher altitudes (Palazzi et al., 2013; Dahri et al., 2018). 376 

This makes the validation of IMDAA precipitation over this region using gauge-based datasets 377 

challenging. IMDAA exhibits a larger magnitude of precipitation than all the satellite datasets 378 

(Table 3, Fig. 2), with the smallest differences over the foothills in IMERG, which has a similar 379 

resolution to IMDAA. However, it can be noted from the previous studies (Dahri et al., 2021; 380 

Baudouin et al., 2020) that precipitation from satellite products exhibit drier biases over the region. 381 

Various uncertainties in terms of interpolation algorithms, calibration limitations due to poor 382 

coverage of rain-gauge measurements, and inability to accurately retrieve orographic precipitation 383 

have been denoted as causes for the same (Hussain et al., 2017). However, differences in 384 

precipitation magnitude are mainly found over lower Himalayas and foothills in IMDAA with all 385 

datasets (Fig. 2). These regions receive maximum precipitation during winter, thus, such 386 

differences highlight discrepancies and limitations associated with available data over the region. 387 
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Higher pattern correlations (Table 2, Fig. 1) between IMDAA and all other datasets are observed, 388 

least being for GPM-IMERG, indicating an agreement on the spatial patterns of seasonal mean 389 

precipitation for IMDAA with other datasets, even though significant differences in magnitudes 390 

are present. Additionally, the spatial patterns of solid precipitation distributions in IMDAA are 391 

similar to independent MODIS-satellite snow cover fractions (Fig. S6). 392 

Summing up, the gridded products provide inconsistent precipitation amounts over the 393 

region, but agree on the areas with the highest precipitation. Since different dataset categories are 394 

generated with different input data and dissimilar developmental methods, presence of such similar 395 

signals relates to the depiction of actual situation (Baudouin et al., 2020). Unlike satellite and 396 

gauge-based products, reanalysis products are developed with different data assimilation 397 

techniques and distinct atmospheric models (Ghodichore et al., 2018) and are known to provide a 398 

better depiction of frontal system precipitation in the winter season, specifically over high 399 

elevations (Dahri et al., 2021; Beck at al., 2019), compared to other two product categories which 400 

generally underestimate precipitation in such cases. IMDAA performs well in simulating regions 401 

with precipitation maxima and allows a much closer look at the localized precipitation distribution 402 

over the region. However, reanalyses generally tend to produce higher precipitation magnitudes 403 

along with a depiction of larger variability, which in fact is highest in IMDAA, highlighting a key 404 

limitation of the current IMDAA reanalysis. 405 

Adjusted-R2 values (Table 3) are computed for area-weighted daily precipitation values 406 

during 2000-2015 and significance has been tested using Mann-Kendall test at a confidence level 407 

of 95%. These also underpin the observed discrepancies among different datasets over the study, 408 

with large variation for values observed over the panels of different datasets. Here, we carry out a 409 

cross-validation by examining the association between individual datasets by using each dataset 410 
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as a reference. Highest agreements are observed within the reanalyses; however, MERRA-2 shows 411 

lesser association supporting the negative differences observed earlier (Table 2). Observational 412 

datasets IMD and CPC also show good agreement with each other, however, APHRODITE 413 

diverges from the group and is also the dataset showing the least association with all other 414 

categories too. Satellite products are in good agreement with each other and generally with datasets 415 

from other categories too, except for MERRA-2 and APHRODITE; both of which also have lower 416 

fitness magnitudes with all other datasets. The reanalyses, IMDAA, ERA5 and CFSR, depict a 417 

significant relationship with all the datasets, specifically with each other and IMD. Considering 418 

that reanalyses and observations generally rely on different data sources and developmental 419 

methods, a significant relationship among these is a sign of quality of the datasets (Baudouin et 420 

al., 2020), thus, implying the reliability of their precipitation estimates. 421 

The total number of heavy precipitation events per winter season exceeding the 90th, 95th, 422 

and 99th percentiles (considering the wide range of discrepancies for precipitation amounts across 423 

different datasets) considering all grid locations for each dataset during the period 2000-2015 have 424 

also been evaluated (Table 2). For each dataset (re-gridded to common resolution of 0.25˚), the 425 

precipitation values during the common period are collapsed into a single vector to which the 426 

percentile thresholds computed from area-averaged daily precipitation time series (2000-2015) are 427 

applied and totals counts exceeding the thresholds are selected. It is to be noted that since large 428 

uncertainties remain over the region regarding precipitation amounts, we use the percentile 429 

thresholds rather than actual values. Overall, the obtained counts indicate close agreement of 430 

IMDAA with all reanalyses. However, the number of events in MERRA-2 have lower counts 431 

compared to other reanalyses at all three thresholds. An overall agreement can be observed within 432 

the satellite category among TRMM, CHIRPS and PERSIANN-CDR, exceptions being IMERG 433 



21 
 

and GPCP (highest and lowest resolution data among satellite products, respectively), though 434 

slight overestimation in IMDAA with respect to all satellite datasets (except IMERG) can be 435 

observed. However, gauge-based datasets exhibit a sharp disagreement among each other and with 436 

respect to other data categories too for all percentiles, with APHRODITE showing a sharp 437 

overestimation as compared to all the evaluated datasets, including IMDAA. 438 

The wintertime precipitation over the WHR comprises both snowfall and rainfall, with 439 

snowfall constituting almost 80% of the total observed precipitation (e.g. Krishnan et al., 2019). 440 

Therefore, the differences between mean rainfall and snowfall in IMDAA and ERA5 have also 441 

been analyzed.  Compared to ERA5, IMDAA shows higher amount of snowfall (~3 mm/day) over 442 

the Greater Himalayas and some regions of the Lower and Karakoram Himalayas (Fig. S1). The 443 

variation in rainfall between IMDAA and ERA5 shows larger variations in IMDAA over some 444 

regions of lower Himalayas. Along the foothills, the differences in rain and snow often have 445 

different signs, implying that local temperature differences play a role. 446 

The analysis of interannual variability patterns of seasonal mean winter precipitation in 447 

different datasets has been used to identify pluvial and dry years (Fig. 3). IMDAA is able to 448 

reproduce the pluvial and deficit precipitation years, corresponding well with other datasets. All 449 

reanalyses as well as PERSIANN-CDR and IMD datasets depict an enhancement in the frequency 450 

of dry periods in recent years. IMDAA, along with other datasets, agrees that 2001 was one of the 451 

driest years. Decadal variability is evident in most of the analyzed datasets, which might be 452 

attributable to forcing by large scale tropical climate drivers such as Arctic Oscillation, North 453 

Atlantic Oscillation and Pacific Decadal Oscillation (e.g. Roy 2006). Overall, the interannual 454 

variability of wet and dry years in IMDAA is in good agreement with the other datasets, 455 

particularly IMD and ERA5. 456 
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b. Trends 457 

Seasonal mean precipitation trends over the study region as a whole (Fig. 4i-k) reveals close 458 

agreement among reanalyses, depicting similar values of mean and decreasing trend – although 459 

IMDAA is the only one among them in which that trend is significant at the 95% confidence level 460 

(Mann-Kendall test). IMDAA agrees with the gauge-based dataset IMD, with a significant 461 

negative trend, but the trends for remaining gauge- and satellite-based datasets are not significant 462 

and disagree with each other even on their sign. The spatial patterns of these trends computed over 463 

a common period of 35 years (1984–2018) for eight datasets (Fig. 4a-h) corroborate the area-464 

weighted trends in the region. Most of the datasets agree on a negative trend over WHR, which is 465 

strongest in IMDAA, IMD, and CFSR, but there is disagreement in terms of regional trends in 466 

both the CHIRPS and CPC datasets, which are both predominated by positive trends. It is worth 467 

noting that the observed negative trend for seasonal winter precipitation in most of the datasets 468 

well agrees with the station based decreasing trends by Shekhar et al. (2010, 2017) who found 469 

decreasing precipitation rates at different point stations over the region, confirming the reliability 470 

of IMDAA data for trend analysis studies. The trend is statistically significant along the foothills 471 

and lower Himalayan belt in IMDAA; mostly over western Jammu and Kashmir and western 472 

Ladakh in CFSR; and in IMD, over eastern Himachal Pradesh and eastern and central Ladakh. 473 

ERA5 agrees strongly with IMDAA on the spatial focus of negative trend, but without any 474 

statistical significance. In contrast, positive precipitation trends observed in CPC and CHIRPS 475 

show disagreement on where those trends are significant, and PERSIANN-CDR and MERRA-2 476 

have regions of both significant positive and negative precipitation trends but disagree with each 477 

other on the sign of those trends. A strong positive and statistically significant precipitation trend 478 

is visible in CPC over Himachal Pradesh and Uttarakhand, whereas CFSR shows a strong yet 479 
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statistically insignificant trend is observed over some regions of eastern Jammu and Kashmir. The 480 

decreasing spatial and temporal trends in the majority of the evaluated datasets support the earlier 481 

observed increasing frequency of dry periods in recent years. Earlier, Dimri and Dash (2012) 482 

observed a decreasing trend of winter precipitation over the WHR, and a decrease in the winter 483 

snowfall has also been reported by Shekhar et al. (2010). Overall, the diversity in winter 484 

precipitation trends among datasets is largely due to methodological constraints associated with 485 

respective dataset development. 486 

c. Seasonal cycle of Precipitation 487 

A fine representation of seasonal variability in any dataset holds key significance as the seasonal 488 

cycle of precipitation has important dynamical implications. Therefore, we also investigated the 489 

seasonal cycle of winter precipitation over the study region by comparing area-averaged daily 490 

climatology in all datasets for a common period of 2000-2015 for their individual spatial 491 

resolutions (Figure 5). All reanalyses, including IMDAA, are in close agreement with each other 492 

on the seasonal evolution of precipitation, with very little differences observed at daily 493 

climatological scales. However, although gauge-based observations show differences in 494 

magnitude, the representation of subseasonal variability is quite similar, with a notably stronger 495 

agreement between IMD and IMDAA, compared to other gauge products. IMDAA overestimates 496 

the magnitude of the seasonal cycle relative to all the satellite products, with least differences with 497 

respect to IMERG, however, they do agree with each other on the form of the seasonal cycle.  498 

Summarising so far, IMDAA is in agreement with all other reanalysis datasets, particularly 499 

ERA5. All datasets agree that the heaviest precipitation falls in February and the weakest is in 500 

December. Furthermore, the results reveal that all reanalyses and the gauge-based IMD dataset 501 

produce similar patterns of regional daily precipitation variability. 502 
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d. Skill Scores 503 

Various statistical skill scores (Table 4) have been computed for area-weighted daily time series 504 

of precipitation for statistical evaluation of IMDAA in comparison to other datasets. IMDAA 505 

shows a good correlation with all the datasets (r>0.6), with the highest correlations found among 506 

the reanalysis products (r>0.9), followed by gridded observational datasets IMD, CPC and satellite 507 

datasets (r>0.7). IMDAA again depicts the lowest correlation with APHRODITE among all 508 

datasets, in agreement with earlier computed statistics. Higher correlations among independent 509 

datasets with different data sources and generation methods, are indicators of better precipitation 510 

estimates in both the datasets (Baudouin et al., 2020), thus good correlations obtained for IMDAA 511 

highlight the reliability of its area-mean precipitation estimates. Overall, IMDAA has IOA values 512 

closer to 1 with most datasets, with the highest values among reanalyses, supported by low RMSD, 513 

MAD and bias with respect to ERA5 and CFSR, but MERRA-2 again diverges from the group. 514 

IMDAA has an index of agreement greater than 89% with all reanalyses, around 71% with satellite 515 

products, and greater than 70% with gridded gauge-based datasets. IMDAA shows relatively larger 516 

positive differences (following Fig. 2) and higher error magnitudes with the gauge-based and 517 

satellite datasets. A strong agreement between IMDAA and IMD is evident through all indices, 518 

including highest correlation (0.90) and lowest RMSD, MAD and mean difference (bias). Indeed, 519 

IMDAA shows positive differences in comparison to all the datasets, supporting the earlier 520 

observed higher magnitudes of precipitation in IMDAA over other datasets (Fig. 2).  521 

Fig. 6 shows the spatial maps of observed point-to-point correlation for daily precipitation 522 

climatology between IMDAA and each of the other datasets for 2000–2015 at each grid point, 523 

after regridding all datasets to a common spatial resolution of IMDAA. We see a high degree of 524 

point-to-point correlation for all reanalyses over the majority of the region, with slightly lower 525 
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correlation with MERRA-2 over the Himalayan foothills. IMDAA shows a comparatively weak 526 

pointwise correlation with many of the satellite datasets – TRMM, IMERG and GPCP; however, 527 

the pointwise correlation is better between with PERSIANN-CDR and CHIRPS over the upper 528 

Himalayan ranges. Among the observational products, IMDAA has a good correlation with IMD 529 

and CPC over most of the study region, although some divergence from the group is evident in 530 

APHRODITE, verifying the earlier obtained statistical metrics. It is promising that the region of 531 

greatest agreement, especially among the reanalyses, is along the western Himalayas – implying 532 

the existence of a common dynamical source of precipitation (e.g. WDs) in this region to which 533 

the reanalyses respond relatively robustly; although it is also possible that this agreement is due to 534 

common sources of biases between the reanalyses, such as the interaction between parameterised 535 

convection and the orography.  536 

e. Diurnal cycle of Precipitation 537 

The diurnal cycle of different types of precipitation is one of the fundamental aspects of variability 538 

but it is often neglected in validation studies. For those datasets with hourly data, we can also 539 

compare their representation of the diurnal cycle of winter precipitation over the study region (Fig. 540 

7). Realistic representation of the diurnal cycle of precipitation in reanalyses is often challenging 541 

due to their reliance on convective parameterization, which typically causes precipitation to occur 542 

too early in the day (Dirmeyer et al., 2012). Among the four reanalyses considered here, IMDAA 543 

performs best when compared with IMERG, capturing the early morning maximum along much 544 

of the western Himalayas and relatively consistent late afternoon peak over the plains south of the 545 

Himalaya, both of which are missed to at least some degree by the other reanalyses. IMDAA 546 

struggles to simulate the correct diurnal cycle over Tibetan Plateau, with the peak occurring near 547 

local midnight rather than the local noon seen in IMERG or mid-afternoon in the other reanalyses. 548 
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This is a region where much of the precipitation occurs in the form of stratiform from the 549 

underlying model (Fig. S2), and thus generated by the microphysics scheme. Given, however, that 550 

the peaks in both stratiform and convective precipitation (Fig. S3) appear mistimed here (at least 551 

compared with ERA5), this may be a result of IMDAA assimilating far fewer observations outside 552 

of India, rather than problems with the model physics. Analysis of precipitation contribution by 553 

convective and stratiform fractions reveal a dominance by stratiform precipitation over the 554 

Karakoram and Greater Himalayas in both IMDAA and ERA5, whereas the lower Himalayas 555 

experience a mixed proportion of both types of precipitation (Fig. S2). The Himalayan foothills 556 

and the plains observe more contribution through convective precipitation.  557 

f. Western Disturbances 558 

WDs are upper-level synoptic-scale cyclonic perturbations in the subtropical jet and are the 559 

primary contributors of wintertime precipitation over the WHR. About 80% of observed winter 560 

precipitation here occurs during days when a WD is active (Midhuna et al., 2020), with the 561 

remaining 20% typically being contributed by local scale convective systems. Given the general 562 

agreement (Fig. 4) among datasets, including IMDAA, that winter precipitation is declining, and 563 

that a large majority of winter precipitation occurs on WD days, we might ask whether the two are 564 

linked by a decline in WD frequency. To test this, WDs were tracked in both ERA5 and IMDAA 565 

datasets, using two values of spectral truncation (T42 and T63) to account for potential differences 566 

in feature size. The trends of tracked WD frequency in these four datasets, along with an additional 567 

set of T63 tracks computed using ERAI for Hunt et al. (2018), are shown in Figure 8(a). All 568 

datasets show a weak and insignificantly increasing trend of winter WDs in the recent decades. An 569 

agreement in the pattern of timeseries is observed for coarser grid resolution (T42), but with 570 

differences in respective magnitude. The comparatively finer resolution truncation (T63) shows a 571 
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similarity in patterns for most years but IMDAA generally has more interannual variability 572 

compared with ERA5. ERAI also has a similar interannual pattern, but with a reduced count 573 

compared to the higher resolution reanalyses. The weaker, insignificant increase for WD frequency 574 

indicates that seasonal occurrences of WDs has been almost constant during the last few decades, 575 

or that the effect of interannual variability in WD frequency is much higher than the long-term 576 

trends. Generally, the trend significance is measured against internal variability, the fact that the 577 

trend fails a significance test indicates that the linear trend is weak compared to interannual 578 

variability. Moreover, the standard deviation of the seasonal totals is clearly larger than the trend. 579 

However, significant decreasing trend of seasonal mean precipitation has been observed (Fig. 4). 580 

Similar results have been reported by Shekhar et al. (2010), concluding that seasonal (November-581 

April) occurrences of WDs (1984/85-2007/08) have less effect on snowfall patterns over the 582 

western Himalayas, however, a decreasing trend for number of snowfall days was observed in their 583 

study. On the contrary, Cannon et al. (2015) reported an increase in WD occurrences in the region, 584 

while Madhura et al. (2015) highlighted an increase in the interannual variability of WD frequency 585 

in recent decades. Our results highlight the challenges that remain in determining recent trends in 586 

WD activity, a fact which is highlighted by disagreement between earlier studies. 587 

Further, we carried out the analysis of WD-day precipitation composites (Fig. 8b-p) which 588 

show that IMDAA performs well in capturing spatial precipitation details when compared with 589 

ERA5, though the two reanalyses have higher magnitudes when compared with IMD. IMD shows 590 

slight variations in terms of precipitation amount and location, which could be a result of the sparse 591 

gauge density over the Himalayas. There is some variation across the season, with all three datasets 592 

agreeing that February sees the heaviest WD-day precipitation and December the lightest, in 593 

agreement with the results for the climatology discussed earlier. 594 
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 WD-associated seasonal and monthly precipitation fractions have been plotted by dividing 595 

the total precipitation observed during WD-days by the total seasonal precipitation over the study 596 

region. The results reveal that 60–90% of wintertime precipitation over the Himalayan region can 597 

be attributed to WD activity (Fig. 9), in agreement with previous studies (e.g. Hunt et al., 2019). 598 

IMDAA shows a strong agreement with IMD and ERA5, but the higher resolution of IMDAA 599 

provides the advantage of a more detailed look into the localized precipitation fractions over the 600 

domain, revealing elongated structures orientated northwest-southeast. These features are parallel 601 

to the orography and have maximum values on the southern side of local ridges, consistent with 602 

WDs bringing moisture flux from the southwest and orographic forcing from regional topography. 603 

The attributable fractions for rain and snow (Fig. S4) in IMDAA and ERA5 reveal the dominance 604 

of snowfall over the Greater and Karakoram Himalayas, whereas rainfall being the main observed 605 

form of precipitation during wintertime over the lower Himalayas and foothills. IMDAA is able to 606 

capture the localized variations in WD attributed precipitation percentages owing to its high 607 

resolution, whereas ERA5 shows a comparatively homogeneous pattern.  608 

g. Evaluation of dynamical and thermodynamic conditions 609 

As we have seen, winter precipitation over the WHR is primarily associated with WDs. As they 610 

are embedded in the large scale sub-tropical westerly jet (200 hPa), WD activity depends 611 

significantly on its position and intensity (Krishnan et al., 2019). A comparison of winds at 200 612 

hPa for IMDAA with ERA5 shows that IMDAA is realistic in capturing the wintertime subtropical 613 

westerly jet (SWJ) over the region (Fig. 10g-i). However, IMDAA produces a weaker SWJ over 614 

WHR (Fig. 10i). An assessment of winter-mean climatological conditions of 2-m air temperature 615 

(Fig. 10a-c), OLR (Fig. 10d-f) and geopotential heights (Fig. S5) in IMDAA compared to ERA5 616 

has been carried out. IMDAA captures the spatial patterns of temperature and OLR over WHR 617 
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and shows potential in finely representing these dynamical features compared to ERA5. However, 618 

IMDAA shows warmer temperatures (statistically significant differences) over the lower 619 

Himalayas and foothills extending up to northeastern Himalayas and slightly colder temperatures 620 

over some western regions of Greater Himalayas, central Tibetan plateau and WHR compared to 621 

ERA5 (Fig. 10c). During winter, low OLR values are noticeable over WHR in both IMDAA (Fig. 622 

10d) and ERA5 (Fig. 10e). Generally, lower magnitudes of mean OLR are observed over the region 623 

during winter as compared to other seasons owing to the influence of convective activity and cloud 624 

formation, although climatological mean OLR is also lower here due to the higher underlying 625 

orography. IMDAA exhibits slightly higher OLR magnitudes than ERA5 along the south-eastern 626 

Ladakh region and over the Himalayan foothills, extending up to the northeastern Himalayas. The 627 

patterns of mean geopotential height (Fig. S5) at different pressure levels over the WHR during 628 

the winter season seem to be well represented in both IMDAA and ERA5 with slightly higher 629 

magnitudes in IMDAA over WHR. To sum up, IMDAA is capable of representing seasonal mean 630 

dynamical and large-scale circulation patterns during winter.  631 

h. Case Study for western disturbance over WHR 632 

As one of the potential major advantages of the higher resolution of IMDAA is its ability to better 633 

capture local orographically-driven dynamics, we also explore the representation of such dynamics 634 

during the passage of WD over WHR. Here, this is accomplished through analysis of a case study 635 

for an intense WD that occurred during 16-19 February 2003, which affected WHR and caused 636 

widespread precipitation over the region. Overcast skies and enhanced cloud cover associated with 637 

deeper convective activity are key features observed during the passage of WD over WHR (e.g. 638 

Rao and Rao 1971), which is noticeable in satellite imagery from NASA EOSDIS (Fig. 11a-d). 639 

IMDAA is realistically representing the daily evolution of the total cloud cover associated with 640 
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the intense WD over WHR (Fig. 11e-h), further supported by abrupt negative OLR anomalies (Fig. 641 

11i) during the period indicating increased atmospheric convection. This convective activity plays 642 

an essential role in developing secondary circulations during the propagation of WDs and results 643 

in heavy localized precipitation over the WHR (e.g. Dimri et al., 2016; Hunt et al., 2019). Our 644 

results demonstrate the ability of high resolution IMDAA in representation of realistic evolution 645 

of the WD induced cloud cover patterns compared to remotely sensed observations.   646 

Furthermore, the analysis of regional valley wind systems during the given period has been 647 

carried out to validate the representation of local scale circulation patterns in IMDAA compared 648 

to ERA5, which highlights the advantages offered by its high resolution. Figure 12 shows the 649 

spatial and temporal patterns of local scale 10-m wind patterns at two different valley sites (the 650 

Suru valley in Jammu and Kashmir and the Spiti Valley in Himachal Pradesh) before, during, and 651 

after the passage of WD over WHR. IMDAA (Fig 12b) shows high fidelity in capturing the local 652 

scale circulation features at the two valley sites, correctly capturing the maximum intensity of 653 

winds during the in contrast to the more spatially homogeneous ERA5 wind speed. 654 

The temporal evolution of these valley winds during the passage of WD is shown for both 655 

valley sites in Fig. 12g-h, where an abrupt increase in magnitudes of valley wind speed is observed 656 

on 16 February at both locations. This variability is captured in IMDAA, but not in ERA5 where 657 

the wind speed is roughly constant during the passage of the WD. Additionally, the effect of the 658 

WD passing over the study region is dynamically characterized by an increase of the local 659 

minimum temperature (Fig. 12i-j) and a drop in the surface pressure (Fig. 12k-l), which 660 

corroborates previous studies (e.g. Rao and Rao, 1971; Singh et al., 2019). Overall, it is clear that 661 

IMDAA shows high fidelity in representing local scale wind responses associated with WD 662 

activity over WHR, a key advantage offered by its high resolution.  663 
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4. Summary and Conclusions 664 

This study evaluated winter precipitation and its variability and trends in the recently introduced 665 

high resolution reanalysis IMDAA using various gridded, satellite, and reanalysis datasets over 666 

the western Himalayan region between 1979–2018, as per their respective period of availability. 667 

Based on the findings, the following conclusions can be made: 668 

1. IMDAA captures the spatial variability of winter precipitation over the western Himalayas 669 

well, on both seasonal and interannual scales, and has climatological precipitation statistics 670 

that are very similar to the other reanalyses considered. However, it shows higher 671 

precipitation amounts compared to other datasets along the lower Himalayas and foothills. 672 

2. IMDAA agrees with the other reanalysis datasets in showing a slight decline in winter 673 

precipitation over the western Himalayas over recent decades, though it is the only 674 

reanalysis dataset in which that trend is significant, in accordance with trends reported in 675 

earlier studies in individual station data (Shekhar et al., 2010, 2017). The IMD gauge-based 676 

precipitation dataset also has a significant decline over the same period, but no other gauge-677 

based or satellite products have significant trends when averaged over the whole western 678 

Himalayan region. 679 

3. Tracking of WDs carried out in both ERA5 and IMDAA reanalyses showed a weak 680 

insignificant increase in frequency over the study period (1979–2018). This agrees with 681 

previous reanalysis-based studies; however, several observation-based studies have 682 

reported a recent decline in WD frequency. Our results, thus, highlight the challenges that 683 

remain in determining recent trends in WD activity over the region, making it an important 684 

area of further work. 685 
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4. IMDAA shows potential in reproducing climatological winter circulation patterns and 686 

surface conditions. However, the validation of high-resolution features such as valley wind 687 

speeds and local dynamics during the passage of WDs over the region strongly emphasizes 688 

advantages offered by IMDAA’s high resolution compared to ERA5. The dataset showed 689 

high potential in representing more localized ridge- and valley-scale features, offering a 690 

better characterization of regional dynamics.  691 

In summary, we acknowledge that low density of gauges and complex orography leads to high 692 

discrepancies and uncertainties in the available data products over WHR. Overall, reanalyses 693 

– including IMDAA – suffer from precipitation overestimation likely owing to errors in the 694 

representation of parameterized convection. However, the findings in this study emphasize the 695 

benefits provided by the high-resolution model and output of IMDAA, including 696 

understanding the complex interplay between terrain and mountain meteorology over WHR, 697 

even with its higher precipitation magnitudes. The reanalysis shows high fidelity in simulating 698 

local-scale dynamics as well as large scale circulation features responsible for winter 699 

precipitation over the region. Such findings strongly underpin the capabilities of IMDAA in 700 

exploring the winter monsoon and its variability and in analysing the meteorological precursors 701 

of precipitation extremes. Overall, IMDAA, despite its amplified magnitudes, is useful for 702 

precipitation climatology, interannual variability and synoptic meteorology over WHR, 703 

however, is still unable to capture diurnal peak precipitation realistically over the Tibetan 704 

Plateau. Even with a resolution of 0.12° (~12 km), IMDAA still does not adequately resolve 705 

regional orography, and this is likely to continue to result in discrepancies in precipitation 706 

magnitude over the region.  707 
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Moreover, large uncertainties remain in understanding the spatio-temporal precipitation in 708 

the WHR due to limited observations and thus, it becomes hard to obtain benchmark 709 

precipitation trends, as well as verification of spatial precipitation amounts in IMDAA. Further 710 

work is needed to constrain historical trends in winter precipitation in this region and link those 711 

trends to changes in synoptic-scale activity, such as western disturbances. Finally, we note that 712 

high-resolution simulations cannot replace ground-based in-situ observations and the lack of 713 

gauge data over such terrains with high spatial variability adds challenges for accurate 714 

precipitation measurements, which can be tackled through increased coverage of in-situ 715 

stations over the region. 716 
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Data Availability Statement 730 

All the data used in this study is publicly available and accessible. IMDAA data is available on the 731 

RDS NCMRWF portal at https://rds.ncmrwf.gov.in/datasets. ECMWF fifth generation (ERA5) 732 

data can be accessed through https://www.ecmwf.int/en/forecasts/datasets/reanalysis-733 

datasets/era5. NCEP Climate Forecast System data is provided at https://cfs.ncep.noaa.gov/cfsr 734 

and MERRA-2 is available at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2. The gauge-based 735 

datasets can be accessed from 736 

https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html (IMD), 737 

https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html (CPC) and 738 

http://aphrodite.st.hirosaki-u.ac.jp/products.html (APHRODITE). GPCP satellite data is available 739 

at https://www.ncei.noaa.gov/products/climate-data-records/precipitation-gpcp-daily and 740 

TRMM-3B42 at https://disc.gsfc.nasa.gov/datasets/. The remaining datasets used in the study are 741 

publicly accessible at https://www.chc.ucsb.edu/data (CHIRPS), 742 

https://gpm.nasa.gov/data/directory (GPM-IMERG) and https://chrsdata.eng.uci.edu/ 743 

(PERSIANN-CDR), respectively. WD days during DJFM over the study region are quantified 744 

based on Indian Daily Weather Reports (IDWR) issued by the IMD.  745 

 746 

APPENDIX 747 

Evaluation indices 748 

The quantitative assessment of IMDAA in comparison to different datasets was carried out using 749 

a series of statistical indicators and skill scores for the daily time series of winter precipitation. The 750 

indices used for statistical evaluation of the performance of IMDAA with other datasets are 751 
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discussed below where n is the total number of observations (daily time series of precipitation),	𝑥!  752 

depicts the value for respective evaluation dataset, 𝑦!   depicts the value for IMDAA dataset, 𝑥 is 753 

the mean for evaluation dataset values and 𝑦 is the mean for IMDAA dataset values. 754 

 Pearson’s correlation coefficient (r) is a quantitative measure of strength of linear 755 

agreement between two datasets which ranges from -1 to +1, with positive values indicating a 756 

positive correlation and vice versa.  757 

																																							𝑟 = 	
∑ (𝑥! −	𝑥̅)(𝑦!	 −	𝑦3)$
!%&

4∑ (𝑥! −	𝑥̅)#$
!%& ∑ (𝑦!	 −	𝑦3)#$

!%&
																																															(1) 758 

 759 

The Root Mean Square Difference (RMSD) is a measure of overall difference associated with 760 

residuals in a predictor dataset in comparison to the validation dataset, whereas relative RMSD 761 

(rRMSD) is a normalized variant of RMSD with respect to the mean of the validation dataset. 762 

Lower values of RMSD and rRMSD indicate stronger association between datasets. 763 

																																									𝑅𝑀𝑆𝐷 = 9∑ (𝑥! − 𝑦!)#$
!%&

𝑛 																																																											(2) 764 

																																											𝑅𝑀𝑆𝐷𝑟𝑒𝑙 = 	
𝑅𝑀𝑆𝐷
𝑥̅ ∗ 100																																																											(3) 765 

Mean Absolute Difference (MAD) is a measure of the accuracy of a predictor dataset in terms of 766 

average magnitude of errors present in the predictions in comparison to the validation dataset.  767 

rMAD is a normalized variant of MAD.   768 

																																														𝑀𝐴𝐷 =
1
𝑛A

|𝑥!	−	𝑦!|
$

!%&

																																																														(4) 769 

																																												𝑟𝑀𝐴𝐷 = 	
𝑀𝐴𝐷
𝑥̅ ∗ 100																																																																		(5) 770 
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BIAS is the quantitative measure to define the tendency of underestimation or overestimation in a 771 

dataset with respect to a validation dataset where the negative values indicate underestimation and 772 

vice versa. 773 

																																													𝐵𝐼𝐴𝑆 =
1
𝑛A

(𝑦! − 	𝑥!)
$

!%&

																																																													(6) 774 

																																												𝑟𝐵𝐼𝐴𝑆 = 	
𝐵𝐼𝐴𝑆
𝑥 ∗ 100																																																																(7)	775 

Adjusted R-squared is defined as: 776 

𝐴𝑑𝑗. 𝑅#	=	1 − (1 − 𝑅#) $'&
$'('&

 777 

where, k is the number of independent variables and n is the number of observations. 778 
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