
ML-Quadrat & DriotData: a model-driven 
engineering tool and a low-code platform 
for smart IoT services 
Conference or Workshop Item 

Published Version 

Creative Commons: Attribution-Noncommercial-Share Alike 4.0 

Open access 

Moin, A., Mituca, A., Challenger, M., Badii, A. and 
Günnemann, S. (2022) ML-Quadrat & DriotData: a model-
driven engineering tool and a low-code platform for smart IoT 
services. In: 2022 IEEE/ACM 44th International Conference on
Software Engineering, 22-24 May 2022, Pittsburgh, PA, USA, 
pp. 144-148. doi: https://doi.org/10.1109/ICSE-
Companion55297.2022.9793752 Available at 
https://centaur.reading.ac.uk/106224/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1109/ICSE-
Companion55297.2022.9793752 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


ML-Quadrat & DriotData: A Model-Driven Engineering Tool and
a Low-Code Platform for Smart IoT Services

Armin Moin
moin@in.tum.de

Dept. of Informatics, Technical Univ.

of Munich (TUM), Germany

Andrei Mituca
andrei.mituca@driotdata.com

DriotData UG

Munich, Germany

Moharram Challenger
moharram.challenger@uantwerpen.be

Dept. of Computer Science, Univ. of

Antwerp & Flanders Make, Belgium

Atta Badii
atta.badii@reading.ac.uk

Dept. of Computer Science

Univ. of Reading, United Kingdom

Stephan Günnemann
guennemann@in.tum.de

Dept. of Informatics & Munich Data

Science Institute, TUM, Germany

ABSTRACT

In this paper, we present ML-Quadrat, an open-source research pro-

totype that is based on the Eclipse Modeling Framework (EMF) and

the state of the art in the literature of Model-Driven Software Engi-

neering (MDSE) for smart Cyber-Physical Systems (CPS) and the

Internet of Things (IoT). Its envisioned users are mostly software

developers who might not have deep knowledge and skills in the

heterogeneous IoT platforms and the diverse Artificial Intelligence

(AI) technologies, specifically regarding Machine Learning (ML).

ML-Quadrat is released under the terms of the Apache 2.0 license

on Github1. Additionally, we demonstrate an early tool prototype

of DriotData, a web-based Low-Code platform targeting citizen

data scientists and citizen/end-user software developers. DriotData

exploits and adopts ML-Quadrat in the industry by offering an ex-

tended version of it as a subscription-based service to companies,

mainly Small- and Medium-Sized Enterprises (SME). The current

preliminary version of DriotData has three web-based model edi-

tors: text-based, tree-/form-based and diagram-based. The latter is

designed for domain experts in the problem or use case domains

(namely the IoT vertical domains) who might not have knowledge

and skills in the field of IT. Finally, a short video demonstrating the

tools is available on YouTube: https://youtu.be/VAuz25w0a5k.

CCS CONCEPTS

• Software and its engineering → Application specific de-

velopment environments; • Computing methodologies →

Machine learning; • Information systems→World Wide Web;

• Networks→ Cyber-physical networks; Cloud computing.

KEYWORDS

model-driven software engineering, low-code, domain-specificmod-

eling, machine learning, iot

1https://github.com/arminmoin/ML-Quadrat

This Work is Licensed under a Creative Commons Attribution-Noncommercial-
Sharealike International 4.0 License.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9223-5/22/05.
https://doi.org/10.1145/3510454.3516841

ACM Reference Format:

Armin Moin, Andrei Mituca, Moharram Challenger, Atta Badii, and Stephan

Günnemann. 2022. ML-Quadrat & DriotData: A Model-Driven Engineering

Tool and a Low-Code Platform for Smart IoT Services. In 44th International

Conference on Software Engineering Companion (ICSE ’22 Companion), May

21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages. https:

//doi.org/10.1145/3510454.3516841

1 INTRODUCTION

In line with the Computer-Aided Design (CAD) trend, e.g., for the

hardware products, the idea of Computer-Aided Software Engineer-

ing (CASE) was proposed in 1968 mostly through the Information

System Design and Optimization System (ISDOS) project [4] at the

University of Michigan, USA. Later in 1971, Softlab GmbH, based

in Munich, Germany brought the world first commercial Integrated

Development Environment (IDE), called Maestro I to the market.

Ever since, numerous software products and services in the forms

of tools, workbenches and integrated environments have aimed

at increasing the productivity of software development and the

quality of software systems. The examples at the present time, in-

clude, but are not limited to the Eclipse Java Development Tools

(JDT), the Apache NetBeans, and the Jupyter Notebook, which is a

modern web-based interactive environment that is widely used by

data scientists. Given the close ties between the software systems,

the Internet, which is being transformed into the Internet of Things

(IoT), as well as Data Analytics and Machine Learning (DAML) to-

day, those CASE tools that could enable both Automated Software

Engineering (ASE) and Automated Machine Learning (AutoML)

in an integrated manner for creating smart IoT services would be

desired.

In this paper, we present ML-Quadrat [9, 10] that is an innova-

tive CASE tool prototype, built on top of ThingML [6, 13], an open-

source project that is based on the Eclipse Modeling Framework

(EMF) and the Xtext framework. Similar to ThingML, ML-Quadrat

implies the Model-Driven Software Engineering (MDSE) paradigm,

specifically the Domain-Specific Modeling (DSM) methodology [7]

for its users. Therefore, it enables automated source code gener-

ation out of the software models for the entire software solution

of smart services for Cyber-Physical Systems (CPS) and the IoT.

Unlike ThingML, the MDSE practitioners using ML-Quadrat gain

access to the APIs of the libraries and frameworks for ML at the

modeling level. This means, using the enhanced software models

in ML-Quadrat, the provided model-to-code transformations (i.e.,

144

2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

http://creativecommons.org/licenses/by-nc-sa/4.0/


ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Moin et al.

code generators) become capable of producing not only the source

code, but also the ML models for the target IoT solutions. Further,

the generated source code is able to train the ML models, deploy

and use them as required, and possibly re-train them by observing

new data samples later.

The contribution of this paper is twofold: (i) It demonstrates

the novel, open-source, research prototype of ML-Quadrat. (ii) It

demonstrates the early prototype of DriotData, a web-based Low-

Code platform that adopts and exploits ML-Quadrat in the industry

to enable a different user group, namely citizen data scientists and

citizen/end-user software developers. These are usually subject

matter experts (e.g., presales engineers) who work at companies

that are not IT companies, but require IT expertise to create and

offer digital services, based on the IoT and AI to their customers.

The rest of this paper is structured as follows: Section 2 reviews

the state of the art briefly. Moreover, ML-Quadrat and DriotData

are presented in Section 3. Finally, Section 4 concludes.

2 STATE OF THE ART

In this section, we briefly review the related work in the literature

and categorize them into four clusters. First, there exist various

domain-specific MDSE tools serving different vertical domains,

e.g., for the design, verification and implementation of embedded

systems in the safety-critical applications in the automotive and

aerospace industries. Examples include, but are not limited to the

MATLAB / Simulink product of MathWorks, the products of dSpace,

e.g., TargetLink, as well as the open-source tool AutoFOCUS [2].

In the CPS/IoT domain, ThingML [6, 13] and HEADS [1] (that is

based on ThingML) are the state-of-the-art open-source solutions

for creating the heterogeneous and distributed IoT services. What

was missing in this landscape was an out-of-the-box support for AI,

specifically DAML. This is provided by ML-Quadrat [9–12]. All of

the said tools focused on the full source code generation, not only

generating the skeleton of the code.

Second, theMDSE paradigm is also applied to theMachine Learn-

ing (ML) Domain. Bishop [3] proposed this idea for the first time,

and provided the open-source tool for Probabilistic Programming,

called Infer.NET [8]. Unlike ML-Quadrat that enhances software

models to become capable of generating ML models and dealing

with them, Infer.NET used a specific type of ML models, namely

Probabilistic Graphical Models (PGM) to generate the source code

of the entire applications out of them. However, this approach has a

number of shortcomings. First, PGMs were not expressive enough

to let the practitioners model the entire CPS/IoT services. Second,

they only supported code generation in C#, whereas other pro-

gramming languages, such as C, Java and Python are required for

CPS/IoT as well. Finally, currently, other ML model architectures

rather than PGMs, e.g., deep Artificial Neural Networks (ANN) are

widely used in the industry.

The third category comprises DAML workflow designers and

AutoML tools/platforms. The designer tools/platforms for DAML

workflows/pipelines, such as KNIME, RapidMiner and Tableau also

provide partial code generation capabilities. However, these are

specific to the DAML practices (and in the case of Tableau, focused

on business intelligence), thus it is not possible to model the entire

software solution for the smart CPS/IoT services and generate the

full implementations out of the models. Furthermore, certain Au-

toML functionalities are already provided to some extent by them.

However, there also exist other platforms, such as DataRobot and

Datameer that are concentrated on AutoML services. Unlike all of

them, ML-Quadrat is not specific to DAML, but aims to generate the

source code and the ML models for the entire solution, including

the DAML part and the rest of the IoT services, in an integrated

and seamless manner. Last but not least, in contrast to ML-Quadart,

the above-mentioned workflow designers and AutoML platforms

did not adopt the MDSE paradigm.

Finally, over the past decade, visual programming and end-user

programming paradigms for creating the Web 2.0/3.0 and IoT-based

services have gained interest. Initially, the web-based, visual data

/ service / web mash-up creation tools, such as Yahoo! Pipes be-

came popular. They enabled end-users to quickly combine multiple

sources of data and existing web services to create new web appli-

cations/services. Today, the so-called Low-Code IoT platforms offer

similar and more enhanced features for creating new IoT services.

For instance, the big players in the IT sector, including Amazon,

Microsoft and IBM provide such platforms as services (Platform-

as-a-Service, PaaS) in addition to their Infrastructure-as-a-Service

(IaaS) business models. They also support AI/ML, and offer code

generation functionalities. Another example for a Low-Code IoT

platform with ML support is Waylay.io. However, none of them

followed the MDSE paradigm.

3 THE DEMONSTRATED TOOLS

3.1 The Envisioned Users

The envisioned user group for ML-Quadrat is software developers

who might not have extensive knowledge and skills with respect

to the heterogeneous IoT hardware/software platforms and the

diverse AI/DAML technologies. For instance, creating a single IoT

service might require familiarity with various programming lan-

guages (e.g., C, Java and Python), operating systems (e.g., Linux

and ContikiOS), micro-controllers with different hardware architec-

tures, capabilities and instruction sets, as well as communication

protocols (e.g., HTTP, MQTT and CoAP). In addition, creating smart

IoT services with ML capabilities requires DAML skills and famil-

iarity with ML libraries and frameworks, such as Scikit-Learn and

Keras/TensorFlow. However, using ML-Quadrat, the practitioner

does not need to be familiar with the said libraries and frameworks.

The model-to-code transformations that are already developed for

the different platforms, libraries and protocols, will take care of the

full source code generation with the respective APIs.

Moreover, the envisioned user group for DriotData is citizen data

scientists and citizen/end-user software developers who are domain

experts (subject-matter experts) in their problem domains (namely,

their vertical IoT use case domains), but not necessarily experts in

the solution domains (e.g., IT/Software Engineering (SE)/AI/ML).

3.2 Challenges and Hypotheses

The main SE challenge that we expect ML-Quadrat to address con-

cerns the heterogeneity of the IoT hardware and software platforms,

the diversity of the ML libraries, frameworks, techniques, models

and algorithms, as well as the specific domain knowledge that is

required for efficient DAML practices, particularly for analytics

145



ML-Quadrat & DriotData: A Model-Driven Engineering Tool and a Low-Code Platform for Smart IoT Services ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

modeling, i.e., building data analytics models. The latter is obvi-

ously different from the typical SE expertise of software developers.

The mentioned challenges make software development for smart

CPS/IoT services very costly. Therefore, the underlying hypothe-

sis regarding ML-Quadrat is that it can help its above-mentioned

target user group, i.e., software developers in developing smart IoT

services in a more efficient manner, even without any deep knowl-

edge and skills in the field of DAML. In particular, they will get

the support they need to create the smart IoT services in a shorter

time and with a more satisfactory experience, than would be the

case as compared to the state of the art and/or manual software

development.

In the case of the DriotData prototype, the expected challenges

to be addressed and the resulting underlying hypothesis for the

Low-Code platform are the same as above. However, since the

envisioned user group is a different one, and also the model editors

will have graphical views/diagrams too, separate validation studies

will be required to assess the underlying hypothesis.

3.3 Methodologies Implied for Users

The adopted programming paradigms are MDSE (particularly, the

DSM methodology with full code generation [7]) and event-driven

programming. The latter is a natural fit for the reactive and inter-

active IoT devices. Moreover, the specific software development

methodology is adopted from the prior work, namely ThingML [13]

(and HEADS [1] that is based on ThingML). ML-Quadrat offers a

desktop modeling tool in the Eclipse IDE. The user of ML-Quadrat

can use either the Xtext-based textual model editor or the EMF

tree-/form-based model editor to create a valid and complete soft-

ware model instance for the desired, target IoT service that needs

to be generated. The textual model editor offers syntax highlight-

ing, auto-completion, as well as a number of hints and tips at the

design-time.

However, the DriotData prototype comprises two versions. The

first version (v1.0), which is used for the current validation study

that is reported in Section 3.4, utilizes the Xtext web integration

and the Java Servlets technology to provide the textual model edi-

tor of ML-Quadrat, as well as a number of other features through

a web-based, in-browser tool. This is more convenient than the

desktop version for the users since they do not need any software

installation and the code generation can also be performed at the

click of a button in their browser. The code will be generated on

our server and they can simply download the generated code that

includes the build scripts too. Additionally, the second version

(v2.0) of the DriotData prototype, which is still in development,

offers a diagram-based and a tree-/form-based model editor. We

demonstrate ML-Quadrat and both versions of DriotData in the

supplementary video2. Also, Figures 1, 2, 3 and 4 illustrate the

text-based model editor in the desktop version of ML-Quadrat,

the tree-/form-based model editor in the desktop version of ML-

Quadrat, the web-based DriotData v1.0 prototype, as well as the

web-based DriotData v2.0 prototype (under development), respec-

tively. Further, the overall architecture of the DriotData prototype

v1.0 is depicted using the UML Component diagram notation in

Figure 5a.

2https://youtu.be/VAuz25w0a5k

Figure 1: The text-based model editor in the desktop version

of ML-Quadrat that is based on the EMF and Xtext.

Figure 2: The tree-/form-based model editor in the desktop

version of ML-Quadrat that is based on the EMF.

3.4 Validation Studies

The Technology Readiness Level (TRL)3 of ML-Quadrat is estimated

as TRL 4 since the technology has been already validated in the

laboratory. The focus was on a Proof of Concept (PoC) to confirm

the feasibility of the innovative idea. For the validation, we con-

ducted an empirical user study of the DriotData v1.0 prototype,

namely the web-based version of ML-Quadrat with a balanced

group of four volunteer Computer Science experts4. Here is the

summary of their profiles: (i) Gender: Female, Age group: 25-39,

Current position: Academic, Degree: PhD, SE skill level: High, ML

skill level: High, MDSE skill level: Low, IoT/CPS skill level: Low;

(ii) Gender: Male, Age group: 25-39, Current position: Academic,

Degree: Master’s, SE skill level: Medium, ML skill level: Low, MDSE

skill level: Medium, IoT/CPS skill level: Medium; (iii) Gender: Male,

Age group: 25-39, Current position: Industrial, Degree: Master’s, SE

3https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-
wp1415-annex-g-trl𝑒𝑛.𝑝𝑑 𝑓
4Please note that one of them, Andrei Mituca, is also a co-author of this work.

146



ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Moin et al.

Figure 3: DriotData v1.0

Figure 4: DriotData v2.0 (under development)

(a) The overall architecture of DriotData v1.0

(b) A sample generated so-

lution for the validation

case study in Section 3.4:

The smart grid must make

predictions for the miss-

ing values in the received

power loads of electrical ap-

pliances.

Figure 5

147



ML-Quadrat & DriotData: A Model-Driven Engineering Tool and a Low-Code Platform for Smart IoT Services ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

skill level: Medium, ML skill level: Low, MDSE skill level: Medium,

IoT/CPS skill level: Medium; (iv) Gender: Male, Age group: 25-39,

Current position: Industrial, Degree: PhD, SE skill level: High, ML

skill level: High, MDSE skill level: Low, IoT/CPS skill level: Low.

We assigned them two tasks concerning the case study that is set

out in Figure 5b: This comprises of a smart home and a smart grid.

The smart grid periodically requests the individual electrical power

consumption loads of the electric appliances in the smart home.

The idea is to check if a certain “X” guaranteed-by-design holds

true where “X” here happens to be “compliance with energy effi-

ciency operation”, i.e., to verify that agreements concerning the

avoidance of using particular energy-hungry appliances at peak

times traded off with incentives or rewards are being complied. The

smart home responds with the requested information. However, the

smart grid occasionally needs to make predictions to extrapolate

or impute the missing values that can occur for various reasons,

such as possible network outages, or for plausibility checks of the

received information.

It transpired that the web-based tool (DriotData v1.0) can lead

to the development productivity leaps of 25% and 236% on average,

compared to the state of the art (namely ThingML [13]) and the

pure manual development, respectively. Last but not least, the par-

ticipants rated their satisfaction and overall experience. Compared

to the prior work, ThingML [13], the four volunteers rated their

level of satisfaction with ML-Quadrat as High, High, Medium and

Medium. However, compared to the pure manual development, the

ratings were High, High, Medium and Low. The expert who chose

Low in the latter case emphasized the simplicity of the chosen task

for them in this experiment and admitted that in a more compli-

cated IoT scenario that involved a higher degree of heterogeneity

of the edge devices, they would have less chance of completion of

a full system development.

However, the conducted empirical study was just a pilot, ex-

ploratory study with a limited scope, due to the resource constraints.

Therefore, it cannot be relied on for any rigorous validation or

quantitative analysis. In the future, an extensive empirical evalua-

tion using a larger group, more use cases with more challenging

tasks that might involve heterogeneous IoT platforms and resource-

constrained IoT devices, as well as randomized controlled experi-

ments will be necessary. In the present work, we used convenience

sampling for finding the volunteers in the authors’ networks. Fur-

thermore, we plan to conduct validation studies for the DriotData

v2.0 prototype with the diagram-based and the tree-/form-based

model editors, in addition to the current textual model editor, in

the browser. One of the main goals of the future studies will be

finding the right matches between the profiles of the users of our

tool and the type of model editor that they will prefer, as well as

the kind of information and the way of their presentation to each

user group in each of the said model editors. For instance, how

much information must be shown or hidden in the diagram-based

view to avoid making it cluttered and possibly confusing for its

intended audience. Finally, our preliminary, exploratory interviews

with the IoT domain experts who fit into the target audience of the

DriotData solution hint towards the preference of many technical

experts who have some programming background and/or hardware

design skills to use our existing textual model editor to design their

target IoT solution rather than the planned diagram-based and/or

tree-/form-based model editors. This is in accordance with the prior

work that emphasized the intrinsic inclination of developers to-

wards text-based modeling with Domain-Specific Languages (DSL)

rather than visual modeling using graphical model editors of the

respective DSLs (e.g., see [5, 6]).

4 CONCLUSION

In this paper, we demonstrated the ML-Quadrat and DriotData

prototypes. The latter exploits and adopts the former in the industry.

We showed that our web-based tool, DriotData v1.0 (i.e., the web-

based version of ML-Quadrat), can lead to productivity leap in

software development of smart IoT services. Further, our DriotData

v2.0 tool, which has a graphical, diagram-based model editor too,

is still under development. Finally, we plan to conduct an extensive

empirical user study in the future.

ACKNOWLEDGMENTS

This work was partially funded by the German Federal Ministry for

Education & Research (BMBF) through the Software Campus initia-

tive (project ML-Quadrat), as well as the German Federal Ministry

for Economic Affairs and Energy (BMWi) and the European Social

Funds (ESF) through the EXIST program (grant 03EGSBY811).

REFERENCES
[1] 2015. Heterogeneous and Distributed Services for the Future Computing Contin-

uum. https://cordis.europa.eu/project/id/611337. Accessed: 2021-09-01.
[2] Vincent Aravantinos and Sebastian Voss et al. 2015. AutoFOCUS 3: Tooling

Concepts for Seamless, Model-based Development of Embedded Systems. In
Proceedings of the 8th International Workshop on Model-based Architecting of
Cyber-physical and Embedded Systems (CEUR Workshop Proceedings, Vol. 1508).
CEUR-WS.org, 19–26. http://ceur-ws.org/Vol-1508/paper4.pdf

[3] Christopher M. Bishop. 2013. Model-based machine learning. Philosophical
Transactions of the Royal Society A (2013).

[4] R. J. Fortin. 1973. Problem Statement Language and Analyzer Concepts and Rec-
ommendations. Technical Report. University of Michigan and the Deputy for
Command and Management Systems, US Airforce. https://ntrl.ntis.gov/NTRL/
dashboard/searchResults/titleDetail/AD758773.xhtml.

[5] Hans Groenniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Voeolkel. 2007. Text-based Modeling. In Proceedings of the 4th International
Workshop on Software Language Engineering (ateM 2007).

[6] Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa. 2016.
ThingML: A Language and Code Generation Framework for Heterogeneous
Targets. In Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems (MODELS ’16).

[7] Steven Kelly and Juha-Pekka Tolvanen. 2008. Domain-Specific Modeling: Enabling
Full Code Generation (1st ed.). Wiley-IEEE Computer Society Pr.

[8] T. Minka, J. M. Winn, J. P. Guiver, Y. Zaykov, D. Fabian, and J. Bronskill. 2018.
Infer.NET 0.3. Microsoft Research Cambridge. http://dotnet.github.io/infer.

[9] ML-Quadrat 2020. ML-Quadrat. https://github.com/arminmoin/ML-Quadrat.
Accessed: 2020-09-12.

[10] Armin Moin, Moharram Challenger, Atta Badii, and Stephan Günnemann. 2022.
A model-driven approach to machine learning and software modeling for the IoT.
Software and Systems Modeling (SoSyM) (2022). https://doi.org/10.1007/s10270-
021-00967-x

[11] Armin Moin, Stephan Rössler, and Stephan Günnemann. 2018. ThingML+: Aug-
menting Model-Driven Software Engineering for the Internet of Things with
Machine Learning. In Proceedings of the 2nd International Workshop on Model-
Driven Engineering for the Internet of Things (MDE4IoT).

[12] Armin Moin, Stephan Rössler, Marouane Sayih, and Stephan Günnemann. 2020.
From Things’ Modeling Language (ThingML) to Things’ Machine Learning
(ThingML2). In Proceedings of MODELS 2020 Satellite Events (Extended Abstract).

[13] ThingML 2016. ThingML. https://github.com/TelluIoT/ThingML. Accessed:
2020-04-29.

148


