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Abstract
According to Bayesian/predictive coding models of autism, autistic individuals may have difficulties learning probabilistic 
cue-outcome associations, but empirical evidence has been mixed. The target cues used in previous studies were often 
straightforward and might not reflect real-life learning of such associations which requires learners to infer which cue(s) 
among many to track. Across two experiments, we compared adult learners with varying levels of autistic traits on their ability 
to infer the correct cue to learn probabilistic cue-outcome associations when explicitly instructed to do so or when exposed 
implicitly. We found no evidence for the effect of autistic traits on probabilistic learning accuracy, contrary to the predic-
tions of Bayesian/predictive coding models. Implications for the current Bayesian/predictive coding models are discussed.

Keywords Probabilistic · Statistical learning · Prediction · Bayesian · Predictive coding · Autistic traits

Suppose one is trying to predict if it will rain shortly without 
the benefit of a weather forecasting app. One might look at 
the clouds to see if they are grey to help make the prediction 
and act appropriately (e.g., grey clouds may signal rain, so 
one might bring an umbrella). This example, though trivial, 
demonstrates the necessary inferences and predictions that 
we make to adapt and survive in the environment. Such 
predictions can be understood from a Bayesian perspective 
(Knill & Pouget, 2004), which, broadly speaking, incorpo-
rates both the bottom-up likelihood of the input (“How likely 
do clouds appear grey when it rains?”) and top-down pri-
ors or expectations (“How likely does it rain generally?”) to 
determine the most optimal or rational prediction (i.e., the 
posterior probability; “How likely does it rain when there 
are grey clouds?”). According to predictive coding theo-
ries (Friston, 2005), when there is a discrepancy between 
the prediction and the outcome (e.g., seeing grey clouds 
and thinking it is going to rain but it does not), prediction 
errors are generated, which can then be used to adjust the 
internal generative model (e.g., lower the predictive value 
of grey clouds and rain) so that future predictions will be 
more optimal. But not all prediction errors are useful; some 

may simply be noise or random errors (e.g., that incident of 
grey clouds was not predictive of rain because of haze and 
smog in the atmosphere that day), and as such should be 
ignored and no adjustment to the internal predictive model 
should be made without further evidence. The ideal learner, 
thus, needs to accurately weigh the prediction errors on their 
importance to optimise their future predictions.

In recent times, various Bayesian and predictive coding 
models, though differing in the specifics, have been proposed 
to understand autism and explain myriad autistic experience 
such as hypo/hyper-sensitivity to sensory stimuli, intoler-
ance to uncertainty, and restricted and repetitive behaviours 
(Haker et al., 2016; Palmer et al., 2017). Some suggest that 
autistic individuals make less use of top-down priors, and as 
a result, experience the world too veridically (Pellicano & 
Burr, 2012). Others have reached the same conclusion, but 
argue that, instead of attenuated priors, autistic individuals 
place more weight on bottom-up processes such as sensory 
experience and input likelihood when making inferences 
(Brock, 2012). As a consequence of attenuated priors and/
or inappropriate weighting on bottom-up processes, one 
may experience a flooding of sensory information, a com-
monly reported autistic experience (Tavassoli et al., 2014), 
as each sensory perception is experienced as new or more 
intensely. Some propose that autistic individuals may have 
atypical precision of the prediction error (Cruys et al., 2014; 
Lawson et al., 2014) such that, they may treat all prediction 
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errors—even those that should be ignored—as useful, lead-
ing to less optimal future inferences. Yet others propose 
that autistic individuals have difficulties learning regulari-
ties from the environment, which are needed to make accu-
rate inferences (Sinha et al., 2014). Consequently, autistic 
individuals are said to find unpredictable situations to be 
challenging and thus may engage in predictable, repetitive 
behaviours.

These theoretical models have found some support from 
empirical studies that examined low-level sensory percep-
tion among autistic individuals. For example, when pre-
sented with two pairs of tones and required to judge whether 
the tones within the second pair had the same frequency 
or not, neurotypical individuals showed a bias towards the 
preceding tone. Specifically, their representation of the first 
tone of the second pair was biased by the second tone of the 
first pair (a so-called “contraction bias”), whereas autistic 
individuals were less likely to show such a bias, suggesting 
a more veridical perception of the tones (Jaffe-Dax & Eigsti, 
2020). Electrophysiological measures have also found that 
autistic individuals showed less habituation in event-related 
responses (ERP) to repeated stimuli (Jamal et al., 2020) and 
less sensitivity to deviants of differing presentation frequen-
cies as measured using mismatch negativity (MMN) in an 
oddball paradigm (Goris et al., 2018), which implies atypi-
cal prediction of incoming stimuli relative to neurotypical 
individuals. However, conflicting findings have also been 
reported (Finnemann et al., 2021; Knight et al., 2020; Van 
de Cruys et al., 2018). For instance, compared to neurotypi-
cal individuals, autistic individuals showed similar improve-
ment in recognising ambiguous Mooney images after brief 
exposure to the source image, suggesting intact priors among 
autistic individuals (Cruys et al., 2018), and similar MMN 
responses to auditory rhythmic deviants, which suggests 
typical habituation and prediction (Knight et al., 2020).

Though most of the Bayesian and predictive coding 
models of autism were initially used to describe low-level 
sensory perception among autistic individuals, they may be 
applicable to high-level cognitive processes in autism such 
as learning of statistical regularities and associations as well 
as prediction and decision-making. Some studies reported 
that relative to neurotypical individuals, autistic individuals 
showed differential neural responses to statistical learning 
of a continuous auditory stream (Scott-Van Zeeland et al., 
2010a, 2010b; Wagley et al., 2020) and poorer learning of 
cue-outcome associations that are needed to make accu-
rate predictions across various paradigms (Amoruso et al., 
2019; Fogelson et al., 2019; Greene et al., 2019; Lawson 
et al., 2017; Sapey-Triomphe et al., 2021a, 2021b), point-
ing to difficulties autistic individuals may have with extract-
ing regularities from the input and having higher precision 
to prediction errors. Those models have also been used to 
understand whether learning differs when the environment 

changes, which is typically assessed using a probabilistic 
reversal learning task: learners first learn the contingencies 
of two cues and their outcomes over many trials (e.g., Cue 
A is associated with a reward at an 80:20 reinforcement 
schedule) after which the contingencies change (e.g., now 
Cue B rewards at an 80:20 reinforcement schedule). Previ-
ous studies found that autistic individuals showed similar 
performance as neurotypical individuals during the initial 
learning stage (Costescu et al., 2015; D’Cruz et al., 2013), 
but their performance was affected more during the reversal 
stage than neurotypical individuals (e.g., by making more 
perseverative errors, i.e., selecting the cue that was previ-
ously reinforced) (Crawley et al., 2020; Robic et al., 2015; 
South et al., 2012). Note, however, like the low-level sensory 
studies, mixed findings have been reported: relative to neu-
rotypical individuals, autistic individuals have shown simi-
lar performance on various statistical learning and implicit 
learning tasks (Brown et al., 2010; Nemeth et al., 2010; 
Obeid et al., 2016; Zwart et al., 2018a, 2018b); learning 
cue-outcome associations that have a reinforcement schedule 
of at least 70:30 (Retzler et al., 2021; Sapey-Triomphe et al., 
2021a, 2021b; Solomon et al., 2011); and during both the 
initial and reversal stages of probabilistic reversal learning 
(Manning et al., 2017). Thus, the empirical support for the 
Bayesian and predictive coding models of autism is mixed 
and remains to be determined.

The inconsistencies for the support for the Bayesian and 
predictive coding models of autism may be due in part to 
participant heterogeneity across the different studies (e.g., 
age differences, whether the autistic and NT participants 
were properly matched, whether autistic traits or autism 
diagnosis was used as comparison, etc.). Moreover, meth-
odological differences such as the use of different tasks and 
how performance on the tasks were measured (i.e., using 
behavioural accuracy, reaction time, computational model-
ling, or neuroimaging) across the different studies render it 
difficult to compare and pinpoint exactly whether support for 
the models is warranted. It is beyond the scope of this manu-
script to examine the inconsistencies empirically. Instead, we 
tested support for the models by examining an aspect often 
neglected in previous studies.

A common limitation across most of the statistical learn-
ing and cue-outcome association learning tasks above is that 
the target cue to be tracked is often straightforward (e.g., in 
a cue-outcome association task, the cues may be two audi-
tory tones of different frequencies; in a probabilistic reversal 
learning task, learners learn the reward outcome of two dif-
ferent coloured boxes). This is not representative of the real-
life cue-outcome associations one must learn to guide our 
predictions, which are often complex given the many-to-one 
relationship between cues and outcomes. For example, when 
trying to predict if it will rain, in addition to looking at the 
colour of the clouds, one may smell the air for a ‘metallic’ 
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smell; see whether the shapes of pinecones are closed; and 
determine whether cows around them are lying down accord-
ing to a folklore. But not all the cues are equally predictive (or 
indeed valid), and so an ideal learner will need to infer over 
time which cues are more reliable than others in their asso-
ciation with the outcome. While this has not been examined 
directly, there are reasons to suspect that autistic individuals 
may find this cue-inferencing process to be more challenging 
than neurotypical individuals. Some researchers have noted 
that autistic individuals tend to associate only one perceptual 
cue of a complex cue stimulus with a response, a phenom-
enon termed ‘stimulus overselectivity’ (Lovaas et al., 1979; 
Ploog, 2010), which may hinder their ability to infer the cor-
rect cue(s) to learn in a predictive context. Moreover, autis-
tic individuals’ tendency to commit perseverative errors in 
probabilistic reversal learning tasks suggests that they may 
find it difficult to switch between different cues to determine 
the most predictive one.

The present experiments directly addressed the limita-
tion of straightforward cue-outcome relationships seen in 
previous studies by examining whether one’s level of autistic 
traits will influence their ability to infer and learn the target 
cue from a stimulus with multi-faceted cues and its asso-
ciations with the outcome in a probabilistic learning task. 
Specifically, the stimuli were auditory pseudospeech of vari-
ous length and acoustic manipulation and the target cue was 
associated with the outcome deterministically (i.e., the cue 
is 100% predictive of the outcome) or probabilistically (i.e., 
the cue is 75% predictive of the outcome). While the present 
stimuli are still relatively simple compared to those encoun-
tered in real life, they are arguably more complex than those 
seen in previous studies where the cues in the stimuli dif-
fered in one dimension only (e.g., tone frequency, colour, 
etc.). Participants were either told explicitly to determine the 
cue-outcome relationships in Experiment 1 (though note that 
they were not specifically told which cue to focus on) or they 
were exposed to the cue-outcome relationship implicitly via 
a cover task in Experiment 2. The instruction manipulation 
was motivated by recent suggestions that atypical predic-
tion processing may be more likely observed among autistic 
individuals when the cue-outcome associations are low in 
salience (Amoruso et al., 2019; Cannon et al., 2021; West-
erfield et al., 2015). Across both experiments, if individuals 
with high autistic traits have difficulty inferring cues and 
learning cue-outcome relationships, then there should be a 
negative relationship between autistic traits and accuracy on 
the probabilistic learning task.

Experiment 1 (Explicit)

Methods

Participants

A total of 101 individuals (Female n = 54, Male n = 44, 
Other/Non-binary n = 3) participated in the study, about a 
third of whom completed the experiment in-person in the 
lab (n = 29) and the rest completed the experiment online 
(n = 72)1. All of them were adults; their age ranged between 
16 and 58 years (M = 34.71, SD = 12.26). About a fifth of the 
participants reported to have a clinical diagnosis of autism 
spectrum conditions (ASC) (lab n = 17; online n = 3) but 
due to the anonymity of the online experiment, we could 
only confirm the diagnosis of the lab participants by veri-
fying their clinical diagnostic report. Three online partici-
pants reported that they ‘Don’t Know’ if they have a clinical 
diagnosis of ASC, whereas the rest of the lab (n = 12) and 
online (n = 67) participants reported they do not. Regard-
less of their diagnosis status, we used the Autism-Spectrum 
Quotient (AQ) (Baron-Cohen et al., 2001) to measure their 
autistic traits: the AQ scores for our sample ranged between 
2 and 47 (M = 24.65, SD = 11.02). We recruited participants 
for the lab study via our participant database, flyers/posters, 
and social media while online participants were recruited 
using Prolific. An additional seven participants completed 
the online study but were excluded from the analysis as they 
did not meet the attention check threshold (see Tasks subsec-
tion below). The study protocol was reviewed and approved 
by the University Research Ethics Committee (UREC) at 
the University of Reading. All participants provided their 
written informed consent prior to their participation.

Tasks

Data collection for the lab study was conducted using Psy-
choPy (Peirce, 2007) whereas online data collection was 
done using Gorilla (Anwyl-Irvine et al., 2020). All partici-
pants completed two tasks: (i) probabilistic learning task, 
and (ii) perception task.

Probabilistic Learning Task There were two phases in the 
probabilistic learning task: learning phase and test phase. 
At the start of the learning phase, participants were told 
that they would be presented with someone practising a 
magic trick of reciting a spell and pulling an object out 
from a top hat and that she might get it wrong sometimes. 

1 The change in data collection format was due to COVID-19 restric-
tions at the time of conducting this study
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Participants were told to decide which of four objects 
displayed would be chosen after each spell within 1.5 s, 
after which regardless of whether participants responded, 
they would be shown the object that had been pulled 
out (i.e., they would be given feedback). Participants 
were instructed to try and figure out how the magic trick 
worked, and to guess their responses if they were unsure. 
The learning phase was divided into two blocks (first half 
vs. second half) to examine learning over time. The test 
phase that followed had the same format as the learning 
phase except there was only one test block, no time limit 
to respond, and no feedback.

The spells were presented auditorily and consisted of 
strings of 3–7 nonsense syllables (e.g., ‘mot pel pel jig’, 
‘dag ruk jig jig mot pel’, etc.) synthesised using Mac OS 
X Speech Service with a female voice. We levelled the 
pitch contour of each spell and then further manipulated 
the spells in one of four ways such that as the spell unfolds, 
the pitch contour rises (pitch-rise), falls (pitch-fall), or 
the tempo of the spell increases (tempo-fast) or decreases 
(tempo-slow). Pitch manipulation was done on Praat 
(Boersma & Weenink, 2013), which involved changing the 
shape of the rise or fall by approximately two semitones, 
whereas tempo manipulation was performed on Audac-
ity (Audacity Team, 2018), which involved increasing/
decreasing the tempo of the second half of the spell by 
40% using the built-in function in Audacity. Each of the 
spell manipulation (pitch-rise, pitch-fall, tempo-fast, and 
tempo-slow) was associated with one of four objects, and 
we created two languages—Language A and Language 
B—that differed in the spell manipulation-object assign-
ment. Participants were randomly assigned to one lan-
guage at the start of the experiment. Within each language, 
two of the spell manipulation-object associations—one 
pitch- and one tempo-manipulation—were deterministic 
(i.e., the spell manipulation was 100% predictive of the 
object) whereas the other two were probabilistic (i.e., the 
spell manipulation was predictive of the object 75% of 
the time). In total, 32 unique spells (4 spell manipula-
tions × 8 spells) were presented twice in the learning phase 
whereas in the test phase, 20 unique spells (4 spell manip-
ulations × 5 spells), different from that encountered during 
the learning phase, were presented twice. Importantly, at 
no point during this task were participants told what cues 
to attend to or how the spell manipulation-object associa-
tions were defined.

Participants completed four practice trials in the learn-
ing phase and two practice test trials in the test phase prior 
to the main task to ensure they understood the instructions. 
To ensure attentiveness and to exclude bot responses, we 
included catch trials in the online study: participants were 
instructed to press a particular key when they heard spells 
produced by a male voice. Participants who scored less 

than 70% correct on the catch trials were excluded from 
data analysis.

Perception Task Following the probabilistic learning task, 
participants completed a perception task, which assessed 
their ability to discriminate the pitch and tempo manipula-
tions, and thus acted as a control task to exclude the possible 
confounding effects of perceptual ability on the probabilis-
tic learning task. A same/different paradigm was used: par-
ticipants were presented with pairs of disyllabic stimuli of 
different syllables within each pair (e.g., “mot-pel” vs “jig-
mot”) with an inter-stimulus-interval of 500 ms. They were 
instructed to determine whether the pairs were identical in 
their acoustic cues and were explicitly told to not base their 
judgment on the syllables themselves. For the same trials, 
pairs of ‘base’ stimuli (i.e., flat pitch, no tempo manipula-
tion) were presented. For the different trials, ‘base’ stimuli 
were paired with one of the four spell manipulations (pitch-
rise, pitch-fall, tempo-rise, and tempo-fall). Participants 
completed 32 trials in total—16 same trials, 16 different 
trials (4 trials for each spell manipulation)—presented in a 
random order.

Procedure

Participants first completed a questionnaire on their demo-
graphic information and then the AQ questionnaire. Then, 
participants completed the probabilistic learning task fol-
lowed by the perception task. The entire study took approxi-
mately 40 min to complete, and participants received mon-
etary compensation for their time.

Data Analysis

Prior to conducting a formal data analysis, visual inspec-
tion on the probabilistic learning task performance revealed 
that some of the participants performed poorly, suggesting 
floor effects. Similar to previous studies that removed par-
ticipants who failed to show learning in probabilistic tasks 
(Solomon et al., 2011), we removed participants who scored 
at or below 0.25 proportion correct (i.e., chance level for a 
4-alternative forced choice task) in the test phase (n = 15). 
Thus, the data analysis for Experiment 1 reported below 
is based on a final sample of 86 participants. Analysis on 
the entire sample (n = 101) can be found in Supplementary 
Section S1, and generally the same pattern of findings was 
found.

Perception Task For each participant, d-prime (d’) scores 
for the pitch and tempo manipulations were calculated 
separately. Extreme values of 0 and 1 for Hit and False 
Alarm rates were adjusted upwards and downwards by 0.01, 
respectively (Macmillan & Creelman, 2005). The d’ scores 
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were compared against zero to determine whether partici-
pants reliably discriminated the pitch and tempo manipula-
tions. We also compared the pitch d’ and tempo d’ against 
each other using a paired t-test to determine if there were 
differences in discrimination ability between the two. Each 
d’ was correlated with AQ to examine if discrimination abil-
ity differed as a function of autistic traits.

Probabilistic Learning Task To model participants’ 
responses in the learning phase, we fitted a binomial mixed 
effects model to the data, with the dependent variable being 
a binary variable (Correct/Incorrect, with Correct being the 
object that is most likely associated with the spell manipula-
tion). As fixed effects, we entered Pitch d’, Tempo d’, AQ, 
Block (Block 1 vs. Block 2), Type (Deterministic vs. Proba-
bilistic) and all the possible interactions between AQ, Block 
and Type. We included Language as a fixed effect initially 
but dropped it from the final model as it did not significantly 
affect the results. As random effects, we entered by-subject 
and by-item random intercepts and by-subject random slope 
for Block and Type.

Participants’ responses in the test phase were also mod-
elled using a binomial mixed effects model, with the fol-
lowing fixed effects: Pitch d’, Tempo d’, AQ, Type (Deter-
ministic vs. Probabilistic) and AQ × Type. Language was 
initially included as a fixed effect but was removed as it did 
not significantly affect the results. We included subject- and 
item-level random intercepts, and by-subject random slopes 
for Type.

In the models above and subsequent models reported in 
this paper, all continuous variables were mean centred, and 
all categorical variables were effect-coded. As a measure 
for effect size, we reported odds ratio, in which magnitude 
further away from 1.0 (either greater or less) is interpreted 
as a stronger association. The models were fitted using the 
lme4 package (Bates et al., 2015) and the statistical signifi-
cance of each fixed effect was determined using the func-
tion Anova() from the car package (Fox & Weisberg, 2019). 
Pairwise comparisons were conducted using the emmeans 
package (Lenth, 2019). All the predictors in each model had 
a low variance inflation factor (VIF) value (< 3) as assessed 
using the function check_collinearity() from the perfor-
mance package (Lüdecke et al., 2021), suggesting no issue 
with multicollinearity in each model.

Results and Discussion

Participants as a group reliably discriminated the pitch 
and tempo manipulations (pitch d’: M = 1.90, SD = 1.06, 
t(85) = 16.62, p < 0.001; tempo d’: M = 2.60, SD = 1.15, 
t(85) = 20.95, p < 0.001), and their discrimination ability was 
better in the tempo trials than in the pitch trials [t(85) = 5.57, 

p < 0.001]. Higher AQ scores were significantly associated 
with lower pitch d’, that is, lower pitch discrimination ability 
[r(84) = − 0.25, p = 0.019] but AQ scores were not associ-
ated with tempo d’ [r(84) = − 0.17, p = 0.125].

In the learning phase model (see Table 1 for the model 
output), Block was a significant predictor [χ2(1) = 32.08, 
p < 0.001], with accuracy on the second half greater than 
the first (z = 5.66, p < 0.001), suggesting learning over 
time. Type was also significant [χ2(1) = 4.92, p = 0.027], 
suggesting that performance on the Deterministic trials 
were more accurate than the Probabilistic trials (z = 2.21, 
p = 0.027). Importantly, none of the predictors involving AQ 
were significant (AQ: χ2(1) = 0.16, p = 0.685; AQ × Block: 
χ2(1) = 0.22, p = 0.638; AQ × Type: χ2(1) = 1.33, p = 0.249; 
AQ × Block × Type: χ2(1) = 0.39, p = 0.533), suggesting that 
there was no statistically significant effect of autistic traits on 
learning the two types of associations (see Fig. 1A). 

In the test phase model (see Table 2 for the model out-
put), just as in the learning phase, neither AQ [χ2(1) = 0.02, 
p = 0.877] or AQ × Type [χ2(1) = 2.90, p = 0.089] were 
significant, suggesting that the accuracy of deterministic 
and probabilistic trials was not related to autistic traits (see 
Fig. 1B).

Overall, the findings from Experiment 1 revealed that 
participants, regardless of their levels of autistic traits, 
had similar performance on the deterministic and proba-
bilistic trials. This appears contrary to the Bayesian and 
predictive coding accounts of autism (Brock, 2012; Cruys 
et al., 2014; Lawson et al., 2014; Pellicano & Burr, 2012; 
Sinha et al., 2014), which would predict that autistic indi-
viduals or individuals with higher levels of autistic traits 
should perform worse on the probabilistic trials than neu-
rotypical individuals. One possibility for this may be our 
task instructions, that is, participants were explicitly told 
to figure out the magic trick. Indeed, some have suggested 

Table 1  Model output for the learning phase of Experiment 1 
(Explicit)

Final model: Correct ~ Pitch d’ + Tempo d’ +   AQ* Blo ck* T ype  + (1 +  
B loc k +  Ty pe| P a rti cip ant ) +  (1|Item) 

Predictor Estimate SE z p Odds ratio

Intercept − 0.36 0.10 − 3.75  < .001 0.70
Pitch d’ − 0.05 0.08 − 0.64 .521 0.95
Tempo d’ 0.03 0.07 0.48 .633 1.03
AQ 0.00 0.01 − 0.41 .685 1.00
Block − 0.65 0.12 − 5.66  < .001 0.52
Type 0.18 0.08 2.22 .027 1.20
AQ × Block 0.00 0.01 0.47 .638 1.00
AQ × Type − 0.01 0.01 − 1.15 .249 0.99
Block × Type − 0.10 0.12 − 0.80 .427 0.91
AQ × Block × Type 0.01 0.01 0.62 .533 1.01
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that differential performance in prediction and learning 
associations among autistic and neurotypical individu-
als may be more readily observed under more implicit 
conditions (Cannon et  al., 2021). For example, when 
the association between cue and outcome was made less 
apparent (e.g., presented in the background), the autis-
tic group were less likely to learn the association (Amo-
ruso et al., 2019). Thus, in Experiment 2, we repeated 
Experiment 1 with one crucial difference: participants 
were not told to figure out the magic trick, but instead, 
they completed a cover task during the learning phase 
that nonetheless exposed them to the spell manipulation-
object associations.

Experiment 2 (Implicit)

Methods

Participants

Participants consisted of 73 adults (Female n = 52, Male 
n = 17, Other/Non-binary n = 4), with their ages ranging 
between 18 and 59 (M = 28.16, SD = 10.19). All partici-
pants, none of whom had participated in Experiment 1, were 
recruited via Prolific and completed the experiment online. 
About 37% of the participants reported having a clinical 
diagnosis of ASC (n = 27), though this was not verified due 
to the data collection method. Three participants responded 
that they ‘Don’t Know’ if they have a clinical diagnosis of 
ASC, whereas the rest (n = 43) reported they do not. Their 
autistic traits, as measured using the AQ, ranged between 
6 and 46 (M = 26.93, SD = 11.84). The study protocol was 
reviewed and approved by the University Research Ethics 
Committee (UREC) at the University of Reading. All par-
ticipants provided their written informed consent prior to 
their participation.

Tasks

Similar to Experiment 1, data collection was conducted 
using Gorilla and all participants completed two tasks: (i) 
probabilistic learning task, and (ii) perception task.

F ig. 1  Propo rti on  cor rect on the  det erm ini stic (100%) and p robabilistic (75%) trials as a function of autistic traits (AQ) for the learning phase by 
block A and test phase B after removing participants who showed floor effects

Table 2  Model output for the test phase of Experiment 1 (Explicit)

Final model: Correct ~ Pitch d’ + Tempo d’ + AQ*Type + (1 + Type|Pa
rticipant) + (1|Item)

Predictor Estimate SE z p Odds ratio

Intercept 0.38 0.18 2.12 .034 1.47
Pitch d’ 0.34 0.19 1.79 .073 1.40
Tempo d’ 0.11 0.17 0.63 .530 1.11
AQ 0.00 0.02 − 0.17 .867 1.00
Type 0.22 0.16 1.40 .161 1.25
AQ × Type − 0.02 0.01 − 1.70 .089 0.98
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Probabilistic Learning Task Participants completed a similar 
probabilistic learning task as Experiment 1 with one crucial 
difference during the learning phase: participants were told 
that the study was on how quickly one processes information 
and thus, instead of predicting the outcome after each spell, 
participants completed a cover task during which they had 
to count the number of syllables in each spell and modify 
the calculation based on the object that was shown within 
5 s. For example, if they heard the spell ‘mot pel jig’ and the 
leftmost object in the row of four objects were shown, then 
the correct answer is ‘4’ (3 syllables + 1st object). Thus, 
participants were not explicitly told to figure out the asso-
ciations between spells and outcome like in Experiment 1, 
but they were nonetheless exposed to the associations. The 
cover task was preceded by four practice trials to ensure they 
understood the instructions. To ensure attentiveness, catch 
trials were implemented: participants were told to respond 
‘0’ when they heard male spoken spells.

Perception Task The same perception task as in Experiment 
1 was used.

Procedure

Just like in Experiment 1, participants completed the experi-
ment in the following order: (i) demographic questionnaire; 
(ii) AQ questionnaire; (iii) probabilistic learning task; and 
(iv) perception task. The entire study took approximately 
40 min to complete, and participants received monetary 
compensation for their time.

Data Analysis

Similar to Experiment 1, we removed participants who 
scored at or below 0.25 proportion correct (i.e., chance 
level for a 4-alternative forced choice task) in the test phase 
(n = 28), leaving the data analysis for Experiment 2 below to 
be based on 45 participants. Analysis on the entire sample 
(n = 73) is reported in Supplementary Sections S2 and S3, 
and we found similar pattern of findings.

Perception Task We analysed participants’ perception task 
scores in the same manner as in Experiment 1, that is, pitch 
d’ and tempo d’ were calculated for each participant and we 
assessed whether the two (i) were above zero; (ii) different 
from each other; and (iii) correlated with AQ.

Probabilistic Learning Task We used a binomial mixed 
effects model to model their accuracy on the cover task, 
with the dependent variable being a binary variable (Cor-
rect/Incorrect), and we entered Pitch d’, Tempo d’, AQ, 
Block (Block 1 vs. Block 2) and AQ × Block as fixed effects 
(Type was not included here as it was irrelevant to the cover 

task). We also included Language (A vs. B) initially, but it 
was dropped as it did not significantly affect the results. We 
included by-subject and by-item intercepts and by-subject 
random slope for Block as random effects.

The same analysis as Experiment 1 for the test phase 
was used to model the test phase data of Experiment 2: we 
entered Pitch d’, Tempo d’, AQ, Type (Deterministic vs. 
Probabilistic) and AQ × Type as fixed effects, and subject- 
and item-level random intercepts and by-subject random 
slopes for Type as random effects. We also compared the 
test phases across experiments2 using the following model: 
as fixed effects, we entered Pitch d’, Tempo d’, AQ, Type 
(Deterministic vs. Probabilistic), Experiment (Explicit vs. 
Implicit) and all possible interactions between the latter 
three, and as random effects, we included by-subject and 
by-item intercepts as well as by-subject random slopes for 
Type. Language was not included as a fixed effect in the final 
model as it did not significantly affect the results.

Results and Discussion

Similar to Experiment 1, participants discriminated the 
pitch and tempo manipulations above chance (pitch d’: 
M = 2.01, SD = 0.73, t(44) = 18.54, p < 0.001; tempo d’: 
M = 2.25, SD = 1.42, t(44) = 10.58, p < 0.001). However, 
unlike Experiment 1, their performance between the two 
was similar [t(44) = 0.94, p = 0.352], and their AQ scores 
were not significantly associated with their discrimination 
ability (pitch: r(43) = 0.18, p = 0.240; tempo: r(43) = − 0.25, 
p = 0.101).

Focusing just on their performance on the cover task 
during the learning phase (see Table 3 for the model out-
put), Pitch d’ was a significant predictor [χ2(1) = 8.98, 
p = 0.003]: higher pitch perception ability was associated 
with greater accuracy on the cover task (B = 0.57, SE = 0.19, 
z = 3.00, p = 0.003). Block was also a significant predictor 

Table 3  Model output for the learning phase (cover task) of Experi-
ment 2 (Implicit)

Final model: Correct ~ Pitch d’ + Tempo d’ +  AQ*Block  + (1   + B loc 
k|P art icipant) + (1|Item)

Predictor Estimate SE z p Odds ratio

Intercept 1.32 0.23 5.66  < .001 3.75
Pitch d’ 0.57 0.19 3.00 .003 1.76
Tempo d’ − 0.17 0.10 − 1.69 .092 0.84
AQ − 0.01 0.01 − 0.86 .389 0.99
Block − 0.59 0.14 − 4.17  < .001 0.55
AQ × Block − 0.01 0.01 − 0.98 .327 0.99

2 The learning phases across experiments could not be compared 
meaningfully as the learning phase in Experiment 2 did not involve 
participants predicting the outcome after each spell.
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[χ2(1) = 17.41, p < 0.001], with accuracy on the second half 
greater than the first (z = 3.92, p < 0.001). There was no sig-
nificant effect of AQ on the accuracy of the cover task either 
overall [χ2(1) = 0.74, p = 0.389] or by Block [χ2(1) = 0.96, 
p = 0.327], suggesting that participants, regardless of their 
levels of autistic traits, showed practice-related improvement 
(see Fig. 2A).

The model for the test phase (see Table 4) revealed that, 
similar to Experiment 1, there was also no significant effect 
of AQ [χ2(1) = 0.66, p = 0.416] or AQ × Type [χ2(1) = 1.28, 
p = 0.259], suggesting that autistic traits did not affect per-
formance on the deterministic and probabilistic trials (see 
Fig. 2B).

When we compared the two test phases across the experi-
ments (see Table 5), we found that Pitch d’ was a significant 
predictor [χ2(1) = 5.57, p = 0.018] such that higher pitch 
perception ability was associated with greater performance 

(B = 0.28, SE = 0.12, z = 2.36, p = 0.018). We speculate that 
the pitch d’ score may reflect reasoning skills, given that 
previous studies have found an association between pitch 
perception and nonverbal reasoning abilities (Chowdhury 
et al., 2017), which is arguably important in a task like the 
present study. Though note, however, that pitch perception 
cannot bias the learning of different types of association in 
this study as both deterministic and probabilistic associa-
tions had one pitch manipulation each. There was also a sig-
nificant effect of Experiment [χ2(1) = 25.86, p < 0.001], with 
overall performance on the explicit experiment higher than 

Fig. 2  Proportion correct on the cover task by block A and on the deterministic (100%) and probabilistic (75%) trials in the test phase B as a 
function of autistic traits (AQ) after removing participants who showed floor effects

Table 4  Model output for the test phase of Experiment 2 (Implicit)

Final model: Correct ~ Pitch d’ + Tempo d’ + AQ*Type + (1 + Type|Pa
rticipant) + (1|Item)

Predictor Estimate SE z p Odds ratio

Intercept − 0.75 0.06 − 12.94  < .001 0.47
Pitch d’ 0.08 0.07 1.18 .237 1.09
Tempo d’ 0.03 0.04 0.83 .405 1.03
AQ 0.00 0.00 0.82 .411 1.00
Type − 0.10 0.13 − 0.78 .436 0.91
AQ × Type 0.01 0.01 1.14 .254 1.01

Table 5  Model output for comparison between test phases Experi-
ment 1 (Explicit) and Experiment 2 (Implicit)

Final model: Correct ~ Pitch d’ + Tempo d’ +   AQ* Typ e*E xpe riment 
+ (1 + Type|Participant) + (1|Item)

Predictor Estimate SE z p Odds ratio

Intercept − 0.24 0.12 − 2.10 .036 0.78
Pitch d’ 0.28 0.12 2.36 .018 1.32
Tempo d’ 0.07 0.09 0.83 .407 1.08
AQ 0.00 0.01 − 0.07 .945 1.00
Type 0.05 0.11 0.43 .664 1.05
Experiment 1.12 0.22 5.09  < .001 3.08
AQ × Type 0.00 0.01 − 0.46 .642 1.00
AQ × Experiment − 0.01 0.02 − 0.40 .687 1.00
Type × Experiment 0.29 0.22 1.30 .193 1.33
AQ × Type × Experi-

ment
− 0.04 0.02 − 1.90 .058 0.96
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the implicit experiment (z = 5.08, p < 0.001). While there 
was no effect of AQ [χ2(1) = 0.00, p = 0.945], AQ × Type 
[χ2(1) = 0.22, p = 0.642], or AQ × Experiment [χ2(1) = 0.16, 
p = 0.687], the three-way interaction between AQ, Type 
and Experiment was marginally significant [χ2(1) = 3.61, 
p = 0.058, see Fig. 3]. Subsequent comparisons revealed a 
marginal difference in the effect of AQ across Type, with the 
estimated AQ slope for the deterministic trials slightly more 
negative than that for the probabilistic trials for the explicit 
experiment (z = 1.91, p = 0.057) but not the implicit experi-
ment (z = 0.92, p = 0.360). The difference in the effect of AQ 
across experiments did not differ by type (Deterministic: 
z = 1.14, p = 0.256; Probabilistic: z = 0.49, p = 0.625).

General Discussion

Making correct inferences and predictions is vital and per-
meates all aspects of our lives. To make an optimal predic-
tion, one needs to keep track of the statistical regularities in 
the environment including cue-outcome associations. It is 
unclear from previous studies whether autistic individuals 
may have more difficulties learning statistical regularities in 
the environment (Brown et al., 2010; Nemeth et al., 2010; 
Scott-Van Zeeland et al., 2010a, 2010b; Wagley et al., 2020), 
though it seems that their ability to do so is likely preserved 
when the contingencies are relatively high (Sapey-Triomphe 
et al., 2021a, 2021b; Solomon et al., 2011). However, those 
previous studies tend to be simplistic in that the target cue to 
be tracked is relatively straightforward and obvious, which is 
unlike real-life situations given the many-to-one relationship 
between cues and outcomes, and so learners need to infer 
which cues are more reliable than others. We addressed this 
limitation directly in this study by comparing individuals 
with varying levels of autistic traits on learning cue-outcome 

associations that are either deterministic or probabilistic 
from a set of many possible cues. Participants were either 
explicitly told to determine the cue-outcome associations 
(Experiment 1) or performed a cover task that exposed them 
to the associations implicitly (Experiment 2).

Our findings revealed no significant effect of autistic traits 
on inferring the appropriate cue from a set of many possible 
cues to learn deterministic or probabilistic contingencies.3 
This study thus extends the findings of previous studies that 
typically used a case–control approach, unlike the present 
study, which found no group differences among autistic and 
neurotypical individuals in learning single cue-outcome asso-
ciations that are at least 70% predictive (Costescu et al., 2015; 
D’Cruz et al., 2013; Sapey-Triomphe et al., 2021a, 2021b; 
Solomon et al., 2011). In our study, the effect of autistic traits 
was not observed in either the explicit or implicit version of 
the task, which contradicts some suggestions that differences 
in prediction among autistic and neurotypical individuals are 
more likely observed when the cue-outcome associations are 
less apparent or have less predictive salience (Amoruso et al., 
2019; Cannon et al., 2021; Westerfield et al., 2015).

Overall, then, our findings contradict the predictions of 
Bayesian and predictive coding accounts of autism. Regard-
less of whether autistic individuals have attenuated priors 
(Pellicano & Burr, 2012), higher sensory precision (Brock, 
2012), atypical precision of prediction errors (Cruys et al., 
2014; Lawson et al., 2014), or difficulties learning regulari-
ties needed to make predictions (Sinha et al., 2014), the dif-
ferent models would predict that autistic traits should affect 
the learning of probabilistic associations more so than the 

Fig. 3  Fitted data of propor-
tion correct on the determin-
istic (100%, solid line) and 
probabilistic (75%, dashed 
line) trials as a function of 
autistic traits (AQ) by Experi-
ment (Explicit = Experiment 1; 
Implicit = Experiment 2) after 
removing participants who 
showed floor effects

3 To confirm our frequentist analyses, we repeated the analyses using 
Bayesian mixed models (see Supplementary Section S4) and found 
no evidence for the effect of autistic traits on any of the models, that 
is, we can be 95% certain that the slope does not differ from 0 given 
our data.
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deterministic associations given the occasional incorrect feed-
back in the probabilistic trials. This was not what we found; 
if anything, there was some indication that autistic traits 
negatively affected the learning of deterministic associations 
more so than probabilistic associations when learners were 
explicitly told to figure out the associations. However, the 
interaction was only marginally significant, and thus should 
be interpreted with caution. We consider some possibilities 
for our findings and the limitations of the present study below.

One possibility relates to our approach of using autistic 
traits within the general population (some of whom self-
reported to be autistic albeit most were not) rather than using 
a case–control design with autistic individuals with a clini-
cal diagnosis vs. neurotypical individuals commonly seen in 
autism research. This is one of the limitations of the present 
study as the two approaches are not equivalent; indeed, some 
researchers have warned against conflating high levels of 
autistic traits with autism (Lord & Bishop, 2021; Sasson & 
Bottema-Beutel, 2021). In the literature, previous studies have 
reported groups differences in case–control studies of various 
statistical learning and prediction task (Crawley et al., 2020; 
Robic et al., 2015; Scott-Van Zeeland et al., 2010a, 2010b; 
Wagley et al., 2020) whereas those that examined autistic traits 
failed to find any significant effects of autistic traits (Parks 
et al., 2020; Retzler et al., 2021). However, there are many 
counter-examples of this: some studies have found no group 
differences in case–control studies (Barnes et al., 2008; Haebig 
et al., 2017; Manning et al., 2017; Nemeth et al., 2010; Sapey-
Triomphe et al., 2021a, 2021b; Zwart et al., 2018b) and some 
have found an effect of autistic traits on statistical learning 
and prediction (Nassar & Troiani, 2021; Parks et al., 2020). 
Moreover, some studies that have considered both approaches 
have managed to replicate the same findings across case–con-
trol design and autistic traits (Cruys et al., 2018; Lawson et al., 
2017; Pell et al., 2016), suggesting that both approaches may 
yield the same conclusion. Thus, while we cannot definitively 
rule out that our findings are due to the present study using 
autistic traits rather than a case–control approach,4 we think it 
is unlikely the main reason for our findings.

Another possibility concerns our task and measurement 
of statistical learning. The novel task that we have created 
may have been too difficult, especially the implicit task, 
leading many to show floor effects. However, comparing 
the analysis with the full sample and with those that per-
formed above chance level showed similar findings in that 
autistic traits did not affect participant’s performance on the 
deterministic and probabilistic associations. Thus, the issue 
of task difficulty may contribute but is unlikely to be the 
main cause for our findings. Setting task difficulty aside, 
the measurement used, that is, behavioural accuracy, may 
not be sensitive enough to detect the effects of autistic traits. 
Specifically, such crude behavioural measures do not capture 
the mechanism or compensatory strategies one may use to 
base their response, which can be revealed by computational 
modelling instead. Previous studies have reported group 
differences in certain model parameters (e.g., the learning 
rate) in tasks such as the probabilistic reversal learning task 
(Crawley et al., 2020; Lawson et al., 2017), though others 
using a similar task have failed to find any group differ-
ences or effects of autistic traits on such model parameters 
(Goris et al., 2021; Manning et al., 2017). Neuroimaging is 
another sensitive tool that tends to reveal group differences 
in statistical learning and prediction and help elucidate the 
underlying atypical mechanism. For example, compared to 
neurotypical individuals, autistic individuals tend to show 
less neural activation during statistical learning (Scott-Van 
Zeeland et al., 2010a, 2010b; Travers et al., 2015) and less 
differential electrophysiological activity between deviant 
types of different frequency (Goris et al., 2018). Overall, 
more studies that incorporate these sensitive measures are 
needed in the future to clarify the current findings.

Finally, it is possible that perhaps we did not find 
any effect of autistic traits on statistical learning simply 
because autism or autistic traits do not influence one’s 
ability to infer, learn, and predict from statistical regu-
larities. Our findings add to the growing body of research 
that found similar performances between autistic and 
neurotypical individuals in various statistical learning 
and prediction tasks such as probabilistic classification 
learning (Brown et al., 2010), artificial grammar learning 
(Brown et al., 2010), auditory segmentation (Haebig et al., 
2017), serial reaction time (Barnes et al., 2008; Brown 
et  al., 2010; Nemeth et  al., 2010; Zwart et  al., 2018a, 
2018b), probabilistic reversal learning (Manning et al., 
2017), and learning cue-outcome associations (Retzler 
et al., 2021; Sapey-Triomphe et al., 2021a, 2021b). If this 
were true, then the current Bayesian and predictive cod-
ing theories of autism might need to be refined; perhaps 
the current accounts may be better suited to explain low-
level perceptual and sensory autistic experiences, but not 
higher-level cognitive aspect of autism. Note, however, 
that Bayesian theories of autism were used to explain 

4 We repeated the analyses using two different case–control 
approaches: we assigned participants to (i) high vs. low autistic traits 
group based on the AQ scores (see Supplementary Section S5); and 
(ii) autistic vs. neurotypical group based on their self-reported autism 
diagnosis (see Supplementary Section S6). Similar findings as the 
continuous autistic traits analyses were found, with the exception 
that in the test phase of Experiment 1 (Explicit), individuals with low 
autistic traits and neurotypical participants showed better performance 
in the Deterministic compared to Probabilistic trials whereas individu-
als with high autistic traits and autistic participants did not. The same 
pattern was additionally found in the learning phase of Experiment 
1, but only in the autism diagnosis analysis. However, these findings 
should be interpreted with caution given the unequal number of par-
ticipants across groups in Experiment 1 (Autistic traits group analysis: 
High autistic group n = 22 vs. Low autistic group n = 64; Autism diag-
nosis analysis: Autistic group n = 16 vs. Neurotypical group n = 70).
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sensory hypersensitivity, which, if true, should predict 
that higher autistic traits would be associated with better 
sensory (pitch) perception. This was not the case in our 
study, which further casts doubt on using such theories to 
explain autistic experiences.

In conclusion, we did not find any evidence that autis-
tic traits affect the learning of cue-outcome relationships 
when learners have to infer from a complex set of cues either 
explicitly or implicitly. While our findings may be due to our 
methodology (e.g., using autistic traits rather than clinical 
diagnosis; task difficulty; low sensitivity of our measure-
ment), this study, together with others that similarly found 
no group differences in statistical learning and prediction 
across various study designs and tasks, casts doubt on the 
current Bayesian and predictive coding models of autism. 
More work is needed to further understand the underlying 
mechanism of statistical learning and prediction among 
autistic and neurotypical individuals, which will help refine 
the current theories of autism.
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