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A B S T R A C T

Flood inundation forecast maps provide an essential tool to disaster management teams for planning and
preparation ahead of a flood event in order to mitigate the impacts of flooding on the community. Evaluating
the accuracy of forecast flood maps is essential for model development and improving future flood predictions.
Conventional, quantitative binary verification measures typically provide a domain-averaged score, at grid
level, of forecast skill. This score is dependent on the magnitude of the flood and the spatial scale of the flood
map. Binary scores have limited physical meaning and do not indicate location-specific variations in forecast
skill that enable targeted model improvements to be made. A new, scale-selective approach is presented here to
evaluate forecast flood inundation maps against remotely observed flood extents. A neighbourhood approach
based on the Fraction Skill Score is applied to assess the spatial scale at which the forecast becomes skilful at
capturing the observed flood. This skilful scale varies with location and when combined with a contingency
map creates a novel categorical scale map, a valuable visual tool for model evaluation and development.
The impact of model improvements on forecast flood map accuracy skill scores are often masked by large
areas of correctly predicted flooded/unflooded cells. To address this, the accuracy of the flood-edge location
is evaluated. The flood-edge location accuracy proves to be more sensitive to variations in forecast skill and
spatial scale compared to the accuracy of the entire flood extent. Additionally, the resulting skilful scale of the
flood-edge provides a physically meaningful verification measure of the forecast flood-edge discrepancy. The
methods are illustrated by application to a case study flood event (with an estimated return period of 120 to
550 years) of the River Wye and River Lugg (UK) in February 2020.

Representation errors are introduced where remote sensing observations capture flood extent at different
spatial resolutions in comparison with the model. The sensitivity of the verified skilful scale to the resolution
of the observations is investigated. Re-scaling and interpolating observations leads to a small reduction in skill
score compared with the observation flood map derived at the model resolution. The domain-averaged skilful
scale remains the same with slight location-specific variations in skilful scale evident on the categorical scale
map. Overall, our novel emphasis on scale, rather than domain-average score, means that comparisons can be
made across different flooding scenarios and forecast systems and between forecasts at different spatial scales.
1. Introduction

Timely predictions of flood extent and depth from flood forecasting
systems provide essential information to flood risk managers that en-
able anticipatory action prior to the occurrence of a potential flooding
event. Evaluating the accuracy of flood extent forecasts against observa-
tions forms an essential part of model development (Schumann, 2019).
Forecast flood inundation footprints are typically validated against
remote sensing images using binary performance measures (Stephens
et al., 2014) calculated at grid level.

∗ Corresponding author.
E-mail address: h.hooker@pgr.reading.ac.uk (H. Hooker).

In order to produce a forecast flood map, hydrodynamic or hy-
draulic flood models in two-dimensions simulate the flow of water
using a local digital terrain model (DTM). The spatial resolution of
DTMs has increased over recent years and is important for accurate
flood mapping. For example, in the UK, the Environment Agency
National LIDAR Programme offers open source 1 m surface elevation
data for the whole of England (Environment Agency, 2021). Additional
surface detail to 0.3 m spatial resolution from unmanned aerial vehicle
UAV-LIDAR data acquired in urban areas is now possible (Trepekli
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et al., 2021). This means forecast flood maps could be presented at this
very high resolution. It is questionable how meaningful it is to present
highly detailed flood maps as a deterministic forecast (Savage et al.,
2016), particularly at longer lead times where the skill of the flood
forecasting system becomes increasingly dependent on the accuracy of
the meteorological forecast (ECMWF, 2022). Speight et al. (2021) note
for surface water flooding that more detail is included in local scale
flood maps than can be justified by the predictability of the forecast. A
high resolution, fine scale forecast flood map will show greater detail
of the flood extent and the flood-edge location compared to a low
resolution, coarse scale flood map. At a high resolution the discrepancy
between the forecast and observed flood maps may be closer in terms
of distance, however a small mismatch will lead to a double penalty
impact on forecast verification. The model is penalised twice for the
over-prediction (false alarm) and the under-prediction (miss) (Stein
and Stoop, 2019). When high resolution forecasts are verified against
observations at grid level, the predictability can appear to worsen and
the high resolution forecast would need to perform better than the
low resolution forecast to achieve the same verification score. It is
not meaningful to compare verification scores across different spatial
scales. Spatial verification methods for flood inundation mapping have
only received limited attention over the past decade (Schumann, 2019).

Verification approaches that account for uncertainties in obser-
vations and small discrepancies in gridded data using a fuzzy set
approach (Hagen, 2003) have previously been applied to flood map-
ping (Pappenberger et al., 2007; Dasgupta et al., 2018). However, the
fuzzy set method does not incorporate variations in spatial scale (Cloke
and Pappenberger, 2008). In atmospheric sciences, verification ap-
proaches that account for changes in spatial scale are well established.
These approaches include the Fraction Skill Score (FSS), which applies
a neighbourhood approach to assess a useful/skilful scale (Roberts and
Lean, 2008) of a precipitation forecast. Dey et al. (2014, 2016) devel-
oped the FSS approach to produce location-specific agreement scales
between the forecast and observed fields to understand the spatial
predictability of an ensemble forecast. Other spatial scale approaches
include the wavelet method of scale decomposition, where the forecast
and observed fields are decomposed into maps at different scales by
wavelet transformation and subsequently verified (Briggs and Levine,
1997; Casati and Wilson, 2007). Cloke and Pappenberger (2008) note
that this method is extremely sensitive to offsetting of maps.

In general, the performance of forecast flood maps are evaluated for
the entire flood extent, regardless of flood magnitude, adding bias to
binary performance measures (Stephens et al., 2014). Stephens et al.
(2014) question whether it is important to validate all flooded cells,
when only cells that are close to the flood margin are difficult to
predict. Pappenberger et al. (2007) evaluated model performance only
on cells that were subject to change between differing model runs to ad-
dress the issue of large areas of correctly predicted flooded/unflooded
cells masking variations in forecast skill scores.

Satellite based Synthetic Aperture Radar (SAR) sensors are well
known for their flood detection capability. Unobstructed flood waters
appear dark on SAR images due to the low backscatter return from the
relatively smooth water surface. SAR sensors also have an advantage
over optical instruments as they can scan at night and are not impacted
by cloud and weather, usually associated with a flooding situation.
Due to improvements in spatial resolution and more frequent revisit
times, SAR data has been used successfully to calibrate and validate
hydrodynamic and hydraulic forecast models (Schumann et al., 2009;
Grimaldi et al., 2016). Further model improvements have been shown
through the assimilation of SAR data (e.g. García-Pintado et al., 2015;
Hostache et al., 2018; Cooper et al., 2019; Di Mauro et al., 2020;
Dasgupta et al., 2018, 2021a,b). Recent techniques have improved
the flood detection in urban areas using medium and high resolu-
tion SAR (Mason et al., 2018, 2021a,b). The Copernicus Emergency
Management Service (CEMS) (Copernicus Programme, 2021) offers
2

freely available, open access Sentinel-1 SAR data. Currently (due to
the malfunction of Sentinel-1B in December, 2021) one satellite is in
orbit, at 10 m ground resolution and a six day revisit time (for the
mid-latitudes). Nevertheless, Sentinel-1 data offers good coverage of a
potential flood event. For a major flood event CEMS can be triggered
to offer additional rapid flood mapping. From 2022, the new Global
Flood Monitoring (GFM) product (GFM, 2021; Hostache et al., 2021)
of the Copernicus Emergency Management Service (CEMS) (Copernicus
Programme, 2021) produces Sentinel-1 SAR-derived flood inundation
maps using three flood detection algorithms providing uncertainty and
population affected estimates within 8 hours of the image acquisition.

Representation errors arise where observation spatial scales are
different from the model spatial scale (Janjić et al., 2018). The spatial
resolution of SAR imagery suitable for flood detection varies across
satellite constellation both historically and presently and continues to
improve. Very high resolution (less than 3 m) imaging capabilities are
increasingly available including TerraSAR-X, ALOS-2/PALSAR-2, and
the COSMO-SkyMed, RADARSAT-2, and ICEYE constellations (Mason
et al., 2021a). It is common practice to re-scale SAR-derived flood maps
to match the model grid size for validation or assimilation with model
data.

The objective of this paper is to present a scale-selective approach
to evaluate flood inundation forecast maps and to develop a physically
meaningful measure of flood-edge location accuracy that can be auto-
mated and easily applied in practice. The method has been developed
with operational forecast verification in mind, but it is applicable to all
flood inundation maps. A new approach is described and applied here
to evaluate the spatial scale at which the forecast becomes useful/skilful
at capturing the remotely observed flood extent and specifically the
flood-edge location. The spatial skill of a forecast flood map varies
with location. We aim to improve the conventional contingency map
by incorporating the skilful scale to create a new categorical scale map.
Also, we address how representation errors arising from observation
spatial scale variations and interpolation have an impact on model
evaluation.

In the rest of this paper we explore the features of a novel scale-
selective evaluation approach illustrated through application to a case
study. In Section 2 we describe the case study, a recent flooding event in
the UK following Storm Dennis, February 2020, along with catchment
descriptions for three chosen domains. The flood inundation forecasting
system developed by JBA Consulting, Flood Foresight, (Revilla-Romero
et al., 2017) is used to produce forecast flood maps for the event and is
detailed in Section 3.1. Section 3.2 explains two methods that are used
to derive remotely observed flood maps from SAR imagery. Our new
approach to the spatial evaluation of flood maps is detailed in Section 4
along with descriptions of other binary performance measures. The
novel categorical scale map is applied to the case studies in Section 5,
and the evaluation results are discussed. We conclude in Section 6 and
discuss the wider applications of a spatial scale approach to flood map
skill evaluation.

2. Flood event

This extreme flooding event is chosen here as a case study to demon-
strate the features of a spatial scale approach to forecast flood map
evaluation. During February 2020, three named Storms, Ciara, Dennis
and Jorge, arrived in quick succession delivered by a powerful and
ideally positioned jet-stream that enabled rapid cyclogenesis (Davies
et al., 2021). Each storm rapidly intensified and deepened bringing
damaging winds and exceptionally heavy rainfall across the UK (Met
Office, 2020). This led to the River Wye reaching its highest ever
recorded water level at the Old Bridge in Hereford (riverlevels.uk,
2020). The annual exceedance probability (AEP) for the recorded peak
flow of the Lugg and Wye rivers was 0.2–0.8% (return period 120–
550 years) and 0.6–2.0% (160–550 years) respectively (Sefton et al.,

2021).
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Fig. 1. Location of Sentinel-1 image acquisition over southeast UK (a) and flood map evaluation domains (b). Domain A: 28.4 km length of the River Wye centred at Ross-on-Wye,
domain size 9.8 × 12.8 km. Domain B: 5.8 km of the River Wye at Hereford, domain size 3.0 × 4.0 km. Domain C: 4 km of the River Lugg at Lugwardine, domain size 2.3 × 2.3
km. Base map from Google Maps.
2.1. February 2020

February 2020 was the UK’s wettest February on record and the fifth
wettest month ever recorded. The UK average rainfall total exceeded
the 1981–2010 average by 237% (Kendon, 2020). Locally, in northwest
England and north Wales the rainfall exceedance was three to four
times the typical monthly average rainfall. During this period around
4000 to 5000 properties were flooded in the UK, with significant river
water levels recorded in Wales, west and northwest England (Sefton
et al., 2021). With six days between Ciara and Dennis, groundwater
and river levels were high and soils saturated. The Environment Agency
issued a record number of over 600 flood alerts and warnings for
England (JBA, 2021).

2.2. Catchment location and description

Three domains, each differing in hydrological characteristics, have
been selected for forecast flood map evaluation during the storm Dennis
flooding event. Two domains (A and B) have been chosen from the Wye
catchment (Fig. 1), a 28.4 km length centred upon Ross-on-Wye (A) and
the Wye at Hereford (B), a 5.8 km section. A third domain (C) includes
4 km of the River Lugg.

2.2.1. The River Wye (domains A and B)
The River Wye flows for approximately 215 km from Plynlimon at

750 metres above ordnance datum (mAOD) in the Cambrian Moun-
tains, mid Wales. It initially travels southeastwards into England where
it meanders southwards to ultimately join the Severn Estuary. The
upper catchment land cover is predominantly grassland with some
forest cover with highly impermeable bedrock and superficial deposits
of sand and gravel in the Hereford area (National River Flow Archive,
2021). The upstream catchment area of Hereford is 1896 km2. At
Hereford, the only city situated on the Wye, the river is embanked
on the north side by a deep flood wall with further embankments on
the opposite side. Hereford is characterised by the Old Bridge, a 15th
century stone bridge that creates a damming effect during high river
flows. As the Wye flows south of Hereford, the topography flattens
and the floodplain widens, with large river meanders and a distinctive
U-shaped valley.
3

2.2.2. River Lugg at Lugwardine (domain C)
The River Lugg has an upstream catchment area of 886 km2 and a

maximum altitude of 660 mAOD and flows across the grasslands and
agricultural fields of the Herefordshire plain. It has similar bedrock
to the Wye catchment and a higher proportion of more permeable
superficial fluvial deposits of sand and gravel. This is particularly
evident in the Lugwardine region where the topography is relatively
flat with little to impede the flow of floodwaters across the plain. The
Lugg flows into the River Wye, 2 km south of domain C.

2.2.3. Event hydrology
The observed catchment rainfall (which also includes a downstream

section of the River Wye) shows that 50 mm fell on the 15th, 10 mm
on the 16th and 1 mm on the 17th February 2020 (UK Water Re-
sources Portal, 2022). There were further heavy showers forecast for
the 16/17th and whilst these have not been captured by the rain gauges
on the 17th, they cannot be ruled out as contributing to surface water
flooding in Hereford. The nearest hourly rainfall-rate observation is a
citizen science observation from the Met Office WOW database (Met
Office, 2022) for a site at Sutton St Nicholas near the River Lugg and
this shows the highest rainfall rate of 5.8 mm/hr at 0300 on the 16th
and a total accumulation of 12.5 mm on the 16th and 0.3 mm on the
17th.

Daily maximum river levels recorded at Ross-on-Wye, the Old
Bridge, Hereford and Lugwardine for January to March 2020 are
plotted in Fig. 2 (riverlevels.uk, 2020). The impact of the three storms
on the River Wye is indicated by a very sharp rise in water levels
from the 8th to the 10th February following storm Ciara. Further heavy
showers maintained high water levels before storm Dennis brought an
exceptional rise in water levels, peaking on the morning of the 17th
February with record levels recorded at Hereford (6.11 m at 9.30 am
UCT) and Ross-on-Wye (4.77 m at 5.45 am UTC). Unfortunately there
are two days of missing data at Ross-on-Wye following the flood event.
By analysing the trend between the Hereford and Ross-on-Wye river
levels, the peak level at Ross-on-Wye was likely higher and later than
recorded. The response of the Wye at Hereford is faster than at Ross-
on-Wye, most likely due to the upstream location of Hereford and a
more constrained embankment with the city center located either side
of the river. In comparison to the fast, rapid response of the Wye,
the River Lugg displays a distinctively dampened response. Whilst the
Lugg initially responded quickly to the heavy rainfall, once bankfull
was reached and overtopping occurred the water levels remained
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Fig. 2. Daily maximum river levels (m) at Ross-on-Wye, Hereford and Lugwardine. The dashed yellow line indicates Sentinel-1 SAR acquisition date. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
consistently high, with floodwaters extending across the relatively flat
flood plain.

3. Data

In this section we describe the model and observation data that we
will use to illustrate our novel scale selective verification approach.

3.1. Flood Foresight

Flood Foresight (Fig. 3), developed and run routinely by JBA Con-
sulting, is a fluvial flood inundation mapping system that can be imple-
mented in any catchment around the globe. Flood Foresight utilises a
simulation library approach to generate maps of real time and forecast
flood inundation and water depth. The simulation library approach
saves valuable computing time and allows the application of Flood
Foresight in near continuous real-time at national and international
scales. A library of flood maps is pre-computed using JFlow®, a 2D hy-
drodynamic model (Bradbrook, 2006). Note that in this study the flood
maps are undefended i.e. temporary flood defences are not included.
JFlow uses a raster-based approach with a detailed underlying DTM and
a simplified form of the full 2D hydrodynamic equations that capture
the main controls of the flood routing for shallow, topographically
driven flow. Five flood maps at 5 m resolution are created for 20, 75,
100, 200 and 1000 year return period flood events (corresponding to
annual exceedance probabilities (AEPs) of 5%, 1.3%, 1%, 0.5% and
0.1% respectively). These are interpolated to derive five intermediate
maps between each adjacent pair of the JFlow maps, equally spaced in
return period creating a total library of thirty flood maps. Flood Fore-
sight takes inputs of rainfall from numerical weather prediction (NWP)
models, river gauge data (both historical and real-time) and forecast
streamflow and uses these to select the most appropriate flood map
for the location and forecast time period. The UK and Ireland config-
urations of the Flood Forecasting Module use deterministic streamflow
forecast data from the Swedish Meteorological and Hydrological Insti-
tute (SMHI) European HYdrological Predictions for the Environment
(E-HYPE). The meteorological input data for the E-HYPE model is the
European Centre for Medium-range Weather Forecasts (ECMWF) At-
mospheric Model high resolution (HRES) numerical weather prediction
4

(NWP) model on a 0.1◦ × 0.1◦ grid with forecasts issued daily out to 10
days lead time. Forecast flood maps for the UK are produced on a 25 m
grid length out to 10 days ahead (see Mason et al. (2021b) Section 2.1
for additional details).

3.2. SAR-derived flood maps

Two methods are applied to derive a flood map from SAR backscat-
ter values captured close to the flood peak. The second method was
included as it provides derivation of flood maps at different spatial
resolutions. A Sentinel-1 (S1B) image was acquired in interferometric
wide swath mode (swath width 250 km) just prior to the flood peak at
0622 on the 17th February. A pre-flood image (September 2019) from
the same satellite sensor and track was used to derive the flood map in
both methods.

In the first method, the ESA Grid Processing on Demand (GPOD)
HASARD service (http://gpod.eo.esa.int/) has been utilised. The auto-
mated flood mapping algorithm (Chini et al., 2017) uses a statistical,
hierarchical split-based approach to distinguish the two classes (flood
and background) using a pre-flood and flood image. Level-1 GRD
product SAR images (VV) are preproccesed, which involves; precise or-
bit correction, radiometric calibration, thermal noise removal, speckle
reduction, terrain correction, and reprojection to the WGS84 coordinate
system. The HASARD mapping algorithm removes permanent water
bodies, including the river water. Flooded areas beneath vegetation,
bridges and near to buildings are not detected using this method.
The HASARD flood map at 20 m spatial scale is used to evaluate the
performance of Flood Foresight for each of the three domains out to 10
days lead time.

In the second method, the same Sentinel-1 SAR image (in this case
using both VV and VH) was processed using Google Earth Engine
(GEE) to derive flood maps at a range of spatial resolutions (5 m to
25 m). GEE holds a catalogue of level-1 preprocessed Sentinel-1 SAR
images (Google Earth Engine Catalog, 2021). A smoothing filter is
applied to reduce speckle and a pre and post flood image are used to
train a Classification And Regression Tree (CART) classifier (Breiman
et al., 1984; Google Earth Engine CART, 2021). The classifier is applied
to the whole image to produce a flood map at a specified scale. GEE uses

http://gpod.eo.esa.int/
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Fig. 3. Flood Foresight flood map simulation library selection process. Source JBA Consulting.
an image pyramid approach to scale, or pixel resolution, analysis. This
means variations in the scale selected are determined from the scale
of the input image (Google Earth Engine Scale, 2021). The variation
of the flood extent detected at a range of spatial resolutions and the
impact of re-scaling and interpolation errors on performance measures
are investigated.

Flood Foresight forecast flood maps include the river channel and
exclude surface features such as vegetation and buildings. To smooth
the HASARD and GEE flood maps and allow a fairer comparison
we apply a morphological closing operation (without impacting the
location of the flood extent) to flood fill vegetation and buildings.

4. Flood map evaluation methods

The following subsections detail a new spatial scale-selective ap-
proach to forecast flood map evaluation. The Fraction Skill Score (FSS)
developed by Roberts and Lean (2008) for validation of convective
precipitation forecasts in atmospheric science uses a neighbourhood ap-
proach to determine the scale at which the forecast becomes skilful. Dey
et al. (2016) developed this approach to determine an agreement scale
between an ensemble forecast and observations at each grid cell to add
location-specific information. Here we extend the technique to apply
it to the new application of flood inundation mapping, and further
develop a novel categorical scale map that combines an agreement scale
map with a conventional contingency map.

4.1. Spatial scale-selective approach

Initially, the observed flood extent derived from SAR data is re-
scaled to match the forecast flood map grid size using spline interpo-
lation and both are converted into binary fields. A threshold approach
is determined for the situation. For a flood map verification of spatial
skill, the simplest example applied here is to assign each grid cell as
flooded (1) or unflooded (0) for the whole domain. Alternative future
threshold approaches for flood inundation maps could include applying
thresholds to water depth percentiles. The location of the flood-edge
cells can be extracted from the observed and modelled binary flood
maps.
5

Given a domain of interest, we number all of the grid cells according
to their spatial coordinates (𝑖, 𝑗), 𝑖 = 1…𝑁𝑥 and 𝑗 = 1…𝑁𝑦 where 𝑁𝑥
is the number of columns in the domain and 𝑁𝑦 is the number of rows.
For each grid cell a square of length 𝑛 forms an 𝑛 × 𝑛 neighbourhood
surrounding the grid cell. The fraction of 1𝑠 in the square neighbour-
hood is calculated for each grid cell. This creates two fields of fractions
over the domain for both the forecast 𝑀𝑛𝑖𝑗 and observed 𝑂𝑛𝑖𝑗 data. The
fraction fields are compared against one another to calculate the mean
squared error (MSE) for the neighbourhood

𝑀𝑆𝐸𝑛 =
1

𝑁𝑥𝑁𝑦

𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1
[𝑂𝑛𝑖𝑗 −𝑀𝑛𝑖𝑗 ]2. (1)

Based on the fractions calculated for the model and observed fields a
worst possible MSE is calculated

𝑀𝑆𝐸𝑛(𝑟𝑒𝑓 ) =
1

𝑁𝑥𝑁𝑦

𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1
[𝑂2

𝑛𝑖𝑗 +𝑀2
𝑛𝑖𝑗 ]. (2)

The FSS is given by

𝐹𝑆𝑆𝑛 = 1 −
𝑀𝑆𝐸𝑛

𝑀𝑆𝐸𝑛(𝑟𝑒𝑓 )
. (3)

Fig. 4 illustrates an example of the FSS application at grid level (𝑛 = 1)
and at the next neighbourhood size 𝑛 = 3. In this simple example, there
is no agreement between the model and observation at grid level but
at 𝑛 = 3, the skill score improves to 0.92.

In general, the FSS is calculated for each length of neighbourhood
𝑛. For a given neighbourhood size an FSS of 1 is said to have perfect
skill and 0 means no skill. The FSS will increase as 𝑛 increases up
to an asymptote (see Fig. 3 from Roberts and Lean (2008)). If there
is no model bias across the whole domain of interest (observed and
forecast flooded areas are the same) then the asymptotic fraction skill
score (AFSS) at 𝑛 = 2𝑁 − 1, where 𝑁 is the number of grid cells
along the longest side of the domain, will equal 1. Plotting FSS against
spatial scale can indicate a range of scales where the model is deemed
to be the most useful. This usefulness is a trade-off between being
too smooth (larger 𝑛) or too fine, where the forecast skill is lost and
the computation time lengthy. The gradient of the FSS curve versus
neighbourhood size is another indicator of forecast skill with respect
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Fig. 4. FSS (see Section 4.1 for calculation details) example applied to a binary flooded
(1) / unflooded (0) field at grid scale (yellow box, n = 1) and a 3 × 3 neighbourhood
(black box, n = 3). The observed SAR-derived forecast is in turquoise and the forecast
is shown in blue. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

to spatial scale. A steeper gradient indicates more rapidly improving
skill over smaller grid sizes compared with a flatter curve, indicating a
much wider neighbourhood is required to reach the same skill score. A
target FSS score (𝐹𝑆𝑆𝑇 ) is defined as

𝐹𝑆𝑆𝑇 ≥ 0.5 +
𝑓𝑜
2
, (4)

where 𝑓0 is the fraction of flood observed across the whole domain of
interest and can be thought of as being equidistant between the skill
of a random forecast and perfect skill. 𝐹𝑆𝑆𝑇 will vary depending on
the magnitude of the observed flood, relative to the domain area. This
allows the comparison of the 𝐹𝑆𝑆𝑇 scale across different domain sizes
and floods of different magnitudes.

When the FSS is plotted against spatial scale (neighbourhood size),
we can identify a spatial scale when the FSS first equals or exceeds
𝐹𝑆𝑆𝑇 (Fig. 6 shows an example of this plot). The spatial scale (neigh-
bourhood size) reached at 𝐹𝑆𝑆𝑇 can tell us the displacement distance
(𝐷𝑇 ) between the observed and forecast flood, or more meaningfully
the flood-edge locations. As the flood-edge represents a very small
fraction of the domain, the scale at 𝐹𝑆𝑆𝑇 will tend to 2𝐷𝑇 , meaning
the displacement distance is half of this scale (see Figure 4 in Roberts
and Lean (2008)).

It has been shown by Skok and Roberts (2016) that care must be
taken when calculating the FSS near to the domain boundary since
increasingly larger neighbourhood sizes would extend further beyond
the boundary edge. Skok and Roberts (2016) concluded that as long
as the domain was sufficiently large, relative to the spatial errors, then
the boundary effect could be considered to be insignificant. For flood
mapping verification purposes the domain area should be selected to
include the area of interest (e.g. the floodplain) with the neighbour-
hoods considered extending beyond the domain at the boundary. This
assumes that the observations available allow this. If this is not that
case then another boundary method could be applied, such as cropping
at the domain edge.

4.2. Location dependent agreement scales

The FSS gives an overall domain-averaged measure of forecast
performance and an average minimum scale at which the forecast is
6

Table 1
Contingency table (based on Stephens et al. (2014)).

Forecast flooded Forecast unflooded

Observed flooded A (correct wet) C (under-prediction/miss)
Observed unflooded B (over-prediction/false alarm) D (correct dry)

deemed skilful. Dey et al. (2016) describe a method for calculating
an agreement scale at each grid cell located at coordinate position
(𝑖, 𝑗). A brief summary of the method is presented here. Two fields are
considered 𝑓1𝑖𝑗 and 𝑓2𝑖𝑗 . In this application these are the forecast and
observed fields. In alternative applications the method could be applied
to measure similarity between members of an ensemble. The fields in
this instance are not required to be thresholded and can be applied to
flood depths. The aim is to find a minimum neighbourhood size (or
scale) for every grid point such that there is an agreement between 𝑓1𝑖𝑗
and 𝑓2𝑖𝑗 . This is known as the agreement scale 𝑆𝑖𝑗 . The relationship
between the agreement scale and the neighbourhood size described in
Section 4.1 is given by 𝑆𝑖𝑗 = (𝑛 − 1)∕2.

Firstly, all grid points are compared by calculating the relative MSE
𝐷𝑆

𝑖𝑗 at the grid scale, 𝑆 = 0 (𝑛 = 1),

𝐷𝑆
𝑖𝑗 =

(𝑓𝑆
1𝑖𝑗 − 𝑓𝑆

2𝑖𝑗 )
2

(𝑓𝑆
1𝑖𝑗 )

2 + (𝑓𝑆
2𝑖𝑗 )

2
. (5)

If 𝑓1𝑖𝑗 = 0 and 𝑓2𝑖𝑗 = 0 (both dry) then 𝐷𝑆
𝑖𝑗 = 0 (correct at grid level).

Note that 𝐷𝑆
𝑖𝑗 varies from zero to 1. The fields are considered to be in

agreement at the scale being tested if:

𝐷𝑆
𝑖𝑗 ≤ 𝐷

𝑆𝑖𝑗
𝑐𝑟𝑖𝑡,𝑖𝑗 where 𝐷𝑆

𝑐𝑟𝑖𝑡,𝑖𝑗 = 𝛼 + (1 − 𝛼) 𝑆
𝑆𝑙𝑖𝑚

(6)

and 𝑆𝑙𝑖𝑚 is a predetermined, fixed maximum scale. The parameter value
𝛼 is chosen to indicate the acceptable bias at grid level such that
0 ≤ 𝛼 ≤ 1. Here we set 𝛼 = 0 (no background bias). If 𝐷𝑆

𝑖𝑗 ≥ 𝐷𝑆
𝑐𝑟𝑖𝑡,𝑖𝑗 then

the next neighbourhood size up is considered (𝑆 = 1, a 3 by 3 square).
The process continues with increasingly larger neighbourhoods until
the agreement scale, or 𝑆𝑙𝑖𝑚 is reached for every cell in the domain of
interest. The agreement scale at each grid cell is then mapped onto the
domain of interest.

4.3. Categorical scale map

Currently, the agreement scale map proposed by Dey et al. (2016)
provides a location-specific scale of agreement between the forecast and
observed flood map. However, it does not show whether the model is
over- or under-predicting the flood extent. In our work, we develop the
agreement scale map further by combining with a contingency map for
the forecast to create a new categorical scale map. This highlights the
agreement scale for areas of over- or under-prediction. In a contingency
map, each cell in the forecast and observed flood map are compared
and classified using a contingency table (Table 1). The categories are
re-classified numerically in the array for automated updating of the
agreement scale map. Over-predicted cells (B) are set to −1, under-
predicted cells (C) are set to +1, correctly predicted flooded cells (A)
are assigned NaN and correctly predicted unflooded cells are set to 0.
The array element-wise product of the agreement scale map and the
numerical contingency map produces the new categorical scale map.

4.4. Binary performance measures

It has been suggested by Cloke and Pappenberger (2008) that a
range of performance measures should be applied so that a forecast can
be assessed as rigorously as possible. A selection of commonly applied
binary performance measures, each focusing on a different aspect of
performance have been included here for comparison with the Fraction
Skill Score results. Following the application of a contingency table
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Table 2
Binary performance measures and formula based on contingency Table 1.
Performance measure Formula Description [range min, range max, perfect score]

Bias 𝐴+𝐵
𝐴+𝐶

[0, ∞, 1] 1 implies forecast and observed flooded
areas are equal > 1 indicates over-prediction, < 1
indicates under-prediction

Critical Success
Index/Threat score
𝐹 <2> (CSI)

𝐴
𝐴+𝐵+𝐶

[0, 1, 1] Fraction correct of observed and forecast
flooded cells

𝐹 <1> Proportion correct 𝐴+𝐷
𝐴+𝐵+𝐶+𝐷

[0, 1, 1] Proportion correct (wet and dry) of total
domain area

𝐹 <3> 𝐴−𝐶
𝐴+𝐵+𝐶

[−1, 1, 1] Score reduced by over-prediction

𝐹 <4> 𝐴−𝐵
𝐴+𝐵+𝐶

[−1, 1, 1] Score reduced by under-prediction

False Alarm Rate (FAR) 𝐵
𝐵+𝐷

[0, 1, 0] Proportion of over-prediction of dry areas

Hit Rate (HR) 𝐴
𝐴+𝐶

[0, 1, 1] Fraction correct of observed flooded area

Pierce Skill Score (PSS) 𝐻𝑅 − 𝐹𝐴𝑅 [−1, 1, 1] Incorporates both under and
over-prediction
Fig. 5. Left panel: contingency map of a 0-day lead time forecast versus the HASARD SAR-derived flood map for the Wye valley indicates the model is predicting the flood extent
accurately, including the position of the flood-edge. Right panel: Zoom of yellow box on the left panel. On closer inspection, at grid level, the flood-edge in many places is over-
or under-predicted by around one grid length. Base map from Google Maps. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
(Table 1) to the forecast flood map, a number of binary performance
measures can be calculated (Table 2). Table 2 describes the range of
performance value, the ideal score and a description of which aspects
of the forecast flood map performance each binary measure assesses.

5. Results

We illustrate and discuss our new method applied to the flood event
in Sections 5.1 and 5.2. The scale-selective approach is applied to an
extreme flooding event in the UK to determine a useful/skilful spatial
scale for both the entire flood extent and the flood-edge location for
three domains out to 10-days lead time. An example forecast flood
map for 0-day lead time compared with the SAR-derived flood map is
presented as a contingency map in Fig. 5. The zoomed in perspective
shows the double penalty impact described in Section 1. The discrep-
ancy at the flood-edge depends on the spatial scale of the forecast flood
maps along with the model performance. Next, in Section 5.3 location-
specific agreement scales are presented on categorical scale maps. The
final Section 5.4 addresses the question of the impact of representation
error caused by variations in SAR-derived flood map spatial resolution
on the evaluation results.
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5.1. Spatial scale variability of forecast flood extent and flood-edge location

An evaluation of the spatial skill of the Flood Foresight forecast
flood maps against the SAR-derived flood map for the flood peak on the
17th February 2020 has been calculated for each domain (Fig. 1) for
both the entire flood extent and the flood-edge location. The Fraction
Skill Score (FSS) is applied to increasing neighbourhood sizes (𝑛) to
determine the spatial scale at which the forecast becomes skilful at
capturing the observed flood. Fig. 6 shows FSS against 𝑛 for one
example, the River Lugg (domain C) for the entire flood (a) and the
flood-edge (b). Each line represents a different model run date from
the 10/02/2020 (7-day lead time) to the 17/02/2020 (0-day lead time).
With the exception of the 7-day lead time, all forecasts for the whole
flood (Fig. 6a) exceed the 𝐹𝑆𝑆𝑇 at grid level (𝑛 = 1) with gradually
improving skill as 𝑛 increases. In contrast to this, the FSS applied to
the flood-edge (Fig. 6b) shows all forecasts below 𝐹𝑆𝑆𝑇 at grid level
and 𝑛 = 3 with the skill increasing more rapidly compared with the
whole flood to reach 𝐹𝑆𝑆𝑇 at 𝑛 = 5 for all run dates within a 5-
day lead time (except for 16/02/2020, which is just below 𝐹𝑆𝑆𝑇 ).
This indicates that the flood-edge is forecast to be around 62.5 m



Journal of Hydrology 612 (2022) 128170H. Hooker et al.
Fig. 6. FSS calculated for the River Lugg at Lugwardine for (a) entire flood extent and (b) the flood-edge for increasing neighbourhood sizes for daily forecast lead times up to 7
days.
from the observed flood-edge, on average, for a 5-day lead time. The
difference between the gradients of the plots indicate the flood-edge is
more sensitive to changes in spatial scale compared with evaluation of
the whole flooded area. The whole flood verification here indicates a
strong model performance. However, verifying the whole flood alone
could mask the flood-edge location performance, which in this case has
a coarser scale at 𝐹𝑆𝑆𝑇 . Similar trends in FSS with neighbourhood
size and comparisons between the entire flood and the flood-edge
verification scales are found for all domains. The rate of FSS increase,
or FSS gradient with 𝑛, tells us how quickly the forecast skill improves
with increasing scale. A more spatially accurate forecast of the flood-
edge will demonstrate a steeper gradient, reaching 𝐹𝑆𝑆T at a smaller
neighbourhood size.

5.2. Comparison of spatial scales at differing lead times and domain loca-
tion

The performance measures for each domain for daily lead times out
to 10 days are presented in Fig. 7. The FSS at 𝑛 = 1, 3, and 5 are
shown along with Critical Success Index (CSI), Hit Rate (HR), Pierce
Skill Score (PSS) and the Bias (see Table 2 for definitions). The Bias
score is an indicator of over- or under-prediction of the flood extent
and is plotted on a separate axis to account for the larger range. For
lead times within 5-days of the flood peak, 𝐹𝑆𝑆 > 0.8 for the entire
flooded area at grid level for the River Wye (domain A) indicates a
strong model performance (Fig. 7a). There is a dip in the FSS on the
16/02/2020 where the forecast over-predicts the flood extent. This
is also reflected in the CSI score. In contrast to this the HR and PSS
increase, despite the over-prediction, as more observed flood cells are
correctly predicted wet. We note that the PSS (HR - FAR) does account
for over-prediction, however the FAR is the fraction of the dry area
incorrectly predicted wet, which is very small relative to the HR (0.03
versus 0.90). Validation of the River Wye flood-edge (Fig. 7b) is more
sensitive to changes in neighbourhood size compared with the whole
flood validation. Here the flood-edge is very well forecast in terms
of spatial location and exceeds 𝐹𝑆𝑆𝑇 at 𝑛 = 3 (on average, 37.5 m
displacement) for a 5-day lead time (except for 1-day lead time where
𝐹𝑆𝑆𝑇 is exceeded at 𝑛 = 5). As shown previously in Section 5.1,
the forecast of the River Lugg flood-edge is skilful at 𝑛 = 5 (Fig. 7f)
(on average, 62.5 m displacement) for a 5-day lead time. Differences
in the hydrological characteristics might explain differences in model
performance. The Wye valley flood plain is well defined with distinctive
valley sides and this event proved to be valley filling in contrast to
the Lugg flood plain which is relatively flat and extensive. This could
explain the increased skill shown for the prediction of the Wye flood-
edge. The average observed flood top width for the Lugg (domain C)
is 740 m and for the Wye (domain A) 430 m. This gives a flood-edge
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displacement as a fraction of the flood top width of 7.4% for the Lugg
and 7.8% for the Wye.

The results for all three domains show that for this case study the
forecasting system has limited skill beyond a five-day lead time. The
forecast accuracy of the meteorological driving data diminishes with
increasing lead time (ECMWF, 2022). Extratropical cyclones (ETCs) are
the dominant meteorological driver of major winter flooding in the UK.
This is particularly true when an Atmospheric River is associated with
an ETC and when ETCs arrive in clusters (as was the case here) bringing
multiple spells of heavy precipitation (Lavers et al., 2011; Griffith et al.,
2020). The typical formation time of ETCs is 3–5 days, occasionally
up to 10 days (Ulbrich et al., 2009) which limits the predictability
of the meteorological system, particularly when the jet stream is very
strong (as was the case here). The atmospheric (and precipitation)
predictability will vary depending on the situation, for example a slow
moving ETC close to the UK would potentially have a longer lead time
of useful prediction. Conversely, flooding in the summer associated
with convection would likely have a shorter skilful lead time. The
scale selective approach presented here can be used to determine a
meaningful scale to present flood inundation maps. This scale will vary
with forecast lead time and will depend on the predictability of the
meteorological situation.

There is more variation in skilful scale with lead time evident for the
Wye at Hereford (domain B) in Fig. 7c and d compared with domain A
and C. To achieve the same FSS for the whole flood as domain A and C
up to a 5-day lead time, the neighbourhood size would need to exceed
𝑛 = 5. The model is over-predicting the flood extent, in particular on
the 16/02/2020 (1-day) lead time. This overprediction at 1-day lead
time is evident for all domains as can be seen in the Bias scores but
the impact of this is most noticeable at Hereford. Hereford has more
complex topography compared to the other domains, particularly along
the river bank with bridges, buildings, permanent and temporary flood
defences deployed during the event affecting the flow of the flood wave
through the city. The maps used in the simulation library of Flood
Foresight are produced using a bare-earth DTM. Despite this, the model
performs well, exceeding 𝐹𝑆𝑆𝑇 at 𝑛 = 5 at the 5-day and 2-day lead
times for the flood-edge forecast.

Overall, the FSS indicates a similar trend in performance across all
results as the commonly applied CSI. The value of 𝐹𝑆𝑆𝑇 is determined
by the magnitude of the observed flood, which means the skilful
scale determined at 𝐹𝑆𝑆𝑇 can be meaningfully compared across the
domains. The skilful scale of the forecast flood-edge location gives
an average discrepancy distance. A physically meaningful evaluation
measure provides additional information compared to a conventional
verification score.
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Fig. 7. Conventional binary performance measures (dashed lines) and FSS (solid lines) at n = 1, 3, and 5 for each domain for both the whole flooded area and the flood-edge
for daily lead times out to 10 days for the River Wye (domain A, (a) and (b), Hereford (domain B, (c) and (d)) and the River Lugg (domain C, (e) and (f). Plots on the left show
the verification scores applied to the entire flood extent and plots on the right show the flood-edge scores.
5.3. Categorical scale maps

Location dependent categorical scale maps (Section 4.3) have been
calculated for all run dates for both the entire flooded area and the
flood-edge. Fig. 8 shows categorical scale maps for the whole flood
for three different lead times for each domain, longer lead times are
on the left. The run dates vary with domain to present the most
informative maps such that variation in forecast skill can be seen across
the different lead times. The colours on the map indicate grid cell
specific agreement scales (Section 4.2) between the forecast flood map
and the SAR-derived flood map. Grey/white regions indicate correctly
predicted flooded/unflooded cells, red shows the forecast flood extent is
under-predicted (miss) and blue indicates over-prediction (false alarm).
Increasingly darker shades of red/blue show that larger scales were
needed for the agreement criteria to be met. The darkest blue at 𝑆 = 10
indicates a total mismatch between forecast and observed flooding.
The addition of the agreement scale information in comparison to a
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conventional contingency map (for an example, see Fig. 5) quickly
highlights regions of total mismatch through the darkest shading, with
areas that are slightly misaligned in lighter shades. The agreement
scale indicated gives a physical measure of distance at specific locations
between the forecast and the observed flood map (where 𝑆 < 𝑆𝑙𝑖𝑚).

The location-specific skilful scale varies with location and lead time
as indicated on the categorical scale maps. For a 7-day lead time
forecast for the River Wye (Fig. 8a), the model is indicating some
flooding could occur, although under-estimating the total extent as
shown by the darkest red areas, which show the limits of the agreement
scale have been reached. By 5-days lead time the forecast is in very
close agreement with the observed flood at grid level (in grey) with
larger agreement scales indicated by red/blue shading along some
of the flood-edge locations (Fig. 8b) and a balance between under-
and over-prediction. Over-prediction is more evident by 1-day lead
time for the River Wye (Fig. 8c) and flooding is also over-predicted
along smaller tributaries. There are several detached areas of flooding
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Fig. 8. Categorical scale maps for each domain at various lead times (lt). Red indicates where the forecast flood extent is under-predicted, blue indicates over-prediction. The
shading indicates the agreement scale, a measure of distance between the forecast and observed flood maps. Grey areas are correctly predicted flooded, white areas are correctly
predicted unflooded. Each grid cell represents 25 m × 25 m for all domains. (Note: rd (forecast run date) varies between location, all dates have been evaluated and the most
illustrative maps selected.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
observed remotely that are most likely due to ponding of surface water
flooding, which were not predicted by the fluvial flood forecasting
system.

The Hereford forecast is most skilful on the 12th February (Fig. 8d)
with over-prediction, particularly towards the southwest at 3-day and
1-day lead times (Fig. 8e and f). A small stream running southwards to
the Wye, the Eign Brook, could be contributing to the over-prediction
seen here. It is also worth mentioning that SAR will struggle to detect
flood waters where buildings are closer together when the distance
between them is less than the ground resolution of the SAR. Shadow
and layover effects due to the side-looking nature of the SAR also mean
flood detection is more difficult in urban areas (Mason et al., 2021a).
This will likely only impact a small area of the Hereford domain but this
observation uncertainty should be considered when interpreting these
results. There is an area of under-prediction of the flood extent in the
centre of the Hereford domain visible at all lead times. This could be
due to surface water flooding, which most likely occurred due to the
very high intensity rainfall observed. This combined with the urban
area and steeply sloping gradient to the north of this area most likely
contributed to rapid surface water runoff towards the river. Since Flood
Foresight is a fluvial flood forecast system we would not expect surface
water flooding such as this to be predicted.

Flood Foresight selects multiple flood maps and stitches them to-
gether when the return period threshold is exceeded for a given area.
The Hereford section of the Wye does not trigger a flood map selection
until a 5-day lead time, this area also influences part of the River
Lugg flood map and can be seen as a mismatch on the lower left
hand side of Fig. 8g and h. Once this is included the forecast flood
map is in very good agreement from a 5-day lead time. There are
areas that could be further improved, indicated by the lighter shading
(Fig. 8i). An acceptable level of agreement scale could be determined
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for a given situation, for example 𝑛 < 5, and efforts made to un-
derstand/improve larger agreement scales at specific locations. These
improvements might include changes to infrastructure included in the
DTM used in the hydraulic modelling, for example.

5.4. SAR-derived flood map scale variation

In practice, particularly where a flood event is prolonged or the
flooding extent covers a wide area, there may be multiple sources
of SAR data available for model evaluation, usually at higher spatial
resolutions compared to the model grid size (e.g. ICEYE in spot mode
at 1 m and strip mode at 3 m ground resolution). It is important to
consider the impact of using observations at different spatial scales
on the scale-selective approach results. By conducting a simulation
experiment we address the question of how re-scaling and interpolating
three higher spatial resolution SAR-derived flood maps (relative to the
forecast flood maps) affects the scale selective skill scores and location-
specific forecast skill. In order to simulate a range of observation
spatial scales, SAR-derived flood maps are produced using method two
described in Section 3.2 at spatial resolutions from 5 m to 25 m. These
are re-scaled by 0-order spline interpolation (ndimage.zoom, 2021;
Briand and Monasse, 2018) to match the model resolution (25 m) and
compared to the forecast flood map for the River Lugg (5-day lead
time). A comparison of the GEE flood map against the HASARD flood
map, both at 20 m spatial scale produce almost identical verification
scores for all performance measures for the River Lugg (𝛥𝐹𝑆𝑆 < 0.01).

The categorical scale maps for the comparison between the forecast
flood map and the re-scaled simulated SAR-derived flood maps are
shown in Fig. 9. The resulting domain-averaged skill scores for the same
forecast flood map against the four SAR-derived flood maps are dis-
played in Fig. 10. The scores are calculated for the whole flood and the
flood edge alone. In general, the categorical scale maps show similar
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Fig. 9. SAR-derived flood maps produced at different spatial resolutions (5 m to 25 m) are re-scaled to the model grid size (25 m) before categorical scale maps are calculated
for the River Lugg (C), run date 12th Feb.
Fig. 10. SAR-derived flood maps at different spatial resolutions (5 m to 25 m) are re-scaled to the model grid size (25 m) before verification scores are calculated for the whole
flood (a) and the flood-edge (b). Note that axes in (a) and (b) are on different scales.
regions of over and under-prediction but there are small location-
specific variations in skilful scale. The SAR-derived flood map at 25 m,
the same spatial scale as the forecast flood maps, shows the best
agreement away from the flood edge. This is also evident in the overall
FSS score for the 25 m comparison, which marginally outperforms the
evaluation after re-scaling finer observation flood maps (Fig. 10). The
skilful scale determined for each observation comparison of the whole
flooding extent is 𝑛 = 1 or at grid level, and for the flood edge is at
𝑛 = 5. Overall, based on the results from this simulation experiment,
the scale-selective approach is not overly sensitive to the observation
spatial scale and the skilful scale determined remains the same for each
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of the observed SAR-derived flood maps for both the entire flood extent
and the flood edge. Small errors are introduced by re-scaling and inter-
polating finer resolution observations to the model spatial scale which
slightly reduce the skill score and change location-specific details on
the categorical scale maps. Observation scale selection and re-scaling
along with interpolation errors must be considered when evaluating
model performance, particularly where model or observation scales
vary in space and time, or where comparisons are made across different
models.
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6. Discussion and conclusions

Overall, the aim of this paper was to introduce and apply a new
scale-selective approach to forecast flood map evaluation with an em-
phasis on providing a physically meaningful verification of the flood-
edge location. The skilful spatial scale for comparison of forecast flood
inundation maps against SAR-derived observed flood extent has been
evaluated by the application of the Fraction Skill Score: this provides
a domain-averaged skilful scale. The verification measure has been
applied to a forecast of an extreme flood event in the UK on the River
Wye and the River Lugg following Storm Dennis in February 2020.
Flood Foresight inundation predictions with lead times out to 10 days
are evaluated against a Sentinel-1 SAR-derived flood map captured
close to the flood peak for three domains, each differing in hydrological
characteristics. Conventional binary performance measures were calcu-
lated alongside the FSS for comparison. Flood-edge verification shows
greater sensitivity to changes in forecast skill and spatial scale, relative
to verification of the entire flood extent. The skilful scale determined is
physically meaningful and can be used to estimate the average flood-
edge discrepancy from the observed flood-edge. The observed flood
map spatial resolution relative to the model scale is important and
re-scaling and interpolation errors will impact the model verification
scores. Ideally, the observed flood map should be derived at the same
spatial scale as the forecast model to minimise these errors.

In operational practice the scale at which the forecast flood maps
are presented to forecasters and decision makers should reflect the
uncertainty within the forecast. Very high resolution flood maps can be
presented where a detailed DTM is available. If this is presented as a
deterministic forecast to flood risk management teams, it could lead to
an over confidence in the forecast, or where the actual observed flood
magnitude is different, the forecast may be devalued in the future (Sav-
age et al., 2016; Speight et al., 2021). Application of a spatial-scale
approach to forecast evaluation can determine the scale at which it
is best to present the forecast flood map. Conversely, if the model is
found to be skilful at grid level, there is scope to increase the flood map
resolution adding more detail to the flood-edge location. Improvements
made to hydrodynamic models, such as through data assimilation to im-
prove inputs, initial conditions or model parameters may not improve
the forecast flood-edge location at grid level. However, improvements
may be evident through evaluation using FSS across a range of scales.
Categorical scale maps are a useful evaluation and forecasting tool,
adding location-specific detail. Model improvements can be spatially
targeted and as improvements are made, the categorical scale map
will highlight location-specific changes. For example, the categorical
scale maps for Hereford indicate the local infrastructure (in particular
bridges) impact the movement of the flood wave, which suggests a
digital surface model (DSM) would be beneficial in urban areas.

The verification approach is presented here in the context of an
operational flood forecasting system. The skilful scale determined for
each flooding scenario, lead time and at specific locations within a
domain depends on the skill of the entire hydrometeorological chain of
forecasting models from the meteorological inputs to the hydrodynamic
model (run offline in the case study presented here) used to determine
the inundation extent for a given river discharge. The scale-selective
approach is equally applicable for the validation of flood maps from
hydrodynamic models that are not part of an operational system. Here,
we focus on the use of SAR-derived flood maps for validation, however
the approach would apply to any remotely observed flooding such as
from optical satellite data or UAV aerial imagery that can be converted
into a gridded dataset. The FSS must be applied to binary data and
for this reason it is very easily applicable to flooding extent with grid
cells categorised as flooded/unflooded. In operational forecasting, flood
depth is also an important metric to verify and by applying a threshold
(depths below/above a certain level or percentile), the depth data
can be converted for application of FSS. The method for calculating
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categorical scale maps does not require binary data and so the depth
values can be used directly in the calculations.

Ideally, in operational forecast systems, quantitative validation
should run in tandem with the forecast system where observations
are available. Over time, a catalogue of skilful scales, flood edge
discrepancy distances and categorical scale maps could be built up.
This catalogue would enable analysis of scale across different flood
event type, season, meteorological scenario, forecast lead time and
at specific locations within a catchment or sub-catchment. Such a
verification library would enable forecasters to increase intuition and
expert judgement on the relevant scales for a given forecast. Based on
this analysis and an increased understanding of the predictability of
flood inundation, forecast flood maps could be presented at a variable
scale. For example, a coarser scale at longer lead times becoming
more detailed, closer to the flooding event. Coarse scales can appear
jagged or with large steps along the edge and so ideally these would be
converted to smooth contours, but with some indication (for example,
lighter shading) that the flood edge lies somewhere within the width
of the grid cell, rather than exactly at the contour edge. At shorter lead
times, as forecast confidence is assumed to increase, the flood edge
location would show more detail and a narrower band of uncertainty
(grid cell width). This flood edge uncertainty information will prove
invaluable for impact-based forecasting practice.

The spatial-scale approach will also prove a useful tool in multi-
model performance comparisons where forecast flood maps are pre-
sented at different spatial resolutions or to evaluate the performance
of an increase in model resolution. Evaluating a skilful scale for each
model can be compared directly whereas the skill score values should
not be compared across models with different spatial scales (Emerton
et al., 2016). These methods will also benefit surface water flooding
verification where the flood map is likely to be localised and discrete
and accounting for variations in spatial skill more critical. An improved
approach to evaluating forecast flood maps will result in improved
accuracy in the predictions of flooding. Ultimately, this will benefit
disaster management teams and those living in flood prone areas to
enable future mitigation of flooding impacts.
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