Disentangling drivers of air pollutants and health risks change during the COVID-19 lockdown in China

Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open access

It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1038/s41612-022-00276-0

Publisher: Nature Publishing Group

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.
www.reading.ac.uk/centaur

CentAUR
Central Archive at the University of Reading
Reading’s research outputs online
Disentangling drivers of air pollutant and health risk changes during the COVID-19 lockdown in China

Fuzhen Shen1,2,3,10, Michaela I. Hegglin2,3,10,12, Yuanfei Luo4,10, Yue Yuan5, Bing Wang6, Johannes Flemming7, Junfeng Wang1,8, Yunjiang Zhang1, Mindong Chen1, Qiang Yang9 and Xinlei Ge12

The COVID-19 restrictions in 2020 have led to distinct variations in NO2 and O3 concentrations in China. Here, the different drivers of anthropogenic emission changes, including the effects of the Chinese New Year (CNY), China’s 2018–2020 Clean Air Plan (CAP), and the COVID-19 lockdown and their impact on NO2 and O3 are isolated by using a combined model-measurement approach. In addition, the contribution of prevailing meteorological conditions to the concentration changes was evaluated by applying a machine-learning method. The resulting impact on the multi-pollutant Health-based Air Quality Index (HAQI) is quantified. The results show that the CNY reduces NO2 concentrations on average by 26.7% each year, while the COVID-lockdown measures have led to an additional 11.6% reduction in 2020, and the CAP over 2018–2020 to a reduction in NO2 by 15.7%. On the other hand, meteorological conditions from 23 January to March 7, 2020 led to increase in NO2 of 7.8%. Neglecting the CAP and meteorological drivers thus leads to an overestimate and underestimate of the effect of the COVID-lockdown on NO2 reductions, respectively. For O3, the opposite behavior is found, with changes of +23.3%, +21.0%, +4.9%, and −0.9% for CNY, COVID-lockdown, CAP, and meteorology effects, respectively. The total effect of these drivers show a drastic reduction in multi-air pollutant-related health risk across China, with meteorology particularly impacting the Northeast of China adversely. Importantly, the CAP’s contribution highlights the effectiveness of the Chinese government’s air-quality regulations on NO2 reduction.

npj Climate and Atmospheric Science (2022)5:54; https://doi.org/10.1038/s41612-022-00276-0

INTRODUCTION

Air pollution ranks as the 4th leading risk factor contributing to 6.67 million premature deaths globally in 2019, with 1.85 million of these deaths recorded in China alone1. Poor air quality is driven by pollutant emissions of NOx, CO, and SO2, which lead to the production of secondary air pollutants like ozone (O3) and particulate matter (PM) and can be strongly modulated by the prevailing meteorological conditions2,3. Any variations in emissions, atmospheric chemistry processes, and meteorological conditions thus could impact the air quality in one region/city. To understand the relative roles of changes in the above factors on air quality and related health risks, the influence of these confounding factors must be isolated.

Starting on January 23, 2020, the Chinese government implemented different levels of lockdown restrictions in different regions/cities, one day before the Chinese New Year (CNY) in order to slow down the transmission of the novel coronavirus disease 2019 (COVID-19). During the CNY holiday, some primary air pollutants like nitrogen dioxide (NO2), generally show a decline due to the temporary suspension of economic activities and closure of factories in China4–6. While the COVID-19 lockdown coincided with the CNY holiday, it has extended and intensified the CNY restrictions on transportation and industrial activities7,8. Correspondingly, satellite observations of air pollutants by the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) have revealed unusually stark decreases in NO2 across the whole of China until the relief of the lockdown measures9. Notably, several satellite-based observation studies have demonstrated that tropospheric NO2 concentrations showed declining trends in some regions of China already before 202010–12, with ground-based observation studies however highlighting that these reductions were not significant across all regions13,14. These improvements in air quality were attributed to the implementation of China’s Clean Air Plan (CAP) from 2013 to 2017. In detail, the CAP measures include the reduction of coal-fired emissions, industrial emissions, vehicle emissions, dust emissions, and other measures15. To complete the target of CAP from 2013 to 2017, some local governments also carried out a series of supplementary control measures (referred to as the Comprehensive Action) whereas its primary target mainly focused on the reduction of PM rather than NO2. Thereafter, to better tackle the issue of NOx pollution, China introduced a new 3-year action plan to combat air pollution from 2018 to 202016–18, leading to yet more stringent control measures on NOx emissions. Thus, short-term policy measures (the COVID-19 lockdown restrictions) and holidays (the CNY) coupled with the two long-term CAPs in China have increased the anthropogenic impact on NO2 reductions. Except for these emission reductions, changes in meteorological conditions, especially in atmospheric transport and Planetary Boundary Layer (PBL) height, have played an important role not only in driving single air pollution events16–18 but also in determining increments in NO2 in about 70 cities in China during the COVID-19 lockdown19. Overall, these different anthropogenic emission drivers, combined with changing meteorological...
RESULTS AND DISCUSSION

Identifying different drivers of anthropogenic emission reductions

Figure 1 illustrates the evaluation of the CNY contribution to observed NO₂ decreases. To better evaluate the anthropogenic emission reductions caused by the CNY festivities, different time periods including Before CNY, CNY, Extended COVID-lockdown, and Total COVID-lockdown are defined (see Supplementary Table 1 for definitions of time periods relative to the CNY day). Figure 1f shows the daily variation of the CAMSRA (Copernicus Atmosphere Monitoring Service Reanalysis) NO₂ and the observed NO₂ in 2020. It should be noted that CAMSRA can be used as counterfactual for a world in which the COVID-lockdown, CNY, and air-quality regulations did not happen because these emission reductions were not accounted for in the emissions database used. Although the observed NO₂ and the CAMSRA NO₂ show significantly larger differences during the COVID-19 lockdown period compared to Before CNY, it is not clear whether those decreases were fully attributable to the lockdown. We hence show the daily variations of NO₂ concentrations not only in 2020 but also for the previous years 2015 to 2019 (Fig. 1a–e), to reveal the roles of other factors in the variations of NO₂ concentrations in years without a COVID-19 lockdown. From 2015 to 2019, a difference between CAMSRA NO₂ and observed NO₂ concentrations always appears during the CNY period, highlighting that the CNY generally exhibits an anthropogenic emission reduction. Near perfect agreement between CAMSRA and observed NO₂ is found for 2015–2017 during Before CNY and also after CNY. Unlike 2015–2017, however, CAMSRA NO₂ did not match the observed NO₂ quite well before and after the CNY in 2018 and 2019, showing slight overestimates of the observed values. The reason for this behavior is that the first CAP had virtually no effect on NO₂ from 2015 to 2017, but the new 3-year CAP from 2018 to 2020 (CAP2018–2020) led to a perceptible decline, especially in 2019. Some recent studies which had focused on the concentration changes of nationwide NO₂, provide support for our interpretation that NO₂ had no significant decline over the years 2015–2017. These studies also expected that this phenomenon would be improved from 2018 to 2020 with the CAP2018–2020 implementing more targeted NOx reduction measures.

In order to investigate and quantify the CNY and CAP effects on the NO₂ emission reduction in more detail, we now compare the evolution of the mean NO₂ concentrations over 2015–2019 from both CAMSRA and observations. As shown in Fig. 1f, the observed NO₂ concentrations in 2020 show a similar (or only slightly larger) decrease during the CNY as during the equivalent time period averaged over 2015–2019 but did not show a rapid recovery after day +6, revealing the emerging effect of the COVID-19 lockdown towards the end of the CNY. Therefore, the COVID-19 lockdown did not significantly modulate the NO₂ reductions when compared to the CNY effect in earlier years, except from day +6 onward. We now can separate the CNY effect from the COVID-19 lockdown effect on NO₂ decreases. From the daily variation of NO₂ in 2019 (Fig. 1e), we may conclude that the most significant effect of the CAP has lasted 28 days after the CNY’s day when compared to CAMSRA’s expected emissions, and became weaker thereafter. Therefore, to accurately quantify the effect of COVID-19 lockdown measures on the NO₂ deduction, the contribution of the CAP measures should also be excluded from the emission reduction during the CNY period and Extended COVID-lockdown period in 2020. Here, the effect of the CAP2018–2020 can be calculated by averaging the difference between CAMSRA and observed NO₂ during the Before CNY period in 2018, 2019, and 2020 (Fig. 1f). Equivalent to Fig. 1, daily variations of the CAMSRA O₃ and the observed O₃ in the time period 2015–2020 are displayed in Supplementary Fig. 1. It is found that the daily concentrations of the CAMSRA O₃ went up and down following the evolution in the observed O₃ in 2015–2020 extremely well. Nevertheless, there is a tendency of CAMSRA to overestimate O₃ before CNY and underestimate O₃ during CNY and after CNY. This concomitant rise of O₃ over the whole research period in each year might be interpreted by the unbalanced emission reduction strategy of ozone’s reaction precursors under the CAP2018–2020 most obvious in 2020, when the COVID-lockdown led to further NO₂ reductions. Recent studies demonstrated that NOx emission reductions would lead to less O₃ being consumed via NO titration, which could
explain the increases of O3 during that period not only in China62 but also across Europe63.

Quantifying the anthropogenic emission reduction at the city level

Table 1 provides an overview of the different steps taken to disentangle and ultimately quantify the different anthropogenic and meteorological drivers, with the calculation described in more detail in “Methods”. Figure 2 shows the city number distributions as a function of the percentage changes in NO\textsubscript{2} and O\textsubscript{3} concentrations attributable to the different anthropogenic drivers for each city, with the size of the circles indicating each city’s population. Figure 2a, e shows the results for the CNY\textsubscript{2015–2019} effect (see Table 1, Driver number 1). Overall, the average NO\textsubscript{2} reduction across all the 367 cities is −26.7% (one-sigma range of −51.7 to −1.7%) and the average increase in O\textsubscript{3} is 23.3% (one-sigma range of −18.6 to 65.2%). Among all the cities, 84.9% of them show decreased NO\textsubscript{2} (with a −34.7 ± 15.7% reduction). On the contrary, the O\textsubscript{3} concentration increased in more than half of the cities (by 44.8 ± 36.2%). Notably, the NO\textsubscript{2} concentrations in cities with a high-density population (>5 million) were all reduced, and the average reduction ratio was −32.4 ± 17.3%. At the same time, all these densely populated cities show percentage increases in O\textsubscript{3} with an average value of 48.5 ± 27.6%. Increasing O\textsubscript{3} concentrations in cities with dense populations following the decline of its precursor of NO\textsubscript{2} indicate a VOC-limited chemistry regime62, which together with an unbalanced control of the precursors of O\textsubscript{3}, cannot alleviate O\textsubscript{3} pollution.

Figure 2b, f shows the city count distribution of percentage changes in NO\textsubscript{2} and O\textsubscript{3} concentrations attributable to the CAP\textsubscript{2018–2020} measures (Table 1, Driver number 2). In total, the average NO\textsubscript{2} reduction across all cities was −15.7 ± 28.1% (one sigma, also hereafter), while O\textsubscript{3} had an average increase of 4.9 ± 38.9%. During all the cities in China, there were 213 cities with a decreased NO\textsubscript{2} concentration and 120 cities with a rise in O\textsubscript{3} concentration under the effect of the CAP\textsubscript{2018–2020}. It was also found that the average percentage reduction in NO\textsubscript{2} in cities with a high-density population (>5 million) was −29.2 ± 11.6% while the change in O\textsubscript{3} was 17.6 ± 29.4%. Compared with the city count distribution of NO\textsubscript{2} and O\textsubscript{3} under the CNY\textsubscript{2015–2019} impact, the city count distribution under the CAP\textsubscript{2018–2020} effect reveals fewer cities with reduced NO\textsubscript{2} concentrations and increased O\textsubscript{3} concentrations, indicating that the short-term change of productive and economic activity during the CNY\textsubscript{2015–2019} has a more significant influence on the reduction of NO\textsubscript{2} and the O\textsubscript{3} production than that under the long-term effect of CAP\textsubscript{2018–2020}.

Figure 2c, g illustrates the city number distributions of the percentage changes in NO\textsubscript{2} and O\textsubscript{3} concentrations attributable to the CNY\textsubscript{2020–mix} effect (Table 1, Driver number 1). Generally, the average NO\textsubscript{2} reduction across all cities was −54 ± 19.4% and O\textsubscript{3} showed an average increase of 49.3 ± 85.2%. These numbers are largely consistent with previous studies (see “Introduction”) even though the considered time period is somewhat different. Compared to the changes during the CNY period in 2020, the
Summary of the different steps taken to disentangle the various drivers.

<table>
<thead>
<tr>
<th>Driver number</th>
<th>Driver Method</th>
<th>Time period from CNY’s day (X)</th>
<th>Year (Y)</th>
<th>Average contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CNY2020-mix</td>
<td>−7 to +10</td>
<td>2015–2019</td>
<td>O3(CNY2020-mix) = 49.3%</td>
</tr>
<tr>
<td></td>
<td>CNY2015</td>
<td>−21 to −8</td>
<td>2018–2020</td>
<td>NO2(CNY2015) = 23.3%</td>
</tr>
<tr>
<td>2</td>
<td>CAP2018−2020</td>
<td>−7 to +10</td>
<td>2020</td>
<td>NO2 = −38.3% O3 = 44.3%</td>
</tr>
<tr>
<td>3</td>
<td>COVID-lockdown</td>
<td>−7 to +10</td>
<td>2020</td>
<td>NO2 = −11.6% O3 = 21.0%</td>
</tr>
<tr>
<td>4</td>
<td>Extended COVID-lockdown</td>
<td>+11 to +42</td>
<td>2020</td>
<td>NO2 = −34.7% O3 = 22.7%</td>
</tr>
<tr>
<td>5</td>
<td>Met effect</td>
<td>−1 to +42</td>
<td>2020</td>
<td>O3 = 7.8% O3 = 0.9%</td>
</tr>
</tbody>
</table>

Meteorology-related emission changes

ML was finally used to quantify the potential influence of meteorological factors on the NO2 and O3 concentrations. Supplementary Fig. 3 shows the prediction of the NO2 daily concentration increases from the meteorological condition changes in 2015 and 2020 compared to the climatology. Over the considered time period, the average NO2 concentration increased by 22.7 ± 22.5% from the Extended COVID effect. After excluding the effect of the CAP2018, the average NO2 reduction changed from 11.6% to 11.6% and the O3 increases were smaller by 28% (decreasing from 49.3 to 31%). When excluding the effect of CAP2018 from the COVID-lockdown measures, the average NO2 reduction and the O3 increases were smaller by 26% (decreasing from 11.6% and the O3 increases were smaller by 28% (decreasing from 49.3 to 31%). When excluding the effect of CAP2018 from the COVID-lockdown measures, the average NO2 reduction and the O3 increases were smaller by 26% (decreasing from 11.6% and the O3 increases were smaller by 28% (decreasing from 49.3 to 31%). When excluding the effect of CAP2018 from the COVID-lockdown measures, the average NO2 reduction and the O3 increases were smaller by 26% (decreasing from 11.6% and the O3 increases were smaller by 28% (decreasing from 49.3 to 31%).
Health risk change during the COVID-19 lockdown

After quantifying the concentration changes of NO2 and O3 and attributing them to the different drivers of anthropogenic emissions and meteorological condition changes, we extend our methodology to also consider other air pollutants such as PM2.5, PM10, SO2, and CO in order to evaluate the health risk related to the overall air-quality change due to the COVID-19 lockdown restrictions (although without considering the increased health risk caused by the aerosol transmission of viruses during the pandemic54,65). The predicted average concentrations of the other pollutants in 367 cities and the model performance of each pollutant in 31 capital cities are shown in Supplementary Figs. 4–10, respectively. After predicting the concentrations of the six air pollutants during the COVID-19 lockdown, the resulting Excess Risks (ERs) in the two scenarios of the BAU and the COVID-19 lockdown can be calculated based on the World Health Organization (WHO) guidelines (released in 2021) and the Chinese Ambient Air Quality Standard grade II (CAAQS-II) standard (Supplementary Table 2), respectively.

Overall, when making a comparison of the ER differences (Supplementary Figs. 11–15) from the six air pollutants averaged over the 31 capital cities, these were higher for NO2 (−2.2%) than for PM2.5 (−0.77%), PM10 (−1.03%), SO2 (−0.05%), CO (0), and O3 (0.1%), indicating a significant ER decrease from NO2, PM2.5, PM10, and SO2 changes which also significantly offset the increased ER from O3 under the COVID-lockdown measures. These results are in stark contrast to those when ERs are being calculated based on the CAAQS-II standard. In this case, we find no ERs from SO2, NO2, O3, and CO because the concentrations of those four pollutants did not exceed the daily CAAQS-II standards. Rather, PM2.5 and PM10 (Supplementary Figs. 16 and 17) were the two main contributors to ERs during the COVID-19 lockdown.

To investigate the health benefits attributable to air-quality change, we also made a comparison of observed HAQI and predicted HAQI in 31 capital cities of China based on the WHO guidelines (hereafter as WHO-HAQI, Fig. 4) as well as the CAAQS-II standards (hereafter as CAAQS-HAQI, Supplementary Fig. 18). Overall, during the BAU period (Fig. 4b), the WHO-HAQI averaged over the 31 capital cities was 287, which is 1.8 times higher than the CAAQS-HAQI (102) (Supplementary Fig. 18b). After implementing the COVID-19 lockdown measures, the air quality improved significantly and the average WHO-HAQI (Fig. 4a) decreased to 179, with an average decline of 61% (Fig. 4c). For CAAQS-HAQI, the average HAQI decreased to 75 (Supplementary Fig. 18a), with an average decline of 21% (Supplementary Fig. 18c) therefore putting the HAQI into the category of “good” for the public’s health. Although the WHO-HAQI reduction is almost three times as high than that in the CAAQS-HAQI, the average WHO-HAQI after the reduction was still in the category “unhealthy” for the public’s health. Still a significant improvement in health benefits related to air quality could be attributed to the impact of COVID-19 restrictions coupled with that of the CAP and CNY.

To quantify how much the WHO-HAQI responded to these drivers regionally, the WHO-HAQI percentage changes between the COVID-19 lockdown period and BAU period in each region (see detailed information in Supplementary Table 3) were investigated. The results show that the WHO-HAQI percentage changes were negative in all the regions (Supplementary Fig. 19), including YRD (−98%), CC (−93%), NCP (−76%), SCB (−69%), FWP (−59%), PRD (−55%), NEC (−50%), NW (−34%), OTP (−20%), and YGP (−14%). On the other hand, the CAAQS-HAQI percentage changes showed negative changes only in NCP (−38.57%), YRD (−35.74%), FWP (−33.45%), CC (−33.1%), SCB (−21.83%), NEC (−20%), PRD (−9%), and NW (−4%), while they increased in YGP (0.2%) as well as for Haikou in PRD (10.66%). The differences in the results for the WHO-HAQI and CAAQS-HAQI can be explained once again by the fact that more air pollutants, that is SO2, NO2, and O3, are all contributing to the WHO-HAQI increases, whereas the calculation of the CAAQS-HAQI is only sensitive to PM concentration levels. Meanwhile, the increased concentrations of air pollutants can offset the health benefits from the reduction of other air pollutants in some regions/cities and for the two health standards (WHO and CAAQS) in different ways. For example in YGP, increased PM concentration transported from southwest Asia led to a positive difference in the CAAQS-HAQI56 (see also Supplementary Fig. 18), while these increases were compensated for by the reductions in NO2 leading to an overall negative difference in WHO-HAQI.

Furthermore, the spatial distribution in WHO-HAQI differences between the observations (Fig. 5a) and the prediction (Fig. 5b) in all cities was also investigated (Fig. 5d). It was found that
WHO-HAQIs in most of the cities (92.9%) in China were reduced by an average relative amount of 55.43 ± 26.97% under the combined impacts of CAP, CNY, COVID-19 restrictions, and meteorological drivers, with those cities having successively announced travel bans within days, including restrictions on non-essential activities, suspension of travel between cities, and closure of all factories. Cities with increased WHO-HAQIs (7.1% of all cities) (Fig. 5d) are mainly located in YGP and inland in the northwest (like parts of Inner Mongolia, Gansu Province, and QTP Region). These areas with increased PM concentrations were frequently affected by polluted air flows from other regions and also local sources (like sandstorms or enhanced indoor coal heating) during the COVID-lockdown, respectively.

At last, to estimate the meteorological effect (Met effect) on the variation of the WHO-HAQI, the spatial distribution of WHO-HAQI differences attributable to the meteorological change between that in 2020 and averaged over 2015 to 2019 was investigated (Fig. 5e). WHO-HAQIs in 188 cities (51.5% of all cities) experienced an increase under the meteorological conditions in 2020 (Fig. 5b) when compared to 2015–2019 average conditions (Fig. 5c). Increased WHO-HAQIs (Fig. 5e) in those cities were mainly located in the NEC, Inner Mongolia, and part of NCP, YRD, indicating that the meteorological conditions in 2020 have deteriorated air quality in those regions. However, there were still some cities in NCP and YRD with decreased WHO-HAQIs, indicating that unfavorable meteorological conditions in 2020 cannot offset the health benefits of emission reductions in those regions. On the other hand, somewhat less than half of all the cities in CC, PRD, SCB, YGP, and TQP benefitted from decreased WHO-HAQIs, demonstrating an improved air quality in those regions under the meteorological conditions in 2020.

Overall, the nationwide lockdown measures taken to reduce the spread of COVID-19 had an impact on air pollutant concentrations across China. However, the actual response of air pollutant concentrations and related health risks to the COVID-19 restrictions cannot be quantified in a straightforward way because multiple drivers, such as meteorological conditions, policy regulations such as the CAP, and the CNY celebrations, also have an effect on air quality that confounds the attribution of the changes to COVID-19.

This study aimed at disentangling the different drivers of observed air pollutant changes during the COVID-19 lockdown period in 2020. In particular, it quantified the changes in NO2 and O3 at the city level across China attributable to the effect of the yearly occurrence of CNY, which coincided with the lockdown measures, and also characterized the contributions of the CAP and the COVID-19 lockdown restrictions to the NO2 concentration change separately, based on a combined model-measurement approach using the CASMRA dataset and surface observations from 2015 to 2020. It finally evaluated the impact of the 2020 meteorological conditions on the variations of NO2 and O3 concentrations during the outbreak of COVID-19 using a ML method, and at last explored the health risk change relating to the varying air quality under the COVID-19 lockdown. Our results indicate that both the CNY effect and the new CAP had a considerable influence on the NO2 emissions from 2015 to 2019. Compared to the CNY in the equivalent time period during 2015–2019, the CNY effect in 2020 lasts longer, which is attributed to the COVID-19 restrictions. The average anthropogenic emissions of NO2 across China under the impact of the CNY and the CAP decreased by −26.7% and −15.7%, respectively. The latter has not been previously determined but is important to highlight since it reflects the effectiveness of China’s new CAP regulations. Excluding the effect of the CAP and CNY (and thus fully attributable to the COVID-19 lockdown), showed that the anthropogenic emissions of NO2 across China during the CNY in 2020 were reduced on average by an additional 11.6%. For the average anthropogenic emissions of NO2 across China during the Extended COVID-lockdown period, the reduction was 34.7% after excluding the effect of the CAP. On the contrary, the average O3 concentration showed increases of 23.3% and 4.9% under the effect of the CNY and the CAP, and an increase of 21% and 22.7% attributed to the effect of COVID-lockdown and Extended COVID-lockdown, respectively. These estimated
contributions to the total air pollutant change however neglect the impact of the meteorological condition changes in 2020, which also affect the NO2 variations. Our results reveal that the meteorological conditions prevailing in 2020 lead to an adverse effect and contribute to an increase in NO2 concentrations with an average value of 7.8% when compared to climatological 2015–2019 conditions. At last, we also evaluated the health risk related to the air-quality change during the Total COVID period.

Our results demonstrated that the reduction of ER from NO2 was the main driver of the derived health benefit and was able to offset the ER increase from O3. Overall, WHO-HAQIs were reduced on average by −51.4% in all cities across China. However, changes in meteorological conditions deteriorated the WHO-HAQI in NEC significantly, and local governments will need to adopt to account for such changes using more scientific emission reduction measures to reduce health risks in these regions, in particular in the light of a changing climate which is expected to lead to aggravated changes in meteorological variables.

METHODS
Station data of air pollutants

The station data of air pollutants including PM2.5, PM10, SO2, NO2, O3, and CO in 367 cities (except those in Taiwan, Hong Kong, and Macau, no data in Laiwu from 2019 to 2020) (see Supplementary Fig. 20) were released by China’s National Environmental Monitoring Center (NEMC) (http://www.cnemc.cn). Daily concentrations of the six air pollutants in each city were calculated by averaging the hourly data from January 1, 2015, to April 30, 2020. Data quality control was executed for different measurement stations as in the previous study2.

Station data of meteorological parameters

The hourly surface meteorological observation data including temperature (T, °C), relative humidity (RH, %), wind speed (WS, m/s), wind direction (WD, °), precipitation (Pre, mm), pressure (P, hPa) from 2015 to 2020 across China are used as input variables to the ML model. There are a total of 2425 National Meteorological Stations nationwide (excluding Zhongshan Station and Great Wall Station in Antarctica) with their geographical locations shown in Supplementary Fig. 21. However, we only selected the 367 stations with locations closest to the air pollutant monitoring sites available. Meteorological data can be downloaded from the National Meteorological Science Data Center (https://data.cma.cn/).
CAMSRA dataset

NO2 and O3, obtained from the Copernicus Atmospheric Monitoring Service Reanalysis (CAMSRA) and produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), are used for comparison with the surface observation data. CAMSRA used an emission inventory that did not represent the COVID-19 lockdown and CNY emission decreases, nor the reductions made under the two CAPs. While CAMSRA assimilates satellite retrievals of tropospheric NO2 and O3, and therefore in principle should be corrected toward the “real world”, the assimilation is not able to correct the surface concentrations of the model field, mainly due to the large impact of the emissions (which were not updated as mentioned below) and the limited information content of the assimilated satellite retrievals (due to broad averaging kernels, spatial, and temporal coverage). Thus, this simulation can be used as a counterfactual for a world in which the lockdown or air-quality regulations did not happen. For CAMSRA NO2 and O3, the temporary resolution is 3 hours and the spatial resolution is 0.75 × 0.75 at 60 vertical model levels. Anthropogenic emissions used to drive CAMSRA were based on a modified MACCity inventory, and monthly mean VOC emissions were calculated by the MEGAN model using MERRA reanalyzed meteorology for 2003–2016. The CAMSRA dataset can be downloaded from the Atmosphere Data Store (https://ads.atmosphere.copernicus.eu/cdsapp#!/home) and has been used to disentangle contributing factors for NO2 changes in Europe in spring 2020.

Before evaluating the anthropogenic emission reduction, a comparison between CAMSRA and the observational dataset was conducted to test whether CAMSRA can capture observed NO2 variations. To this end, the gridded CAMSRA NO2 is first interpolated in longitude and latitude onto each measurement station in the 367 cities in China to get time-series concentrations of CAMSRA NO2 from 2015 to 2019 at these locations. The time series of CAMSRA NO2 and observed NO2 in each city were then fitted by using the linear fitting method to calculate the slope (S) and the Pearson Correlation Coefficient (PCC). A filter window (0.5 < S < 1.5 and PCC > 0.2) was applied to filter out outliers. The same procedure was then applied to evaluate CAMSRA ozone with help of the observational ozone. The focus on NO2 and ozone is here justified by the findings of a range of studies that O2 pollution has become more serious in China as a result of unbalanced air pollutant control measures, which focused on the reduction of PM2.5 and NOx. Using the same filter window as for NO2 there are a total of 87 cities that can be treated as outliers. After removing these outliers, the CAMSRA NO2 and O2 match the NO2 and O3 observations well, with average PCCs of 0.51 and 0.64 for NO2 and O3, respectively (Supplementary Fig. 22).

Machine-learning model

We used a ML model rather than a chemical transport model, because the latter’s performance can be limited by its spatial resolution and potentially outdated emission inventories. The ML, on the other hand, is expected to capture such location-specific characteristics and thus is more suitable for the prediction of pollutants in the different cities across China, especially those located in the desert and plateau areas in the northwest of China or those lacking emission inventories. The dataset of ML model is always split into two parts: a training dataset and a test dataset. In this, the training dataset of the ML model to predict the concentration of six air pollutants in the first 3 months of 2020. The time variables are listed as follows: Julian day, day of the week, hour of the day, the CNY days in each year, and the date index.

Due to the complex nonlinear relationship between weather conditions and air pollutants, this study used the Gradient Boosting Machine (GBM), which is the latest ensemble method based on a decision tree, to predict the concentration of air pollutants in 2020. There are several outstanding advantages of using GBM. First, GBM can implement the feature selection internally, which ensures the model avoids a strong drop in the prediction skill when selecting potentially useless features. Furthermore, information on the importance of different features can be provided by GBM. At last, compared with general parametric methods, the GBM, a nonparametric method based on decision trees, generally operates depending on splitting a mother tree into two different branches, which is beneficial to design one model with high work efficiency.

To select the best ML model, the time-series split rolling method is selected to execute the cross-validation before the implementation of the ML prediction. Since the features, like temperature, and pressure used in this study, are temporal variables. These cannot be considered as independent data points due to the occurrence of autocorrelation. To account for this autocorrelation, we execute the so-called time-series cross-validation with four experiments, a method also applied in a similar study with a focus on Europe/Spanish. The time-series split rolling cross-validation was with five splits, in which data used for training always precedes the data used for validation. In detail, training ML models are over 2015, 2015–2016, 2015–2017, 2015–2018, 2015–2019, and testing them over the 3 first months of 2016, 2017, 2018, 2019, and 2020, respectively. The cross-validation results are shown in Supplementary Fig. 24 for the training dataset are: RMSE = 0.9 µg m−3, PCC = 0.85; and the prediction performance scores are: RMSE = 13.2 µg m−3, PCC = 0.71, which are close to the prediction performance of the study in Spain.

Methodology

In the following sections of evaluation of the combined effect, the CNY effect, and the CAP effect, the logical reasoning behind the approach taken to derive different anthropogenic drivers of the observed NO2 decline during the first quarter of 2020 is given, while the following Section of evaluation of the meteorology effect provides an overview of how the meteorological driver is estimated. The section on the estimation of health effects explains the method to calculate the HAQ.

Combined effect of anthropogenic drivers

As mentioned above, the advantage of the CAMSRA simulation used in this study is that it reflects a real-world that does not include emission reductions due to the CNY, CAP, or COVID-lockdown. The difference in air pollutant concentrations between CAMSRA and the observations (see Fig. 1a–f) can thus be attributed to the total influence of changes in anthropogenic activities. This overall difference can, in the next step, be attributed to single drivers, the CNY, CAP, and COVID-lockdown effects as explained in the following.

Calculation of the CNY and CAP effect

The CNY day is defined according to the lunar calendar and varies from a date in late January to early February over the time period 2015–2020. Usually, the CNY effect begins approximately one week before the CNY’s day and then lasts for ~10 days after the CNY’s day (as derived from the years 2015–2019) and this time period is hereafter labeled as “CNY”. The 2 weeks before the CNY (days –21 to –8 from the CNY’s day) is here defined as the “Before CNY” period. One month post the CNY (days +11 to +42 from the CNY’s day) is called the “Extended COVID-lockdown” period. And the period COVID-lockdown can be defined from 1 day before the CNY’s day to one month post the CNY (or days –1 to +42 from the CNY’s day). The different periods in 2020 are represented by different background colors in Fig. 1, Supplementary Figs. 1 and 3.

To this end, we first calculate the difference between the average NO2 simulated by CAMS and observed in 2015–2019 (Fig. 1f), which was defined as the CNY2015–2019 effect and calculated from the equation in Table 1, Driver number 1. It should be noted that Table 1 has listed all the target contributors, the methodological approach, and the time period considered for these target contributors that appeared in this paper. In a second step, the COVID-lockdown effect (Table 1, Driver number 4) can be estimated to a first approximation as the NO2 difference between the observations in 2020, minus the average CNY2015–2019 effect as calculated above, which, as investigated in Fig. 1f, this interpretation would lead to an overestimate of the COVID-lockdown effect since it neglects the impact of the CAP2018–2020 on NO2 concentrations that have not yet been accounted for in the CAMS emissions (nor in previous studies). Thus, to estimate the real COVID-lockdown effect accurately, the CAP2018–2020 effect should also be excluded from the second step approximation.

Evaluation of the meteorology effect (Met effect)

After evaluating the anthropogenic emission changes under the isolated effects of the CNY, the CAP, and the COVID restrictions, ML was used to estimate the Met effect on the NO2 and O3 concentration change. To quantify the variations of NO2 and O3 concentration under the Met effect, two ML experiments were executed. The first (baseline) used meteorological and time variables from 2015 to 2019 as the training dataset of the ML model to predict the concentrations of NO2 and O3 in the different cities across China, especially those located in the desert and plateau areas in the northwest of China or those lacking emission inventories. The dataset of ML model is always split into two parts: a training dataset and a test dataset. Combined effect of anthropogenic drivers
second applied this predictive model based on the independent features during the equivalent time period averaged over 2015–2019 to predict NO2 and O3 concentrations in 2020. The difference between the predicted NO2 (or O3) derived from the independent features in 2020 and for the equivalent time period averaged over 2015–2019, and based on the same predictive model, can represent the Met effect on the variation of NO2 (O3) (Table 1, Driver number 6).

To quantify the variation of health risks from six air pollutants under the impact of the Met effect in the next section, we also executed the same two experiments by using the ML model for PM2.5, PM10, SO2, and CO respectively.

Estimation of health effects

COVID-19 lockdown measures can lead to a change in air quality. As a response, the health effect of all six air pollutants also varies under those restriction measures. In this paper, the excess risk (ER) from each pollutant is evaluated as well as the Health-based Air Quality Index (HAQI). The relative risk (RR) function of air pollutants is generally expressed by an exponential linear function (Eq. (1)). The HAQI is an index that sets a threshold concentration of pollutants. It assumes that there is no health risk for air pollutants below the threshold concentration. Therefore, only when the concentration of pollutant exceeds a given threshold concentration will there be an ER of death (Eq. (2)). In general, considering that the calculation of ER is directly related to the threshold concentration on C0, we use the WHO guideline/CAAQS-II as the upper limit for six air pollutants to evaluate the ERs and the HAQI in each city across China.

\[RR_i = \exp (\beta_i (C_i - C_{i,0})), \quad C_i > C_{i,0} \]

(1)

\[ER_i = RR_i - 1 \]

(2)

\[ER_{\text{total}} = \sum_i ER_i = \sum_i (RR_i - 1) \]

(3)

\[RR = ER_{\text{total}} + 1 = \exp (\beta_i (C_i - C_{i,0})) \]

(4)

\[C_{i,0} = \ln (RR_i^{\text{per}}) / \beta_i + C_{i,0} \]

(5)

In Eq. (1), \(RR_i \) represents the relative risk of pollutant \(i \), \(\beta_i \) represents the exposure-response coefficient of pollutant \(i \), which means the additional risk of death caused by air pollutant increased by each unit concentration; \(C_{i,0} \) is the threshold concentration of pollutant \(i \). According to an overview of the short-term exposure to air pollutants and daily mortality in China, the \(\beta \) value is 0.038%, 0.032%, 0.081%, 0.13%, and 0.048% when concentrations of PM2.5, PM10, SO2, NO2, O3 have additional unit concentration value (µg/m3). For CO, the \(\beta \) value is 3.7% per 1 mg/m3 increase. When ERs of six air pollutants are added to \(ER_{\text{total}} \) as shown in Eq. (3), the equivalent concentration of \(C_i \) can be calculated according to Eq. (5). Thus, HAQI can be derived similarly to AQI73 (calculation details can be found in Supplementary Note 1). Several studies14,17,24 have demonstrated that HAQI is more appropriate to estimate the health effect of multi-air pollutants. In particular, the HAQI takes into account the opposing effects on human health of NO2 decreases and ozone increases observed in many cities as a consequence of the COVID-lockdown. To calculate the HAQI, 8-hour peak O3 was selected in the 8-h moving averaged concentration each day.

DATA AVAILABILITY

The station data of air pollutants including PM2.5, PM10, SO2, NO2, O3, and CO in 367 cities in China are freely available at the China’s National Environmental Monitoring Center (http://www.cnemc.cn), and the nationwide meteorological station data can be downloaded from the National Meteorological Science Data Center (https://data.cma.cn/en/). The CAMSRA model data for the Machine Learning experiment used in this study is freely available at the Atmosphere Data Store (https://ads.atmosphere.copernicus.eu/cdsapp#!/home).

CODE AVAILABILITY

The python code and data used to run the GBM can be obtained upon request from the corresponding authors.

Received: 13 November 2021; Accepted: 6 June 2022; Published online: 30 June 2022

REFERENCES

5. Huang, G. & Sun, K. Non-negligible impacts of clean air regulations on the reduction of tropospheric NO2 over East China during the COVID-19 pandemic observed by OMI and TROPOMI. Sci. Total Environ. 745, 141023 (2020).

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (Grant Nos. 42021004 and 21976093).

AUTHOR CONTRIBUTIONS

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-00726-0.

Correspondence and requests for materials should be addressed to Michaela I. Hegglin or Xinlei Ge.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.