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Abstract 48 

We investigate the dependence of radiative feedback on the pattern of sea-surface temperature 49 

(SST) change in fourteen Atmospheric General Circulation Models (AGCMs) forced with observed 50 

variations in SST and sea-ice over the historical record from 1871 to near-present. We find that over 51 

1871-1980, the Earth warmed with feedbacks largely consistent and strongly correlated with long-52 

term climate sensitivity feedbacks (diagnosed from corresponding atmosphere-ocean GCM abrupt-53 

4xCO2 simulations). Post 1980 however, the Earth warmed with unusual trends in tropical Pacific 54 

SSTs (enhanced warming in the west, cooling in the east) and cooling in the Southern Ocean that 55 

drove climate feedback to be uncorrelated with – and indicating much lower climate sensitivity than 56 

– that expected for long-term CO2 increase. We show that these conclusions are not strongly 57 

dependent on the AMIP II SST dataset used to force the AGCMs, though the magnitude of feedback 58 

post 1980 is generally smaller in nine AGCMs forced with alternative HadISST1 SST boundary 59 

conditions. We quantify a ‘pattern effect’ (defined as the difference between historical and long-60 

term CO2 feedback) equal to 0.48 ± 0.47 [5-95%] W m-2 K-1 for the time-period 1871-2010 when the 61 

AGCMs are forced with HadISST1 SSTs, or 0.70 ± 0.47 [5-95%] W m-2 K-1 when forced with AMIP II 62 

SSTs. Assessed changes in the Earth’s historical energy budget agree with the AGCM feedback 63 

estimates. Furthermore satellite observations of changes in top-of-atmosphere radiative fluxes since 64 

1985 suggest that the pattern effect was particularly strong over recent decades but may be waning 65 

post 2014.  66 
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1. Introduction 67 

1.1. Background 68 

A common starting point for quantifying the sensitivity of the Earth’s climate to external 69 

perturbations is consideration of the global-mean energy budget, N = F + λT, where N is the net 70 

downward radiative flux at the top-of-atmosphere (TOA) (units W m-2), F the effective radiative 71 

forcing (ERF, units W m-2), λ the climate feedback parameter (units W m-2 K-1, a negative number in 72 

this paper, but the opposite convention is also used) and T the surface-air-temperature change 73 

(units K) relative to an unperturbed steady state in which N=F=0. Applied to non-steady states, such 74 

as the Earth’s historical record (since the 1800s), λ is determined via either (i) differences (denoted 75 

by Δ) between two climate states (often present-day and pre-industrial) according to λ = (ΔN – 76 

ΔF)/ΔT (e.g. Gregory et al., 2002; Otto et al., 2013; Sherwood et al., 2020), or (ii) regression in the 77 

differential form λ = d(N – F)/dT if the timeseries of N, F and T are known (Gregory et al. 2004; 78 

Gregory et al. 2020). 79 

Until recently it was often assumed that λ was - to a good approximation - a constant property of the 80 

climate system, such that feedbacks that applied over the historical record also applied to the 81 

Earth’s long-term response, as quantified by the canonical equilibrium climate sensitivity (ECS, units 82 

K) to a forcing from a doubling of CO2 (F2x) over pre-industrial levels. Thus ECS was estimated directly 83 

from historical changes in N, T and F, according to ECS = -F2x / λ = - F2x ΔT / (ΔN – ΔF) (e.g. Gregory et 84 

al, 2002; Otto et al., 2013, amongst many others).  85 

However, it is now recognised that λ varies in time since a forcing is applied and with the strength 86 

and/or type of that forcing (e.g. Senior and Mitchell, 2000; Hansen et al., 2005; Andrews et al. 2012; 87 

Armour et al., 2013; Geoffroy et al., 2013; Rose et al. 2014; Gregory et al. 2015; Andrews et al. 2015; 88 

Marvel et al. 2016; Rugenstein et al. 2016; Richardson et al., 2019; Dong et al. 2020; Bloch-Johnson 89 

et al., 2021; Rugenstein and Armour, 2021). Hence λ is an ‘effective feedback parameter’ that applies 90 

only to the climate change over which it was calculated. More specifically, over the historical record 91 

λ is thought to be more stabilizing (more negative, climate sensitivity smaller) than might operate in 92 

the long-term future, and so λ estimated from historical climate change would understate ECS (e.g. 93 

Gregory and Andrews, 2016; Zhou et al., 2016; Armour, 2017; Proistosescu & Huybers, 2017; 94 

Andrews et al., 2018; Marvel et al., 2018; Silvers et al., 2018; Lewis and Curry, 2018; Gregory et al. 95 

2020; Sherwood et al. 2020; Dong et al. 2021). 96 

The reason for the underestimate of long-term ECS is that climate feedbacks setting λ, such as cloud 97 

and lapse-rate changes, vary with the pattern of surface warming. Proxy reconstructions of past 98 

equilibrium climates and atmosphere-ocean general circulation model (AOGCM) simulations of long-99 

term climate change show an ‘ENSO-like’ temperature pattern with strong temperature changes in 100 

the eastern Pacific as well as the Southern Ocean, whereas observed historical warming shows more 101 

pronounced warming in the western equatorial Pacific relative to the tropical mean and cooling in 102 

the eastern Pacific and Southern Ocean over recent decades (e.g. Collins et al., 2013; Li et al., 2013; 103 

Andrews et al., 2015; Gregory and Andrews, 2016; Zhou et al., 2016; Dong et al., 2019; Sherwood et 104 

al., 2020; Rugenstein et al. 2020; Olonscheck et al., 2020; Fueglistaler and Silvers, 2021; Watanabe et 105 

al. 2021; Power et al. 2021; Tierney et al. 2019; 2020). 106 

Thus, more-stabilizing feedbacks have occurred over the historical record because enhanced 107 

warming in the western Pacific warm pool – a region of deep ascent and convection – results in a 108 

stronger negative lapse-rate feedback widely across the tropics due to efficient warming of the free 109 

troposphere, which in turn causes increased cloudiness (a negative cloud feedback) in the eastern 110 
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tropical Pacific due to remotely controlled increased lower tropospheric stability. In contrast, less-111 

stabilizing feedbacks are expected in the future as enhanced warming in the eastern Pacific – 112 

characterised by descending air and marine low cloud decks which are capped under a temperature 113 

inversion and form over the relatively cool sea-surface-temperatures (SSTs) – results in a positive 114 

cloud feedback, without an accompanying negative lapse-rate feedback since the warming is 115 

‘trapped’ in the boundary layer (e.g. Zhou et al., 2016, Andrews and Webb, 2018, Ceppi and Gregory, 116 

2017; Dong et al. 2019). 117 

The dependence of radiative feedback on the pattern of surface temperature change has been 118 

termed a ‘pattern effect’ (Stevens et al., 2016), which distinguishes it from other feedback variations 119 

that might occur for example as a function of the magnitude of ΔT (e.g. Block & Mauritsen, 2013; 120 

Caballero and Huber, 2013; Bloch-Johnson et al., 2021). While the term ‘pattern effect’ could be 121 

applied to any change in SST pattern and associated change in radiative feedback, here we will use it 122 

to mean (unless explicitly stated) the pattern effect that arises due to the difference in warming 123 

pattern between historical climate change and long-term ECS. 124 

Armour (2017) and Andrews et al. (2018) proposed a method to account for the pattern effect in 125 

estimates of ECS derived from historical climate changes via a modification of the energy budget 126 

approach. Their method requires an estimate of the difference in feedback, Δλ, due to the pattern 127 

effect that arises between historical climate change and long-term ECS, so that ECS=- F2x /(λhist + Δλ), 128 

where λhist is the historical value. Since Δλ is found to be positive, it increases the best estimate of 129 

ECS and substantially lifts the upper uncertainty bound, but has only a small impact on the lower 130 

bound (Armour, 2017; Andrews et al., 2018; Sherwood et al. 2020). 131 

One way of defining the pattern effect, Δλ, is to contrast λhist in an Atmospheric GCM (AGCM) 132 

simulation forced by observed historical SST and sea-ice variations (termed an amip-piForcing 133 

simulation, see Section 2) with λ4xCO2 from 150 years of a coupled AOGCM abrupt-4xCO2 simulation 134 

with the same AGCM, so that Δλ = λ4xCO2 – λhist (Andrews et al. 2018). Hence our quantification of Δλ 135 

not only depends on λhist but also on the (somewhat arbitrary) time frame and method used to 136 

calculate λ4xCO2. Ideally we would use the feedback parameter directly associated with ECS rather 137 

than λ4xCO2, but this is difficult to calculate in AOGCMs due to the millennial timescales required to 138 

equilibrate the deep ocean. Hence feedbacks calculated from 150 years of abrupt-4xCO2 are often 139 

used as a surrogate for long-term ECS feedbacks (Andrews et al., 2012). Technically this is still an 140 

‘effective feedback parameter’ and associated ‘effective climate sensitivity’ (EffCS), rather than 141 

definitive ECS, but in practice it is found to provide a suitable analogue for long-term feedbacks in 142 

climate projections (Grose et al., 2018) and ECS (Sherwood et al. 2020), hence the distinction 143 

between EffCS and ECS is not considered further (see Rugenstein et al. (2020) and Rugenstein and 144 

Armour (2021) for further discussion). 145 

We assume other impacts on λ, such as the nature of the forcing agent – so called ‘efficacies’ 146 

(Hansen et al., 2005; Marvel et al. 2016; Richardson et al., 2019) – primarily occur due to forcing-147 

specific impacts on historical SST patterns that will be included in the historical record, rather than 148 

any dependence on the actual forcing agent concentration in the atmosphere (which will be 149 

excluded in our design, because forcing levels are fixed at pre-industrial levels in amip-piForcing) 150 

(Haugstad et al., 2017). On the other hand, abrupt-4xCO2 experiments contain larger warming than 151 

the historical record, so any state dependence on T (e.g. Block & Mauritsen, 2013; Caballero and 152 

Huber, 2013; Bloch-Johnson et al., 2021) might erroneously be diagnosed as a pattern effect using 153 

our method. Bloch-Johnson et al.  (2021) estimated that λ might vary with T by ~ +0.029 W m-2 K-2 154 

(multi-model-mean) in step CO2 experiments relative to pre-industrial level temperature feedbacks, 155 

but with substantial uncertainty in the both the magnitude and in some cases even the sign of this 156 
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state dependence (model range −0.14 to 0.109 to W m-2 K-2). While this may play some role in our 157 

diagnosed Δλ, we assume it to be small since both Gregory and Andrews (2016) and Andrews and 158 

Webb (2018) showed that the pattern effect is large in experiments with identical T but contrasting 159 

historical and abrupt-4xCO2 SST patterns. 160 

The principal advantage of using amip-piForcing simulations in the calculation of the pattern effect is 161 

that λhist will be consistent with the SST patterns that occurred over the historical record. In contrast, 162 

one could use AOGCM historical simulations for λhist, but when AOGCMs are free to simulate their 163 

own historical SST patterns they struggle to reproduce the observed recent decadal trends in 164 

tropical Pacific SST patterns (Gregory et al. 2020; Fueglistaler and Silvers, 2021; Watanabe et al. 165 

2021; Dong et al., 2021) and the associated magnitude of λhist, thus underestimating the pattern 166 

effect (Gregory et al., 2020; Dong et al. 2021). This AOGCM bias in the pattern effect has important 167 

implications, which we return to in the Discussion, but our focus in this manuscript is on the 168 

historical pattern effect as simulated by AGCMs given the observed SSTs, thus avoiding the issue of 169 

AOGCM biases in historical SST patterns. Note that while our focus is on the atmospheric response 170 

to a given SST pattern, causality can work in both directions. For example cloud feedback has been 171 

shown to have an impact on the pattern of tropical Pacific SST changes in models (Chalmers et al., 172 

2022). 173 

amip-piForcing simulations also show multi-decadal variations in λhist (Gregory and Andrews 2016; 174 

Zhou et al., 2016; Andrews et al., 2018; Fueglistaler and Silvers, 2021; Dong et al. 2021). In particular 175 

λhist is generally most negative (pattern effect largest) over the most recent decades. This is because 176 

variations in atmospheric feedback are well explained by changes in SSTs in regions of tropical deep 177 

convection relative to the tropical-mean (Fueglistaler and Silvers, 2021) or global-mean (Dong et al. 178 

2019). Since the late 1970s, regions of deep convection have warmed by about +50% more than the 179 

tropical-mean (Fueglistaler and Silvers, 2021), and the eastern Pacific has cooled despite 180 

temperatures increasing globally (e.g. Hartmann et al. 2013; Power et al. 2021; and see our Figures 4 181 

and 9). Hence under this configuration of tropical Pacific SST change, we would expect negative 182 

feedback from the mechanisms described above (e.g. Zhou et al., 2016, Andrews and Webb, 2018, 183 

Ceppi and Gregory, 2017; Dong et al. 2019). 184 

A limitation of the amip-piForcing experiment for quantifying λhist is that it may include a structural 185 

dependence on the underlying SST patterns and sea-ice in the Atmospheric Model Intercomparison 186 

Project (AMIP) II boundary condition data set (Gates et al., 1999; Hurrell et al., 2008; Taylor et al., 187 

2000) used to force the amip-piForcing simulations (Andrews et al., 2018; Lewis and Mauritsen, 188 

2021; Zhou et al., 2021; Fueglistaler and Silvers, 2021). Different SST reconstructions have slightly 189 

different patterns of SST change over the historical period, and λhist may be affected. Indeed Lewis 190 

and Mauritsen (2021) and Fueglistaler and Silvers (2021) showed that warming in the tropical 191 

western Pacific relative to the tropical-mean is less pronounced in other SST datasets, and so we 192 

might expect less negative feedbacks (Δλ less positive) if the AGCMs were forced with non-AMIP II 193 

datasets. 194 

Consistent with this expectation, Andrews et al. (2018) noted that in one AGCM the magnitude of 195 

λhist was reduced by ~ 0.2 W m-2 K-1 when the AMIP II SSTs were replaced by HadISST2.1 SSTs (sea-ice 196 

remaining unchanged) in an amip-piForcing simulation. Partly because of this, Sherwood et al. 197 

(2020) and Forster et al. (2021) assessed the historical pattern effect to be smaller and more 198 

uncertain (Δλ = 0.5 ± 0.5 W m-2) than simply taking the amip-piForcing based model distribution 199 

reported by Andrews et al. (2018) (Δλ = 0.64 ± 0.40 W m-2). Subsequently, Lewis and Mauritsen 200 

(2021) and Zhou et al. (2021) also found λhist to be less negative (Δλ smaller) when using other SST 201 

datasets than AMIP II used in amip-piForcing simulations discussed here. 202 
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1.2. Aims and motivating questions 203 

Andrews et al. (2018) provides much of the published quantitative analysis on λhist to observed SST 204 

patterns and Δλ, but only six AGCMs from only four different modelling centres were considered. 205 

Hence, a first motivation of this manuscript is to revisit their numbers with a broader set of models 206 

by utilizing the new amip-piForcing simulations from the Cloud Feedback Model Intercomparison 207 

Project phase 3 (CFMIP, Webb et al. 2017) contribution to the Coupled Model Intercomparison 208 

Project phase 6 (CMIP6, Eyring et al., 2016). The larger ensemble totalling 14 models when 209 

combined will provide a more robust quantification of the magnitude and spread of λhist and Δλ to a 210 

broader set of model physics and climate sensitivities (Zelinka et al. 2020; Meehl et al. 2020; Flynn 211 

and Mauritsen, 2020). 212 

Secondly, the limited set of models in Andrews et al. (2018) prevented them from robustly exploring 213 

and quantifying the relationship between λhist and λ4xCO2 across models. In other words, it is not 214 

known whether feedbacks acting over the historical record in AGCMs are correlated to feedbacks 215 

acting on long-term ECS. For example is there a relationship between the two that could form the 216 

basis of an emergent constraint? Do different parts of the historical record relate better to 217 

feedbacks acting on long-term ECS than other parts, and why? As we will show, feedbacks over 218 

different parts of the historical record have different relationships to λ4xCO2, and this is important for 219 

understanding what can and cannot be directly constrained from the historical record. 220 

Thirdly, λhist and Δλ have been shown to vary substantially on decadal timescales with λhist being most 221 

negative (pattern effect largest) over recent decades since ~1980 (Gregory and Andrews 2016; Zhou 222 

et al., 2016; Andrews et al., 2018; Gregory et al. 2020; Dong et al. 2021). This is consistent with the 223 

findings of Fueglistaler and Silvers (2021), who identified ~1980 as the point in which the Earth 224 

begins to warm with a particular (even “peculiar”) configuration of tropical Pacific SSTs where 225 

“regions of deep convection warm about +50% more than the tropical average” driving large 226 

negative cloud feedbacks. Hence we are motivated to separate λhist and Δλ into a ‘before’ and ‘after’ 227 

1980. This separation leads into our next motivating question. 228 

Fourthly, are observations of recent decadal warming and TOA radiative fluxes since the 1980s in 229 

agreement with the strongly negative λ values simulated by the AGCMs? If so, what would such a 230 

strongly stabilizing feedback parameter (and large pattern effect) in the presence of a substantial 231 

rate of observed global warming (~0.19 K dec-1, Tokarska et al., 2020) imply for the efficiency of 232 

ocean heat uptake and is there any relationship between them? Are any of these relationships 233 

affected by the most recent data in which Loeb et al. (2020; 2021) identified a marked change in the 234 

Earth’s radiation budget associated with the 2015/2016 El Niño event and a change in sign in the 235 

Pacific Decadal Oscillation (PDO) index. Such a shift in tropical Pacific SST patterns (a shift to 236 

warming in the eastern Pacific) should favour more positive feedbacks (Loeb et al., 2020). 237 

Finally and fifthly, a limitation of the amip-piForcing approach, as discussed in Section 1.1, is that λhist 238 

and Δλ derived from these experiments includes a structural dependence on the SST patterns and 239 

sea-ice in the AMIP II boundary condition data set used to force the AGCMs (Andrews et al., 2018; 240 

Lewis and Mauritsen, 2021; Zhou et al., 2021; Fueglistaler and Silvers, 2021). To investigate this 241 

further, we supplement the amip-piForcing simulations with sensitivity tests with nine AGCMs 242 

forced with historical HadISST1 (Rayner et al., 2003) SSTs as per Lewis and Mauritsen (2021).  243 

In summary, previous studies have shown that historical climate feedback (λhist) varies on decadal 244 

timescales in amip-piForcing simulations and is larger in magnitude (climate sensitivity smaller) than 245 

that seen in long-term abrupt-4xCO2 simulations associated with ECS, giving rise to a ‘pattern 246 



8 
 

effect’. This is accentuated over recent decadal climate change. Here we make use of observations 247 

of the Earth’s energy budget from 1985 and a new suite of amip-piForcing simulations from 248 

CFMIP3/CMIP6 (giving us a combined ensemble of 14 models), as well as targeted HadISST1 versus 249 

AMIP II SST dataset sensitivity tests with nine AGCMs, to address the above questions. 250 

The manuscript is organised as follows: Section 2 describes the model and observational data. 251 

Section 3 presents the model results. Section 4 brings in the observational data. Section 5 presents a 252 

summary, discussion and outlook. 253 

 254 

2. Methods and Data 255 

2.1 amip-piForcing 256 

To provide estimates of λhist consistent with the observed variations in SST patterns we turn to 257 

AGCMs forced with observed monthly variations in SSTs and sea-ice, while keeping all forcing agents 258 

such as greenhouse gases and aerosols etc. constant at pre-industrial levels.  Since the radiative 259 

forcing is constant (ΔF=dF=0) by construction, λhist can be diagnosed via λhist = dN/dT (or ΔN/ΔT if 260 

using finite differences between climate states) (Andrews, 2014; Gregory and Andrews, 2016, Zhou 261 

et al., 2016; Silvers et al., 2018; Andrews et al., 2018). Such an experimental design is now referred 262 

to as amip-piForcing (Gregory and Andrews, 2016). The experimental protocol builds on the 263 

Atmospheric Model Intercomparison Project (AMIP) design (Gates et al. 1999) that has long been 264 

used in climate modelling, but extends back to 1870 (rather than 1979 in AMIP) and forcing agents 265 

are kept at pre-industrial levels. As per AMIP, the underlying SST and sea-ice dataset used to force 266 

the AGCMs is the AMIP II boundary condition data set (Gates et al., 1999; Hurrell et al., 2008; Taylor 267 

et al., 2000). A description of the amip-piForcing protocol for CFMIP3/CMIP6 is given in Webb et al. 268 

(2017). When forced with observed monthly SSTs and sea-ice, AGCMs generally reproduce the 269 

observed relationships between surface temperature patterns, cloudiness and radiative fluxes well 270 

(Allan et al., 2014; Loeb et al. 2020), lending some credibility to the radiative effects of their 271 

simulated pattern effects to different SST patterns. 272 

The amip-piForcing simulations used in this study are summarised in Table 1. They reflect a 273 

combination of new CFMIP3/CMIP6 simulations with the latest generation of models archived in the 274 

CMIP6 database and those used in Andrews et al. (2018) with some updates (see below). The 275 

exception is MPI-ESM1-2-LR (Mauritsen et al., 2019); this is a CMIP6 generation model but its amip-276 

piForcing simulation is not currently included in the CMIP6 database. Note that this model contains 277 

the ECHAM6.3 atmospheric model, so the results ought to be very similar to the older ECHAM6.3 278 

simulations used in Andrews et al. (2018) and Lewis and Mauritsen (2021), though the models are 279 

not identical owing to differences in atmospheric composition and land surface properties (see 280 

Mauritsen et al., 2019, regarding the transition from MPI-ESM1.1 to MPI-ESM1.2). Furthermore, the 281 

newer MPI-ESM1-2-LR simulations include a longer time-period than the ECHAM6.3 simulations 282 

(Table 1). 283 

The CFMIP3/CMIP6 amip-piForcing simulations begin in year 1870, but we discard the first year to 284 

be consistent with the earlier Andrews et al. (2018) ensemble which started in January 1871. The 285 

CFMIP3/CMIP6 simulations end in Dec 2014, whereas the simulations in the original Andrews et al. 286 

(2018) ensemble (largely) ended in Dec 2010. In part to address this, some of the Andrews et al. 287 

(2018) simulations have been rerun, including CAM4, GFDL-AM3 and GFDL-AM4 simulations, which 288 

now end in Dec 2014 or later (see Table 1).  Another difference to Andrews et al. (2018) is that we 289 

now have an abrupt-4xCO2 AOGCM simulation with GFDL-AM4 which they did not consider, to 290 
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permit a quantification of the pattern effect in that model. In contrast, we exclude the Andrews et 291 

al. (2018) CAM5.3 simulation from our analysis since there is no abrupt-4xCO2 AOGCM simulation to 292 

compare against. 293 

The models used, time-periods covered and number of ensembles are detailed in Table 1. Where 294 

ensembles exist, an ensemble-mean dT and dN is created before analysis. Note that it makes little 295 

difference to λ if, alternatively, individual members are first analysed and then the results ensemble-296 

meaned (Gregory and Andrews, 2016; Lewis and Mauritsen, 2021). All models share a common 297 

1871-2010 time-period and so the principal analysis is restricted to this time-period, but we consider 298 

the additional years to 2014 too. All data are global-annual-ensemble-means and expressed as 299 

anomalies relative to an 1871-1900 baseline and the timeseries data has been made available (see 300 

Data Availability Section). 301 

Unless otherwise stated all uncertainties in multi model ensemble-mean results represent a 5-95% 302 

confidence interval, calculated as 1.645σ across models assuming a gaussian distribution. We do not 303 

attempt to adjust our uncertainty for the number of independent models, n, used in the ensemble 304 

(i.e. dividing by square root of n). Our approach is similar to a "statistical indistinguishable ensemble" 305 

approach (Annan and Hargraves, 2011; 2017) though likely overstates the uncertainty in the true 306 

value if the ensemble shares characteristics of a "truth centred paradigm" (Sanderson and Knutti, 307 

2012). 308 

2.2 HadSST-piForcing 309 

To test the sensitivity of the amip-piForcing results to the underlying SST dataset, we repeat the 310 

amip-piForcing simulations with nine AGCMs (see Table 1) but replace the AMIP II boundary 311 

condition SST dataset with HadISST1 (Rayner et al. 2003). All other aspects of the simulations, 312 

including sea-ice, are identical to the amip-piForcing simulations. This is the same experimental 313 

design as Lewis and Mauritsen (2021), and we include their ECHAM6.3 simulations here (which again 314 

ought to be similar to the MPI-ESM1-2-LR simulations). The simulations cover a common time-period 315 

across models of 1871-2010, like in amip-piForcing, but some models are also extended further (see 316 

Table 1). We refer to these simulations as hadSST-piForcing, but note only the SSTs are from the 317 

HadISST1 dataset (hence ‘hadSST’ rather than ‘hadISST’), the sea-ice remains as per amip-piForcing. 318 

Like amip-piForcing, all data are global-annual-ensemble-means and expressed as anomalies relative 319 

to an 1871-1900 baseline, and the timeseries data has been made available (see Data Availability 320 

Section). 321 

Lewis and Mauritsen (2021) provide a summary of the source observational inputs used to construct 322 

the AMIP II and HadISST1 SST datasets and how they differ. In addition, we note that AMIP II uses 323 

HadISST1 SSTs (Rayner et al. 2003) prior to November 1981 and version 2 of the National Oceanic 324 

and Atmospheric Administration (NOAA) weekly optimum interpolation (OI.v2) SST analysis 325 

(Reynolds et al. 2002) thereafter. The merging procedure rebases the HadISST1 SSTs to avoid 326 

discontinuities in the merged dataset (Hurrell et al. 2008). Hence AMIP II and HadISST1 might be 327 

expected to be more similar before 1981, and diverge afterwards. 328 

2.3 abrupt-4xCO2 329 

A corresponding abrupt-4xCO2 simulation using each AGCM’s coupled AOGCM is used to determine 330 

the model’s long-term sensitivity metrics (F4x, λ4xCO2 and ECS = -0.5*F4x/ λ4xCO2) from regression of 331 

global-annual-mean dN against dT over 150 years of the simulations (see Andrews et al., 2012). We 332 

also use λ4xCO2
 diagnosed from years 1-20 and years 21-150 of the abrupt-4xCO2 simulation following 333 

Andrews et al. (2015), which approximately separates the two principal timescales of the climate 334 
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response: the mixed-layer and deep-ocean (see Geoffroy et al. 2013 and Andrews et al. 2015). 335 

abrupt-4xCO2 data is available on the CMIP5 database (Taylor et al., 2012) for CCSM4, GFDL-CM3 336 

and HadGEM2-ES. All other abrupt-4xCO2 data is available on the CMIP6 database (Eyring et al., 337 

2016), except for HadCM3 and MPI-ESM1.1. For ECHAM6.3/MPI-ESM1.1, abrupt-4xCO2 global-338 

annual mean dN and dT timeseries data are provided by Andrews et al. (2018). HadAM3 data is 339 

taken from Andrews et al. (2018) and Andrews et al. (2015); while a mean of seven realizations, this 340 

simulation is only 100 years long so the calculations are over years 1-100 for λ4xCO2 and years 1-20 or 341 

21-100 for the separation of timescales in this model.  342 

Note when aligning each AGCM to its AOGCM, sometimes the AGCM and AOGCM model names 343 

differ in the literature. We indicate where this is applicable in Table 1. This does not apply to the 344 

newer CFMIP3/CMIP6 simulations which publish their AGCM and AOGCM simulations under 345 

consistent names. 346 

2.4 Observations of recent decadal climate change 347 

To understand Earth’s recent decadal climate change since ~1985 we turn to its observed global-348 

mean energy budget (i.e. dT, dN and dF). For dT we use the HadCRUT5 analysis dataset (Morice et al. 349 

2021) (the current version is HadCRUT.5.0.1.0). This is an improvement on previous HadCRUT 350 

products and extends coverage in data sparse regions (see Morice et al. 2021). For dF we use the 351 

best estimate historical ERF timeseries produced by IPCC AR6 (Forster et al. 2021; Smith et al. 2021). 352 

For dN we use various versions of the DEEP-C satellite based reconstruction of the Earth’s radiation 353 

balance from 1985 to near-present. These are described in detail in Allan et al. (2014) and Liu et al. 354 

(2015; 2017; 2020), but as we will use various versions of this product we give a brief overview here. 355 

The DEEP-C dataset is derived by merging satellite observations of top-of-atmosphere radiative flux 356 

timeseries from ERBE WFOV (Earth Radiation Budget Experiment Satellite wide field of view) and 357 

ECMWF reanalysis (ERA-Interim/ERA5) since 1985 with CERES (Clouds and the Earth’s Radiant Energy 358 

System) satellite observed fluxes since March 2000. Hence prior to March 2000 it is largely informed 359 

by ERBE WFOV and ERA reanalysis, then aligns with CERES from March 2000. AMIP and high 360 

resolution AGCM simulations and reanalyses are used in the merging process to bridge the gaps 361 

between products and avoid discontinuities in the timeseries, including a gap in the satellite record 362 

during 1993 and 1999 (Allan et al. 2014). It is important to note that substantial uncertainty in 363 

decadal changes in dN associated with the merging process affects the record and this is 364 

conservatively estimated to be as high as 0.5 Wm-2 for changes applying across the whole record (Liu 365 

et al. 2020). However, uncertainty in the CERES period since March 2000 is much smaller based on 366 

assessment of instrument drift (Loeb et al. 2021). Various versions of the DEEP-C dataset exist which 367 

parallel updates to the underlying products and update the merging process. We use the latest 368 

version (DEEP-C v5, Liu and Allan 2022) for our principal analysis, which is based on CERES EBAF v4.1 369 

and ERBS WFOV v3, alongside ERA5 reanalysis and AMIP6 simulations (Liu and Allan, 2022). To 370 

illustrate structural uncertainties in our analysis we also use previous versions (v2, v3 and v4) of the 371 

DEEP-C datasets. The availability of datasets is provided in the Data Availability Section. 372 

 373 

3. Historical feedback and pattern effect in amip-piForcing and hadSST-piForcing simulations 374 

Figure 1a shows the multi-model ensemble mean dT timeseries in the amip-piForcing and hadSST-375 

piForcing simulations, alongside an observed estimate from HadCRUT5 analysis dataset. The AGCM 376 

design reproduces the observed historical dT variability well (the correlation coefficient, r, between 377 

observed and both simulated dT timeseries is 0.97). However the AGCMs do not reproduce the 378 
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observed trends precisely, notably omitting some observed warming particularly in the most recent 379 

decades (Figure 1a). This is because the AGCM design omits a small component of warming 380 

associated with land surface temperature change (which is not prescribed in the models) that arises 381 

as a direct consequence of increases in greenhouse gases and other forcing agents independent of 382 

SST change (this is often considered as part of the ERF rather than feedback) (see Andrews, 2014; 383 

Gregory and Andrews, 2016; Andrews et al., 2018). This will be included in the observed record but 384 

not in the simulated dT because greenhouse gases and other forcing agents are kept constant at pre-385 

industrial levels in amip-piForcing and hadSST-piForcing. 386 

As dT increases, dN reduces (Figure 1b), i.e. the climate loses more heat to space as a consequence 387 

of the climate response and feedbacks in the system. Figure 1c and 1d show the difference in the dT 388 

and dN timeseries between the amip-piForcing and hadSST-piForcing ensemble-mean response. For 389 

most of the time the differences vary approximately about zero. However, larger differences are 390 

evident from 1981 onwards, when the dN response in amip-piForcing is substantially larger than that 391 

in hadSST-piForcing (Figure 1b and 1d), up to ~0.5 W m-2 in some years (Figure 1d). This is consistent 392 

with 1981 being the year in which the AMIPII boundary condition source dataset switches from 393 

HadISST1 to OI.v2 SST (see Section 3.2).This motivates us to separate the historical record into two 394 

time-periods either side of 1980, i.e. 1871-1980 and 1981-2010 (Section 3.2). 395 

However, we first consider feedback and the pattern effect that arises when calculated over the 396 

historical record as a whole, rather than any time-period within. This is useful for informing studies 397 

that use the entire observed historical record to estimate ECS via energy budget constraints (e.g. 398 

Andrews et al., 2018; Sherwood et al. 2020; Forster et al. 2021). It also allows a direct comparison of 399 

our results using a broad ensemble of models to the narrower range of model results reported by 400 

Andrews et al. (2018) and Lewis and Mauritsen (2021). 401 

3.1 Considering the historical record as a whole 402 

Figures 1e and 1f show the λhist = dN/dT relationship in the ensemble-mean amip-piForcing and 403 

hadSST-piForcing simulation for 1871-2010. λhist is determined from ordinary least square linear 404 

regression on global-annual-mean dN and dT timeseries data. λhist values for individual models are 405 

given in Table 2 alongside their abrupt-4xCO2 sensitivity metrics. Across the fourteen model 406 

ensemble of amip-piForcing simulations λhist = -1.65 ± 0.46 W m-2 K-1, slightly smaller in magnitude 407 

but with similar spread to the Andrews et al. (2018) ensemble (they reported λhist = -1.74 ± 0.48 W m-408 
2 K-1). Like in Andrews et al. (2018), the spread in λhist is extremely similar to the spread in λ4xCO2 from 409 

the coupled AOGCM abrupt-4xCO2 ensemble (Table 2) (this is also true for the individual feedback 410 

terms, see below). The pattern effect, Δλ = λ4xCO2 – λhist between amip-piForcing and abrupt-4xCO2 411 

(with λ4xCO2 from years 1-150 of abrupt-4xCO2) is Δλ = 0.70 ± 0.47 W m-2 K-1 across the ensemble 412 

(Table 3), which is slightly larger in magnitude but with more spread than that reported by Andrews 413 

et al. (2018) (0.64 ± 0.40 W m-2 K-1). 414 

Tables 2 and 3 also present the equivalent λhist and Δλ values when the AGCMs are forced with 415 

HadISST1 SSTs instead (hadSST-piForcing) and Figure 2 shows the relationship to amip-piForcing. λhist 416 

= -1.43 ± 0.41 W m-2 K-1 in hadSST-piForcing (Table 2), which is smaller in magnitude but with similar 417 

spread to the amip-piForcing results above. Subsetting to the nine AGCMs with both simulations, λhist 418 

is 0.28 ± 0.17 W m-2 K-1 smaller in magnitude in hadSST-piForcing but well correlated (r=0.93) with 419 

amip-piForcing values (Figure 2a, red points). The regression slopes of the red line in Figures 2a 420 

(slope = 0.84 ± 0.21) and 2b (slope = 0.84 ± 0.26) are statistically consistent with unity, implying 421 

there is little AGCM dependence in the difference between λhist from amip-piForcing and hadSST-422 

piForcing. Hence, given the strong correlation and close approximation of being parallel to the one-423 
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to-one line (Figure 2, red points), we suggest a simple offset given by the difference (0.28 ± 0.17 W 424 

m-2 K-1, Table 3) well approximates the relationship between λhist over 1871-2010 in amip-piForcing 425 

and hadSST-piForcing. 426 

Despite λhist being smaller in magnitude in hadSST-piForcing, Δλ = 0.48 ± 0.36 W m-2 K-1 is still large 427 

and positive across the hadSST-piForcing ensemble (Table 3). The smaller uncertainty than the amip-428 

piForcing pattern effect likely reflects the narrower diversity of model physics in the smaller hadSST-429 

piForcing ensemble, for example we do not have hadSST-piForcing experiments for the model 430 

(MIROC6) with the smallest pattern effect in amip-piForcing. If we subset the amip-piForcing 431 

ensemble to just those nine models with corresponding hadSST-piForcing experiments (Fig 2b, red 432 

points), then the spread (as measured by 1.645σ) across models in Δλ reduces from 0.47 to 0.38, 433 

which is similar to the spread found in hadSST-piForcing. 434 

That a large pattern effect is present in the hadSST-piForcing simulation over the historical record is 435 

not in contradiction with the results of Lewis and Mauritsen 2021 (LM2021), who reported a 436 

‘negligible unforced historical pattern effect’ with ECHAM6.3 when forced with HadISST1 SSTs. This is 437 

because LM2021 calculated their pattern effect by comparing λ from hadSST-piForcing to λ derived 438 

from a coupled AOGCM historical simulation, or approximations of it from years 1-70 of 1%CO2 or 439 

years 1-50 of abrupt-4xCO2 simulations. This necessarily gives a smaller pattern effect because it 440 

excludes many of the SST variations and patterns effects seen on longer timescales in CO2 forced 441 

simulations (Senior and Mitchell, 2000; Gregory et al. 2004; Andrews et al. 2012; Armour et al., 442 

2013; Geoffroy et al., 2013; Andrews et al. 2015; Rugenstein et al. 2016). While this might be useful 443 

for trying to quantify different mechanisms of the pattern effect (e.g. forced or unforced, see 444 

Dessler, 2020), it is a quantity we are less interested in, as we want to know the λ of relevance to 445 

long-term ECS and projections of the late 21st century. Therefore contrasting to λ4xCO2 from years 1-446 

150 is the most relevant metric (Sherwood et al., 2020), as we have done here. 447 

Following Andrews et al. (2018) we decompose λ into its component longwave (LW) clear-sky, 448 

shortwave (SW) clear-sky and cloud radiative effect (CRE, equal to all-sky minus clear-sky fluxes) 449 

terms in Figure 3. Deviations away from the one-to-one line indicate a difference in amip-piForcing 450 

and abrupt-4xCO2 λ (i.e. the pattern effect). Tables of the individual model results are given in the 451 

Supplementary Tables 1 - 3. It confirms the basic premise that historical LW clear-sky and cloud 452 

feedbacks are more stabilizing than under abrupt-4xCO2, consistent with the mechanistic and 453 

process understanding that the pattern effect arises predominantly from a lapse-rate (which affects 454 

LW clear-sky fluxes) and cloud feedback dependence on SST patterns (e.g. Zhou et al., 2016, 455 

Andrews and Webb, 2018, Ceppi and Gregory, 2017; Dong et al. 2019). Figure 3 and Supplementary 456 

Tables 1 - 3 show that the inter-model spread in feedback in both amip-piForcing and abrupt-4xCO2 457 

is dominated by cloud rather than clear-sky feedbacks. Figure 3 also suggests there is a small 458 

compensation to the total pattern effect from SW clear-sky feedbacks, likely from sea-ice. That is, 459 

AGCMs forced with AMIP II boundary condition sea-ice changes have a slightly more positive 460 

feedback than found in their coupled abrupt-4xCO2 simulations, though the difference is small 461 

(Figure 3). Consequently, a simple attribution of the difference in total feedback between amip-462 

piForcing and abrupt-4xCO2 to an SST driven pattern effect (as we have done here) will slightly 463 

understate the actual effect, though the term is small and we neglect it from now on. We discuss 464 

sea-ice uncertainties further below. 465 

MIROC6 is the only model in the amip-piForcing ensemble to have near zero pattern effect (Table 3 466 

and note the single black dot on the one-to-one line in Figure 3). The reason for this different 467 

behaviour remains unclear. One could speculate that there is a relationship between a model’s 468 

climate sensitivity and its pattern effect, given that MIROC6 has the lowest ECS of all models 469 



13 
 

considered here (ECS=2.6K, Table 2). However, we note that there is little correlation between ECS 470 

and Δλ across models (r=0.4) and that several other models with low ECS have large Δλ.  471 

Alternatively, it could be that MIROC6’s atmospheric physics are largely insensitive to different SST 472 

patterns and/or that its AOGCM abrupt-4xCO2 warming pattern is more similar to the historical 473 

record than other models. Both are potentially possible. For example, λhist for 1871-1980 and 1980-474 

2010 separately (next Section and Table 2) shows that MIROC6 does simulate a pattern effect, but 475 

achieves a near zero pattern effect over the historical record as a whole by having a smaller (relative 476 

to other models) pattern effect over recent decades, offset by a negative pattern effect over the 477 

earlier period. In addition - and in contrast to other models - MIROC6 simulates a negative LW clear-478 

sky pattern effect (red dot below the one-to-one line, Figure 3) which offsets its positive cloud 479 

feedback pattern effect. 480 

The model with the largest pattern effect is CESM2 (Table 3). This occurs because of a particularly 481 

large cloud feedback sensitivity to SST patterns (grey dot furthest from the one-to-one line, Figure 482 

3). Zhu et al. (2022) argue that an issue in CESM2’s cloud microphysics related to cloud ice number 483 

leads to an unrealistically large cloud sensitivity to warming in this model. Whether this is 484 

responsible for the model’s large pattern effect is unclear. Mixed-phase clouds have not typically 485 

been associated with the pattern effect, though might be of relevance to pattern effects over the 486 

Southern Ocean (Dong et al. 2020; Bjordal et al. 2020). It would be interesting in future work to 487 

identify the different cloud types associated with the pattern effect and conduct sensitivity 488 

experiments with CESM2 to investigate which aspects of the cloud feedback change with different 489 

cloud microphysics schemes. 490 

Many of our amip-piForcing simulations (eleven models) continue to Dec 2014 (Table 1), and six 491 

have corresponding hadSST-piForcing simulation, so we consider how this extended period affects 492 

the overall assessment of the historical pattern effect. In the eleven amip-piForcing simulations, λhist 493 

= -1.65 ± 0.48 W m-2 K-1
 over 1871-2010, but this increases in magnitude so that λhist = -1.71 ± 0.51 W 494 

m-2 K-1
 if calculated over 1871-2014 (Supplementary Table 4). An increase occurs in every model and 495 

the magnitude of change across the ensemble is 0.07 ± 0.06 W m-2 K-1 (Supplementary Table 4). In 496 

the six corresponding hadSST-piForcing simulations, λhist = -1.48 ± 0.41 W m-2 K-1
 over 1871-2010, but 497 

this increases in magnitude so that λhist = -1.53 ± 0.39 W m-2 K-1
 if calculated over 1871-2014 498 

(Supplementary Table 4). The magnitude of the increase (0.05 ± 0.05 W m-2 K-1) is thus slightly 499 

smaller in this dataset (Supplementary Table 4). 500 

While we have focused on the SST driven pattern effect, a remaining structural uncertainty in 501 

assessing total feedback differences between λ4xCO2 and λhist relates to the sea-ice dataset used to 502 

force the AGCMs. Andrews et al. (2018) provided a sensitivity test (see their Supplementary 503 

Material) by repeating the amip-piForcing simulation in two AGCMs but forced with HadISST2.1 504 

(Titchner and Rayner, 2014) SSTs and sea-ice. They found that the historical feedback parameter 505 

increased by ~0.6 W m-2 K-1 when forced with HadISST2.1 compared to AMIP II, and attributed most 506 

of this change to differences in the sea-ice datasets rather than SST. They noted that HadISST2.1 has 507 

substantially more pre-industrial Antarctic sea-ice concentration (see Titchner and Rayner, 2014), 508 

and so generated more sea-ice loss (more positive feedback) over the historical period (Andrews et 509 

al. 2018), as well containing large discontinuities in the timeseries.  The historical sea-ice trends and 510 

associated feedbacks over the Southern Ocean in the HadISST2.1 dataset are difficult to reconcile 511 

with those found in AOGCMs and our physical understanding of them (Schneider et al. 2018). We do 512 

not pursue this further, but simply highlight that dataset assumptions made about pre-industrial sea-513 

ice concentrations in Antarctica can have substantial impacts on diagnosed feedbacks in AGCMs and 514 

remains an outstanding uncertainty in assessing total feedback differences. Fortunately, in amip-515 



14 
 

piForcing the difference in SW clear-sky feedback (which will be strongly impacted on by sea-ice 516 

feedbacks) is similar to that seen in λ4xCO2 (Figure 3) so this can be ignored if the focus is solely on SST 517 

driven feedbacks in the atmosphere. 518 

In summary, for warming since the 1800s (using either 1871-2010 or 1871-2014), both amip-519 

piForcing and hadSST-piForcing suggest a substantial pattern effect between radiative feedbacks 520 

operating over historical climate change and long-term ECS. 521 

3.2 Considering the historical record before and after 1980 522 

We now return to the divergence in dN response between amip-piForcing and hadSST-piForcing 523 

simulations around 1980 (Figure 1d). As well as the change in behaviour discussed above, 1980 524 

provides a convenient separation of historical feedbacks and the pattern effect for two other 525 

motivating reasons: (i) Fueglistaler and Silvers (2021) identify ~1980 as the point in which the Earth 526 

begins to warm with a particular configuration of tropical Pacific SSTs where regions of deep 527 

convection warm substantially more than the tropical mean, driving large negative cloud feedbacks 528 

and consistent with a large pattern effect over this period (Gregory and Andrews 2016; Zhou et al., 529 

2016; Andrews et al., 2018; Gregory et al. 2020); and (ii) Fueglistaler and Silvers (2021) also identify 530 

~1980 as a useful approximation of when the satellite era was integrated into the global observing 531 

system, and so developing an understanding of feedbacks and the pattern effect specifically from 532 

1980 onwards will aid interpretation of our most comprehensive observations of climate change and 533 

how they might relate to the future change (next Section). 534 

Figure 4 compares the surface temperature pattern over the two time-periods 1871-1980 and 1981-535 

2010 in amip-piForcing and hadSST-piForcing. Differences between the two SST reconstructions are 536 

extremely subtle. For the earlier 1871-1980 time period, warming is more uniform, in part because 537 

of the longer time-period considered which will smooth out variability. Since 1981 there has been 538 

western Pacific warming with cooling in the Southern Ocean and off equatorial eastern Pacific 539 

(which are regions of marine low clouds), despite temperatures increasing in the global mean. 540 

Hence, we might expect a small pattern effect prior to 1980 and a large pattern effect post 1980 541 

(e.g. Gregory and Andrews, 2016; Zhou et al., 2016, Andrews and Webb, 2018, Ceppi and Gregory, 542 

2017; Dong et al. 2019, Fueglistaler and Silvers 2021). 543 

Figures 1g and 1h show the λhist = dN/dT relationship in the ensemble-mean amip-piForcing and 544 

hadSST-piForcing simulation for 1871-1980 (grey points) and 1981-2010 (blue points). Results for 545 

individual models are given in Table 2. Figures 1g and 1h confirms the basic premise that λhist 546 

strengthens in magnitude post 1980, consistent with the change in SST patterns (Figure 4). 547 

For the earlier time-period, 1871-1980, λhist = -1.14 ± 0.33 W m-2 K-1 in amip-piForcing is similar to λhist 548 

= -1.21 ± 0.38 W m-2 K-1 in hadSST-piForcing (Table 2) – suggesting little sensitivity of the results to 549 

these two SST datasets over this time period. This is unsurprising given that the datasets are similar 550 

(though not identical) prior to this period (Section 2.2 and Figure 4). For the nine AGCMs that 551 

performed both simulations Figure 2a shows the relationship between λhist in amip-piForing and 552 

hadSST-piForcing. For all time-periods λhist in amip-piForcing and hadSST-piForcing is found to be well 553 

correlated (r ≥ 0.87, Figure 2a). For the earlier 1871-1980 results, the λhist values fall close to the one-554 

to-one line (blue dots, Figure 2) and within the range of λ4xCO2 (grey shaded areas in Figure 2). This 555 

suggests that for 1871-1980 λhist is broadly independent of the two SST datasets (consistent with 556 

their common basis) and that the pattern effect is small for this time period. Indeed, the 1871-1980 557 

pattern effect is small but positive (Δλ = 0.19 ± 0.35 W m-2 K-1 in amip-piForcing and 0.26 ± 0.26 W m-558 
2 K-1 in hadSST-piForcing, Table 3 and Figure 2b). 559 
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In contrast, for 1981 onwards (i.e. 1981-2010), λhist is generally far from the λ4xCO2 range (i.e. a large 560 

pattern effect) and away from the one-to-one line (i.e. a dependence on the SST dataset) (Figure 2a; 561 

grey points). Indeed, λhist over 1981-2010 is substantially stronger in magnitude than over 1871-1980 562 

(λhist = -2.33 ± 0.72 W m-2 K-1 in amip-piForcing over 1981-2010, Table 2; Figure 2a) and the pattern 563 

effect is large (Δλ = 1.38 ± 0.75 W m-2 K-1, Table 3; Figure 2b), although somewhat weaker in 564 

magnitude in hadSST-piForcing (Δλ = 1.24 ± 0.88 W m-2 K-1, Table 3; Figure 2b). For 1981-2010, λhist is 565 

generally weaker in hadSST-piForcing (Table 2; Figure 3a) by 0.24 ± 0.46 W m-2 K-1 across the nine 566 

AGCMs using both SST datasets.  567 

These results are generally consistent with Fueglistaler and Silvers (2021) and Lewis and Mauritsen 568 

(2021) who both point to the AMIP II SST dataset as having larger (relative) western tropical Pacific 569 

warming than in other SST datasets, and hence from the process understanding we would expect a 570 

more negative feedback (and larger pattern effect) in amip-piForcing, as found above.  The one 571 

exception is GFDL-AM4, which simulates a more negative λhist under HadISST1 SSTs than AMIP II 572 

from 1981-2010, and so a larger pattern-effect over this period under HadISST1 SSTs (Tables 2 and 3 573 

and the single grey dots in Figures 2a and 2b which sit on the other side of the one-to-one line from 574 

the other models). The reasons for this remain unclear. 575 

In summary we have shown that a division around 1980 usefully separates historical climate change 576 

into two time-periods: (i) pre 1981 the Earth warmed over most of the historical record with an 577 

averaged warming pattern that is relatively uniform, and feedbacks largely consistent with long-term 578 

ECS feedbacks (i.e. a relatively small pattern effect), and (ii) post 1980 where the Earth warmed with 579 

a particular configuration of strong SST gradients that drove feedbacks much more stabilizing than 580 

those seen in long-term ECS feedbacks (i.e. large pattern effect), albeit with a sensitivity of the 581 

magnitude of this result to the SST dataset considered. 582 

3.3 Relationships between historical and ECS feedbacks 583 

We now consider whether feedbacks over the historical period in amip-piForcing are related to 584 

λ4xCO2. This is in contrast to the previous sections which only quantified their difference (i.e. the 585 

pattern effect). 586 

Firstly, we note that the spread in feedback across models over the earlier (1871-1980) time-period 587 

in amip-piForcing is well correlated with the spread in feedback across models in abrupt-4xCO2 588 

(r=0.69, Figure 5a). In contrast, feedbacks over the most recent decades (1981-2010) are only weakly 589 

correlated with λ4xCO2 (r=0.27). Secondly, feedback over the full historical record (1871-2010) is only 590 

weakly correlated with feedback from the 1871-1980 time-period (r=0.45, Figure 5b). In contrast, 591 

1871-2010 feedback is strongly correlated with feedback over the most recent 1980-2010 decades 592 

(r=0.91, Figure 5b). This strong correlation between 1981-2010 and the 1871-2010 feedback arises 593 

because the spread for 1871-2010 is dominated by the spread for 1981-2010. 594 

Given that the feedbacks applying in 1871-1980 and in 1981-2010 are different, we infer that the SST 595 

patterns over these two periods are driven by different mechanisms. Because the feedbacks of 596 

1871-1980 are correlated with abrupt-4xCO2, the difference between the two periods could be 597 

explained by CO2 being the dominant influence in 1871-1980 SST patterns, while something else (e.g. 598 

perhaps variability, aerosol, volcanism) dominates during 1981-2010. This is only a hypothesis, 599 

because these experiments do not provide a way to attribute the observed SST changes to causes. 600 

The result is that the spread in feedbacks over the full historical record are only weakly correlated 601 

with λ4xCO2 (r=0.51, Figure 3), because of the strong pattern effect post 1980. Hence, we can say little 602 

about future λ4xCO2 directly from climate change post 1980 or even the full historical record without 603 
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adjusting for a pattern effect.  In contrast, the feedbacks operating over the earlier 1871-1980 time-604 

period are correlated with λ4xCO2 (r=0.69, Figure 5a). 605 

That recent decadal feedbacks are the most unrepresentative of the long-term climate sensitivity is 606 

unfortunate, not just because it coincides with the advent of the satellite record and so is extremely 607 

well observed, but also because climate change since ~1980 ought to provide the best constraint on 608 

ECS (e.g. Jiménez-de-la-Cuesta and Mauritsen, 2019). This is because it offers a strong global 609 

warming signal, which AOGCMs attribute to greenhouse gas increases, while avoiding the large 610 

uncertainty associated with global-mean aerosol radiative forcing in energy budget estimates of ECS.  611 

However the role of aerosols should not be discounted entirely, since strong compensating regional 612 

changes may have impacted on SST patterns (e.g. Smith et al. 2015; Takahashi & Watanabe, 2016; 613 

Moseid et al., 2020). In contrast, although feedbacks operating over the earlier 1871-1980 part of 614 

the historical record are correlated with long-term CO2 induced feedbacks, a reliable observational 615 

constraint is harder because the climate change signal is smaller and the observations poorer. We 616 

discuss this further in the Discussion section. 617 

Up to now we have only considered a comparison of amip-piForcing feedbacks to a single definition 618 

of abrupt-4xCO2 feedbacks (i.e. feedbacks diagnosed over years 1-150 in abrupt-4xCO2). Here we 619 

briefly consider separating λ4xCO2 into the two principal timescales of the abrupt-4xCO2 response 620 

following Andrews et al. (2015) by calculating λ4xCO2 over years 1-20 (a fast timescale) and 21-150 (a 621 

slow timescale) (Table 2). The rationale is that 20 years is approximately the timescale required for 622 

the mixed-layer to equilibrate in response to step forcing, and any subsequent climate response 623 

scaling with the slower deep-ocean timescale, as approximated by two-layer models (Held et al., 624 

2010; Geoffroy et al., 2013; Gregory et al., 2015). 625 

Figure 5c shows λhist from 1871-1980 is largely scattered about the one-to-one line with λ4xCO2 from 626 

years 1-20, suggesting little to no pattern effect between these two. This is potentially consistent 627 

with the historical record largely being the result of the faster timescale responses (Held et al. 2010; 628 

Proistosescu & Huybers, 2017). In contrast, post-1980 λhist is far from the one-to-one line (i.e. large 629 

pattern effect to years 1-20 of abrupt-4xCO2, Figure 5c) but is marginally correlated (r=0.53), 630 

suggesting recent decades do contain some information relevant to the feedback seen in the fast 631 

timescale response to CO2. However, the longer-term feedbacks associated with the slow timescale 632 

response to CO2 (years 21-150 of abrupt-4xCO2, Figure 5d) have no correlation with λhist post-1980 633 

(r=-0.06, Figure 5d). 634 

 635 
3.4 Decadal variability in feedbacks and the pattern effect 636 
 637 
In this final section of GCM results we briefly comment how λhist and the pattern effect varies on 638 

decadal timescales in the amip-piForcing and hadSST-piForcing simulations. 639 

Following Gregory and Andrews (2016) we calculate λhist = dN/dT over a moving 30 year window in 640 

the amip-piForcing and hadSST-piForcing simulations (Figure 6a and b). For example λhist calculated 641 

over the 30 year period 1925 to 1954 is presented at year 1939.5 in Figure 6. In Figures 6c-h the LW 642 

and SW clear-sky and cloud radiative effect of the feedback are also shown. The correlation 643 

coefficient between the amip-piForcing and hadSST-piForcing multi-model-mean λhist timeseries is 644 

0.84, suggesting the broad features of the decadal λhist variations are robust to the SST datasets. In 645 

particular λhist peaks (least negative, smallest pattern effect) around 1940 while generally being large 646 

in magnitude (large pattern effect) over recent decades (see also Gregory and Andrews, 2016; Zhou 647 

et al. 2016; Andrews et al. 2018; Gregory et al. 2020). The clear sky feedbacks (Figures 6c-f) are 648 
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largely stable, while the variation in λhist is almost entirely explained by variation in cloud feedback 649 

(Figures 6g-h), consistent with previous findings (e.g. Zhou et al. 2016; Andrews et al. 2018). 650 

In Section 5, we discuss further the reasons for the decadal variations in SST patterns and λhist, i.e. 651 

whether they are the result of spatiotemporal changes in forcings such as aerosols or volcanic 652 

forcing or due to unforced variability. 653 

 654 

4. Observed climate change 655 

We next consider whether the radiative feedback and pattern effects simulated by the GCMs are 656 

consistent with observed variations in the Earth’s energy budget. Gregory et al. (2020) asked a 657 

similar question for the post 1980 period and suggested they are (see their Figure 5c), but here we 658 

go a few steps further. Specifically, not only do we consider the post 1980 period, but also assess 659 

changes in the Earth’s energy budget back to the 1800s. Furthermore we investigate the implications 660 

of a strongly negatively feedback parameter (large pattern effect) since 1985 on the observed rate of 661 

global warming. 662 

The observations also provide an opportunity to bring our λhist and pattern effect estimate up to date 663 

with the most recently observed data (up to and including 2019), whereas our GCM analysis 664 

generally finished in 2014. The observations post 2014 period are of particular interest given they 665 

include the major El-Nino event of 2015/2016 that was associated with eastern-pacific warming and 666 

marked changes in the observed radiation budget (Loeb et al. 2020; 2021). We expect these post 667 

2014 years to have an impact λhist and the pattern effect, given the process understanding discussed 668 

previously (e.g. Zhou et al., 2016, Andrews and Webb, 2018, Ceppi and Gregory, 2017; Dong et al. 669 

2019). 670 

4.1 Comparison of AGCM results to observed estimates 671 

We first validate the AGCM λhist estimates over recent decades. To do this we use a merged satellite 672 

dataset (ERBE WFOV + CERES) (Allan et al. 2014) that provides an observational estimate of dN 673 

variations from 1985 to 2019. For dT we use the HadCRUT5 analysis dataset (Morice et al. 2021). For 674 

dF we use the IPCC AR6 (Forster et al. 2021; Smith et al., 2021) best estimate historical ERF changes. 675 

These datasets are described in further detail in Section 2.4. We first consider the 30-year period 676 

1985 to 2014, consistent with many of the AGCMs.  677 

Figure 7a and 7b show the dT, dN and dF timeseries over this period. The 1985-2014 ‘observed’ -λhist 678 

= d(F – N)/dT ~ 2.0 ± 0.7 W m-2 K-1 relationship is shown in Figure 7d. Note the stated 5-95% 679 

uncertainty is ±1.645σ from the standard error of the linear fit, with no allowance for systematic 680 

uncertainties. As discussed in Section 2.4, observed multi-decadal changes in dN are subject to a 681 

substantial uncertainty (up to 0.5 Wm-2) primarily related to the breaks in the record prior to 2000, 682 

though are considerably smaller afterwards (Liu et al. 2020).  Note also that years 1991-2 are 683 

excluded from the calculation as these years are identified as being strongly impacted by the 684 

volcanic forcing from the Pinatubo eruption (Figure 7b). Whilst λhist is robust to this (we get just the 685 

same λhist ~ -2.0 ± 0.7 W m-2 K-1 if we include these years), including these years has an impact on the 686 

ocean heat uptake efficiency estimate (see Section 4.3). The observed 1985-2014 λhist estimate is 687 

shown on Figure 6a and 6b (red line) as an illustration in comparison to the AGCM decadal variations 688 

in λhist. The observed λhist best estimate agrees exceptionally well with the AGCM multi-model mean, 689 

and nearly all models are within the 5-95% uncertainty estimate as they approach the 1985-2014 690 

value (Figure 6a and 6b). 691 
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A more rigorous comparison of individual AGCM results to the observed estimate is shown in Figure 692 

8. Here the AGCM λhist estimates from amip-piForcing and hadSST-piForcing have been calculated in 693 

the same way as the observations, i.e. over 1985-2014 excluding 1991-2. The overlap between the 694 

model and observed estimates points to broad consistency between the models and observations in 695 

the recent decadal value of λhist (Figure 8). The large uncertainties (which are likely underestimated 696 

since we have not accounted for structural errors) inhibit a more precise validation of individual 697 

models against the observed estimate. 698 

For the full the historical record we estimate λhist from IPCC AR6 assessed changes in T, N and F. 699 

Forster et al. (2021) give these as ΔT = 1.03 ± 0.20 K, ΔN = 0.59 ± 0.35 W m-2 and ΔF = 2.20 [1.53 to 700 

2.91] W m-2 for the time-period 1850-1900 to 2006-2019. For simplicity we assume ΔF = 2.20 ± 0.7 W 701 

m-2, where we have approximated the uncertainty in ΔF as a Gaussian. Randomly sampling (with 702 

replacement) from the Gaussian distributions in ΔN, ΔF and ΔT gives λhist = (ΔN – ΔF)/ΔT = -1.6 ± 0.8 703 

W m-2 K-1. This is again in agreement with the amip-piForcing (λhist = -1.65 ± 0.46 W m-2 K-1, Table 2) 704 

and hadSST-piForcing (λhist = -1.43 ± 0.41 W m-2 K-1, Table 2) 1871-2010 ensembles, though an exact 705 

match is not expected given the slightly different time-periods and methods (e.g. finite differences 706 

versus regression) used. Still, the agreement provides further confidence in the GCM’s simulated 707 

radiative response to observed SST and sea-ice variations over the historical record, and strengthens 708 

the conclusion that λhist has become more negative over recent decades compared to the longer 709 

1871-2010 time-period. 710 

Finally, IPCC AR6 assessed the long-term ECS relevant feedback parameter (analogous to our λ4xCO2) 711 

to be -1.16 ± 0.65 W m-2 K-1 (Forster et al., 2021) by combining lines of evidence from observations, 712 

theory, process models and GCMs on individual climate feedback processes. Combining this with our 713 

observed λhist estimates above gives an estimate of the pattern effect independently of our GCM 714 

ensemble. This gives an estimated pattern effect of ~0.8 ± 1.0 W m-2 K-1
 for 1985-2015 and ~0.4 ± 1.1 715 

W m-2 K-1
 for the full historical record (the 1850-1900 to 2006-2019 changes). While the uncertainties 716 

are substantial, there is again agreement with our GCM results. 717 

4.2 Recent observed trends and the efficiency of ocean heat uptake 718 

We have seen that both models and observed variations in the Earth’s energy budget agree on the 719 

Earth having had strongly stabilizing feedbacks over recent decades relative to AOGCM feedbacks 720 

under long-term CO2 forced climate change.  Quantifying this in a different way, a feedback 721 

parameter of ~ -2.0 Wm-2 K-1 suggests an EffCS = - F2x / λhist as low as ~ 4.0/2.0 ~ 2.0 K operating over 722 

1985-2014, assuming F2x = 4.0 W m-2 (Sherwood et al. 2020). From this it seems possible that the 723 

rate of global warming over this period (~0.19 K dec-1, Tokarska et al., 2020) might have been larger 724 

had the Earth warmed over this period with a pattern of SST associated with more positive 725 

feedbacks, as found in earlier parts of the historical record (Section 3). However, we also investigate 726 

the possibility that changes in ocean heat uptake efficiency may have compensated the changes in 727 

feedbacks and low EffCS to maintain a higher warming rate over this period than would be expected 728 

without this compensation. 729 

To do this we turn to the ‘climate resistance’ (ρ, units W m-2 K-1) “zero-layer” model of Gregory and 730 

Forster (2008) to analyse the ocean heat uptake efficiency (κ, units W m-2 K-1). This is expressed as 731 

dF=ρ dT, where ρ = κ - λ, and κ is defined as κ = dN/dT and is found to be strongly related to the 732 

thermal coupling constant (γ, units W m-2 K-1) between the upper and lower ocean in the two-layer 733 

model (Gregory et al. 2015; see their Figure 8). While initially proposed to describe scenarios with 734 

steadily increasing forcing, it is also been applied to ~30 year timescales to usefully describe or 735 

interpret the energy balance (Gregory and Forster, 2008; Watanabe et al., 2013). Despite being  a 736 
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gross simplification of the climate system (we discuss potential limitations below), dF=ρ dT is found 737 

to be an excellent approximation (r=0.86) over 1985 – 2014 (excluding the 1991-2 Pinatubo years, 738 

see below) in our data (Figure 7c). From this relationship we deduce ρ = dF/dT ~ 2.4 ± 0.5 W m-2 K-1 739 

over 1985-2014 (Figure 7c) and similarly κ = dN/dT ~ 0.4 ± 0.8 W m-2 K-1. In contrast, AOGCM 740 

simulations of steady increasing CO2 generally have a larger ocean heat uptake efficiency (κ = 0.73 ± 741 

0.18 W m-2 K-1 for years 61-80 of CMIP5 1%CO2 AOGCM simulations, Gregory et al., 2015). 742 

Another effect on surface temperature to consider is the possibility that the pattern of surface 743 

warming and/or atmospheric circulation may change the efficiency of global heat uptake (and vice 744 

versa), thus not only is λ inconstant, but κ may also vary.  Using passive ocean 745 

uptake experiments wherein ocean circulation cannot change, Newsom et al. (2020) find that ocean 746 

heat uptake efficiency can be expected to be smaller when warming is enhanced in the tropics 747 

(where deep ocean ventilation is small) and larger when warming is enhanced in the high latitudes 748 

(where deep ocean ventilation is large). With relatively small warming in the southern high latitudes, 749 

this suggests that the surface/ocean-mixed layer might have been less efficient at fluxing heat into 750 

the deep ocean over the same period as the large pattern effect, potentially enhancing global 751 

surface warming and muting some of the impact of feedback changes. However, stronger trade 752 

winds, as have been observed over 1981-2010, can also be expected to accelerate subtropical cells, 753 

enhancing ocean heat uptake efficiency and slowing global surface warming (England et al. 2014), 754 

an effect not accounted for in the passive ocean heat uptake experiments of Newsom et al. (2020). 755 

Thus, variations in both radiative feedbacks and ocean heat uptake appear to be physically 756 

linked through SST patterns and may even to some extent co-vary (Newsom et al. 2020). 757 

As our dN timeseries does not predate 1985 we cannot investigate whether κ has varied in a way 758 

that would counter changes in λhist prior to 1985. Instead, we go forward in time exploiting the 759 

datasets up to and including 2019. This includes the major El-Nino event of 2015/2016 and marked 760 

changes in the observed radiation budget (Loeb et al. 2020; 2021). Figure 9 illustrates the impact of 761 

this event on the pattern of decadal surface warming. Over 1985-2014 there is marked cooling over 762 

the eastern Pacific (Figure 9a) which is much reduced when the pattern is calculated over 1987-2016 763 

(Figure 9b) to include the peak 2015-16 El-Nino years. The difference (Figure 9c) shows the warming 764 

event of the 2015-16 El-Nino on the eastern Pacific, while cooling in the western Pacific, as well as a 765 

slight reduction in Southern Ocean cooling. This is precisely the pattern of SST change we’d expect to 766 

have an impact on λ. 767 

Table 4 shows the impact on 30-year derived ρ, λ and κ values moving forward in time from 2014, up 768 

to and including 1990-2019. Figure 7 (red crosses) shows these additional 5 years in comparison to 769 

the 1985-2014 ρ and λ relationships. Post 2014, λ reduces in magnitude (Table 4) and all the red 770 

crosses fall below the 1985-2014 λ relationship in Figure 7d. λ is approximately 25% smaller in 771 

magnitude over 1990-2019 compared to 1985-2014 (Table 4). This is consistent with process based 772 

arguments that a shift to eastern Pacific warming post 2014 ought to drive more positive feedbacks 773 

and consequently a reduction of the pattern effect over these years.  It is also consistent with Loeb 774 

et al. (2020) who performed a similar analysis but over 2001-2014 compared to 2001-2017. They 775 

also showed that AGCMs were able to capture this change in radiative response. It would be useful 776 

for future analysis if amip-piForcing type simulations were extended to at least 2019 to capture the 777 

largest change in λ (Table 4), and ideally right up to the most recent SST and sea-ice data available. 778 

In contrast to λ, ρ is relatively stable to these additional years (Table 4) and the 1985-2014 ρ 779 

relationship is found to be an excellent predictor for 2015-2019 (red crosses fall on or close to the 780 

line, Figure 7c). A consequence of ρ being well approximated as constant but λ not, is that κ (equal to 781 

ρ + λ) must compensate for the change in λ. Thus beyond 2014, the pattern effect declines but its 782 
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impact on surface temperature is buffered by a change in ocean heat uptake efficiency.  This is 783 

consistent with the original hypothesis that variations in SST patterns affect both heat loss to space 784 

(radiative feedbacks) and the efficiency of heat uptake into the deep-ocean in a way that might co-785 

vary (Newsom et al., 2020). However, the extent of any anti-correlation is unclear, it may simply 786 

apply to short term variability.  It clearly does not apply to longer-term forced changes, given that 787 

Gregory et al. (2015) found substantial variations in ρ, which would not occur if κ and λ were 788 

strongly anti-correlated. 789 

While the zero-layer model appears to work well on this short timescale (Figure 7c) we caution 790 

against assuming all changes in ocean heat content are driven by global T, as assumed by the dN = 791 

κdT relationship. This is because, especially on short timescales, other influences that do not 792 

correlate with global T, such as wind-driven ocean circulation changes perhaps, will also alter ocean 793 

heat content (England et al., 2014). In such a situation, it would be reasonable to write N = κT + U 794 

where U is an additional term to the heat balance, not related to global T. This implies κ = N/T – U/T, 795 

and including this term in the forced heat balance, N = F + λT + U, gives λ = (N-F)/T – U/T. Thus U/T 796 

would perturb the estimate of κ (a positive number) and λ (a negative number) in opposite 797 

directions, as we see in our data. Hence our results are potentially evidence for variation in ocean 798 

heat content not driven by global T, but we cannot say exactly what it is – other than it does not 799 

scale with global T. 800 

We caution that structural errors could impact on our diagnosis. Specifically, both κ and λ are related 801 

to dN and so any bias or error in the observed dN trend would bias κ and λ in opposite directions. 802 

Moreover ρ=dF/dT would be unaffected by any bias or error in dN, and so the anti-correlation would 803 

compensate to leave ρ = κ - λ unaffected. We illustrate this in Table 4, which shows these quantities 804 

calculated over 1985-2014 using 5 available different versions of the DEEP-C dN datasets (see 805 

Section 2.4). Differences in the results emerge (λ reduces in magnitude from ~-2.2 Wm-2 K-1 to ~ -2.0 806 

Wm-2 K-1, with a compensating increase in κ) as the DEEP-C datasets transition from v3 to v4 (i.e. v2 807 

and v3 give the same results, as do v4 and v5), highlighting the impact of potential structural errors 808 

in these results. We do not purse the cause of the difference in the results, but it is likely due to 809 

changes between v3 and v4 in how the DEEP-C method bridges the gap between satellite products in 810 

the 1990s (a longer adjustment period and a different modelling ensemble is used) (Liu et al., 2020). 811 

However it is also important to note that the observational record since 2000, applying the CERES 812 

dataset, is subject to much smaller structural uncertainty than the earlier record implying a greater 813 

confidence in our analysis of the anomalous N variations post 2014. 814 

4.3 Effect of the Pinatubo volcanic eruption 815 

Finally, we comment on the effect of the Pinatubo volcanic eruption on these results. There is a large 816 

negative spike in dF and dN around 1991 and 1992 (Figure 7b). While we found no impact of these 817 

years on our estimate of 1985 – 2014 λhist, they have a strong impact on ρ and κ. Including these 818 

years in the regression analysis, we find ρ = dF/dT ~ 2.9 ± 0.7 W m-2 K-1 and κ = dN/dT ~ 0.8 ± 0.9 W 819 

m-2 K-1, much larger than when these years are excluded from the analysis as above. This is 820 

consistent with Gregory et al. (2015) who found the ‘transient climate response parameter’ (equal to 821 

1/ρ, units K W-1 m2) to explosive eruptions to be smaller (ρ larger) than that evaluated in AOGCMs 822 

under steadily increasing CO2, principally because the surface/mixed-layer readily gives up heat (κ 823 

larger) in response to a short-lived forcing like an explosive volcanic eruption. Hence if the time-824 

period under consideration contains large volcanic eruptions then the “zero-layer” model (dF=ρ dT) 825 

is found to be a poor approximation (i.e. ρ not constant) over the entire time-period because it 826 

neglects the importance of the upper-ocean heat capacity on short timescales (Gregory and Forster, 827 
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2008; Held et al. 2010; Gregory et al., 2016). This manifests itself as a sensitivity of ρ and κ to the 828 

inclusion or exclusion of volcanic years, as we have found here. 829 

 830 

5. Summary, Discussion and Conclusions 831 

5.1 Historical feedbacks and the pattern effect 832 

The dependence of radiative feedback on the pattern of SST change was investigated in fourteen 833 

Atmospheric General Circulation Models (AGCMs) forced with observed variations in sea-surface-834 

temperature (SST) and sea-ice over the historical record from 1871 to near-present (amip-piForcing 835 

experiment). We found that the pattern effect identified in a previous model intercomparison 836 

(Andrews et al, 2018) is largely robust to a wider set of new generation AGCMs with a broader range 837 

of atmospheric physics and climate sensitivities. Our qualitative conclusions were not strongly 838 

dependent on the AMIP II SST dataset used to force the AGCMs; indeed, the feedbacks in nine 839 

AGCMs using SSTs from HadISST1 (hadSST-piForcing) were found to be strongly correlated with 840 

feedbacks in amip-piForcing, though the magnitude of the pattern effect post 1980 was found to be 841 

smaller under HadISST1 SSTs (see also Andrews et al., 2018; Lewis and Mauritsen, 2021; Zhou et al., 842 

2021; Fueglistaler and Silvers, 2021). 843 

Separating the historical record at 1980, we found that over 1871-1980 the Earth warmed with a 844 

relatively uniform warming pattern and feedbacks largely consistent and strongly correlated with 845 

long-term abrupt-4xCO2 feedbacks (i.e. with relatively small pattern effect - Figures 2 and 5). In 846 

contrast, post 1980 the Earth warmed with a strong tropical Pacific SST gradient (Figure 4) where 847 

regions of deep convection warm substantially more than the tropical mean (Fueglistaler and Silvers, 848 

2021). This drove large negative feedbacks and pattern effects in both our amip-piForcing and 849 

hadSST-piForcing simulations, consistent with the physical understanding of how lapse-rate and 850 

cloud feedbacks depend on tropical Pacific SST patterns (Zhou et al., 2016; Andrews and Webb, 851 

2018; Ceppi and Gregory, 2017; Dong et al., 2019). 852 

As well as a large pattern effect, feedbacks post 1980 were found to be uncorrelated with long term 853 

CO2 driven feedbacks (Figure 5).  This is unfortunate, because the feedback inferred from this period 854 

therefore does not constrain the CO2 feedback or ECS. It is also surprising, because the period since 855 

~1980 contains a well observed large global temperature response, which AOGCMs attribute to 856 

increasing greenhouse gases, and it avoids the aerosol forcing uncertainty issue which is small in 857 

energy budget estimates of ECS over this period (at least in the global-mean; regional aerosol forcing 858 

could still impact on SST patterns and feedbacks) (Jiménez-de-la-Cuesta and Mauritsen, 2019). 859 

Despite this, it turns out to be the worst period for inferring the Earth’s long-term CO2 climate 860 

sensitivity from the observed global energy balance. Conversely, feedbacks acting earlier in the 861 

record (1871-1980) are representative of the long-term response (i.e. smaller pattern effect) and do 862 

correlate with λ4xCO2 across models, yet this period has a smaller climate change signal and is not as 863 

well observed, containing much larger uncertainties relative to the climate change signal (e.g. Otto 864 

et al., 2013), as well as a large forcing uncertainty. Hence the usefulness of this time-period is limited 865 

for setting a constraint on λhist. 866 

Considering the historical record as a whole is useful for informing studies that use the entire 867 

observed record to estimate ECS via energy budget constraints (e.g. Sherwood et al. 2020). We 868 

found that the pattern effect over 1871-2010 to be Δλ = 0.70 ± 0.47 W m-2 K-1 in our amip-piForcing 869 

ensemble and Δλ = 0.48 ± 0.36 W m-2 K-1 in hadSST-piForcing, where the smaller uncertainty in 870 

hadSST-piForcing likely reflects the narrower set of model physics in this smaller ensemble (for 871 
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example we do not have hadSST-piForcing experiments for the model (MIROC6) with the smallest 872 

pattern effect in amip-piForcing). The question therefore arises as to which of these estimates ought 873 

to be used for adjusting historical energy budget constraints on ECS for pattern effects. 874 

Both Lewis and Mauritsen (2021) and Fueglistaler and Silvers (2021) showed that the AMIP II dataset 875 

had the largest warm pool trends relative to the tropical-mean of all SST reconstructions they 876 

considered. Hence one interpretation of our results is that the pattern effect in amip-piForcing might 877 

usefully be regarded as an upper bound on the structural uncertainty of the experimental design to 878 

observational uncertainty in SST reconstructions. A best estimate might place more weight on the 879 

hadSST-piForcing pattern effects, which have warm pool trends (relative to the tropical-mean) closer 880 

to the middle of the range of SST reconstructions (Fueglistaler and Silvers, 2021; Lewis and 881 

Mauritsen, 2021).  In that case, a best estimate of the historical pattern effect could be 0.48 ± 0.47 882 

W m-2 K-1 for the time-period 1871-2010, which represents the pattern effect from hadSST-piForcing 883 

but retaining the larger uncertainty from the (larger ensemble) amip-piForcing results. If calculated 884 

over 1871-2014 the pattern effect increases by 0.05 ± 0.05 W m-2 K-1 according to the hadSST-885 

piForcing ensemble. This best estimate of the historical pattern effect is close to that used in 886 

Sherwood et al. (2020), who assumed a value of 0.5 ± 0.5 W m-2 K-1 (they were informed by Andrews 887 

et al. (2018) who used amip-piForcing but allowed for a potentially smaller pattern effect than that 888 

study based on expert judgement). On the other hand, just because the AMIP II SST trends are at 889 

one end of the range of SST reconstructions does not necessarily mean they are more erroneous. 890 

Indeed, Zhou et al. (2021) showed that TOA radiative fluxes simulated by CAM5.3 correlated better 891 

with CERES observations when forced with AMIP II SSTs rather than HadISST SSTs, suggesting the 892 

results from amip-piForcing may be more reliable. In this case, the 1871-2010 pattern effect is 0.70 ± 893 

0.47 W m-2 K-1.  In the future, a model intercomparison of the pattern effect to a broader range of 894 

SST reconstructions would be useful to address any outstanding structural uncertainty to SST 895 

reconstructions. 896 

To provide independent evidence for the historical pattern effect, we used IPCC AR6 assessed 897 

changes in T, N and F between 1850-1900 to 2006-2019 (Forster et al. 2021) to estimate a historical 898 

feedback parameter of λhist = (ΔN – ΔF)/ΔT = -1.6 ± 0.8 W m-2 K-1. This was found to be in agreement 899 

with the amip-piForcing and hadSST-piForcing ensembles. IPCC AR6 also assessed the long-term ECS 900 

relevant feedback parameter (-1.16 ± 0.65 W m-2 K-1, Forster et al., 2021) from combining lines of 901 

evidence from observations, theory, process models and GCMs on individual climate feedback 902 

processes. Contrasting this with the λhist estimate above gives an estimate of the pattern effect of 0.4 903 

± 1.1 W m-2 K-1
 for historical changes between 1850-1900 to 2006-2019. While the uncertainties are 904 

substantial, this is in agreement with our GCM based estimate of the historical pattern effect. 905 

5.2 Observed climate change since 1985 and ocean heat uptake efficiency 906 

Satellite based reconstructions of the Earth’s energy balance over 1985 to 2014 suggest a feedback 907 

parameter of ~-2.0 ± 0.7 W m-2 K-1, in agreement with our amip-piForcing and hadSST-piForcing 908 

ensembles. Evidence is also emerging from satellite records in support of the physical processes and 909 

mechanisms of the pattern effect between surface temperature, atmospheric stability, cloudiness 910 

and radiative fluxes over recent decades (e.g. Zhou et al., 2016; Ceppi and Gregory, 2017; Loeb et al., 911 

2020; Fueglistaler and Silvers, 2021; Ceppi and Fueglistaler, 2021). 912 

Extending our analysis post 2014 included the major El-Nino event of 2015/2016 that was associated 913 

with eastern-pacific warming and marked changes in the observed radiation budget (Loeb et al. 914 

2020; 2021). Including these post 2014 years (up to and including 2019) reduced the magnitude of 915 

the observed λ estimate by up to ~25%, consistent with eastern Pacific warming driving more 916 
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positive feedbacks (as also suggested in Loeb et al., 2020). This suggests the pattern effect that has 917 

existed over recent decades may be waning if a shift from western to eastern Pacific warming is 918 

maintained in the longer term, as might be expected from a change in the PDO index identified by 919 

Loeb et al. (2021). 920 

Given the substantial rate of global warming since 1985, what does the presence of a large pattern 921 

effect imply for ocean heat uptake efficiency (κ)? We estimated κ = dN/dT ~ 0.4 ± 0.8 W m-2 K-1 over 922 

1985-2014, which is smaller (but not necessarily inconsistent) with AOGCM simulations of steady 923 

increasing CO2 (κ = 0.73 ± 0.18 W m-2 K-1 for years 61-80 of CMIP5 1%CO2 AOGCM simulations, 924 

Gregory et al. 2015). It raises the possibility that the pattern of surface warming and/or atmospheric 925 

circulation may also change the efficiency of global heat uptake, thus both λ and κ might vary and to 926 

some extent be related (Newsom et al., 2020). If an anti-correlation existed, it could buffer the 927 

impact of a large pattern-effect on transient climate change. 928 

We found that despite the change in radiative feedback post 2014 when the eastern Pacific warmed, 929 

the climate resistance ρ = dF/dT = κ – λ remained approximately constant, suggesting that κ and λ 930 

co-varied.  We showed that this result is potential evidence for a change in ocean heat content not 931 

driven by global T.  While this result is suggestive, the extent of this compensation and timescales it 932 

applies to remains unclear. It may simply apply to short term variability and clearly does not apply to 933 

longer-term forced changes (e.g. Gregory et al., 2015). Future research investigating how ocean 934 

uptake and atmospheric radiative feedbacks are linked through patterns of SST change would be 935 

useful. 936 

5.3 Outlook and Implications for AOGCMs 937 

Our results raise important questions for studies that have used emergent relationships from 938 

AOGCMs to constrain ECS from recently observed decadal warming since ~1980 (e.g. Jiménez-de-la-939 

Cuesta and Mauritsen, 2019; Tokarska et al., 2020; Nijsse et al., 2020). 940 

Firstly, how is it possible that AOGCMs produce an emergent relationship between their recent 941 

decadal warming trends and their ECS, while our results suggest that recent decadal feedbacks 942 

ought to be unrelated to ECS? One solution to this conundrum is provided by Fueglistaler and Silvers 943 

(2021), who showed that AOGCMs typically do not simulate the recent configuration of tropical 944 

Pacific SST patterns that gave rise to the recent pattern effect (though some models do have broad 945 

agreements, e.g. Olonscheck et al. 2021, Watanabe et al. 2021). Instead, the pattern of warming in 946 

AOGCMs (and thus feedbacks) over recent decades is more similar to that seen in their abrupt-947 

4xCO2 simulations (Gregory et al., 2020; Dong et al. 2021). Hence AOGCMs are generally biased in 948 

their simulation of the recent decadal feedbacks and the pattern effect, compared to their 949 

equivalent AGCMs forced with observed SST variations, as shown in Gregory et al. (2020) and Dong 950 

et al. (2021). 951 

If AOGCMs are biased in their simulation of recent decadal feedbacks and the pattern effect, it 952 

suggests they may be biased toward simulating recent decadal temperature trends that are too high; 953 

in turn, this would bias emergent constraints that use them toward values of ECS that are too low. 954 

Alternatively, those models that do match the observed warming trend may do so via a 955 

compensation of processes: too small a pattern effect balanced against too large a heat uptake into 956 

the deep-ocean. Some evidence for the potential of this compensating behaviour is provided by 957 

Hedemenn et al. (2017). Analysing the origins of decadal temperature variability in models, they 958 

demonstrated an anti-correlation between the TOA radiative flux and deep-ocean (defined as below 959 

100m) flux contributions to the model’s surface layer and decadal temperature trends (see their 960 
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Figure 3). In other words, when the TOA radiative flux is in such a configuration to reduce its 961 

contribution to the surface layer, then the surface/mixed-layer taps into the deep-ocean to 962 

compensate for this loss, and vice versa. We speculate that such a configuration of TOA radiative flux 963 

is potentially consistent with a large negative feedback, since in this configuration of atmospheric 964 

feedbacks the surface efficiently radiates heat back to space. This again suggests a potential anti-965 

correlation between the ocean heat uptake efficiency and λ during unforced decadal variability 966 

timescales as discussed previously. 967 

Going forward, a critical question for future research is to understand what caused the particular 968 

configuration of SST patterns over recent decades (e.g. strong warming in the western Pacific while 969 

cooling in the eastern Pacific and Southern Ocean, despite temperature increasing in the global-970 

mean; Figure 4 and 9), and how might this pattern evolve in the future. For example, various 971 

hypotheses have been put forward: 972 

1. It could represent a mode of unforced coupled atmosphere-ocean variability (e.g. 973 

Xie et al., 2016; Watanabe et al. 2021), albeit an unusual one is that is rarely 974 

simulated by AOGCMs (Fueglistaler and Silvers, 2021). In this scenario, we might 975 

expect the pattern effect to reduce in the near-future as the configuration of 976 

tropical SST patterns shift to more warming in the east than the west. There is some 977 

evidence (Loeb et al. 2020; 2021) this has already begun to happen in the most 978 

recent years, as we have also shown. We might therefore expect an acceleration of 979 

warming trends, unless the additional heat at the surface from the reduced pattern 980 

effect is tempered by compensating heat exchanges with the deep-ocean 981 

(Hedemann et al. 2017). 982 

2. Spatiotemporal variations in anthropogenic forcings such as aerosols (e.g., Smith et 983 

al., 2015; Takahashi & Watanabe, 2016; Moseid et al., 2020; Heede and Fedorov, 984 

2021) or explosive volcanic eruptions (Smith et al. 2015; Gregory et al. 2020) have 985 

been implicated in driving tropical Pacific SST patterns. In these scenarios, the 986 

pattern effect may decline with the reduction in aerosol emissions in the future, or 987 

continue to have decadal variations associated with future volcanism. Whether 988 

changes in deep-ocean fluxes will be accompanied with such forced changes in the 989 

pattern effect is unclear. 990 

3. While not explaining the eastern Pacific cooling per se, a delayed warming in the 991 

eastern Pacific relative to the west is an expected transient response to forcing due 992 

to the upwelling of (as yet) unperturbed waters from below (Clement et al., 1993; 993 

Held et al. 2010; Heede and Fedorov, 2021). The implication of this is that 994 

eventually the eastern Pacific will warm, and hence we might expect the pattern 995 

effect to reduce and the Earth to warm with stronger (positive) cloud feedbacks 996 

(e.g. Dessler, 2020). 997 

4. In contrast, AOGCMs may overstate the expected warming in the eastern Pacific 998 

(e.g. Seager et al., 2020). Under this scenario, we might expect the pattern effect to 999 

reduce after the eastern Pacific stops cooling, but the full pattern effect according 1000 

to AOGCMs may never materialise if they incorrectly simulate a strong ‘ENSO-like’ 1001 

pattern in their long-term response to CO2. However, a lack of eastern Pacific 1002 

warming in the long-term seems unlikely according to paleoclimate records (Tierney 1003 

et al. 2019; 2020). 1004 

5. Teleconnections from either the Atlantic Ocean (McGregor et al. 2018) or Southern 1005 

Ocean (Hwang et al. 2017) have potentially driven the tropical Pacific SST patterns. 1006 

Under the scenario of an Atlantic influence, we might expect the pattern effect to 1007 
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reduce as Atlantic SST trends evolve over the next few decades. Under the scenario 1008 

of a Southern Ocean influence, we might expect the pattern effect to reduce as the 1009 

Southern Ocean surface warms; this could take years to decades if the Southern 1010 

Ocean temperature trends have been largely mediated by internal variability (e.g., 1011 

Zhang et al. 2019) but could take centuries or longer if Southern Ocean cooling 1012 

continues due, for instance, to freshwater input from ongoing Antarctic ice shelf 1013 

melt (e.g., Sadai et al. 2020). 1014 

These are merely some of the proposed hypotheses, and not meant to be an exhaustive list. But 1015 

whatever the reason, the fact that AOGCMs rarely simulate this pattern (e.g. Watanbe et al., 2021; 1016 

Fueglistaler and Silvers, 2021; Dong et al., 2021) is a concern, suggesting either that their unforced 1017 

decadal variability is deficient, or that their forced response is biased, and in either case there is a 1018 

serious systematic error which affects all AOGCMs. Moreover, each of the above interpretations 1019 

imply different futures, and therefore untangling them is critical for informing both near-term and 1020 

long-term climate projections. This is time critical because satellite evidence suggests the Pacific SST 1021 

pattern that has dominated recent decades is currently shifting (Loeb et al., 2020) and indeed the 1022 

Earth’s energy balance is rapidly changing with it (Loeb et al. 2021; Raghuraman et al., 2021). 1023 

Predicting the near future therefore depends on maintaining the continuity of the satellite record 1024 

and untangling the above mechanisms.  1025 
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Table1: Summary of the Atmospheric General Circulation Model (AGM) simulations used in this study. amip-piForcing refers to an AGCM simulation 1406 

forced with time-varying observed monthly SSTs and sea-ice using the AMIP II boundary condition SST and sea-ice dataset, forcing agents such greenhouse 1407 

gases, aerosol emission etc. are kept at pre-industrial levels. hadSST-piForcing is identical in all aspects except SSTs are taken from the HadISST1 database 1408 

(sea-ice remains the same as amip-piForcing). The ensemble size and time-periods covered for each experiment and AGCM is indicated. amip-piForcing 1409 

simulations included in the CFMIP3 (Webb et al. 2017) contribution to CMIP6 are indicated by a y/n. The corresponding name of each AGCMs parent 1410 

AOGCM is indicated.  Global-annual-ensemble-mean dT and dN timeseries data are available for all amip-piForcing and hadSST-piForcing AGCM simulations 1411 

(see Data Availability Statement). 1412 

AGCM Corresponding 
AOGCM name 

Model description amip-piForcing  hadSST-piForcing 

 CMIP6? 
(y/n) 

Ensemble 
size 

Time-period 
covered 

 Ensemble 
size 

Time-period 
covered 

CAM4 CCSM4 Neale et al. (2013) n 3 1870 – 2014  3 1870 – 2014 
CESM2 unchanged Danabasoglu et al. (2020) y 1 1870 – 2014  1 1870 - 2015 
CNRM-CM6-1 unchanged Voldoire et al. (2019) y 1 1870 – 2014  - - 
CanESM5 unchanged Swart et al. (2019) y 3 1870 – 2014  - - 
ECHAM6.3 MPI-ESM1.1 Mauritsen et al. (2019) n 5 1871 – 2010  5 1871 – 2015 
GFDL-AM3 GFDL-CM3 Donner et al. (2011) n 1 1870 – 2014  1 1870 – 2014 
GFDL-AM4 GFDL-CM4 Held et al. (2019) n 1 1870 – 2016  1 1870 – 2016 
HadAM3 HadCM3 Pope et al. (2000) n 4 1871 – 2012  4 1871 – 2012 
HadGEM2 HadGEM2-ES Martin et al. (2011) n 4 1871 – 2012  1 1871 – 2012 
HadGEM3-GC31-LL unchanged Williams et al. (2017) y 1 1870 – 2014  1 1871 – 2016 
IPSL-CM6A-LR unchanged Boucher et al. (2020) y 1 1870 – 2014  - - 
MIROC6 unchanged Tatebe et al. (2019) y 1 1870 – 2014  - - 
MRI-ESM2-0 unchanged Yukimoto et al. (2019), Kawai et al. (2019) y 1 1870 – 2014  - - 
MPI-ESM1-2-LR unchanged Mauritsen et al. (2019) n 3 1871 – 2017  3 1871 – 2017 

 1413 

  1414 
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Table 2: Feedback parameter in amip-piForcing and hadSST-piForcing simulations over various historical time-periods, as well as abrupt-4xCO2 1415 

sensitivity parameters. λ values from amip-piForcing and hadSST-piForcing are calculated from OLS regression (λ = dN/dT) over the relevant time-periods 1416 

using global-annual-mean timeseries data. F2xCO2 is calculated as F4xCO2/2 and ECS=-F2x/λ4xCO2 from 150 years of abrupt-4xCO2 experiments (λ4xCO2 calculated 1417 

over years 1-20 and 21-150 is also shown) (see Andrews et al., 2012; 2015). 1418 

 abrupt-4xCO2  λ1871-2010 (W m-2 K-1)  λ1871-1980 (W m-2 K-1)  λ1981-2010 (W m-2 K-1) 

 ECS 
(K) 

F2x 

(W m-2) 
λ4xCO2 

(W m-2 K-1) 
λ4xCO2_1-20 

(W m-2 K-1) 
λ4xCO2_21-150 

(W m-2 K-1) 
 AMIP HadISST1  AMIP HadISST1  AMIP HadISST1 

CAM4 2.95 3.64 -1.23 -1.52 -0.94  -2.14 -1.77  -1.22 -1.45  -2.84 -2.70 

CESM2 5.16 3.39 -0.66 -1.17 -0.49  -1.93 -1.49  -0.87 -0.95  -3.08 -2.92 

CNRM-CM6-1 4.88 3.66 -0.75 -0.93 -0.87  -1.23 -  -1.10 -  -1.64 - 

CanESM5 5.61 3.64 -0.65 -0.70 -0.59  -1.44 -  -0.93 -  -1.83 - 

ECHAM6_3 3.01 4.10 -1.36 -1.47 -1.08  -1.92 -1.57  -1.43 -1.38  -2.69 -2.42 

GFDL-AM3 3.99 2.97 -0.74 -1.13 -0.61  -1.44 -1.35  -0.72 -0.99  -1.90 -1.41 

GFDL-AM4 3.84 3.32 -0.86 -1.54 -0.60  -1.84 -1.66  -1.33 -1.40  -2.57 -2.93 

HadAM3 3.37 3.52 -1.04 -1.25 -0.75  -1.65 -1.44  -1.35 -1.40  -2.19 -1.86 

HadGEM2 4.62 2.90 -0.63 -0.81 -0.33  -1.39 -1.04  -1.12 -1.08  -2.26 -1.54 

HadGEM3-GC31-LL 5.54 3.49 -0.63 -0.81 -0.60  -1.28 -1.01  -0.95 -0.84  -1.87 -1.55 

IPSL-CM6A-LR 4.56 3.41 -0.75 -0.98 -0.61  -1.59 -  -1.17 -  -2.50 - 

MIROC6 2.58 3.72 -1.44 -1.61 -1.60  -1.42 -  -1.21 -  -1.87 - 

MRI-ESM2-0 3.13 3.44 -1.10 -1.68 -0.78  -1.93 -  -1.23 -  -2.79 - 

MPI-ESM1-2-LR 3.02 4.21 -1.39 -1.61 -1.34  -1.88 -1.58  -1.30 -1.45  -2.55 -2.42 

MEAN 4.02 3.53 -0.95 -1.23 -0.80  -1.65 -1.43  -1.14 -1.21  -2.33 -2.19 
1.645σ 1.64 0.57 0.49 0.54 0.55  0.46 0.41  0.33 0.38  0.72 0.95 

1419 
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Table 3: The pattern effect (Δλ = λ4xCO2 – λhist, with λ4xCO2 from years 1-150 of abrupt-4xCO2) 1420 

between abrupt-4xCO2 radiative feedback and radiative feedback calculated over different 1421 

historical periods (i.e. λhist from 1871-2010, and its separation into 1871-1980 and 1981-2010) in 1422 

amip-piForcing and hadSST-piForcing, as well as their difference. 1423 

 1871 – 2010 
(W m-2 K-1) 

 1871 – 1980 
(W m-2 K-1) 

 1981 – 2010 
(W m-2 K-1) 

 AMIP HadSST Diff  AMIP HadSST Diff  AMIP HadSST Diff 

CAM4 0.90 0.53 0.37  -0.01 0.22 -0.23  1.60 1.47 0.13 

CESM2 1.27 0.84 0.43  0.21 0.29 -0.08  2.43 2.26 0.17 
CNRM-CM6-1 0.48    0.35    0.89   

CanESM5 0.80    0.28    1.19   

ECHAM6_3 0.56 0.21 0.35  0.07 0.02 0.05  1.32 1.06 0.26 

GFDL-AM3 0.69 0.61 0.08  -0.03 0.24 -0.27  1.15 0.67 0.48 

GFDL-AM4 0.97 0.80 0.17  0.47 0.53 -0.06  1.70 2.07 -0.37 

HadAM3 0.61 0.40 0.21  0.31 0.35 -0.04  1.15 0.82 0.33 

HadGEM2 0.76 0.41 0.35  0.49 0.45 0.04  1.63 0.91 0.72 

HadGEM3-GC31-LL 0.65 0.38 0.27  0.32 0.21 0.11  1.24 0.92 0.32 

IPSL-CM6A-LR 0.84    0.43    1.76   

MIROC6 -0.02    -0.23    0.42   

MRI-ESM2-0 0.83    0.14    1.69   

MPI-ESM1-2-LR 0.49 0.19 0.30  -0.09 0.06 -0.15  1.16 1.03 0.13 

MEAN 0.70 0.48 0.28  0.19 0.26 -0.07  1.38 1.24 0.24 

1.645σ 0.47 0.36 0.17  0.35 0.26 0.20  0.75 0.88 0.46 

  1424 



39 
 

Table 4: Comparison of the 1985-2014 climate resistance (ρ = dF/dT), feedback parameter (-λ = -1425 

d(N – F)/dT and ocean heat uptake efficiency (κ = dN/dT) using different versions of the DEEP-C 1426 

(Allan et al., 2014) satellite based reconstruction of dN (see Section 2.4). The lower half of the 1427 

table shows how ρ, λ and κ estimates change as the 30 year moving window advances to 1990-1428 

2019. In all calculations HadCRUT5 analysis dT (Morice et al. 2021) and IPCC AR6 dF (Forster et al., 1429 

2021; Smith et al., 2021) are used. Years 1991-2 are excluded from the calculation as these years 1430 

are identified as being strongly impacted by the volcanic forcing from the Pinatubo eruption 1431 

(Section 4). 1432 

dN dataset version Start year End year ρ (W m-2 K-1) -λ (W m-2 K-1) κ (W m-2 K-1) 

DEEP-C v2G 

1985 2014 

2.38 2.24 0.14 

DEEP-C v3 2.38 2.24 0.14 

DEEP-C v3G 2.38 2.24 0.14 

DEEP-C v4 2.38 1.98 0.41 

DEEP-C v5 2.38 1.98 0.41 

DEEP-C v5 1986 2015 2.38 1.75 0.63 

DEEP-C v5 1987 2016 2.25 1.55 0.70 

DEEP-C v5 1988 2017 2.21 1.62 0.59 

DEEP-C v5 1989 2018 2.23 1.66 0.57 

DEEP-C v5 1990 2019 2.30 1.44 0.86 

1433 
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 1434 

Figure 1: Comparison of multi-model ensemble-annual-mean (a) dT and (b) dN in the amip-1435 

piForcing and hadSST-piForcing simulations. (c) and (d) shows the difference in dT and dN 1436 

respectively, highlighting 1980 as a key year where the dN response diverges according to the SST 1437 

dataset.  In (a) the HadCRUT5 observed dT evolution is shown for comparison. (e) and (f) show the 1438 

relationship between global-annual-mean dT and dN in amip-piForcing and hadSST-piForcing 1439 

respectively, where λ=dN/dT is calculated from OLS regression on the global-annual-mean data 1440 

points. The stated 5-95% uncertainty is ±1.645σ from the standard error of the linear fit. (g) and 1441 

(h) show the dT and dN relationship separated into two time-periods: years 1871-1980 (grey) and 1442 

years 1981-2010 (blue). The multi-model ensemble-means are restricted to the nine AGCMs that 1443 

performed both simulations (see Table 1).  1444 
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1445 
Figure 2: (a) Relationship between the feedback parameter, λ, in the amip-piForcing and hadSST-1446 

piForcing simulations over various historical time-periods. Each point is a single AGCM. The 1447 

shaded grey region shows the range of λ4xCO2 from the AGCMs corresponding parent AOGCM 1448 

abrupt-4xCO2 simulation. The one-to-one line (dotted) is shown. (b) Relationship between the 1449 

pattern effect, Δλ = λ4xCO2 - λhist, diagnosed from the amip-piForcing and hadSST-piForcing 1450 

simulations over various historical time-periods.  1451 
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  1452 

Figure 3: Relationship across models (dots) between the feedback parameter in amip-piForcing 1453 

(calculated over years 1871-2010) and abrupt-4xCO2 simulation (calculated over years 1-150). The 1454 

net feedback parameter is decomposed into its longwave clear-sky, SW clear-sky and cloud 1455 

radiative effect components.  1456 
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 1457 

Figure 4: Pattern of near-surface temperature change (local dT per global-mean dT) for the time-1458 

periods 1870-1980 and 1981-2010 in (a) and (b) amip-piForcing and (c) and (d) hadSST-piForcing. 1459 

Patterns are calculated from the slope of the linear regression of local temperature change against 1460 

global-mean temperature change using annual-mean data points. Note that by definition the 1461 

global-means are unity. Data from HadGEM3-GC31-LL simulations have been used for this 1462 

illustration.  1463 
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 1464 

Figure 5: Relationships between model simulated feedbacks in amip-piForcing over years 1871-1465 

1980 (blue) or 1981-2010 (grey) and (a) λ4xCO2 from abrupt-4xCO2, (b) λhist over the entire historical 1466 

record (1871-2010), (c) λ4xCO2 from abrupt-4xCO2 over years 1-20 and (d) years 21-150.  1467 
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 1468 

Figure 6: Decadal variation in the feedback parameter λ from 1871 to 2010. Left column shows 1469 

results from amip-piForcing and right column shows results from hadSST-piForcing. Each grey line 1470 

represents a single AGCM (see Table 1). Thick black is the ensemble-mean of the results. X-axis 1471 

represents the centre of a 30 year moving window in which λ=dN/dT is calculated from OLS 1472 

regression on annual-mean data, i.e. λ at 1980.5 represents the feedback parameter over years 1473 

1966 to 1995. Shown in (a) and (b) is the net feedback parameter. Blue dots and lines represent 1474 

the corresponding λ4xCO2 values from AOGCM abrupt-4xCO2 simulations (Table 2). Red shows an 1475 

observational estimate and 5-95% uncertainty of λ=d(N – F)/dT ~ -2.0 ± 0.7 W m-2 K-1 over years 1476 

1985-2014 (see Section 4). (c) – (h) shows the corresponding LW clear-sky, SW clear-sky and cloud 1477 

radiative effect (CRE) components of λ. 1478 
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 1479 

Figure 7: Observational estimate of the Earth’s 1985-2019 energy balance. All points are global-1480 

annual-means. (a) dT (HadCRUT5 analysis dataset; Morice et al., 2021), (b) dN (DEEP-C v5; Allan et 1481 

al., 2014; Liu and Allan, 2022) and dF (IPCC AR6; Forster et al., 2021; Smith et al., 2021).  (c) ρ = 1482 

dF/dT relationship and (d) -λhist=-d(N – F)/dT relationship over years 1985-2014. Black dots are 1483 

global-annual means over years 1985-2014 excluding years 1991-2 which are strongly influenced 1484 

by the Pinatubo explosive volcanic eruption (see red line panel b). Red points in (c) and (d) are 1485 

years 2015-2019. The stated 5-95% uncertainties are ±1.645σ from the standard error of the linear 1486 

fit.  1487 
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 1488 

Figure 8: Comparison of the 1985-2014 feedback parameter, λhist = d(N – F)/dT, in amip-piForcing 1489 

and hadSST-piForcing simulations to an observed estimate based on DEEP-C V5 dN (Allan et al., 1490 

2014; Liu and Allan, 2022), HadCRUT5 analysis dT (Morice et al. 2021) and IPCC AR6 dF (Forster et 1491 

al., 2021; Smith et al., 2021). The 5-95% uncertainty is simply 1.645σ from the standard error of 1492 

the linear fit, with no allowance for systematic uncertainties. Note also that years 1991-2 are 1493 

excluded from the calculation as these years are identified as being strongly impacted by the 1494 

volcanic forcing from the Pinatubo eruption (Figure 7b).  1495 
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 1496 

Figure 9: Pattern of near-surface temperature change (local dT per global-mean dT) for the time-1497 

periods (a) 1985-2014 and (b) 1987-2016, and (c) shows the difference (b minus a). Data is the 1498 

HadCRUT5 analysis dataset (Morice et al. 2021). Patterns are calculated from the slope of the 1499 

linear regression of local temperature change against global-mean temperature change using 1500 

annual-mean data points. Note that by definition the global-means of panels (a) and (b) are unity. 1501 
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Table S1: Longwave clear-sky feedback parameters in amip-piForcing and hadSST-piForcing simulations over various historical time-periods, as well as 

abrupt-4xCO2 sensitivity parameters. 

 abrupt-4xCO2  λ1871-2010 (W m-2 K-1)  λ1871-1980 (W m-2 K-1)  λ1981-2010 (W m-2 K-1) 

 λ4xCO2 

(W m-2 K-1) 
λ4xCO2_1-20 

(W m-2 K-1) 
λ4xCO2_21-150 

(W m-2 K-1) 
 

AMIP HadISST1 
 

AMIP HadISST1 
 

AMIP HadISST1 

CAM4 -1.95 -1.99 -1.90  -2.10 -2.07  -1.99 -2.03  -2.19 -2.20 

CESM2 -1.81 -1.88 -1.74  -2.18 -2.07  -2.01 -1.95  -2.53 -2.26 

CNRM-CM6-1 -1.76 -1.81 -1.74  -2.13   -1.91   -2.23  

CanESM5 -1.84 -1.89 -1.81  -2.23   -2.17   -2.33  

ECHAM6_3 -1.74 -1.75 -1.68  -2.07 -2.03  -1.94 -1.93  -2.20 -2.19 

GFDL-AM3 -1.94 -2.03 -1.93  -2.18 -2.20  -1.88 -1.97  -2.34 -2.28 

GFDL-AM4 -1.81 -1.90 -1.78  -2.18 -2.14  -2.03 -2.07  -2.23 -2.32 

HadAM3 -1.79 -1.84 -1.71  -2.14 -2.08  -2.04 -2.02  -2.22 -2.16 

HadGEM2 -1.66 -1.81 -1.64  -2.10 -2.08  -1.96 -1.97  -2.16 -1.94 

HadGEM3-GC31-LL -1.80 -1.88 -1.78  -2.27 -2.17  -2.08 -2.07  -2.28 -2.24 

IPSL-CM6A-LR -1.55 -1.58 -1.54  -1.91   -1.81   -1.95  

MIROC6 -1.94 -1.99 -1.91  -1.83   -1.78   -2.15  

MRI-ESM2-0 -1.94 -2.04 -1.86  -2.23   -1.94   -2.47  

MPI-ESM1-2-LR -1.78 -1.81 -1.78  -2.06 -2.00  -1.89 -1.91  -2.13 -2.16 

MEAN -1.81 -1.87 -1.77  -2.12 -2.09  -1.96 -1.99  -2.24 -2.20 

1.645*sigma 0.18 0.19 0.17  0.19 0.10  0.17 0.09  0.23 0.17 

 

 

  



Table S2: Shortwave clear-sky feedback parameters in amip-piForcing and hadSST-piForcing simulations over various historical time-periods, as well as 

abrupt-4xCO2 sensitivity parameters. 

 abrupt-4xCO2  λ1871-2010 (W m-2 K-1)  λ1871-1980 (W m-2 K-1)  λ1981-2010 (W m-2 K-1) 

 λ4xCO2 

(W m-2 K-1) 
λ4xCO2_1-20 

(W m-2 K-1) 
λ4xCO2_21-150 

(W m-2 K-1) 
 

AMIP HadISST1 
 

AMIP HadISST1 
 

AMIP HadISST1 

CAM4 0.87 0.84 0.89  0.99 0.98  0.77 0.73  0.50 0.39 

CESM2 0.54 0.72 0.44  0.77 0.88  0.74 0.83  0.40 0.29 

CNRM-CM6-1 0.82 0.84 0.60  1.01   0.72   0.47  

CanESM5 0.78 0.82 0.74  0.87   0.75   0.58  

ECHAM6_3 0.66 0.67 0.69  0.88 0.90  0.61 0.63  0.42 0.41 

GFDL-AM3 0.69 0.65 0.67  0.77 0.76  0.65 0.64  0.63 0.43 

GFDL-AM4 0.77 0.79 0.67  0.74 0.75  0.59 0.58  0.26 0.36 

HadAM3 0.58 0.58 0.58  0.78 0.79  0.57 0.55  0.43 0.46 

HadGEM2 0.67 1.05 0.77  0.74 0.99  0.56 0.68  0.15 0.33 

HadGEM3-GC31-LL 0.66 0.74 0.56  0.82 0.90  0.70 0.75  0.33 0.48 

IPSL-CM6A-LR 0.80 0.78 0.81  0.95   0.72   0.46  

MIROC6 0.78 0.75 0.63  0.92   0.91   0.41  

MRI-ESM2-0 0.83 0.97 0.81  0.87   0.68   0.35  

MPI-ESM1-2-LR 0.63 0.52 0.61  0.90 0.91  0.63 0.63  0.39 0.33 

MEAN 0.72 0.76 0.68  0.86 0.87  0.69 0.67  0.41 0.39 

1.645*sigma 0.16 0.22 0.19  0.14 0.14  0.15 0.14  0.19 0.10 

 

  



Table S3: Cloud radiative effect feedback parameters in amip-piForcing and hadSST-piForcing simulations over various historical time-periods, as well as 

abrupt-4xCO2 sensitivity parameters. 

 abrupt-4xCO2  λ1871-2010 (W m-2 K-1)  λ1871-1980 (W m-2 K-1)  λ1981-2010 (W m-2 K-1) 

 λ4xCO2 

(W m-2 K-1) 
λ4xCO2_1-20 

(W m-2 K-1) 
λ4xCO2_21-150 

(W m-2 K-1) 
 

AMIP HadISST1 
 

AMIP HadISST1 
 

AMIP HadISST1 

CAM4 -0.15 -0.37 0.08  -1.02 -0.67  0.00 -0.15  -1.15 -0.89 

CESM2 0.62 -0.01 0.81  -0.52 -0.30  0.40 0.18  -0.96 -0.95 

CNRM-CM6-1 0.20 0.03 0.27  -0.10   0.10   0.12  

CanESM5 0.41 0.37 0.48  -0.08   0.49   -0.09  

ECHAM6_3 -0.27 -0.39 -0.08  -0.73 -0.45  -0.10 -0.08  -0.91 -0.64 

GFDL-AM3 0.51 0.25 0.65  -0.03 0.09  0.51 0.34  -0.18 0.43 

GFDL-AM4 0.18 -0.43 0.51  -0.39 -0.27  0.10 0.09  -0.60 -0.97 

HadAM3 0.16 0.01 0.38  -0.29 -0.15  0.11 0.07  -0.41 -0.16 

HadGEM2 0.36 -0.05 0.54  -0.04 0.05  0.28 0.21  -0.26 0.07 

HadGEM3-GC31-LL 0.51 0.33 0.61  0.17 0.26  0.43 0.48  0.08 0.21 

IPSL-CM6A-LR 0.01 -0.17 0.13  -0.64   -0.08   -1.01  

MIROC6 -0.29 -0.36 -0.32  -0.51   -0.34   -0.12  

MRI-ESM2-0 0.01 -0.60 0.27  -0.57   0.02   -0.68  

MPI-ESM1-2-LR -0.24 -0.32 -0.17  -0.72 -0.49  -0.05 -0.17  -0.82 -0.59 

MEAN 0.14 -0.12 0.30  -0.39 -0.21  0.13 0.11  -0.50 -0.39 

1.645*sigma 0.49 0.48 0.53  0.54 0.47  0.40 0.34  0.68 0.83 

 

 

 

 

 

 



 

Table S4: Growth of the historical feedback parameter, λhist, from 2010 to 2014 in amip-piForcing 

and hadSST-piForcing. Shown is λhist calculated over 1871-2010 and 1871-2014, and their 

difference. 

 AMIP λhist (W m-2 K-1)  HadSST λhist (W m-2 K-1)  
1871-2010 1871-2014 change  1871-2010 1871-2014 change 

CAM4 -2.14 -2.24 -0.10  -1.77 -1.81 -0.05 

CESM2 -1.93 -2.09 -0.16  -1.49 -1.59 -0.10 

CNRM-CM6-1 -1.23 -1.27 -0.04  - - - 

CanESM5 -1.44 -1.48 -0.04  - - - 

GFDL-AM3 -1.44 -1.48 -0.04  -1.35 -1.38 -0.03 

GFDL-AM4 -1.84 -1.90 -0.07  -1.66 -1.68 -0.01 

HadGEM3-GC31-LL -1.28 -1.33 -0.04  -1.01 -1.09 -0.08 

IPSL-CM6A-LR -1.59 -1.65 -0.06  - - - 

MIROC6 -1.42 -1.50 -0.08  - - - 

MRI-ESM2-0 -1.93 -1.97 -0.05  - - - 

MPI-ESM1-2-LR -1.88 -1.92 -0.04  -1.58 -1.64 -0.06 

MEAN -1.65 -1.71 -0.07  -1.48 -1.53 -0.05 

1.645*sigma 0.48 0.51 0.06  0.41 0.39 0.05 

 


