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A B S T R A C T

Global and continental scale hydrological reanalysis datasets receive growing attention due to their increasing
number of applications, ranging from water resources management, climate change studies, water related ha-
zards and policy support. Until recently, their use was mostly limited to qualitative assessments, due to their
coarse spatial and temporal resolution, large uncertainty and bias in the model output, and limited extent of the
dataset in space and time. This research reports on the setup of a gridded hydrological model with quasi-global
coverage, able to reproduce a seamless 39-year streamflow simulation in all world’s medium to large river
basins. The model was calibrated at 1226 river sections with a total drainage area of 51 million km2 within 66
countries, using ECMWF’s latest atmospheric reanalysis ERA5. A performance assessment revealed large im-
provements in reproducing past discharge observations, in comparison to the calibration used in the current
operational setup of the hydrological model as part of the Copernicus – Global Flood Awareness System (GloFAS,
www.globalfloods.eu), with median scores of Kling-Gupta Efficiency KGE = 0.67 and correlation r = 0.8. The
simulation bias was also dramatically reduced and narrowed around zero, with more than 60% of stations
showing percent bias within ±20%. Pronounced regional differences in the simulation results remain, pointing
out the need for detailed investigation of the hydrological processes in specific regions, including parts of Africa
and South Asia. In addition, observed discharges with high data quality is key to achieving skillful model output.
The new calibrated model will become part of the operational runs of GloFAS in the next system release foreseen
for Spring 2020, together with a near real time extension of the streamflow reanalysis.

1. Introduction

Knowledge of the hydrological states and their variability in space
and time on our planet is key information for a variety of disciplines,
including water resources, natural hazards, biodiversity, and energy
production. Global hydrological models are effective tools to re-
construct seamlessly the various components of the water balance and
reproduce a continuous dataset to be used for further applications.
Meteorological datasets, the main dynamic input for hydrological
modeling, are increasingly growing in number, quality and spatial
coverage. Relevant large scale products are derived from ground ob-
servations (e.g., Harris et al., 2014; Haylock et al., 2008; Ntegeka et al.,
2013), remote sensing from satellite and ground-based radars, atmo-
spheric reanalysis, and mixed products (see Beck et al., 2019 and re-
ferences therein). A number of research groups have developed global

(e.g., Beck et al., 2017 and references therein; Döll et al., 2003; Fekete
et al., 2002; Lin et al., 2019; Qian et al., 2006; Reichle et al., 2011;
Sperna Weiland et al., 2010; Yamazaki et al., 2011) and continental
scale (e.g., Abbaspour et al., 2015; Alfieri et al., 2014b; Van Dijk et al.,
2014; Wongchuig et al., 2019) hydrological reanalysis using various
configurations of inputs, models, and parameterization. Among them,
several pointed out that relatively large gaps remain between output
discharges and observations at gauged river sections, mostly due to
quality issues in the meteorological input dataset, incorrect model
parameterization, missing or simplified processes, and insufficient
space–time resolution of input and output, which often limit model
results to qualitative assessments or to selected rivers and regions
where the modeling is acceptable. Coordinated multi-model initiatives
such as the WaterMIP (Haddeland et al., 2011) and the Earth2Observe
(Schellekens et al., 2017) projects aimed to characterize the variability
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of the simulated runoff in large rivers using ensembles of global hy-
drological simulations produced at the common grid resolution of 0.5°.
Although both projects acknowledged the added value of an ensemble
of simulations, results showed large discrepancies due to different
concepts and parameterization in modeling the runoff generation
(Schellekens et al., 2017) and the lack of a common protocol to cali-
brate and validate the participating models.

Beck et al. (2017) compared runoff estimates from 10 macro-scale
hydrological models with observations from 966 medium-sized catch-
ments around the globe. They found large differences among the dif-
ferent model output, and higher scores for regions with calibrated
model parameterization. The calibration always brings benefits in river
sections where accurate observations are available, though its effect is
reduced as one moves away from the calibration points, even if along
the same river network (Xue et al., 2016). As a consequence, the per-
formance of a calibrated hydrological model can vary substantially
across different river basins, hence pointing out the importance to ca-
librate as many river basins as possible. This is often in contrast with
the limited availability of observed data, as well as with the consider-
able computing resources needed to perform each calibration run.

Model calibration is an iterative process involving a large number of
model runs where a set of parameters is perturbed, so that differences
between the model output and the observations at the corresponding
location are minimized. The number of iterations required and the
corresponding computing time (proportional to the computing re-
sources) increase with the size of the parameter set to optimize, yet
often enabling improved model skills. However, the size of the cali-
bration parameter set should not be too large, to avoid model over-
fitting and consequent loss of predictive skills outside the calibration
period (Wi et al., 2015). Kouchi et al. (2017) tested the sensitivity of
calibration parameters to 1) different objective functions and 2) opti-
mization algorithms. They found that most combinations of the two
considered sets can achieve skillful results, though resulting in different
configurations of the parameter values. Hence, in large scale calibration
exercises, the optimal configuration should take into account also the
efficiency of the optimization algorithms, that is, favoring those
reaching a skillful parameter set with the minimum number of itera-
tions.

In this work we report on the development of a semi-automated
calibration procedure of a large scale hydrological model that under-
pins the Global Flood Awareness System (GloFAS, www.global-
floods.eu, see Alfieri et al., 2013; Hirpa et al., 2018), to improve the
simulated output discharge by tuning a set of model parameters.
GloFAS is an operational system for global ensemble streamflow mod-
eling, forecasting, and early flood detection, with a forecast horizon up
to 30 days and a seasonal outlook up to 4 months ahead. Together with
its twin system EFAS, the European Flood Awareness System, GloFAS is
an operational component of the Copernicus Emergency Management
Service1 (CEMS) that provides complementary forecast information to
relevant stakeholders and supports flood risk management at national,
regional and global level. As of November 2019, the GloFAS-Reanalysis
is based on the operational version 2.1, described in details by Harrigan
et al. (2019), while this article presents recent research activities that
will be included in future system versions.

The calibration tool presented in this work is implemented using a
large database of more than 1200 discharge observations worldwide
and ERA5 (Hersbach et al., 2018), ECMWF’s fifth generation atmo-
spheric reanalysis dataset, as forcing input. The calibrated model is then
rerun to produce a seamless 40-year dataset of daily streamflows with
quasi-global coverage. In the operational GloFAS runs, such reference
simulation, hereafter referred to as GloFAS-Reanalysis, is updated in
near real-time with the latest ERA5 hydro-meteorological input maps as
soon as they become available. Similarly to EFAS, the GloFAS-

Reanalysis is used with regard to three key aspects: (I) deriving cli-
matological features of river streamflow in each section of the world
river network (e.g., average conditions, extremes, flood thresholds,
seasonality); (II) creating initial conditions to run hydrological forecasts
driven by the latest weather predictions; (III) providing a reference si-
mulation which is as realistic as possible, to be used as a proxy to
evaluate streamflow forecasts in every grid point of the simulation
domain (Alfieri et al., 2014a). It follows that continuous efforts are
dedicated to the improvement of the GloFAS-Reanalysis, to improve the
overall quality of GloFAS forecasts as well as their monitoring.

2. Material and methods

2.1. Data

2.1.1. The ERA5 atmospheric reanalysis
ERA5 is the latest climate reanalysis dataset produced by ECMWF,

on behalf of the European Union, through the Copernicus Climate
Change Service (C3S) (Hersbach et al., 2018). The first phase from 1979
to the present became available in January 2019, while the second
phase extending back to 1950, is planned for release by the end of 2019.
ERA5 is openly accessible via the C3S Climate Data Store2. It contains
estimates of several meteorological variables including air pressure,
temperature and wind at different altitudes, precipitation, soil moisture
and ocean variables, among others. ERA5 has replaced ECMWF’s pre-
vious atmospheric reanalysis ERA-Interim (Dee et al., 2011). Compared
with ERA-Interim, ERA5 benefits from 10 years of advances in Nu-
merical Weather Prediction (NWP) (ECMWF IFS Cycle 41r2 (2016) for
ERA5, versus Cycle 31r2 (2006) for ERA-Interim). It also uses improved
historical observations, boundary conditions, external forcing and has
higher spatial (~31 vs ~ 79 km) and vertical (137 vs 60 levels) re-
solution. In addition, it includes uncertainty information by providing
an ensemble of 10 reanalysis members, at a coarser horizontal resolu-
tion. The ERA5 dataset includes hourly output, with near-real time
availability (2 to 5 day latency) known as ERA5T, which makes it
particularly appealing for the daily updating of the global hydrological
conditions used to initialize streamflow forecasting systems such as
GloFAS. ERA5T is used for the initialization of operational GloFAS
forecasts since November 2018. The improvements introduced in ERA5
include features such as tropical cyclones, better orography, coastal
process and related weather phenomena, and medium-range atmo-
spheric forecasts, initialized with ERA5, show an increase in skill of
about one day in comparison to those initialized with ERA-Interim
(Hersbach et al., 2018). Recent studies in the United States have shown
that ERA5 performs substantially better than ERA-Interim in modeling
precipitation (Beck et al., 2019), as well as when used to force land
surface (Albergel et al., 2018) and hydrological (Tarek et al., 2019)
models.

In this study we used daily maps of precipitation, daily mean surface
air temperature and relative humidity, incoming solar radiation, net
longwave radiation and mean wind speed extracted from ERA5 for 40
complete years between 1979 and 2018. This is one of the main
changes in comparison with the previous calibration exercise, based on
the same variables, yet extracted from the control run of ECMWF re-
forecasts in the period 1995–2015.

Some variables were processed to compute estimates of potential
evapotranspiration using the Penman-Monteith equation as described
in Supit at al. (1994). This is one of the main dynamic input variables of
the hydrological model Lisflood, together with daily mean surface air
temperature and daily precipitation. ERA5 input variables were ag-
gregated from hourly to daily values and downscaled from the original
resolution to the output resolution of 0.1 deg through a bilinear inter-
polation method.

1 https://emergency.copernicus.eu 2 https://cds.climate.copernicus.eu
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2.2. Methods

2.2.1. Hydrological model and calibration parameters
Hydrological simulations are performed with Lisflood (van der

Knijff et al., 2010), a distributed semi-physically based model devel-
oped at the Joint Research Centre (JRC) of the European Commission.
Such model differs from the operational GloFAS setup (i.e., calibration
version v.2018), which is based on a combination of the Hydrology -
Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL,
Balsamo et al., 2011), ECMWF’s land surface scheme, and a simplified
version of Lisflood to simulate the groundwater processes and the river
routing (see Alfieri et al., 2013). The choice of a different modeling
framework for the new GloFAS version is motivated by the need for
better control on all the calibration parameters through the use of only
one model, as well as the need to maintain only one Lisflood version to
be used both in EFAS and GloFAS, so that any model development
benefits both early warning systems.

Processes simulated by Lisflood include soil freezing, snowmelt,
surface runoff, lakes and reservoirs, water abstraction, infiltration,
preferential flow, redistribution of soil moisture within the soil profile,
drainage to the groundwater system, groundwater storage, and base
flow. Surface runoff is produced at every grid cell and routed through
the river network using a kinematic wave approach (Chow et al., 1988).
The current model version includes 463 lakes and 687 reservoirs (Zajac
et al., 2017), selected among the world’s largest ones listed in the
Global Lakes and Wetlands Database (GLWD, Lehner and Döll, 2004)
and the Global Reservoir and Dam Database (GRanD, Lehner et al.,
2011). The lake outflow is related to the lake level using the Poleni weir
equation (Bollrich, 1992). For reservoirs, the outflow is calculated with
a set of rules depending on their filling level (see Burek et al., 2013;
Zajac et al., 2017).

Accurate and up to date spatial information in the hydrological
modeling is important to avoid over‐parameterization and reduce the
dimensionality of the calibration. Spatial datasets used in Lisflood in-
clude topography maps (i.e. digital elevation model, local drainage
direction, slope gradient, elevation range), land use (i.e. land use
classes, forest fraction, fraction of urban area), soil (i.e. soil texture
classes, soil depth), and channel geometry (i.e. channel gradient,
roughness coefficient, bankfull channel depth, channel length, bottom
width, and side slope). Most input datasets, parameters and variables
necessary for the model are estimated a priori from available global
products, such as the Shuttle Radar Topography Mission (SRTM, Jarvis
et al., 2008) dataset for elevation, the GlobCover 2009 (Bontemps et al.,
2011) for land use, the SoilGrids1km database (Hengl et al., 2014) for
soil information, the global river network database (Wu et al., 2012) for
river network and flow direction, the Global Width Database of Large
Rivers (Yamazaki et al., 2014) for river widths, the SPOT-VGT data
(http://wdc.dlr.de/data_products/SURFACE/LAI/) for monthly maps of
Leaf Area Index (LAI), among others. Water abstraction maps are re-
presentative of the year 2000. They are derived from the work by Wada
et al. (2011) and modeled with 12 monthly maps for the domestic and
livestock sector and with a constant pattern for the energy and in-
dustrial sector. Lisflood underpins a number of large scale applications,
particularly over Europe, where it is used in the context of the European
Flood Awareness System (EFAS, see Alfieri et al., 2014a; Bartholmes
et al., 2009; Thielen et al., 2009) and in climate change impact as-
sessment studies (Alfieri et al., 2015; Dankers and Feyen, 2009; Rojas
et al., 2012). In this work, we used a quasi-global setup spanning lati-
tudes 60°S to 90°N over a 0.1°grid and 1-day time step, covering all the
main Earth’s land areas except Antarctica, Greenland and Iceland.

A set of eight model parameters was selected for calibration (see
Table 1) following recommendations from previous works (Beck et al.,
2017; Hirpa et al., 2018), who identified the most relevant model
parameters for Lisflood in terms of model sensitivity and uncertainty of
the default values. Differently from those works, no calibration para-
meter specific to lakes and reservoirs was included 1) to limit the

dimensionality of the optimization process and the overall number of
model runs and 2) so that all catchments ultimately have the same
number of calibrated parameters (i.e., including those with no lake or
reservoirs). The impact of such choice will be investigated in the eva-
luation phase, particularly for reservoirs, where the actual operation
rules may differ from the modelled one. Further details on the modeling
of reservoirs in Lisflood are included in the Supplement.

2.2.2. Station selection
River stations selected for calibration stem from a global database of

about 2100 stations maintained in-house at the JRC, resulting from the
collection of discharge observations from around 30 data providers
worldwide. We performed a screening to identify the stations to cali-
brate, following recommendations from previous calibration exercises.
The following procedure was thus implemented:

• Stations where the drainage area was not reported by the provider
were initially removed.
• The absolute relative difference between the drainage area derived
from the model flow direction map and reported by each data
provider had to be smaller than 20% (e.g., Xue et al., 2016)
• The official drainage area had to be larger than 5,000 km2 (fol-
lowing the recommendations by Alfieri et al., 2013).
• At least 4 years of observed daily data had to be available (i.e.,
4*365 values, excluding gaps) in the calibration period. Remaining
data, up to 8 years were used for model validation, while in case of
time series longer than 8 years the dataset was split equally between
calibration and validation as suggested by Klemeš (1986).
• When two stations fell in the same grid point, the station with the
longest observed time series was retained (14 stations were removed
by this criterion).
• Some stations which were close to each other along the same river
were removed. The idea behind this criterion is to avoid calibrating
clusters of stations, where the downstream ones bring little benefit
and often generate anomalous calibrated parameter values, as they
are constrained by the simulated inflow of the upstream station and
by the discharge rating curve at each station and their uncertainty.
To this end, we numerically identified the upstream/downstream
relation among stations lying in the same river basin. Then, a
threshold value of 10% was imposed as minimum relative difference
in drainage area of a downstream station to the closest one along the
upstream river network, and removed the stations with smaller re-
lative difference.
• A number of stations were then removed or added on the basis of a
comparison and skill evaluation between the observed discharge
time series and the corresponding model run with default (i.e., un-
calibrated) parameters. This step was necessary to remove data pairs
with unexplained large differences, possibly related to a combina-
tion of wrong station positioning, large human influence, and errors
in the metadata, in the reported discharge time series, in un-
represented processes, or in the model input (e.g., Hamilton and
Moore, 2012; Wang et al., 2018). Also, it compensates for the ab-
sence of a dedicated data quality control system on the observations
dataset. As a result, we removed all stations with a ratio larger than
11 between the average observed and simulated discharge time
series as well as its inverse ratio (i.e., Pbias < -91% or Pbias greater
than 1000%). In addition, stations previously excluded due to
drainage area not reported by the provider were reinstated if the
KGE in the uncalibrated run was larger than zero, hence proving
some modeling skills (Knoben et al., 2019).

The selection procedure described above produced a list of 1226
calibration stations, with a total drainage area of 51 million km2, cor-
responding to 38% of the simulated domain. This results in a mean river
basin size of 42,000 km2, a size range between 5,000 and
4,680,000 km2, and 62% of calibrated river basins having a drainage
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area ranging between 10,000 and 50,000 km2 (see Fig. 1). The spatial
distribution of the stations is shown in Fig. 2, together with the re-
spective length of the calibration and validation period.

2.2.3. Calibration procedure
The calibration exercise was performed through perturbation of the

eight chosen parameters of the Lisflood hydrological model within
realistic ranges (see Table 1) to maximize the skills in the simulated
discharge, compared to the corresponding observed time series in the
matching river station. The tool used for the hydrological model cali-
bration consists of a set of scripts written in Python and developed in-
house at the JRC. The version used in this work is an update of earlier
versions (from Beck et al., 2016; Hirpa et al., 2018) focusing on creating
a semi-automated tool able to run unsupervised and calibrate in se-
quence all selected catchments. We used a multisite cascading cali-
bration (MSCC) approach (Xue et al., 2016), where the calibrated dis-
charge from upstream river basins is used as input for downstream
ones. The former MS Windows based version was modified for running
in a High Performance Computing (HPC) Linux cluster. The im-
plemented version performs the following steps:

a. Filtering of stations on the basis of the length of the available data in
the simulation period and optimal selection of calibration and va-
lidation period.

b. Hierarchical classification of the calibration stations along the river
network and filtering of stations according to the criteria of proxi-
mity (see Sect 2.2.2).

c. Subdivision of the stations into a user-defined number of lists, to be
run in parallel each on a different cluster node. Every list retains
hydrographic consistency, so that all stations within the same river
basin fall in the same list.

d. Preparation of input and static data for each catchment to calibrate.

All maps are cut out from the global domain in order to reduce the
required storage and maximize the speed of execution. Inflows from
upstream calibrated catchments are imported, when existing.

e. Run of the simulations and parameter calibration, until user-defined
improvement criteria are met. To avoid unnecessary model runs, the
calibration tool evaluates the objective function (i.e., KGE) at each
generation from the 6th onwards and terminates the calibration
process if the improvement compared to the previous generation is
smaller than 0.001. The maximum number of generations was lim-
ited at ngMAX = 16.

f. When all catchments are calibrated, the routine produces global
parameter maps, figures and tables of skill scores for evaluation and
diagnostic, and performs data cleaning.

To perturb the calibration parameters we used the (μ + λ) evolu-
tionary algorithm implemented in the Distributed Evolutionary
Algorithms in Python (DEAP) toolkit (Fortin et al., 2012). The popu-
lation size (μ) was set to 16 and the recombination pool size (λ) to 32,
thus generating a maximum number of model runs per sub-catchment
of μ + λ ngMAX = 528 (see Fig. 3). Each generation produces λ off-
spring, which are evaluated when the population of the next generation
is selected from both offspring and population. Crossover and mutation
probabilities were set to 0.6 and 0.4, respectively, which we found to be
an effective combination in terms of speed of convergence and avoid-
ance of local minima. Each model run covers seamlessly all timesteps
included in the calibration period, including gaps in the time series of
observed discharge data. In addition, each model run is initialized one
year before the start of the calibration period, to enable the model to
warm-up before evaluating its skill against the observations. This was
necessary to compensate for the large uncertainty in the initial model
states. Model runs are composed of two simulations: a pre-run, to es-
timate maps of average inflow to the lower groundwater zone and of
average discharge, which are used in a subsequent run to compare si-
mulated with observed discharges.

2.2.4. Performance metrics
We used a set of performance metrics to evaluate the model skills in

representing observed discharges in the simulation period. The Kling-
Gupta efficiency (KGE, Gupta et al., 2009) was used both as objective
function during the calibration and as performance metric to compare
station results. It is defined as:

= + +KGE r1 ( 1) ( 1) ( 1)2 2 2

where r is the Pearson product-moment correlation coefficient, β in-
dicates the bias between observed and simulated flows, and α is the
variability ratio between observed and simulated standard deviations of
the flow.

Similarly to the Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe,
1970), the KGE provides a dimensionless decomposition of the mean
squared error (MSE) by explicitly accounting for correlation, bias and
variability of the flow. To complement the model diagnostic and skill
assessment, the NSE, the Pearson correlation coefficient (r), and the

Table 1
Calibrated model parameters, lower (min) and upper (max) perturbation range, and initial value before the perturbations (default). The default value is also used for
all uncalibrated catchments.

Parameter name Description [units] min max default

UpperZoneTimeConstant Time constant for the upper groundwater zone [days] 3 40 10
LowerZoneTimeConstant Time constant for the lower groundwater zone [days] 40 500 100
GwPercValue Maximum rate of percolation from the upper to the lower groundwater zone [mm day−1] 0.01 2 0.8
GwLoss Maximum rate of percolation losses from the lower groundwater zone [mm day−1] 0 0.5 0
b_Xinanjiang Power in the infiltration equation based on the Xinanjiang model [-] 0.01 1 0.5
PowerPrefFlow Power in the preferential flow equation [-] 0.5 8 4
SnowMeltCoef Degree-day factor controlling the rate of snowmelt [mm °C−1 day−1] 2.5 6.5 4
CalChanMan1 Multiplier applied to the Manning’s roughness coefficient of the channel system [-] 0.1 15 3

Fig. 1. Histogram of the basin upstream area for the 1226 calibration stations,
further classified by continent.
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percent bias (Pbias) were also analyzed individually. The use of di-
mensionless metrics is key for large scale and global applications, so
that river sections with different climate, flow regime and magnitude

can be compared in the same analyses.

3. Results

The calibration exercise took overall 2 months to complete on a
Intel Xeon HPC cluster, using 10 nodes with CPU E5-4620 @ 2.20 GHz.
Each node had 32 cores each, which corresponds to the recombination
pool size (λ), meaning that at any given time, 10 sub-catchments could
run all 32 simulations of the same generation. A total of 320,000 model
runs (640,000 including the pre-runs) was performed to calibrate the
1226 stations, hence an average of 261 runs per station. In 85% of cases
(i.e., 1045 out of 1226) the calibration ended within 9 generations,
corresponding to 304 model runs (Fig. 3). Despite the additional model
runs, calibration performance are on average lower for the remaining
stations, suggesting that causes are to be sought in the mismatch be-
tween model and observations, rather than in the search algorithm. The
geographic distribution of skill scores comparing simulated and ob-
served discharges in calibration and validation is shown in Figs. 4 and 5
respectively. As expected, performance are higher in calibration than in
validation, with highest KGE in the northern mid-latitudes and in most
of South America. Overestimation of discharges (i.e., Pbias greater
than 0) causes reduction of the modeling skills in some areas in the

Fig. 2. Length in years of the available time series for calibration (top) and for validation (bottom).

Fig. 3. Box plot of the calibration KGE per number of model runs. Ns indicates
the number of stations for each bin.
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central USA, Brazil, Colombia, South-East Asia and most stations in
Africa. Negative bias is less frequent and very location specific, sug-
gesting the effect of human influence and possible issues with the ob-
servations and their geolocation on the modeled river network. Pooling
results by continent confirms the poorer performance in Africa (median
KGE = 0.02), especially due to large positive bias, and to some extent

in Oceania (median KGE = 0.53), due to limited correlation values
(Fig. 6). Further analysis related the calibration skills to the average
specific discharge, to investigate trends over dry or wet regions. Inter-
estingly, the KGE and correlation versus specific discharge take on a U-
shape, with highest skills at the two side bins and poorest in the central
bin (see Supplement Figure S1). However, differences among classes

Fig. 4. Calibration performance: KGE (top), correlation (center), and percent bias (bottom).
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were not statistically significant in a Kruskal-Wallis rank sum test
(Kruskal and Wallis, 1952). Also, the calibration performance shows
considerable differences when grouped by provider of discharge ob-
servations (Supplement Figure S2 and S3), suggesting the need to fur-
ther investigate quality control methods of collected hydrological data.
Yet, most station data were collected through the Global Runoff Data

Centre (GRDC), while several other data providers are associated with a
small number of stations, usually in the same area, where the hydro-
logical simulations may suffer from a common source of error (Figure
S2). This is partly due to the spatial distribution and the density of data
sources used to produce the meteorological forcing and the background
maps used in the hydrological simulations, which are abundant in some

Fig. 5. Validation performance: KGE (top), correlation (center), and percent bias (bottom).
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regions while they are sparse in others (e.g., Berry et al., 2007; Hengl
et al., 2014). Overall, median scores in calibration (validation) are
KGE = 0.67 (0.61), r = 0.8 (0.78), NSE = 0.42 (0.35) and PBias = 8%
(15%). Fig. 7 gives a graphical example of observed versus simulated
discharge time series in calibration and validation, for one calibration
point with KGE and correlation close to the respective medians (i.e., the
50th percentile) of the entire stations set.

In Fig. 8, the cumulative distribution F(·) of the four performance
scores in calibration and validation resulting from this work (in the
figure referred to as “v2019”) are compared with those of the previous
model calibration carried out in 2018 (“v2018”, see Hirpa et al., 2018),
and with those of the uncalibrated setup. The KGE curve of the cali-
brated stations shows a significant improvement compared to both the
uncalibrated run and to the previous calibration work. By defining as
“skillful” those stations with positive KGE (KGE + ), the ideal case
where all stations have perfect calibration skill (i.e., KGE = 1) would
generate an area (A) under the positive side of the KGE curve (i.e., the
integral of KGE + over the y axis) of A_KGE+opt = 1 (where “opt”
stands for optimum). Results from the calibration (cal) work produced
A_KGE+v2019 cal = 0.56 which results in over twice the value of the
uncalibrated (def) run A_KGE+v2019 def = 0.25 and significantly larger
than the previous calibration work A_KGE+v2018 cal = 0.32. Interest-
ingly, the correlation curve of the uncalibrated run is entirely more
skillful than that of the calibration work v2018, hence supporting the
choice of the new model setup used in this work. The cumulative dis-
tribution of the Pbias indicates substantial differences between the new
and the previous calibration setup, where Hirpa et al. (2018) reported
large underestimation errors that could not be compensated with the
model calibration. Differently, results of the current calibration indicate
positive bias in 74% of stations, yet with a narrowing of the distribution
of Pbias values around zero. This can be partly attributed to the change
in meteorological forcing used in the calibration, from the control run
of ECMWF reforecasts (1995–2015) in ver. 2018 (i.e., GloFAS v2.1), to
the current approach based on ERA5. For comparison, 61% of cali-
bration stations have Pbias within ± 20%, while in the previous ca-
libration work it was true only in 28% of the cases.

In Fig. 9 the cumulative distribution of the KGE of all calibrated
stations is compared with two subsets, including only lake and reservoir
outlets, respectively. Performance at 50 lake outlets are in line with
those of the full stations set, with an area (A_KGE+lakes cal = 0.56), thus
supporting the choice not to calibrate an additional parameter for lakes,
as done in the previous calibration work. On the other hand, perfor-
mance in stations located downstream of 45 reservoirs (res) are on
average poorer (A_KGE+res cal = 0.41). This reflects the challenges to
accurately represent the complex dynamics of water release and di-
version from reservoirs, driven by concurrent needs including hydro-
power, irrigation, flood protection, environmental flows, and recreation

activities, among others (Hanasaki et al., 2006; Shen et al., 2012).

4. Discussion

Results indicate higher skills in data rich areas, especially in Europe
and North America, and in general in the northern mid-latitudes, where
the station density is higher. Calibration performance are specific of
each river station, though they are not representative of neighboring
uncalibrated river basins. Although the model parameters set in the
uncalibrated regions were generated by expert judgement, performance
outside the calibrated basins are not monitored due to the lack of va-
lidation data. Results for the uncalibrated setup in Figs. 8 and 9 (in
grey) are representative of the average model performance that one can
expect outside the calibrated basins. It is worth noting that the per-
formance in simulating quantitative streamflows are not directly linked
to the skills in flood early warning based on threshold exceedance
analysis as in GloFAS (Alfieri et al., 2013). Continuous efforts are in-
vested in expanding the coverage and the period of availability of the
discharge observation dataset, not only to improve the hydrological
modeling skills but to quantify it too. Regionalization techniques of
calibrated model parameters have already shown a number of suc-
cessful applications to improve hydrological modeling in ungauged
regions (e.g., Beck et al., 2016; Döll et al., 2003; Nijssen et al., 2001;
Samaniego et al., 2010; Widén-Nilsson et al., 2007), though their use in
operational systems has been scarce to date.

This work pointed out the need for effective data quality control on
discharge time series to use for model calibration. Calibration with poor
quality data is to be avoided at all costs, as it can compromise the
modeling performance and lead to worse results as compared to the
non-calibration case. Poor quality data can manifest themselves in
various ways (e.g., Boughton, 2006), and are therefore particularly
challenging to spot through automated procedures. In this work, the
issue is complicated by the large number of data providers, which in-
creases the likelihood of errors in the data, as well as issues in units
conversion and data formatting.

The comparison of the calibration results versus the previous
GloFAS setup highlights substantial upgrades, which are likely to im-
prove the general quality of GloFAS forecasts. These improvements are
related to different factors of the modelling chain: 1) the use of a dif-
ferent hydrological model, Lisflood, in place of the previous two-model
setup to compute land surface fluxes and river routing (see Alfieri et al.,
2013). The latter was recognized to be a sub-optimal solution, as the
two models are not developed in an integrated way and no feedback
between the two is implemented. Also, the previous model calibration
was performed only on the routing parameters, so that errors in the
land surface scheme were corrected in the wrong place. 2) The new
model setup makes use of the ERA5 meteorological reanalysis dataset,

Fig. 6. Box plot of the calibration performance by continent: KGE (left), correlation (center), and percent bias (right). Ns indicates the number of stations for each bin.
For each performance score, bins are ranked left to right from the most to the least skillful, according to the median of each bin.
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Fig. 7. Comparison of simulated and observed discharge for a sample station in the USA, with basin area of about 17,000 km2. (a) Calibration period, (b) validation
period, seasonality in (c) calibration and (d) validation. Color shading indicates ± 1 standard deviation of the data.
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based on the ECMWF’s Integrated Forecasting System (IFS) Cycle 41r2.
It benefits from a decade of developments in model physics, numerics
and data assimilation, compared to the previous reanalysis dataset ERA-
Interim (see Sect. 2.1.1), which was used in the previous GloFAS setup.

3) An improved multi step approach to select stations to calibrate,
which minimizes incorrect station positioning on the model river net-
work and removes those with poor data quality. The list of calibration
stations is the result of a continuous effort to include more data

Fig. 8. Cumulative distribution of the model performance at the calibrated stations including KGE (top-left), NSE (top-right), correlation (bottom-left), and percent
bias (bottom right). Lines refer to the 2018 calibration exercise (in brown) and to this study (blue and grey lines). Grey lines represent performance of the default
(def) setup before calibration. Black dotted lines show the case of perfect match between simulations and observations. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Cumulative distribution of the model KGE resulting from this study for all stations (blue and grey lines), and for stations located at lake outlets (brown lines,
left panel) and at reservoir outlets (brown lines, right panel). Grey lines represent performance of the default setup before calibration (all stations). Black dotted lines
show the case of perfect match between simulations and observations. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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providers, especially in underrepresented regions, and of a more
stringent selection criteria. We ultimately generated a list with similar
size (i.e., 1226 stations) to that of the previous calibration exercise (i.e.,
1287 stations), though with better distribution and data quality. For
example, the final list counts 66 world countries with at least one ca-
libration stations, while in the previous version it was only 56.

The substantial and concomitant changes from the previous cali-
bration exercise make it difficult to discern the contribution of specific
changes to the overall model improvement. Changes were driven by
different rationale, ranging from technological updates, need for model
usability and flexibility, data quality issues, among others. Our ultimate
goal is to produce the best possible global streamflow reanalysis, which
can be extended consistently in near real time and used to initialize
medium range and seasonal forecasts in an operational system for
streamflow forecasting and flood early detection.

5. Conclusions

This article describes the procedure to generate a new global
streamflow reanalysis for 1980–2018, with daily time step and 0.1°
spatial resolution (~11 km at the Equator), to be used within the
Copernicus-EMS Global Flood Awareness System, as well as in a wide
range of global modeling frameworks. It is based on the ERA5 me-
teorological dataset as input and calibrated at 1226 river sections. The
GloFAS- Reanalysis dataset v3.0 thus produced is freely available for
download through the JRC Data Catalogue (https://data.jrc.ec.europa.
eu/collection/id-00288) and near real time updates will be made
available through the Copernicus Climate Data Store (https://cds.
climate.copernicus.eu) once the operational version is released. The
model performance show a substantial improvement of the new cali-
brated setup in comparison both to the uncalibrated run and to the
previous calibrated GloFAS setup. This is likely to improve the opera-
tional flood forecasts in GloFAS, through more realistic initial condi-
tions and more consistent warning thresholds. The calibrated model
setup will be part of the next major GloFAS upgrade (i.e., GloFAS v3.0),
foreseen for early 2020, and will be preceded by an extensive testing
and evaluation over a large number of past forecasts.

We are committed to a continuous improvement of the GloFAS-
Reanalysis and ultimately of GloFAS forecasts, which translate into
better preparedness against large scale flooding and in the economic
benefits of the related flood risk reduction (Pappenberger et al., 2015).
Ongoing efforts and future research plans include an improved re-
presentation of the human influence to the global hydrological cycle
through better estimates of the dominant water abstractions (e.g., ir-
rigation, domestic, livestock, energy, manufacturing, mining, see
Huang et al., 2018), to improve the estimation of flood warning
thresholds for different forecast ranges (Alfieri et al., 2019), and to
increase the use of remote sensing products for near real time updating
of variables affecting the hydrological cycle, such as the Leaf Area Index
(LAI) and surface water extent.

6. Data availability

The ERA5 dataset is distributed through the C3S Climate Data Store
(https://cds.climate.copernicus.eu). Lisflood is an open source hydro-
logical model and can be downloaded from the Github page https://ec-
jrc.github.io/lisflood/, together with the calibration tool used in this
work. Observed discharges are collected from around 30 providers,
including regional and national hydro-meteorological institutes and
international organizations. The largest number of station data was
provided by the Global Runoff Data Centre (GRDC, https://www.bafg.
de/GRDC/). The GloFAS- Reanalysis dataset v3.0 is freely available for
download through the JRC Data Catalogue (https://data.jrc.ec.europa.
eu/collection/id-00288) and near real time updates will be made
available through the Copernicus Climate Data Store (https://cds.
climate.copernicus.eu) once the operational version is released.
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