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Abstract: In the last decades, the Sahelian area was hit by an increase of flood events, both in
frequency and in magnitude. In order to prevent damages, an early warning system (EWS) has been
planned for the Sirba River, the major tributary of the Middle Niger River Basin. The EWS uses the
prior notification of Global Flood Awareness System (GloFAS) to realize adaptive measures in the
exposed villages. This study analyzed the performances of GloFAS 1.0 and 2.0 at Garbey Kourou.
The model verification was performed using continuous and categorical indices computed according
to the historical flow series and the flow hazard thresholds. The unsatisfactory reliability of the
original forecasts suggested the performing of an optimization to improve the model performances.
Therefore, datasets were divided into two periods, 5 years for training and 5 years for validation, and
an optimization was conducted applying a linear regression throughout the homogeneous periods of
the wet season. The results show that the optimization improved the performances of GloFAS 1.0 and
decreased the forecast deficit of GloFAS 2.0. Moreover, it highlighted the fundamental role played by
the hazard thresholds in the model evaluation. The optimized GloFAS 2.0 demonstrated performance
acceptable in order to be applied in an EWS.

Keywords: Middle Niger River Basin; floods; flood forecasting; GloFAS; model verification; model
optimization; early warning system

1. Introduction

The last decades have been characterized by a drastic global increase in magnitude and frequency
of flood events [1,2]. West Africa countries have been affected by a large number of extreme events
and have suffered serious flood-related damages [3]. In particular, the Sahelian area has recorded a
strong rain inter-annual variability and an increase in magnitude and frequency of extreme rainfall
events [4,5], coupled with an increase in flood occurrences [6,7]. The amount of precipitation is greater
than that observed during the severe drought from 1970 to 1990, but lower than that observed from 1950
to 1960 [8]. The anomaly, called the “Sahel Paradox”, is that the streamflow in Sahelian rivers is higher
compared to those from 1950 to 1960 [9,10]. The reason for the higher streamflow is heavily debated in
the research community and cannot be entirely explained by a single factor [11,12]. The hydrological
changes may be caused by the increment of the extreme rainfall events [13], the changes in land use
and land cover [14–16], and the rupture of the endorheic basins [17–19].
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Structural measures have been solicited by floods with magnitudes greater than every event
ever observed in Sahelian rivers, but they have been proven to be insufficient [6,20]. Therefore,
non-structural measures and a change of perspective in the hydrological analysis are needed to
deal with these events [21–23]. In recent years, flood early warning systems (EWS) have become a
fundamental tool in addressing these needs in order to alert the exposed communities and improve
safety [24–26]. The earliest information on the forthcoming flood can be generated both from upstream
field observations and hydrological models [27]. The field observations are reliable on the actual river
flow but they may generate alerts with an insufficient lead time to prepare adaptive strategies [28].
For this reason, the employment of outputs from hydrological models is very important in medium
and small river basins, where the warning time is not sufficient if based on observed flow [29].
Sirba, a medium Sahelian river basin shared between Niger and Burkina Faso, perfectly meets these
conditions. In the last years, the riverine communities have been affected by frequent and intense
flood events [27,30]. This has caused enormous damages to the population, whose livelihood is mainly
related to family subsistence agriculture.

In such context, this study aims to evaluate and improve the performances of the GloFAS (Global
Flood Awareness System) hydrological application of the Copernicus Emergency Management Service
in the Sirba River basin. GloFAS is a global probabilistic system providing discharge forecasts all
over the globe, with flood information published every day on more than 2000 reporting points [31].
The model, initially un-calibrated in the 1.0 version, has been recently updated to a 2.0 version that is
calibrated on over 1000 flow series [32]. The evaluation of the model reliability was conducted with
continuous, categorical, and skill indices on both GloFAS versions 1.0 and 2.0 [33,34]. Unfortunately,
due to unreliable meteorological input in the Sahelian area and the hydrological limitations of GloFAS
in the study area, the performances have been proven to not to be completely satisfactory [30,35].
The weak performances implied that the quality of the forecasts could be improved through an
optimization process. In this case, the optimization was conducted from a user point of view rather
than directly considering the model parameters. Therefore, the optimization consists in the application
of corrective factors to the model outputs [36]. These correction factors were computed by linear
regression models based on the homogeneous periods of the river hydrology [37].

Hence, the aim of this research was the quality verification and the optimization of GloFAS results
with the purpose of making them available for the Sirba EWS. The work is structured as follows:
Section 2 focuses on the study area, hydrological model, and materials and methods adopted. Section 3
describes the results and discusses the significance of the research. Section 4 contains the conclusions
and the future perspectives.

2. Materials and Methods

2.1. Study Area

This study focused on the Sirba River, one of the major tributaries of the Middle Niger River.
The basin covers 39,138 km2, most of which in Burkina Faso (93%), while the remaining part is in
Niger (7%). The watershed is located in the Sahelian strip and is characterized by a wet season of
approximately four months, from June to September [38,39]. The average streamflow, obtained from
the Garbey Kourou hydrometer, shows that the hydrological behavior follows the rainfall pattern and
that the Sirba River is an intermittent river, dry for approximately 200 days per year [30].

The Sirba River starts in Niger, downstream the confluence of Yali, Faga, and Koulouko rivers.
The flow is measured by two automatic hydrometers in Niger (Bossey Bangou and Garbey Kourou)
and by some manual hydrometers in Burkina Faso, among which the main ones are Sebba, Liptougou,
and Bassieri (Figure 1).
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Figure 1. Geographical framework of the study area: the Sirba River Basin with the hydrometric
gauging stations, the main hydrographic network, and the administrative boundaries. Bottom right:
West Africa overview.

2.2. The Hydrological Model

This work analyzed and attempted to improve the performances of Global Flood Awareness System
(GloFAS), the global hydrological application operative in the study area. GloFAS is co-developed by the
Joint Research Centre (JRC) of the European Commission and the European Centre for Medium-Range
Weather Forecasts (ECMWF) and is based on the HTESSEL (Revised Tiled ECMWF Scheme for Surface
Exchanges over Land) land-surface model and the Lisflood distributed hydrological model [31].
It is part of the Copernicus Emergency Management Service and uses the meteorological inputs of the
ECMWF to provide probabilistic river discharge forecasts for up to 30 days.

The model parameters were assigned on a global regular grid of 0.1 × 0.1 degree (≈10 km), and
the outputs were provided in a web platform for the whole globe with over 2000 reporting points
providing detailed flood information worldwide, usually located around the main gauging stations
(www.globalfloods.eu) [40]. GloFAS forecasts and products are freely accessible for everybody and for
all use.

The model thus produced an ensemble of 51 forecasts that were used to evaluate the probabilities
of thresholds exceedances [31,41]. There are five reporting points on the Sirba Basin: the Garbey
Kourou point, active since the model implementation, and four other points located near the remaining
hydrometers (Bossey Bangou, Sebba, Liptougou, and Bassieri) since May 2018. These reporting points
were added after the request of the ANADIA 2.0 Project (Adaptation to climate change, disaster
prevention, and agricultural development for food security) to increase the forecast density in this
crucial area (Table 1).

Table 1. Characteristics of Global Flood Awareness System (GloFAS) model versions.

Model Version Coverage Calibration Features Sirba Basin

GloFAS
1.0

global
No

probabilistic distributed
Five reporting

points2.0 Yes

www.globalfloods.eu
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There are two versions of the model: the original version (GloFAS 1.0), launched on 1 November
2011, that did not include calibration, and the updated one (GloFAS 2.0), launched on 14 November
2018, that was calibrated using the daily streamflow data from 1287 stations worldwide (including
Garbey Kourou flow series). GloFAS 2.0 has improved the river discharge performance through an
enhancement of routing scheme and groundwater model parameters forced by observed stream-flows
and ECMWF reforecasts [32]. After the launch of the new version, GloFAS 1.0 was replaced by GloFAS
2.0 as the only operationally available hydrological model.

In November 2019, GloFAS was upgraded to version 2.1, whose model cycle included some
smaller changes and introduced some new products. Importantly, the river discharge reanalysis and
the related thresholds were updated using the officially released ERA5 (Atmospheric Reanalysis of
ECMWF, fifth generation) [42]. This new model version was not considered in the study because the
hydrological modelling was not changed and the differences between 2.0 and 2.1 were expected to be
small and would not have changed the conclusions of the paper.

2.3. Materials

The materials used in this study consisted essentially of the Garbey Kourou flow time series,
both observed and forecasted, and of the Sirba River hazard thresholds. The forecasted flow series
contains two different datasets: (1) the GloFAS 1.0 series and (2) the GloFAS 2.0 series.

2.3.1. Observed Flow Series

The historical discharge series contains the daily observations of the Garbey Kourou gauging
station from 28 June 1956 to 31 December 2018. The flow series was subjected to a major revision in
2019 due to an outdated rating curve that was causing a substantial underestimation of the streamflow.
The updated flow series fits much more of the river behavior (Figure 2). The hydrological analysis of
the dataset highlighted three changepoints in 1968, 1989, and 2008, representing four climatic periods:
(1) 1956–1967 wet period, (2) 1968–1988 great drought, (3) 1989–2007 rainfall and flow augmentation,
and (4) 2008–present day flood period [30]. The flood period is characterized by the increase of the
annual flow maxima and the flood-related damages [6]. Following the changepoints, the decision of
considering only the river flow of the last period (2008–2018) was made.Water 2020, 12, 620 5 of 18 
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2.3.2. Forecasted Flow Series

The GloFAS 1.0 dataset contains the forecasts from 1 April 2008 to 30 April 2018 for the Garbey
Kourou reporting point. The daily forecasts were provided by GloFAS developers considering 3682 days
of forecast runs, 30 forecast lead times, and 51 ensemble values in a 3682 × 31 × 51 matrix. The columns
of the matrix represent the initial river discharge value and the 30 daily forecasts [31].

The GloFAS 2.0 dataset contains the forecasts from 1 January 1997 to 31 December 2018 for the
Garbey Kourou reporting point. The forecasts were provided in three formats: with twice-weekly
frequency and 11 ensemble values from 1 January 1997 to 31 December 2016, with twice-weekly
frequency and 51 ensemble values from 1 January 2017 to 30 June 2017, and with daily frequency and
51 ensemble values from 1 July 2017 to 31 December 2018.

The datasets were used to perform two different types of analysis: (1) the evaluation of the
improvements reached by the new version of GloFAS, and (2) the assessment of reliability for an
application in an early warning system (EWS). These analyses were conducted between April 2008 and
April 2018, in line with the changepoints and the flow series availability (Table 2).

Table 2. Characteristics of the discharge time-series.

Flow Series Version Available Period Analysis Period

GloFAS forecast
1.0 1 April 2008–30 April 2018

1 April 2008–31 December 20172.0 1 January 1997–31 December 2018

Garbey Kourou
hydrograph updated [30] 28 June 1956–31 December 2018

2.3.3. Hazard Thresholds

The observed hazard thresholds were computed in conformity with the most advanced analysis
techniques, considering the updated river hydrology and the related field effects. The annual maxima
(Figure 2) of the historical discharge series showed a clear non-stationarity that was analyzed following
not only the traditional generalized extreme value (GEV) approach but also the non-stationary (NS)
GEV approach, which considers the hydrologic changes and the increase of the return time period in
the last decades [23]. The thresholds were thus related to three indices: (1) the flow duration curve
(FDC), obtained from the mean flow hydrology; (2) the stationary return time period based on the
extreme analysis; and (3) the NS return period according to the hydrologic changes [27]. After the
identification of thresholds and flood-prone areas, an inventory of the exposed items was made through
a drone flight and a field survey [43]. Table 3 displays the thresholds, the indices, and the related field
effects in the main riverine villages, underlining the importance of building an EWS [28].

Table 3. Observed hazard thresholds for the Sirba River [27,28].

Color Magnitude
Threshold Range Index

Field EffectsQ min
(m3/s)

Q max
(m3/s)

FDC
(QXX)

SGEV
(RTXX)

NSGEV
(NS-RTXX)

Green normal
condition 0 600 15 5 / /

Yellow frequent
flood 600 800 5 10 2 Low effects on

riverine activities

Orange severe
flood 800 1500 / 30 5 Significant effects on

village activities

Red catastrophic
flood 1500 2400 / 100 10 Severe damage and

possible human losses
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The GloFAS hazard thresholds are the magnitudes of events with given return periods (2, 5, and
20 years), obtained from a climatological re-analysis based on Era-Interim (in GloFAS 1.0) and ERA5
(in GloFAS 2.0) [44,45]. The values in Table 4 highlight that the return periods were similar to those
of the observed hazard thresholds, whereas the flow magnitudes were completely different (4 and
10 times lower). The magnitude differences are important for understanding the mismatch between
observed and forecasted flow series. However, in probabilistic models such as GloFAS, the focus is on
the warning given by the threshold exceeding rather than on the amount of the discharge.

Table 4. GloFAS hazard thresholds for the Garbey Kourou reporting point [40].

Color Alert
Level

Threshold Range
GloFAS 1.0

Threshold Range
GloFAS 2.0 Index

Q min
(m3/s)

Q max
(m3/s)

Q min
(m3/s)

Q max
(m3/s) SGEV (RTXX)

Green 0 0 127 0 61 2
Yellow 1 127 346 61 120 5

Red 2 346 628 120 195 20
Purple 3 628 / 195 / /

2.4. Methods

The methods described in the following sections focus on the verification and optimization
processes of the Sirba River forecasted discharges. The GloFAS outputs have been applied worldwide
and verified several times, from Latin America to South and Southeast Asia [46–48]. These applications
show that studies conducted on specific forecasting events (Brasil and Pakistan) consider all the
ensemble values, although the evaluation of the quality of the model needs an unique deterministic
value (Myanmar and Nepal) [49]. Moreover, applications for an EWS need a fixed forecast lead time
and preferably a post-processing to improve the forecast quality (Perù) [50]. In this case, the data
processing sorted each daily ensemble in ascending order and calculated the mean for the values from
the 25th to the 75th percentile, allowing one value to be obtained, free of ensemble outliers, for every
day of forecast.

The verification concerns the evaluation of forecast quality whereas the optimization is the process
that reduces the discrepancy between observed and forecasted values. Continuous and categorical
indices were used for the analysis. The optimization was developed from the user point of view by
applying a set of correction factors to the model outputs. Therefore, the calibration was conducted on
the model outputs instead of the internal model parameters [51–55]. All the analyses were conducted
on 5 days forecasts, as established by the ANADIA 2.0 project, because of the time required to activate
a strategic plan and secure the flood-prone areas [28]. The categorical indices were calculated on the
yellow threshold exceeding (127 m3/s for GloFAS 1.0, 61 m3/s for GloFAS 2.0, and 600 m3/s for observed
discharge and optimized models) in order to increase the sample size [27].

2.4.1. Forecast Verification

The forecast verification is based on fitting and reliability indices. The fitting verification between
observed and forecasted values was realized through continuous indices. The streamflow was therefore
considered as a continuous variable that can assume an infinite number of possible values, although
both forecasts and observations are made using a finite number of discrete values [33]. For this purpose,
the RMSE (root mean square error) observations standard deviation ratio (RSR) and the Nash–Sutcliffe
efficiency (NSE) indices were used. The RSR detects the absolute systematic mean error of forecast after
a penalization of large errors, whereas the NSE is a normalized statistic that determines the relative
magnitude of the residual variance compared to the measured data variance [34,56,57].
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Then, in order to assess the reliability of forecasts in predicting flood events, the discharge was
considered as a dichotomous variable of type “yes” or “no” referring to the specific “threshold exceeding”
event. Hence, essentially, both forecasts and observations of this variable indicate the number of days
in which the selected hazard threshold was exceeded (Figure 3).
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Figure 3. Contingency table used to calculate the categorical indices. Each letter indicates the number
of times the specific event occurs: a = “hits”, b = “false alarms”, c = “misses”, d = “correct negatives”.

The categorical indices calculated as reliability indicators are bias (BIAS), probability of detection
(POD), false alarm rate (FAR), percent correct (PC), threat score (TS), and Heidke skill score
(HSS) [31,33,34]. The objective of these indices is to detect the overall goodness of forecasts and
completeness of information considering all the cases of detection (“hit”, “false alarm”, “miss”,
“correct negatives”).

The accurate description and the formulation of the adopted continuous and categorical indices is
reported in Appendix A.

2.4.2. Forecast Optimization

The optimization is the process that seeks to improve the reliability of forecasts. For this purpose,
the flow time series were divided into two separate sub-datasets: a training period and a validation
period. The training period is necessary to calculate the correction factors whereas the validation
period is necessary to verify the performances of the new forecasts as modified by the correction factors.
The dataset splitting was realized to ensure robustness both to the optimization and the verification
procedures within the bounds of availability of the forecasts. The analysis datasets were thus divided
into two equal periods of 5 years (training: 1 April 2008–31 December 2012, validation: 1 January
2013–31 December 2017), giving the same weight at training and validation [36,56].

Linear regression models were created to identify a relation, as much as possible, between forecasts
and observations in the training datasets. The ordinary least squares (OLS) method was used to
estimate the coefficients of the linear regression models [37]. The OLS objective is to find the linear
function that minimizes the residual sum of squares (RSS), that is, the sum of the squares of the
difference between the dependent variable values and those predicted under the linear regression
model. The observed data were selected as response variable while the 5 days forecasts were selected
as an explanatory variable. The training and validation datasets were divided into 12 homogeneous
periods according to the river hydrology [30]. The discharges in the dry season (November to May)
were grouped into a unique interval, the low-flow season (June and October) was considered with a
monthly time-frame, whereas the medium- and high-flow season (July to September) was divided into
periods of 10 days each (Table 5).
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Table 5. Division into periods of the wet season.

Month June July August September October November
to May

Period 1 2 3 4 5 6 7 8 9 10 11 12
Day - 1–10 11–20 21–31 1–10 11–20 21–31 1–10 11–20 21–30 - -

The relation between the two variables has been estimated as

yt = f (xt) + et, where et = g(et − 1) (1)

where yt, xt, and et indicate the variable y, x, and e at time t; and f ( . . . ) and g ( . . . ) are any type of
function. Equation (1) indicates the presence of serial correlation in the errors; this implies that the error
et does not impact only on yt but also on the future realizations, yt+1, yt+2, . . . . The autocorrelation of
the errors can be caused by the omission of an autocorrelated variable among the explanatory variables,
or by the autocorrelated nature of the dependent variable, not sufficiently explained by x. Hence,
with relation to Equation (1), a typical assumption of OLS is not, obviously, respected:

cov(et, es) = 0 for t , s (2)

The OLS estimators are consequently no longer the best, but still linear and unbiased. Furthermore,
the test statistics are no longer correct because the classic standard errors, on which they are based,
tend to be underestimated. This problem was overcome by using the Newey–West heteroskedasticity
and autocorrelation consistent (HAC) standard errors [57–59]. The use of OLS coefficient estimates in
combination with HAC standard errors avoids specifying the exact nature of the error autocorrelation,
necessary to construct an alternative estimator with minor variance. The possibility of non-normally
distributed errors is ignored because it is not a necessary OLS assumption for achieving best linear
unbiased estimator (BLUE), and the potential distortions in the calculation of the test statistics are
already resolved by the HAC standard errors [60].

The functions chosen as f ( . . . ) in Equation (1) were polynomial functions of degrees 1, 2, 3, and 4.
The OLS objective can also be understood as the maximization of R2; remembering that

R2 = 1−
(RSS

TSS

)
where RSS =

T∑
t=1

(yt − ŷt)
2 and TSS =

T∑
t=1

(yt − y)2 (3)

This criterion was also used to choose the most suitable functional forms for the linear regression
models. Hence, only OLS coefficient estimates significantly different from zero at the 0.05 level of
linear regression models with highest R2 were chosen as correction factors of the forecasts. These
factors were exclusively applied in the wet period (June to October) because the dry period was already
correctly modelled.

In the following sections, in order to simplify the reading, various acronyms are used to indicate
the four forecasted flow series: G1 (GloFAS 1.0), G2 (GloFAS 2.0), OG1 (optimized GloFAS 1.0), and
OG2 (optimized GloFAS 2.0).

3. Results and Discussion

The results jointly considered the four forecasted series (5 days GloFAS 1.0 and 2.0 both in original
and optimized format) and compared them with the observed flow series. The analysis timeframe
covered the five years (2013–2017) of verification.

The preliminary analysis was conducted on the basic statistical parameters of maximum, minimum,
and mean reached during the verification period (Table 6). The minima displayed that zero wa correctly
forecasted by all models. Mean and maxima showed that the raw forecasts heavily underestimated
the river discharge—the mean value was less than 1/10, whereas the maximum was less than 1/5 of
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the observed flow, in both versions of GloFAS. Moreover, G2 values were significantly lower than G1.
After the optimization, mean values showed an over-forecasting in OG1 and an under-forecasting in
OG2, although the maxima were both over-estimated (Table 6).

Table 6. Basic statistical parameters (minimum, mean, and maximum) in the verification years
2013–2017. Observed flow, and 1.0 and 2.0 (5 days) GloFAS forecasts before and after the optimization.

Index Observed GloFAS 1.0 GloFAS 2.0 Optimized
GloFAS 1.0

Optimized
GloFAS 2.0

Min (m3/s) 0.0 0.0 0.0 0.0 0.0
Mean (m3/s) 117.8 11.1 7.8 127.2 74.1
Max (m3/s) 1349.2 247.2 186.8 1714.9 2098.9

The flow duration curves confirmed the previous results, leading to some interesting observations:
(1) G1 had serious problems in producing zero flow values (even for Q355); (2) the central part (Q60–Q135)
was very similar between G1 and G2; (3) the highest values (Q1–Q10) were quite close in OG1, whereas
in OG2 the Q1 is more than double the Q5; (4) in the interval Q5–Q80, the forecasts were over-forecasted
in OG1 and under-forecasted in OG2; and (5) the behavior of OG1 and OG2 was the same from Q80

onwards, even if OG2 was higher than OG1 until Q200 and lower in the final part of the curve (Figure 4).Water 2020, 12, 620 10 of 18 
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Figure 4. Flow duration curve of the Sirba River at Garbey Kourou in the verification years 2013–2017.
Observed flow, and 1.0 and 2.0 (5 days) GloFAS forecasts before and after the optimization.

The hydrograph of observed and forecasted flows highlights the ability of all forecasts to capture
the annual flow cycle, especially during the dry season (Figure 5). However, the wet season peaks were
widely underestimated in the original versions, whereas the optimized forecasts tended to produce
some outlier peaks. The outliers occurred every year, except for 2016 (OG2 in 2013 and 2017, and OG1
in 2014, 2015, and 2017).



Water 2020, 12, 620 10 of 18

Water 2020, 12, 620 10 of 18 

 

 

Figure 4. Flow duration curve of the Sirba River at Garbey Kourou in the verification years 2013–2017. 

Observed flow, and 1.0 and 2.0 (5 days) GloFAS forecasts before and after the optimization. 

The hydrograph of observed and forecasted flows highlights the ability of all forecasts to capture 

the annual flow cycle, especially during the dry season (Figure 5). However, the wet season peaks 

were widely underestimated in the original versions, whereas the optimized forecasts tended to 

produce some outlier peaks. The outliers occurred every year, except for 2016 (OG2 in 2013 and 2017, 

and OG1 in 2014, 2015, and 2017). 

 

Figure 5. Hydrograph of the Sirba River at Garbey Kourou in the verification years 2013–2017. 

Observed flow, and 1.0 and 2.0 (5 days) GloFAS forecasts before and after the optimization. 

10 30 60 91 135 182 274 355

Days in a year

0

200

400

600

800

1000

1200

F
lo

w
 [

m
3
/s

]

Observed Data

GloFAS 1.0

GloFAS 2.0

Optimized GloFAS 1.0

Optimized GloFAS 2.0

Figure 5. Hydrograph of the Sirba River at Garbey Kourou in the verification years 2013–2017. Observed
flow, and 1.0 and 2.0 (5 days) GloFAS forecasts before and after the optimization.

A single wet season is shown in Figure 6 in order to better describe the model behavior. The original
models predicted values near zero for most of the time period. It is noticeable that in G2 the flow started
at the end of August, whereas in G1 it began 15 days before. The optimized versions clearly showed an
over-forecasting in OG1 and an under-forecasting in OG2. With regards to the peak values, observed
flow and forecasts were quite different: (1) OG2 captured the start and the end of the highest flows
(early August to mid-September), whereas OG1 identified the initial peak but overestimated the flow
at the end of September; (2) the peaks were quite accurate in OG2, whereas OG1 over-forecasted them;
(3) both optimized models properly identified the major peaks (early August and early September),
but OG1 over-estimated the peak duration and OG2 under-estimated it.
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The 2.0 version of GloFAS did not produce substantial improvements to the forecasts, according
to RSR and NSE, and the overall quality even slightly deteriorated. However, some noteworthy
enhancements could be reached with the optimization procedure (Table 7).

Table 7. Continuous indices of original and optimized (5 days) forecasts of GloFAS 1.0 and 2.0 in the
verification years 2013–2017. Best performance is shown in bold.

Index GloFAS 1.0 GloFAS 2.0 Optimized
GloFAS 1.0

Optimized
GloFAS 2.0

RSR (-) 1.07 1.10 1.01 0.72
NSE (-) −0.13 −0.21 −0.03 0.48

On the basis of performance ratings in Table 8, G1, G2, and OG1 showed unsatisfactory values,
whereas the results obtained by OG2 were sufficiently satisfactory (RSR = 0.72 and NSE = 0.48) [34,61,62].
The optimization improved the performance of RSR (OG1 < G1 and OG2 < G2) and NSE (OG1 > G1 and
OG2 > G2) for both model versions. However, it is interesting to note that OG2 performed better than
OG1, although G2 achieved worse results than G1 for both RSR and NSE. Therefore, the improvement
was significant only for OG2.

Table 8. Performance ratings of the continuous statistics [34].

Performance Rating Very Good Good Satisfactory Unsatisfactory Bad

RSR 0.00–0.50 0.50–0.60 0.60–0.70 0.70–1.00 >1.00
NSE 0.75–1 0.65–0.75 0.50–0.65 0.50–0.00 <0.00

The categorical indices displayed different results (Table 9). BIAS values underlined the
under-forecasting or the over-forecasting in terms of threshold exceeding. Therefore, G1, G2, and OG2
under-forecast the yes events, whereas OG1 showed an over-forecasting. The BIAS values exhibited a
redundancy (OG1) and a deficiency (G1, G2, and OG2), which suggest that the FAR for OG1, and the
POD for G1, G2, and OG2 would not be particularly satisfying. POD and FAR are the fundamental
parameters that are analyzed for an EWS application. The best POD performance belonged to OG1,
whereas the best FAR performance belonged to G2. However, these values were quite unsatisfactory
for all the models because FAR ≥ 60% and POD ≤ 33% were slightly insufficient in activating an EWS
mechanism. PC was influenced by the “correct negatives” rather than by the “hits” due to the high
amount of values under the yellow threshold. The percentage of “correct negatives” decreased in
the optimized models. Therefore, the under-forecasted OG2 appeared to be more accurate than OG1.
The quality of forecast in predicting threshold exceeding was assessed by TS. This index considered
both “hits” and “false alarms”, thus incorporating the POD and FAR features. It demonstrated that,
giving the same weight to POD and FAR, G2 and OG1 were slightly better than G1 and OG2 for an
EWS application. TS confirmed the non-optimal behavior observed in POD and FAR and quantified
that only 13% (G2 and OG1) and 5–8% (G1 and OG2) of threshold exceeding were correctly identified.
HSS considers both the success ratio (1-FAR) and the number of correct random chance forecasts.
This skill index is generally used to evaluate rare events [63]. The best results, such as TS, were reached
by G2 (0.21) and OG1 (0.18).

The analyses demonstrated that the GloFAS 1.0 system badly forecasted the flow in the Sahelian
area as declared by Alfieri et al. in 2013 [31]. The Sahelian discharge forecasting complexity is related
both to a non-homogeneous watershed response and to several difficulties in correctly predicting the
meteorological forcing [35,51,64]. The calibration conducted by Hirpa et al. in 2018 [32] for GloFAS 2.0
contributed to the improvement of the forecast behavior in terms of categorical indices. On the contrary,
the continuous indices were not improved because the calibration was realized before the revision
of the Garbey Kourou historical discharge series by using an outdated and unreliable series [30].
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The optimization allowed for the alignment of the forecasted hydrograph shape to the observed flow,
even though the flow magnitude was still underestimated.

Table 9. Categorical and skill indices of original and optimized forecasts (5 days) of GloFAS 1.0 and 2.0
in the verification years 2013–2017. Best performance is shown in bold.

Index GloFAS 1.0 GloFAS 2.0 Optimized
GloFAS 1.0

Optimized
GloFAS 2.0

BIAS (-) 0.34 0.42 1.75 0.28
POD (-) 0.06 0.17 0.33 0.10
FAR (-) 0.82 0.60 0.81 0.65
PC (%) 93.9 94.6 89.5 94.6
TS (-) 0.05 0.13 0.13 0.08

HSS (-) 0.07 0.21 0.18 0.13

The continuous indices showed that (1) G1 and G2 are flow predictors less precise than the mean
flow, (2) OG1 insufficiently improved the quality of the model, and (3) OG2 obtained results fairly
satisfactory according to the classification of Moriasi et al. in 2007 [34]. Although the performances of
forecasts were lower than the literature values for the continuous indices, OG2 proved to be the best
solution to forecast the river flow [34,46,50]. The categorical indices demonstrated the over-forecasting
of OG1 and the under-forecasting of OG2. Thus, both original and optimized models showed a poor
reliability in predicting flood events in the Sirba River Basin. The high number of “false alarms” and
the low number of “hits” do not allow for people to be alerted. The forecasts correctly identifying the
threshold exceeding were indeed about 10% (13% G2 and OG1, and 5–8% G1 and OG2). Therefore,
OG2 can be used to predict the hydrological evolution but not to activate the alert mechanisms.

The analyses underlined the fundamental role of the hazard thresholds—the GloFAS thresholds
were less than 1/3 (G1) and 1/10 (G2) of the observed and field-calibrated thresholds [27,28].
The categorical indices showed that coincidental events were possible and quite common, although
the flow thresholds were completely different. However, it is very important to consider the GloFAS
warnings instead of the actual forecasted flow. The Sirba case of study demonstrated that even the
maximum forecasted flow did not cause any damage to the riverine communities because it was an
ordinary discharge that is overpassed 90 days every year.

4. Conclusions

The Sahelian hydrological behavior has totally changed in the last decades, generating a high
number of floods characterized by unprecedented magnitudes. The change has been caused by the
increase of extreme rainfall events coupled with land use changes that generated the rupture of the
endoreic basin and the growth of the secondary river network. The Sirba River, one of the major
tributaries of Niger River, has been particularly touched by this phenomenon. Flood-related losses have
pushed the national departments and the scientific community to develop an early warning system.

Previous studies have already analyzed the hydrology. The joint use of the hydraulic model
with the hydrometric observations allows for exposed villages to be alerted a day earlier thanks
to hydrometric observations. Therefore, the aim of this research was to evaluate the application
of GloFAS (Global Flood Awareness System) in the Sirba River in order to predict the arrival of
high flows a few days in advance. The study was conducted on two GloFAS systems: the original
GloFAS 1.0 and the newest 2.0 version. The analysis evaluated and optimized the re-forecasts of
a 10 year period (2008–2017). The 5 days forecasts were chosen in order to have adequate time to
activate the field adaptive measures. The optimization was conducted from the user point of view by
correcting the model outputs instead of the model parameters. The datasets were split into 5 years for
training and 5 years for validation. The computation of the correction factors was performed through
linear regression between observed and forecasted flow. The validation considered continuous and
categorical indices.
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The results showed the poor reliability of both version 1.0 and 2.0 for the original forecasts. These
forecasts, as flow predictors, were less accurate than the mean flow. Although the calibration for version
2.0 conducted by GloFAS developers improved the EWS skills, the flow deficit increased because the
calibration was based on an outdated and unreliable flow series of the Garbey Kourou hydrometer.
The optimization procedures produced a substantial improvement in forecast accuracy. The continuous
indices of optimized GloFAS 2.0 were quite satisfactory with regard to flow prediction, whereas the
improvements were not conspicuous in the 1.0 optimized model. Therefore, the enhancement of
GloFAS 2.0 demonstrated the importance of the optimization in regulating the shape of the forecasted
hydrograph rather than in adjusting its intensity. The reliability of the flow peak forecasts, measured
by the categorical indices, was low for both the original and optimized models, as the percentage of
correctly predicted floods was approximately 10%. The results also illustrated the level of hazard
threshold on which to develop a hydrological model in order to correctly quantify the river discharges
and to not only issue warnings. This outcome could be used for a new version of the GloFAS system.

However, the optimized GloFAS 2.0 will be used in the EWS platform for the Sirba River.
This application will be useful in providing reliable information on the evolution of river hydrology,
but less appropriate to send alerts to the exposed populations. In order to guarantee the reliability of
the EWS platform, the alerts will only be sent using the in situ measurements.

Future work will involve an enhanced collaboration with hydrological model developers and the
implementation of the Sirba EWS platform with the new updated versions of GloFAS. Model calibration
on the observed flow series or the utilization of a regional hydrological model could improve peak
forecasting. These studies will allow the use of hydrological models for the EWS, which is currently
conducted with in situ observations only.

Author Contributions: G.P.: methodology, analysis and elaboration of data, writing—original draft; G.M.:
methodology, data collection, analysis and elaboration of data, writing—original draft; A.P.: methodology,
supervision, validation, writing—review and editing; V.B.: supervision, validation, writing—review and
editing; E.Z.: supervision, forecast production, validation, writing—review and editing; M.R.: methodology,
supervision, validation, writing—review and editing. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the ANADIA 2.0 Project (Adaptation to climate change, disaster prevention
and agricultural development for food security) by the Italian Agency for Development Cooperation, the Institute
of Bioeconomy of the National Research Council of Italy (IBE-CNR), the Interuniversity Department of Regional
and Urban Studies and Planning of the Polytechnic and University of Turin (DIST-POLITO), the National
Directorate for Meteorology of Niger (DMN), and the Directorate for Hydrology of Niger (DH).

Acknowledgments: The authors would like to thank the Italian Agency for Development Cooperation for
supporting the ANADIA 2.0 Project and the actions that allowed the development of this assessment. We would
like to express our deepest gratitude to Mohamed Housseini Ibrahim (Directorate for Hydrology of Niger) for the
historical flow series and to Alessandro Toffoli (University of Melbourne) for critical review of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

Appendix A

Appendix A.1 Continuous Indices

The RMSE observation standard deviation ratio (RSR) is the root mean square error standardized
using the standard deviation of the observations.

RSR =
RMSE

STDEVOBS
=


√∑T

t=1 (Ot − Ft)
2√∑T

t=1 (Ot −O)
2

 (A1)

where T is number of observed/forecasted days, F is forecasts, and O is observed data.
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RSR varies from the optimal value of 0 to +∞. Values ≤ 0.7 are considered satisfactory, whereas
values > 1 indicate that the model forecasts are a worse predictor than the observed mean flow.

The Nash–Sutcliffe efficiency (NSE) was introduced specifically to evaluate the accuracy of
hydrological model forecasts. It is a normalized statistic that determines the relative magnitude of the
residual variance, “noise”, compared to the measured data variance, “information”:

NSE = 1−


∑T

t=1 (Ft −Ot)
2∑T

t=1 (Ot −O)
2

 (A2)

NSE ranges between −∞ and the optimal value of 1 and, for RSR, large errors are penalized.
Because a perfect score is impossible to achieve in practice, the literature suggests that the forecasts can
be considered satisfactory with values ≥ 0.5. Instead, values ≤ 0 indicate that the observed mean flow
is a better predictor than the model forecasts.

Appendix A.2 Categorical Indices

Bias represents the sum of the forecasted yes events divided by the sum of observed yes events:

BIAS =
a + b
a + c

(A3)

A perfect score for BIAS is equal to 1. This value implies that there are the same number of forecasted
and observed yes events. Values > 1 indicate over-forecasting, and BIAS < 1 under-forecasting.

The probability of detection represents the sum of the correctly forecasted yes events divided by
the sum of observed yes events:

POD =
a

a + c
(A4)

The best possible POD result is 1. Because it ignores the “false alarms”, it can be artificially
improved by issuing more forecasted yes events in order to increase the number of “hits”. An evaluation
of POD without considering other indices can be therefore misleading.

The false alarm rate represents the sum of the “false alarms” divided by the sum of the forecasted
yes events:

FAR =
b

a + b
(A5)

The best FAR result is 0. Because it ignores the “misses”, it is not an index that can be evaluated
by itself. Therefore, it is usually examined with the POD, as explained above.

The percent correct represents the sum of correctly forecasted, both yes and no, events divided by
the number of total events:

PC =
a + d

a + b + c + d
× 100 (A6)

PC is expressed as a percentage, where 0 is the worst result and 100 the best. Because it considers
both the “hits” and the “correct negatives” it provides an evaluation of the overall goodness of
forecasts. If the observed no events are much more than the yes events it can lead to overrating the
forecast reliability.

The threat score (TS) represents the sum of the correctly forecasted yes events divided by the sum
of “hits”, “false alarms”, and “misses”:

TS =
a

a + b + c
(A7)

The best value for the TS is equal to 1. It penalizes equally both the “false alarms” and the
“misses”. Because the “correct negatives” are not considered in the calculation, it is a reliable index for
a dataset in which observed yes events are rare or uncommon.
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The following index is a skill score. The Heidke skill score (HSS) is a generalized skill score,
based on the percent correct, where the standard control forecasts are random forecasts statistically
independent from the observations:

HSS =
2(ad− bc)

(a + c)(c + d) + (a + b)(b + d)
(A8)

Perfect forecasts have an HSS equal to 1, whereas forecasts have no skill when HSS is ≤ 0.
HSS measures the fraction of the correctly forecasted, both yes and no, events after eliminating the
forecasted events that are correct due purely to random chance.
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