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ABSTRACT
Flood early warning systems play a more substantial role in risk mitigation than ever before.
Hydrological forecasts, which are an essential part of these systems, are used to trigger action against
floods around the world. This research presents an evaluation framework, where the skills of the Global
Flood Awareness System (GloFAS) are assessed in Peru for the years 2009–2015. Simulated GloFAS
discharges are compared against observed ones for 10 river gauges. Forecasts skills are assessed from
two perspectives: (i) by calculating verification scores at every river section against simulated discharges
and (ii) by comparing the flood signals against reported events. On average, river sections with higher
discharges and larger upstream areas perform better. Raw forecasts provide correct flood signals for
82% of the reported floods, but exhibit low verification scores. Post-processing of raw forecasts
improves most verification scores, but reduces the percentage of the correctly forecasted reported
events to 65%.
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1 Introduction

Riverine floods rank among the most frequent, deadly and
damaging natural hazards worldwide (Guha-Sapir et al. 2012;
Wallemacq et al. 2015). Climate change, population increase
and economic growth have led to an upward trend in the
damages they have caused (Tanoue et al. 2016, Arnell and
Lloyd-Hughes 2014, Hirabayashi et al. 2013; IPCC 2012),
exceeding USD 1 trillion globally over the period 1980–2013
(Munich Re 2015). The losses caused by floods are lower in
high-income countries thanks to the long term, high protec-
tion levels these countries usually adopt (Doocy et al. 2013).
Lower-income countries cannot afford similar risk mitigation
policies and are more often dependent on ex-ante prepared-
ness measures to reduce risks. Therefore, the development
and effective implementation of early warning systems is one
of the first priorities of both governmental and humanitarian
organisations in such flood-prone countries.

While many early warning systems are solely based on
weather predictions (Alfieri et al., 2012), streamflow forecast-
ing systems have started to play a key role in flood prepared-
ness. Recently developed models run operationally in several
spatial scales and show increasing potential for being incor-
porated into (flood-) risk management (Roulin 2006; Dale et
al. 2014). However, due to the inherent uncertainties in
hydrological predictions, probabilistic, rather than determi-
nistic, streamflow forecasts are usually preferred (Palmer
2001), as their refined estimates are valuable in risk-based
decision-making (Raiffa and Schlaifer 1961, Laio and Tamea
2006, Todini 2007, Verbunt et al. 2007). These prediction

uncertainties are often quantified and expressed by means of
ensemble streamflow prediction (ESP) systems, which have
gained popularity in recent years (Cloke and Pappenberger
2009, Wetterhall et al. 2013). Ensemble streamflow predic-
tions of large-scale hydrological models have demonstrated
their capabilities in historical flood events (e.g. De Roo et al.
2003, Gouweleeuw et al. 2005, Pappenberger et al. 2005,
Webster et al. 2011) and have also been used operationally
to trigger humanitarian action (Coughlan De Perez et al.
2015). Their continuous performance evaluation over differ-
ent domains and temporal scales is not only necessary to gain
the trust of the end users (Wetterhall et al. 2013), but is also
essential to guide their further improvement.

The performance assessment in probabilistic streamflow
forecasts is more complicated than in deterministic ones,
since observed events are compared against forecast probabil-
ities (Bartholmes et al. 2008). For this reason, a wide variety
of quantitative verification scores exists (Brown et al. 2010).
However, since no single score contains all the necessary
information for a complete skill evaluation (Bartholmes
et al. 2008), there is a need for a careful selection of skill
scores that examine different aspects of forecast attributes and
are subject to the end user’s needs (Franz et al. 2003, Clark
and Hay 2004, Roulin and Vannitsem 2005, Randrianasolo
et al. 2010, Alfieri et al. 2013). Most skill scores are calculated
by comparing the threshold exceedance probabilities for each
point or section of a river system to the observed discharges
(Bartholmes et al. 2008, Gourley et al. 2012). However, such
a statistical approach only works when the record of in situ
discharges covers a sufficiently long time (Hannah et al.
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2011). When this is not the case (e.g. in data-sparse areas),
forecasted streamflows are compared to modelled ones, which
are used as proxies for observations to compute the so-called
“model’s theoretical skill” (Thiemig et al. 2010, Alfieri et al.
2014, Candogan Yossef et al. 2017). This approach provides
the flexibility to assess the skill of the probabilistic streamflow
forecast for each grid point on the river network, rather than
for single points of observed data (Thielen et al. 2009).
However, since modelled streamflows can significantly differ
from the real ones, the theoretical skill mainly demonstrates
the skill of the precipitation forecast, with a reference pre-
cipitation the forecast used to initiate the model. Therefore, to
optimise its usefulness, the theoretical skill should be carefully
interpreted by the end-users in real-world applications.

Except for possible deficiencies in the model structure and
model parameterisation, forecast predictive skill is primarily
affected by errors in initial hydrological states and meteorologi-
cal forcing (Hamill et al. 2008), which vary according to loca-
tion, season and lead time (Bierkens and van Den Hurk 2007,
Shukla and Lettenmaier 2011). Both have improved in recent
years thanks to the increasing number of reporting stations, the
continuous assimilation of hydrological observations
(Candogan Yossef et al. 2017), the evident progress in meteor-
ological forcing quality (McBride and Ebert 2000, Hamill et al.
2008) and the development of effective bias-correction methods
performed on meteorological inputs (e.g. Kang et al. 2010).

Ensemble streamflow prediction output results are often
subject to biases and post-processing techniques are often
applied to reduce these biases (Kang et al. 2010). A popular
method is to recalibrate the model results to reproduce the
climatological distribution (Madadgar et al. 2014). Other post-
processing techniques include event bias correction (Smith et al.
1992), LOWESS regression (Cleveland 1979), variance inflation
(INFL)method (Fundel and Zappa 2011, Roulin and Vannitsem
2015), ensemble copula coupling (ECC) (Schefzik et al. 2013,
Bellier et al. 2018) and quantile mapping (Wood and
Lettenmaier 2006, Baigorria et al. 2007). Although all of them
improve forecast quality significantly (Kang et al. 2010),
Hashino et al. (2007) have shown that the choice of the optimal
technique is subject to application requirements.

Despite the known uncertainties and limitations of ESP fore-
cast models, global scale systems such as the global flood aware-
ness system (GloFAS) (Alfieri et al. 2013) are being used by
humanitarian responders, even without any post-processing,
especially in countries with limited flood forecasting systems
(Coughlan de Perez et al. 2016). An example is Peru, which has
experienced several devastating flood events over the past years
and is subject to large climatological gradients in flood risk
characteristics. Therefore, Peru has received increasing attention
from humanitarian organisations aiming to reduce flood impacts.
For example, the forecast-based financing project is being applied
in the north-western regions, using GloFAS forecasts to trigger
humanitarian action (Coughlan De Perez et al. 2015).

The aim of the current study is to assess the skills of
GloFAS using a holistic evaluation framework in Peru for
the years 2009–2015. The simulated discharges produced by
the model are compared against 10 river gauges that are
located in different regions of the country. The predictive

capability of GloFAS is assessed in a so-called hindcast
mode, using operational daily forecasts over a lead time
(LT) of 1 to 15 days, from two complementary perspectives:
(a) by calculating several verification scores at every grid
point of the river network, comparing the forecasted dis-
charge to the simulated one, and (b) through an event-
based analysis comparing the GloFAS flood signals against
collected information from multiple observational disaster
databases. The first forecast skill assessment provides
a spatial and temporal indication mainly of the meteorologi-
cal forecast skills that are used as input by GloFAS.
The second one compares the forecast information to
reported damaging events. After these two assessments had
been carried out, the raw streamflow forecasts were post-
processed using the quantile mapping technique (Madadgar
et al. 2014) to evaluate whether a simple removal of biases
could increase the forecast skill and whether this would lead
to better preventive flood risk management planning by
humanitarian organisations and decision makers.

The paper is organised as follows: In Section 2, we describe
the methodological framework and the data used; in Section 3,
we present the results; and, finally, Section 4 presents the
concluding remarks and discusses the findings and the limita-
tions of this study.

2 Data and methods

2.1 Study area

Peru is a country highly vulnerable to flood events. More than
2000 people have lost their lives due to floods over the period
1980–2013, while the reported damages exceeded US$2 billion
(Munich Re 2015). More recently, the catastrophic 2017 floods
caused more than US$3 billion worth of damage to infrastruc-
ture and houses and over 100 casualties (El Comercio 2017).
The country has pronounced spatial gradients of climatological
precipitation and aridity (Fig. 1(a)) (Peel et al. 2007). The
coastal areas are characterised by desert and semi-arid cli-
mates, the southern areas by humid sub-tropical climates and
the central and northern areas by equatorial and tropical cli-
mates. The northern coastal region of Peru experiences more
influence from El Niño (ENSO) (Bayer et al. 2014). Its recur-
rent nature and its relationship with flooding in that area has
led to the development of an ENSO-based index insurance
(Khalil et al. 2007).

In Figure 1(b), we demonstrate themean annual discharges for
the main river network as calculated by GloFAS. The highest
discharges are seen in the northern, eastern and central part of
the country (particularly at the Amazon, Rio Napo, Huallaga and
Ucayali rivers), while the lowest discharges are found in the
relatively short rivers of the coastal areas. Figure 1(c) shows the
administrative separation into regions and the 10 gauging stations
that are used for the comparison of the simulated and the
observed discharge (see Section 2.4.1). Figure 1(d) shows the
mean annual precipitation (Balsamo et al. 2015), with the highest
precipitation observed in the north-eastern part and some places
areas in Puno region, close to lake Titicaca, and the lowest along
the coast.
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2.2 Flood archives

Natural disaster databases lack standardised procedures in flood
monitoring and therefore, there are wide disparities in the num-
ber of disasters observed (Gall et al. 2009,Wirtz and Below 2009).
In order to compile an event-based analysis, we combined infor-
mation derived from various disaster databases; the Dartmouth
Flood Observatory (DFO) (Brakenridge 2015), the NatCatService
(Munich Re 2015), the Emergency Events Database (EM-DAT)
(Guha-Sapir et al. 2014) and the Reliefweb.1 From this combined
database, 19 medium- to large-scale riverine floods were identi-
fied in Peru in the period 2009–2015. The most catastrophic
event was the January 2010 flood, during which damages
exceeded US$2 billion and 26 people lost their lives (Munich
Re 2015). Information regarding the flood dates, the dataset used
and the affected locations of each event are shown in Fig. 2.
According to the datasets, most events affected more than one
region. To increase our sample size, we considered each flood in

an administrative region as an individual event, leading to a total
of 61 region/flood combinations.

2.3 Model framework

The Global Flood Awareness System (GloFAS) (Alfieri
et al. 2013) is designed for flood early warning purposes
and compares ensemble streamflow forecasts to climato-
logical distributions at a global scale. The warnings are
produced on a daily basis and are freely available online.2

Although other global streamflow forecast models exist
(Sperna Weiland et al. 2010, Wang et al. 2011,
Candogan Yossef et al. 2012), to our knowledge, only
GloFAS is used to trigger humanitarian action
(Coughlan de Perez et al. 2016), having shown its poten-
tial before the August 2013 floods in Pakistan and the
September 2013 floods in Sudan.

Figure 1. Overview of the study area: (a) Köppen classification map of Peru (Peel et al. 2007), (b) mean annual discharge (m3/s) in GloFAS (Alfieri et al. 2013), (c)
regions of Peru and gauging stations, and (d) mean annual precipitation (mm) (adopted from Boelee et al. 2017).

1https://reliefweb.int/.
2http://www.globalfloods.eu/.
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Numerical ensemble weather predictions are used as an input
for theGloFAS hydrological simulations. Every day, an ensemble
of 51 streamflow forecasts is produced over a LT of 30 days.
Meteorological forcing is limited to the first 15 days. Observation
estimates are not used to initialise themodel. Instead, this is done
by using the meteorological data of day 0. Discharge simulated
for the last 15 days is derived from the water routing of the
overland flow produced in the first 15 days. Figure 3 provides an
overview of the GloFAS structure. The reference climatology of
the meteorological data is produced by ECMWF’s global atmo-
spheric reanalysis ERA-Interim (Dee et al. 2011). Daily ensemble
forecasts of meteorological parameters are computed by its inte-
grated forecast system (IFS) (Miller et al. 2010), whose main
components are a data assimilation system (DAS) and a general
circulation model (GCM). The vertical water fluxes are trans-
formed to run-off using the HTESSEL3 model (Balsamo et al.
2011) and subsequently the Lisfloodmodel (Van Der Knijff et al.
2010) simulates the horizontal water fluxes along the river net-
work on a daily basis and on a resolution of 0.1°. In this way, the
ensemble streamflow predictions for each grid point of the river
network are made. By comparing the ensembles with reference
thresholds that are derived from the simulated discharge clima-
tology, flood alerts are issued (for further information about
GloFAS, see Alfieri et al. 2013). The GloFAS system has been
rigorously validated against observed daily flow data from 620
stations globally, for watersheds ranging between 450 and 4 680
000 km2. In 58% and 60% of these stations, the Nash-Sutcliffe
efficiency (Nash and Sutcliffe 1970) and the coefficient of varia-
tion were skilful. In Peru, the validation was done for only a few
stations in the eastern part of the country, but further details are
not publicly available.

2.4 Evaluating glofas skills

We used daily hydrological hindcasts from 1 January 2009 to
31 December 2015. These hindcasts are produced for each point

of the Peruvian river network with an upstream area greater
than 2000 km2 (2780 points in total). The evaluation strategy of
GloFAS skills was split into three parts. Initially, we compared
the simulated discharge of 0 days LT (for simplicity, referred to
as “simulated discharge”) with observed discharge, wherever this
was available. Subsequently, we compared the ensemble stream-
flow forecasts to the simulated discharge and then evaluated
GloFAS forecasts against reported, damaging flood events.

2.4.1 Comparison of simulated and observed discharge
The simulated daily discharge that was produced by GloFAS
was compared with observed daily discharge for 10 stations
that are located in different regions of Peru and include
discharges during our study time period. This data was
obtained from the website of the Peruvian National Water
Authority.4 The agreement between observations and simu-
lated discharge was estimated using the Nash-Sutcliffe effi-
ciency (NS) (Nash and Sutcliffe 1970) (Appendix A, equation
(A1)). This score is an objective function for reflecting the
overall fit of a hydrograph (Servat and Dezetter 1991), indi-
cating how well the observed temporal variability is repro-
duced by the simulations (Moriasi et al. 2007). Furthermore,
a threshold of the 90th percentile of the daily times series was
considered for each station data for the observed and the
simulated discharges explicitly. We selected this percentile
to indicate a flood event, similar to (Alfieri et al. 2013) and,
at the same time, bring our evaluation sample to a size that
allows representative and statistically meaningful conclusions
about the performance of the system. Then, the GloFAS
simulated discharges were compared against the observed
discharges day-by-day to calculate the number of times both
thresholds were exceeded (Hit: H) and the number of times
that the simulated discharge was not in agreement with the
observed one (Miss: M), thus calculating the probability of
detection (POD), which shows the proportion of successfully
detected events:

Figure 2. Flood events in Peru from 2009 to 2015, as reported in NatCatService (N), DFO (D), EM-DAT (E) and Reliefweb (R). In the Affected Locations column the
meaning key to symbols is: N: north, C: centre, S: south, W: west, NW: north-west, NE: north-east, SW: south-west.

3Tiled ECMWF Scheme for Surface Exchanges over Land, revised for Hydrology.
4http://snirh.ana.gob.pe/visors2/
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POD ¼ H
H þM

(1)

2.4.2 Forecasting simulated discharge
The ability of GloFAS to forecast the simulated discharge was
assessed. This procedure mainly evaluates how errors in pre-
cipitation prediction affect the simulation. For that, we calcu-
lated several verification scores over the period 2009–2015 for
which hindcasts were available. We calculated the NS effi-
ciency, first, based on average calculated climatological dis-
charges similarly to Alfieri et al. (2014) (Appendix A,
equation (A2)), and second, based on a persistent forecast
(NSpf) (Appendix A, equation (A3)) (Plate and Lindenmaier
2008). In hydrological forecasting, the latter acknowledges the

role of initial conditions, making it particularly useful for
slowly varying rivers, it is independent of seasonal variations
and is usually “harder to beat” than the NS that uses clima-
tological discharge as a benchmark.

The other scores used are the coefficient of variation (CV)
and the percentage bias (Pbias), which are calculated based on
the ensemble mean, and the continuous ranked probability
skill score (CRPSS), which takes into account the entire
ensemble. These scores are briefly described below and dis-
cussed analytically in Appendix A.

● Percentage bias (Pbias): This score measures the average
tendency of the forecast values to be smaller or greater
than the observed ones and has the ability to indicate
systematic model deficiencies (Gupta et al. 1999).
Positive and negative values show that forecasts under-
and over-estimate discharge, respectively (see Appendix
A, equation (A4)).

● Coefficient of variation of the root mean squared error
(CV): This score is used to measure the standard deviation
between the forecast and the observed values, while allow-
ing comparison between river cells with very different
discharges (Reed et al. 2007) (Appendix A, equation (A5)).

● Continuous ranked probability skill score (CRPSS): This
score, proposed by Hersbach (2000), evaluates the prob-
abilistic skill of the forecast, measuring the weighted
average skill over a range of discrete threshold levels
for which exceedance probabilities are computed
(Bradley and Schwartz 2011) (Appendix A, equations
(A6)–(A8)).

All river cells of the Peruvian territory were aggregated to
create separate boxplots for each LT to gain insights into how
the skill of GloFAS varies temporally. Subsequently, we
plotted the skill scores on the map using LT7 (7-day lead
time), to obtain a spatial overview of the model performance.

Although other LTs could have been used, LT7 was chosen
as it is in the middle of the meteorological forcing period and
provides a sufficient time window for preparation, should
a large event be forecast. Finally, we classified the river cells
into 11 groups, based on the size of their upstream area. For
each of these groups, we created boxplots to demonstrate the
effect of the upstream area size on forecasting skills.

2.4.3 Forecasting observed flood events
An event-based analysis was carried out to evaluate the ability
of GloFAS to provide accurate flood warnings based on
reported, damaging events. Large-scale model skills are
usually evaluated against individual big events, e.g. the
Pakistan 2010 floods (Alfieri et al. 2013), or evaluated for
a short time period, e.g. African floods in 2003 (Thiemig
et al. 2015). In this paper, we evaluated the performance of
GloFAS against the recorded riverine floods of the examined
period (2009–2015).

The GloFAS flood signals were compared to the reported
floods obtained from the disaster databases (Section 2.2) to
calculate the POD.

As in Section 2.4.1, the 90th percentile was used as
a threshold to transform the ensemble forecast into

Figure 3. Overview of GloFAS structure. DAS: data assimilation system, GCM:
general circulation model, IFS: integrated forecast system, ESP: ensemble
streamflow prediction. Adopted from (Alfieri et al. 2013).
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a forecast of a dichotomous event (i.e. Flood/No Flood) for
each river cell. We used forecasts up to LT15, the forecast
range for which meteorological forcing is applied. For this
period and for any given cell, a flood signal is identified if (a)
there is at least 50% probability that the discharge on a -
specific day will (b) exceed the 90th percentile discharge for
(c) at least three consecutive forecasts, similarly to Thiemig
et al. (2015). If 10% of the river cells in an administrative
region meet these criteria, a flood signal is counted. If a flood
was reported in this region, there was a correct hit (H);
otherwise, there was a miss (M).

2.4.4 Post-processing: quantile mapping
As a post-processing technique, we applied quantile mapping to
correct the systematic distributional biases, which come from
the precipitation forecast that is used as an input in the model.
Déqué (2007) used the same methodology, referring to it as
“simple unbiasing” and applying it to the entire cumulative
distribution function (cdf) to correct a regional climate scenario.

In our case, for each LT, the cumulative probability
distribution of all forecast ensemble members was trans-
formed in order to match the daily cumulative distribution
of the simulated discharge. This adjusts the forecast distri-
butions, but the temporal variability of the mean and varia-
bility of the ensemble forecasts are largely retained. Each
river cell and each forecast LT is treated individually,
addressing LT and space-dependent systematic biases.
First, we derived the reference cdf based on the simulated
discharges. Subsequently, we created cdfs of the forecast
discharges for each ensemble member and LT. These are
rescaled to the reference cdf, correcting the discharge prob-
abilities at intervals of 1%. The advantage of dealing with
each LT independently is that the biases at different LTs
can be corrected (e.g. when the forecast tends to predict
higher discharges in short LTs and lower discharges in long
LTs). The procedure is described by:

Modi ¼ Rawi þ Ref i � Rawi
� �

(4)

where Rawiand Modi are, respectively, the raw and post-
processed data of the ith percentile (from all ensemble mem-
bers), while Ref i and Rawi are the average values for the ith
percentile of the reference and raw data, respectively (from all
ensemble members).

We repeated the procedure of sections 2.4.2 and 2.4.3 to
calculate the verification scores and the event-based metrics
using the post-processed discharges and allowing inspection
of the effect of the bias adjustment on the forecasting skill.

The post-processing methodology was also applied to each
gauging station discharge and the NS obtained in Section 2.4.1
was recalculated. In this case, the reference discharge was the
observed one, and the transformed discharge was the simu-
lated one.

3 Results

3.1 Discharge validation using gauging stations

Figure 4 displays the hydrographs of the observed discharge, the
raw simulated discharges and the post-processed discharge for

the 10 gauging stations. As can be seen from Fig. 4, only two
stations have observational discharges that allow a comparison
for the entire study period (2009–2015). Through comparison of
the raw and the post-processed discharge data, we observe an
improvement when post-processing is applied. This improve-
ment is also depicted by the NS values shown in Table 1. In the
case of raw forecasts, the results show a fair performance based
on NS, considering that the GloFAS model is not calibrated. It is
also shown by the NS that the post-processing was highly
beneficial for all stations except for the one in Amazonas,
which has the lowest mean annual discharge. Given the explicit
estimation of the 90th percentile on the simulated and observed
discharge, the POD is the same for both the raw and post-
processed discharge data, ranging between 0.27 and 0.73, with
a weighted average of 0.46.

3.2 Forecast versus simulated discharge

3.2.1 Performance versus lead time
Figure 5 displays the NS values when the mean value of the
simulated discharges (NS) and the persistent forecasts (NSpf)
are used as benchmarks for both the raw (left) and the post-
processed forecasts (right) for each LT of the forecast range.
The median of all river points of the Peruvian river network is
shown by a horizontal line, the boxes represent 25–75% and
the whiskers 1–99%. Outliers are not plotted for better read-
ability of the graphs. In both the raw and post-processed
forecasts, the median of the NS decreases with LT, demon-
strating a decrease in forecasting skill. Regarding the NSpf, its
median is always below 0 for all LTs when using the raw
forecasts, demonstrating that, in most cases, persistent fore-
casts would be more useful than the forecasts of the model.
However, the median of the post-processed forecasts is above
0 after a lead time of 5 days (LT5), showing that, at longer
ranges and after post-processing, the model is more skilful
than a persistent forecast.

In Figure 6 (left), it may be seen that the median of CV
increases and CRPSS decreases with LT, demonstrating
a decrease in forecasting skill at longer LTs for raw forecasts.
The negative values in Pbias clearly show that the forecasts in
most river cells produce much higher discharge values than
simulated climatology at all LTs. A large fraction of all river
cells (75%) displays CRPSS > 0 up to LT12, showing that
these cells perform better than simulated climatology. The
variability of all verification scores increases over LT.

The results for the post-processed forecasts (Fig. 6, right)
display a decrease in the variability. Similarly to the raw
forecasts, the skill scores show that performance goes down
with increasing LT. However, skill scores are improved com-
pared to the raw outputs. For example, NS increases around
15% for LT12, CV decreases around 10% for the same LT and
the median of Pbias is much closer to 0 for all LT.

3.2.2 Performance on spatial scale
Figure 7 displays NS score of the raw (left) and post-
processed forecast (right) at LT7. The maps of the other
skill scores are given in Appendix B (Fig. B1). The results of
the raw forecasts demonstrate performance is better in cells of
rivers that exhibit higher discharges and larger catchments
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Figure 4. Observed discharge (black line), raw simulated discharge (blue line) and post-processed discharge (yellow line) for the 10 gauging stations of the study
area.
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(i.e. the Amazon, Ucayali and Urubamba), as their NS scores
are closer to 1. High skill is shown for river cells of the largest
regions (i.e. Loreto and Ucayali). On the other hand, many
grid cells along coastal areas, where catchments are small and

rivers are shorter (e.g. Tumbes and Piura in the north-west
and Ica in the south), have NS values below 0. Similar results
are found for CV and CRPSS. The Pbias values show that the
meteorological forecasts that are used as an input in the

Table 1. GloFAS validation results using the raw and the post-processed simulated discharges against observed data for 10 gauging stations.

Province/Region Station coordinates Data availability
(years)

Average daily
observed discharge

(m3/s)

NS Post-processed
data

POD

Lat (°) Lon(°) Raw data

1 Napo/Loreto –3.48 –73.08 4 6602.0 0.12 0.61 0.39
2 Tumbes/Tumbes –3.71 –80.46 2 117.0 –0.17 0.42 0.47
3 Urubamba/Cusco –13.18 –72.53 7 126.1 –4.49 0.72 0.63
4 Utcubamba/Amazonas –5.89 –78.18 5 17.9 –1.89 –0.29 0.27
5 Atico/Arequipa –17.02 –71.69 4 30.8 0.46 0.41 0.73
6 Cañete/ Lima –13.02 –76.19 4 46.7 0.00 0.13 0.32
7 Crisnejas/Cajamarca –7.46 –78.11 1 36.7 –5.38 0.46 0.64
8 Huancane/Puno –15.12 –69.79 1 22.2 –0.15 0.57 0.68
9 Barranca/Lima –10.54 –77.22 7 39.4 –0.82 0.35 0.31
10 Santa/Ancash –8.65 –78.25 4 152.8 0.56 0.65 0.52

Data availability weighted average –1.23 0.39 0.46

Figure 5. Boxplots of NS and NSpf versus the forecast LT over the period 1 January 2009–31 December 2015, calculated for 2780 river points for raw forecasts (left)
and post-processed forecasts (right). The horizontal (red) line shows the median, the edges of the boxes (blue) indicate the 25th–75th percentiles and the whiskers
the first–99th percentiles.
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model have a clear tendency to forecast higher precipitation
than the one produced at LT0. As a result, the model forecasts
higher discharge at longer LTs than the simulated discharge
at LT0. This is the case for the entire country, with some
exceptions in river cells in the Huancavelica, Cuzco, Loreto
and Puno regions.

Post-processing improves the scores formost river cells (Fig. 5,
right). More specifically, NS improves largely for the river cells

whose raw forecasts exhibit very low scores. The CRPSS becomes
better in the river cells that are located along the coast and in the
central northern areas shown, while CV scores improve slightly
but systematically across the domain. Finally, the significant over-
forecasting of the raw forecasts, demonstrated by Pbias, has been
corrected considerably, which is to be expected from the applica-
tion of the quantilemappingmethod. Values are close to 0 inmost
areas, except for some coastal river points and the ones in the

Figure 6. Boxplots of CV, Pbias and CRPSS versus the forecast LT over the period 1 January 2009–31 December 2015, calculated for 2780 river points for raw
forecasts (left) and post-processed forecasts (right). The red line shows the median, the edges of the blue boxes indicate the 25th–75th percentiles and the whiskers
the 1st–99th percentile.
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Piura, Tumbes and Lambayeque regions, where the model con-
tinues to forecast higher discharges than those produced for LT0.

3.2.3 Performance versus upstream area
Figures 8 and 9 show the scores at LT7 as function of the
upstream area size for the raw forecast (left) and for the post-
processed forecast (right). Following the approach in Section
2.4.3, river cells were classified into 11 groups, each of which
contains an equal fraction of all cells. The results indicate that
performance increases and variability decreases with increasing
upstream area. For example, at least 95% of river cells that belong
to the two highest upstream area groups (i.e. >120 000 km2) have
NS (Fig. 8) and CRPSS (Fig. 9) values above 0 in both the raw and
post-processed forecasts. Moreover, for these groups, 95% of the
raw forecast river points exhibit a CV of less than 2, while the
same percentage in the post-processed forecasts exhibits values of
less than 1. However, more than 40% of river cells that belong to
the lowest upstream area categories (i.e. up to 4600 km2) demon-
strate CRPSS values below 0 (Fig. 9). A big change between the
raw and post-processed forecasts is observed in Pbias: most river
cells in all groups exhibit negative values for the raw outputs,
while the corrected forecasts display Pbias median values close to
0 in all groups (Fig. 9). In addition, the variability between the
river cells has decreased considerably. Finally, the NSpf median
value of the raw forecasts is negative for all categories, but it
becomes positive after the post-processing for most river cell
groups, revealing that, in most cases, the post-processed output
should be preferred rather than a persistent forecast at this LT.

3.3 Performance in forecasting observed events

In this section, we evaluate whether the GloFAS hindcasts were
able to forecast the reported, damaging flood events. The evalua-
tion uses the reference discharge on onset dates of floods (LT0)
and the raw and post-processed forecasts at LT1–15. A forecast
flood is defined according to the criteria described in Section 2.4.3.
The average POD using the simulated discharge over all

geographical areas is 0.62,while the best score is found innorthern
Peru (0.67). In the central regions, POD is 0.58 and in the southern
ones it is 0.61. The average POD of the raw forecasts is 0.82. The
fact that this is much higher than that of the simulated discharges
illustrates the over-forecasting of discharge by the model. On the
one hand, this shows end users would have received a flood signal
before most of the reported events; on the other hand, they would
have had a very high number of false alarms. The PODof the post-
processed forecasts becomes closer to the POD of the simulated
discharges (0.65). These results are presented in Table 2.

Finally, Figure 10 illustrates the effect of post-processing on
the over-forecasting of discharge. In Figure 10, the forecasts of
LT7 are presented for Flood #8 on the map of Peru (Fig. 2). The
river cells that are forecast to exceed the 90th, 95th and 99th
percentiles of the climatological discharge are highlighted (in
yellow, magenta and purple, respectively). It may be observed
that, according to the raw forecasts (Fig. 10, left), most regions
would be flooded. However, in actuality, the only flood reported
was in the northern region of Loreto (black dots). This shows
that, although the model has captured the flood in this location,
it has also produced several false alarms in other regions, if we
assume that there was no under-reporting of events. In contrast,
the post-processed forecast captured this flood event fairly well
(Fig. 10, right). Whereas it did provide flood signals in the south,
where no flood events were reported, these signals were con-
siderably fewer than those of the raw forecast.

The operational flood warning map that was taken from
the GloFAS website5 is presented in Appendix C (Fig. C1).
This shows that GloFAS successfully forecast the catastrophic
March 2017 flood in Peru that was mentioned in Section 2.1.

4 Discussion and conclusions

This study explored the potential of GloFAS as an operational
flood warning system in Peru. The predictive capability was
investigated for the entire Peruvian river system, which con-
sists of 2780 river grid cells, using daily operational forecasts

Figure 7. Nash-Sutcliffe coefficient (NS) over Peru for daily forecasts over the period 1 January 2009–31 December 2015 for 7-day LT.

5http://www.globalfloods.eu/.
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from 2009 to 2015. The study compared the simulated dis-
charges that are produced by the model at zero lead time
(LT0) with observed discharges at 10 gauging stations, located
in different regions. Furthermore, we compared (a) the fore-
cast discharge of different LTs with the simulated discharge in
order to show the ability of the model in predicting, and (b)
the flood signals issued by the model with the damaging flood
events that were reported in several disaster databases. Next,
forecasts were post-processed using the quantile mapping
technique to remove bias. The evaluation was repeated and
the outcomes were compared to the raw forecasts.

The comparison of the observedwith the simulated discharge
data indicates that, although GloFAS in general captures the
seasonality of the discharge, large quantitative differences are
observed between the two. This can be explained by the fact that
it is not calibrated in this area. If a larger number of gauging
stations had been available, the comparison of observed and
simulated discharges could have provided further insights
about the model’s performance and the nature of errors and
biases. However, although the Peruvian National Water
Authority counts a network of over 100 gauging stations, the

large majority is located close to the coast and, mostly, observed
and forecasted discharge time series years do not coincide.

Furthermore, the results show that the performance of the raw
forecasts in predicting the simulated discharges decreases with LT
and highlights the tendency of the meteorological forecasts that
are used as input in the model to forecast higher precipitation
compared to the one used to initiate the model. This leads to
higher forecast discharges than simulated ones across the entire
country for all LTs. In addition, when using the persistence
criterion, the results show that, in most cases, it is better to use
a persistent forecast than the model itself, especially at short LTs.
On average, the verification scores improve and variability
decreases for river cells that belong to groups of larger upstream
areas. This is an expected tendency, as the water attenuation in the
case of the large, east-oriented Peruvian rivers takes place over
several days, filtering out the short-term variability of the meteor-
ological forcing. This mainly applies to the river cells of the
Amazon and Napo rivers (north-eastern region), the Ucayali
River (central region) and the Urubamba River (southern region).
In shorter river systems that have a rapid response time, such as
the ones along the coastline of Peru, the principal process that

Figure 8. Boxplots of NS and NSpf versus the upstream area over the period 1 January 2009–31 December 2015 for raw forecasts (left) and post-processed forecasts (right)
at LT 7. River cells are split into 11 groups of 252 river cells each. The horizontal (red) line shows the median, the edges of the boxes (blue) indicate the 25th−75th percentiles
and the whiskers the 1st−95th percentiles.
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controls the performance is the meteorological forcing itself and,
therefore, verification scores have considerably lower values.
Particularly, in the north-western coastal regions, where GloFAS
is being used operationally by the Red Cross, the model has very
little skill. This approach is usually followed in data-poor areas,
where high-quality, daily, observational discharges are not avail-
able. The major advantage of this approach is that it can be
applied to each river cell individually, allowing a skill assessment
of the model itself on large spatial scales, but it has to be carefully

used by the end users, since it mainly demonstrates the skill of the
meteorological input and less that of the hydrological model itself.
The application of verification scores, which was based on the
evaluation framework developed by Alfieri et al. (2014), aimed to
cover different aspects of forecast attributes and to allow river cells
with different discharge magnitudes, upstream areas and climatic
regimes to be comparable. Averaging scores over the entire 7-year
period for which operational forecasts were available was pre-
ferred over using dry/wet seasons as (a) our forecast sample is

Figure 9. Boxplots of CV, Pbias and CRPSS versus the upstream area over the period 1 January 2009–31 December 2015 for raw forecasts (left) and post-processed
forecasts (right) at LT 7. See Figure 8 caption for explanation.
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already relatively small and (b) Peru is characterised by a variety
of (micro-)climate areas with different inter-annual variability.

The event-based analysis demonstrates that the majority of
reported flood events were correctly forecast (POD = 0.82; the
POD shows the proportion of successfully detected events).
However, the POD of the simulated discharges is lower
(0.62), which may be due to errors in flood reporting or the
fact that raw forecasts tend to produce higher discharge than
simulated ones. On the one hand, this leads to a good POD,
while on the other hand this will lead to several false alarms.

When quantile-mapping is applied to the raw forecasts as
a post-processing technique, the skill of the models increases
for most river cells, both when comparing the simulated
against the observed and the forecast against the simulated
discharge. Furthermore, in this case, the median of the NSpf
that uses the persistency criterion is positive for LTs longer
than 5 days, which shows that the model is a better option
than using the persistent forecast. However, the POD for the
reported flood events decreases (0.65), becoming closer to
that of the simulated discharge, which demonstrates the effect
of post-processing in discharge over-forecasting. Hence,
a decrease in the number of false alarms is also expected.

Quantifying the number of false alarms is a rather complicated
task. The collection and monitoring procedures of disaster loss
data are not standardised amongst the different disaster databases.
There are numerous discrepancies in the number, type and impact
of the disasters (Gall et al. 2009, Wirtz and Below 2009). We
reduced these uncertainties by combining various datasets used

in similar scientific studies (Jongman et al. 2014, Thiemig et al.
2015,Hoeppe 2016; Bischiniotis et al. 2018)with the goal to obtain
an as complete as possible and reliable list of flood events with
property damage or affected population. However, we cannot
claim with certainty that all floods were included, because it is
likely that some of them did not cause any damage because of
correctly triggered action or because of misses in reporting.
Therefore, we only focused on the ones reported, without calcu-
lating the overall false alarms.

The calculation of false alarms should be done locally, in
specific river points or sections, tailoring the analysis to the
local boundary conditions and needs (e.g. streamflow and
probability thresholds). For example, in our paper, we have
used the 90th percentile of the simulated discharge time
series, produced by GloFAS as a threshold to define a flood
event. As mentioned before, this low percentile was used to
increase our sample size, given the limited available forecast
time series in combination with the rare nature of flood
events. However, in reality this threshold is highly dependent
on the local boundary conditions. For example, at some
locations, exceeding a higher percentile may not cause any
damage, while in others, very high damage can be caused by
a lower percentile exceedence. A site-by-site analysis that uses
detailed vulnerability and exposure data will lead to more
accurate discharge thresholds, which can lead to the estima-
tion of the false alarms in each location.

The bias correction methods are usually carried out using sepa-
rate datasets for calibration and evaluation. Application of this
separation did not lead to significantly different results and, there-
fore, we applied the quantilemapping to the entire available dataset
to increase the statistical sample of our results. The improvement of
skill scores after adjusting the climatological probability distribution
to a reference is not trivial, as temporal variability and threshold-
dependent indicators lead to a strongly non-linear propagation of
forecast characteristics, which does affect skill results for individual
events. Further improvement could possibly be achieved using
more sophisticated post-processing methods, e.g. Bayesian model

Table 2. Semi-qualitative evaluation by-product of detection (POD) of the ability of
the GloFAS model to detect reported floods in Peru for zero lead time (LT0) and to
forecast them at 1–15 days’ LT by raw and post-processed forecasts. Q: discharge.

Region LT0 Forecast (LT 1–15)

Simulated Q Raw Post-processed

North 0.67 0.85 0.67
Centre 0.58 0.82 0.65
South 0.61 0.78 0.65
Total 0.62 0.82 0.65

Figure 10. Example of the raw (left) and post-processed (right) forecasts for Flood #8 and for LT7. River cells are forecast to exceed the 90th percentile (yellow), the 95th
percentile (magenta) and the 99th percentile (purple) of the climatological discharge. Theflooded places asmentioned in the disaster databases are depictedby the black circles.
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averaging (Raftery et al. 2005), ensemble model output statistics
(Gneiting et al. 2005), and by conducting the analysis in different
hydrological periods focusing on fewer river cells (wet/dry).
A combination of pre- and post-processing methods could also be
tried as it is likely to lead to greater improvements (Kang et al. 2010).
It is also important to identify the cause of the LT-dependent
systematic bias in the GloFAS calculations in Peru, which was
beyond the scope of this study.

Drawing conclusions about whether and howmuch themodel
benefits the flood risk management in Peru is quite a complicated
task. The actual forecast value is a product of the acceptable trade-
offs that have been set in each flood risk strategy, such as those
applied in forecast-based financing, developed by the Red Cross/
Red Crescent (Coughlan De Perez et al. 2015). It is likely that the
same forecast is beneficial for one strategy and less useful for
another. Skill scores can be influenced to a great extent by the
chosen thresholds. The acceptable level of false alarms in relation
to correct hits and misses is subject to detailed cost-benefit ana-
lyses, which are largely dependent on the local boundary condi-
tions. Such cost-benefit analyses include both tangible and
intangible costs and benefits. For instance, when action is taken
in vain, users lose confidence in the warnings issued, which can
lead to reduced response to future warnings (LeClerc and Joslyn
2015). A careful estimation of the needs of end users is required to
pick a robust forecast threshold that leads to the optimal trade-off
between the costs of the mitigation measures and the achieved
risk reduction. Therefore, the results of this study could be used as
an indicator of the model performance for better and more
effective flood risk management by humanitarian organisations
acting in Peru. Future research is expected to use this evaluation
framework for longer lead times in more countries, using the
recently released GloFAS seasonal river flow outlook.
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Appendix A

Nash-Sutcliffe efficiency

Comparison between observed and simulated discharge

This NS score is defined as 1 minus the squared difference between
the proxy and the observed discharge normalised by the variance of
the observed discharge values during the period under investigation:

NS ¼ 1�
PN

t¼1 qobs tð Þ � qsim tð Þ½ �2PN
t¼1 qobs tð Þ � qobs tð Þ½ �2 (A1)

where t is the time index of the evaluation window, N is the number of
the forecasts issued during that period, qsim is the proxy discharge, qobs is
the observed discharge at the same time step and qobs is the average of
the observed discharges for the entire time window.

Comparison between simulated and forecast discharge
using the mean value of the simulated forecasts

This NS score is defined as 1 minus the squared difference between the
proxy and the forecast discharge normalised by the variance of the proxy
values during the period under investigation:

NS ¼ 1�
PN

t¼1 qsim tð Þ � qfc tð Þ½ �2PN
t¼1 qsim tð Þ � qsim tð Þ½ �2 (A2)

where qfc is the forecast discharge at time step t (mean of the 51-member
ensemble) and qsim is the average discharge for the entire time window.

The range of NS lies between –∞ and 1 (perfect fit). Negative values
indicate that the mean value of the proxy discharge time series is a better
predictor than the model. The score indicates how well the plot of
observed versus forecast values fits the 1:1 line (Moriasi et al. 2007)
and it has been found to be the best objective function for reflecting
the overall fit of a hydrograph (Servat and Dezetter 1991).

Comparison between simulated and forecast discharge
using a persistent forecast

The NSpf score is suggested by Plate and Lindenmaier (2008) and uses
a persistent forecast a reference value:

NSpf LTð Þ ¼ 1�
PN

t¼1 qsim tð Þ � qfc tð Þ½ �2PN
t¼1 qsim tð Þ � qsim t � LTð Þ½ �2 (A3)

where qsim t � LTð Þ is the value that was used to initialise the model. The
range of NS lies between –∞ and 1 (perfect fit). Negative values indicate
that the mean value of the proxy discharge time series (or the use of
persistent forecast) is a better predictor than the model. The score
indicates how well the plot of observed versus the simulated/forecasted
values fits the 1:1 line (Moriasi et al. 2007) and it has been found to be
the best objective function for reflecting the overall fit of a hydrograph
(Servat and Dezetter 1991).

Percentage bias (Pbias)

This score measures the average tendency of the forecasted values to be
smaller or larger than the observed ones and it has the ability to indicate
poor model performance (Gupta et al. 1999). Percentage bias is
a dimensionless measure that measures the forecast bias of N forecasts
at an evaluation window of t days, which is rescaled by the correspond-
ing average discharge for the same period and is defined as:

Pbias ¼
1
N

PN
t¼1 qsim tð Þ � qfc tð Þ� �

qsim
(A4)

Coefficient of variation of the root mean squared error
(CV)

The root mean squared error (RMSE) is used to measure the standard
deviation between simulated and forecast values. Following Reed et al.
(2007), it is normalised by the average simulated discharge to allow
a comparison between river cells with very different discharges. The
result is the so-called coefficient of variation of the RMSE, given by:

1186 K. BISCHINIOTIS ET AL.

https://doi.org/10.1080/02626669109492517
https://doi.org/10.5194/hess-15-3529-2011
https://doi.org/10.1061/(ASCE)0733-9496(1992)118:1(82)
https://doi.org/10.1061/(ASCE)0733-9496(1992)118:1(82)
https://doi.org/10.5194/hess-14-1595-2010
https://doi.org/10.1038/srep36021
https://doi.org/10.5194/hess-13-125-2009
https://doi.org/10.1002/asl.266
https://doi.org/10.5194/hess-19-3365-2015
https://doi.org/10.5194/hess-11-468-2007
https://doi.org/10.1080/13658810802549154
https://doi.org/10.1175/JHM594.1
https://doi.org/10.13140/rg.2.2.17677.33769
https://doi.org/10.1080/02626667.2010.543087
https://doi.org/10.1029/2010GL046346
https://doi.org/10.1029/2010GL046346
https://doi.org/10.5194/hess-17-4389-2013
https://doi.org/10.5194/hess-17-4389-2013
http://cred.be/sites/default/files/DisCatClass_264.pdf
http://cred.be/sites/default/files/DisCatClass_264.pdf
https://doi.org/10.1175/BAMS-87-12-1699


CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

t¼1
qsim tð Þ�qfc tð Þ½ �2

N

r

qsim tð Þ (A5)

Continuous ranked probability skill score (CRPSS)

To evaluate the probabilistic skill of GloFAS that is produced by the
ensemble members, the CRPSS (Hersbach 2000) is used, as it mea-
sures the weighted average skill over threshold values (Bradley and
Schwartz 2011). The CRPSS is calculated by normalising the con-
tinuous ranked probability score with the climatology, so that it
does not depend on the magnitude of discharge and allows for
spatial comparisons. It ranges from –∞ to 1 (perfect forecasts) and
is defined as:

CRPSS ¼ CRPSref � CRPSfcst
CRPSref

(A6)

where

CRPS ¼ �þ1
�1 F yð Þ � F0 yð Þ½ �2dy (A7)

and F(y) is the stepwise cumulative distribution function of the ESP of
each considered forecast. F0(y) = 0 when y < observed value; F0(y) = 1
when y ≥ observed value.

CRPSref ¼ 1
N

XN
1

qsim tð Þ � qsim
�� �� (A8)
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Appendix B

Figure B1. CRPSS, CV, Pbias and NSpf for raw (left) and post-processed forecasts (right) over Peru for daily forecasts over the period 1 January 2009–31 December 2015 for
7-day LT.
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Appendix C

Figure C1. Operational GloFAS warning map on 1 March 2017 (left), showing that the next 15 days the discharges will exceed the 20-year return period in several
parts of the Peruvian river network (purple lines) and a more detailed forecast (right) for the station Yuracyacu in Loreto region (77.55°W, 4.45°S). The snapshots
were taken from the GloFAS web platform, http://www.globalfloods.eu/.
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