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A B S T R A C T   

We demonstrate levels of skill for forecasts of seasonal-mean wind speed and solar irradiance in Europe, using 
seasonal forecast systems available from the Copernicus Climate Change Service (C3S). While skill is patchy, 
there is potential for the development of climate services for the energy sector. Following previous studies, we 
show that, where there is skill, a simple linear regression-based method using the hindcast and forecast ensemble 
means provides a straightforward approach for producing calibrated probabilistic seasonal forecasts. This 
method extends naturally to using a larger-scale feature of the climate, such as the North Atlantic Oscillation, as 
the climate model predictor, and we show that this provides opportunities to improve the skill in some cases. 

We further demonstrate that, on seasonal-average and regional (e.g. national) average scales, wind and solar 
power generation are highly correlated with single climate variables (wind speed and irradiance). The detailed 
non-linear transformations from meteorological quantities to energy quantities, which are essential for detailed 
simulation of power system operations, are usually not necessary when forecasting gross wind or solar generation 
potential at seasonal-mean regional-mean scales. 

Together, our results demonstrate that where there is skill in seasonal forecasts of wind speed and irradiance, 
or a correlated larger-scale climate predictor, skilful forecasts of seasonal mean wind and solar power generation 
can be made based on the climate variable alone, without requiring complex transformations. This greatly 
simplifies the process of developing a useful seasonal climate service.   

Practical Implications 

There is an increasing demand for seasonal climate prediction 
services for the energy sector, in order to improve system resil-
ience, energy security, financial planning or to reduce financial 
risks. Potential users include power plant managers and operators 
(e.g. wind/solar farms), distribution or transmission system op-
erators, regulators, policy makers and financial traders. 

Greater availability of seasonal forecast and hindcast data, 

through projects like the Copernicus Climate Change Service 
(C3S), is enabling many organisations – private companies, na-
tional meteorological services, energy companies – to start to 
develop seasonal climate services for their customers’ needs. 

We show that the forecast skill for seasonal mean wind speed and 
solar irradiance in Europe, at 1-month lead times, is very patchy: 
although it is high enough to be useful in some cases, this is far 
from universal across all regions and seasons. Services should be 
developed for specific applications, for specific regions and sea-
sons rather, than as a generic tool. 

* Corresponding author. 
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We demonstrate that a simple methodology, based on linear 
regression between a climate model predictor variable and the 
observed variable of interest to the users, can greatly simplify the 
production of a calibrated probabilistic seasonal forecast. 

We also show that, for seasonal and regional averages (e.g. over a 
European country), wind and solar photovoltaic (PV) power 
generation are both very highly correlated with the average wind 
speed and solar irradiance, respectively. Given the level of un-
certainty in seasonal forecasts, and the modest levels of forecast 
skill, this limits the benefit from complex transformations per-
formed at high temporal/spatial resolution, such as wind turbine 
power curves, scaling to turbine hub height, or including the 
temperature-dependence of solar PV power. 

This methodology requires the availability of multi-decadal time 
series of the quantity of interest, for example wind power, to 
calibrate the forecasts. Suitable data will often not be available 
directly, requiring an additional calibration step to relate recent 
electricity production to observed climate variability over a longer 
period. In any case, close collaboration with the prospective user 
will ensure the seasonal forecast service is targeted at the most 
relevant quantity. A service might also be further improved 
through direct engagement with climate forecast data providers, 
to utilise the latest models, data sets and research into how to 
optimise the use of the seasonal forecasts.   

1. Introduction 

Seasonal climate prediction, in which statistics of the weather over a 
period of several months, are forecast with a lead time of several weeks, 
has long been an area of interest to the energy sector (e.g. Weiss, 1982; 
Troccoli et al., 2008; Troccoli, 2010; Doblas-Reyes et al., 2013). Recent 
improvements in the levels of skill in seasonal forecast systems, partic-
ularly at mid-latitudes (e.g.Scaife et al., 2014; Smith et al., 2016), have 
meant that seasonal forecasting climate services are now starting to be 
developed in earnest (e.g. Palin et al., 2016; Viel et al., 2016; Prud-
homme et al., 2017; Clark et al., 2017; Buontempo, 2018; Thornton 
et al., 2019). At the same time, the introduction of increasingly impor-
tant levels of weather-dependent renewable electricity generation 
means that demand for skillful and reliable seasonal forecasting services, 
tailored to the requirements of users in the energy sector, is only likely to 
increase in the coming years. 

The energy sector is itself very diverse, particularly when consid-
ering the different arrangements across European countries: owners and 
operators of electricity generation facilities, operators of the trans-
mission or distribution networks, energy traders, system regulators and 
policy makers all have different needs and aims in terms of climate 
services. Indeed, such organisations often employ specialist meteorolo-
gists: they help to translate the weather and climate conditions in the 
forecasts, and their uncertainties, into the energy-related quantities 
required by their colleagues for decision-making. They therefore act as 
internal weather and climate service providers. 

Increasing amounts of observational and forecast data are now being 
made more easily available to users, through initiatives such as the 
European Commission’s Copernicus Climate Change Service (C3S), in 
partnership with national meteorological services and other organisa-
tions across Europe. For example, the European Climatic Energy Mixes 
(ECEM) proof-of-concept service, a C3S Sectoral Information System, 
developed new observation-based data sets that are relevant for study-
ing the impacts of climate variability on the European energy sector. It 
has also examined the skill of seasonal forecasts provided through the 
C3S Climate Data Store (Troccoli et al., 2018). However, a gap remains 
between developers of these kinds of data sets, and the needs of users 
within energy sector organisations. It is this gap that we target in this 
paper, by demonstrating how seasonal climate forecast data, made 
available through programmes like C3S, could be used to provide useful 

information for the energy sector. 
A typical approach for producing a seasonal forecast for the energy 

sector (or other sectors) would start with the forecast ensemble of the 
meteorological variable, or variables, of interest. By analogy with the 
needs of short-term (“weather”) forecasts, these might be obtained at 
very high temporal resolution, to allow for a precise, non-linear trans-
formation into the energy metric required. In addition to requiring bias 
and perhaps variance correction, the forecast ensemble is likely to 
require calibration to ensure that it produces reliable probabilistic 
forecasts, in the statistical sense: that is, whenever forecasts of particular 
conditions are made with a given probability, they should then occur 
with that frequency. This combination, of detailed non-linear trans-
formations of high-frequency, possibly multi-variate data, all requiring 
probabilistic calibration, can make development of a seasonal climate 
service highly challenging; even if only from a data volume and 
computational perspective. In practice, this means that many in the 
energy sector base their assessments of future conditions on historical 
climatological data, rather than forecasts. Even when seasonal climate 
forecasts are used, it tends to be qualitatively rather than quantitatively. 

In this paper, we use data produced in the ECEM project to demon-
strate how seasonal forecasts for the European wind and solar energy 
sectors, particularly seasonal-mean, regional-mean forecasts of meteo-
rological or energy quantities at 1-month lead times, can be produced in 
a much more straightforward way, without compromising the need to 
provide probabilistic information. Note that our focus is on the meth-
odology, rather than the specific results in any individual case. 

In Section 2, we describe the seasonal hindcast and observation- 
based data sets we use to assess the forecast systems. We then 
consider the skill of these systems in forecasting seasonal mean wind 
speed and irradiance in Section 3, and demonstrate a simple approach 
for producing calibrated probabilistic forecasts. Section 4 describes how 
we might translate the skill found in forecasting climate variables into 
skillful forecasts of potential wind power and solar power generation. 
We discuss the benefits of more detailed co-design of forecasting services 
in Section 5. Finally, we summarise our conclusions in Section 6. 

2. Data sets 

To assess the performance of different seasonal forecast systems, we 
use their hindcast data sets, obtained from the C3S Climate Data Store. 
We compare the hindcasts against observation-based data sets, including 
those produced through the ECEM project. We describe these in the 
following subsections. 

2.1. Seasonal hindcasts 

Three hindcast data sets were obtained from ECMWF during the pre- 
operational phase of the C3S Climate Data Store (Raoult et al., 2017)2 in 
late 2017, from three different production centres: ECMWF (Molteni 
et al., 2011), Météo-France (Météo-France, 2015) and the Met Office 
(MacLachlan et al., 2015; Williams et al., 2015). Table 1 describes some 
key details of these three forecast systems, relevant for the present study. 
The forecast systems differ not only in the formulation of their under-
lying climate models, but also in the way the forecasts are initialised, 
and in how the forecast and hindcast data sets are compiled from those 
initialised runs. We refer the reader to the references above for more 
comprehensive descriptions of each particular system. 

Each hindcast comprises an ensemble of climate model simulations 
that are run forward for several months after initialisation. A new, 
independently initialised set of runs is available for every month of each 
20–30 year data set. This allows the behaviour of each forecast system to 
be examined by providing a series of retrospective climate predictions. 

2 The C3S Climate Data Store can be accessed at https://cds.climate.cope 
rnicus.eu 
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Although these large data sets provide the freedom to examine forecasts 
of many different periods over a range of different lead times, seasonal 
forecasts typically focus on forecasting for 3-month seasons, with a lead 
time of about one month. Here, we consider forecasts of the average 
conditions in winter (December–January–February, DJF) and summer 
(June–July–August, JJA), initialised in early November and May 
respectively. 

2.2. Observation-based data 

We use two reanalysis data sets as proxies for observations of climate 
data. Primarily, we use ERA-Interim reanalysis data (Dee et al., 2011), 
covering the period 1979–2016 at 0.75◦ grid resolution. We also use the 
climate data set that was developed as part of the ECEM project (Jones 
et al., 2017), which is based on ERA-Interim, but bias-adjusted using 
various station-based and satellite-based observational data sets. Both 
data sets were regridded to a 1◦ grid before use, for comparison with the 
hindcasts. The ECEM climate data is also available as national averages, 
making it easier to compare with the energy data. 

As a proxy for the observed levels of wind and solar PV electricity 
generation, we use the national-scale energy data sets developed in 
ECEM (Dubus et al., 2017a, b; Saint-Drenan et al., 2018; see also Troc-
coli et al., 2018). While this is based on actual, observed generation data 
from across Europe, it is in fact modelled. The capacity factor (the 
amount of power generation at a given moment as a fraction of the 
installed generation capacity) for a given generation source, such as 
wind, is modelled and calibrated against measured data over a recent 
period with a known installed capacity. This model is then applied back 
over the historical period, driven by the ECEM climate data, while 
imagining the same installed capacity as in the present. This allows the 
production of long time series that accurately describe the meteoro-
logical dependence of electricity generation in different regions. 
Without this, the data would be dominated by the varying technological, 
economic, political or social factors that strongly affect the actual levels 
of installed capacity, which vary markedly over time. Although the data 
is also provided in terms of total generation (i.e. energy) and mean 
generation rate (i.e. power) as well as capacity factors, we simply use the 
capacity factor data here as it is not necessary to convert further for our 
analysis. 

The national-scale ECEM climate and energy data sets cover 33 Eu-
ropean countries (23 for wind power). An important restriction is that 
offshore areas belonging to countries are excluded, as much of the un-
derpinning ECEM climate data was bias adjusted using measurements 
from land stations.3 Offshore wind power generation has much higher 
capacity factors than onshore, and some countries have significant 
amounts of offshore wind power installed. The energy results therefore 
shouldn’t be seen as reflecting the true “national” capacity, but the land- 
based capacity. However, this does not affect our main points regarding 
methodology. 

We use the ECEM wind power data that is based on a statistical 
model using a support vector regression technique. A lack of adequate 
training data in some cases means that it only covers 23 countries, 
although it tends to perform slightly better than the ECEM data 

produced using a physically-based wind turbine model (see Dubus et al., 
2017b for details). In practice, they are both well correlated and the 
choice does not affect our results (Bett et al., 2018a). 

The solar photovoltaic (PV) generation data from ECEM is based on 
the mixed physical and statistical method of Saint-Drenan et al. (2017). 
It takes into account the tilt and orientation of the solar panels, and 
includes a dependence on air temperature as well as irradiance to esti-
mate power output for a reference PV system (solar PV panels operate 
more efficiently at lower temperatures). 

The detailed formulation of the models for wind and solar power is 
not the focus of this study, and indeed many model variations were 
tested as part of the ECEM project. The strength of the resulting data sets 
lies in them covering the same multi-decadal period, having been cali-
brated against a comprehensive set of national electricity production 
data gathered from a range of sources. We shall be treating them as the 
observational “truth” for the purposes of this study. 

3. Calibrated probabilistic forecasts of climate variables 

In this section we describe the skill of the three forecast systems in 
predicting mean 10 m wind speed and irradiance, and demonstrate how 
the ensemble means can be used to provide calibrated probabilistic 
forecasts of these quantities. 

3.1. Skill of direct forecasting of climate variables 

One of the simplest ways of measuring the forecast skill of a given 
variable is through the interannual Pearson correlation between the 
observed values and the hindcast ensemble-mean values. The correla-
tion skill for wind speeds and irradiance, for the three forecast systems in 
both summer and winter, is mapped in Fig. 1. (There is negligible dif-
ference if using the ECEM climate data instead of ERA-Interim.). 

The skill is clearly patchy, and varies between the different models, 
seasons and variables: one cannot make broad statements like “model X 
has skill in forecasting variable Y”. This is typical of seasonal forecasting 
in mid-latitude regions, and is important for informing expectations 
about seasonal forecasts, such as when communicating with potential 
users: seasonal forecasts perform at a very different level of predict-
ability than traditional weather forecasts, or even medium-range sub-
seasonal ensemble forecasts. They must be used selectively, choosing 
only the cases (regions, seasons, models, variables) where we can be 
confident that there is skill. 

Furthermore, since the correlation is based on the very limited 
number of years in the hindcast data sets, it is itself rather uncertain. A 
confidence interval on the correlations can be calculated using a Fisher 
z-transformation. This is a simple analytic estimate, which assumes that 
the hindcast and observational data follow a bivariate normal distribu-
tion. While this is clearly not true for wind speed and irradiance in 
general (e.g. winds are often considered to follow a Weibull distribution: 
Hennessey, 1977; Carta et al., 2009; Harris and Cook, 2014), it is a 
reasonable assumption in this case because of the Central Limit Theo-
rem: after averaging to get seasonal means, country means and ensemble 
means, the remaining 20–30 pairs of data points are usually indistin-
guishable from being normally distributed. The correlation values for 
the confidence interval are given by 

Table 1 
Summary details for seasonal prediction systems used here. The years in the hindcast period column refer to those of the initialisation dates (May and November). The 
Forecast System column refers to the version numbers assigned by the C3S Climate Data Store. All data is regridded to a 1◦ grid before use.  

Production centre Forecast System Model Spatial resolution Hindcast period Hindcast ensemble 

ECMWF System 4 IFS Cyc36r4 T255 L91 (∼ 80 km) 1981–2010 (30 years) 51 members 
Météo-France System 5 Arpege-IFS Cyc37 T255 L91 (∼ 80 km) 1993–2014 (22 years) 15 members 
Met Office System 12 (GloSea5) HadGEM3-GC2 N216 L85 (∼ 60 km) 1993–2015 (23 years) 28 members  

3 Offshore wind power data is now available from the C3S Energy operational 
service, athttps://climate.copernicus.eu/operational-service-energy-sector. 

P.E. Bett et al.                                                                                                                                                                                                                                   

https://climate.copernicus.eu/operational-service-energy-sector


Climate Services 27 (2022) 100318

4

rCI± = tanh
(

artanh
(

r
)

±
z2.5
̅̅̅̅̅̅̅̅̅̅̅̅
N − 3

√

)

, (1)  

where r is the correlation whose confidence intervals we are estimating, 
and z2.5 is the value at the 2.5th percentile of a standardised normal 
distribution, such that the confidence interval on the correlation is at the 
95% level. Note that this confidence interval depends only on the 
number of years N in the data sets, and the value of the correlation itself. 
This means that we can write down the critical correlation thresholds for 
significance by this measure, rcrit (the smallest correlation r such that 
|rCI±| > 0), which for the hindcasts we use here are:  

• rcrit(N = 30) = ±0.360 (ECMWF)  
• rcrit(N = 23) = ±0.412 (Met Office)  
• rcrit(N = 22) = ±0.422 (Météo-France) 

Contours marking the notional 5% significance thresholds on the 
correlations according to this test are marked on the skill maps in Fig. 1. 

There is also uncertainty due to the finite ensemble size. However, 
due in part to the signal-to-noise problem (discussed in the next sub-
section), the skill increases systematically with ensemble size (e.g. 
Dunstone et al., 2016), following a clear theoretical relationship (Mur-
phy, 1990). Furthermore, since the forecast ensembles are the same size 
or larger than the hindcast ensembles, it is safe to treat the skill we find 
here as a lower limit on the actual forecast skill, and we do not consider 
the impact of ensemble size further. 

Area-weighted averaging over relatively large regions can enhance 
the forecast skill by reducing the gridpoint-scale noise. In Europe, in-
dividual countries can represent sufficiently large areas to achieve this, 

Fig. 1. Skill, as measured by the correlation coefficient, of seasonal forecasts of 10 m wind speed (upper rows) and irradiance (lower rows), from the three hindcasts 
we use here (columns, as labelled), against ERA-Interim data. Forecasts are for the 3-month averages of winter (DJF) and summer (JJA) as labelled, at a lead time of 
one month (i.e. November and May initialisation respectively). The yellow contour marks a notional threshold for significance, using the Fisher z-test at the 5% level. 
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and often represent relevant administrative boundaries for users, mak-
ing it a convenient choice for aggregating the forecasts. Time series of 
observations and hindcasts for each country are available on the ECEM 
Demonstrator.4 As this study focuses on methodology, we give an 
illustrative example in Fig. 2, showing hindcasts of winter wind speed in 
Finland from the three systems, together with observations. Because it is 
likely that some degree of bias and/or variance correction will always be 
necessary when working with climate model output, we show the 
hindcast ensemble means in Fig. 2 after applying a simple linear 
correction, which leaves the correlation skill unchanged: 

U☆
hc

(

t
)

= Uob +(Uhc(t) − Uhc)
σ(Uob)

σ(Uhc)
, (2)  

for seasonal mean wind speed data U, where the ☆ indicates the cor-
rected data, the overbar indicates the long-term mean, σ is the inter-
annual standard deviation, ‘hc’ indicates the hindcast ensemble means 
and ‘ob’ indicates the observation-based data. While it is important to 
understand any biases in the mean state or variability of the climate 
model, in order to improve the model and its forecasts, that is not our 
goal here: the important quantity in this case, in terms of skill, is the 
standardised co-variability of the initialised model with respect to the 
observations, i.e. the correlation. 

3.2. Calibrated probabilistic forecasts based on ensemble means 

The uncertainty of seasonal forecasts means that, in order to provide 
useful and robust information for decision-making, they should be used 
probabilistically. The simplest approach is to use the distribution of 
ensemble members directly as a description of the forecast probability 
distribution. However, there are many other methods of deriving 
probabilistic forecasts from the forecast ensemble, known in general as 
Ensemble Model Output Statistics (EMOS, e.g. Wilks, 2020). These 
might be preferable to avoid sampling error due to the finite (and his-
torically small) ensemble size. A simple approach would be to appeal to 
the Central Limit Theorem again, and assume that the “true” forecast 
probability distribution is just a normal distribution with the mean and 
variance well estimated by those of the ensemble members. Other more 
precise techniques include forms of kernel dressing (e.g. Bröcker and 
Smith, 2008; Suckling and Smith, 2013; Smith et al., 2015). 

A key requirement is that the probabilities generated by the forecast 
system are reliable, in the formal statistical sense: of the times when an 

event is forecast with a given probability (say, 70%), we should observe 
it to occur with the same frequency as that probability. If, when forecast, 
the events are observed to occur more frequently than that forecast 
probability, e.g. 90% of the time, then the forecasts are underconfident. 
Similarly, if the event occurs less often (e.g. 50% of the time), then the 
forecasts are overconfident. Just as forecasts will, in general, need some 
form of bias and variance correction, they will also need some degree of 
calibration to ensure they produce reliable probabilities. 

Although climate predictions have often been found to be over-
confident (i.e. ensemble members agree with each other better than they 
agree with the observations), it has recently been discovered (Eade et al., 
2014; Scaife and Smith, 2018) that many climate models also produce 
underconfident forecasts in some cases. This particularly affects the North 
Atlantic sector, including dynamical features such as the North Atlantic 
Oscillation (NAO) and Arctic Oscillation (AO), which have a direct in-
fluence on features of the European winter climate such as wind speed 
(Clark et al., 2017). As discussed in the recent reviews of Scaife and 
Smith (2018), Merryfield et al. (2020) and Meehl et al. (2021), and 
references therein, this underconfidence stems from the ensemble 
members exhibiting less predictable variability than the observed world. 
This means that we should be cautious of using the ensemble members to 
estimate forecast probabilities. Probabilistic methods can instead be 
developed based on the ensemble mean, as a quantity that maximises the 
skillful signals available from the climate model by reducing the noise 
from the individual members. The underconfidence implies that the 
ensemble mean anomalies will be too small, emphasizing the need for 
bias and variance correction. Having a large forecast ensemble will also 
improve the skill of the ensemble mean, as it will allow greater reduction 
of noise from the ensemble members. 

All the approaches described above for producing probability dis-
tributions from the forecast ensemble would need probabilistic cali-
bration, in addition to bias and variance correction of the mean. Various 
techniques have been devised to achieve this (e.g. Gneiting et al., 2005; 
Sansom et al., 2016; Torralba et al., 2017, and references therein). We 
will describe here a simple method of producing calibrated probabilistic 
forecasts, without using the ensemble member distribution at all, based 
on the traditional Model Output Statistics approach (MOS, Glahn and 
Lowry, 1972). 

Rather than considering the observations and hindcast ensemble 
means as time series, we can instead examine their joint distribution. 
This can be shown as a scatter plot, which also directly illustrates their 
correlation. We can describe the linear relationship between the two 
data sets, as well its uncertainty, through a simple linear regression. If 
we then have a forecast of the predictor variable from the climate model, 
we can use the linear regression to transform it into a forecast of a future 

Fig. 2. Time series of winter 10 m wind speed in Finland, showing observations (black) and hindcast ensemble mean data (colours, as labelled), after bias and 
variance correcting (see text). Points are plotted at the January of the DJF period they cover. The correlations r between observations and hindcast are shown in the 
legend, including their 95% confidence intervals in brackets. They are marked with a * where the correlation is significantly different to zero. 

4 http://ecem.wemcouncil.org. 
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observation. The probabilities of any given value being observed sub-
sequently are provided by the prediction interval on the regression. 

We illustrate this procedure in Fig. 3, for the Met Office hindcasts of 
winter mean wind speed in Finland (data already shown in Fig. 2). In the 
scatter plot, the hindcast data are shown without bias and variance 
correction, to illustrate that this is taken care of by the linear regression. 
An imagined forecast is included, shown in blue, in which the climate 
model produced an ensemble mean forecast of 3.6ms− 1. The plot then 
shows the central estimate of the predicted future observation, at 
approximately 3.0m s− 1. The probability of the new observation being 
above average can also be seen: it is the fraction of the prediction in-
terval that is above the dotted horizontal mean line. Because linear re-
gressions are monotonic, this is the only point along the horizontal axis 
where the wind speeds are forecast to be above average with this 
probability; and the probability is given by the prediction interval, 
which is the conditional distribution of the observations given a forecast 
with that probability, taking the unavoidable sampling uncertainty into 
account. Therefore, as long as it is reasonable to describe the relation-
ship between forecast and observations with a linear regression, then the 
resulting forecast probabilities are well-calibrated by construction, 
given the limitations of the data available. We give a more mathematical 
description of this point in Appendix A, with examples of reliability 
diagrams that explicitly demonstrate the calibration of hypothetical 
underconfident and overconfident forecasts. So, just as the linear 
regression bias-corrects and variance-corrects the hindcast data to 
match the observations, it also calibrates the probability distributions, 
such that they match the observed frequencies. 

It is important to emphasise that this only applies because the system 
can reasonably be described by a linear model: the Central Limit The-
orem, due to averaging over a season, region and the ensemble, pushes 
the two data sets towards being normally distributed, so that where 
there is good correlation skill then there will be a reasonably linear 
relationship. Where there isn’t a good correlation, then a linear model 
would have a null gradient, and the probability of any forecast will just 
be the frequency distribution of the observations: i.e. the climate model 
no longer contributes, and the forecast is given by the observed clima-
tology. On the other hand, if we were not aiming to forecast an average 
quantity, for example if we are counting the occurrence of some event 
per season, then the Central Limit Theorem might not apply, and the 
data might not follow a linear relationship. In these cases, a different 
approach might be necessary, and this will be discussed in the next 
subsection. 

It is also expected that, if orders of magnitude more data were 
available, such as centuries of points instead of decades, and if the skill 
was significantly higher, then there might be justification for using much 
more precise techniques to refine the probabilistic distribution (e.g. 
more detailed EMOS techniques, machine learning, etc.). However, as 
we have seen, seasonal forecast skill for wind and irradiance in Europe 
tends to be not much above the threshold for statistical significance at 
best, and there can only be limited benefit in more detailed statistical 
techniques – making precise fits to noise is unhelpful. 

Fig. 3 shows the result of adding a new forecast point after the 
existing 23-year hindcast period. This reflects the procedure that would 
be used in a real-time forecast. However, it can also be helpful to un-
derstand the behaviour when using the same method to “forecast” any of 
those 23 historical years, in each case calculated with reference to the 
remaining 22 years only. This leave-one-out cross-validation procedure 
allows us to estimate the skill in forecasting years like those observed, 
and to understand the sensitivity of our method to outlier years. How-
ever, it is likely to yield lower values of skill, as each forecast is based on 
less data. 

Fig. 4 shows the results of leave-one-out cross-validation, and com-
pares our linear regression approach with simply using the forecast 
ensemble. The correlation skill in both cases is the same by construction, 
as the linear regression is based on the hindcast ensemble means. The 

value of 0.32 appears lower than the 0.47 seen in Fig. 3, as expected 
given the reduced sample size. However, it is important to take the 
uncertainty into account when interpreting these values: the 95% con-
fidence interval on the correlation of 0.47 is 0.07–0.74. 

We have so far focused on the correlation skill of the ensemble mean, 
as this is directly related to our linear regression method. However, we 
can also assess the performance of the forecast probability distribution 
each year, for example using the continuous ranked probability score 
(CRPS, e.g. Hersbach, 2000; Wilks, 2020). This compares the forecast 
probability distribution with the observation each year, awarding higher 
skill (lower CRPS) when there is more probability closer to the observed 
value. We compare the mean score over all forecasts with the mean score 
from using the observed climatological mean as a (deterministic) fore-
cast, to calculate a skill score (CRPSS). Positive values of CRPSS repre-
sent an improvement on climatology, with 1 representing a perfect 
forecast. In the limit of deterministic forecasts, the mean CRPS reduces 
to the mean absolute error. Fig. 4 shows the probability distributions 
from the linear regression have positive skill, with a CRPSS of 0.35. In 
contrast, the probabilistic skill is negative (worse than climatology) if 
the ensemble members are used alone. 

The CRPSS is one of a wide range of probabilistic skill scores, and 
assesses the whole forecast distribution. Some users will be able to 

Fig. 3. Winter mean 10 m wind speed in Finland, showing hindcast data from 
the Met Office system, and observations from the ECEM climate data. Top 
panel: Scatter plot showing the relationship between hindcast ensemble means 
and observations (red dots, one per year, shown without bias or variance 
correction). Their means are shown as horizontal and vertical dotted lines. The 
linear regression is shown as a black line, with the inner 75% and 95% of the 
prediction interval in grey shading. A hypothetical forecast is shown in blue at 
3.6ms− 1, with boxes highlighting the prediction interval at that point. Bottom 
panel: Time series display of the same data. The observations are in black, and 
the hindcast points (red) are plotted after bias and variance correction. The 
hypothetical forecast is shown again in blue. 
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identify particular thresholds for dichotomous decision-making (e.g. if 
the wind does or does not exceed the observed upper tercile), and many 
probabilistic scores assess the likelihood of exceedance of these 
thresholds. For the ECEM project, the Brier5 and ROC skill scores were 
uses for this, and were calculated for each European country individu-
ally. These results are available on the ECEM Demonstrator, and sum-
marised in Bett et al. (2018b). 

3.3. Indirect forecasting of climate variables 

So far, we have only considered ‘direct’ forecasting, in the sense of 
using one quantity output from a forecast model to predict the same 
quantity in observations, albeit via linear regression. However, a useful 
feature of the linear regression approach described above is that it offers 
a straightforward way to make ‘indirect’ forecasts: using one climate 
variable to predict another variable, possibly at a different location. 

For example, in the scatter plot shown in Fig. 3, we could replace the 
variable on the horizontal axis with any other predictor from the fore-
cast models. This could be the same meteorological variable, but 
measured over a larger area, to increase the skill: for example using the 

mean wind speed over an area covering the whole British Isles region, 
land and sea, to forecast the UK mean wind speed. This could be 
particularly important when forecasting for smaller regions or countries 
in Europe, as low levels of skill can often be improved by averaging over 
a larger area, if the wind speeds are sufficiently spatially correlated, by 
reducing the gridpoint-scale noise. The method then functions as a 
simple statistical downscaling technique. 

Another alternative is to use a larger-scale dynamical feature of the 
climate, such as the NAO, to forecast a local meteorological variable. It is 
well known that the NAO is well-correlated with many features of the 
northern and southern European winter climate, and we demonstrate 
the observed correlation of a simple NAO index6 with winter wind speed 
and irradiance in Fig. 5. If it can be skilfully predicted, then using the 
NAO index as the predictor can lead to more skillful forecasts of the 
target variable in many cases. Recent advances in seasonal climate 
prediction systems have demonstrated significant skill in forecasting the 
NAO (e.g. Scaife et al., 2014; Butler et al., 2016; Athanasiadis et al., 
2017; Baker et al., 2018b), leading in turn to demonstrations of 
improved skill in other variables across Europe (e.g. Karpechko et al., 
2015; Svensson et al., 2015; Clark et al., 2017; Baker et al., 2018a). A 
similar approach has been successfully applied to forecasts of rainfall in 
China (Bett et al., 2020). 

Finally, as mentioned earlier, this formalism could also be used for 
forecasting quantities other than the mean value: a user might be more 
interested in the risk of some event, such as an extreme, occurring within 
the season. The details in these cases would be highly user-specific, but 
examples might include forecasting the number of low-wind days per 
season, or the number windstorms per season (Befort et al., 2019). 
Calculating this kind of counting statistic directly from the forecast 
model ensemble is likely to be noisier, and hence less skillful, than a 
seasonal mean. However, it might be possible in some situations to use 
the seasonal mean from the forecast system to predict the seasonal fre-
quency of the event of interest, using observations of those frequencies 
in the regression. Thornton et al. (2019), in their study of seasonal 
forecasts of gas demand, provide an example of this situation. They 
found that the observed seasonal mean gas demand can be linearly 
related to atmospheric circulation indices from the forecast model. 
However, the number of high gas demand days per winter showed a non- 
linear relationship, with many seasons having no high-demand days. A 
similar result was found for forecasts of tropical cyclone landfall counts 
in China (Camp et al., 2020; Mitchell and Camp, 2021), where the initial 
system was improved by moving from a linear to a Con-
way–Maxwell–Poisson regression model. In other cases it might be 
preferable to transform the required variables first to linearize the 
relationship. 

4. Forecasting wind and solar power generation 

There is a clear need in many applications for detailed models to 
transform meteorological variables into energy variables. Short term 
(daily, hourly or less) forecasts of wind or solar power, based on weather 
forecasts, need to be highly accurate to allow the output of individual 
sites to be carefully managed (e.g. Giebel et al., 2011; De Felice et al., 
2015; Haupt, 2018). Similarly, climatological risk studies, for example 
to allow financing for individual site development, or for planning 
future transmission/distribution grid requirements, can also require 
accurate transformations across timescales (e.g. Cannon et al., 2015; 
Bett et al., 2016; MacLeod et al., 2018). Indeed, the ECEM national-scale 
wind and solar PV data, which we use as ‘observations’ here, were 
developed on that basis. 

Fig. 4. Leave-one-out cross-validated forecasts for the same data as Fig. 3, 
winter mean 10 m wind speed in Finland. Both panels use the same axis limits, 
and are and are labelled with the correlations r of the observations with the 
forecast central estimates, and the CRP skill scores from the forecast distribu-
tions. The time series of observations is shown in black, and the blue boxes 
show the inner 75% and 95% of the forecast probability distributions. Top 
panel: Forecasts based on linear regression. The boxes show the prediction in-
tervals for each forecast, and the blue connected dots give the forecast mean. 
Bottom panel: The forecast ensemble members are shown by pink points, with 
the forecast ensemble means shown with larger purple connected dots. The blue 
boxes show percentiles of the ensemble distribution. Each ensemble mean was 
leave-one-out bias corrected, and the same correction applied to the ensemble 
member.s for each year. 

5 Note that the CRPS corresponds to the Brier score with all possible values 
used as forecast categories 

6 We use the simple difference between the mean sea level pressure in a 
southern box around the Azores (28∘ W–20∘ W,36∘ N–40∘ N) and a northern box 
around Iceland (25∘ W–16∘ W, 63∘ N–70∘ N) for our NAO index, following Dun-
stone et al. (2016). 
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However, the modest levels of skill (Fig. 1) and inherent un-
certainties (Figs. 3 and 4) of seasonal forecasts moderate our expecta-
tions of how accurate the forecasts on these temporal and spatial scales 
will be, suggesting that we can take a different approach. Fig. 6 shows 
the correlations between the observed climate and energy variables, at 
the seasonal-average, country-average scale. In the case of wind power, 
the correlation with mean wind speed for most countries is over 0.9, and 
apart from Romania (and in summer, Bulgaria) they all have r > 0.8. In 
the case of solar power, all countries show correlations with irradiance 

greater than 0.97 (note the different colour scale). 
The strength of these correlations means that, where there is skill in 

the underlying climate variable, we can use a simple linear regression to 
make a probabilistic forecast of the energy variable: just as in Fig. 3, but 
swapping out the observed climate variable on the vertical axis for the 
historical energy variable data. We demonstrate this explicitly in Fig. 7. 
The correlation skill of wind power forecast using the hindcast wind 
speed (0.40) is not significantly different at the 5% level to the wind 
speed forecast skill itself of 0.47 (as the data are based on the same set of 
years, we use Williams’s test, following Steiger, 1980). 

It is worth emphasising some consequences of this, as it might be 
seen as going against common practice and understanding in energy 
meteorology: 

Fig. 5. Maps of the correlation between the DJF NAO index and 10 m wind speed (left), and irradiance (right), using ERA-Interim data (winters 1979/1980 to 2015/ 
2016 inclusive). Contours are included in yellow at r = ±0.325, the notional threshold for significance over 37 years at the 5% level. 

Fig. 6. Maps of the correlation between the observed country-average climate 
variable and energy variable data, for DJF and JJA as labelled. Top: 10 m wind 
speed and wind power capacity factor. Bottom: irradiance and solar PV capacity 
factor. The ECEM climate and energy data is used in both cases. Note the 
different colour scales on the wind and solar panels. 

Fig. 7. Scatter plot showing the relationship between observed winter wind 
power capacity factor in Finland, and the hindcast ensemble mean 10 m wind 
speed in Finland, using the Met Office system (as in Fig. 3). Other annotations 
are the same as in Fig. 3: The linear regression is shown as a black line, with the 
inner 75% and 95% of the prediction interval shown as grey shading. Mean 
values are shown as dotted lines. A hypothetical forecast point is shown in blue 
at 3.6ms− 1, with boxes highlighting the prediction interval of the wind power 
capacity factor at that point. 
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• It is not beneficial to include the temperature dependence of solar PV 
generation: the correlation simply between solar capacity factor and 
irradiance alone is almost 1 everywhere.  

• Scaling the wind speeds from the meteorological standard 10 m 
height to a more typical wind turbine hub height like 100 m is also 
likely to make no significant difference: Standard scaling procedures 
such as using a power law, whereby U100m = (100/10)αU10m, do not 
affect the correlation (α is usually assumed to be constant); the 
scaling factor would automatically be captured by a linear regression 
forecast model.  

• It is not necessary to use instantaneous wind speeds (or irradiance) at 
high temporal resolution and transform them through a power curve 
to obtain the wind power (or solar power), before seasonally aver-
aging: there would be negligible improvement in skill over simply 
using the seasonal mean wind speed directly as the linear predictor of 
seasonal mean wind power. 

We demonstrate this last point explicitly in Fig. 8. Here we show the 
correlation skill of using 6-hourly instantaneous wind speeds from the 
GloSea5 system, transformed in different ways, to forecast seasonal 
mean wind power capacity factor. The simplest method, using the sea-
sonal mean wind speed to forecast the seasonal mean wind power, has a 
correlation of 0.40, as shown in Fig. 7. The second method uses the 
seasonal mean of the cube of the instantaneous wind speeds. The third 
method transforms the instantaneous wind speeds into capacity factors 
directly using a wind turbine power curve (following Bett et al., 2016), 
before taking a seasonal mean. Both these latter cases result in corre-
lations of 0.45. While there are small apparent numerical differences 
between the results of these different methods, when one considers the 
uncertainty on that skill it is clear that detailed, complex methods pro-
vide no detectable benefit over simply using the seasonal mean wind 
speed as the predictor variable. Indeed, Fig. 8 also shows that there is 
also no difference with the skill in forecasting the wind speed itself, from 

either the ECEM climate data set or ERA-Interim. This demonstrates the 
impact of the high correlations shown in Fig. 6, together with the modest 
skill shown in Fig. 1: detailed transformations are unlikely to result in 
improved skill. It is possible that detailed transformations could improve 
other metrics such as root mean square error, but again the differences 
are likely to be small compared to the overall forecast uncertainty. 

A more plausible route to improved skill, in some cases, would be to 
use a larger-scale dynamical index as the climate variable predictor, as 
discussed in the previous section. This follows Palin et al. (2016), who 
demonstrated how the NAO can be used to forecast various quantities 
for the UK transport sector, such as the need for aircraft de-icing at 
Heathrow Airport. 

The success of these kind of simplifications lies in the very strong 
correlations between the energy quantity of interest, and the climate- 
based predictand. This also determines the caveats on our findings: 
For example, these high climate–energy correlations do not occur uni-
versally. Bett et al. (2018a) and De Felice et al. (2018) demonstrated that 
electricity demand and hydroelectricity generation can both exhibit 
more complex relationships with the climate across Europe than solar 
PV and wind generation, showing strong correlations with the climate in 
some cases, and much weaker in others. They could therefore benefit 
from more careful modelling than a simple linear regression, or at least a 
more cautious case-by-case approach. Secondly, as discussed earlier, 
non-linear approaches might also be necessary if quantities other than a 
seasonal mean are required, such as the frequency of extreme events. 
Finally, there could be cases with existing or future forecast systems, 
where much higher levels of skill could be obtained, perhaps based on 
improved climate models, initialisation or ensemble construction. In 
that case, while a linear model would still work, it might be that a more 
sophisticated model relating the climate and energy variables could 
improve the skill further. 

5. Optimisation from co-design 

Much of what we have discussed so far in this paper has been 
achievable through the use of freely available data, for example from 
C3S, and indeed this itself represents a simplification compared to 
having to obtain data from individual providers in a variety of different 
formats. However, it is important to note that it is usually the case that 
the most optimal forecast services will be produced through a close co- 
development process: the climate service developer bringing in domain- 
specific expertise from both the energy (‘service user’) and climate (‘data 
producer’) sides. 

The benefits of co-design and co-development in making forecast 
services more useful, and usable, by focusing them more on the practical 
needs of stakeholders, are well documented (e.g. Bruno Soares and 
Dessai, 2015; Bruno Soares and Dessai, 2016; Bruno Soares, 2017; 
Buontempo et al., 2017; Golding et al., 2017). It might be the case that 
the prospective user of the service needs forecasts issued at particular 
times of the year, or covering particular periods – where we have looked 
at forecasting DJF from November for example, a user might need longer 
lead times, or forecasts for financial quarters rather than meteorological 
seasons. It is important to understand that the skill in forecasting the 
particular season, at the particular lead time, will need to be assessed 
explicitly, rather than assuming that areas of high skill in one case will 
have similar skill in another case. 

An important precondition of the linear regression approach we have 
described above is the availability of multi-decadal time series of the 
user’s quantity of interest. Although projects like ECEM provide much 
energy-sector time series data that can be applied to many cases, 
particular users are likely to require other specific quantities. It is un-
likely that such data will exist covering the necessary time span, and 
even data over a shorter period might be commercially sensitive and 
unavailable publicly. This means that an additional modelling or cali-
bration step might be required, following the approach taken by ECEM, 
to relate users’ recent energy data to longer-term climate variability. 

Fig. 8. Examples of the impact of different forecast strategies on the correlation 
skill for Finland winter mean wind power capacity factor. The predictor vari-
ables are based on 6-hourly instantaneous 10 m wind speeds U, and we use 
angle brackets to indicate a seasonal mean. On the left (red), we show the skill 
of forecasting mean 10 m wind speed from both the ECEM and ERAI data sets 
using the GloSea5 seasonal mean wind speed as the predictor variable (cf. 
Fig. 3). On the right (blue), we use three different transformations of wind 
speed to forecast wind power capacity factor: The seasonal means of the wind 
speed itself (cf. Fig. 7), the cube of the wind speed, and the power-curve 
transformed wind speeds P(U). In all cases, we also show the 95% confidence 
intervals on the correlations using the Fisher z-test. 
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This additional modelling will bring its own uncertainties, which would 
also need to be assessed. 

More optimal use of seasonal forecasting data can also be achieved 
though direct engagement with the providers of that data. They will 
have in-depth knowledge of the behaviour of their forecasting systems, 
and will be able to advise on ways to optimise their use. For example, 
there are now a wide range of seasonal forecast models, and model 
versions, available through the C3S Climate Data Store. While they are 
well documented, it requires a degree of expert judgement to assess 
whether/which different model ensembles can be pooled together, or if 
only particular models or versions should be used. 

Another benefit of climate service developers engaging directly with 
climate data providers is that the service could benefit from research 
into more optimal post-processing of the model data. For example, Baker 
et al. (2018a) and Thornton et al. (2019) both demonstrate improve-
ments in forecast skill from selecting appropriate large-scale predictors 
for their specific impact metrics, as discussed in Section 3.3. De Felice 
et al. (2018) and Stringer et al. (2020) demonstrate more complex post- 
processing used to derive the daily data needed for hydrological appli-
cations, while retaining the skillful signals from the larger-scale 
predictors. 

6. Conclusions and summary 

We have demonstrated the baseline levels of skill of seasonal fore-
casting systems available from C3S for seasonal-mean wind speeds and 
solar irradiance across Europe, at 1-month lead times, showing that the 
skill is patchy. Seasonal forecasts must therefore be used selectively and 
carefully. 

We have described a simple method for producing calibrated prob-
abilistic seasonal-mean forecasts for the cases where there is significant 
skill, based on the linear regression of the observational timeseries on 
the corresponding hindcast ensemble means. The hindcast variable can 
be different to the variable being forecast, and indeed skill might be 
improved in some cases by using a larger-scale climate predictor such as 
the NAO. Going further, the variable being forecast need not be a 
meteorological observable, but could be the energy metric required 
directly by the climate service recipient – thus providing a simple way of 
producing well-calibrated probabilistic forecasts of seasonal-mean wind 
and solar power generation potential. 

This is possible because of the very high correlations we have 
demonstrated on seasonal mean, regional mean scales between wind 
power and wind speed, and between solar PV power and irradiance. In 
this context, and given the modest levels of skill available in the climate 
variables, there is likely to be negligible benefit to using more complex 
transformations to estimate these gross primary energy quantities, e.g. 
using high temporal resolution, or multiple variables – although these 
approaches remain critical in other energy–meteorological analysis and 
forecasting settings. The temporal or spatial scales at which a more 
complex approach might be necessary is an important area for future 
exploration, but is likely to be highly application-specific. 

It is the country, seasonal and ensemble averaging that allows the 
linear regression method to work well, by reducing noise and pushing 
variables towards being normally distributed and linearly related. We 

emphasise, however, that this means that this approach will not be 
appropriate in all cases. For example, the number of extreme events per 
season is unlikely to be linearly related to a climate driver (Thornton 
et al., 2019), and in some use cases more sophisticated downscaling 
techniques might need to be developed if higher spatial or temporal 
resolution is required (e.g. De Felice et al., 2018; Stringer et al., 2020). 

For many cases however – and together with the increased avail-
ability of seasonal forecasting data through initiatives like the C3S 
Climate Data Store and the ECEM Demonstrator tool – our results show 
how the process of developing useful seasonal forecasting climate ser-
vices for wind and solar power can be greatly simplified. Further opti-
misation of the forecasts could also be possible, by drawing on the 
domain expertise of both the climate model data providers and the en-
ergy sector stakeholders, tailoring the service by balancing model ca-
pabilities and user needs. In all cases however, there is scope for much 
greater use of seasonal forecasts, aiming to reduce financial risks for the 
renewable energy sector, and improve energy security and energy sys-
tem resilience more widely. 
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Appendix A. The reliability of probabilistic forecasts produced by linear regression 

Here we demonstrate that the linear regression method described in the text, using the hindcast ensemble means, necessarily calibrates the forecast 
probabilities within the limitation of the available data, if the hindcast is skillful. The description is based on Wilks (2020), and we refer the reader 
there for further details. Fig. A.9 illustrates the mathematical description. 

The hindcast data (ensemble means from an initialised climate model) and observation-based data are samples from an underlying population joint 
distribution, which describes the relationship between the climate model and the real world in terms of the variables of interest. The hindcast is 
sampled from a predictor variable X, and the observations are sampled from a predictand variable Y. (We use these names to correspond to the x and y 
axes of a scatter plot such as in Fig. 3.) We assume that the population follows a bivariate normal distribution, with marginal normal distributions 
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X ∼ N
(
μX , σ2

X

)
, (A.1)  

Y ∼ N
(
μY , σ2

Y

)
, (A.2)  

where μ and σ represent the population means and standard deviations respectively. The conditional distribution of observations Y given a ‘forecast’ 
X = xfc is also a normal distribution: 

Y|xfc ∼ N

(
μY|xfc

, σ2
Y|xfc

)
(A.3)  

∼ N

(

μY +
σY

σX
ρ
(
xfc − μX

)
,
(
1 − ρ2)σ2

Y

)

, (A.4)  

where ρ is the correlation between X and Y. The mean of that conditional distribution is given by the linear regression of Y on X at that point, 

μY|xfc
≡ Ŷ

(
xfc

)
= α+ βxfc, (A.5)  

where 

α = μY − βμX , (A.6)  

β = ρ σY

σX
. (A.7) 

The conditional distribution in Eq. (A.4) is the sampling distribution for the observation that occurs when the climate model (the ensemble mean 

Fig. A.9. Diagram illustrating the mathematical terms described in the text. The upper panels illustrate the population statistics: the shading and contours show the 
bivariate normal distribution of X and Y. The linear regression is shown, and a forecast point is marked at xfc with the 95% range of the population distribution at that 
point. On the right, the marginal distribution of Y is shown in grey, and the distribution of Y at the forecast point xfc is in blue. The lower panels supplement these 
with a 23-point sample of the population (red points and annotations, with marginal distribution on the right). The 95% prediction interval at the forecast point is 
shown in green, as well as its distribution on the right. The population correlation ρ and the sample correlation r are labelled on the panels. 
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forecast) produces the value X = xfc. If a forecast system is reliable, in the statistical sense, then of the times when an event is forecast with a given 
probability, it is observed to occur with a frequency equal to that probability. If we knew the population parameters, then the result of forecasting 
using linear regression would be exactly reliable: if our forecast system issued a value xfc, then the probability of observing a value of Y is simply the 
conditional distribution that describes the observed frequency, Y

⃒
⃒xfc. 

In reality however, we have a limited sample of n points (years) in both observations yi, and hindcast xi, for i = 1…n. This adds uncertainty due to 
sampling variation, which we need to take into account. The linear regression we would derive from the n pairs of sample points is 

ŷ = a+ bx, (A.8)  

such that the central prediction of an observation based on the predictor point xi is ŷi = a + bxi. That regression model point ̂yi differs from the actual 
observation yi by an error ei, such that yi = ŷi + ei. The regression model parameters are given by 

a = y − bx (A.9)  

b =

∑

i
(xi − x)(yi − y)
∑

i
(xi − x)2 ≡ r

sy

sx
. (A.10)  

where the overbar represents the sample mean, s represents the sample standard deviation, and r is the sample correlation from the n points. 
So, the actual conditional probability distribution that we could measure, for the observation that will occur after the climate model has produced 

the forecast point x = xfc – i.e. the prediction interval – can be written as 

yfc ∼ N

(
ŷfc, s2

fc

)
. (A.11) 

For the probabilistic forecasts made using this method to be reliable, then this has to match the true underlying conditional distribution of the 
observations given a forecast, Eq. (A.4). 

Just as in Eq. (A.5), the mean in Eq. (A.11) is given by the linear regression, ŷfc = a + bxfc. The sample variance corresponding to σ2
Y|xfc 

is the 

variance of observational points around the regression line, s2
y|x, i.e. simply the variance of the errors, 

s2
y|x ≡ s2

e =
1

n − 2
∑

i
(yi − ŷi)

2
. (A.12) 

However, because the regression line here is itself an estimate, the prediction variance s2
fc is bigger than s2

y|x: we need to add a term for the sample 
variation in the estimate y of the observational mean μY (equivalent to the error on the intercept estimate a); and a term that accounts for the error in 
the regression gradient b. Together, these terms give the required variance, 

s2
fc = s2

e

⎛

⎜
⎝1 +

1
n
+

(
xfc − x

)2

∑

i
(xi − x)2

⎞

⎟
⎠. (A.13) 

If the linear regression represents a very good fit, then s2
e will be small. Furthermore, if there is a large number of data points, then the second term 

(1/n, from estimating the regression intercept) will be small, and the third term will also be small (assuming xfc − x is a similar size to the other xi − x, 
then it is reduced by there being n such terms in the denominator): s2

fc will therefore tend towards σ2
Y|xfc 

for large n. 

Therefore, if the forecast system is significantly skillful and there is a genuine linear relationship between the observations and the climate model 
output, then the prediction interval will provide the best estimate of the conditional distribution of observations given a forecast value from the 
climate model – i.e., it will provide probabilistic forecasts that are well calibrated given the sampling uncertainty. 

Recently, Yang et al. (2016) and Yang et al. (2018) have investigated the relationship between correlation and the reliability and resolution 
components of the Brier skill score, both empirically and theoretically. They found a clear relationship between the correlation and the resolution 
score, which measures the ability of a forecast system to resolve events into groups with different observed frequencies. However, they demonstrated 
that there is no clear relationship between the correlation and the reliability. This is not inconsistent with our reasoning here: Although we are relating 
correlation and reliability in some sense, it is the linear regression, rather than the correlation, that allows us to produce calibrated probabilities. 

Fig. A.10 shows reliability/attributes diagrams (Wilks, 2020; Hsu and Murphy, 1986), that demonstrate our linear regression technique in cali-
brating an underconfident and an overconfident forecast system, through Monte Carlo simulation. We first sample 23 “hindcast ensemble mean” and 
“observation” points from a bivariate normal distribution. This corresponds to the number of years, or seasonal means, in the data sets, and was chosen 
to match the data in Fig. 3. We set the population correlation (skill) ρ = 0.50, and set the population mean and standard deviation of the observations 
to be 20 and 5 respectively; and for the hindcast, 25 and 2 respectively.7 We calculate the linear regression on the joint distribution of those sample 
points. We then produce 2000 new “forecast ensemble mean” points, and the corresponding new “observations” that would occur afterwards, by again 
sampling from that original bivariate normal distribution. 

The reliability diagrams show the relationship between forecast probabilities and observed frequencies for forecasts of above-median conditions. 
For the first reliability diagram, we produce a 1000-member overdispersive (underconfident) ensemble for each of the 2000 forecast ensemble means, 
using an ensemble standard deviation of 9 (i.e. bigger than the standard deviation of the observations and the hindcast ensemble-means). The reli-
ability diagram from these forecast ensembles demonstrate that the forecast system is underconfident: the line is too steep. The sharpness diagram also 
shows that the forecast ensemble tends to produce forecasts around the climatological frequency of 0.5. 

7 These are arbitrary choices, but were set so the means are similar to each other, and the variances are similar to each other but different to the means. 
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We then apply the linear regression to each forecast ensemble mean to give central estimates and prediction intervals. We can then test the 
reliability of these predictions by sampling the prediction intervals 1000 times (like the original forecast ensembles). This indeed shows well- 
calibrated probabilities: the line is closer to the 1:1 diagonal. The sharpness is also improved, with the forecasts distributed over a wider range of 
probabilities. 

We have also repeated this for an overconfident forecast ensemble, using an ensemble standard deviation of 1 (smaller than the observed and 
hindcast ensemble-mean standard deviations): here, the reliability line is too shallow, and the sharpness diagram shows a tendency to forecast extreme 
probabilities. The calibrated line based on the regression of the ensemble means is the same as the underconfident case, by construction. 

It is important to note that the issue of having a limited sample of data with which to construct the linear regression, also applies to any other 
calibration method. Using the prediction intervals from a linear regression offers a robust way of taking that sampling uncertainty into account as part 
of the calibration process. 
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Ng, C.H., Ossó, A., Pankatz, K., Peatman, S., Pegion, K., Perlwitz, J., Recalde- 
Coronel, G.C., Reintges, A., Renkl, C., Solaraju-Murali, B., Spring, A., Stan, C., Sun, Y. 
Q., Tozer, C.R., Vigaud, N., Woolnough, S., Yeager, S., 2020.Current and emerging 
developments in subseasonal to decadal prediction. Bull. Am. Meteorol. Soc. 101, 
E869–E896. doi: 10.1175/BAMS-D-19-0037.1. 

Mitchell, T.D., Camp, J., 2021. The use of the Conway–Maxwell–Poisson in the seasonal 
forecasting of tropical cyclones. Weather Forecast. 36, 929–939. https://doi.org/ 
10.1175/WAF-D-20-0160.1. 

Molteni, F., Stockdale, T., Balmaseda, M., Balsamo, G., Buizza, R., Ferranti, L., 
Magnusson, L., Mogensen, K., Palmer, T., Vitart, F., 2011. The new ECMWF seasonal 
forecast system (System 4). ECMWF Technical Memorandum 656. ECMWF. Shinfield 
Park, Reading. URL: http://www.ecmwf.int/en/elibrary/11209-new-ecmwf-season 
al-forecast-system-system-4. 

Murphy, J.M., 1990. Assessment of the practical utility of extended range ensemble 
forecasts. Q. J. R. Meteor. Soc. 116, 89–125. https://doi.org/10.1002/ 
qj.49711649105. 
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