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Abstract
This study advances our understanding of knowledge spillover of innovation, putting a firm’s own R&D invest-
ment and knowledge spillovers to a competitive test. We use three matched databases of 15,430 firms in the 
United Kingdom (UK) during the period 2002–2014 in order to demonstrate that knowledge spillovers ema-
nating from R&D investment within and between industries have different effects on innovation compared 
to imitation and that the ability to access spillover is conditional on the firm’s own investment in R&D. This 
study furthers our understanding in two different ways. Firstly, it supports the two faces of the R&D story. 
Second, it demonstrates that the relationship between knowledge spillover and firm innovation depends on 
the firm’s own investment in R&D and reveals the positive effects of knowledge transfer as well as factors 
limiting the use of spillovers such as industry competition, transaction costs, and eventually innovation type.
JEL classification: D83, L26, O32, O36

© The Author(s) 2022. Published by Oxford University Press in association with Oxford University Press and the 
Industrial and Corporate Change Association.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any 
medium, provided the original work is properly cited.

1. Introduction
Following the early contributions made by Marshall (1920), Weber (1929), Dosi (1982), Dosi 
et al. (1990), Romer (1986), Jacobs (1970), Porter (1990), and Acs et al. (1994a, 1994b), eco-
nomic geographers, industrial economists, and innovation scholars have studied how regional 
intra-industry (specialization) and inter-industry (diversification) spillovers can best contribute 
to boosting firm performance (Carlino and Kerr, 2015; Lee et al., 2015). A number of studies 
have re-stated the role of localized knowledge spillovers in increasing innovation, including Jaffe 
(1986), Breschi and Lissoni (2001), Cassiman and Veugelers (2002), Boschma (2005), Coombs 
et al. (2009), and Qian (2014).

However, it may be that the literature has been asking the wrong question—whether is is 
regional specialization or, alternatively, diversification that matters for firm innovation? (Beaudry 
and Schiffauerova, 2009; Enkel and Heil, 2014). This question locks the answer into an unequiv-
ocal dichotomy—either one or the other (or possibly neither). While the answer to this question 
has been emphatically positive (Caragliu et al., 2016), the dichotomous nature of the question 
may mask a more nuanced relationship. Perhaps the more relevant and compelling questions is 
not which one but rather under which conditions regional specialization is more conducive to firm 
innovation and under which conditions diversification is more conducive to innovation. Thus, 
how, when, and which types of  knowledge spillover matter for different innovation types remains 
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2 M. Belitski and D.B. Audretsch

unclear (Alexy et al., 2013; Roper et al., 2013, 2017; Cappelli et al., 2014; Battke et al., 2016; 
Denicolai et al., 2016) as innovation activity differs between local, technological, and knowl-
edge contexts (Rosenthal and Strange, 2003; Coombs et al., 2009; Buzard and Carlino, 2013; 
Dosi and Tranchero, 2021). We define firm innovation as a firm’s ability to create new market 
products as fundamental changes in the firms’ products, processes, technologies, and organiza-
tional structures and methods. This requires investment in knowledge and R&D (Cohen and 
Levinthal, 1990) as well as a further experimentation with knowledge (Teece, 2010). We define 
specialization (localized intra-industry) and diversification (localized inter-industry) spillovers as 
non-pecuniary externalities (Breschi and Lissoni, 2001), which arise from the fact that firms in a 
region and industry cannot fully appropriate the new knowledge they create, and this knowledge 
spills over to other firms.

This argument has been overwhelmingly supported by the knowledge externalities and com-
petition literature (Bloom et al., 2013), the open innovation literature (Chesbrough, 2003, 
2006; West et al., 2014; Tucci et al., 2016), and the innovation and industry change literature 
(Lakemond et al., 2016). The regional innovation literature revealed the role of physical prox-
imity (Audretsch and Feldman, 1996) and technological and sectoral proximity (Dumais et al., 
2002; Boschma, 2005) as facilitators of knowledge spillovers in cities and regions (Glaeser, 1999; 
Audretsch and Lehmann, 2005). The core idea is that the flow of tacit knowledge is made easier 
when the probability of face-to-face contact is increased by physical proximity. This effect leads 
to positive spillovers for firms co-located in the area (Jaffe, 1986).

Because the literature examining the relationship between a variety of different knowledge 
spillovers and innovation activities is still in its exploratory stages (Bloom et al., 2013; Cappelli 
et al., 2014; Audretsch and Belitski, 2020a), this study responds to numerous calls in the regional 
innovation (Boschma, 2005; Carlino and Kerr, 2015; Caragliu et al., 2016) and open innovation 
literature (West et al., 2014; Roper et al., 2017; Kobarg et al., 2019) to employ a variety of knowl-
edge search strategies using innovation survey data to explain how new products and services can 
be developed and introduced to market.

A number of different mechanisms could be involved in this, such as the complementarities 
between a firm’s own R&D investment and knowledge externalities (Cohen and Levinthal, 1989) 
in the form of knowledge collaborations and spillovers (Powell et al., 1996; Leiponen and Helfat, 
2010; Cassiman and Valentini, 2016; Belitski, 2019). This study therefore aims to further examine 
the mechanisms that define the relationship between intra- and inter-industry spillovers and two 
types of firm innovation (Glückler, 2013; Cappelli et al., 2014). A number of recent studies 
(Denicolai et al., 2014, 2016; Roper et al., 2017; Kobarg et al., 2019) have partly unpacked this 
relationship, pointing to the role of a firm’s own R&D investment and the non-linear relationship 
between various sources of external knowledge sourcing and innovation. However, there is still 
a paucity of knowledge on the mechanisms that determine the spillover–innovation relationship 
and how changes in knowledge spillovers and a firm’s own R&D investment affect the innovation 
choice between new product creation (innovation) or imitation.

To test this relationship, we use the novel dataset created by matching the UK Innovation 
Survey (UKIS), the Annual Business Registry and the Business Enterprise Research and Develop-
ment Survey during 2002–2014 (19,510 observations for 15,430 firms located in 80 industries 
and 175 Geo regions). Finally, to verify the robustness of our results, we offer several alternative 
robustness checks.

This study contributes to the regional innovation and industrial change literature in two impor-
tant ways. First, we extend the discussion on channels of Marshall (1920), Jacobs (1970), and 
Porter (1990) externalities by theoretically debating and empirically testing how the extent of the 
localized intra- and inter-industry spillovers change a firm’s propensity to innovate and imitate 
depending on the firm’s own R&D investment.

Second, we put a firm’s own investment in R&D and knowledge spillovers to a competitive 
test, connecting the choice for R&D and availability of knowledge spillovers to a decision on what 
type of innovation to undertake—imitation or innovation. In doing so, we explain the shape of 
the relationship between intra- and inter-industry knowledge spillovers and two innovation types, 
emanating from the positive knowledge transfer effect (Marshall, 1920; Roper et al., 2013, 2017), 
the negative (competition) effect (Porter, 1990; Bloom et al., 2013; Giarratana and Mariani, 
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Kowledge spillover of innovation 3

2014; Qian, 2014), and the transaction cost effect (Mansfield et al., 1981; Alexy et al., 2013; 
Audretsch and Belitski, 2020b).

Our findings suggest that firms should carefully consider whether they will innovate or imitate, 
as the outcome will depend on the level of knowledge spillover (high–low), investment in inter-
nal R&D and other knowledge, and the type of knowledge spillover (intra- or inter-industry). 
By considering this complex relationship, we found that a firm’s absorptive capacity (Munari 
et al., 2012; Enkel and Heil, 2014) will positively moderate the knowledge spillover of innova-
tion at first, but once a certain threshold is reached, the positive relationship between knowledge 
spillovers and firm innovation becomes negative. While spillovers initially have an overwhelm-
ingly positive effect on innovation, we also found that a continuous increase in the availability of 
knowledge spillover as an externality may lead to uncontrolled knowledge flows (Teece, 1986), 
and further reduction in benefits from spillovers, as under high knowledge spillovers, no firm 
has an incentive to further invest in R&D or increase innovation. The effects are strong for both 
imitation and innovation. We find an inverted U-shaped relationship for the knowledge spillover 
innovation and empirically demonstrate that high levels of spillovers disincentivize R&D invest-
ment. We also find a similar effect for imitation propensity and explain why R&D investors and 
non-R&D investors converge in their propensity to innovate and imitate at the highest levels of 
spillovers.

Another important finding from this study is that the localized intra- and inter-industry 
spillovers may be driven by exogenous factors. However their effectiveness for a firm’s innovation 
is related to the firm’s own R&D intensity.

The remainder of the paper is set out as follows. The next section outlines the theoretical frame-
work and formulates the main research hypotheses. Section 3 describes the data and sample, while 
offers an identification strategy. Section 5 describes our major empirical findings, while provides 
a series of robustness checks. Section 7 discusses our findings and offers policy implications, and 
concludes.

2. Conceptual framework
2.1 Three approaches to knowledge externalities
While there is wide agreement on the importance of knowledge externalities for innovation per-
formance (Audretsch and Feldman, 1996; Coad et al., 2016), the way in which such knowledge 
spills over is a controversial point. The literature on industrial and regional economics distin-
guishes three theoretical approaches to understanding how knowledge spills over. The first is the 
Marshall–Arrow–Romer (MAR) approach (Marshall, 1920; Arrow, 1962; Romer, 1986), which 
suggests that knowledge spillovers are more relevant and stronger for firms within the same indus-
try (intra-industry spillovers) and region. The most relevant approach for our research question 
is Marshall’s (1920) view on localization economies, which implies that firms located in agglom-
erated regions that produce similar goods in the same industry enjoy easier knowledge transfers 
and skilled labor pooling. Consistent with this approach, other studies have pointed out that high 
intra-industry spillovers may constrain the innovation efforts of the best-performing firms, who 
might perceive spillovers to increase unintended knowledge outflows (Cassiman and Veugelers, 
2002; Arora and Gambardella, 2010). Knowledge is usually organization- and people-embodied 
and consists of tacit elements that make it spatially clustered and persistent (Dosi and Tranchero, 
2021).

A second approach is associated with the work of Jacobs (1970), who argued that knowledge 
arising from a variety of geographically proximate industries promotes innovation and productiv-
ity in the region. Most recently, Caragliu et al. (2016: 93) described agglomeration externalities in 
regions that are the focal points of innovation, “the place where co-locating firms enjoy the pres-
ence of other creative companies, active in different industries and cross-fertilizing ideas through 
formal and informal exchange[s] of information.”

The first and second approaches to knowledge spillovers agree on the relevance of knowledge 
localization and physical proximity between firms (Audretsch and Feldman, 1996; Rosenthal and 
Strange, 2003; Beaudry and Schiffauerova, 2009; Buzard and Carlino, 2013; Carlino and Kerr, 
2015). Physical proximity is also relevant as a competition-enhancing factor.

D
ow

nloaded from
 https://academ

ic.oup.com
/icc/advance-article/doi/10.1093/icc/dtac035/6653258 by guest on 19 August 2022



4 M. Belitski and D.B. Audretsch

In this regard, the third approach (Porter, 1990, 1998) argues that knowledge spillovers in spe-
cialized, geographically concentrated industries stimulate growth. It thus agrees with the MAR 
externalities while also stating that competition externalities promote growth and supporting 
Jacobs (1970). In this view, Porter’s (1990) work focuses on the effects of intense competition 
on firm efficiency. The main root of competitive advantage is identified in this case as the con-
tinuous improvements in efficiency caused by the specialization of the market, where many firms 
manufacturing similar goods and concentrated in a region are competing (Porter externalities). 
Caragliu et al. (2016) found some slight (although highly significant) evidence of negative Porter 
externalities: regions characterized by lower degrees of competition, which tend to perform bet-
ter than more diversified areas. The authors explain this by the decrease in the physical distance 
between competitors, which implies that competition increases as firms become physically and 
technologically closer while rents decline. The fear of knowledge outflows might overshadow the 
benefits of openness (Giarratana and Mariani, 2014) as the likelihood of losses from the imitation 
capabilities of competing firms increases.

The major debate in all three approaches focuses on the mechanisms of knowledge spillover 
and their ability to enhance firm productivity and innovation (Griliches, 1992; Kugler, 2006; 
Hall et al., 2013). These mechanisms may include observation of the actions and behavior of 
competitors, reverse engineering, labor mobility, inter-personal networks, trade publications 
and professional associations, supply chain interactions, and the codification of knowledge 
(Maliranta et al., 2009). For example, an increase in a firm’s R&D intensity will enable the 
company to gain access to and assimilate complex external knowledge (Denicolai et al., 2014, 
2016).

The heterogeneous effects of external knowledge can be predicted by the source of exter-
nal knowledge, including “free inputs” via spillover and knowledge collaboration with various 
economic agents. This differentiation is of particular interest, and it is important to distinguish 
between the sources of external knowledge such as knowledge spillovers and knowledge from 
competitors, customers, suppliers and research institutions via direct collaboration (Audretsch 
et al., 2021).

2.2 Knowledge spillovers and new-to-market product development
Economic activity has long been concentrated within clusters because of the three types of exter-
nalities. Power and Lundmark (2004) demonstrated that the clusterization of knowledge yields an 
increasing mobility of ideas exchange and returns to scale. This was also supported by Carlino 
and Kerr (2015), who demonstrated that innovation activity is spatially concentrated. For all 
industries, the localization effects of being near similar businesses decay rapidly with distance 
within cities—“the positive localization effect from being within one mile of another company in 
one’s own industry is at least 10 times greater than the positive effect realized when locating two 
to five miles away” (Carlino and Kerr, 2015: 363). This effect is consistent for the manufacturing, 
software and fabricated metal and machinery industries (Rosenthal and Strange, 2003). While 
research on the geographical concentration of complementary firms is often called “old wine in 
new bottles,” a more recent concept of innovation ecosystems (Breschi and Lissoni, 2001) and 
open innovation (Tucci et al., 2016; Heaton et al., 2019) has also confirmed that firm’s co-location 
matters.

Current research on the relationship between knowledge externalities and firm’s innovation is 
divided into two main strands.

Firstly, a more critical approach builds on the open innovation literature and the attempts to 
better understand the conditions under which localized knowledge is most effective and focused 
on strategies for searching and sourcing external knowledge (Giarratana and Mariani, 2014; 
Denicolai et al., 2016). While the field has grown significantly since the work of Chesbrough 
(2006), relatively few studies have examined the conditions needed for knowledge spillovers 
to facilitate firm innovation. Drawing on Marshall (1920) and Jacobs (1970) externalities, 
Robertson et al. (2012) argue that the emerging literature on open innovation (Chesbrough, 
2006) has failed to adequately acknowledge the challenges involved in applying external knowl-
edge. Firms with the capacities of collecting, sorting and analyzing knowledge from both internal 
and external sources could ensure that new technology is suitable for the firm’s own purposes 
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Kowledge spillover of innovation 5

and to ensure external technology can be used in existing processes and products. The critical 
conceptual distinction in the open innovation literature proposes that knowledge spillovers under 
firm’s own R&D investment can be transformed into inflows of knowledge.

The second approach builds on the regional innovation literature and examines the impact 
of Marshallian, Jacobean and Porter externalities on firm innovation. This method has the clos-
est connection to the knowledge spillover literature (Audretsch and Feldman, 1996; Glaeser, 
1999; Maliranta et al., 2009; Carlino and Kerr, 2015). The work of Boschma (2005) intro-
duced evolutionary economic geography by claiming that while geographical proximity per 
se is neither a necessary nor sufficient condition for learning to take place, it does facilitate 
interactive learning, most likely by strengthening the other dimensions of proximity, such as 
technological proximity. While the regional innovation literature considers the role of specializa-
tion and diversification spillovers for firms as “Manna from Heaven” (Audretsch and Keilbach, 
2007)—a God’s eye policy view of creating economic growth (Boschma, 2005)—they are a 
“mixed bag” for specific firms within the innovation ecosystem (Dahlander and Gann, 2010; West
et al., 2014).

The open innovation literature makes further arguments (Roper et al., 2017) regarding the 
market “stealing” effect of competition. The authors argue that firms co-located in areas with 
their innovation partners and competitors may lose out if other firms can observe and source 
original knowledge and therefore find it cheaper and easier to create new products. This suggests 
the potential for negative (competition) externalities in regions where specialization spillovers are 
high, which might therefore make it difficult for a focal firm to increase its investment in R&D 
(Tucci et al., 2016) due to the essentially unmanageable nature of spillovers and their incomplete 
excludability (Kugler, 2006).

Both positive knowledge transfers (Marshall, 1920; Jacobs, 1970) and the negative (compe-
tition) effects (Bloom et al., 2013) of knowledge localization are based on the assumption that 
knowledge that has been made available in the industry may be used by other firms within the 
industry if they have the absorptive capacity. The positive and negative effects emanating from 
localized competition and knowledge externalities are thus conditional on a firm’s absorptive 
capacity (Cohen and Levinthal, 1990) and the degree of competition and imitation capabilities 
between innovators within the industry (Giarratana and Mariani, 2014). As Roper et al. (2017: 
46) write, “The negative competition effects of openness might be even greater in the case of 
knowledge spillovers” than knowledge collaboration.

On the one hand, knowledge spillovers encourage increasing specialization by allowing firms 
to reduce the cost of experimentation (Boschma, 2005). If they decide to innovate, firms can 
externally source the resources they require to innovate (Carlino and Kerr, 2015). More timely 
access to industry-relevant knowledge spillovers and investment in internal R&D is associated 
with an increase in new product creation and the ability to introduce new-to-market products 
first. On the other hand, as the competition effect increases and more firms take risks and invest in 
R&D internally, the spatial concentration of intra-industry spillovers increases. It then becomes 
more difficult for firms to manage knowledge inflows and outflows (Roper et al., 2017), and 
internal investment in R&D can be easily dissipated within the industry and become common 
knowledge (Alexy et al., 2013; Denicolai et al., 2016).

Combining the positive effects of localized knowledge spillovers with the negative competition 
effects within industries (Battke et al., 2016), we hypothesize with regard to both the positive 
and negative slopes of the relationship between intra-industry (specialization) spillovers and firm 
innovation:

 H1a: There is an inverted U-shape relationship between intra-industry knowledge 
spillovers and innovation (positive knowledge transfer and negative competition effects) 
conditional on a firm’s own investment in R&D.

Enkel and Heil (2014) make the important distinction between a firm’s ability to identify and 
value “distant” knowledge on the one hand and its knowledge base on the other. Griliches (1992) 
found that using “distant” knowledge is an effective way to produce innovative new products 
that are different from competitors, maximizing the positive effects of knowledge externalities 
and minimizing negative competition effects (Giarratana and Mariani, 2014; Qian, 2014).
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6 M. Belitski and D.B. Audretsch

Building on the open innovation literature that indicates inter-industry spillovers decrease 
per-unit costs (Bernstein, 1988) through the cross-fertilization of knowledge among value chain 
participants, we outline three mechanisms through which inter-industry spillovers will increase 
firm innovation.

Firstly, inter-industry spillovers are characterized by knowledge complementarity, faster inte-
gration (Lafontaine and Slade, 2007), and a locus of coherent knowledge combinations (Foros, 
2004). Knowledge from technologically distant sectors creates a greater knowledge pool that 
results in more radical ideas and increasingly novel combinations of knowledge for the industry 
(Gilsing et al., 2008; Cappelli et al., 2014).

Secondly, inter-industry spillovers do not trigger negative competition effects as firms do not 
compete for the same customers. On the contrary, inter-industry knowledge brings technological 
interdependencies and learning externalities for firms (Dosi and Tranchero, 2021).

Thirdly, inter-industry spillovers offer tried-and-tested knowledge related to inputs and can be 
readily integrated into existing products with a degree of novelty to an industry, increasing the 
speed of new product development. Although firms may be more selective when collaborating 
between industries, on average they form knowledge combinations and matches more quickly. 
While the mechanisms and returns to knowledge spillovers remain more uncertain between indus-
tries than within an industry, direct interactions between workers (Carlino and Kerr, 2015) as 
well as intermediate supply and demand for inputs between different industries (Giovanetti and 
Piga, 2017) enhance inter-industry knowledge spillovers. As with specialization spillovers, firm 
investment in R&D is important to access, recognize, and experiment with new knowledge com-
binations that are unfamiliar to an industry (Gesing et al., 2015; Denicolai et al., 2016). Firms 
need to be able to recognize a set of design possibilities and engage with users of innovation if 
they wish to begin innovating (Baldwin et al., 2006; Pisano and Teece, 2007).

Transaction cost theory can be used to outline the limitations of inter-industry knowledge 
spillovers, which may have a negative effect on firm innovation. Recent research by Audretsch 
and Belitski (2020b) and Saura et al. (2022) theorizes that there are greater limits to open 
innovation between industries and across different knowledge-intensive sectors. As new inter-
industry knowledge combinations are often unfamiliar (cognitively and technologically distant), 
firm partners will incur coordination costs when monitoring, controlling, and managing knowl-
edge spillovers (Camacho, 1991). Transaction cost theory can be employed by assuming that the 
open innovation management structures between firms and industries have to be applied that 
best fit a particular knowledge spillover mechanism. Due to differences in absorptive capacity 
across firms, there is an additional cost of monitoring, controlling, and managing knowledge 
spillovers, and the cost increases with the heterogeneity between industries (Vural et al., 2013). 
Inter-industry differences in knowledge creation, coding, and transfer will thus lead to differences 
in transaction costs between firms with different levels of absorptive capacity. Transaction costs 
limit the use of absorptive capacity in the recognition and appropriation of inter-industry knowl-
edge spillovers. The transaction costs of knowledge transfers are likely to be higher for firms 
with higher absorptive capacities (Kobarg et al., 2019; Audretsch and Belitski, 2022) leading to 
diminishing returns from knowledge spillovers. We therefore hypothesize:

 H1b: There is an inverted U-shape relationship between inter-industry knowledge 
spillovers and innovation (positive knowledge transfer and negative transaction cost 
effects) conditional on a firm’s own investment in R&D.

2.3 Knowledge spillovers and new to firm product development
Interactive knowledge collaborations, such as R&D partnerships, network linkages, or other 
knowledge transfer agreements (West and Bogers, 2014), as well as knowledge spillovers, help 
firms to develop new-to-the-world knowledge (Roper et al., 2017). However, they may increase a 
set of innovation risks, for example, by increasing intra-industry competition for new knowledge 
(Battke et al., 2016), raising commercial, technology, managerial, and imitation risks (Astebro 
and Michela, 2005; Giarratana and Mariani, 2014) as well as transaction costs when new knowl-
edge is unfamiliar and complex (Audretsch and Belitski, 2022). In order to reduce innovation 
risks, a firm may choose to reduce or even stop its R&D investment instead of creating a product 
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Kowledge spillover of innovation 7

that is new to the firm but already exists in the market (imitation). Although it is well known 
that knowledge spillovers both stimulate innovation and induce imitation (Cappelli et al., 2014), 
research into this has been scarce. Some studies have argued that a firm’s ability to create such 
products relates to the incremental improvement of existing products, processes, technologies, 
organizational structures, and methods and requires less radical knowledge, which can be directly 
implemented via spillovers within and between industries (Breschi and Lissoni, 2001; For ́es and 
Camisón, 2016). In doing so, a firm adopts intra- and inter-industry knowledge spillovers to 
exploit its existing market position via imitation (Glückler, 2013; Cappelli et al., 2014). If a firm 
is unable or unwilling to invest in internal R&D, the firm could adopt imitation as its innovation 
strategy because using knowledge developed by others via spillovers will naturally be cheaper 
than investing in own R&D. As a consequence, firms with little or no R&D investment see imita-
tion as a mechanism of lowering knowledge and other transaction costs in order to outcompete 
rivals. Prior research has argued that a reduction in R&D combined with an increasing avail-
ability of knowledge spillovers will positively affect the incentives to imitate (Cappelli et al., 
2014).

However, there will be an essential challenge for firms who decide to use knowledge spillovers 
for imitation: while imitation is cheaper than performing own R&D, it is not costless (Mansfield 
et al., 1981). As a consequence, the potential imitator firm will have lower overall costs when cre-
ating new products, and it may still incur significant costs developing the capabilities to recognize 
and imitate existing knowledge. This is particularly sensitive between industries where technolog-
ical and cognitive proximity to knowledge is low (Nooteboom et al., 2007; Balland et al., 2015). 
As the level of knowledge spillover increases, more competences, costs, and time are required to 
access and engage with external knowledge, pushing a firm to consider an investment in R&D 
to recognize knowledge spillovers. An increase in the availability of knowledge spillovers with 
the diversity and complexity of knowledge will create a demand for more R&D investment and 
will increase the costs of accessing and processing knowledge (Mansfield et al., 1981), affecting 
the initial incentive to use “free” external knowledge for imitation. This knowledge spillover-
imitation dilemma will lead to an emergence of two groups of firms. The first group includes 
firms who are “pushed” into R&D investment to recognize and use external knowledge, leading 
to new knowledge combinations (Antonelli and Colombelli, 2017) and reducing the likelihood of 
imitation. The second group of firms will find performing internal R&D costly and unaffordable, 
and their engagement with knowledge spillovers will be limited due to the increasing transaction 
costs of knowledge sourcing (Mansfield et al., 1981; Saura et al., 2022). The higher the level of 
spillovers, the higher the opportunity costs of engagement with spillovers. Firms with a paucity 
of internal knowledge will not be willing to pursue spillovers due to a cost to recognize, access, 
modify, process, or implement new knowledge (Camacho, 1991; Kobarg et al., 2019). However 
when knowledge spillover is a commonplace, the uniqueness and value of knowledge is dissi-
pated, again affecting the willingness of the second group of firms to engage with knowledge 
spillovers. The spillover-imitation dilemma can be illustrated diagrammatically as a flat line in a 
relationship between knowledge spillovers and imitation.

Whatever the level of knowledge spillovers, firms who invest in R&D are reluctant to imitate 
other firms’ products as it is able to enter the market before competitors.

When knowledge spillovers are low, firms who do not invest in R&D will be unable to access 
and use spillovers due to an increased cost of accessing spillovers. When the level of spillovers 
is high, information becomes common knowledge and firms who do and do not invest in R&D 
will not be willing to engage with spillovers for imitation due to a limited return to knowledge 
spillovers. All firms will be able to access spillovers, whether they invest in R&D or not (Audretsch 
and Keilbach, 2007); however, only R&D active firms will be able to make the most sense of the 
knowledge and be able to sufficiently modify it to avoid imitation and innovate new products. We 
thus expect that firms who invest in internal R&D are less likely to imitate as spillovers spread 
knowledge because their absorptive capacity allows them to recombine and engineer knowledge 
in order to create new-to-market products.
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8 M. Belitski and D.B. Audretsch

We hypothesize:

 H2: Firm’s own investment in R&D reduces the propensity of imitation at any level of 
intra- and inter-industry knowledge spillovers.

3. Data and sample
We tested our hypotheses using three datasets—the Business Registry (BSD), the Business Expen-
diture on Research and Development (BERD), and the UKIS (Office for National Statistics, 
2017, 2018, 2019). Firstly, we collected and matched six cross-sectional biannual UKIS sur-
veys during 2002–2014 conducted by the Office of National Statistics (ONS) in the UK. The 
UKIS includes direct measures of innovation inputs and outputs, influencing barriers to inno-
vation, measurements on human capital, partner types, training activities, partner locations, 
collaboration networks, and other information related to our hypotheses.

Secondly, we used BSD and BERD data for the years 2002, 2004, 2006, 2008, 2010, and 
2012. The data were matched to a correspondent UKIS survey wave for the initial year of the 
period. While we understand that UKIS surveys are conducted in the middle year of each wave 
(e.g. the 2002–2004 survey was done in 2003), we match BSD and BERD data to the first year 
of the period to enforce a causality. Data on firm’s own R&D were also matched from the BERD 
survey following a similar 1-year lag procedure. The match rate between BSD and UKIS by firm 
indicator—year during 2002–2014—is 96.5% and the match rate for firm’s R&D expenditure 
from BERD to UKIS is 76.4%, while the BERD-UKIS match for R&D spillovers is 100% as it 
was done by borough using data on 2-letter UK postcodes for Geo regions in both datasets (e.g. 
OX, CB, M, LB, LE, and RG).

Several firm-specific variables were taken from the BSD: firm age and ownership, employment, 
industry code, and location by postcode. Spillover mechanisms, such as R&D spent by borough 
and industry (SIC1 2-digit code), were calculated using BERD data on all available R&D expen-
diture and matched to the BSD-UKIS dataset. Calculation of knowledge spillovers following 
Rosenthal and Strange (2001) was carried out in our study at the level of UK boroughs as indi-
cated via the two-letter postcodes. This allowed us to exploit patterns of industry co-location 
(Ellison et al., 2010).

Although there are six cross-sectional surveys covering 10 years of data, we work with a sample 
of 19,510 observations across 15,430 firms with non-missing values for innovation outputs and 
our main explanatory and control variables. There is a small panel element of 1651 firms in 
a sample, which was observed at least twice over 2002–2014. To be included in a sample, all 
questions related to the variables of interest needed to be completed with no missing values. The 
BSD is essentially a population of all UK firms. For the list of variables included in this study and 
their definitions and sources, please refer to Table 1. 

Our final sample includes 80 industries by 2-digit SIC 2007 across 175 Geo regions, which 
were used to calculate spillovers. For the distribution of firms across estimated and population 
samples with regard to regions and firm size within six survey years, please see Table 2A–2B. 

4. Identification strategy
4.1 Dependent variable
Following in the footsteps of innovation researchers (Klingebiel and Rammer, 2014), we use two 
dependent variables to measure:

i) firm propensity to introduce a new good or service to the market before their competi-
tors can do so (product innovation), which can also be viewed as the “prime mover” of 
innovation (Dosi, 1982);

ii) firm propensity to introduce a new good or service that was essentially the same as a good 
or service already available from competitors—imitation (Cappelli et al., 2014).

1 Standard Industrial Classification.
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Kowledge spillover of innovation 9

Table 1. Descriptive statistics

Variable (source) Definition Mean St.dev.

Product innovation 
(UKIS)

This business introduced a new good or service 
to the market before competitors = 1, zero 
otherwise. This variable can also be used to 
predict first mover advantage

0.50 0.51

Imitation (UKIS) This business introduced a new good or service 
that was essentially the same as a good or ser-
vice already available from competitors = 1, 
zero otherwise

0.63 0.48

Age (BSD) Age of a firm (years since the establishment) 17.85 9.71
Employment (BSD) Number of full-time employees, in logarithms 4.00 1.48
Exporter (UKIS) Binary variable = 1 if a firm sells its products in 

foreign markets, 0 otherwise
0.35 0.48

Human capital (UKIS) Percentage of full-time employees that received 
degree (BA/BSc, MA/PhD, PGCE, and above) in 
science or engineering subjects

7.87 17.82

Foreign (BSD) Binary variable = 1 if firm is foreign-owned 
(headquarter abroad), zero otherwise

0.44 0.49

Survival (BSD) Binary variable = 1 if a firm survived as an inde-
pendent unit or as a part of a group until year 
2017, 0 otherwise

0.58 0.49

Software (UKIS) The amount of expenditure for purchasing 
advanced machinery, equipment, and software 
(000s) to total sales (000s pound sterling)

0.01 0.04

R&D intensity (BERD) The amount of expenditure for internal Research 
and Development (000s), to total sales (000s 
pound sterling)

0.01 0.05

R&D intensity predicted 
(BERD)

Predicted values of R&D intensity 𝜑𝑖𝑡 using 
Tobit estimation and exclusion criteria

−0.05 0.04

Predicted R&D i (BERD) Binary variable =1 if R&D intensity predicted 
is positive (fourth quartile, 𝜑𝑖𝑡 >0), zero 
otherwise (1th—3rd quartile)

0.13 0.34

Intra-industry knowledge 
spillover (BERD)

Intra-industry knowledge spillover by 2-digit SIC 
and 175 Geo regions calculated using R&D 
expenditure in £000s within firm sector at 2-
digit SIC (excluding firm’s expenditure) in the 
Geo region where a firm is located

0.16 0.22

Inter-industry knowledge 
spillover (BERD)

Inter-industry knowledge spillover by 2-digit SIC 
and 175 Geo regions calculated using R&D 
expenditure in £000s outside firm sector at the 
2-digit SIC level in the Geo region where a firm 
is located

0.15 0.13

Intra-industry knowledge 
spillover standardized

Standardized around the mean values of intra-
industry knowledge spillover by 2-digit SIC 
and 175 Geo regions

−0.12 0.84

Inter-industry knowledge 
spillover standardized

Standardized the mean values of inter-industry 
knowledge spillover by 2-digit SIC and 175 
Geo regions

−0.09 0.95

Suppliers intensity How important to business’s innovation activ-
ities (from zero—not important to 3—highly 
important) was the extent of the interactions 
between the focal firm and its suppliers of 
equipment, materials, services or software

1.44 1.10

Customers intensity How important to business’s innovation activ-
ities (from zero—not important to 3—highly 
important) was the extent of the interac-
tions between the focal firm and its clients or 
customers

1.68 1.20

(continued)
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10 M. Belitski and D.B. Audretsch

Table 1. (Continued)

Variable (source) Definition Mean St.dev.

Coopetition intensity How important to business’s innovation activi-
ties (from zero—not important and not used to 
1—low, 2—medium, and 3—highly important) 
was the extent of the interactions between the 
focal firm and its competitors in the industry

1.23 1.05

Consultants intensity How important to business’s innovation activ-
ities (from zero—not important to 3—highly 
important) was the extent of the interac-
tions between the focal firm and consultants, 
commercial labs or private R&D institutes

0.67 0.87

University intensity How important to business’s innovation activ-
ities (from zero—not important to 3—highly 
important) was the extent of the interactions 
between the focal firm and universities or other 
higher education institutes

0.42 0.74

Government intensity How Important to business’s innovation activ-
ities (from zero—not important to 3—highly 
important) was the extent of the interactions 
between the focal firm and government or 
public research institutes

0.43 0.73

Exclusion restrictions used in selection equation (Heckman, 1979)
Industry-region scientists Inter-industry scientist by 3 digits SIC and 175 

Geo regions is calculated using BERD data on 
the number of researchers employed by each 
firm. We summed up researchers employed 
by firms at 3 digits SIC and 175 Geo regions 
excluding firm’s own full-time employees with 
BA/BSc, MA/PhD, PGCE, and above in science 
or engineering subjects. We used logarithmic 
transformation of the variable. The variable 
was matched to UKIS data by 3-digit SIC and 
175 Geo.

4.07 1.99

Number of observations: 19,510. Source: Office for National Statistics (2017, 2018, 2019).

The mean of the product innovation is 0.50 with a standard deviation of 0.51, which means 
that half the firms in the sample introduced new-to-market innovations before their competitors. 
The mean of the imitation is 0.63 with a standard deviation of 0.48, which means that 63% 
of firms in the sample were able to create a product which already existed in the market but 
which was new to the firm (see Table 1). Although not without imperfections, such survey-based 
measures are generally better suited to measure firms’ new product development than patent- 
or innovation sales-based indicators (Leiponen and Helfat, 2010; Gesing et al., 2015). These 
variables are appealing to competition tensions in the market and in clusters, where knowledge 
spillovers intensify market competition in addition to bringing novel knowledge. We can also see 
that the share of firms who report innovation (imitation) behavior is considerably higher than 
the share of firms that report sales of new-to-market products.

By using these variables, we moved away from emphasizing innovation intensity as the share 
of new products in total sales. This is because these figures can be significantly skewed by large 
and established firms, who have very few innovation sales as a share of their total sales, while the 
share of new-to-market product sales is high for young and micro-firms. Our definition of product 
innovation includes both goods and services and is therefore applicable to both the manufacturing 
and service sectors. Product innovation and imitation are not mutually exclusive, with firms 
engaging in both types of innovation and developing products that are both new to the firm and 
the market (For ́es and Camisón, 2016). Firms report zero innovation in cases where no innovation 
projects were undertaken or completed within the 3-year period for one of the following reasons: 
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Kowledge spillover of innovation 11

Table 2. A: Sample distribution by twelve ONS regions and survey waves. B: Sample distribution by firm size and 
survey waves

 Sample of the regressions

Description 2005 2007 2009 2011 2013 2015 Total

A
North East 830 93 85 61 <20 17
North West 1341 129 117 174 32 23
Yorkshire and The Humber 1179 110 133 126 <20 17
East Midlands 1178 145 121 121 <20 23
West Midlands 1285 146 122 143 21 19
Eastern 1252 143 128 159 25 34
London 1401 104 111 170 36 32
South East 1543 162 157 203 48 45
South West 1196 127 141 128 27 18
Wales 975 106 97 74 <20 19
Scotland 1115 116 122 104 <20 38
Northern Ireland 1215 84 90 73 <20 22
Total 19,510

B
Micro and small 1–49 6380 513 558 912 184 178
Medium 50–249 4098 362 389 404 61 105
Large >249 4032 590 477 220 23 24
Total 19,510

Office for National Statistics (2017, 2018, 2019).

the project was abandoned or seriously suspended; the project was seriously delayed with respect 
to initial planning; and the project required more than 3 years to be completed.

4.2 Explanatory variables
We followed Jaffe (1986), Knott et al. (2009), Cassiman and Veugelers (2002), and Keller (2002) 
in operationalizing specialization (intra-industry) and diversification (inter-industry) spillovers
using the flow of knowledge from R&D expenditure by other firms as a mechanism of inno-
vation using BERD data. These actions can enhance the development of new and improved 
goods, services, and processes as well as other creative work undertaken within businesses. 
Spillovers are industry-specific and we use a 2-digit SIC classification and 2-letter postcode 
for boroughs. Specialization spillovers include the within-industry “spillover pool” (other firms’ 
in-house R&D expenditure and external R&D expenditures of public or private research orga-
nizations within the same 2-digit SIC code). While calculating specialization spillovers, it is 
important to exclude the firm’s own R&D expenditure in order to avoid double-counting the 
firm’s own R&D expenditure in the industry.

We assume that all firms benefit from R&D expenditure by other firms in the industry within 
a region and thus weight all firms equally within the same 2-digit SIC code. However, trade flows 
within a sector may vary in intensity, and so we also use a weight that captures the extent by 
which sector i buys its inputs and sells its outputs (in terms of goods/services) within its own 
sector. The specialization spillover is calculated as

where subscript i indicates the origin of the spillover (e.g. a firm or an industry); R is a measure 
of knowledge stock usually proxied by R&D expenditure for each industry; and wii is an intra-
industry weight. As far as distance measures are concerned, some authors use the same weight 
for firms inside the same space (industry or region). This implies wii = 1; Rf is the firm’s own 
expenditure on R&D; Rir is the R&D expenditure in industry i and region r (by 2-letter postcode 
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12 M. Belitski and D.B. Audretsch

equivalent to 175 Geo regions in the UK); and Ri_country is the country R&D expenditure for 
industry i.

Our measure of diversification (inter-industry) spillovers assumes that a firm’s benefit in indus-
try i from other firms’ innovation efforts in industries j is inversely related to its technological 
distance (Jaffe, 1986; Griliches, 1992) and that the magnitude of the externality depends on the 
intensity of trade flows between sectors j and i. To obtain a measure of trade intensity between 
sectors, we use data from the input–output matrix for the UK 2-digit and 3-digit SIC code sectors 
in the years 1999, 2002, 2004, 2006, 2008, and 2011.

Although diversification spillovers may vary significantly with respect to their contribution 
toward information exchange and innovation (Cappelli et al., 2014), previous research has found 
that supply-driven spillovers affect long-run growth more than demand-side spillovers that cause 
short-run disturbances (Morrison Paul and Siegel, 1999). We assume that the intensity of firm 
i’s flow of vertical spillover corresponds to the weighted sum of the R&D expenditure in each 
industry i, where the weights are given by the share of purchases and sales of industry j from and 
to industry i, for 𝑗 ≠ 𝑖. Weights are derived from the Demand/Consumption tables (to capture 
the intermediate trade flows across sectors) prepared by the ONS and based on Keller (2002). 
I-O Tables describe the distribution of sales and purchases of interim inputs across all sectors for 
each industry. Weights for the diversification spillovers within the same region are used together.

where subscript j indicates the origin of spillover (e.g. a firm or another industry different from 
i); j varies from 1 to n, where n is the number of sectors. R is a measure of knowledge stock 
usually proxied by R&D expenditure for each industry (Bloom et al., 2013); and wij is an inter-
industry weight proportional to the inter-industry intermediate consumption (trade flows), which 
is derived from input–output matrix coefficients. Rjr—R&D expenditure in industry j in a region 
r (by 2-letter postcode equivalent to 175 Geo regions in the UK); Rir—R&D expenditure in 
industry i in region r. Rj_country—country R&D expenditure in industry j; and Ri_country—country 
R&D expenditure in industry i.

The matrix of weights represents the trade proximity between firm i and the source of external-
ities j in the other sector. Keller (2002) and Giovanetti and Piga’s (2017) approach assumes that 
the more that industry i buys from and sells to industry j, the more it benefits from the knowledge 
embedded in the inputs and outputs as well as through cooperation between firm i and firm j, 
thinking which originated with Jaffe (1986). Specialization and diversification spillovers are nor-
malized by the total amount of R&D expenditure in the economy for the reference years 1999, 
2002, 2004, 2006, 2008, and 2011.

Our third explanatory variable is a firm’s R&D intensity as a proxy for absorptive capac-
ity (Cohen and Levinthal, 1990; Griffith et al., 2003) calculated as internal R&D expenditure to 
sales. We assume a zero-depreciation rate for R&D so that the accumulation dynamics equal cur-
rent expenditures (Griliches and Lichtenberg, 1984). We build on a two-stage Heckman (1979) 
type procedure to calculate the predicted values of R&D intensity at a firm level using the exclu-
sion restriction—industry-region scientists variable described below in detail. We then create the 
binary variable “predicted R&D” which equals one if predicted R&D intensity is positive (fourth 
quartile), zero otherwise (1st–3rd quartile), to be used in the model. Each firm’s R&D data and 
industry-region data on employment of researchers was matched from the BERD to UKIS with 
a 1-year lag using firm identifier for the industry-region.

5. Control variables
Several control variables were included in order to avoid the endogeneity and omitted variable 
bias problems.

Firm employment is proxied by the logarithm of full-time employment (Colombelli et al., 
2013) and firm age in years was also included (Haltiwanger et al., 2013). Acs et al. (1994b) dis-
cuss the differences between larger and smaller firms in appropriation of knowledge externalities, 
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Kowledge spillover of innovation 13

indicating the importance of firm size in this relationship. We use a binary variable, taking a value 
of 1 if the firm exports products and services and zero otherwise. Drawing on Sun et al. (2020), 
who researched the role of human capital for innovation, we measure human capital as the pro-
portion of employees holding a degree or higher qualification (e.g. BA/BSc, MA/PhD, PGCE, and 
above) in science or engineering subjects. We follow Guadalupe et al. (2012) who studied the 
effect of foreign ownership on innovation and measure foreign ownership as a binary variable 
taking a value of 1 if the firm has a headquarters abroad (outside the UK, Isle of Man, Channel 
Islands), zero otherwise.

Firms use both non-interactive (knowledge spillovers) as well as active knowledge search 
strategies (Glückler, 2013) that involve purposeful decisions on whether or not to engage in 
knowledge collaboration (Knockaert et al., 2014) and with what type of external partners (Van 
Beers and Zand, 2014; Audretsch et al., 2021). The extent to which a firm is expected to benefit 
from external knowledge collaboration may depend on market size, customer demands, complex-
ity of products (von Hippel, 1988; Tether, 2002), and available resources (Leiponen and Helfat, 
2010). Knowledge collaboration is an important channel of knowledge transfer, and we included 
six controls for collaboration intensity across six main types of collaboration partner—suppliers, 
customers, consultants, competitors, universities, and government (Kessler and Chakrabarti, 
1996; Cassiman and Veugelers, 2002). We take values of 1 if the effectiveness of knowledge 
collaboration is low, 2 if medium, and 3 if high, zero otherwise. We do not include external 
collaboration within the enterprise group.

In addition, firms benefit from investment in software and technology for innovation (Hall 
et al., 2013). We included expenditure for purchasing advanced machinery, equipment, and soft-
ware (in thousands) to total sales ratio as a measure of software and technology intensity. As we 
work with unbalanced panel data, we included a binary variable “survival,” which equals one if 
a firm survived until 2017 from BSD independently of the year of establishment, zero otherwise 
(Colombelli et al., 2013). In addition to our control variables, we used year of the innovation 
survey fixed effects (using 2002–2004 as a reference year), regional fixed effects (North East of 
England as a reference category), and industry (2-digit SIC 2007) fixed effects (using mining and 
agriculture as reference category).

6. Econometric model
Modeling the relationship between investment in internal R&D, knowledge spillovers, and firm 
innovation outcomes presents an interesting set of challenges, especially given the nature of the 
UKIS data available to us with significant cross-sectional elements. First, there is the issue of 
self-selection. We assume that firms that are developing new products or services decide whether 
to undertake R&D, and if they do, how much of the investment in R&D should be done, as a 
function of firm and industry characteristics. Second, there may be a reverse causality between 
innovation outcomes and investment in R&D, posing an endogeneity problem (Ganotakis and 
Love, 2011; Hall et al., 2013).

The first issue can be treated using the Heckman-type model approach (Heckman, 1979). If 
the selection process is time constant, panel estimators are able to resolve this problem; however, 
in an unbalanced panel such as ours, this may not be the case. We apply the selection correction of 
the data following the Heckman (1979) procedure, starting with the first-stage selection equation 
and identifying the exclusion criteria to predict R&D intensity. The predicted values will be used 
in the second stage.

The reversed causality appears as firms may decide whether to invest in R&D conditional on 
the extent of innovation. In order to analyze the role that R&D intensity plays in innovation or 
imitation at the firm level, we correct for potential endogeneity using the exclusion criteria we 
applied in the first stage (Heckman, 1979), which serve as instruments for R&D intensity. Unlike 
the IV estimation, we do not replace R&D intensity in the second stage with the instrument; 
rather, we follow Heckman’s (1979) procedure to predict R&D intensity using the exogenous 
exclusion criteria (𝜚1) which is not correlated with the unobserved factors (𝑢𝑖) from the second-
stage model so that corr(𝜚𝑖𝑡,uit) = 0 holds (Wooldridge, 2009).
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14 M. Belitski and D.B. Audretsch

7. First stage
Drawing on the Heckman (1979) procedure to correct sample selection bias related to R&D 
investment decision, we found an exclusion restriction to predict R&D in the first stage (Certo 
et al., 2016).

Our literature review suggests that scholars typically conflate exclusion restrictions in Heck-
man models with instruments in two-stage least squares, as highlighted by Certo et al. (2016). 
First, Angrist (2001) defines exclusion restrictions as exogenous variables that predict whether or 
not an observation appears in a sample. Second, instruments differ from exclusion restrictions in 
that instruments substitute for the endogenous variable in a second-stage estimation. In contrast, 
we incorporate exclusion restrictions to compute the predicted values of R&D intensity 𝜑𝑖 that is 
included in the second-stage estimation to predict innovation outcomes (Angrist, 2001; Bushway 
et al., 2007).

Equation (3) describes whether a firm undertakes R&D, and if so then how much as a function 
of firm and industry characteristics. A firm must decide whether to do R&D and then choose 
the R&D investment intensity. The R&D intensity variable in the innovation equations was 
computed as the expected R&D intensity given the firm’s characteristics.

where 𝑅∗
𝑖𝑡 is the unobserved latent variable corresponding to the firm’s investment in R&D, and 

𝑥𝑖 is a set of determinants of the R&D (Rogers, 2004). We measure expenditure intensity as the 
R&D-to-sales ratio. We assume the error terms in equation (2) are bivariate normal with zero 
mean and constant variance.

The first-stage procedure is grounded in the idea that many firms do informal R&D but do not 
report their spending separately to the statistical agency performing the survey. The first stage of 
the model fills in their R&D values with what might have been expected given the firm’s size and 
age as well as exogenous industry-regional distribution of full-time employees with university 
and above degrees in science and engineering.

The industry-region scientists variable, which we used as an exclusion criteria 𝜚1 in equation 
(3), was calculated using BERD data on the number of researchers employed by each firm. We 
summed up researchers employed by firms at 3-digit SIC and 175 Geo regions, excluding each 
firm’s own full-time employees with BA/BSc, MA/PhD, PGCE, and above in science or engineering 
subjects. We used logarithmic transformation of the variable. Industry-region scientists influence 
the probability of reporting R&D investment and ability to perform R&D but do not influence 
the ultimate dependent variable (firm innovation and imitation).

There is no consensus regarding the assessment of the appropriateness of exclusion restrictions 
(Certo et al., 2016). Ganotakis and Love (2011) suggest determining exclusion restrictions on the 
basis of theoretical rather than statistical grounds. Nevertheless, Bushway et al. (2007) proposed 
evaluating the strength of exclusion restrictions by examining the predicted and factual values 
of 𝜑𝑖𝑡. When the exclusion restrictions are poor in a model (or do not exist at all), the predicted 
values 𝜑𝑖𝑡 will correlate too highly with 𝜑𝑖𝑡 thus introducing multicollinearity problems in the 
second stage of the model.

We estimate eq. (3) using tobit, as our dependent variable is left censored with 65% of firms in 
our sample reporting nil investment in internal R&D. We also use probit to estimate the Heckman 
(1979) model first stage as a robustness check. The results of the first-stage selection equation are 
reported in Table 3. 

Both spec. 1 (Tobit estimation) and spec. 2 (probit estimation) clearly show that exclusion 
restriction 𝜚1 strongly and positively predict the R&D intensity even after controlling for industry, 
time, and Geo region fixed effects. The distribution of original 𝜑𝑖𝑡 and predicted 𝜑𝑖𝑡 values of 
R&D intensity is illustrated in Figure 1.
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Table 3. Predicting the levels of R&D intensity using tobit and logistic regressions (odds ratios reported)

Specification (1) (2)

DV R&D intensity R&D intensity

 Estimation method Tobit Logit (odds ratios)

Age −0.010*** (0.00) 0.896*** (0.01)
Employment 0.001 (0.00) 1.112* (0.01)
Industry-region scientists 0.010*** (0.00) 1.148*** (0.01)
Time fixed effects Yes Yes
Industry fixed effects Yes Yes
Geo region fixed effects Yes Yes
Constant −0.075*** (0.01) −1.491*** (0.123)
Number of obs. 19 510 19,510
LR Chi square 3138.91 3131.83
Left censored 12 057
Log-likelihood 2228.18 −11,532.11
Pseudo-R2 0.14

Reference category for industry (mining) and year (2002–2004). Robust standard errors are in parenthesis. Significance 
level:
*P < 0.05;
**P < 0.01;
***P < 0.001. Source: Office for National Statistics (2017, 2018, 2019).

Figure 1. The distribution of original 𝜑𝑖𝑡 (left) and predicted 𝜑𝑖𝑡 (right) values of R&D intensity predicted by 
applying the Heckman procedure first stage (1979) 

8. Second stage
We are interested in estimating two models for new product creation (innovation) and new-to-
firm products (imitation) using a multivariate logistic regression analysis (Wooldridge, 2009).

The second stage equation is 

Equation (4) is the logistic cumulative distribution function. 𝑆𝑗𝑟𝑡−1 and 𝑆𝑖𝑟𝑡−1 are explanatory 
variables of intra- 𝑆𝑖𝑟 and inter-industry 𝑆𝑗𝑟 knowledge spillover in t – 1 calculated by indus-
try/region, while 𝑥𝑖𝑡 is a vector of the firm’s characteristics, which includes the predicted values 
of R&D intensity 𝜑𝑖𝑡 at time t for firm i, 𝑢𝑖𝑡 is an error term for firm i at time t. 𝑆𝑗𝑟𝑡−1 and 
𝑆𝑖𝑟𝑡−1 are exogenous vectors and not correlated with 𝑢𝑖𝑡,while 𝛽𝑖 may be correlated with 𝑢𝑖𝑡
(Wooldridge, 2009: 517). Vectors 𝜔𝑟,𝜌𝑗,𝑎𝑡 are Geo region, industry, and time fixed effects.

In the first stage, we “purged” R&D intensity 𝜑𝑖𝑡 of its correlation with 𝑢𝑖𝑡 before estimating 
(4). As a measure of R&D intensity we use a binary variable “predicted R&D” which equals 
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Figure 2. Non-standardized values of intra- and inter-industry knowledge spillovers (left) and standardized values 
used in the second-stage estimation (right) 

one if 𝜑𝑖𝑡>0 (fourth quartile of predicted values of R&D intensity) from equation (3), zero
otherwise.

We started exploring the multicollinearity of the variables by examining the variance inflation 
factors (VIFs) for all variables, finding each less than 5, while the VIFs for intra- and inter-industry 
knowledge spillovers are 9 and 11, respectively. To address it, we standardized the values of the 
intra- and inter-industry knowledge spillovers, enabling us to reduce the VIF in the estimated 
model (4) down to 3.95 and 4.52, respectively. Figure 2 illustrates the distribution of standardized 
and non-standardized values of intra- and inter-industry knowledge spillovers in our sample.

In addition, we analyzed the correlation coefficients ensuring that no coefficients were greater 
than 0.70. We analyzed all the variables’ histograms and found the errors were identically and 
independently distributed with constant variance. We addressed the variance structure on the 
right-hand side of the model by limiting the number of control variables to those that were found 
in the extant literature (Beaudry and Schiffauerova, 2009; Coombs et al., 2009; Enkel and Heil, 
2014; West and Bogers, 2014; Caragliu et al., 2016; Roper et al., 2017). We used the maximum 
number of observations excluding missing observations to test our hypotheses and treated all 
non-applicable, non-identified and other responses as missing values, and did not replace them 
with zeros (Wooldridge, 2009).

Having estimated (4) for innovation and imitation, we saved 𝑢𝑖𝑡 to provide the evidence 
of the second condition for the exclusion restriction to hold: 𝜚1 to be uncorrelated with 𝑢𝑖
corr(𝜚𝑖𝑡,uit) = 0 (Wooldridge, 2009). We estimate equation (5), where the dependent variable is 
𝑢𝑖 from equation (4) is regressed on the exogenous exclusion criteria (industry-region scientists) 
(𝜚1) from equation (3) controlling for the type of spillover (intra or inter-industry), firm age, size 
and time, industry and region fixed effects as in Hall et al. (2013). 
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where 𝑢𝑖𝑡 is error from equation (4). Variables 𝑧𝑖𝑡 are control variables such as firm age, firm 
employment, industry, Geo region, and time fixed effects, and 𝜖𝑖𝑡 is an error term.

Coefficients 𝜌1 (Table A1) are not statistically significant, and we conclude that across for 
innovation models with intra- and inter-industry spillovers corr(𝜚𝑖𝑡,uit) = 0, thus 𝜌1 is a valid 
instrument to be used in a selection model (3) to predict R&D intensity (𝜚𝑖𝑡).

9. Empirical results
9.1 Hypotheses testing
Table 4 presents the results from the logistic panel data estimation with lagged explanatory vari-
ables (spillovers and absorptive capacities). We tested the hypothesized relationship between 
knowledge spillovers and innovation (specifications 1, 3, and 5) and imitation (specifications 
2, 4, and 6), depending on the level of the firm’s absorptive capacity proxied by the predicted 
values of R&D intensity. All coefficients are reported in odds ratios, which means if odds ratio is 
greater than one, there is a positive increase in the likelihood of innovation or imitation. In case 
the odds ratio is less than one, there is a reduction in the likelihood. We performed the likelihood-
ratio test comparing the logistic model with ordinary linear square regression (specifications 1 
and 2), advocating for logistic panel data estimation. 

The effect of a firm’s predicted R&D intensity on product innovation is significant and 
positive (𝛽 = 1.741, P < 0.01) (specification 1, Table 4), which means that the firms in the 
fourth quartile of predicted R&D intensity (positive values) are 1.74 times more likely to 
innovate new products than firms in the first, second, and third quartiles. In addition, these 
firms are 25.4% less likely (𝛽 = 0.746, P < 0.01) to imitate existing products (specification 2, 
Table 4). This finding is also supported once we control for the spillover effects and knowl-
edge sourcing from external partners. Firms who invest in R&D are 1.81–1.89 times more 
likely to innovate (𝛽 = 1.811–1.890, P < 0.01) (spec. 3 and 5, Table 4) and 27.8–28.1% 
less likely to imitate (𝛽 = 0.719–0.722, P < 0.01) (spec. 4 and 6, Table 4). This adds to 
Leiponen and Helfat (2010), who linked internal resource allocation to firm performance. 
The direct effects of intra-industry spillover on innovation are statistically significant for level 
(𝛽 = 1.087, P < 0.01) and squared term (𝛽 = 0.975, P < 0.01), which empirically supports an 
inverted U-shaped relationship between intra-industry spillover and innovation (specification 3,
Table 4).

Our findings further endogenous growth theory (Grossman and Helpman, 1991) where 
knowledge produced by a company increases productivity industry-wide (knowledge transfer 
effect), and the works of Marshall (1920) and Roper et al. (2013), (2017) on the benefits from 
within-industry knowledge externalities. We also find the limitations of the industry-wide knowl-
edge spillover, which may lead to a reduced propensity of innovation (Bloom et al., 2013; Qian, 
2014). Our findings support H1a, as the interaction between investment in R&D and intra-
industry spillover for innovation is statistically significant for level (𝛽 = 1.040, P < 0.01) and 
squared term (𝛽 = 0.950, P < 0.01) (specification 3, Table 4). This indicates the role of a firm’s 
R&D (Tucci et al., 2016) in recognizing and absorbing within-industry knowledge (Enkel and 
Heil, 2014).

Knowledge spillovers do not change the propensity for innovation in firms that do not invest 
in R&D. The negative effects of intra-industry knowledge spillovers on innovation for firms that 
do invest in R&D can be associated with an increase in the imitation capabilities of competitors 
within an industry (Giarratana and Mariani, 2014) as the knowledge spillovers increase. We 
find consistent results for the direct effect of inter-industry knowledge spillover on innovation, 
which is significant in levels (𝛽 = 1.086, P < 0.01) and a squared term (𝛽 = 0.972, P < 0.01), and 
for the interaction of R&D investment with the level (𝛽 = 1.163, P < 0.01), and a squared term 
(𝛽 = 0.942, P < 0.01) of inter-industry knowledge spillover (specification 5, Table 4), supporting 
H1b. The positive effects of spillovers are driven by a firm’s ability to recognize and appropriate 
the “distant” external knowledge (Cohen and Levinthal, 1989; Dosi et al., 2006) that brings new 
ideas from other industries. Inter-industry spillovers may lead to technological interdependencies 
and learning externalities (Dosi and Tranchero, 2021) and enable the creation of new-to-market 
products in other sectors.
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The negative effects of inter-industry knowledge spillover on innovation for firms who invest in 
R&D is associated with an increase in the transaction costs for firms that recognize, modify, and 
adapt external knowledge within their organizational processes and routines (Saura et al., 2022) 
and an increased cost of choice between a variety of knowledge, making some of it repetitive, 
obsolete, and unfamiliar (Audretsch and Belitski, 2020b). Our findings clearly demonstrate that 
in order to become receptive to intra- and inter-industry knowledge spillovers for innovation, 
firms must invest in internal R&D and build up their absorptive capacity (Alexy et al., 2013). 
The concept of knowledge spillovers and absorptive capacity when applied together thus helps 
scholars better explain the role of R&D investment in innovation and a firm’s ability to learn 
from external knowledge (Cohen and Levinthal, 1989, 1990).

Independently to the level of intra- and inter-industry spillover, firms that do not invest in R&D 
will have lower propensity to innovate at any level of knowledge spillover. Both findings extend 
the later works of Denicolai et al. (2016), which argue that an excessive reliance on external 
knowledge may have a negative effect on firm innovation performance if not supported by prior 
investment in internal R&D. Our findings regarding H1a extend Alexy et al. (2013) by demon-
strating that for firms who invest in R&D, an increase in spillovers may dissipate knowledge to 
competitors as well. This supports our H1bm, with both positive (knowledge transfer) and neg-
ative (transaction cost) effects of knowledge spillover on innovation conditional on investment 
in R&D. An increased inter-industry spillover reduces the coordination ability between firms 
and their external partners with an increase in heterogeneity of knowledge (Vural et al., 2013) 
and increases search and implementation costs (Camacho, 1991). Figures 3A and 3C illustrate 
both effects diagrammatically. The non-linear relationship adds to what we know from Dosi et al. 
(2006), who denied the existence of a monotonically growing relationship between spillovers and 
innovation. It also adds to Kobarg et al. (2019) and Belitski and Mariani (2022), who focused 
on diminishing marginal returns to the breadth and depth of external knowledge sourcing via 
collaboration and spillovers for innovation.

Our H2, which states that firm’s own investment in R&D reduces the propensity of imitation 
at any level of intra- and inter-industry knowledge spillovers, is partly supported, furthering our 

Figure 3. Predictive margins for intra and inter-industry spillovers for new product creation (innovation = 1A and 1C) 
and new-to-firm products (imitation = 1B and 1D)
Source: Office for National Statistics (2017, 2018, 2019).
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20 M. Belitski and D.B. Audretsch

understanding of the spillover-imitation dilemma. First, an increase in intra-industry spillovers 
does not change imitation propensity for firms who invest in R&D and for non-R&D investing 
firms (specification 4, Table 4). Both the interaction coefficients of predicted R&D and intra-
industry knowledge spillovers in levels (𝛽 = 0.840, P > 0.10) (spec. 4, Table 4) and squared term 
(𝛽 = 1.038, P > 0.10) are insignificant (spec. 4, Table 4). Second, the effect of inter-industry knowl-
edge spillovers on imitation propensity is insignificant as well for firms who invest or do not in 
R&D, supporting H2. The interaction coefficients of predicted R&D and inter-industry knowl-
edge spillovers in levels (𝛽 = 1.012, P > 0.10) (spec. 6, Table 4) and squared term (𝛽 = 1.044, 
P > 0.10) are insignificant (spec. 6, Table 4).

An increase in external knowledge via spillovers for firms who invest or do not in R&D is 
not associated with a subsequent change in the firm’s propensity to imitate, extending Cappelli 
et al.’s (2014) discussion on the role of spillovers for incremental innovation. Spillover-imitation 
propensity does not change at any level of knowledge. We can observe two groups of firms in 
Figures 3B and 3D.

The first group of firms who invest in R&D will have the expertise and internal knowledge 
needed to invent new solutions and create new products via knowledge spillovers (Leiponen and 
Helfat, 2010). This group will aim to obtain first mover advantage rather than copy what already 
exists in the industry. Figures 3B and 3D illustrate that the propensity of imitation does not change 
with an increase in spillovers; rather, what changes is the choice of firms to invest in R&D.

The second group of firms who perceive knowledge spillovers as a substitute for R&D do 
not invest in R&D. These firms will realize that sourcing knowledge via spillovers comes at the 
cost of modifying and adapting external knowledge (Mansfield et al., 1981). This constitutes the 
main limits of open innovation (Audretsch and Belitski, 2022; Saura et al., 2022) and constrains 
undertaking innovation drawing on spillovers, pushing firms into imitation and increasing their 
imitation propensity. For example, accessing spillovers may require buying intellectual property 
(Chesbrough, 2003) or liaising with a specific type of external partner (Kessler and Chakrabarti, 
1996; Beer and Zand, 2014) to better understand the nature of the knowledge and how it may be 
used (Leiponen and Helfat, 2010). Due to a cost to access spillovers, we find that the propensity 
to imitate for firms that do not invest in R&D is at least 10% greater than for firms who invest in 
R&D when knowledge spillovers increase within −1 to 3 (Figures 3B and 3D). This gap disappears 
at a high level of knowledge spillovers (3 to 4.5), which means that firms who invest or do not 
invest in R&D will have similar imitation propensities. When knowledge spillovers are high it 
may become a disincentive to engage in R&D for firms targeting innovation and imitation, which 
means all information will become common knowledge. The expected profits from spillovers can 
be dissipated due to high transparency and averaged exclusivity of external knowledge.

The confidence intervals for imitation and innovation for high levels of intra and inter-industry 
spillovers overlap for both R&D and non-R&D firms as knowledge spillovers become more 
accessible and knowledge more familiar and open. This effect calls for further research on knowl-
edge appropriation and complexity when spillovers are high and how firm’s R&D investment can 
be sustained.

While we cannot empirically test this, we argue that two different types of imitation are pos-
sible. One relies on knowledge spillovers and new-to-firm products and has a novel element, 
allowing firms to enter monopolistic-type competition. The other imitation type is based on 
knowledge available from competitors (Belitski and Mariani, 2022).

10. Other findings
In addition to knowledge spillovers, collaboration on knowledge with external partners is impor-
tant for innovation and (or) imitation choice, and allows firms to better recognize and incorporate 
external knowledge from various partners via spillovers. Our results for the role of knowledge 
collaboration in innovation are both interesting and intriguing.

We find that firms who collaborate with suppliers on knowledge are 1.18–1.19 times 
(𝛽 = 1.188–1.190, P < 0.01) (spec. 3 and 5, Table 4) more likely to innovate and 1.11–1.15 
times (𝛽 = 1.112–1.149, P < 0.01) (spec. 4 and 6, Table 4) more likely to imitate for every unit 
changed in collaboration intensity. Firms that collaborate with customers are 1.63–1.64 times 
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(=1.163–1.164, P < 0.01) (spec. 3 and 5, Table 4) more likely to innovate for every unit changed 
in collaboration intensity. While these findings support prior research on spillovers from suppliers 
that may affect both firm imitation and performance (Cappelli et al., 2014), they do not support 
the findings on customers. Collaboration with customers aims at new product development and 
it is crucial when innovative products require further market adaptations (von Hippel, 1988; 
Tether, 2002). Prior research has argued that spillovers from competitors should clearly lead to 
higher levels of imitation in the industry (Cappelli et al., 2014), with the results supported for 
imitation (𝛽 = 1.245–1.254, P < 0.01) (spec. 4 and 6, Table 4). This finding suggests that when 
competing firms collaborate on knowledge, even opening a “small window” of knowledge into 
competitors is sufficient to enable them to appropriate some of the knowledge. An increase in one 
unit of coopetition intensity reduces innovation propensity by 8–9% (𝛽 = 0.910–0.919, P < 0.01) 
(spec. 3 and 5, Table 4). Firms who collaborate with consultants are more likely to innovate
(𝛽 = 1.089–1.096, P < 0.01) (spec. 3 and 5, Table 4), in addition to firms that collaborate on 
knowledge with universities (𝛽 = 1.089–1.096, P < 0.01) (spec. 3 and 5, Table 4). Firms who col-
laborate with consultants and universities on knowledge are as likely to imitate as firms who 
do not collaborate, with regression coefficients insignificant (spec. 4 and 6, Table 4). Finally, 
collaboration with government is not associated with imitation and innovation outcomes.

The baseline model (spec 1 and 2, Table 4) demonstrates several differences between other fac-
tors for innovation and imitation. First, larger firms are 3.2% less likely to imitate new products 
(𝛽 = 0.968, P < 0.05, spec. 2 Table 4), while firm size is not associated with innovation propensity, 
with coefficients insignificant in spec 1, 3, and 5 (Table 4) (Colombelli et al., 2013). Second, more 
mature firms are 13.1% less likely to innovate than younger firms (𝛽 = 0.869, P < 0.01, spec. 
1 Table 4) (Haltiwanger et al., 2013). Third, investment in software and technology increases 
propensity to innovate by 3.05 times (𝛽 = 3.057, P < 0.01, spec. 1 Table 4) and imitate by 2.25 
times (=2.255, P < 0.01, spec. 2 Table 4).

Investment in human capital, such as hiring employees with university degrees, increases the 
propensity to innovate (𝛽 = 1.010, P < 0.01, spec. 1, 3, and 5 Table 4) and decreases the propensity 
to imitate (𝛽 = 0.989–0.990, P < 0.01, spec. 2, 4, and 6 Table 4) (Sun et al., 2020). Foreign own-
ership increases the propensity to innovate between 15.4 and 15.7% (𝛽 = 1.154–1.157, P < 0.01, 
spec. 1, 3, and 5 Table 4), as firms that are foreign-owned are known to be more productive and 
technologically equipped (Guadalupe et al., 2012). In a similar vein, exporters are 2.72 times 
more likely to introduce new-to-market products than non-exporters (𝛽 = 2.72, P < 0.01) and 
1.16 times more likely to imitate than non-exporters (𝛽 = 1.160, P < 0.01) (specifications 1 and 
2, Table 4).

11. Robustness check
We performed several robustness checks. Firstly, we estimated the logistic regression with inter- 
and intra-industry knowledge spillovers only and then included other controls as well as time, 
regional, and industry fixed effects. The inclusion of firm characteristics and interactions only 
enabled us to observe the change in the significance of the predicted coefficients and decide on 
the size of a bias when spillovers and the other firm controls are estimated together. This was to 
respond to reviewer comments that the right-hand side of the model needed to be simplified by 
either creating indices that explain innovation performance or reducing the number of variables 
that explain it.

Secondly, we calculated knowledge spillovers at the 3-digit SIC level and by 175 Geo region 
and estimated equation (4) with the results of a range of confidence intervals, which remained 
the same as in Table 4. The knowledge spillover effect’s level of significance was lower than when 
estimated with knowledge spillover built using 2 digit SIC sectors. We explain this using the firm’s 
high specialization within niche products and services, as a firm’s niche specialization may lower 
its ability to keep up with new technologies from other industries (Camagni, 1991).

Thirdly, we ran logistic estimations with and without a bootstrap and clustered our standard 
errors by 2-digit industry SIC, correcting for heteroskedasticity across industries. The purpose 
of this was to check for potential bias in estimation due to autocorrelation in errors between 
firms when spillovers are calculated at 2-digit SIC 2007. Both estimations provided qualitatively 
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the same results on the direction of impact and the significance of the seven factors and control 
variables.

Fourthly, we used weights of the stratified sample provided by the ONS and calculated by 
industry as well as size of firm using the original UKIS sample. We compared the results of the 
estimation with the predicted coefficients between weighted and unweighted estimations, which 
followed the signs, significance, and confidence intervals.

Fifthly, we standardized R&D intensity and performed our estimation with it interacting R&D 
intensity standardized with intra- and inter-industry spillovers. The results did not change.

Finally, we point out that Lind and Mehlum (2010) argued that conventional means of test-
ing nonlinearities, such as the F-test, are inadequate and proposed additional testing beyond 
the significance and signs of coefficients. In line with their approach, we calculated predictive 
margins to test for the inverted U-shape relationships and inflection points in our model (4) 
(Figures 3A–3D). We also performed the inverted U-shape test for nonlinearity of the interaction 
coefficients, supporting an inverted U shape for innovation (see Table 4).

12. Discussion
Building on the prior research on knowledge spillovers (Jacobs, 1970; Griliches, 1992; Audretsch 
and Feldman, 1996), this study has put the localized intra- and inter-industry spillovers as well 
as a firm’s own investment in R&D to a competitive test. This allowed us to develop and test the 
knowledge spillover of innovation, concluding with the following arguments. Firstly, investment 
in R&D is an important boundary condition to recognize, access, modify, process, and implement 
knowledge spillovers (Camacho, 1991; Bloom et al., 2013).

Secondly, knowledge spillovers are a primary source of entrepreneurship (Audretsch and 
Feldman, 1996), innovation (Kugler, 2006; Hall et al., 2013; Denicolai et al., 2016), and pro-
ductivity (Griliches, 1992) and not imitation, which contrasts with the prior research of Cappelli 
et al. (2014) and Kobarg et al. (2019).

Thirdly, expanding prior research on specialization (Marshall, 1920) and diversification 
spillovers (Jacobs, 1970; Romer, 1986) as a positive externality for firm innovation and per-
formance (Carlino and Kerr, 2015; Lee et al., 2015), we argue that the relationship between 
intra- and inter-industry knowledge spillovers and innovation is an inverted U shape, advancing 
prior research into the limits to open innovation (Kobarg et al., 2019; Audretsch and Belitski, 
2020a; Saura et al., 2022). The negative side of the knowledge spillover–innovation relation-
ship can be explained by within-industry competition effects (intra-industry) and transaction 
cost effects (intra- and inter-industry). The inverted U-shaped relationship only holds for firms 
who invest in R&D and other creative knowledge and is flat for firms who do not perform
R&D.

Fourthly, accessing knowledge spillovers in addition to R&D may also involve buying intel-
lectual property and engaging in collaborative R&D with external partners (Chesbrough, 2003). 
This interpretation of the inverted U-shaped relationship contrasts with the “mainstream” eco-
nomic view of spillovers as a positive externality (Marshall, 1920; Jacobs, 1970; Jaffe, 1986). 
However, in the literature of industrial organizations (Jirjahn and Kraft, 2011), the external 
source of knowledge is typically not the result of an unintended leakage of knowledge; rather, a 
firm makes a strategic decision to access available spillovers.

Fifthly, building on this argument, the essential characteristics of knowledge spillovers (e.g. 
in-excludability, complexity, and tacitness) will incentivize innovators to use spillovers while dis-
incentivizing imitators, extending Jirjahn and Kraft’s (2011) argument on the role of spillovers 
in drastic and incremental innovation.

Sixthly, the knowledge spillover–imitation relationship comes in the form of a dilemma, 
which should be studied within two groups of firms: those who either start performing R&D 
to recognize and access knowledge spillovers, or stop investing in R&D due to an inability to 
access spillovers or because it is generally costly. The dilemma is that firms are either unable to 
access spillovers due to the paucity of internal knowledge investment and opt out of knowledge 
spillovers, or firms that are unwilling to imitate as investment in R&D enables new solutions 
and innovation. The spillover–imitation relationship uncovers the ability-willingness paradox 
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for firms that are able to use spillovers but unwilling to imitate or firms willing to use spillovers 
for imitation but unable to do so due to the paucity of knowledge.

Finally, when intra- and inter-industry spillovers are high it means they are not fully controlled 
(Teece, 1986). The Nash equilibrium under high levels of spillovers and high levels of innova-
tion and imitation averages profits, as no firm has an incentive to further increase innovation 
(imitation) efforts to unilaterally increase their payoffs. As a result, the propensity of innova-
tion and imitation converges at the highest level of spillovers for firms that invest and do not
in R&D.

Our findings send a clear signal to managers who consider knowledge spillovers as a substitute 
for internal R&D for innovation and imitation. Firstly, we demonstrated that firms that do not 
invest in R&D are unable to benefit from intra- and inter-industry spillovers. Secondly, while 
investment in R&D increases the absorptive capacity of innovators, this is not the case for imi-
tators. Thirdly, transaction costs when accessing spillovers are another concern for knowledge 
sourcing between industries when knowledge is more diverse, unfamiliar, and technologically dis-
tant (Nooteboom et al., 2007). Finally, competition externalities and transaction costs related to 
spillovers can affect firm manager’s decisions to (i) co-locate and invest in R&D and (ii) change 
their innovation strategies.

Policymakers and firm managers should be aware of the non-linear effects of spillovers for new 
product creation with a flipping point of 1.5 standard deviations above the mean for both intra- 
and inter-industry spillovers. This threshold of the knowledge spillover of innovation indicates 
that further increases in knowledge spillovers and investment in R&D will lead to a reduction in 
innovation propensity.

13. Conclusions
This study provided important insights into why innovators respond differently to changes in 
spillovers. In particular, the literature has focused on variations of firm-, industry-, and region-
specific characteristics to explain why some firms choose (or not) to innovate. Contributing to 
the open innovation and knowledge spillover literature, this study demonstrated that this choice 
is not specialization vs. diversification, because both types of spillovers matter for innovation 
(Caragliu et al., 2016) and that internal R&D investment is needed to create absorptive capacity 
(Cohen and Levinthal, 1990; Jansen et al., 2005; Leiponen and Helfat, 2010) and to be able to 
benefit from knowledge spillovers. In contrast to Cohen and Levinthal (1989, 1990), we argue 
that investment in R&D cannot fully offset the negative effects of knowledge spillovers, and 
other mechanisms should be examined in subsequent research (e.g. appropriability incentives, 
intellectual property protection, coopetition and R&D subsidies).

This study creates the foundations for the theory of knowledge spillover innovation by inte-
grating Marshallian and Jacobian knowledge externalities with Porter’s (1990, 1998) competition 
externalities as well as Mansfield et al.’s (1981) and Chesbrough’s (2003) costs of accessing exter-
nal knowledge. As firms continue to invest in their own knowledge to access spillovers within and 
between industry (Cohen and Levinthal, 1990), knowledge created by incumbent firms within an 
industry will be easier to adapt to the firm’s needs (Tether, 2002), whereas the competition effect 
may dissipate the benefits of investment in R&D under high spillovers (Bloom et al., 2013).

In regions and industries where imitation and copying are common, innovators and investors 
may downgrade their expectations of post-innovation returns, reducing the incentive to invest in 
innovation inputs including investment in knowledge generating and sourcing activities. This in 
turn is likely to reduce the level of innovation in firms within those industries and regions, sug-
gesting that the competition effect of knowledge spillovers may become overwhelmingly negative 
(Denicolai et al., 2014, 2016; Roper et al., 2017) or stronger for specific industries (Audretsch 
and Belitski, 2020b).

The role of the mechanisms of formal and informal knowledge appropriation need further 
analysis, as this may help to reduce transaction costs and increase both knowledge collaboration 
and spillovers (Breschi and Lissoni, 2001; Dosi et al., 2006; Reitzig et al., 2010). The downside of 
this, however, is a potential reduction in knowledge spillovers affecting the economy as a whole 
(Cappelli et al., 2014). The knowledge spillover innovation theory therefore suggests that new 
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localized knowledge within and between industries is particularly relevant for innovation but not 
for imitation.

Given the diversity of knowledge sources, it is likely that firms will rely both on spillovers and 
knowledge collaboration with external partners, with the knowledge sourcing depending on the 
firm’s own R&D. The benefits from intra- and inter-industry spillovers include increased inno-
vation activity, whereas the type of collaboration partner defines both imitation and innovation 
propensity.

This finding further extends the stream of spillover research on the linearity and exclusivity of 
spillovers for innovation and productivity (Jacobs, 1970), with a refocus on the type of spillover, 
knowledge type and a subsequent choice of innovation or imitation.

This study has several limitations. Firstly, we built a repeat cross-sectional dataset (over 79% of 
observations were observed only once) that has a panel component. While this severely limited 
the research design, specifically the ability to get close to causal inferences, pooling the three 
distinct data sources together proved more inferences and controls and gave us a sense of what 
was being estimated.

Our second limitation is that our proxies for specialization (intra-) and diversification (inter-
industry) spillovers have a correlation of 0.58. Future research could use alternative sectoral 
aggregation, for example, at 3- or 4-digit SIC codes with a more granulated approach to the 
measurement of industry spillovers and Geo regions as well as approximate schemes based on 
more in-depth information on relatedness and knowledge flows. For example, R&D collabora-
tion agreements between firms within and between industries could be used as a proxy for the 
knowledge spillover emanating from knowledge collaboration.

Future research should aim to motivate scholars to experiment with panel data and measure 
spillovers with the extent of information received from external sources related and unrelated to 
the main product or service. These sources could include conferences and trade fairs; professional 
and industry associations; technical, industry, or service standards; and scientific journals and 
trade/technical publications as proxies for knowledge spillovers and their effects on innovation 
decision-making and strategy. Next, more research is needed on how combining external shocks 
(e.g. regulation, financial crises, and pandemic effects) with innovation and imitation and the 
degree spillovers affect the choice of innovation strategy. Finally, future research could focus on 
the mechanisms that converge propensity of innovation and imitation for R&D and non-R&D 
performers when intra- and inter-industry knowledge spillovers are high.
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Appendix A

Table A1. Second-stage post-estimation analysis: random effect (RE) estimation of model (5) using predicted 
residuals from equation (3) from second-stage estimation

(1) (2) (3) (4)

Dependent variable
Innovation residual 
𝒚𝒊 − ̂𝒚𝒊 (equation 3)

Imitation residual 
𝒚𝒊 − ̂𝒚𝒊 (equation 3)

Equation with 
knowledge 
spillover

Intra-industry 
spillover

Intrer-industry 
spillover

Intra-industry 
spillover

Intrer-industry 
spillover

Industry-region 
scientists 𝜌1

0.008 (0.01) −0.002 (0.00) −0.001 (0.01) −0.002 (0.00)

Control variables
Age −0.007 (0.01) −0.001 (0.01) −0.006 (0.01) −0.001 (0.01)
Employment 0.002 (0.00) 0.002 (0.00) −0.003 (0.01) 0.002 (0.01)
Time, industry, 

and Geo region 
controls

Yes Yes Yes Yes

Constant −0.107 (0.09) −0.312 (0.23) −0.063 (0.10) −0.311 (0.23)
Number of 

observations
19,510 19,510 19,510 19,510

Number of firms 15,430 15,430 15,430 15,430
Wald Chi2 101.23 100.08 58.67 53.75
R2 within 0.003 0.002 0.005 0.002
R2 between 0.003 0.002 0.012 0.014
R2 overall 0.004 0.003 0.012 0.014
Sigma u 0.263 0.400 0.334 0.401
Sigma e 0.909 0.911 0.888 0.912

Note: Standard errors robust for hereroskedastisity are in parenthesis. Reference groups: survey wave (2002–2004). 
Industry (Mining). Significance level:
*P<0.05;
**P<0.01;
***P<0.001.
Coefficient 𝜌1 (human capital) is weakly significant with imitation as dependent variable with inter-industry spillovers 
(P=0.09) when innovation sales residuals are used as dependent variable. Number of observations 19,510.
BSD—Business Register (2002–2014) and UKIS—UK Innovation Survey (2002–2014).
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