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Abstract

Many sequentially observed functional data objects are available only at the times
of certain events. For example, the trajectory of stock prices of companies after their
initial public offering (IPO) can be observed when the offering occurs, and the resulting
data may be affected by changing circumstances. It is of interest to investigate whether
the mean behaviour of such functions is stable over time, and if not, to estimate the
times at which apparent changes occur. Since the frequency of events may fluctuates
over time, we propose a change point analysis that has two steps. In the first step,
we segment the series into segments in which the frequency of events is approximately
homogeneous using a new binary segmentation procedure for event frequencies. After
adjusting the observed curves in each segment based on the frequency of events, we
proceed in the second step by developing a method to test for and estimate change
points in the mean of the observed functional data objects. We establish the consistency
and asymptotic distribution of the change point detector and estimator in both steps,
and study their performance using Monte Carlo simulations. An application to IPO
performance data illustrates the proposed methods.

Keywords: Functional data analysis, Change point analysis, IPO

1 Introduction

This work is motivated by the problem of performing event studies and change point analysis

on initial public offering (IPO) data. The specific data that we consider was downloaded

from the Wind Economic Database, and contains the daily stock prices of 1,297 companies

whose IPO occurred on the Shanghai Stock Exchange and Shenzhen Stock Exchange during

the period from December 1, 2015 to September 30, 2020, which consists of N = 1, 181

trading days1. Denote by nt the number of IPOs on day t, Pt,m(0) the IPO issuance price

of stock m on day t, and Pt,m(u) the price of stock m traded at time u after its IPO. We

consider the 60-day cumulative abnormal return curves (CARCs) defined by

CARCt,m(u) =
Pt,m(u)− Pt,m(0)

Pt,m(0)
−P

(mkt)
t (u)− P

(mkt)
t (0)

P
(mkt)
t (0)

, 0 ≤ u ≤ 60, 1 ≤ m ≤ nt, 1 ≤ t ≤ 1181.

1We consider the IPOs issued between December 1, 2015 to September 30, 2020. In order to fully observe
the 60-day cumulative abnormal return curves, we include the price data up to December 31, 2020.
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Figure 1: Top panel: Cumulative abnormal return curves of 1,297 IPOs between December
2015 and September 2020 in China. Bottom panel: Estimates of the mean CARC curves
from the entire sample, as well as based on a segmentation before and after September 26,
2018.

The second term depending on P
(mkt)
t (u) is determined based on an overall market index,

and is used to estimate the excess return of stock m over the market; the details of this are

provided in Section 6. The CARCs can be used to compare and measure the performance of

IPOs in their first 60 days, and, after interpolating the daily resolution data, are naturally

viewed as functional data objects, as can be seen in Figure 1.

Since the CARC curves viewed over time can be used to understand the effects of changing

governmental policies and economic conditions on IPOs, performing change point analysis on

such curves is of interest, and is the main objective of this article. A challenge encountered

though in analyzing this data is that IPO events occur irregularly over time, and the CARCs
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Figure 2: Number and frequency of IPOs on the Shanghai Stock Exchange and Shenzhen
Stock Exchanges one each day during the period from December 1, 2015 to September 30,
2020.

are only observable when the IPOs occur. Although there are typically one or two IPOs on

the stock exchanges considered each day, there could be many more, or none. The number

and frequency of IPOs in the data set is illustrated in Figure 2. Additionally, clustering of

IPO events and the overlapping time periods on which the CARCs are computed suggest that

the data will exhibit serial dependence, which must be taken into account in any analysis of

this data.

To generally frame this problem, consider a specific type of event, such as an IPO, that can

happen for different firms at different times over a sample period of N days. To facilitate

computation, the event time u is rescaled to the unit interval [0, 1]. Let nt denote the

number of events on day t. If no event occurs on day t, so that nt is zero, we do not have

any observation on that day, but if at-least-one event occurs on day t, we assume that we

observe functional data objects, which we term as “functional event observations”. The main

example of interest are CARCs. We suppose that functional event observations are square

integrable curves defined on the unit interval [0, 1] of the form Xt,1(u), Xt,2(u), . . . , Xt,nt(u),
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u ∈ [0, 1], 1 ≤ t ≤ N, that satisfy the basic model

Xt,m(u) = µt(u) + yt(u) + ϵt,m(u), 0 ≤ u ≤ 1, 1 ≤ m ≤ nt, 1 ≤ t ≤ N, (1.1)

where µt(u) is the unknown mean curve2 of Xt,m(u), yt(u) represents a random effect3 on the

date t, and ϵt,m(u) is associated with the idiosyncratic effect of a specific firm. Model (1.1)

appears to model the CARCs well due to the scaling and recentering by an overall market

index applied to compute each CARC trajectory. We assume that

Assumption 1.1. (i) Eyt(u) = 0 and Eϵt,m(u) = 0, u ∈ [0, 1], 1 ≤ m ≤ K, (ii) E∥yt∥κ <

∞ and E∥ϵt,ℓ∥κ <∞ with some κ > 4, (iii) 0 ≤ nt ≤ K with some K > 0 for all t.

Assumption 1.1(i) is needed to identify µt(u) as the mean curve of Xt,m(u), whereas

Assumption 1.1(ii) defines a moment condition of yt(u) and ϵt,m(u), and Assumption 1.1(iii)

posits that the number of events on a given day is bounded.

Under the null hypothesis the mean of the observed curves is stable:

H0 : µ1(u) = · · · = µN(u), (1.2)

whereas under the alternative hypothesis there is a change in the global mean curve at an

unknown date k∗:

HA : µ1(u) = · · ·µk∗(u) ̸= µk∗+1(u) = · · · = µN(u). (1.3)

2Under H0, the unknown mean curve µt(u) on different dates becomes a common one µ(u) for all t.
3It is also possible to suppress yt(u) from (1.1) in place of other conditions on the serial dependence in the

data. In the literature, it is usually assumed that {yt(u), 1 ≤ t ≤ N} and {εt,ℓ, 1 ≤ ℓ ≤ nt, 1 ≤ t ≤ N} are
independent or at least uncorrelated. Due to Assumption 3.1, we do not need conditions between yt(u) and
ϵt,m(u). Thus, we choose to include yt(u) to emphasize that time dependence is allowed between functional
event observations at different dates.
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The key challenge in conducting a hypothesis test of H0 versus HA is a fluctuating number

of events nt. To demonstrate this challenge, let us consider the daily averages defined by

Yt(u) =


0, if nt = 0,

1

nt

nt∑
m=1

Xt,m(u), if nt > 0.

In our empirical application, Yt(u) is obtained by averaging over companies for which the

IPO occurred on day t if there is at-least-one IPO; Yt(u) is a zero function if there is no

IPO on day t. Under the assumption that nt and {Xt,m(u), u ∈ [0, 1], 1 ≤ m ≤ K} are

independent,

EYt(u) = (1− P ({nt = 0}))µ(u), (1.4)

where µ(u) denotes the common mean under H0. In particular, the expected value of the

daily averages of event observations might change even if the mean curves in model (1.1) are

stable, but the probability of the event {nt = 0} changes.

As a result of this, our proposed stability test has two steps: In the first step, we segment

the event frequencies during the sample period into segments for which P ({nt = 0}) is

approximately stable using a new binary segmentation procedure for event frequencies. After

doing so, the daily averages of Yt(u) are adjusted based on the estimated event frequencies,

and a change point analysis is carried out for the adjusted daily average curves. In Sections

2 and 3, we develop test statistics that are used in each step, and establish their asymptotic

properties in order to conduct change point analyses of the event frequency and mean curves,

respectively. Details and consistency results on estimating the covariance kernels that are

needed to implement these tests are given in Section 4. In Section 5 we present the results
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of Monte Carlo simulations that aimed to investigate the finite sample properties of our

methods, which shows that for the examples considered this two-step testing and estimation

procedure works well. Section 6 illustrates the application of these methods to the IPO

data set introduced above, which supports the existence of a single change in the mean

CARC curves in September of 2018. An online supplement contains the detailed proofs of

all technical results, as well as additional simulation results, and practical guidance on the

implementation of our methods.

This work is most closely related to the literature on event studies and change point

analysis with functional data. Event studies, which refers to empirical analyses examining

the impact of significant events on the value of a security, are widely considered in the fields

of economics, finance, marketing, and political science. Important references, which serve

as entry points to the area, include Dolley (1933), Brown and Weinstein (1985), MacKinlay

(1997), Campbell et al. (1997), Kothari and Warner (2007), and Linton (2019). Textbook

length treatments of functional data analysis can be found in Eubank and Hsing (2008),

Ramsay and Silverman (2005), and Horváth and Kokoszka (2012). The literature on change

point analysis of functional data has grown considerably in the last 10 years, with notable

references including Bucchia and Wendler (2017), Chiou et al. (2019), Aston and Kirch

(2012b), Aston and Kirch (2012a), Berkes et al. (2009), Rice and Zhang (2022), Sharipov

et al. (2016), and Aue et al. (2018), who consider change point testing and multiple change

point estimation for the mean of functional data, and Sharipov and Wendler (2019), Stoehr

et al. (2019), and Horváth, Rice, et al. (2022), who consider change point analysis of covari-

ance operators of functional data. We note that all previous literature on the change point

analysis of functional data concerns functional observations observed at a regular frequency.

In this paper, we contribute to the literature by developing a new method to test for the
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mean stability of functional data observed irregularly and subject to changes on observation

frequency.

Briefly we highlight some notations. There are N total trading dates, and on each date

there are nt events (nt can be zero or a positive number). In the sample period, there could be

R change points in frequency of events, resulting in R+1 segments. For the index notation,

we generally use t (1 ≤ t ≤ N) to index which date out of N total dates, m (1 ≤ m ≤ nt)

to index which event out of nt events on a date, j (1 ≤ j ≤ R) to index which change point

in frequency, and i, ℓ (1 ≤ i, ℓ ≤ R + 1) to index which homogenous segment.

2 Test for frequency change

In this section, we develop methods to segment the frequency at which at-least-one event

occurs into approximately homogenous segments. Our method is motivated by the change

point testing procedure in Horváth and Serbinowska (1995). Since we are interested in

conducting change point analysis on the probability that at-least-one event occurs each day,

we introduce the Bernoulli variables

ξt =


1, if nt > 0,

0, if nt = 0.

We wish to test

H0,P : P{ξ1 = 1} = P{ξ2 = 1} = . . . = P{ξN = 1},
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against the alternative

HA,P : there are 1 < t1 < t2 < . . . tR < N such that P{ξ1 = 1} = P{ξ2 = 1} = . . . = P{ξt1 = 1}

̸= P{ξt1+1 = 1} = P{ξt1+2 = 1} = . . . = P{ξt2 = 1} ≠ P{ξt2+1 = 1} = . . . P{ξtR = 1}

̸= P{ξtR+1 = 1} = P{ξtR+2 = 1} = . . . = P{ξN = 1},

i.e. under the alternative the frequency of having at least one event in a day changes at the

unknown times 1 < t1 < . . . < tR < N . Horváth and Serbinowska (1995) derived several

test statistics to test H0,P versus HA,P , assuming that the Bernoulli variables ξ1, ξ2, . . . , ξN

are independent. Let

Λk =
p̂Np̂N
N (1− p̂N)

N(1−p̂N )

p̂kp̂kk (1− p̂k)k(1−p̂k)p̄
(N−k)p̄N−k

N−k (1− p̄N−k)(N−k)(1−p̄N−k)
, (2.1)

with

p̂k =
1

k

k∑
t=1

ξt, p̄N−k =
1

N − k

N∑
t=k+1

ξt,

and

∆k =
N(kp̂k − kp̂N)

2

p̂N(1− p̂N)k(N − k)
. (2.2)

One may see that if we compare the probability of successes in the subsamples {ξ1, ξ2, . . . , ξk}

and {ξk+1, ξk+2, . . . , ξN}, then Λk in (2.1) is a likelihood ratio, and (2.2) is the classic χ2 test

statistic. Since it is unknown where to divide the sample, it is suggested to consider the

maximally selected statistics

Λ̄N = max
1≤k<N

(−2 log Λk) and ∆̄N = max
1≤k<N

∆k.
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Simulation studies in Horváth and Serbinowska (1995) showed that Λ̄N and ∆̄N converge to

their limits rather slowly, so they also studied their weighted versions

Λ̃N = max
1≤k<N

k(N − k)

N2
(−2 log Λk) and ∆̃N = max

1≤k<N

k(N − k)

N2
∆k.

The variable ∆̄
1/2
N is the maximum of a self normalized CUSUM process. Horváth and

Serbinowska (1995) derived the limit distributions of Λ̄N , ∆̄N , Λ̃N and ∆̃N in case of inde-

pendent and identically distributed Bernoulli random variables. Since independence is too

strong of an assumption to apply to the data of interest in the present study, we need to

modify their results to allow for serial dependence. We assume that under the null hypothesis

the sequence {ξt,−∞ < t <∞} is a weakly dependent Bernoulli shift:

Assumption 2.1. ξt = g(ηt, ηt−1, . . .) with some non-random function g defined on S∞,

{ηt,−∞ < t < ∞} are independent, identically distributed random variables with values in

a measurable space S,

(E|ξt − ξt,s|κ1)1/κ1 ≤ cs−κ2 with some c > 0, κ1 > 2 and κ2 > 1,

where ξt,s = g(ηt, ηt−1, . . . , ηt−s+1,η
∗
t,s), and η∗

t,s = (η∗t,s,t−s, η
∗
t,s,t−s−1, . . .), {η∗t,s,s′ ,−∞ <

t, s, s′ < ∞} are independent, identically distributed as η0, also independent of {ηt,−∞ <

t <∞}.

Assumption 2.1 holds for a large class of time series, including AR, MA, ARMA and all lin-

ear processes as well as several nonlinear time series sequences. The idea of decomposability

of Bernoulli sequences goes back at least to Ibragimov (1962). One of the advantages of such

a condition in this context, in which we are concerned with integer valued sequences, over
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other potential weak dependence conditions, such as mixing, is that no continuity properties

are required of the distribution of the variables.

Since the observations are not independent, p̂N(1 − p̂N) does not estimate the long run

variance of the sum of the indicators. Assumption 2.1 implies that the infinite sum

lim
N→∞

var

(
N−1/2

N∑
t=1

ξt

)
= σ2, (2.3)

defining the long run variance, which is absolutely convergent. We require

Assumption 2.2. σ2 > 0.

There are several methods to estimate σ2. The most popular one is the kernel-lag window

long run variance or spectral density estimators, σ̂2
N . Its consistency,

σ̂N
P→ σ, (2.4)

was studied by several authors. Hörmann and Kokoszka (2010) and Liu and Wu (2010)

proved (2.4) under Assumption 2.1 and minor requirements on the window (smoothing pa-

rameter) and the kernel. To obtain limit results for Λ̄N and ∆̄N , we need an upper bound

for the rate of convergence in (2.4). Namely,

|σ̂N − σ| = oP ((log logN)−1/2), (2.5)

which follows from Liu and Wu (2010) and Xiao and Wu (2012). For further results we refer
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to Chapter 16.3 of Horváth and Kokoszka (2012). Let

τ̂ 2N =
p̂N(1− p̂N)

σ̂2
N

. (2.6)

Theorem 2.1. If H0,P , Assumptions 2.1, 2.2 and (2.4) are satisfied, then

lim
N→∞

P{τ̂ 2N Λ̃N ≤ x} = P

{
sup

0≤u≤1
B2(u) ≤ x

}
(2.7)

and

lim
N→∞

P{τ̂ 2N∆̃N ≤ x} = P

{
sup

0≤u≤1
B2(u) ≤ x

}
, (2.8)

where {B(u), 0 ≤ u ≤ 1} denotes a Brownian bridge.

In addition, if (2.5) also holds, then

lim
N→∞

P
{
a(logN)τ̂N Λ̄

1/2
N ≤ x+ b(logN)

}
= exp(−2e−x) (2.9)

and

lim
N→∞

P
{
a(logN)τ̂N∆̄

1/2
N ≤ x+ b(logN)

}
= exp(−2e−x) (2.10)

where a(x) = (2 log x)1/2 and b(x) = 2 log t+ (1/2) log log x− (1/2) log π.

If HA,P holds, we are interested in the estimation of R, the number of change points and

t1, t2, . . . , tR, the times of the changes. The method of Serbinowska (1996) can be adapted to

our case, but, since we also wish to estimate the locations of the change points, we employ

binary segmentation, as initially put forward in Vostrikova (1981). We assume that

Assumption 2.3. tj = ⌊Nθj⌋, 1 ≤ j ≤ R with 0 < θ1 < θ2 < . . . < θR < 1.
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Binary segmentation is generally applied as follows: first we test if the null hypothesis

holds for the observations {ξ1, ξ2, . . . , ξN}. If the null hypothesis is rejected, we find the

point, t̂1, the argument where the change point test statistic attains its largest value. The

observations are then segmented into two subsets,
{
ξ1, ξ2, . . . , ξt̂1

}
and

{
ξt̂1+1, ξt̂1+2, . . . , ξN

}
based on the point t̂1. Now the procedure is repeated on each subset. We continue this pro-

cedure until the null hypothesis cannot be rejected for any subsets resulting in the estimators

t̂1, t̂2, . . . , t̂R̂. Let

t̂j
N

= θ̂j,N = θ̂j, 1 ≤ j ≤ R̂.

If we use the binary segmentation method where each test is performed with significance

level α, standard arguments give that for all δ > 0

lim inf
N→∞

P{R̂ = R, |θ̂j − θj| ≤ δ} ≥ 1− (R + 1)α. (2.11)

In order to get a consistent estimators of the number and locations of the change points we

must then take a suitable sequence α = αN → 0, which equivalently defines an asymptot-

ically increasing threshold for the change point statistics used in the binary segmentation

procedure. In practice though the user must decide on a value for αN , and we have found

in practice that a fixed α is reasonable in this application, especially in that it tends to lead

to estimating a larger number of change points.

We also note that Pan and Chen (2006) and Ciuperca (2011) use penalized likelihood

and least squares to estimate the number of changes and the locations of changes. Their

estimates R̃ and θ̃j, 1 ≤ j ≤ R̃, satisfy that limN→∞ P
{
R = R̃, |θ̃i − θi| ≤ δ

}
= 1 for all

δ > 0.
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We conclude this section by presenting how to practically use the proposed statistics of

Section 2. In order to compare the change point detectors with their critical values, one can

further calculate

Λ̄∗
N = a(logN)τ̂N Λ̄

1/2
N − b(logN), ∆̄∗

N = a(logN)τ̂N∆̄
1/2
N − b(logN),

Λ̃∗
N = τ̂ 2N Λ̃N , and ∆̃∗

N = τ̂ 2N∆̃N .

Based on the simulation in Appendix C of the online supplement, the critical values of Λ̄∗
N

and ∆̄∗
N are 2.944 at 10% level, 3.663 at 5% level, and 5.293 at 1% level, and the critical

values of Λ̃∗
N and ∆̃∗

N are 1.486 at 10% level, 1.829 at 5% level, and 2.632 at 1% level.

3 Test for mean curve change

In this section we proceed to develop change point tests and estimators for the mean curve of

event observations, after adjusting for changes in the event frequency as described in Section

2. First, we relax Assumption 2.1 to allow for sequences that are only piecewise stationary

over the observation period [1, 2, . . . , N ], with the stationary subsegments coinciding with

the subsegments on which the event frequency is homogeneous. Let ∥ · ∥ denote the L2 norm

of functions defined on [0, 1]; in case the input is a vector valued function, ∥·∥ is the standard

L2 norm on the product space.

Assumption 3.1. We assume that zt = (nt, yt(u), ϵt,1(u), . . . , ϵt,K(u)) = gi(ηt, ηt−1, . . .),

ti−1 < t ≤ ti, 1 ≤ i ≤ R + 1, where gi, 1 ≤ i ≤ R + 1 are non-random measurable func-

tions defined on S∞, with S a measurable space, and {ηt,−∞ < t < ∞} are independent,
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identically distributed random variables with values in S. Additionally, we assume that

(E∥zt − zt,s∥κ1)1/κ1 ≤ cs−κ2 with some c > 0, κ1 > 4 and κ2 > 1,

where zt,s(u) = (nt,s, yt,s(u), ϵt,1,s(u), ϵt,2,s(u), . . . , ϵt,K,s(u)) = gi(ηt, ηt−1, . . . , ηt−s+1,η
∗
t,s), 1 ≤

i ≤ R + 1, and η∗
t,s = (η∗t,s,t−s, η

∗
t,s,t−s−1, . . .), {η∗t,s,s′ ,−∞ < t, s, s′ < ∞} are independent,

and identically distributed as η0, and independent of {ηt,−∞ < t <∞}.

Assumption 3.1 imposes that the processes in the model (1.1) are weakly dependent

Bernoulli shifts on the intervals (ti−1, ti], 1 ≤ i ≤ R+ 1. Hörmann and Kokoszka (2010) and

Aue et al. (2014) show that Assumption 3.1 holds for a large class of time series under suitable

regularity conditions, including functional AR, MA, ARMA processes, general functional

linear processes, and several nonlinear time series sequences, including volatility processes.

Further discussion is provided in Horváth and Kokoszka (2012). Dalla et al. (2015) and

Xu (2015) note that in several applications the errors are heteroscedastic, which should be

taken into account. Bardsley et al. (2017) and Górecki et al. (2018) suggest several test

to detect change in the mean when the error is not stationary. They study models that

satisfy Assumption (3.1). Busetti and Taylor (2004), Cavaliere et al. (2011), Cavaliere and

Taylor (2008), Hanson (2002) and Harvey et al. (2006) introduce change point tests when

the nonstationarity of the data is allowed.

According to Assumption (3.1) we do not require that the curves defining the event

observations form a stationary sequence, rather we only require stationarity on the sub-

intervals (ti−1, ti], 1 ≤ i ≤ R + 1. This means that even if the functional mean remains the

same between frequency changes, the volatility might change. However, such a change in

the volatility will not affect the detection of the stability of the mean. We require that the
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expected value of the errors conditionally on the number of events that occurred on that day

is 0:

Assumption 3.2. E(yt|nt = m′) = 0, E(ϵt,m|nt = m′) = 0, for 1 ≤ m,m′ ≤ K, 1 ≤ t ≤ N ,

and on every interval of stationarity, the frequency of at-least-one event is positive,

Assumption 3.3. q0,i = P {nti > 0} > 0 for all 1 ≤ i ≤ R + 1.

Let t̂0 = 0, t̂R+1 = N and t̂1 < t̂2 < . . . < t̂R be the change points in the mean of nt found

by the binary segmentation introduced in Section 2. In order to estimate q0,i consistently

and to discuss asymptotic consistency of the change point procedures that follow, we assume

that we may consistently estimate the change points in the event frequencies with a mild

rate.

Assumption 3.4. For each 1 ≤ j ≤ R, t̂j = tj + oP (N).

First we define the average of the days between (t̂i−1, t̂i] when events happen,

q̃i =
1

t̂i − t̂i−1

t̂i∑
t=t̂i−1+1

1{nt > 0}, (3.1)

under Assumption 3.4 q̃i
P→ qi. This along with the consistency of binary segmentation is

discussed more in Section A of the online supplement.

Due to (1.4) we modify the definition of the daily averages:

Ẑt(u) =
1

q̃i
Yt(u), if t̂i−1 < t ≤ t̂i, 1 ≤ i ≤ R + 1.
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Our testing procedure is based on the L2 norm of the CUSUM process of the Ẑt’s,

Ẑ∗
N(v, u) = N−1/2

⌊Nv⌋∑
t=1

Ẑt(u)− v
N∑
t=1

Ẑt(u)

 , 0 ≤ u, v ≤ 1. (3.2)

We show that Ẑ∗
N(v, u) is asymptotically Gaussian. The limiting process is denoted by

Γ0(v, u), and

Γ0(v, u) = Γ(v, u)− vΓ(1, u),

where Γ(v, u) is a Gaussian process with EΓ(v, u) = 0 and EΓ(v, u)Γ(v′, u′) = C(v, v′, u, u′).

To define the covariance kernel C(v, v′, u, u′), we need some further notation. Due to the

changes in the frequency of events, we write the model of (1.1) as

Xt,i,m(u) = µt(u)+ yt,i(u)+ ϵt,i,m(u), 0 ≤ u ≤ 1, 1 ≤ m ≤ nt,i, ti−1 < t ≤ ti, 1 ≤ i ≤ R+1.

(3.3)

The model in (3.3) reflects that on the days ti−1 < t ≤ ti the second order properties of

(yt,i(u), ϵt,i,m(u)) are the same, although they could be different if we consider the model of

(1.1) on a different sub-interval tℓ < t ≤ tℓ+1, i ̸= ℓ. The functions yt(u), ϵt,m(u) of (1.1)

are stationary only on subintervals. We define n
(e)
t,i , y

(e)
t,i (u), ϵ

(e)
t,i,m(u) as the extension of nt,i,

yt,i(u), ϵt,i,m(u) defined only on (ti−1, ti] to (−∞,∞), and (3.3) can be generalized as

X
(e)
t,i,m(u) = µt(u) + y

(e)
t,i (u) + ϵ

(e)
t,i,m(u), 0 ≤ u ≤ 1, 1 ≤ m ≤ n

(e)
t,i , −∞ < t <∞,

where z
(e)
t,i = z

(e)
t,i (u) = (n

(e)
t,i , y

(e)
t,i (u), ϵ

(e)
t,i,1(u), ϵ

(e)
t,i,2(u), . . . , ϵ

(e)
t,i,K(u)) = gi(ηt, ηt−1, , . . .), and

gi, 1 ≤ i ≤ R+1 are non-random measurable functions defined on S∞, with S a measurable

space, and {ηt,−∞ < t < ∞} are independent, identically distributed random variables
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with values in S. Then, we can have

Y
(e)
t,i (u) =

 1

n
(e)
t,i

n
(e)
t,i∑

m=1

{y(e)t,i (u) + ϵ
(e)
t,i,m(u)}

1{n(e)
t,i > 0}, 1 ≤ i ≤ R + 1,−∞ < t <∞.

Now for 0 ≤ u, u′ ≤ 1, θi−1 < v ≤ θi, v ≤ v′, we have

C(v, v′, u, u′) =
i−1∑
ℓ=1

θℓ − θℓ−1

q20,ℓ

{
C1,ℓ(u, u

′)− (θℓ − θℓ−1)µ(u
′)C3,ℓ(u)− (θℓ − θℓ−1)µ(u)C3,ℓ(u

′)

+ (θℓ − θℓ−1)
2µ(u)µ(u′)C2,ℓ

}
+
v − θi−1

q20,i

{
C1,i(u, u

′)− µ(u)(min(v′, θi)− θi−1)C3,i(u
′)

− µ(u′)(min(θi, v
′)− θi−1)C3,i(u) + µ(u)µ(u′)(θi − θi−1)(min(v′, θi)− θi−1)C2,i

}
. (3.4)

Clearly, EΓ0(v, u) = 0 and EΓ0(v, u)Γ0(v
′, u′) = D(v, v′, u, u′) with

D(v, v′, u, u′) = C(v, v′, u, u′)− v′C(v, 1, u, u′)− vC(1, v′, u, u′) + vv′C(1, 1, u, u′).

We note that the formulas for C1,i, C2,i and C3,i based on the processes defined on the

sub-interval (ti−1, ti] are provided by (A.23), (A.24) and (A.25) in the online supplement.

Using the extension notations, we can write the functions C1,i, C2,i and C3,i as

C1,i(u, u
′) =

∞∑
t=−∞

cov(Y
(e)
0,i (u), Y

(e)
t,i (u

′)), (3.5)

C2,i =
∞∑

t=−∞

cov(1{n(e)
0,i > 0},1{n(e)

t,i > 0}), (3.6)
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and

C3,i(u) =
∞∑

t=−∞

cov(Y
(e)
0,i (u),1{n

(e)
t,i > 0}). (3.7)

Theorem 3.1. If H0 and Assumptions 2.3–3.4 are satisfied, then for each N we can define

a Gaussian process Γ0
N(v, u) such that

∫ 1

0

∫ 1

0

(
Ẑ∗

N(v, u)− Γ0
N(v, u)

)2
dvdu

P→ 0

and {
Γ0
N(v, u), 0 ≤ v, u ≤ 1

} D
=
{
Γ0(v, u), 0 ≤ v, u ≤ 1

}
.

Corollary 3.1. If the assumptions of Theorem 3.1 are satisfied, then

TN =

∫ 1

0

∫ 1

0

(
Ẑ∗

N(v, u)
)2
dvdu

D→
∞∑
g=1

λgN 2
g ,

where N1,N2, . . . are independent standard normal random variables and λ1 ≥ λ2 ≥ . . . are

the eigenvalues of D(v, v′, u, u′).

By definition, λ1 ≥ λ2 ≥ . . . are determined by the integral equation

λgϕg(v
′, u′) =

∫ 1

0

∫ 1

0

D(v, v′, u, u′)ϕg(v, u)dvdu, g ≥ 1,

where ϕ1, ϕ2, . . . are orthonormal elements of L2([0, 1]× [0, 1]). Since D is unknown, we need
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to estimate it from the sample. If the estimator D̂N satisfies

∫ 1

0

· · ·
∫ 1

0

(
D̂N(v, v

′, u, u′)−D(v, v′, u, u′)
)2
dvdudv′du′

P→ 0, (3.8)

then we have automatically (cf. Horváth and Kokoszka, 2012, p.31) that for every g

λ̂g,N
P→ λg, (3.9)

where the empirical eigenvalues λ̂1,N ≥ λ2,N ,≥ . . . , λ̂N,N satisfy

λ̂g,N ϕ̂g,N(v
′, u′) =

∫ 1

0

∫ 1

0

D̂N(v, v
′, u, u′)ϕ̂g,N(v, u)dvdu, 1 ≤ g ≤ N,

and ϕ̂1,N , ϕ̂2,N . . . , ϕ̂N,N are orthonormal bivariate functions.

These results suggest a simple approach to a consistent test of H0 in (1.2) versus HA

(1.3): we reject H0 at level α if TN is larger than the 1− α quantile of the random variable

M∑
g=1

λ̂g,NN
2
g ,

whereM is a large user-selected integer. The distribution above can be approximated easily,

conditionally on the sample, using Monte Carlo simulations. We select M = 15, which

generally gives us satisfactory approximation of the limit distribution in Corollary 3.1.4

Lastly, an estimator of the time of mean curve change is defined by

v̂N = argmax
v

∫ 1

0

(
Ẑ∗(v, u)

)2
du. (3.10)

4We also provide a discussion of this choice in the Appendix D of the online supplement.
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Under HA, there is a change in the global mean curve at an unknown date k∗ = ⌊Nω⌋, 0 <

ω < 1. Specifically, EẐt(u) = a1(u), 1 ≤ t ≤ k∗ is changed to EẐt(u) = a2(u), k
∗+1 ≤ t ≤ N .

This introduces a drift in the CUSUM process of the form

ā⌊Nv⌋(u) =



⌊Nv⌋a1(u)− vk∗a1(u) + (N − k∗)a2(u), if 0 < v ≤ ω,

⌊Nω⌋a1(u) + (⌊Nv⌋ − ⌊Nω⌋) a2(u)

−vk∗a1(u) + (N − k∗)a2(u), if ω < v ≤ 1.

(3.11)

In this case,

sup
0<v<1

∣∣∣∣∫ 1

0

(
Ẑ∗

N(v, u)
)2
du− 1

N

∫ 1

0

ā2⌊Nv⌋(u)du

∣∣∣∣ = OP (1). (3.12)

If

N

∫ 1

0

(a1(u)− a2(u))
2 du→ ∞,

then this drift is the dominating term. The function
∫ 1

0
ā2⌊Nv⌋(u)du reaches its largest value

at ω, and we get that v̂N/N → ω. Additionally, (3.12) can imply the consistency of our test

of mean curve change. We also provide more details on the consistency of our test in Section

A of the online supplement.

4 Estimation of the long run covariance function

To implement the above test, we require an estimator for D which satisfies (3.8). As a

simplified case, we discuss the estimation of D when the event observations are modeled as

volatility processes that are serially uncorrelated in Section B of the online supplement. In

a more general case, we relax the uncorrelated assumptions and illustrate the consistency

of kernel estimators. The times of changes, t1, t2, . . . , tR are estimated by t̂1, t̂2, . . . , t̂R̂ using

the binary segmentation method. Recall that the estimates satisfy (2.11).
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When the processes are stationary on the intervals (ti−1, ti], 1 ≤ i ≤ R + 1, we use the

observations on these time intervals to estimate C1,i, C2,i and C3,i. Let K be the kernel

satisfying

Assumption 4.1. (i) K(0) = 1, (ii) K(x) = 0 if |x| > c∗ with some c∗ > 0, (iii) K is

differentiable on [−c∗, c∗].

We let h = hN be a window or bandwidth parameter satisfying

Assumption 4.2. hN → ∞ and hN/N → 0.

We estimate the correlations of lag −(t̂i − t̂i−1 + 1) < d < t̂i − t̂i−1 + 1 on the interval

(t̂i−1, t̂i] with

γ̂
(1)
i,d (u, u

′) =
1

t̂i − t̂i−1 − |d|

ti∑
t=ti−1+1

(Yt(u)− Y ∗
i (u))(Yt+d(u

′)− Y ∗
i (u

′)),

γ̂
(2)
i,d =

1

t̂i − t̂i−1 − |d|

ti∑
t=ti−1+1

(1{nt > 0} − q̃i)(1{nt+d > 0} − q̃i),

γ̂
(3)
i,d (u) =

1

t̂i − t̂i−1 − |d|

ti∑
t=ti−1+1

(Yt(u)− Y ∗
i (u))(1{nt+d > 0} − q̃i),

and

Y ∗
i (u) =

1

t̂i − t̂i−1 + 1

t̂i∑
t=t̂i−1

Yt(u), 0 ≤ u, u′ ≤ 1, 1 ≤ i ≤ R + 1. (4.1)

where q̃i is defined in (3.1). Using these empirical correlations, we define the long run

covariance (LRC) estimates

Ĉ
(LRC)
1,i (u, u′) =

ti−ti−1∑
d=−(ti−ti−1)

K
(
d

h

)
γ̂
(1)
i,d (u, u

′),
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Ĉ
(LRC)
2,i =

ti−ti−1∑
d=−(ti−ti−1)

K
(
d

h

)
γ̂
(2)
i,d ,

and

Ĉ
(LRC)
3,i (u) =

ti−ti−1∑
d=−(ti−ti−1)

K
(
d

h

)
γ̂
(3)
i,d (u).

Applying (2.11), Assumptions 3.1, 4.1 and 4.2 one can show that

∫ 1

0

∫ 1

0

(
Ĉ

(LRC)
1,i (u, u′)− C1,i(u, u

′)
)2
dudu′

P→ 0, (4.2)

Ĉ
(LRC)
2,i

P→ C2,1 (4.3)

and ∫ 1

0

(
Ĉ

(LRC)
3,i (u)− C3,i(u)

)2
du

P→ 0. (4.4)

The plug in estimator for C(v, v′, u, u′) is

Ĉ
(LRC)
N (v, v′, u, u′)

=
i−1∑
ℓ=1

θ̂ℓ − θ̂ℓ−1

q̃2ℓ

{
Ĉ

(LRC)
1,i (u, u′)− (θ̂ℓ − θ̂ℓ−1)µ̂ℓ(u

′)Ĉ
(LRC)
3,ℓ (u)− (θ̂ℓ − θ̂ℓ−1)µ̂ℓ(u)Ĉ

(LRC)
3,ℓ (u′)

+ (θ̂ℓ − θ̂ℓ−1)µ̂ℓ(u)µ̂ℓ(u
′)Ĉ

(LRC)
2,ℓ

}
+
v − θ̂i−1

q̃2i

{
Ĉ

(LRC)
1,i (u, u′)− µ̂i(u)(min(v′, θ̂i)− θ̂i−1)Ĉ

(LRC)
3,i (u′)

− µ̂i(u
′)(min(θ̂i, v

′)− θ̂i−1)Ĉ
(LRC)
3,i (u) + µ̂i(u)µ̂i(u

′)(min(v′, θ̂i)− θ̂i−1)Ĉ
(LRC)
2,i

}
.

The results in (2.11) and (4.2)–(4.4) imply that

∫ 1

0

· · ·
∫ 1

0

(
Ĉ

(LRC)
N (v, v′, u, u′)− C(v, v′, u, u′)

)2
dvdv′dudu′

P→ 0
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and therefore

∫ 1

0

· · ·
∫ 1

0

(
D̂

(LRC)
N (v, v′, u, u′)−D(v, v′, u, u′)

)2
dvdv′dudu′

P→ 0,

where D̂
(LRC)
N (v, v′, u, u′) = Ĉ

(LRC)
N (v, v′, u, u′)− v′Ĉ

(LRC)
N (1, v, u, u′)− vĈ

(LRC)
N (1, v′, u, u′) +

vv′Ĉ
(LRC)
N (1, 1, u, u′). Hence (3.8) holds when kernel estimators are used for the long run

variances.

We note that the results in this section follow from Theorem 2.3 of Berkes et al. (2016) ap-

plied on each stationary sub-interval separately. A similar argument is also used in Horváth,

Kokoszka, et al. (2022). We refer the reader to that literature for more technical details on

the estimation of the long run covariance function.

5 Monte Carlo simulations

In this section we present the results of Monte Carlo simulations that aimed to study fi-

nite sample performance of the developed stability test. The stability test consists of the

frequency change test in Section 2 as well as the mean curve change test in Section 3. We

performed some simulations to evaluate the performance of the event frequency change point

analyses by itself, which showed generally satisfactory performance for both the detectors

Λ̃N and ∆̃N . We have relegated these results to Section C of the online supplement, and

below we consider perform the frequency change tests based on ∆̃N .

We instead use this space then to focus on the analysis of simulation results for the

“overall” stability test.
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Empirical size under H0

For the purpose of simplicity, we set only one frequency change (R = 1) in the middle of

sample period. The detailed steps of our Data Generating Processes (DGP) under the null

hypothesis is as follow:

1. Set the time of frequency change at t1 = ⌊N/2⌋, resulting in two homogeneous segments

(1, ⌊N/2⌋] and (⌊N/2⌋, N ].

2. Generate the Bernoulli variable ξt with success rate 0.3 for 1 ≤ t ≤ ⌊N/2⌋ and with a

different success rate 0.7 for ⌊N/2⌋ < t ≤ N .

3. If ξt = 1, generate the number of events at day t by nt ∼ min(Pois(1) + 1, 15), where

Pois(1) denotes the Poisson distribution with parameter equal to 1, which enables nt

strictly larger than zero and capped at 15. If ξt = 0, then nt = 0.

4. Set µ(u), the common mean under H0, to one of the three choices: i) a constant

function µ(u) = 1, ii) a sine function µ(u) = sin(2πu), or iii) a trend function µ(u) = u.

5. Generate yt(u) for either the IID case or the functional autoregressive (AR) case

� IID case: yt(u) =
∑5

r=1 at,rψr(u), where at,r ∼ i.i.d. N (0, 0.22) and ψr(u) are

Fourier basis functions.

� AR case: yt(u) =
∑5

r=1 bt,rψr(u), where bt,r follows autoregressive process bt,r =

ρbt−1,r + zt,r, 1 ≤ r ≤ 5. We set ρ = 0.3, 0.5, or 0.7, and zt,r ∼ i.i.d. N (0, σ2
r),

where (σ1, σ2, σ3, σ4, σ5) = (0.1, 0.05, 0.05, 0.025, 0.025).

6. Generate ϵt,m(u) =
∑5

r=1 bt,r,mψr(u), where bt,r,m ∼ i.i.d. N (0, 0.12), ψr(u) are Fourier

basis functions, and 1 ≤ m ≤ nt.
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7. If nt > 0, generate Xt,m(u) = µ(u) + yt(u) + ϵt,m(u).

We calculate the test statistic TN by the steps detailed in Section D.1 of the online

supplement. To approximate its limit distribution, we use the estimated eigenvalues based

on the estimator covariance kernel of Section B for the IID case and use a kernel estimator

for the AR case. For the kernel estimator, we use the Bartlett (BT) kernel K(x) = (1 −

|x|)1 {|x| < 1} with the bandwidth h = ⌊4(N/100)2/9⌋. We also tried the flat-top kernel

with bandwidth h = log(N), and similar level of empirical sizes and power are observed.

Section D in the online supplement provides the detailed guidance on the implementing the

two estimators, which may be useful for researchers who want to apply it without studying

the underlying theory.

We repeat the Monte Carlo simulation 1,000 times and report the empirical sizes at the

significance levels of 1%, 5%, and 10% for the IID case in Table 1 and the AR case in Table

2. For the IID case, it can be observed that the empirical sizes under three different µ(u)

are generally close to their theoretical levels, though there are some slight deviations. For

the AR case, the empirical sizes are slightly under-sized if ρ = 0.3 and 0.5, but closer to

theoretical levels if ρ = 0.7. Comparing with µ(u) = sin(u), the empirical sizes are generally

higher if µ(u) = u and lower when µ(u) = 1. Overall, the test has reasonably good empirical

sizes close to the nominal sizes as suggested by the theory developed in Section 3.

Table 1: Empirical size of the IID case

µ(u) = 1 µ(u) = sin(2πu) µ(u) = u

1% 5% 10% 1% 5% 10% 1% 5% 10%

N = 100 0.3% 5.1% 9.4% 0.7% 4.5% 10.7% 1.6% 7.1% 13.9%
N = 200 0.2% 2.7% 6.3% 0.5% 3.6% 9.0% 0.7% 4.4% 10.2%
N = 300 0.8% 3.5% 7.5% 0.4% 4.3% 8.4% 0.6% 5.0% 11.0%
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Table 2: Empirical size of the AR case

ρ = 0.3 ρ = 0.5 ρ = 0.7

µ(u) = 1

1% 5% 10% 1% 5% 10% 1% 5% 10%

N = 100 0.0% 1.6% 5.3% 0.1% 2.6% 6.5% 0.4% 2.7% 7.1%
N = 200 0.3% 1.9% 5.7% 0.2% 2.6% 6.7% 0.5% 2.7% 7.5%
N = 300 0.2% 1.3% 4.8% 0.1% 2.6% 5.5% 0.4% 2.6% 7.4%

µ(u) = sin(2πu)

1% 5% 10% 1% 5% 10% 1% 5% 10%

N = 100 0.2% 2.9% 6.9% 0.0% 1.9% 6.4% 0.4% 4.9% 9.9%
N = 200 0.1% 2.3% 6.0% 0.1% 2.3% 7.2% 0.3% 4.2% 11.2%
N = 300 0.1% 2.7% 6.7% 0.2% 2.3% 7.1% 0.7% 4.9% 12.2%

µ(u) = u

1% 5% 10% 1% 5% 10% 1% 5% 10%

N = 100 0.1% 2.9% 7.9% 0.1% 3.1% 8.9% 0.9% 6.3% 13.1%
N = 200 0.3% 3.0% 7.3% 0.2% 1.9% 6.4% 1.0% 6.2% 12.7%
N = 300 0.4% 3.6% 7.5% 0.3% 2.5% 7.7% 0.8% 6.1% 12.5%

Empirical power under HA

We now turn to the analysis of the empirical power. For the purpose of demonstration,

we choose the random effect and error distributions to follow the AR case above, with the

change in the mean curve in following four scenarios:

� Scenario 1: µt(u) = 0.5 if 1 ≤ t ≤ k∗µ, µt(u) = 1 if k∗µ < t ≤ N ;

� Scenario 2: µt(u) = 0.5 if 1 ≤ t ≤ k∗µ, µt(u) = sin(2πu) if k∗µ < t ≤ N ;

� Scenario 3: µt(u) = 0.5 if 1 ≤ t ≤ k∗µ, µt(u) = u if k∗µ < t ≤ N ;

� Scenario 4: µt(u) = sin(2πu) if 1 ≤ t ≤ k∗µ, µt(u) = u if k∗µ < t ≤ N ,

where k∗µ is set to be at ⌊0.25N⌋, ⌊0.5N⌋, or ⌊0.75N⌋.
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We investigate the empirical power by using the same procedure we used under the null.

We generate the data under the alternative, calculate the test statistics, and approximate

the limit distribution of the statistics. The Monte Carlo simulation is also repeated 1,000

times and the empirical power is shown in Table 3. There are some distinctions between

the four scenarios. Scenarios 2 and 4 have very high power (close to 100%) for all k∗µ and

ρ, even when N is as small as 100. This is mainly because those two scenarios involve a

sine function, which is a more ‘obvious’ change. Scenario 1 is a parallel shift from 0.5 to 1,

while Scenario 3 is a change from a flat curve to a slope. For Scenario 1 and 3, the empirical

power is generally high when N is more than 150. Comparing different k∗µ, the empirical

power is highest when the mean curve change occurs in the middle k∗µ = ⌊0.5N⌋, followed

by the late change k∗µ = ⌊0.75N⌋, while the early change k∗µ = ⌊0.75N⌋ has lowest power.

The higher power under k∗µ = ⌊0.5N⌋ can be intuitively explained by the fact that the time

of frequency change t1 and the time of mean curve change coincide at ⌊0.5N⌋. Lastly, the

empirical power deteriorate slightly with a higher ρ.

6 An application to IPO performance

There is a vast amount of literature on studying IPO performance, which is a classic ex-

ample in event studies. One central topic in the literature is IPO underpricing which is an

observation that in a typical IPO the stock price rises above the initial offer price after one

trading day. Four theories to explain IPO underpricing have been proposed, including infor-

mation asymmetry (Baron and Holmstrom, 1980; Aggarwal et al., 2002; Hanley, 2008), the

legal system (Tinic, 1988; Hughes and Thakor, 1992; Lowry and Shu, 2002), ownership sep-

aration (Booth and Chua, 1996; Brennan and Franks, 1997; Stoughton and Zechner, 1998),

and behavioral finance (Derrien, 2005; Ljungqvist et al., 2006; Cornelli et al., 2006). Among
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Table 3: Empirical power of the AR case

k∗µ = ⌊0.5N⌋ k∗µ = ⌊0.25N⌋ k∗µ = ⌊0.75N⌋

ρ 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

Scenario 1: µt(u) = 0.5 if 1 ≤ t ≤ k∗µ, µt(u) = 1 if k∗µ < t ≤ N .

N = 100 99.3% 99.0% 96.9% 56.5% 55.7% 52.6% 89.0% 85.9% 82.4%
N = 150 100.0% 99.8% 99.7% 80.6% 81.3% 75.2% 98.6% 97.7% 94.6%
N = 200 100.0% 100.0% 100.0% 92.8% 93.4% 89.4% 100.0% 99.3% 98.8%

Scenario 2: µt(u) = 0.5 if 1 ≤ t ≤ k∗µ, µt(u) = sin(2πu) if k∗µ < t ≤ N .

N = 100 100.0% 100.0% 100.0% 98.9% 98.7% 98.7% 100.0% 100.0% 100.0%
N = 150 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
N = 200 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Scenario 3: µt(u) = 0.5 if 1 ≤ t ≤ k∗µ, µt(u) = u if k∗µ < t ≤ N .

N = 100 95.6% 94.7% 91.7% 56.4% 55.6% 55.4% 69.2% 65.2% 65.3%
N = 150 99.7% 99.8% 99.2% 85.0% 82.7% 78.4% 90.0% 88.8% 85.4%
N = 200 100.0% 100.0% 100.0% 95.4% 94.6% 93.2% 98.9% 98.2% 97.2%

Scenario 4: µt(u) = sin(2πu) if 1 ≤ t ≤ k∗µ, µt(u) = u if k∗µ < t ≤ N .

N = 100 100.0% 100.0% 100.0% 99.6% 99.6% 98.9% 99.9% 99.7% 99.9%
N = 150 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
N = 200 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

them, the explanatory theories based on information asymmetry, legal system and owner-

ship separation all assume that investors are rational people, and the price on the secondary

market can reflect the stock value. The relatively high closing price is caused by the low

IPO issuance price, while the explanatory theory based on behavioral finance considers the

secondary market. There are irrational traders, herding effect and excessive pursuit of new

shares, leading to high closing prices.

However, less attention has been paid to investigate whether the IPO performance is stable

over time. Due to evolving circumstances, such as changes in the economic environments and

interventions by regulators, the average of IPO cumulative (abnormal) returns might have

changed during the sample period. To this end, we apply the developed stability test on the

cumulative (abnormal) returns of IPOs in mainland China. Our data is downloaded from
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Wind Economic Database, and the sample period is from December 1, 2015 to September

30, 2020, excluding non-trading days.5 The total number of trading days is 1,181. Recall the

notation that there are nt number of IPO issued on the trading day t. There are 1,297 IPOs

on the Shanghai Stock Exchange and Shenzhen Stock Exchanges during our sample period.

We consider the cumulative (abnormal) return within three months (60 trading days).

Below, we first apply the stability test developed above to the raw data of cumulative

returns of IPO stocks. We note here that the changes in the mean trajectory of the cumulative

returns could simply be due to changes in the market returns. Subsequently then, we consider

a similar analysis based on the cumulative abnormal returns of IPO stocks, in which the

market return6 is approximately removed, which is more inline with classic event studies.

The instability based on the cumulative abnormal returns will reveal the change in the “net”

IPO performance.

Exploratory analysis based on cumulative return

The cumulative return curves (CRC) of the stock m with its IPO on date t is defined as

CRCt,m(u) =
Pt,m(u)− Pt,m(0)

Pt,m(0)
, 0 ≤ u ≤ 60, 1 ≤ m ≤ nt, 1 ≤ t ≤ 1181 (6.1)

where Pt,m(0) is the IPO issuance price, and Pt,m(u) is the price of the stock traded at time

u after its IPO.7 To facilitate computation, we have rescaled u to the unit interval [0, 1]. As

discussed in the introduction, the number and frequency of IPOs fluctuate throughout the

5The sample period is chosen to avoid a prolonged period of IPO suspension in China. The China
Securities Regulatory Commission (CSRC) suspended IPOs between July 4, 2015 and November 31, 2015 in
order to slow a devastating stock market crash in 2015. Such suspension was lifted and the resumption of
IPO was allowed in December 1, 2015.

6We used a value-weighted portfolio of all stocks in China’s A-share market.
7This definition allows us to use both high frequency intraday data as well as daily data. Due to the

computational cost, we choose to use daily data in this study.

30



sampling period.

In the first step, we are interested in whether the frequency of IPO issuances has changed

in the sample period. To this end, we employ the developed frequency change test (specifi-

cally based on ∆̃N) in Section 2 to segment the days according to the change of frequency.

Because there could be multiple changes in the frequency, we further use binary segmenta-

tion to obtain the remaining changes. Table 4 shows the results of the segmentation test.

We find five changes in the frequency at 5% significance level, resulting in six segments

over our sample period. The frequency jumped from 23.0% to 51.4% on March 3, 2016 and

further increased to 84% on August 5, 2016. Afterwards, the frequency reduced to 40.7%

on December 6, 2017, and then moved to 70.6% on October 18, 2019, followed by another

increase to reach its highest value of 94.5% on June 18, 2020.

In the second step, we focus on investigating whether the mean curve of IPO cumulative

returns is stable over the sample period. To answer this question, we use the proposed mean

curve change test procedure in Section 3. If the null hypothesis of stability is rejected, we

find the time of mean curve change by the estimator v̂N in (3.10). Again, it is likely that

the mean curve is subject to multiple changes. Thus, we use binary segmentation to find

the rest of the changes over the sample period. Our stability test procedure reveals three

changes in the mean curves on the following dates: February 22, 2017 (p-value: 0.000), May

28, 2018 (p-value: 0.027), and January 15, 2019 (p-value: 0.026). Figure 3 shows how the

mean curves evolved over different periods. It is clear that the mean curve of IPO cumulative

return was at its highest level before February 22, 2017. Since then the mean curve declined

twice on May 28, 2018 and on January 15, 2019. Interestingly, the mean curve bounced back

to a slightly higher level between January 16, 2019 and September 30, 2020.
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Table 4: Results of frequency change test

Start End
Total Total Total Days with Total Days Frequency
IPOs Days at least one IPO with no IPO q̃ℓ

Seg. 1 1-Dec-15 2-Mar-16 37 61 14 47 23.0%
Seg. 2 3-Mar-16 4-Aug-16 70 107 55 52 51.4%
Seg. 3 5-Aug-16 5-Dec-17 569 325 273 52 84.0%
Seg. 4 6-Dec-17 17-Oct-19 254 452 184 268 40.7%
Seg. 5 18-Oct-19 17-Jun-20 180 163 115 48 70.6%
Seg. 6 18-Jun-20 30-Sep-20 187 73 69 4 94.5%
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Figure 3: Mean curve of IPO cumulative returns

Formal analysis based on abnormal cumulative return

Following the typical approach of event studies, we now consider the cumulative abnormal

returns. To obtain abnormal returns, it is typical to specify an asset pricing model for the

stock returns, such as the one-factor capital asset pricing model (CAPM) and the three-

factor model (Fama and French, 1993), and then estimate the factor loadings based on the

historical data before the events. However, in the study of IPOs, one does not have any

historical data to fit to the asset pricing model. Linton (2019) explains that it is common

to just use the market return as a proxy for the normal return of the IPOs. Following this

common practice, we define the cumulative abnormal return curve (CARC) of the stock m
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with its IPO on date t as

CARCt,m(u) =
Pt,m(u)− Pt,m(0)

Pt,m(0)
− P

(mkt)
t (u)− P

(mkt)
t (0)

P
(mkt)
t (0)

, (6.2)

where P
(mkt)
t (0) is the opening price of market index on date t, and P

(mkt)
t (u) is the market

index at time u after the opening on day t. Intuitively, the CARC of IPO is the cumulative

return curve of the stock minus the cumulative market return curve.

We repeat the same two-step procedure, the frequency change test and the mean curve

change test, on the CARC of IPOs. The first step of the frequency change test has the

same results as the cumulative return because the frequency of IPO issuance is the same

in both cases. In the second step of the mean curve test, we only find one change in the

CARC on September 26, 2018 (p-value: 0.000). Binary segmentation does not suggest

further changes. The identified change could be related to announcement made by the

China Securities Regularly Commission (CSRC) on September 30, 2018; CSRC unveiled to

significantly reduce the member size of its issuance examination committee from 66 to 35,

in particular removing most part-time committee members. The lower panel of Figure 1

displays the mean curves of cumulative abnormal return before and after the change. Before

the change, the CARC are positive with a upward trend before 20 days and then level off.

However, after the change, the CARC has a very different pattern after the change, showing

a clearly downside trend. This finding could be insightful for policy regulators and investors.
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Online Supplement: In Section A, we provide the detailed proofs of all technical results.
In Section B, we discuss the estimation of the long run variance function with uncor-
related errors. In Section C, we present the simulation results of the frequency change
test. In Section D, we outline practical guidance on the implementation of our stability
test. (PDF)

Computer Code: MATLAB code to perform the test described in the article. (zip file)

IPO data set: Data set used in the illustration of methods in Section 6. (.xlsx file)

Acknowledgements

We wish to thank the Editor (Professor Atsushi Inoue), the associate editor, and two anony-
mous referees whose comments and suggestions led to vast improvements of this work. We
thank the Reading Academic Computing Cluster at the University of Reading for provid-
ing the high performance computer, which enables the successful execution of our highly
computational simulations and the empirical application. We would like to thank Professor
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