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Abstract

Climate change projection under different greenhouse gas and aerosol emission scenarios is

crucial for informing societal adaptation and mitigation measures. This traditionally relies

on computationally expensive global climate models (GCMs) run on decadal to centennial

timescales. One of the goals of this thesis is in exploring machine learning models and emulators

trained on the output of global climate models, that can assist in this endeavour by providing

rapid estimations of the climate response. Two statistical models are developed, one of which

emulates the global short-term climate response to an emissions perturbation and one which

learns the mapping from the short-term climate response to the long-term climate response.

Different perspectives are taken so that the short-term response is predicted with a probabilistic

emulator which interpolates between known and unknown data points, while the global patterns

of long-term response are predicted with machine learning methods. Both models are shown to

accelerate climate change projections and also provide new insights into the main drivers of

climate change through sensitivity analysis to different emission perturbations and by uncovering

consistent early indicators of long-term climate response.

Discovering structures in climate data that can explain patterns and behaviour is another focus

of this thesis, addressed through a dimension reduction technique to simplify large datasets.

This is approached from a Bayesian perspective which could allow a complete quantification

of uncertainty when making predictions through an emulator trained on a reduced dataset.

Reversible jump Markov chain Monte Carlo and Sequential Monte Carlo algorithms are developed

for a latent factor model to infer the probability distribution on both the number of underlying

dimensions and the structure of these. Sequential Monte Carlo is found to be significantly more

effective at determining these and is demonstrated on weather observations to reveal underlying

factors governing the weather behaviour.
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Chapter 1

Introduction

Climate change is one of the most pressing issues of our time given its potential to impact

everyone on the Earth. The emissions released today can shape our future climate which has

major implications for society as a whole. This makes climate change projection an essential

task. Predicting the climate response to emissions can influence policy decisions, potentially

leading to a different world, in terms of both climate and human socioeconomics. A wide range

of state-of-the-art methods are constantly being explored and employed for climate change

projection. This thesis delves into the potential of Bayesian statistics and machine learning to

assist with this endeavour.

Climate projection has always benefited from a wide array of statistical methods, in both data

analysis, where the goal is to gain information from a dataset, and climate modelling, where the

state of the climate is simulated through time under different conditions (Collins et al., 2013a).

The choice of statistical methods is constantly growing with increased computing power and

recently, the term ‘machine learning’ has become highly integrated into this set of tools. This

includes supervised learning, which can be applied to learn information about relationships

between variables and to make predictions from these learned relationships, and unsupervised

learning, which aims to uncover common factors or patterns in a dataset.

The main focus of this thesis will be on the use of statistical methods for climate change projection,

specifically to predict the surface temperature response to different emission scenarios. When

1
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the overall climate response is of interest, long integrations of complex global climate models

(GCMs) are typically required to A) reach an approximate equilibrium state and B) average

over the effects of internal climate variability. This is highly expensive due to the complexity of

GCMs, providing motivation for surrogate models, which can quickly estimate the response of a

complex model to a perturbed input. While this type of prediction will not provide the same

level of detail or accuracy as a GCM, it can provide almost instantaneous estimations, making

it a useful tool for immediate policy decision or to as a complement to GCMs in more detailed

policy studies. Developing surrogate models for this use is one of the key goals of this thesis.

Although climate change projection is concerned mainly with determining relationships between

the emissions and the climate response, crucial to this is understanding the relationships between

different aspects of the climate. Patterns in the climate response often reflect this and hence

there is value in seeking out underlying features that govern the behaviour of the climate.

Determining these features is therefore another focus of this thesis. This will be approached

by modelling the data with a latent factor model, where each factor describes an aspect of the

data’s behaviour. A Bayesian computation perspective will be taken to develop Monte Carlo

simulation methods for inference on the probability distribution on the latent factor model,

including on the number of underlying factors. Understanding these factors is not only useful

from a scientific point of view, but can also aid prediction, by simplifying the variables involved

in prediction. Before outlining the main goals of this work, the introduction will provide some

background to the topic of climate change projection and the statistical tools used throughout,

including machine learning, emulation, dimension reduction, Bayesian statistics and Monte

Carlo.



1.1. Climate Response 3

1.1 Climate Response

1.1.1 Climate Concepts

First, we will outline some basic climate terminology and concepts that will be used throughout

this thesis. The climate can generally be thought of as the long-term statistics of the weather

and is usually defined by the mean and variability of relevant quantities, such as surface

temperature, precipitation and wind. Typically, these averages are taken over 30 years, a

standard defined by the World Meteorological Organization (Cubasch et al., 2019). The climate

system includes the atmosphere, hydrosphere, cryosphere, land surface and biosphere (WMO,

1975). Climate change refers to a change in this state that can be identified and that persists

for an extended period, typically decades or longer.

The Earth system is powered by energy from incoming solar shortwave radiation (SWR), of

which some is absorbed by the surface, some is absorbed by the atmosphere and the remaining

is reflected back to space (Figure 1.1, Cubasch et al. (2019)). Most of the SWR meets the

Earth in the tropics and subtropics, but atmospheric and oceanic transport processes act to

redistribute this energy across the Earth to middle and high latitudes. The Earth’s surface also

emits energy in the form of longwave radiation (LWR). This is mostly absorbed by greenhouse

gases and clouds, which themselves emit LWR in all directions. The downward component of

this contributes to heating the lower atmosphere, called the troposphere, in the greenhouse

effect, while the upward component leaves the top of the atmosphere as outgoing longwave

radiation (OLR).

At the top of the atmosphere, the energy from incoming solar radiation can be compared with

the energy from outgoing radiation (OLR plus reflected SWR). This is called the Earth’s energy

budget. Over long timescales, the incoming and outgoing radiation balance each other out to

reach an equilibrium state, but a sudden change in the Earth system can lead to an imbalance

between these (Murphy et al., 2009). This leads us to the concept of radiative forcing (Hansen

et al., 1997).
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Figure 1.1: Reproduced from Cubasch et al. (2019) showing the Earth’s energy budget and the
main drivers of climate change.

We define the instantaneous radiative forcing as the change in net downward energy flux

incident on the Earth at the top of the atmosphere. This can be in response to a natural

perturbation, such as fluctuations in the solar output, or to an anthropogenic (human induced)

perturbation, such as the emission of radiatively active gases or aerosols. We will be mostly

concerned with the anthropogenic influences, as we are interested in understanding future

climate change under various scenarios defined by societal changes. This definition, however,

does not account for any interactions that occur between perturbed quantities and atmospheric

properties, for example, how aerosols change the atmospheric conditions for clouds to form

(semi-direct effect, Section 1.1.2) (Gregory et al., 2004; Shine et al., 2003) or fast stratospheric

temperature adjustments to changes in atmospheric carbon dioxide concentrations (Smith et al.,

2018b). We call these interactions rapid adjustments to the atmosphere. To account for this,
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we define effective radiative forcing (ERF) as the change in net downward flux at the top of

the atmosphere, after allowing for any rapid adjustments without any large-scale changes of

surface temperature. This is usually calculated by running a climate model given a perturbation

and allowing rapid atmospheric adjustments to occur while fixing sea surface temperature and

ice cover constant (Myhre et al., 2013). This allows us to better quantify the total radiative

effect of a perturbation and tends to be a better indicator of temperature response.

As well as being concerned with external forcings, we will also refer to internal processes that can

affect the climate. Climate feedbacks occur when a change in one quantity affects another,

which in turn leads to an additional change in the original quantity (Intergovernmental Panel

on Climate Change (IPCC), 2014). A feedback can be positive, in which the initial perturbation

is enhanced, or negative, in which the initial perturbation is weakened. These are particularly

relevant because they can amplify or diminish the effect of a forcing.

1.1.2 Types of Anthropogenic Forcings

Anthropogenic perturbations are human-induced forcings that affect the Earth’s radiative

imbalance and can therefore modify the Earth’s climate. These perturbations include surface

changes such as changes to vegetation and surface albedo (the fraction of light reflected from

the surface) and the release of pollutants (Figure 1.1). Globally, most of the anthropogenic

forcing is attributed to greenhouse gases, mainly in the form of carbon dioxide which was first

noticed to be accumulating in the atmosphere by Keeling (1961). However, there are other

relevant pollutants, such as other gases and aerosols, that also have a substantial effect on the

radiative imbalance (Myhre et al., 2013). This section will outline some of the key pollutants

and their properties.

Pollutant Properties

A pollutant can be a gas or an aerosol (a liquid or solid particle) and can alter the climate

in different ways, such as causing a surface warming or cooling, affecting cloud properties or
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changing precipitation levels. The pollutant can have varying degrees of local and remote

response, ranging from primarily impacting regions close to the emission region compared to

causing a global climate impact. Furthermore, the pollutant can have a short or a long lifetime,

which will determine the duration of the pollutant’s effect on the climate and can affect their

ability to move across the Earth and cause changes to the climate further afield from the region

of emission. We will categorise pollutants into short- and long-lived pollutants, where short-lived

pollutants have lifetimes � 50 days and long-lived pollutants have lifetimes beyond this that

allow them to disperse throughout the troposphere (Heicklen, 1982).

The most common long-lived pollutants are well-mixed greenhouse gases, such as carbon dioxide

(CO2) and methane (CH4). These pollutants remain in the atmosphere for long periods of time

after emission (centuries to thousands of years for CO2 (Archer and Brovkin, 2008) and decades

for CH4 (Dentener et al., 2013)). This time period is greater than the timescale for atmospheric

mixing (a few years (Myhre et al., 2013)), and therefore they are able to disperse throughout

the troposphere and become well-mixed over the globe. This means they have a fairly spatially

homogeneous effect on the Earth’s climate.

In contrast, short-lived pollutants, also known as near-term climate forcers, have short lifetimes

meaning they do not accumulate in the atmosphere on decadal to centennial time scales (Myhre

et al., 2013). These can be gases or aerosols. Examples include the gas ozone (O3), the sulfate

aerosol (SO4) and black or organic carbon aerosol (BC/OC). Short-lived gases tend to be

highly reactive with other atmospheric gases and therefore quickly undergo chemical processes,

removing the pollutant from the atmosphere. Aerosols typically survive in the atmosphere for a

few days or weeks because they are removed from the atmosphere through dry deposition (as

they stick to the surface at the rate of turbulent diffusion), wet deposition (through precipitation)

or re-evaporation. These pollutants are not transported far during their short lifetime which

means their main effects take place predominantly in the near term and close to the region of

emission.
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Greenhouse Gases

Well-mixed greenhouse gases (GHG) like CO2 are the most high profile of anthropogenic forcings.

The term ‘well-mixed’ is used as they are sufficiently mixed throughout the troposphere due to

their long lifetime (although local and hemispheric variations may still exist due to sources and

sinks). Increases in GHGs since pre-industrial times has given rise to a positive radiative forcing

by enhancing the greenhouse effect (Myhre et al., 2013). The most important well-mixed GHGs

that contribute to the anthropogenic forcing from 1750-2013 are CO2, CH4, nitrous oxide (N2O)

and dichlorodifluoromethane (CFC-12) (Myhre et al., 2013).

GHGs absorb longwave radiation emitted by the Earth’s surface and emit longwave radiation in

all directions. Some of this longwave radiation is emitted in the downwards direction, which causes

further warming of the atmosphere below and the surface. This is the greenhouse effect. As well

as directly affecting the Earth’s temperature, GHGs also affect other properties of the atmosphere

such as hydrological cycle, which is affected in two ways on differing timescales. Firstly, the

presence of GHGs in the atmosphere decreases precipitation rates as atmospheric stability is

increased. This is a fast response that occurs before a change in surface temperature is realised

(Dong et al., 2009; Andrews et al., 2010). Secondly, the surface temperature warming caused

by GHGs leads to additional surface evaporation, since the Clausius-Clapeyron relationship

predicts an increase in water vapour saturation pressure as temperature increases(Held and

Soden, 2006). This adds additional water vapour (another greenhouse gas) to the atmosphere,

which further enhances the greenhouse effect.

Aerosols

The next largest contributors to the anthropogenic forcing after GHGs are aerosols (Myhre et al.,

2013). Aerosols are solid or liquid particles suspended in the air, typically 0.001µm-10µm in

diameter (Haywood and Boucher, 2000). Aerosol particles can be emitted into the atmosphere

directly, but they also often form from gaseous precursors. For instance, sulfate aerosols (SO4)

are usually formed from the oxidation of sulfur dioxide (SO2), of which the main anthropogenic



8 Chapter 1. Introduction

Figure 1.2: Reproduced from Myhre et al. (2013) showing breakdown of radiative forcing in
1980-2011 and total anthropogenic forcing.

source is burning fossil fuels.

Aerosols can have a wide range of effects on the climate. Firstly, there are aerosol-radiation

interactions shown on the left-hand panel of Figure 1.3. Aerosols can directly interact with

radiation, by scattering or absorbing SWR and emitting LWR. This is often called the direct

effect (Boucher et al., 2013). By heating or cooling the air directly, aerosols change the conditions

for clouds. For example, black carbon absorbs SWR which heats the atmosphere and decreases

the relative humidity. This can evaporate clouds in the region and stabilise the atmosphere to

prevent new clouds forming. A decrease in cloud cover leads to a decrease in scattered SWR and

therefore has a warming effect. This can be viewed as an adjustment to the aerosol-radiation

interactions and is sometimes called the semi-direct effect (Johnson et al., 2004).

Aerosol particles can also affect the climate through the aerosol-cloud interaction shown in

Figure 1.3, also known as indirect effects (Haywood and Boucher, 2000). These interactions

differ from the semi-direct effects as they involve changing cloud microphysics. Aerosol particles
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act as cloud condensation nuclei (CCN) which means that water vapour condenses on them to

form cloud droplets. Areas rich in aerosols have more available CCN for the formation of clouds.

This creates clouds with more water droplets of a smaller size, making them more reflective with

an increased surface area. This enhances their cooling effect and is known as the cloud albedo

effect. It also causes further adjustments, such as modifying the cloud lifetime. As precipitation

occurs only when the water droplets are large enough, a cloud with smaller water droplets has

an increased lifetime before precipitating.

The net effect of aerosol particles is therefore highly complex and often a result of a trade-off

between different effects. Furthermore, we often see different effects depending on the region of

emission and the time of day, season or year. Because of this, there are still large uncertainties

in the estimates of aerosol effective radiative forcings, as demonstrated by the large error bars

in Figure 1.2 (Boucher et al., 2013). Most aerosols tend to create a negative radiative forcing

(and surface cooling) due to the direct radiative effect, i.e. because the aerosol particles reflect

SWR back to space. Sulfate aerosols are one of the main anthropogenic contributers to this.

The negative radiative forcing is partially offset by the absorbing properties of aerosols such as

black carbon, which contributes a smaller but substantial positive radiative forcing. Overall,

however, the net effect of anthropogenic aerosol emission is a negative radiative forcing, as seen

in Figure 1.2, and thus a surface cooling.

Figure 1.3: Reproduced from Boucher et al. (2013) showing the aerosol-radiation interactions
and aerosol cloud interactions.
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1.1.3 Global Response to Forcings

Understanding the individual and net effect of different anthropogenic forcings on the climate

system has long been of interest to climate scientists. For instance, the contribution of forcing

agents to the net radiative forcing in Figure 1.2 is constantly being refined as new studies come

to light (Myhre et al., 2013). GCMs have provided robust methods to estimate the net radiative

forcing and the associated climate response. These have led to extensive research in uncovering

properties of the climate system, such as the equilibrium climate sensitivity which describes

the equilibrium change in global mean temperature per unit forcing. It is typically assumed

that the relationship between global mean forcing and global mean temperature response is

linear. Based on this assumption, several studies have constrained the climate sensitivity for

different climate forcings and in different climate models, in order to make robust predictions

on future climate change given a set of forcings (Hansen et al., 2000, 2005; Gregory et al., 2004;

Andrews et al., 2012).

Beyond this, it is not just the global mean but the complete spatial response that is of interest

to scientists and policy-makers worldwide. Estimating this has become more accessible in recent

years, with the increase in computational budget and complex climate models available. A

wide range of model intercomparison projects have constrained the projected global response to

different pollutant perturbations and scenarios, (e.g. Richardson et al., 2019; Liu et al., 2018b;

Shindell et al., 2013; Taylor et al., 2012; Meehl et al., 2007). For instance, the multi-model

mean surface temperature response relative to the global mean is shown in Figure 1.4 for a

doubling of CO2 and tripling of CH4 (Richardson et al., 2019). There is a general consensus in

the pattern of global warming amongst projections of GHGs, that includes enhanced warming

over land relative to the oceans, with a roughly consistent ratio of 1.4-1.7x, regardless of the

mean response magnitude (Collins et al., 2013a). This is thought to be predominantly due to

enhanced evaporation and latent heat fluxes over the ocean, rather than sensible heat fluxes

that occur over land (Sutton et al., 2007) and due to differences in lapse rate (the rate of

change of temperature with decreasing height) in moist air and dry air (Joshi et al., 2008).

Another common feature across GHG warming projections is strong warming over the Arctic,
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(a) 2xCO2, mean response 2.44K ± 0.75 (b) 3xCH4, mean response 0.67K± 0.33K

Figure 1.4: Reproduced from Richardson et al. (2019) showing multi-model mean surface
temperature response for core PDRMIP forcing experiments (years 81–100 of coupled runs),
normalized by the global mean surface temperature response given in caption. Hatching shows
where the multimodel mean is less than the intermodel standard deviation.

known as Arctic amplification. This occurs mainly because of two postive feedback processes,

the ice-albedo feedback and the lapse rate feedback. The former is because the melting of ice

darkens the surface of the Earth and reduces reflectivity, called the ice-albedo feedback. The

latter occurs because of the positive lapse rate at the poles (warmer temperatures closer to the

surface) which is enhanced with additional warming (Masson-Delmotte, 2012). These spatial

features are not exclusive to GHG perturbations and are also present in other projections, such

as aerosol removal forcings (Kasoar et al., 2018; Richardson et al., 2019; Persad et al., 2018; Xie

et al., 2013).

Both GHGs and aerosols perturbations have spatially dependent responses but the short-lived

nature of aerosols, leading to highly inhomogeneous responses, makes a spatial analysis even

more relevant. Shindell and Faluvegi (2009) were one of the first to investigate the climate

response to regional aerosol forcing, by applying aerosol perturbations in latitudinal bands in a

GCM. Importantly, this study found the response to forcings to be highly dependent on the

region, with enhanced responses at higher latitudes, even due to forcings in tropical regions.

This is due to transport of heat from the tropics to higher latitudes, as well as positive feedbacks

caused by clouds and water vapour (of which there are more at higher latitude climates) and

changes to surface albedo.

More recent studies have taken this further through more localised aerosol perturbations on

continental scales (e.g. Kasoar et al., 2018; Aamaas et al., 2017; Collins et al., 2013b; Myhre
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et al., 2013). Kasoar et al. (2018) show spatially similar patterns of response to the removal

of sulfate aerosol from different regions in a climate model, as demonstrated in Figure 1.5. In

particular, the boxes highlight regions of similarities over the North America extending into

the North Atlantic ocean, central Russia and over the North Pacific ocean. Furthermore, these

patterns are also present within leading spatial modes of variability within the long climate

model simulations. This indicates the response is a projection onto these existing modes, which

has been suggested in previous studies based on both simulations (Shindell et al., 1999; Ring

and Plumb, 2008) and observations (Corti et al., 1999; Palmer, 1999). These consistencies

between emissions, regardless of region, and response patterns provide a strong basis for learning

a simplified model of the relationship between emissions and response pattern which will be

approached in this thesis through machine learning and emulation methods (Chapter 3 and 4).

This has implications for policy-relevant studies, as spatial response projections can be made

more rapidly using these simplified models.

1.1.4 Policy Relevance

The United Nations Framework Convention on Climate Change (UNFCCC) is the part of the

United Nations that is tasked with supporting the global response to the threat of climate

change (UNFCCC, 2021b). It consists of 197 countries that have agreed to limit human-induced

climate change. Every year since 1995, a Conference of Parties (COP) is held where all countries

of the UNFCCC are represented and decisions are made. For example, at the 2015 Paris

Climate Conference (COP21) an agreement was made to ‘keep the global temperature rise this

century well below 2 degrees Celsius above pre-industrial levels and to pursue efforts to limit

the temperature increase even further to 1.5 degrees Celsius’ (UNFCCC, 2021a). Decisions such

as these are made based on the outcome of the assessment reports from the Intergovernmental

Panel on Climate Change (IPCC), which are a combined effort of thousands of scientists globally

who present the scientific basis of climate change, its impacts and future risks, and options

for adaptation and mitigation (IPCC, 2021). The IPCC assess thousands of scientific research

papers on this topic and present the results in an objective way, while also reflecting the degree
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Figure 1.5: Reproduced from Kasoar et al. (2018) showing surface temperature changes minus
the global mean change for 150 year annual. a–e show the geographic pattern of 150-year
annual mean surface temperature change, with the global mean temperature change subtracted
off in each case, due to SO2 emissions being removed from North America, c Europe, d East
Asia, and e South Asia. The rectangles highlight regions with consistent regional patterns of
stronger temperature change, as discussed in the text. stippling indicates that the change at
that grid-point exceeded 2 standard deviations of the 150-year mean in six different control
simulations.



14 Chapter 1. Introduction

of certainty in results.

One of the points of interest of these reports is to make projections on climate change at a global

and regional level, based on various emission scenarios (or pathways) (Brock and Xepapadeas,

2019). The most recent Assessment Report (AR5) by the IPCC stated that an overall warming

of the climate is unequivocal based on observed changes to the climate and that this warming

will continue with certainty under future projections from large-scale models (Stocker et al.,

2013). However, this is difficult to quantify precisely because we are uncertain of the path that

future emissions will take, which depends on societal, technological, and economic developments.

The Shared Socioeconomic Pathways (SSPs) provide different pathways that we may take

with different levels of development, mitigation and adaptation strategies, which fall under the

categories of ‘Sustainability’, ‘Middle of the Road’, ‘Regional Rivalry’, ‘Inequality’ and ‘Fossil-

fueled Development’. GCMs predict the climate response to these different pathways which are

used in a large range of independent studies. For example, there were 1,378 published studies

between 2014-2019 that made use of SSPs, for applications in climate impacts or adaptation,

(e.g. agriculture) as well as for understanding drivers or mitigating effects of climate change

(e.g. changing energy use) (O’Neill et al., 2020). These studies not only influence IPCC reports

and ultimately decisions made by world leaders, but they also have a wider reach by improving

our understanding of the relationships between emissions and climate response.

Predictions of climate response to different scenarios will continue to be of importance in the

near future, both as part of independent studies and of the UNFCCC’s efforts to limit the

effects of climate change. Climate projection is an important aspect of COP meetings and for

informing policy decisions. State-of-the-art global climate models are, and always will be, crucial

in this role. At the same time, other approaches to quantitative climate change assessment

could be beneficial in this endeavour. Currently, multi-decadal climate model simulations

typically take weeks to complete which motivates the development of alternative models that

can estimate climate response on the order of minutes. Therefore, we can turn to the use of

machine learning and emulation for climate change projection, which have the potential to assist

in rapid prediction and assessment of climate change risks under different scenarios.
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Furthermore, recent and future reports have started to focus not just on global mean climate

change but also on the regional pattern of climate change with, for example, the spatial

distribution of societal impacts being one of the key risks for concern highlighted by AR5 (IPCC,

2013). There is a trend towards an increasing demand for climate projections at regional and

local scales which are most relevant for decision-making (O’Neill et al., 2020). Estimating the

climate response under different scenarios at a global level requires high resolution GCMs which

are computationally expensive. This is further motivation for the development of prediction

methods that can drastically reduce computational time such as emulation of the global response.

1.2 Climate Change Projection

1.2.1 Global Climate Models

The use of computer simulations to model the climate dates back to the 1960s (McGuffie and

Henderson-Sellers, 2001). Advances in computer capabilities at the time enabled short-term

weather forecasting to be run for longer integrations on climate timescales. This led to the

development of atmospheric general circulation models (AGCMs) (e.g. Smagorinsky et al.,

1965), which differ slightly to weather models since they have a global domain and are run for

decadal to centennial timescales, rather than days to weeks. This also has relevance for the

equations of motion that are solved, such as energy, mass and moisture conservation over long

periods of time, which are not major concerns in short-term weather forecasting (McGuffie and

Henderson-Sellers, 2001).

AGCMs allow the atmosphere to be simulated under different conditions, such as changes to

the greenhouse gas forcing. They discretize the atmosphere into a 3D grid to represent the

horizontal and vertical directions, typically labelled longitude, latitude and vertical height. On

this grid, the model holds information about the state of atmosphere in the form of prognostic

variables, which includes all relevant variables such as air temperature, humidity, greenhouse

gas concentrations, and so on. Given some initial conditions that describe the state of the
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atmosphere at time t = 0, the equations of motion for each component are solved within each

grid cell, to calculate the state of the climate at the next timestep. The equations of motion

for the atmosphere include Navier-Stokes (fluid dynamics) with thermodynamic source terms

(e.g. radiation and latent heating). Some physical processes occur on spatial scales smaller than

the climate model resolution, such as convection. These are instead represented with simplified

schemes called parameterisations (McGuffie and Henderson-Sellers, 2001).

Soon after the development of AGCMs the effects of the ocean were incorporated, by coupling the

atmosphere with an oceanic component, that also solved the equations of motion for the ocean on

a discretized grid (Manabe and Bryan, 1969). The inclusion of the ocean is crucial for accurate

long-term climate modelling, because it acts as a large heat reservoir and responds much more

slowly to climate perturbations than the atmosphere (100s-1000s of years). The components

interact by exchanging relevant quantities, for example, the heat flux from the atmosphere

into the ocean. In the following decades, GCMs were improved further with validation and

calibration due to data from satellites and in-situ measurements (Oort and Peixóto, 1983; Boer

et al., 1992). Furthermore, multi-model comparison projects began in Gates et al. (1999), where

GCMs from different modelling institutes were tested under the same settings and compared.

The addition of more components, such as atmospheric chemistry, land and sea-ice, has led

to coupled GCMs in the form that we see today, also known as Earth system models (ESMs).

They aim to model the entire behaviour of the climate under various conditions on decadal

to multi-centennial timescales. These GCMs are continuously calibrated to observations and

compared under large scale projects (e.g. Lamarque et al., 2013; Taylor et al., 2012; Eyring

et al., 2016; Myhre et al., 2017; Andrews et al., 2020).

GCMs provide an invaluable tool for exploring climate response for scientific and policy related

purposes. However, they come at a considerable computational cost. For example, to estimate

the climate response to a particular perturbation (an ‘idealised’ perturbation), the change in

forcing is applied in an instant (e.g. a sudden doubling of CO2 concentrations) and integrated

forwards in time until an approximate equilibrium is reached (e.g. Manabe and Bryan, 1969;

Hansen et al., 1997; Held et al., 2010; Kasoar et al., 2016; Liu et al., 2018b). The transient
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process is called ‘spin-up’ and often must also be performed to reach an equilibrium state suitable

for starting conditions of a simulation. Furthermore, to accurately assess climate response,

long integrations are required for two reasons: firstly, to capture the slow, long-term effects of

mixing in the ocean which occur on the timescales of 100s years, and secondly to isolate the

climate response from the effects of internal variability, which create large fluctuations in the

year-to-year output. This requires us to run the model for longer time periods and to average

over several decades in order to define a ‘climate’ response. These long-term simulations become

expensive, especially because of the short timesteps required to capture small-scale climate

processes under high resolutions. Fundamentally, it is the wide range in spatial scales affecting

the climate system that demands the GCM to model both short and long timescales.

As well as running GCMs for long integrations, a robust analysis of climate response also often

requires multiple simulations. A ‘control’ run with no perturbations is usually performed as a

baseline to compare against the results of a perturbation run. Multiple control and perturbation

runs may also be used to create an ‘ensemble’ of runs as another method to diagnose internal

variability which arises from slightly different initial conditions of the system. Modelling climate

at increasingly high spatial resolutions has significantly increased the computational complexity

of GCMs (Collins et al., 2012), a tendency that has also been accelerated by the incorporation

and enhancement of a number of new Earth system model components and processes (e.g.

Williams et al., 2018; Walters et al., 2019; Ridley et al., 2018). All these factors contribute to

the high computational cost of climate modelling, which provides a case for alternative, quicker

climate projection methods. This is a topic of growing research, particularly with the recent

rise in machine learning. However, quick approaches for estimating climate model responses are

not entirely new. In the following section, we will look at a simplistic method that has carried

out this task for several decades.

1.2.2 Pattern Scaling

Pattern scaling is a traditional method for obtaining future spatial patterns of climate change

without running a full GCM. First proposed by Santer et al. (1990), it has been widely used
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for many years for regional climate change projections (e.g. Hulme et al., 1995; Murphy et al.,

2007; Watterson, 2008), in impact studies (e.g. Huntingford and Cox, 2000), in policy focused

studies (e.g. Moss et al., 2010), and to extend simplified models to predict spatial outputs (e.g.

Harris et al., 2006; Castruccio et al., 2014a).

In pattern scaling, an estimate of the global mean response to a forcing is projected onto a

normalised pattern from a reference scenario, such as the GCM response to a doubling of CO2

concentration. It therefore requires one previous run of a GCM to obtain the equilibrium

response of the variable of interest for a reference scenario (e.g. the 2X CO2 scenario). This is

used to find a normalised response pattern on the longitude latitude grid, Vref(lat, lon). Then,

the variable of interest can be predicted at each grid point for a new scenario, V ∗(lat, lon) by

multiplying the reference pattern by a scaler value, s, i.e.

V ∗(lat, lon) = s Vref(lat, lon) (1.1)

The scaler value s can be derived from either a mathematical relationship, simplified climate

model or a statistical model. To calculate the equilibrium temperature response, commonly

used scalers are the annual global-mean temperature in a simple climate model (Mitchell, 2003;

Castruccio et al., 2014a), or the global mean ERF from an energy-balance model (Huntingford

and Cox, 2000; Zelazowski et al., 2018).

Pattern scaling gives relatively accurate results under many settings, particularly when scaling

responses to well-mixed GHGs and strong forcings (Mitchell, 2003; Tebaldi and Arblaster, 2014;

Ishizaki et al., 2012). However, there can be different spatial response patterns in weakly and

strongly forced scenarios, due to the effect of changing temperatures in the ocean (Manabe and

Wetherald, 1980), which means that often perturbation patterns can be quite different from

the reference patterns. Reference patterns with strong forcings are typically preferred in order

to maintain high signal-to-noise ratios (Mitchell, 2003). Pattern scaling is therefore known to

be less accurate for predicting strongly mitigated scenarios with weak forcings (May, 2012).

Furthermore, the response of the predicted variable to a radiative forcing is assumed to scale

linearly, which is not necessarily the case, e.g. Mitchell (2003) finds a sub-linear dependency for
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the temperature response to radiative forcing. Although pattern scaling is an invaluable policy

tool for estimating response patterns under different forcings (Moss et al., 2010; Holden and

Edwards, 2010), the logical next step is to explore how well machine learning algorithms can

perform on the same task.

1.2.3 Machine Learning and Emulation

In recent years, machine learning methods have been gaining traction in the climate science

community (Reichstein et al., 2019). The term ‘machine learning’ encompasses methods that

can automatically detect patterns in data, and then use this to predict future data or perform

other kinds of decision making (Murphy, 2012). Searching for patterns in data has long been

an endeavour by scientists, but the development of computers that can handle large quantities

of data at high speed has allowed these methods to be automated. One of the fundamental

goals of machine learning is to develop algorithms that learn from experience, thereby reducing

the burden on humans to explicitly program detailed instructional laws (Samuel, 1959). The

idea is to learn an adaptive model based on a training dataset. In this thesis we are mostly

concerned with supervised learning which learns output vectors from corresponding input

vectors (e.g. regression on continuous data and classification on categorical data); but other

forms include unsupervised learning which learns from input vectors alone (e.g. clustering or

density estimation) and reinforcement learning (learning actions to take in order to maximise a

reward) (Bishop, 2006).

Machine learning algorithms have found popularity in climate science as a tool to aid impact

studies (Crane-Droesch, 2018; Huntingford et al., 2019; Abbot and Marohasy, 2017); climate

change detection and attribution (Sippel et al., 2019; Wills et al., 2020b); to uncover patterns

in data (Toms et al., 2019; Runge et al., 2019; Kretschmer et al., 2016; Thomas et al., 2021)

which can then be used for prediction (Kretschmer et al., 2017; Nowack et al., 2020); and to

expose relationships in processes within climate models through interpretable machine learning

methods (Barnes et al., 2020; Toms et al., 2020; Kuhn-Régnier et al., 2020). Machine learning is

becoming of interest to climate modelling groups (Scher, 2018; Yadav et al., 2020; Weber et al.,
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2020) and has already proven to be a reliable approach for developing parameterisations within

GCMs (Nowack et al., 2018; Gentine et al., 2018; Rasp et al., 2018; Bolton and Zanna, 2019;

O’Gorman and Dwyer, 2018). Furthermore, rather than viewing a machine learning method as

a ‘black-box’, research into physics-informed machine learning which satisfy certain physical

constraints (such as momentum conservation) has also gained traction in recent years (Raissi

et al., 2019; Wu et al., 2018; Dueben and Bauer, 2018; Lutter et al., 2019; Wang et al., 2019;

Kashinath et al., 2021). One of the commonly noted challenges in the application of machine

learning to climate science is that typical learning algorithms require large quantities of data

(‘big data’), particularly deep learning such as deep neural networks, while climate data is

often small in terms of number of samples available (‘small data’) (Karpatne and Kumar, 2017;

Watson-Parris, 2021; Yadav et al., 2020). This is a challenge encountered in Chapter 3, due to

the high cost of obtaining GCM simulations.

The theme of this thesis is predicting climate response via both machine learning regression and

emulation. ‘Emulation’ refers to the use of an emulator, which is a statistical approximation

to an expensive computer model that can make predictions much more rapidly (O’Hagan, 2006).

It is also often called ‘metamodelling’ or ‘surrogate modelling’ (Ratto et al., 2012). More strictly,

an emulator differs from simply approximating an expensive model, as it provides a probability

distribution of the predicted output, rather than just a single point estimate. This is particularly

convenient for understanding the uncertainty associated with predictions. An emulator is most

often used to refer to a Gaussian process emulator, which we will use in Chapter 4.

Because of the increases in speed and the uncertainty provided, the main uses of emulators are

in calibration (Kennedy and O’Hagan, 2001; Wilkinson, 2010), sensitivity analysis (Saltelli

et al., 2008), uncertainty quantification (O’Hagan et al., 1999; Oakley and O’Hagan, 2002)

and prediction (also called model reduction) (O’Hagan, 1978; Currin et al., 1991; Ratto et al.,

2012). In these uses, emulators are trained on a carefully selected set of simulation data that

aims to give the best possible results for predicting new unseen data. This is called emulator

design (O’Hagan, 1978; Currin et al., 1991; Santner et al., 2003). The training data can be

selected to be space-filling over the parameter ranges with a Latin hypercube sampler (LHS).

Emulator studies typically use a ‘maximin’ LHS that maximises the minimum distance between
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new samples, or in other words, maximises how well the parameter space is filled, given a set

number of training samples. Given a limited number of samples, the input-output relationships

can be learnt across more of the parameter space compared to that learnt from randomly

sampled training data (O’Hagan, 2006; Santner et al., 2003; McKay et al., 1979).

In climate science, emulators are already a popular tool for calibration or tuning of climate

model output to agree with observational data, in order to reduce any biases in the model

(e.g. Williamson et al., 2015; Salter and Williamson, 2016; McNeall et al., 2019; Goldstein and

Rougier, 2006; McNeall et al., 2013). They also have widespread use in sensitivity analysis, to

assess how sensitive certain climate variables are to different relevant inputs (e.g. Wild et al.,

2020; Ryan et al., 2018; Bounceur et al., 2015; Lee et al., 2012; Rougier et al., 2009; Marrel et al.,

2011). Taking this a step further, climate model emulators are also designed for uncertainty

quantification, which aims to identify the greatest sources of uncertainty in the model output

(e.g. Carslaw et al., 2013; Lee et al., 2013, 2016; Edwards et al., 2019).

However, the application of emulation for predicting climate response to forcings is still fairly

uncommon. Tran et al. (2016) have built an emulator for prediction of a steady-state atmosphere

based on various climate input parameters and configurations, one of which is the CO2 forcing.

Holden and Edwards (2010), Miftakhova et al. (2020), Castruccio et al. (2014a), Bao et al.

(2016) and Foley et al. (2016) also develop emulators of GCMs for predicting the global mean

temperature response to transient global CO2 forcings and MacMartin and Kravitz (2016) extend

this to emulate the climate under different solar forcing as well as CO2 scenarios. However,

there is only one study so far that we are aware of that emulates climate response to other

anthropogenic forcings, such as aerosols, through the FAIR model (Smith et al., 2018a). As with

the previous climate model emulators, FAIR predicts the global mean temperature response

to transient emissions but does not explore the regional pattern of response, which is highly

important in policy-related studies. Building an emulator that predicts the entire pattern of

temperature response to a range of anthropogenic forcing scenarios is one of the main outcomes

of this thesis and is the focus of Chapter 4.
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1.2.4 Dimension Reduction

When building a climate model emulator, it is difficult to ignore the size of the dataset. Although

climate model data is usually small in terms of the number of samples available, it is often large

in terms of the number of features such as the number of variables or outputs (this could be

labelled ‘wide data’). This is particularly common if the data is spatial or temporal, with climate

model data typically being both. Unfortunately this makes building machine learning models

or emulators more complicated. Gaussian process emulators are often built independently for

each output, which ignores any correlations in the output and can lead to higher training costs.

Dimension reduction methods such as principal component analysis is therefore frequently used

in climate model emulation, particularly for spatial predictions (Salter and Williamson, 2016;

Holden and Edwards, 2010; Tran et al., 2016; Ryan et al., 2018).

Principal component analysis (PCA) is a linear statistical method that assumes that many

of the variables in the dataset are correlated and that the relationships between them can be

used to reduce its dimensionality while retaining as much variation as possible (Jolliffe, 2002).

This involves transforming the data to a new set of uncorrelated, orthogonal variables, called

principal components. These are ordered so that first few contain most of the variation in

the data and a cut-off can be selected to discard principal components that contribute little

variation to the data set, thereby reducing the dimensionality of the dataset. PCA is usually

viewed as traditional statistical method and was first described in this form in Pearson (1901)

and Hotelling (1933). However, it is in fact a form of unsupervised learning as it relies only on

input variables without any information about a target variable and is now commonly used by

the machine learning and emulation communities (Bishop, 2006; Holden and Edwards, 2010;

Lawrence, 2004). Although we focus on PCA as an approach to reduce spatial data, it also

frequently applied to climate timeseries to identify dominant patterns of temporal variability in

the data, known as Empirical Orthogonal Functions (EOFs) (Hannachi et al., 2006).

An alternative approach to dimension reduction is factor analysis, which models the dataset

as a linear combination of common structures, called latent factors (Joliffe and Morgan,

1992) and some residual unique structures. It is assumed that these latent factors cannot be
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measured directly, but that they explain a large portion of the behaviour of the data. The

unique components contribute to any remaining variations in each measured variable.

Unlike principal components, the latent factors are not necessarily orthogonal but rather, they can

take any form specified by choice. The latent factors can often be interpreted as relevant drivers

governing the behaviour of a dataset. For instance, one factor behind a spatial temperature

dataset could be latitude. Factor analysis can ultimately be viewed as deconstructing the dataset

into a few physically meaningful factors, rather than simply transforming the data into a set of

uncorrelated variables, as done in PCA. Factor analysis is often used in applications for finance

(Geweke and Zhou, 1996; Aguilar and West, 2000; Lopes and West, 2004), psychology (Fabrigar

et al., 1999; Comrey, 1978; Conti et al., 2014; Fava and Velicer, 1992; Cui and Dunson, 2014)

and epidemiology (Ghosh and Dunson, 2009; Chen et al., 2010; Bhattacharya and Dunson, 2011).

Although not commonly used in climate science currently, it may prove to be a useful tool in

revealing hidden structures in spatial climate data alongside other discovery algorithms (e.g.

Runge et al. (2019); Nowack et al. (2020); Kuhn-Régnier et al. (2020); Thomas et al. (2021)).

1.3 Bayesian Statistics

1.3.1 Bayesian Viewpoint

One of the focal points of this work takes a Bayesian approach to uncover the underlying

structure of a dataset, which has an interesting application for high dimensional climate data,

such as high resolution GCM output. A Bayesian analysis is particularly relevant because it

provides a complete probabilistic analysis, with a quantification of uncertainty, rather than just

a point-based estimate. In this section, we will outline the Bayesian viewpoint, which will be

taken throughout Chapter 5.

In the Bayesian philosophy, we can view probability as a ‘degree of belief’, rather than just relative

frequencies of events (the frequentist viewpoint) (Cox, 1946). This allows us to make probability

statements, and even set a probability distribution on parameters which are, in reality, fixed
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constants. With this, we can carry out Bayesian inference, meaning we can infer what the

probability distribution is, using a combination of data and our prior degree of belief. Bayesian

inference on parameter θ, involves first defining a prior probability distribution p(θ) that

expresses our initial belief about this parameter, before observing any data (Wasserman, 2004).

We must also define a statistical model, called the likelihood, that describes the probability of

making an observation, y, given parameter θ. We write the likelihood as f(y|θ). After observing

data y we update our beliefs and calculate the posterior probability distribution, p(θ|y).

This can be done via Bayes theorem (Bayes and Price, 1763),

p(θ|y) = f(y|θ)p(θ)∫
f(y|θ)p(θ)dθ (1.2)

where the denominator,
∫
f(y|θ)p(θ)dθ is the marginal likelihood, normalising constant

or evidence which is required to ensure that the posterior probability distribution sums to 1.

This term describes the likelihood function of the data, once all parameter values θ have been

integrated out.

The Bayesian philosophy allows us to discuss probabilities of outcomes that only occur once

(e.g. the probability of rain falling at a specific point in time and space) and by describing

parameters as probability distributions, we can quantify uncertainties on them. The use of

Bayesian statistics is extensive in climate science and appears in climate model ensemble analysis

(Smith et al., 2009; Murphy et al., 2007), impact studies (Meinshausen et al., 2009), climate

change detection (Leroy, 1998), remote sensing (Gorte and Stein, 1998) and data assimilation

studies (Reich and Cotter, 2015), as well as being the basis for Gaussian process emulators as

discussed above. We will take a Bayesian viewpoint with regards to the factor analysis problem

presented in Chapter 5, as we will carry out Bayesian inference on the number of factors and

the factors themselves. This includes carrying out model selection, as we compare different

factor models for a dataset, each with a different number of underlying factors. Model selection

often relies on the calculating the marginal likelihood for a given model (often called the model

evidence) which can be difficult to calculate when θ is high dimensional. This is another topic

also encountered in climate and weather science (e.g. Carrassi et al., 2017; Aanonsen et al.,
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2019). In the following section, we introduce the simulation based tool, Monte Carlo, which is

typically used in Bayesian methods and is fundamental to the problem presented in Chapter 5.

1.3.2 Monte Carlo

Monte Carlo is the name given to the simulation of random processes. They are commonly

used to evaluate integrals and to find and sample from a distribution of interest. Halton (1970)

defines the Monte Carlo method, in general, as “representing the solution of a problem as a

parameter of a hypothetical population, and using a random sequence of numbers to construct

a sample of the population, from which statistical estimates of the parameter can be obtained”.

It was the invention and development of computers that first allowed for the simulation of

random processes at a large scale (Brooks et al., 2011). These ideas were set in motion in the

1940s at the Los Alamos National Laboratory, New Mexico, during research into the random

physical process within the atomic bomb (Eckhardt, 1987). Stanislaw Ulam, a mathematician

and physicist, first recognised that neutron diffusion can be viewed as a succession of random

operations and that fast computers could be used to repeat random experiments and evaluate

many possible outcomes. He compared these random operations to a game of solitaire, leading

to the initially secret name ‘Monte Carlo’ after the world-famous casino in Monaco. The ability

to simulate many possible outcomes provides an overall picture of a physical system, which has

made these methods popular in the field of physics ever since.

One particular approach that we will encounter in Chapter 5, is Markov chain Monte Carlo

(MCMC), which simulates a system via a chain of samples that follows the overall behaviour

of the physical system, according to its probability distribution. MCMC methods were born

shortly after the invention of Monte Carlo, again at Los Alamos National Laboratory which had

one of the fastest computers of the time. They were developed based on the realisation that

learning about thermodynamic equilibrium of a system did not require simulating the exact

dynamics, but rather simulating a Markov chain with the same equilibrium distribution. This

was first carried out by Metropolis et al. (1953) through the simulation of a liquid in equilibrium

with its gas phase, using what is now called the Metropolis algorithm. This was followed by
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a more general version, called the Metropolis-Hastings algorithm (Hastings, 1970).

MCMC methods quickly became ubiquitous in many areas of chemistry and physics, driven

by the increase in availability of computers, but it was not until the 1990s when they became

popular amongst statisticians (Brooks et al., 2011). As computers have become more accessible

and increased in power, more sophisticated Monte Carlo algorithms have been developed.

One example of this is Sequential Monte Carlo (SMC) (or particle filters), which were

developed in the 1990s to estimate the evolution of dynamical systems by simulating a sequence

of probability distributions (Del Moral, 1997; Liu and Chen, 1998).

The complete assessment of probabilities provided by Monte Carlo methods explains their

growing uses in climate science, in terms of both modelling and analysis. They are also an

invaluable tool for optimisation and therefore frequently used in the background of machine

learning algorithms, as well as taking the foreground in their probabilistic counterparts which

frame such algorithms in terms of probability distributions rather than point-estimates (Murphy,

2012). In Chapter 5, we will see how various Monte Carlo methods can be applied to factor

analysis, to reveal the underlying structure of a dataset consisting of weather observations made

at different spatial locations.

1.4 Aims of Thesis

This thesis has two overarching aims: firstly, to develop a surrogate model to predict climate

response at a lower computational cost than running a full GCM, and secondly, to explore how

Bayesian statistics can uncover the underlying structure of a high dimensional dataset, that can

be applied to climate data.

The motivation for the former is the high cost of running complex GCMs to predict climate

response to different emission perturbations, including global perturbations of long-lived GHGs

(CO2, CH4) and regional perturbations short-lived aerosols (SO2, OC, BC). For climate timescales,

we would typically run a GCM with a sudden perturbation on the order of 100 years. These

timescales will be termed ‘long-term’ throughout the thesis. However, even obtaining training
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data to build a surrogate model is expensive, with each 100 year simulation on HadGEM3,

developed by the UK Met Office (Walters et al., 2019) costing on the order of 2000 node hours

for a 100 year simulations, which can take several weeks to months to run on the Met Office

resources available for research (e.g. 4 nodes of 64 cores on Cray XC40 Met Office). Typically,

to build a probabilistic emulator that interpolates between known data, the estimated number

of samples required is around 10x the number of inputs (Loeppky et al., 2009). To cover a range

of key climate forcers and including regional perturbations for the short-lived aerosols, one may

aim to build an emulator with around 10 inputs (discussed in Chapter 4). This would require

around 100 training simulations and cost up to 10 years of computing time on the today’s Met

Office research nodes. To reduce this problem, the surrogate model could be approached in two

stages.

In the first step, I propose an emulator designed to predict the intermediate stage of the climate

response rather than the full long-term response, to a range of emission perturbations. I will

refer to this intermediate response as the ‘short-term response’. This can be obtained by running

the GCM for a shorter time period of, for instance, 5 or 10 years, for which the order of 100

training simulations is feasible in a few months. Then, the second step is to build another

surrogate model for predicting the long-term response based on the short-term response, trained

on a smaller but more expensive dataset. For this step, I make use of existing simulations run

for previous studies, where there are 21 data points available.

This is similar but not identical to a procedure carried out in previous emulation studies,

where the Bayesian approach is used to update the results of the first emulator given the

second dataset, which is typically obtained with a more expensive model of, for instance, higher

resolution (Tran et al., 2016; Cumming and Goldstein, 2009). This is often called ‘multi-level’ or

‘multi-fidelity’ emulation. In these studies, the first dataset is assumed to be an approximation

to the second, which is where the approach derived here differs slightly. Rather than assuming

that the short-term climate response is an approximation to the long-term climate response,

I present a methodology that learns a mapping from short-term to long-term response. This

is proposed based on the idea that the short-term climate response contains indicators of the

long-term climate response, even if statistical rather than causal (Ceppi et al., 2017; Persad
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et al., 2018).

The two surrogate models will be treated separately, as highlighted by the schematic in Figure

1.6, and furthermore they will be approached with two differing perspectives. While the first

surrogate model uses a typical emulation approach involving probabilistic predictions, the second

takes a machine learning viewpoint of exploring different methods and their accuracy, based

on point estimates. Both surrogate models are valuable as standalone tools, carrying out two

different tasks: (1) for rapid short-term climate change projection based on emission scenarios,

and (2) for mapping the short-term to the long-term climate response. The latter will be learned

based on existing GCM data in Chapter 3, while the former will be trained on newly designed

simulations in Chapter 4.

Figure 1.6: The two separate surrogate models explored in this thesis. The first learns the short-
term climate response based on emission perturbations, while the second learns the long-term
climate response based on the short-term climate response.

One of the characteristics of the climate data encountered in both surrogate modelling tasks

is its high dimensionality. This brings us to the remaining task of the thesis, which explores

a Bayesian approach to learn the underlying dimension of a dataset, using a factor analysis

model. This will involve Monte Carlo simulations to infer the probability distribution on, not

only the factors, but also the number of factors required to accurately describe the data. This

is motivated by the common use of dimension reduction techniques in emulation studies, to

reduce the dimension of the input and/or output space and to enforce correlations in the output

(Higdon et al., 2008; Ryan et al., 2018; Lawrence, 2005). The application of these methods
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introduces additional uncertainty in the emulator, but this is not accounted for in these studies.

A fully Bayesian approach to dimension reduction would allow the uncertainty in the reduced

model to be quantified, which can be propagated into the emulator to give a more accurate

picture of the uncertainty associated with its predictions. Even on its own, however, dimension

reduction can be a valuable tool in reducing a dataset to a smaller set of variables that can

often be interpreted to improve understanding of the data. For example, applying dimension

reduction to spatial data may reveal underlying behaviour of teleconnections between remote

regions, while applying such a method to a temporal dataset may highlight reccuring oscillations

on different timescales (Hannachi, 2004). Chapter 5 will approach dimension reduction with

factor analysis and will focus predominantly on the development of Monte Carlo methods that

can be used to infer the probability distribution on both the underlying factors and the number

of them. This will be demonstrated on a dataset of weather observations to highlight how the

underlying factors can be interpreted meaninfully.

1.4.1 Thesis Outline

In Chapter 2, the methods of the thesis will be described, including: machine learning and

emulation relevant to the first two results chapters, the dimension reduction methods used

throughout the thesis and the Monte Carlo methods utilised in the final results chapter. Then

the subsequent chapters are as follows:

Chapter 3: Long-term Climate Response Prediction with Machine Learning

This chapter is concerned with the task of mapping the long-term climate response given the

short-term climate response of a GCM, i.e. the second surrogate model in Figure 1.6. Existing

simulations from a range of previous long-term climate studies will be used to train and test

the model, which will be developed from a machine learning perspective as multiple different

methods are explored. This work has been published in Mansfield et al. (2020).
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Chapter 4: Short-term Climate Response Prediction with an Emulator

The first surrogate model in Figure 1.6 is developed in this chapter to estimate the short-term

climate response given a range of emission perturbations. This focuses on a probabilistic

prediction, including both the mean function and standard deviation of the estimate. The

Gaussian process emulator is carefully designed for a selection of emission-based input variables,

including global greenhouse gas concentrations and regional aerosol scaling factors. This is

followed by a sensitivity analysis, to explore how sensitive the short-term response is to the

different emission perturbations. An example of how this emulator could be used as a policy

tool is also demonstrated.

Chapter 5: A Bayesian Approach for Dimension Reduction

The final chapter of the thesis revolves around reducing a high dimensional dataset to a lower

dimensional representation, through factor analysis. This is approached in a fully Bayesian way,

with a focus on the different Monte Carlo methods that can be applied to infer the probability

distribution on both the number of factors and the factors themselves. For this task, I will

develop and compare reversible jump MCMC and Sequential Monte Carlo algorithms that

allow transitions between different factor models. Finally, this chapter will conclude with an

application of these methods in the context of climate and weather science.



Chapter 2

Methods

This chapter will cover the techniques used throughout this thesis, beginning with statistical

methods that will be used to estimate the climate response based on training simulations from

GCMs in Chapters 3 and 4. Then I will introduce methods of dimension reduction, namely

principal component analysis and factor analysis. The remainder of this chapter will focus on

Monte Carlo methods, including Markov chain Monte Carlo (MCMC), Reversible Jump MCMC

and Sequential Monte Carlo (SMC) which build the basis of Chapter 5, where the goal is to

learn the underlying structure of a high dimensional dataset through factor analysis.

2.1 Machine Learning and Emulation

2.1.1 Regression

Regression is a supervised learning technique used to determine the relationship between

dependent and independent variables (Wasserman, 2004). It is commonly used to analyse and

understand characteristics of the relationship between variables as well as in prediction to new

unseen situations.

We start in the simple case that the dependent variable, y, is univariate. The aim of regression

is to model y from independent variable x which we allow to be multivariate of size p so that

31
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x = (x1, · · · , xp). We assume that y is a function of x with some additional residual error ε,

y = f(x) + ε . (2.1)

Usually ε is assumed to be normally distributed with zero mean and constant variance σ2. The

independent variables x are often referred to as inputs, covariates, predictors or features

and the dependent variables y as outputs or response variables (Wasserman, 2004).

In this section, we have a dataset of input-output pairs, (x, y)i, of size N i.e. i = 1, 2, · · · , N .

This dataset is split into a training set and a test set. The training set is used to learn the

function f(x) and the test set is only introduced at the end of training, to assess how well the

model generalises to new unseen data (Hastie et al., 2001).

2.1.2 Linear Regression

When f is assumed to be linear, we write

f(x) = β0 +
p∑
j=1

βjxj (2.2)

where j indexes the independent variables xj for j ∈ 1, · · · , p. We wish to estimate the

parameters, β0 (the intercept) and βj (the slope associated with variable xj).

These unknown parameters can be estimated from the training data. For a single observation,

indexed by i, we have

yi = β0 +
p∑
j=1

βjxij + εi . (2.3)

We denote estimated parameters β̂0 and β̂j for j = 1, · · · , p, which give predicted or fitted

values of y, denoted ŷ

ŷi = β̂0 +
p∑
j=1

β̂jxij . (2.4)
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The difference between the observed data yi and the predicted value ŷi gives the residual error ε̂i

ε̂i = |yi − ŷi| =
∣∣∣∣∣∣yi −

(
β̂0 +

p∑
j=1

β̂jxij
)∣∣∣∣∣∣ . (2.5)

This is used to estimate the training error, which is minimised in the training process. The

same equation can be applied for the test data, to calculate the test error on data not seen in

the training process.

2.1.3 Least Squares Regression

There are a total of p+ 1 parameters in Equation (2.2) to estimate, denoted as β̂0 and β̂j for

j = 1, · · · , p. If the number of training data points is greater than or equal to the number

of variables to learn (N > p), we can estimate (β̂0, β̂j) with least squares regression by

minimising the residual sum of squares, RSS = ∑N
i=1 ε

2
i (Hastie et al., 2001), i.e.

arg min
β

{
N∑
i=1

(
yi − (β0 +

p∑
j=1

βjxij)
)2
}
. (2.6)

We can interpret the values of β̂j as how much each covariate xj contributes to the output

response variable and the intercept β̂0 as a baseline when all covariates are set = 0.

Once we have estimated (β̂0, β̂j), we often wish to use our regression model for prediction.

Suppose we want to predict the output y∗ for a given input with new unseen value x∗ =

(x∗1, · · · , x∗p). This output can be estimated with

ŷ∗ = β̂0 +
p∑
j=1

β̂jx∗j . (2.7)

Matrix formulation

It is typical to write this in matrix form (Hastie et al., 2001). We can include the intercept term

β0 in the vector containing βj by including additional index j = 0 by fixing x0 = 1. This gives



34 Chapter 2. Methods

vector β, of length p + 1 and covariate matrix X, of size (N × p + 1), where each row is one

observation and each column is one covariate:

β =



β0

β1

...

βp


and X =



1 x11 x12 . . . x1p

1 x21 x22 . . . x2p

... ... ... ... ...

1 xN1 xN2 . . . xN p


. (2.8)

We denote the observed outputs and the residuals both in a vector of size N

y =



y1

y2

...

yN


and ε =



ε1

ε2

...

εN


. (2.9)

In this notation, Equation (2.3) becomes

y = βX + ε (2.10)

and Equation (2.6) is

arg min
β

{
(y− βX)T (y− βX)

}
. (2.11)

This is minimised by differentiating with respect to β and setting this to zero, giving the

following least squares estimate

β̂ = (XTX)−1XTy . (2.12)

An unbiased estimator of the variance of the residuals, σ2, is given by

σ̂2 =
( 1
N − p

) N∑
i−1

ε̂i
2 . (2.13)
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Finally, we can make predictions of outputs at new input values X∗ with

ŷ∗ = β̂X∗ + ε . (2.14)

2.1.4 Ridge Regression

Equation (2.6) equal to zero can be solved exactly when the number of degrees of freedom in

the parameters exactly equals the number of constraints from the data available. This is when

N = p. Then ŷ = y and the variance σ̂2 = 0. However, this case is rare and even if so, it does

not necessarily mean each data point uniquely corresponds to knowledge of a single parameter

(i.e. the solution may be unique, but we would not know each parameter exactly and would still

favour increasing the size of the data in order to refine our knowledge of the parameters).

In the case that N > p, the β parameters are over-determined: there are more data constraints

than there are parameters. We can minimise the RSS (equation 2.2), making this an optimisation

problem in β, given the available data constraints.

In contrast, when N < p (sometimes called supercollinearity) there are more free parameters

(β) than there are observed data points to constrain these parameters meaning there are many

possible β values that satisfy Equation (2.6) equal to zero. The matrix XTX in Equation (2.12)

becomes singular and so we cannot solve for β̂ uniquely. This is an ill-posed problem because it

is under-determined.

We can introduce additional constraints to make this problem unique and solvable. In ridge

and LASSO regression, the β coefficients are constrained to be small using a method called

regularisation (Bishop, 2006). This is done by introducing a penalty term that penalises β

coefficients with large magnitudes.

First, we introduce ridge or Tikhonov regression in which Equation (2.6) becomes

arg min
β

{
N∑
i=1

(
yi − (β0i +

p∑
j=1

xijβj)
)2

+ λ
p∑
j=1

β2
j

}
(2.15)
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where the term highlighted in red is the regularisation or penalisation term, with regulari-

sation parameter, λ (Hoerl and Kennard, 1970). This term penalises large magnitudes of β2

and favours lower magnitudes, often called ‘shrinkage’. A larger value of λ gives increased

regularisation, meaning the magnitude of β coefficients will shrink more. The choice of λ is

discussed later in Section 2.1.6.

The penalisation term in Equation (2.15) imposes the constraint that ∑p
j=1 β

2
j < C for a constant

C, which is proportional to λ. The solution to minimising Equation (2.15) with respect to β is

in closed-form giving

β̂ = (XTX + λI)−1XTy . (2.16)

Regularisation is used to reduce the problem of overfitting, which occurs when the model

fits too well for the training data, but cannot be generalised to new datasets. This is a topic

encountered frequently in machine learning, both when N < p and N ≥ p (Hastie et al., 2001).

The least squares estimates when β̂ from minimising Equation (2.11) would then give a low

bias but a high variance. By adding the penalisation term, a bias is introduced to β̂ but the

variance is reduced, so the model is less dependent on the training dataset. This often improves

prediction accuracy for new data outside the training dataset. This is known as the bias-variance

trade-off (Tibshirani, 1996).

2.1.5 LASSO Regression

An alternative to ridge regression is LASSO regression (or Least Absolute Shrinkage and

Selection Operator), which involves regularisation by constraining |β|, rather than |β|2, i.e.

arg min
β

{
N∑
i=1

(
yi − (β0 +

p∑
j=1

xijβj)
)2

+ λ
p∑
j=1
|βj|

}
(2.17)

One of the key differences between ridge regression and LASSO regression is that ridge regression

shrinks many β terms close to zero, while LASSO regression shrinks β terms exactly to zero.
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This makes LASSO regression a variable selection method, suitable when the y is dependent only

on some of the predictors x. The predictors for which βj = 0 can be removed from the model

completely, improving the user interpretability of the model (Tibshirani, 1996). In comparison,

ridge regression is more suitable in cases when the predictors x all make small contributions to

the output y, such as when the predictors are highly correlated.

2.1.6 Cross Validation

In the training process of ridge and LASSO regression, we minimise Equations (2.15) or (2.17)

to find estimates of the coefficients, β. However, we have not yet determined the regularisation

parameter, λ, which controls the amount of shrinkage. For this we could use a process called

validation which involves setting aside a validation set that is not used in training, but is

instead used to estimate how well the trained model will perform on new data (Hastie et al.,

2001). At this stage, choices are made on any additional parameters, that are not optimised

when minimising the residual error, such as the regularisation parameter λ. This means the

data is then split into three sets: the training, validation and test set. A typical split suggested

by Hastie et al. (2001) would be 50% for training and 25% each for validation and testing.

However, keeping aside such a relatively large validation set can only be done when there is

sufficient availability of data.

One way around this is to carry out cross validation (Stone, 1974). In cross validation,

multiple rounds of training and validation are carried out, using one subset of the training data

as the training set and a different part as the validation set, repeating this multiple times. One

of the more commonly used forms is k-fold cross validation (Hastie et al., 2001). The training

set is split into K subsets at random, called ‘folds’. We iterate through k = 1, · · · , K and for

each fold, training is carried out using all samples except those in fold k. The trained model is

then used to predict the samples in fold k and prediction errors are estimated. Then, the mean

prediction error can be calculated across all folds. This can be repeated for different settings,

such as different values of the regularisation parameter λ. Finally, the particular setting or value

of λ is selected so that the mean prediction error across folds (or other choice of loss function)
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is minimised.

2.1.7 Gaussian Processes

Gaussian processes provide another way to learn the relationships between input variables x and

output variables y. A Gaussian process is a stochastic process, which can be viewed as an

extension of a probability distribution. While a probability distribution describes random vari-

ables, a stochastic process describes functions. A Gaussian process is therefore a generalisation

of the Gaussian probability distribution (Rasmussen and Williams, 2006).

Mathematically, we define a Gaussian process as a collection of random variables, f = {f(x) :

x ∈ X}, such that all finite sets of f(x) have a joint multivariate normal distribution,

(f(x1), f(x2) · · · , f(xn)) ∼ Nn(µ,Σ) (2.18)

In other words, the relationship between the function value at x1 and at x2 can be described by a

Gaussian distribution. This is the case for all possible combinations of x. Gaussian distributions

are extensively used in statistical problems because of the central limit theorem, which makes

the Gaussian distribution a natural choice for many data rich scenarios, and because of their

unique properties that make calculations tractable and simple. These benefits carry through to

Gaussian processes, making them a computationally tractable and versatile to a wide range of

problems.

A Gaussian process is defined by its mean function, m(x), and covariance function, k(x,x′),

specified by the user:

f(x) ∼ GP(m(x), k(x,x′)) . (2.19)

The mean function is usually chosen to be zero, m(x) = 0, for simplicity and because the

Gaussian process can usually model the mean behaviour from the data and covariance function

alone (Murphy, 2012; Rasmussen, 2004). The covariance function, or ‘kernel’, describes the
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covariance between pairs of random variables, i.e.

k(x,x′) = cov (f(x), f(x′)) (2.20)

This choice, before introducing any data, defines the prior Gaussian process. We can generate

samples from this prior, such as those plotted in Figure 2.1a, for an example of a Gaussian

process with a univariate input x and univariate output f(x). These samples reflect properties

of the chosen covariance functions and any hyperparameters already set, such as lengthscales

over which things vary.

We want to learn the posterior Gaussian process, which is done by observing datapoints. We

label the dataset, {x, f}. To make predictions of the Gaussian process at new datapoints,

labelled {x∗, f∗}, we use the definition that the relation between f and f∗ must follow a joint

multivariate normal distribution. This gives

 f

f∗

 ∼ N

µ1

µ2

 ,
 k(x,x) k(x,x∗)

k(x∗,x) k(x∗,x∗)


 (2.21)

where the notation k(x,x∗) is used to mean the matrix of covariances of all pairs of training and

test points (of size N ×N∗ if there are N training points and N∗ test points). The properties

of conjugacy in the Gaussian distribution make conditioning on the observations tractable and

leads to a posterior Gaussian process,

f(x) ∼ GP(m∗(x), k∗(x,x′)) (2.22)

with mean and covariance functions given by m∗ and k∗,

m∗ =m(x∗) + k(x∗,x)k(x,x)−1(x−m(x))

k∗ =k(x∗,x∗)− k(x∗,x)k(x,x)−1k(x,x∗)
(2.23)

This proof involves conditioning on Gaussians distributions (see e.g. Murphy (2012), Section
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4.3). We can then sample from this at new unseen inputs x∗. The dotted lines in Figure 2.1b

shows different samples from the posterior Gaussian process. The solid line shows the new mean

function and the grey shading shows the standard deviation or Gaussian process uncertainty as

a consequence of the covariance function. At the training datapoints, x, the value of the output

f is known exactly and therefore the standard deviation shrinks to zero here.

(a) Prior (b) Posterior

Figure 2.1: Reproduced from Rasmussen and Williams (2006) showing 4 samples from (a)
the prior and (b) the posterior after 2 points have been observed. Shading shows 2 standard
deviations.

One of the appealing properties of a Gaussian process is that f(x) can take any form allowed

by its covariance function and it is not limited to a functional form (e.g. linear, sinusoidal).

It is therefore a non-parametric method, as we do not need to learn any parameters (with

the exception of any hyperparameters of the covariance function that can be learned). The

covariance function almost entirely determines how the Gaussian process behaves. If two points

x1 and x2 are deemed close or similar by the covariance function, the resulting f(x1) and f(x2)

is also deemed similar. Therefore the choice of covariance function is important. There are some

choices that generally work well for many datasets. For example, for a smoothly varying output,

we often use the squared exponential covariance function (also called the Gaussian or radial

basis function (RBF)),

k(x,x′) = σ2
f exp

(
|x− x′|2

2l2

)
(2.24)

where l is a horizontal length scale over which the function varies (and may take different values

for different dimensions of x) and σf controls the vertical variation. These hyperparameters can
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be specified by the user before building the Gaussian process, but in many situations we do not

know what the best hyperparameters are. Instead, we can find the optimal hyperparameters

through cross validation or maximum likelihood estimation (MLE). To use MLE, we maximise

the likelihood,

log p(x|y) = log
∫
p(x|f ,y)p(f |y)df

= −1
2yTK−1y− 1

2log|K| − n

2 log 2π
(2.25)

with respect to the hyperparameters l and σf , where K = k(x,x) i.e. the covariance function

evaluated at the training data points (Rasmussen and Williams, 2006).

The covariance function can be used to incorporate relevant knowledge about the system, for

example, periodicity can be represented through a periodic covariance function while linear

relationships can be represented through a linear covariance function. The covariance function

can also be constructed as linear combinations of multiple covariance functions, to represent

many properties. For example, in Chapters 3 and 4, we will make use of a covariance function

constructed from adding together the effects of a linear and a squared exponential covariance

function. Finally, we can also construct a Gaussian process to allow a fixed noise component,

such as measurement error. This can be viewed as including a fixed white noise covariance

function. As an outcome, the uncertainty associated with any prediction includes this noise

or measurement error. This means the shaded area showing the uncertainty at the two data

points in Figure 2.1b would not reduce to zero exactly, but would instead reduce to the

measurement error. Furthermore, introducing a fixed noise term, σn, also changes Equation

(2.25) as K = k(x,x) + σ2
nI (Rasmussen and Williams, 2006). We will see an example of this in

Chapter 4, where the internal variability of the system contributes to the total variance on any

prediction.
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2.2 Dimension reduction

2.2.1 Principal Component Analysis

In dimension reduction, our goal is to project a data set x of size m to a smaller space with

dimension k < m. Principal component analysis (PCA) does this by finding the orthogonal

projection where the variance is maximised (Hotelling, 1933).

We define a new vector u of size k, which we call the ‘principal components’ (Bishop, 2006).

The first principal component, u1, is a vector that points in the direction of the data that varies

the most, such as u1 in Figure 2.2. The second principal component must be orthogonal to u1

and is the direction that contains most of the variance subject to this constraint.

Figure 2.2: Reproduced from Bishop (2006) showing data points (red) projected onto the first
principal component (green). The principal axis u1 contains most of the variance in the data.

To carry out PCA, we project the data onto the first principal component, uT1 x. The variance

of this projected data is
1
N

N∑
n=1

(
uT1 xn − uT1 x̄

)2
= uT1 Su1 (2.26)

where x̄ is the mean of the original data and S is the covariance matrix of the original data

S = 1
N

N∑
n=1

(xn − x̄) (xn − x̄)T . (2.27)

The projected variance, uT1 Su1, is maximised with respect to u1. We must also constrain uT1 u1
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to prevent ||u1|| → ∞ which is included in the maximisation with a Lagrange multiplier, λ1,

uT1 Su1 + λ1(1− uT1 u1) . (2.28)

This is maximised when

Su1 = λ1u1 (2.29)

meaning that the first principal component is the eigenvector with the largest eigenvalue λ1. The

next principal components are derived in the same way. PCA can alternatively be viewed as the

projection that minimises the distance between the data points and their projections (Pearson,

1901) and this can be used to write the problem in terms of a singular value decomposition of x

(Hastie et al., 2001).

PCA is used as a dimension reduction method by taking only the first few principal components

which contain most of the variance of the data. This is done by sorting eigenvalues from largest

to smallest and choosing a sensible ‘cut-off’, for example, taking the principal components

associated with the eigenvalues that explain 95% of the variance. This leaves us with a smaller

dataset on which analysis can be carried out and the remaining principal components are

discarded. At the end of analysis, the principal components can be projected back into original

space. As some variables are discarded, the full dataset will not be recovered entirely, meaning

this is a lossy method.

2.2.2 Factor Analysis

Factor analysis is a latent variable method that views the data as a linear function of latent

factors (also called latent scores (Murphy, 2012) or common factors (Fabrigar et al.,

1999)) which have influence over multiple variables. These are denoted η and it is assumed

that each variable is a linear combination of these latent factors, with an additional residual

variance, ε. This residual variance is unique to each variable and is typically assumed to have

distribution ε ∼ N (0,Σ2), where the zero mean assumes there is no systematic unique factor

and Σ2 = diag(σ2
1, · · · , σ2

m) is an error of measurement component, specific to each of the m
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variables (Fabrigar et al., 1999; Tipping and Bishop, 1999). The data, y, can be written as

y = ηΛT + ε . (2.30)

where Λ is the factor loading matrix which describes structure of correlations among measured

variables and latent factors, of size m× k when there are k latent factors and m variables. This

factor analysis model is flexible and allows the user to select the way in which the factors are

defined. For instance, we could choose the factors to be orthonormal, as in PCA (Figure 2.2).

The fundamental difference between factor analysis and PCA is that factor analysis differentiates

between the common variances η and the unique variances ε, whereas standard PCA treats

these identically1 (Tipping and Bishop, 1999).

As an example, assume we have a dataset of temperature observations measured at different

weather stations. Factor analysis allows us to break this dataset into a selection of factors that

describe this dataset that could represent meaningful quantities (e.g. latitude, altitude, closeness

to sea) plus a unique variance associated with each individual weather station. In contrast, PCA

provides a method to break the dataset into orthogonal principal components that describe the

total variance in the data, which may or may not have an interpretable meaning, and without a

unique variance from individual weather stations.

The goal of factor analysis is to estimate η, ε and Λ. In the biology and psychology literature

(e.g. Fabrigar et al., 1999), this is typically done in a similar way to PCA, by carrying out an

eigenvalue decomposition so that the factors are defined by the amount of variance described by

the data. However, Chapter 5 will focus on Bayesian inference of η, ε and Λ, as carried out in

Lopes and West (2004) and Press and Shigemasu (1989).

Firstly, note that Equation (2.30) is non-identifiable. There are various methods to make this

identifiable, such as requiring Λ to be orthonormal as done in PCA; using sparsity promoting

methods (much like ridge and LASSO regression described previously); or forcing Λ to be a

lower triangular matrix, as usually done in the Bayesian community (Murphy, 2012). The latter

1Note that the unique variance is included in ‘Probabalistic PCA’ which is factor analysis with ε ∼ N (0, σ2I),
i.e. all latent variables have the same unique variance.
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means that the first measured variable is only generated by the first latent factor, the second

by the first two latent factors, and so on. This can make the latent factors more interpretable,

although it means that the first k variables can affect the interpretation of the latent factors and

should therefore be chosen carefully. However, in order to estimate the factors, we generally need

to know the number of factors in advance. The number of factors can have a substantial effect

on the result and several studies have found that specifying too few factors gives a more severe

error than specifying too many factors (Wood et al., 1996; Fava and Velicer, 1992; Comrey,

1978). This is because a variable that depends on a factor not included in the model will appear

to depend falsely on a factor included in the model, giving poor estimates of the factor loadings

matrix. This can give rotated solutions (where two common factors are combined into one,

obscuring the true structure) or solutions that are difficult to interpret. In comparison, factor

analysis with more factors than necessary leads to rotated solutions where the main factors are

accurately represented but additional factors are associated with weak factor loadings or only

one measured variable. In Chapter 5, I will outline various Bayesian approaches to determining

the number of factors k, with an application to a set of weather observations.

2.3 Introduction to Monte Carlo

One of the goals of this thesis is to infer properties of an unknown probability distribution

that describes the latent factors governing the behaviour of a dataset, such as temperature

observations from a collection of weather stations scattered over a region. This will be approached

from a Bayesian viewpoint, where prior assumptions are combined with data to learn about the

posterior probability distributions, in what is known as Bayesian inference. Chapter 5 will be

concerned with developing algorithms to do this through stochastic simulation, more commonly

known as Monte Carlo simulation. This section will therefore take a more mathematically

rigorous tone in preparation for the algorithms discussed in Chapter 5. First, I will outline

Monte Carlo integration and importance sampling as methods to approximate an integral,

followed by Markov chain Monte Carlo (MCMC) for sampling from an unknown distribution.

Building on these basics, I will outline the key methods used in Chapter 5, reversible jump
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MCMC (RJMCMC) and Sequential Monte Carlo (SMC), which are used to learn not just the

latent factors, but also the number of latent factors that are required to describe a dataset via

factor analysis.

2.3.1 Notation

Before describing these methods, I will introduce the notation used throughout this section. I

will use X to refer to a random variable and x to be the value it takes, with probability density

function generally represented by a Greek letter, such as π(x). Any data will be denoted y. I

will often refer to the ‘target distribution’ being the distribution of interest that we wish to

sample from. In this thesis, the target distribution is the posterior distribution of x given the

data y, which we will denote π(x|y). For clarity, we will always use p(x) to denote the prior

distribution of x and f(y|x) to denote the likelihood. Bayes theorem is therefore written as

(Bayes and Price, 1763)

π(x|y) = f(y|x)p(x)∫
f(y|x)p(x)dx . (2.31)

The denominator is the marginal likelihood or normalising constant, which we will often denote

Z, i.e.

Z =
∫
f(y|x)p(x)dx . (2.32)

Later in this section, we will be interested in cases when the variable of interest consists of a

target variable, k, and a latent variable, θ, i.e. x = (k, θ). In particular, in RJMCMC (Section

2.5) and Transformation SMC (Section 2.6.4), the variable k will be a discrete variable describing

the model, which determines the number of dimensions of the latent variable, denoting this

explicitly with θ(k).

2.3.2 Monte Carlo Integration

We will start with a discussion of Monte Carlo integration. Suppose we want to evaluate the

integral



2.3. Introduction to Monte Carlo 47

I =
b∫
a

h(x)dx (2.33)

where h(x) is a complicated function with no known closed form expression for its integral, I.

We can estimate I using a variety of numerical methods (e.g. Riemann integration, Simpson’s

rule, trapezoidal rule, Gaussian quadrature) however, these approaches suffer the curse of

dimensionality in which the number of points needed to control the error scales exponentially as

the dimension increases (Robert and Casella, 2004). For integrals in large dimensions, we can

take a simulation based approach, called Monte Carlo integration (Wasserman, 2004).

In Monte Carlo integration, we write this integral in terms of a function, w(x), and a probability

distribution that we can sample from, π(x),

I =
b∫
a

w(x)π(x)dx . (2.34)

For example, we can take π to be a probability density of a uniform random variable over the

interval (a, b), i.e. π(x) = Unif(a, b) = 1/(b−a) and w(x) = h(x) (b − a). This means I is the

expectation of w(x), over probability density π(x),

I = Eπ(w(X)) (2.35)

where samples X ∼ π(·). We can generate many samples X1, · · · , XN and using the law of large

numbers, we can approximate I with

Î = 1
N

N∑
i=1

w(Xi) . (2.36)

This converges to I in the limit N →∞ (Wasserman, 2004). The variance of the estimate is

σ2
Î

= Varπ(Î) = 1
N

N∑
i=1

(w(Xi)− Î)2 . (2.37)

Using the relations for variance that state that, for constant a, Var(aX) = a2Var(X), and the
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summation property, Var(∑iXi) = ∑
i Var(Xi), we can show that

σ2
Î

= Varπ(Î) = Varπ
(

1
N

N∑
i=1

w(Xi)
)

= 1
N2

N∑
i=1

Varπ(w(Xi))

= 1
N

Varπ(w(X)) = 1
N
σ2
w .

(2.38)

Hence the standard error on the estimator σÎ , scales with 1√
N

. To decrease the error by a

factor of 2, we need 4 times as many points. However, unlike alternative numerical methods of

estimating I, this does not depend on the dimension of x. This makes Monte Carlo integration

a popular tool for high-dimensional integrals.

The same Monte Carlo integration method can be applied to evaluating the integral of the

function h(x) with respect to a known probability density π(x), from which we can sample

X1, · · ·XN ∼ π(·), when

I =
∫
h(x)π(x)dx

= Eπ [h (X)] .

Using the same logic, we could then estimate I with

Î = 1
N

N∑
i=1

h(Xi) . (2.39)

2.3.3 Importance Sampling

In many instances, we cannot sample directly from π(x). Instead, we can modify how we write

the integral, so that it becomes an integral against a given probability density that we can

sample from, ρ(x), which could be, for instance, a normal distribution (Robert and Casella,
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2004). Our integral becomes

I =
∫
h(x)π(x)dx =

∫ h(x)π(x)
ρ(x) ρ(x)dx

= Eρ
[
h (x) π (x)
ρ (x)

]
.

Then, we can simulate X1, · · ·XN ∼ ρ(·) and estimate I with

Î = 1
N

N∑
i=1

h(Xi)π(Xi)
ρ(Xi)

. (2.40)

We rewrite this as

Î = 1
N

N∑
i

w(xi)h(xi) (2.41)

where we have defined

w(xi) = π(xi)
ρ(xi)

. (2.42)

These are weights or ‘importance functions’, giving rise to the name importance sampling

(Robert and Casella, 2004).

Importance sampling is used when we either cannot sample directly from π(x) or when doing

so is inefficient because the density π(x) is low where the function we are interested h(x) is

high (Robert and Casella, 2004). Ripley (1987) highlights this through the example that if

the function h(x) is focused over a region in the tail of a distribution, such as the Cauchy

distribution. Most of the samples generated from π(x) will fall under the main body of the

distribution, rather than the tails which are the region of interest for h(x). Instead, it would be

preferable to sample from a distribution that favours the regions in which h(x) is greater, in

this case, the tails of the Cauchy distribution. Doing so means we can achieve a lower variance

given a fixed N and therefore a greater efficiency (Ripley, 1987). Consequently, we generally

want ρ(x) to have heavier tails than π(x). The opposite being true can cause problems as the

ratio π/ρ can be unbounded if the tails of ρ are lighter than the tails of π. This means the

weights can vary greatly, giving too much importance to a few values xi in the tails and for some

functions h(x), unbounded π/ρ can lead to unbounded variance on the estimator Eρ(h(x)π(x)
ρ(x) )
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(Robert and Casella, 2004).

Importance sampling is also a valuable tool for estimating the normalising constant (Equation

(2.32)), which can be difficult as it is often a high dimensional integral (Gelman and Meng,

1998). The normalising constant can simply be estimated as an average over the weights, i.e.

Ẑ = 1
N

N∑
i=1

wi . (2.43)

2.4 Markov Chain Monte Carlo

We will now discuss Markov chain Monte Carlo, another simulation based approach for estimating

integrals such as Equation (2.34), that also provides samples from a probability distribution

that we cannot simulate from directly.

We start with the definition of a stochastic process as a collection of random variables,

{Xn : n ∈ N} indexed by an index set n = {0, 1, 2, · · · }. This index could represent, for

example, time or space (historically the index referred to time, hence the term ‘process’). This

stochastic process is a Markov chain if the distribution of Xn depends only on the value at

the previous index, Xn−1 (Brooks et al., 2011), i.e.

P(Xn = x|X0, X1, · · · , Xn−1) = P(Xn = x|Xn−1) . (2.44)

Markov chains are defined by a transition kernel K, a conditional probability density that

gives

Xn+1 = K(Xn, Xn+1) (2.45)

(Robert and Casella, 2004). This is the function that determines the transition from Xn to

Xn+1. One of the most common forms is the random walk process, where

Xn+1 = Xn + εn (2.46)



2.4. Markov Chain Monte Carlo 51

and εn is independent of Xn, Xn−1, · · · , for example ε ∼ N (0, 1).

2.4.1 Properties of MCMC

A stochastic process is stationary if the distribution of {Xn+1, · · · , Xn+k} is independent of

Xn for every positive integer k (Brooks et al., 2011). An initial distribution is stationary (or

invariant or equilibrium) if a Markov chain specified by it is stationary for some transition

kernel. In this case, the transition kernel preserves the initial distribution. These properties

are required in MCMC, as we aim to construct a method that generates values from a stationary

distribution of interest.

One way to achieve stationarity is through a property called reversibility (Brooks et al., 2011).

A Markov chain is said to be reversible with respect to an initial distribution if its transition

kernel is reversible with respect to its distribution i.e.

K(Xn, Xn+1) = K(Xn+1, Xn) (2.47)

In other words, the laws running forward and backwards in time are the same. For a kernel

that satisfies detailed balance,

K(x, y)π(x) = K(y, x)π(y) (2.48)

with a probability density function π, for every (x, y), it is simple to prove that π is the invariant

distribution by integrating over x and y (Robert and Casella, 2004). This gives

∫
X
K(x,B)π(x)dx =

∫
X

∫
B
K(x, y)π(x)dxdy =

∫
X

∫
B
K(y, x)π(y)dxdy =

∫
B
π(y)dy

for any measureable set B where we have used
∫
K(x, y)dx = 1 in the last equality. The middle

equality shows the transition kernel is reversible with respect to x and y and the final equality

shows π is the invariant probability density of the chain.

This condition is sufficient but not necessary for stationarity i.e. reversibility implies stationarity,
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but not vice-versa. Furthermore, reversibility simplifies Markov chain central limit theory (CLT)

and asymptotic variance estimation (Brooks et al., 2011). This leads to reversible MCMC

methods being a popular choice, but it is not required for stationarity (e.g. Andrieu et al.,

2018).

The stationarity condition ensures that the probability of visiting each part of the state space

remains constant throughout the chain, regardless of current position in the state space. To do

this, we require that the chain is irreducible. This means that the kernel K allows for free

moves all over the state space. There must exist finite n where P(Xn ∈ A|X0) > 0 for all A

such that π(A) > 0. Irreducibility also implies recurrence of a chain, meaning the average

number of visits to an arbitrary set A is infinite. Recurrence ensures that the chain has the same

limiting behaviour, regardless of starting point, which brings us onto the topic of convergence.

Convergence is concerned with the limiting behaviour of the chain Xn. There are several

conditions that should be met for the convergence of the chain’s distribution to the invariant

distribution, π. One of the most important conditions for the chain to be convergent is that it

must be ergodic, meaning it must be independent of initial conditions (Robert and Casella,

2004). This is important in practice because we often do not know a suitable starting point for

the chain such that X0 ∼ π (this would be perfect simulation). For a chain to be independent

of initial conditions, we require recurrence (the same limiting behaviour under different initial

conditions) and aperiodicity (the chain does not re-visit any set A with a fixed period). Examples

and details regarding these conditions can be found in Roberts and Rosenthal (2004).

Although in theory, one may construct an MCMC algorithm that satisfies all the relevant criteria

for convergence, within finite computation we cannot be completely sure that convergence has

been achieved. Therefore, we typically monitor the chain through a trace plot of the chain,

such as the example provided in Figure 2.3 (Robert and Casella, 2004). In this example, the

parameter is initialised outside of the stationary distribution. The first ∼ 50 samples from

the chain do not appear to be realistic samples from π, based on the remaining behaviour

of the chain, and therefore we discard these from our sample. This is known as burn-in or

warm-up. There is not one universal approach to choosing a sensible value to define when a
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Figure 2.3: Example of an MCMC trace plot

chain has definitely ‘burned in’. A typical value to use is half the total number of simulations,

but ultimately we rely on assessment of these plots and any expert knowledge of the system to

make these decisions. We can look for any deviant or non-stationary behaviours that indicate

convergence has not been achieved, but the absence of these does not prove that convergence

has been achieved. Simulating a chain for longer than deemed necessary can help us check for

any non-stationary behaviour, although this does not eliminate the possibility that the chain is

‘stuck’ in a local minima, rather than converged to the global minima.

To assess convergence, we may simulate multiple independent chains with different starting

points xm where m ∈ (1,M) for M different chains. There are several benefits to this approach.

Firstly, it reduces variability and dependence on initial values. Secondly, multiple chains also

provide more opportunities to explore the full distribution, whereas a single chain may not

visit the full support, or may over-explore a particular region, which can be very difficult to

detect with a single chain. Finally, comparing quantities of interest across multiple chains makes

it easier to assess the convergence to the stationary distribution (Robert and Casella, 2004).

Furthermore, these chains are completely independent and can therefore be run in parallel,

allowing us to use several computational nodes, which are often readily available, over the same

time period. This makes running M shorter independent chains more efficient than running one

single long chain as the same number of samples can be achieved in almost 1/Mth time. The
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exception to this is the iterations that are discarded due to burn-in, before convergence of each

chain is reached.

A second requirement of a Monte Carlo sampler is the convergence of averages. The empirical

average
1
N

N∑
i=1

h(xi) (2.49)

should converge to Eπ[h(x)] for arbitrary function h (Robert and Casella, 2004). This type of

convergence assesses whether the chain exhibits the same features of the limiting distribution π,

e.g. all the modes. If the chain follows the limiting distribution π then we would expect this to

be the case, but in practice, a chain may not explore the full distribution π in the finite time for

which we run the chain. We must ensure that we choose an appropriate minimal value of N

that achieves a given level of accuracy for the convergence of the empirical averages Eπ[h(x)]

(Robert and Casella, 2004). This type of convergence is related to the mixing speed of the chain

(Brooks et al., 2011), i.e. how quickly the full support of π is explored and how dependent this is

on initial conditions. We will call this efficiency. We may find that some aspects of the target

distribution are explored more quickly than others which indicates the fundamental problem

is mixing. A chain with poor mixing can produce highly correlated samples. This leads to an

overestimate of the variance of h(x).

2.4.2 Metropolis-Hastings

Now that we have covered some of the theory behind MCMC, we will introduce some of the

common approaches to constructing a valid MCMC algorithm, starting with the Metropolis-

Hastings algorithm. In Section 2.4, we defined the transition kernel K which describes the

transition from xn to xn+1. We typically construct this kernel by proposing a new parameter

value, x′ from a proposal distribution q(x′|xi), where xi is the parameter value at the current

iteration i. We then decide whether or not to accept this based on the acceptance probability

α(x→ x′), given by

α(x→ x′) = min
{

1, r(x→ x′)
}

(2.50)
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where r(x→ x′) is the acceptance rate.

For the Metropolis-Hastings algorithm, the acceptance rate is

rMH(x→ x′) = π(x′|y)
π(x|y)

q(x|x′)
q(x′|x) (2.51)

= f(y|x′)p(x′)
f(y|x)p(x)

q(x|x′)
q(x′|x) (2.52)

where π(x|y) is the posterior probability for x given the data y. The second equality uses Bayes’

theorem (Equation (2.31)) to write this in terms of the likelihood f(y|x) and the prior p(x).

We then accept the proposed state, x′ with probability α. If the state is accepted, we set

xi+1 = x′. Otherwise, we reject the state and set xi+1 = x. Algorithm 1 describes these steps.

Algorithm 1 Metropolis-Hastings algorithm
1. Start with x0 from prior

2. For xi for i ∈ 0, · · · , Niter

(a) Propose x′ ∼ q(·|xi)
(b) Evaluate acceptance rate, rMH with Equation (2.52)
(c) With acceptance probability α = min(1, rMH) either accept and set xi+1 = x′ or

otherwise reject and set xi+1 = xi

This form of MCMC is the most well known and used across many disciplines, since there is

freedom to pick a proposal distribution q(x|x′) that is suitable for the problem at hand. When

this algorithm was first introduced as the ‘Metropolis algorithm’ in Metropolis et al. (1953), the

proposal distribution was defined to be symmetric so that q(x|x′) = q(x′|x), but this was later

extended to the Metropolis-Hastings algorithm where symmetry is not required (Hastings, 1970).

Choosing a sensible proposal distribution is one of the most important parts when constructing

an MCMC and it usually requires some expert knowledge of the target distribution. One of the

minimal requirements for convergence is that the support of the proposal distribution must cover

the support of the target distribution, since points that lie outside the proposal distribution can

never be proposed. The choice of proposal distribution also strongly determines how quickly the

full space will be explored and thus the efficiency. The closer to the proposal is to the target
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distribution, the more efficient the chain will be.

This is highlighted when we take the proposal distribution to be an approximation to the target,

say ρ(x) ≈ π(x). Setting q(x|x′) = ρ(x), the acceptance rate is

rMH(x→ x) = π(x′|y)
π(x|y)

ρ(x)
ρ(x′) = π(x′|y)

ρ(x′)
ρ(x)
π(x|y) = w(x′)

w(x) (2.53)

showing that the acceptance rate is the ratio of the importance function weights w defined in

Equation (2.42). This highlights the relationship between MCMC and importance sampling.

We can see that the better the proposal approximates to the target, the higher the acceptance

rate.

One of the most common styles of proposal distributions is the random walk. In the case that

the proposal is of the form x′ = xi + εi where εi comes from a distribution such as the N (0, V )

where V is a fixed value for the variance on the proposed points (Wasserman, 2004). Without

considering acceptance rate, this would form a random walk simulation.

The value V should be chosen carefully, since if it is too small, the proposed points are mostly

accepted but in taking small steps, the chain does not explore the sample space well (or it takes

much longer to do so, i.e. we have low efficiency). In contrast, setting the proposal variance

too large results in high rejection rates as the algorithm proposes new points far away from the

current position. This can lead to the chain appearing ‘stuck’ in the same position for many

iterations. Both these algorithms result in poor approximations for the posterior distributions

because of poor mixing and even though the theory implies the chain should converge, in practice

this will not be seen in finite computation. Therefore, careful tuning of the proposal variance is

required, both to obtain the correct posterior distribution and to have an efficient chain.

The Metropolis-Hastings algorithm can be applied when we have a multivariate target variable,

x = (x1, x2, · · ·xn). If we can construct a valid proposal distribution, we can update these

parameters together and evaluate the acceptance rate in the same way. However, in high-

dimensions it can become difficult to propose sensible parameters across all dimensions, which

can lead to low acceptance rates. Instead, we may be able to turn to another popular MCMC
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algorithm, Gibbs sampling, that does not suffer from this problem.

2.4.3 Gibbs Sampling

First proposed in Geman and Geman (1984), Gibbs sampling is a specific case of the Metropolis-

Hastings algorithm in which it is possible to derive and sample from the conditional posterior

distribution π(x|y). Then, we can propose new points from this conditional posterior distribution

x′ ∼ q(·|x) = π(x|y). When this is the case, the numerator and denominator of Equation (2.52)

cancel and the acceptance probability rG = 1 (Geman and Geman, 1984).

This is still true, even when we have more than one parameter as we can update each parameter

at a time. For example, when x = (x1, x2) we can update x′1 first based on the full conditional

distribution e.g. q(x′1|x1, x2) = π(x′1|y). Then we can update x′2 based on the new full conditional

and our estimate of x′1, e.g. q(x′2|x′1, x1, x2) = π(x′2|y). This gives

rG(x, x′) = π(x′2|x′1, y)π(x′1|y)
π(x2|x1, y)π(x1|y)

q(x2, x1|x′1, x′2)
q(x′2, x′1|x1, x2)

= π(x′2|x′1, y)π(x′1|y)
π(x2|x1, y)π(x1|y)

q(x2|x1, x
′
1, x
′
2)q(x1|x′1, x′2)

q(x′2|x′1, x1, x2)q(x′1|x1, x2)

= π(x′2|x′1, y)π(x′1|y)
π(x2|x1, y)π(x1|y)

π(x2|x1, y)π(x1|y)
π(x′2|x′1, y)π(x′1|y)

= 1 .

This can be extended to more parameters with the same logic.

Since we do not need to evaluate the acceptance rate, this makes an efficient algorithm and

it tends to perform well in high dimensional situations. However, we are forced to move each

parameter independently, which means if there are many highly correlated parameters, we

cannot use this knowledge to move towards a region of higher density, by moving multiple

parameters together. Furthermore, we do not always know the conditional distribution or we

may be unable to sample it from it.
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2.4.4 Metropolis within Gibbs

We are often concerned with a high dimensional parameter space where the Metropolis-Hastings

algorithm suffers from low acceptance rates, but we may be unable to sample directly from the

conditional distributions. Instead, we can use the structure of the Gibbs sampling algorithm

but replace the proposal distribution with the Metropolis-Hastings proposal and evaluate the

Metropolis-Hastings acceptance rate at each step. In other words, we can update individual

parameters using separate Metropolis-Hastings steps. This approach is sometimes called

‘Variable-at-a-Time Metropolis-Hastings’ (Brooks et al., 2011). By doing this, we can improve

the acceptance rates and thus improve efficiency compared to the Metropolis-Hastings algorithm.

This does, however, come at a higher cost as we have to evaluate the acceptance rate for

each dimension. Furthermore, we cannot use strong correlations between parameters to move

efficiently to high density regions of the space. Interestingly, the original sampler presented in

Metropolis et al. (1953) was in fact of this form.

2.4.5 MCMC with latent variables

Often, the likelihood f(y|x) is intractable, meaning it cannot be evaluated pointwise. These

situations arise when the dataset is large (and the likelihood involves a product of many terms),

when the likelihood is known only up to a normalising constant, when the likelihood can be

sampled from but not evaluated (e.g. the data follows a complex stochastic computer model) or

when there are latent variables that require marginalising out of the likelihood through a high

dimensional integral (Everitt et al., 2017). In this section, we will be concerned with the case

in which there are a large number of latent variables, in preparation for the reversible jump

algorithm introduced in the following section.

In this section, the target variable will be k, with probability density π(k) known up to the

normalising constant. We also have θ, a random variable with probability density function

ψ(θ). This is a latent variable needed to fully describe the system. If the primary interest is

modelling probability distribution π(k) alone, (and assuming this is known up to an unknown
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constant) we can use the Algorithm 1 simply replacing x = k as our target variable. This

is called the standard algorithm (Nicholls et al., 2012), the idealised algorithm (Karagiannis

and Andrieu, 2013) or the marginal algorithm, since θ is marginalised out of the likelihood,

f(y|k) =
∫
θ f(y|k, θ)ψ(θ)dθ.

However, when f(y|k) (and therefore π(k|y)) is intractable, introducing and sampling from the

additional variable θ can make this problem simpler and possibly even tractable. It also allows

us to construct chains that are more efficient and therefore allows faster simulation (Higdon,

1998). The inclusion of latent variables θ in the algorithm is called the latent variable method

(Besag and Green, 1993; Higdon, 1998).

We can do this by specifying the conditional distribution π(θ|k) so that the joint distribution is

π(k, θ) = π(k) π(θ|k) . (2.54)

This joint distribution admits the same marginal distribution, π(k) as before (Besag and Green,

1993). We can target the joint distribution by letting x = (k, θ) in Algorithm 1 and in the

Metropolis-Hastings acceptance rate (Equation (2.50)), which gives

rjoint(k, θ → k′, θ′) = f(y|k′, θ′) p(θ′) p(k′)
f(y|k, θ) p(θ) p(k)

q(k, θ|k′, θ′)
q(k′, θ′|k, θ) (2.55)

In practise, this algorithm would involve alternating between sampling k′ and sampling θ′ in

step 2(a) of Algorithm 1 (in the same way as Gibbs sampling alternates between two different

variables) (Higdon, 1998).

However, we aim to target the marginal distribution, π(k|y) and we assume that this and the

likelihood f(y|k) is unknown in exact form. Instead, we can use an unbiased estimator in the

acceptance ratio to achieve the correct target distribution π(k|y). This is called the ‘pseudo

marginal algorithm’. There are two types of algorithms that fit into this class that will be used

in this thesis: the pseudo marginal target and the pseudo marginal ratio algorithm.
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2.4.6 Pseudo Marginal Target Algorithm

In many situations, the marginal likelihood f(y|k) is unknown but can be approximated with

an unbiased estimate, f̂(y|k). For example, we can use an estimate with a single importance

sample point:

f̂(y|k) = f(y|k, θ)p(θ|k)
q(θ|k, θ′, k′) (2.56)

where θ ∼ q(·|k, θ′, k′). The acceptance ratio is

rpseudo−marginal(k → k′) = f̂(y|k′) p(k′)
f̂(y|k) p(k)

q(k|k′)
q(k′|k) . (2.57)

Because we are estimating f(y|k) with Equation (2.56), we are effectively targeting the joint

posterior π(k, θ|y) (as in Equation (2.55)) rather than the marginal posterior π(k|y). However,

since f̂(y|k) is an unbiased estimator, it can be shown that samples from this algorithm converges

to π(k|y) (Andrieu and Vihola, 2015; Beaumont, 2003). As well as being used for intractable

marginal likelihoods (Andrieu and Vihola, 2015), this approach can achieve more efficient mixing

(Beaumont, 2003). This is because exploring θ space often leads to improved mixing in k-space.

Note that at each iteration, we re-use the estimate of the marginal likelihood f̂(y|k) from the

previous iteration. This has a small computational benefit and means that we only need to

calculate the likelihood once per iteration. However, it brings a greater disadvantage in the case

that it can lead to poor performance when f̂(y|k) is a poor estimate. If f̂(y|k) overestimates

f(y|k), it is difficult to propose a new point that will be accepted when compared to the

overestimated f̂(y|k). Because f̂(y|k) is re-used at each iteration, we keep proposing new points

to compare to this estimate until a proposal is accepted. This can lead to many rejections and

the MCMC algorithm getting ‘stuck’ at a certain point, purely due to the poor estimate of the

marginal likelihood.
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2.4.7 Pseudo Marginal Ratio Algorithm

An alternative approach when the marginal likelihood is not known exactly, is to estimate the

entire ratio, f(y|k′)
f(y|k) , i.e.

rpseudo−ratio(k → k′) =
̂(
π(y|k′)
π(y|k)

)
q(k|k′)
q(k′|k)

=
̂(
f(y|k′)
f(y|k)

)
p(k′)
p(k)

q(k|k′)
q(k′|k) .

There are various ways to do this. One is to treat the problem as estimating the ratio of

normalising constants, Z(k′)/Z(k),

̂(
f(y|k′)
f(y|k)

)
= Ẑ(k′)
Z(k) (2.58)

which can be achieved by choosing the proposal distribution so that it has the same normalising

constant and these ratios cancel. This is called the exchange algorithm and is not used in this

thesis, but further details can be found in Murray et al. (2006) and Møller et al. (2004).

To estimate the ratio, we will use an importance sampling estimate of the ratio with samples

from q
̂(
f(y|k′)
f(y|k)

)
= f(y|k′, θ′)p(θ′) q(θ|k, k′, θ′)

f(y|k, θ)p(θ) q(θ′|k′, k, θ) (2.59)

which gives an acceptance rate,

rpseudo−ratio(k → k′) = f(y|k′, θ′) p(θ′) p(k′)
f(y|k, θ) p(θ) p(k)

q(k|k′)
q(k′|k)

q(θ|k, k′, θ′)
q(θ′|k′, k, θ) .

Unlike the pseudo marginal target algorithm, we re-calculate the full ratio of likelihoods at each

step (rather than just the numerator). This means we do not encounter the problem of an

overestimate of the marginal likelihood leading to many rejections. This is called the pseudo

ratio or the pseudo marginal ratio (Andrieu and Vihola, 2015).
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2.5 Reversible Jump MCMC

In this section, we will cover the case in which the latent variables θ associated with target

variable k can live on spaces that can be of a completely different nature, including a different

dimension. We define k to be a model for the data, k ∈ K. Within model k, we write latent

variables as θ(k) ∈ Rnk where the dimension of random variable vector θ(k) is nk, which differs

for each model k.

If the primary interest is model probability distribution alone, π(k) (and assuming this is known

up to an unknown constant) an idealised MCMC algorithm can be used (Karagiannis and

Andrieu, 2013). However, in most scenarios π(k) is intractable and instead we extend this

algorithm to sample from both the model and the parameter values within that model, π(k, θ(k)).

In many cases, we may also be interested in model parameters θ(k), such as the application to

factor analysis which I describe here. The joint distribution of variables is

π(k, θ(k), y) = π(k)π(θ(k)|k) f(y|θ(k), k) (2.60)

which describes the hierarchical structure of the model, where θ(k) is defined for each model k

(Green, 1995).

The parameters θ(k) lie on a different space to θ(k′) which can involve different dimensions

(nk 6= nk′). The Reversible Jump (RJ) MCMC algorithm, first proposed in (Green, 1995), allows

a move or a ‘jump’ from one model k to another model k′. These inter-dimensional moves are

constructed with reversible transformations, from (k, θ(k)) to (k′, θ(k′)). As before, this involves

proposing the new model, k′, and parameter values, θ(k′), and evaluating an acceptance rate.

The key difference is that the transitions from one model to another must be defined correctly

to ensure that it satisfies the conditions outlined in Section 2.4. These inter-dimensional moves

are combined with the typical MCMC moves within a specified dimension and hence gives the

algorithm the name RJMCMC (Green, 1995).
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RJMCMC targets the joint posterior, π(k, θ(k)|y) which can be factorised as

π(k, θ(k)|y) = π(k|y) π(θ(k)|k, y) . (2.61)

These two terms can be treated separately with moves on k followed by moves on θ(k), rather

than carrying out model averaging over θ(k) (Green, 1995).

We need to define an appropriate Markov transition kernel, K(x, x′), that satisfies the conditions

described in Section 2.4. In MCMC, the acceptance rate is r = π(x′|y)q(x|x′)
π(x|y)q(x′|x) , but when x = (k, θ(k))

and x′ = (k′, θ(k′)) exist on different spaces, the ratio of π(x′|y)q(x|x′) to π(x|y)q(x′|x) must be

defined rigorously on a common dominating measure. This is ensured by defining a ‘dimension

balancing’ or ‘dimension matching’ condition on q(x′|x) so that the degrees of freedom match

(Richardson and Green, 1997). This is also often described as extending the space in which

the MCMC is carried out to an ‘augmented space’ which includes the maximum number of

dimensions.

In particular, we are concerned with the moves on θ(k), which exist on different spaces, while

the moves on k can be considered in the same way as before. This separation is written in the

proposal distribution with

q(x′|x) = q(k′, θ′(k
′)|k, θ(k)) = q(k′|k) q(θ′(k′)|k′, k, θ(k)) . (2.62)

In reversible jump, it is typical to propose a move from k to either k+ 1 or k−1 with probability
1
2 on each of these. The exception to this is when k = kmax or k = kmin and therefore the

proposed move is kmax − 1 or kmin + 1 with probability 1. The proposal distribution on k is

therefore

q(k′|k) =



1
2 k′ = k + 1, k 6= kmax

1
2 k′ = k − 1, k 6= kmin

1


k′ = kmax − 1, k = kmax

k′ = kmin + 1, k = kmin

(2.63)
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which is used in all RJMCMC algorithms in this thesis.

We also require a suitable proposal for θ′(k′), which is more complicated due to the different

spaces that θ(k) and θ′(k
′) lie on. Dimension matching requires that the two subspaces have the

same number of dimensions during the transition. This is typically done by introducing new

auxilliary variables, u(k), which I outline here by transitioning from k = 1 to k′ = 2 (Green,

1995). To transition from θ(1) of size n1 to θ(2) of size n2, first we generate a vector of continuous

random variables u(1) of length m1. We will denote the probability density function of this as

ψ(1→2)(u(1)). Then, a deterministic function of θ(1) and u(1) is used to determine θ(2). Similarly,

in the reverse process of transition from θ(2) of size n2 to θ(1) of size n1, we generate a vector of

continuous random variables u(2) of length m2 with probability density function ψ(2→1)(u(2)).

Then we apply a deterministic function of θ(2) and u(2) to obtain θ(1). The dimension matching

requirement is there must be a bijection between (θ(1), u(1)) and (θ(2), u(2)), so that the lengths

of these random vectors are equal, i.e. n1 +m1 = n2 +m2.

For clarity, in the following section we will denote the probability distribution on (θ(1), u(1)) with

π(θ(1), u(1)) = ϕ1(θ(1))ψ1→2(u(1)) . (2.64)

When we introduce the new auxiliary variables, the detailed balance condition (Equation (2.48))

on the transition from (θ(1), u(1)) to (θ(2), u(2)) requires that

∫
ϕ1(θ(1))ψ(1→2)(u(1))K(θ(1), u(1), θ(2), u(2))dθ(1)du(1)

=
∫
ϕ2(θ(2))ψ(2→1)(u(2))K(θ(2), u(2), θ(1), u(1))dθ(2)du(2) . (2.65)

Here we can see that both (θ(1), u(1)) and (θ(2), u(2)) must lie on the same space. This allows us

to write

ϕ1(θ(1))ψ(1→2)(u(1))K(θ(1), u(1), θ(2), u(2))

= ϕ2(θ(2))ψ(2→1)(u(2))K(θ(2), u(2), θ(1), u(1))
∣∣∣∣∣∣
∂
(
θ(2), u(2)

)
∂ (θ(1), u(1))

∣∣∣∣∣∣ (2.66)
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where the term
∣∣∣∣∂(θ(2),u(2))
∂(θ(1),u(1))

∣∣∣∣ is the Jacobian.

This defines the proposal distributions q(θ′(k′)|k′, k, θ(k)) between k = 1 and k = 2 to be

q(θ(1)|1, 2, θ(2)) = ϕ1(θ(1))ψ(1→2)(u(1)) (2.67)

q(θ(2)|2, 1, θ(1)) = ϕ2(θ(2))ψ(2→1)(u(2))
∣∣∣∣∣∂(θ(2), u(2))
∂(θ(1), u(1))

∣∣∣∣∣ . (2.68)

This can be written more generally for k and k′ and gives the following acceptance rate:

rRJ(k → k′) =π(k′, θ′(k
′)|y)

π(k, θ(k)|y)
q(k, θ(k)|k′, θ′(k′))
q(k′, θ′(k′)|k, θ(k))

=π(k′, θ′(k
′)|y)

π(k, θ(k)|y)
q(k|k′)
q(k′|k)

q(θ(k)|k, k′, θ′(k′))
q(θ′(k′)|k′, k, θ(k))

=π(k′, θ′(k
′)|y)

π(k, θ(k)|y)
q(k|k′)
q(k′|k)

ϕk(θ(k))ψ(k→k′)(u(k))

ϕk′(θ′(k′))ψ(k′→k)(u′(k′))
∣∣∣∣∂(θ′(k′),u′(k′))∂(θ(k),u(k))

∣∣∣∣ .
(2.69)

Usually, one of m1 or m2 these will be zero, meaning only one auxiliary variable is needed, which

simplifies Equation (2.69). The construction of the RJ move can be difficult and we do not

know the likelihood in exact form. As before, both the pseudo-marginal and the pseudo-ratio

methods could be applied to the RJMCMC algorithm, both of which are explored for factor

analysis in Chapter 5. The general form of RJMCMC is given by Algorithm 2.

Algorithm 2

1. Set initial k and draw prior θ(k). Set X0 = (k, θ(k))

2. For i = 1, · · · , N : current model is Xi = (k, θ(k))

(a) Within model: Do 1 MCMC step (e.g. Metropolis-Hastings, Gibbs)
(b) Between model: Do 1 RJ step

i. Propose k′ ∼ q(·, k) with Equation (2.63)
ii. Propose (θ′(k′), u(k′)) ∼ q(·|k′, k, θ(k), u(k)).

iii. Evaluate acceptance rate rRJ with equation 2.69.
iv. With acceptance probability α = min(1, rRJ) either accept and set Xi = (k′, θ′(k′))

or reject and set Xi = (k, θ(k)).
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2.6 Sequential Monte Carlo Methods

In this section, we will outline Sequential Monte Carlo (SMC), which allows us to sample

from a probability distribution of interest, by building a sequence of intermediate distributions

starting from a known distribution. In particular, this section builds up to a method called

Transformation SMC that allows us to transition across probability distributions defined on

different spaces, a concept which we have seen already when describing RJMCMC in Section

2.5. We will first outline annealed importance sampling, which has similar properties to SMC,

starting with a brief recap of importance sampling.

2.6.1 Annealed Importance Sampling

Section 2.3.3 introduces importance sampling as a method for estimating an integral over π(x),

by taking samples from a different distribution ρ(x). We estimated the integral I =
∫
h(x)π(x)dx

with

Î = 1
N

N∑
i

w(xi)h(xi) (2.70)

where

w(x) = π(x)
ρ(x) (2.71)

are the weights and points are generated from ρ(·). This can also be used to estimate the

normalising constant with

Ẑ = 1
N

N∑
i=1

w(xi) . (2.72)

The normalised weights, Wi, which can be estimated with Ŵi = wi/Ẑ, provide a useful indication

of the cost of sampling from ρ rather than π (Neal, 2001). The sample size is effectively reduced

by a factor of 1 + Var(Ŵ ). Furthermore, large variances also indicate that only a few of the large

importance weights are dominating Equation (2.70), which can lead to inaccurate estimates of

the integral.

Importance sampling works well if ρ(x) is similar to the target distribution π(x) everywhere,
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as a more ‘similar’ distribution will give large and equal weights across all x. However, if

the proposal distribution, ρ(x) differs greatly from π(x), for example, if the peak of π(x) lies

in the tails of ρ(x) where few points are proposed, it can give larger errors in the estimated

integral. This is more problematic in higher dimensional spaces, because the distance between

distributions grows exponentially with dimension. Given a fixed number of samples, the error

in the estimated integral also grows exponentially with dimension (Agapiou et al., 2017). To

control this error, the number of samples must be increased exponentially with dimension. This

means the computational cost, typically measured as the number of samples required to control

the error below a fixed bound, grows exponentially with dimension. One way around this is to

reduce the distance between the proposal and target distributions, by introducing intermediate

proposal distributions. This is called annealed importance sampling (Neal, 2001).

Annealed importance sampling makes use of simulated annealing, an approach used to

bridge two distributions. Simulated annealing was first done in Kirkpatrick et al. (1983)

for a combinatorics optimisation problem, using ideas from statistical mechanics that relate

macroscopic properties to microscopic averages. The process of optimisation is viewed as

analogous to the process of cooling a physical system to 0 K to reach a minimum energy state.

This can be done in stages, broken into a controlled schedule called the annealing schedule. At

each step, the system is is cooled to a controlled temperature and reaches a minimum energy

state for this temperature. This allows the true minimum energy state to be found when the

temperature is 0 K. In contrast, if cooled rapidly, the system may not reach the true minimum

energy state because it can become stuck in local optima at intermediate steps and as it is

further cooled the possibility of the system transitioning out of this local optimum is reduced.

The annealing process avoids this problem by ensuring global minima are reached at each

stage. In optimisation, the same approach can be applied where at each stage of the annealing

schedule an intermediate distribution is chosen. Kirkpatrick et al. (1983) describe annealing as

an evolutionary process, modelled purely through stochastic means.

Annealing effectively breaks down the progression from one distribution to another into multiple

transitions from one intermediate distributions to the next (Neal, 2001). Here our target

distribution is π(x) and and we define the proposal distribution, π0(x), which we can sample from.



68 Chapter 2. Methods

We define a sequence of intermediate distributions, π1, · · · , πT−1. For each t ∈ 1, · · · , T − 1,

we must be able to compute a function proportional to πt(x). This sequence of distributions

can be constructed to suit the problem. A common definition is to use

πt(x) = π(x)γtπ0(x)1−γt (2.73)

where γ0 = 0, γT = 1 and 0 = γ0 < γ1 < γ2 < · · · < γT = 1. With each transition, the

intermediate distribution becomes closer to the target distribution and further from the initial

proposal distribution. A simple choice of γt is to choose γt = t
T

. We must also define a Markov

chain transition, Kt, that we can simulate from that leaves πt invariant. This can involve either

a single or multiple MCMC updates, for instance, a Metropolis-Hastings update.

We start with N draws from the proposal distribution, x(i)
0 ∼ π0(·), where we use superscripts

to indicate each independent sample, i = 1, · · · , N , and subscripts to indicate each intermediate

distribution defined by Equation (2.73), t = 0, 1, · · · , T − 1. We want to use π0 as an approxi-

mation to the next distribution, π1. We can calculate the importance sampling weight, π1(x0)
π0(x0)

(from Equation (2.71)), which compares how well π1 approximates π0 evaluated at parameter

value x(i)
0 .

For each sample, i, we then use the transition kernel K1(x0, ·) to update x1 with the invariant

distribution π1. This will be used as an estimate for a point drawn from the next distribution,

π2. Following the same steps, we calculate the importance sampling weight, π2(x1)
π1(x1) . This process

is repeated until we have generated xT−1 from transition kernel KT−1(xT−2, ·) which contributes

importance sampling weight πT (xT−1)
πT−1(xT−1) . This gives a sequence of points {x0, x1, · · · , xT−1},

often called a trajectory, all drawn from from intermediate distributions {π0, π1, · · · , πT−1}.

The final value, xT ∼ KT (xT−1, ·), generates the sample from the target distribution i.e.

x(i) = xT ∼ πT . We evaluate the annealed importance weight by multiplying the importance
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weights calculated in each transition,

w
(i)
AIS = π1(x(i)

0 )
π0(x(i)

0 )
π2(x(i)

1 )
π1(x(i)

1 )
· · · πT (x(i)

T−1)
πT−1(x(i)

T−1)
(2.74)

=
T∏
t=1

πt(x(i)
t−1)

πt−1(x(i)
t−1)

(2.75)

Then, the integral can be estimated with

Î = 1
N

N∑
i

w
(i)
AIS(x(i))h(x(i)) = 1

N

N∑
i

T∏
t=1

πt(x(i)
t−1)

πt−1(x(i)
t−1)

h(x(i)) . (2.76)

Furthermore, we can still estimate the normalising constant with

Ẑ = 1
N

N∑
i=1

w
(i)
AIS(x(i)) = 1

N

N∑
i=1

T∏
t=1

πt(x(i)
t−1)

πt−1(x(i)
t−1)

. (2.77)

Introducing intermediate distributions to importance sampling is useful when the best proposal

distribution that can be found and sampled from is still a poor approximation to the target

distribution. For example, if the distance between the prior and target distributions is high,

the importance sampling weights alone, π(x)/ρ(x) can be low and the error on the estimate Î

may be high. If we introduce an intermediate distribution that lies between these distributions,

we can effectively bridge the gap between the two. As noted for importance sampling, the

efficiency of the estimation is reduced by a factor of 1 + Var(Ŵ ). Neal (2001) show that the

variance of the normalised weights falls as the number of intermediate distributions are increased.

Furthermore, as the dimensionality of the distribution is increased, the error in the importance

sampling estimated integral grows exponentially (Agapiou et al., 2017). However, when annealed

distributions are introduced the variance is only increased by a factor of d, the number of

dimensions (Neal, 2001). This is because in annealed importance sampling, it is the distance

between adjacent intermediate distributions πt(xt−1) and πt−1(xt−1) that are important. For

independent states, xt−1 ∼ πt−1 each weight, πt(xt−1)
πt−1(xt−1) is composed of d independent terms, and

therefore the variance of the weights scales with a constant factor of d. Although the states xt−1
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may not be strictly independent, the scaling can be assumed to be close to linear, which is still

much less severe than the exponential scaling obtained without annealing distributions.

Algorithm 3 Annealed Importance Sampling

1. For all samples, i = 1, · · · , N , initialise x(i)
0 ∼ π0

For each i ∈ 1, · · ·N , let with x = x(i)

(a) For t ∈ 1, · · · , T :
i. Annealing procedure: generate xt using transition distribution Kt(·, xt−1)

ii. Calculate the importance weight at transition t,

wt = πt(xt−1)
πt−1(xt−1) (2.78)

where
πt(x) = πT (x) t

T π0(x)T−tT (2.79)
(b) Calculate the annealed importance weight

w
(i)
AIS =

T−1∏
t

wt (2.80)

(c) Let x(i) = xT

2. For i = 1, · · · , N , we now have samples x(i) ∼ πT , and their associated annealed importance
weights, w(i)

AIS. The normalising constant can be calculated with Ẑ = ∑N
i=1 w

(i)
AIS.

2.6.2 Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods are a type of Monte Carlo algorithm designed for

sampling from a sequence of probability distributions. They take a similar approach to AIS,

but where we introduce intermediate distributions to slowly transition from one distribution

to another. One of the key differences between the two is that SMC introduces the idea of

resampling, where appropriate, to ensure the samples are spread fairly across the distribution of

interest.

SMC originates from particle filter methods, designed to estimate an unknown state vector,

given partial and/or noisy observations (Gordon et al., 1993). Particle filters are based on

the idea that the sequence of probability distributions describes the evolution of a system in
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time, leading to the index notation t = 1, · · · , T (Liu and Chen, 1998). The target probability

distribution is the state at the most recent time t = T , given all observations up until this point,

πT (xT |y1, · · · , yT ). The evolution of the states can be filtered or smoothed, given available

observations, and furthermore, successive predictions can be made by extending the time series to

T +1 and sampling xT+1 ∼ πT+1(·). SMC adapts the methods of particle filtering to sample from

a probability distribution of fixed dimension, πT , where the sequence of probability distributions

are defined by an MCMC transition kernel, as seen in AIS above (Del Moral et al., 2006).

We will use the Sequential Monte Carlo sampler presented in Del Moral et al. (2006). We start

by defining the sequence of probability distributions, on a common space, π0, · · · , πT where π0

is the prior distribution and πT is the target distribution. Each of these is known only up to

a normalising constant. First, at time t = 0, we sample NP independent points from π0 and

we label these x(p)
0 ∼ π0, where p ∈ 1, · · · , NP . Based on the origins in particle filters, it is

common to refer to these samples as ‘particles’. Throughout this, we will use superscripts to

refer to the particles and subscripts to refer to the intermediate distributions. Each particle is

assigned a weight that will be tracked throughout this algorithm. We will use w to indicate an

unnormalised weight and W to indicate the normalised weight,

W (p) = w(p)∑NP
p=1 w

(p)
. (2.81)

The weights are typically initialised from a uniform distribution, so that all particles p have

normalised weight W (p)
0 = 1

NP
. We then carry out the following steps for iteration t = 1, · · · , T .

The path of all particles is extended to the next iteration at time t by letting samples from

πt−1 approximate the next distribution πt. The incremental importance weight, meaning

the contribution of the importance weight at this iteration, is calculated as the ratio of the

distributions πt−1 and πt

w̃
(p)
t = πt(x(p)

t−1)
πt−1(x(p)

t−1)
(2.82)

for each particle p. This is used to update the unnormalised weight wt = w̃twt−1. This is

equivalent to the product of incremental weights calculated at each transition in AIS (Equation
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(2.75)). This first step is called reweighting.

Before carrying out the MCMC move to update xt, we consider the variance of the normalised

weights which tends to increase at each iteration as the distance from the initial distribution

increases (i.e. the discrepancy between πt and π0 increases with t). This can lead to a potential

degeneracy of particle approximation as some particles may be assigned very low weights and

few (or even just one) may have significant weighting, dominating the results. We measure this

with the Effective Sample Size (ESS), defined as

ESS = 1∑NP
p=1(W (p))2

(2.83)

where W (p) is the normalised weight of particle p calculated from Equation (2.81). The ESS

describes how many of the NP samples are different enough from each other to be relevant

and should ideally be close to NP . For a value much lower than the total number of samples,

the degeneracy of particles is high. If ESS < α for a pre-specified threshold, say α = NP/2

we carry out a process called resampling. This involves sampling NP new particles from the

weighted distribution πtW (p)
t so that the set of particles are distributed according to the weights.

The result is that there are multiple copies of particles with high weights while particles with

low weights are discarded. Different approaches can be taken but we will use stratified sampling

which ensures a roughly even spread of particles across the cumulative distribution of weights

(Kitagawa, 1996). Then all resampled particles are assigned even weights 1/NP . At the moment

of resampling, the number of distinct particles is decreased and therefore the Monte Carlo

variance of the estimator is increased. However, resampling is carried out to enable a more

diverse sample and a lower Monte Carlo variance in future iterations (Johansen and Evers,

2010). It is therefore not desirable to carry out resampling at every iteration, which is why we

monitor the ESS at each step, and resample only if it falls below a certain threshold.

The third step is to move the particles using the MCMC move defined by the transition kernel

Kt(xt−1, xt), as done in annealed importance sampling. This gives a new set of particles x(p)
t

distributed according to πt. These three steps to ‘reweight’, ‘resample’ and ‘move’ all particles

are repeated until t = T . Figure 2.4 shows how these three steps play out on 10 particles that
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evolve from step t− 1 to step t (Doucet et al., 2001). This highlights the importance weights,

represented in blue, which are calculated according to the intermediate distribution and used to

redistribute particles in the resampling step, before the MCMC move is carried out. Algorithm

4 describes this SMC sampler.

We also have an estimate of the normalising constant at each iteration with ∑NP
p=1 w

(p)
t , calculated

in the renormalisation step. The final value of this is an estimate of the normalising constant,

Ẑ =
NP∑
p=1

w
(p)
T =

NP∑
p=1

T∏
t=0

w
(p)
t (2.84)

which is equivalent to Equation (2.77) in AIS.

Figure 2.4: Reproduced from Doucet et al. (2001) showing SMC for N = 10 particles in yellow
with weights in blue. Starting from the top at time t− 1, these particles are weighted according
the intermediate distribution, then resampled according to these weights and then moved
according to an MCMC move. This process is then repeated.

SMC algorithms share many similar concepts to AIS since they both rely on constructing a

sequence of probability distributions, which can be chosen so that we start with samples from
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Algorithm 4 SMC sampler for sequence of probability distributions defined on common space

1. For all particles, p = 1, · · · , NP , initialise x(p)
0 ∼ π0 and W

(p)
0 = 1

NP

2. For each t ∈ 1, · · · , T :

(a) Reweight all particles p = 1, · · · , NP with

w
(p)
t = w̃

(p)
t w

(p)
t−1 = πt(x(p)

t−1)
πt−1(x(p)

t−1)
w

(p)
t−1

(b) Resample if necessary
i. Renormalise all particles p = 1, · · · , NP with

W
(p)
t = w

(p)
t∑NP

p=1 w
(p)
t

ii. Calculate ESS with Equation (2.83)

ESS = 1∑NP
p=1(W (p)

t )2

iii. If ESS < α resample with stratified sampling and set W (p)
t = 1

NP

(c) Move all particles p = 1, · · · , NP

x
(p)
t ∼ Kt(xt−1, ·)
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a prior distribution, π0 and slowly move transition to a posterior distribution, πT . The main

difference is resampling step in SMC, which aims to keep diversity in the particles and reduce

degeneracy in the final sample at t = T . However, this degeneracy is not eliminated entirely,

but rather shifted to an earlier point in the trajectory (Johansen and Evers, 2010). This is

because the process of resampling at time t involves replicating particles, which then initially

follow similar paths, creating a degeneracy at time t. This can be a problem if the full history

of the particles is of interest, but overall it is beneficial when the goal is sampling from πT .

The complexity of the SMC algorithm is O(N) and the reweighting and move steps can be

paralellised easily. The bottleneck for a completely parallelised algorithm is the process of

resampling as this requires summing all the particle weights in renormalisation which cannot be

parallelised (Del Moral et al., 2006).

2.6.3 Adaptive SMC

Constructing the intermediate probability distributions π1, · · · , πT−1 can be a challenge. We

can use the same form as AIS, i.e.

πt(x) = πT (x)γtπ0(x)1−γt (2.85)

where π0 is the prior distribution, πT is the posterior distribution and γt takes values increasing

from 0 to 1. However, there is often little information available as to how many intermediate

distributions should be taken (T ) or how to choose the spacing of distributions (γt).

We can choose an adaptive sequence of intermediate distributions to select the value of γt at

each iteration (Zhou et al., 2016). The aim of the intermediate distributions, πt is to bridge

the gap between the previous distribution πt−1 and πT , with as few as distributions as possible

to reduce computational cost. Choosing γt too far apart leads to a reduction in ESS as many

points can become degenerate, while choosing them to be too close together is more accurate but

more computationally costly. In adaptive SMC we can choose γt based on a trade-off between

moving as far as possible from πt−1 (and as close as possible to our target distribution πT )
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without allowing the ESS to drop below a certain level. We do this based on the conditional

ESS (CESS), defined by

CESS(πt) =
NP

(∑
p(w

(p)
t−1w̃

(p)
t )

)2

∑
p

(
(w(p)

t−1)(w̃(p)
t )2

) (2.86)

The CESS describes how close neighbouring distributions are. When the CESS is close to NP ,

the neighbouring distributions are close to each other, which should give higher and more equal

weights. We set a pre-specified minimum threshold for the CESS, βNP so that β is close to 1,

such as 0.9. We then choose the γt as large as possible so that CESS ≥ βNP .

As before, w̃t is the incremental importance sampling weight that weights points based on the

discrepancy between πt and πt−1. This can be written in terms of γt and γt−1 as

w̃
(p)
t = πt(x(p)

t−1)
πt−1(x(p)

t−1)

=

(
π0(x(p)

t−1)
)γt(

πT (x(p)
t−1)

)1−γt

(
π0(x(p)

t−1)
)γt−1(

πT (x(p)
t−1)

)1−γt−1

=
(
π0(x(p)

t−1)
)γt−γt−1(

πT (x(p)
t−1)

)−γt+γt−1

Since we require CESS(γt) − βNP ≥ 0 in practice, we find for the value of γt that gives

CESS(γt)− βNP .

This process is cheap, as we do not need to evaluate expensive likelihood functions in πt at each

step. We can simply evaluate π0 and πT once, and then repeatedly calculate w̃(p)
t for different

γt, to find the value that satisfies CESS(γt)− βNP . This only slightly changes Algorithm 4.

Instead of pre-specifying the number of iterations in step 2, we evaluate the equation and choose

a new γt. This is carried out at each step until γt = 1, at which point we have achieved the

target distribution. This equates to replacing the loop ‘for each t ∈ 1, · · · , T ’ with ‘while γt < 1’

and adding an additional step 2(d) where the next value γt+1 is calculated. This step is included

in the algorithm presented in the following section (Algorithm 5).

The idea behind choosing γt adaptively is similar to the way in which we carry out adaptive

resampling to keep ESS above a pre-specified threshold in Equation (2.83), as both are concerned
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with maintaining a large effective sample size. Note that the CESS is equal to the ESS when

resampling is carried out at every iteration (Zhou et al., 2016).

2.6.4 Transformation SMC

In RJMCMC (Section 2.5), I introduced the concept of the probability distributions of interest

that exist on different spaces of different dimensions. The same can be true in an SMC algorithm,

as it can be designed to transition from probability distribution πk to a new probability

distribution πk+1 that lies in a different space. Chapter 5 makes use of a method called

transformation SMC (TSMC) presented in Everitt et al. (2020), where the transition from

one probability distribution to another is defined by transformations, as done in RJMCMC.

This is done with an SMC sampler as discussed above (Del Moral et al., 2006) set up on the

extended space which is the space with the maximum dimensions of the variable of interest.

Here, we will start when t = 0 in model k, with parameter values (θ(k), u(k)). The target

distribution of interest at t = T is model k + 1, with parameter values (θ(k+1), u(k+1)). In

other words, π0 = πk and πT = πk+1. As before, we will construct an SMC sampler to bridge

between these two distributions, πt for t = 1, · · · , T − 1. The key difference, however, is that we

must introduce a first step to transform the initial particle, with parameter value (θ(k), u(k)),

from model k to a projection into the same space as model k + 1. This involves sampling

u(k+1) ∼ ψk→k+1(·) followed by applying a deterministic function to obtain θ(k+1), as described

in RJMCMC, Section 2.5.

The remaining steps of reweighting, resampling and moving particles remains the same, but

must be outlined carefully to ensure dimension matching between the spaces. Following the

same notation as RJMCMC in Section 2.5, the goal is move parameter values from model k,

with probability distribution

πk(θ(k), u(k)) = ϕk(θ(k))ψ(k→k+1)(u(k)) (2.87)
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to model k + 1, with probability distribution

πk+1(θ(k+1), u(k+1)) = ϕk+1(θ(k+1))ψ(k+1→k)(u(k+1))
∣∣∣∣∣∂(θ(k+1), u(k+1))

∂(θ(k), u(k))

∣∣∣∣∣ (2.88)

where the last term is the Jacobian which ensures dimension matching between the two

distributions. If we were to move directly from πk to πk+1, the incremental weight update would

be
w̃k+1 =πk+1(θ(k), u(k))

πk(θ(k), u(k))

=
ϕk+1(θ(k+1))ψ(k+1→k)(u(k+1))

∣∣∣∂(θ(k+1),u(k+1))
∂(θ(k),u(k))

∣∣∣
ϕk(θ(k))ψ(k→k+1)(u(k)) .

(2.89)

Here, we have dropped the notation indicating the particle index p.

As before, we introduce the sequence of probability distributions designed to bridge the gap

between πk and πk+1. These intermediate distributions are indexed t. These must be constructed

on a space of fixed dimension, so we will use the larger dimensional space, (θ(k+1), u(k+1)) to

define these. Following equation 2.73 where we defined intermediate distributions πt(x) this

gives

πk→k+1;t(θ(k+1), u(k+1)) =
(
πk+1

(
θ(k+1), u(k+1)

))γt (
πk
(
θ(k), u(k

))1−γt (2.90)

Combining this with Equation (2.82), the incremental weight update when moving from in-

termediate distribution t − 1 to t, represented entirely in the common space (θ(k+1), u(k+1))

is

w̃t = πk→k+1;t(θ(k+1)
t−1 , u

(k+1)
t−1 )

πk→k+1;t−1(θ(k+1)
t−1 , u

(k+1)
t−1 )

. (2.91)

Writing this out in full, using the definition of πk, πk+1 and πk→k+1;t (Equations (2.87), (2.88)

and (2.90) respectively), gives



2.6. Sequential Monte Carlo Methods 79

w̃t =

(
πk+1

(
θ

(k+1)
t−1 , u

(k+1)
t−1

))γt (
πk
(
θ

(k)
t−1, u

(k)
t−1

))1−γt

(
πk+1

(
θ

(k+1)
t−1 , u

(k+1)
t−1

))γt−1 (
πk
(
θ

(k)
t−1, u

(k)
t−1

))1−γt−1

=
πk+1

(
θ

(k+1)
t−1 , u

(k+1)
t−1

)
πk
(
θ

(k)
t−1, u

(k)
t−1

)
γt−γt−1

=


ϕk+1(θ(k+1)

t−1 )ψ(k+1→k)(u(k+1)
t−1 )

∣∣∣∣∂(θ(k+1)
t−1 ,u

(k+1)
t−1 )

∂(θ(k)
t−1,u

(k)
t−1)

∣∣∣∣
ϕk(θ(k)

t−1)ψ(k→k+1)(u(k)
t−1)


γt−γt−1

.

(2.92)

This is used in the reweighting step of the algorithm. Resampling is carried out, if necessary,

in the same manner as Algorithm 4. Finally, an MCMC move is applied to the particles that

targets πk+1;t. We write this as Kk+1;t((θ(k+1)
t−1 , u

(k+1)
t−1 ), (θ(k+1)

t , u
(k+1)
t )). Algorithm 5 outlines the

complete process in moving from k to k + 1, where we also use the adaptive sampling method

described above. This can be repeated, to move through different dimensional spaces where

k = 1, · · · , K. This algorithm can also be reversed to move particles down in dimension, i.e.

k = K, · · · , 1. Furthermore, the normalising constant, Equation (2.77) can be tracked through

the entire process, which means we can compare Ẑ for different values of k, even when the

dimensions differ. This will be used in Chapter 5 as a method of model selection.
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Algorithm 5 tSMC sampler increasing in dimension from k to k+1, with adaptive intermediate
distributions

1. Start with particles, p = 1, · · · , NP , (θ(k)
0 , u

(k)
0 )(p) ∼ πk and W

(p)
0 = 1

NP

2. Transform all particles p = 1, · · · , NP , transform (θ(k)
0 , u

(k)
0 )(p) into k + 1 model space,

with Gk→k+1 to obtain (θ(k+1)
0 , u

(k+1)
0 )(p).

3. Set γt = 0 and t = 0

4. While γt < 1:

(a) Reweight all particles p = 1, · · · , NP with

w
(p)
t = w̃

(p)
t w

(p)
t−1

where w̃(p)
t is given by Equation (2.89).

(b) Resample if necessary
i. Renormalise all particles p = 1, · · · , NP with

W
(p)
t = w

(p)
t∑NP

p=1 w
(p)
t

ii. Calculate ESS with Equation (2.83)

ESS = 1∑NP
p=1(W (p)

t )2

iii. If ESS < α resample with stratified sampling and set W (p)
t = 1

NP

(c) Move all particles p = 1, · · · , NP

(θ(k+1)
t , u

(k+1)
t )(p) ∼ Kt((θ(k+1)

t−1 , u
(k+1)
t−1 )(p), ·)

(d) Calculate next γt ∈ (0, 1] such that CESS(γt) = βNP and set t = t+ 1.



Chapter 3

Long-term Climate Response

Prediction with Machine Learning

3.1 Introduction

In this chapter, I will discuss the construction of a machine learning approach for predicting

the long-term climate response patterns from the short-term climate response based on GCM

simulations. This work is published in Mansfield et al. (2020).

The aim of this chapter is to explore the use of data-driven methods to predict the climate

response to a variety of greenhouse gas and aerosol forcing scenarios, rather than the conventional

approach of running highly expensive GCMs (Section 1.2.1). To achieve long-term climate

change mitigation and adaptation goals, such as limiting global warming to 1.5 or 2 °C,

there must be a global effort to decide and act upon effective but realistic emission pathways

(Pachauri et al., 2014). This requires an understanding of the consequences of such pathways,

which are often diverse and involve changes in multiple climate forcers (Pachauri et al., 2014;

Collins et al., 2012; Rogelj et al., 2013). In particular, different emission scenarios of, for

example, greenhouse gases and aerosols are responsible for diverse changes in regional climate,

which are not always well captured by a metric such as global temperature-change potential

(Shindell and Faluvegi, 2009; Shine et al., 2005; Aamaas et al., 2017; Collins et al., 2013b).

81
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Exploring more detailed relationships between emissions and multi-regional climate responses

still requires the application of Global Climate Models (GCMs) that allow the behaviour of

the climate to be simulated under various conditions on decadal to multi-centennial timescales

(e.g. different atmospheric greenhouse gas and aerosol concentrations or emissions fields, Section

1.2.1). However, modelling climate at increasingly high spatial resolutions has significantly

increased the computational complexity of GCMs (Collins et al., 2012), a tendency that has

been accelerated by the incorporation and enhancement of a number of new Earth system model

components and processes (Williams et al., 2018; Walters et al., 2019; Storkey et al., 2018;

Ridley et al., 2018). This high computational cost drives this investigation into how machine

learning methods can help accelerate estimates of global and regional climate change under

different climate forcing scenarios.

Here, we seek a fast ‘surrogate model’ to find a mapping from short-term to long-term response

patterns within a given GCM. Once learned, this surrogate model can be used to rapidly predict

other outputs (long-term responses) given new unseen inputs (short-term responses i.e. the

results of easier to perform short-term simulations). Data science methods are increasingly used

within climate science (e.g. Bracco et al., 2018; Kretschmer et al., 2017; Nowack et al., 2018;

Sippel et al., 2019; Runge et al., 2019; Knüsel et al., 2019; Nowack et al., 2020), and furthermore,

emulators that approximate model output given specific inputs, are already a popular tool of

choice for prediction, sensitivity analysis, uncertainty quantification and calibration (Ryan et al.,

2018; Wild et al., 2020; Williamson et al., 2015; Salter and Williamson, 2016; Lee et al., 2011,

2016; Rougier et al., 2009; McNeall et al., 2013; Edwards et al., 2019; Castruccio et al., 2014b).

These methods have great potential for climate change projection and impact studies. Yet

long-term, spatially resolved climate prediction for diverse forcings has not yet been addressed,

predominantly because of the lack of appropriate training simulations, which in the past were

expensive to obtain. I use a unique dataset of existing climate model simulations to train

machine learning models and learn relationships between short-term and long-term temperature

responses to different climate forcing scenarios. This promises to drastically accelerate climate

change projections, by reducing the costs of additional scenario computations as it requires only

the short-term response from a GCM. This is motivated by previous studies that find that the
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temperature response is often projected onto the same pattern (Kasoar et al., 2018; Levy et al.,

2013; Xie et al., 2013) and that links can be made between short- and long-term response (Ceppi

et al., 2017; Persad et al., 2018). Furthermore, the machine learning methods discussed here

can also be coupled with the emulator presented in Chapter 4, which would further increase the

speed of climate change projections, from emissions to global patterns of long-term response.

Here, I present two approaches to building the surrogate model, namely ridge regression and

Gaussian process regression. Throughout this section, I will discuss the successes and challenges

of these methods and compare them against pattern scaling (described in Section 1.2.2). I

also present some of the different set-ups for building the surrogate model, such as dimension

reduction and different inputs. Rather than treating machine learning methods purely as a

‘black-box’, one may wish to uncover how the outputs are learned, a topic of interest in the

climate community in recent years (Barnes et al., 2019, 2020; Runge et al., 2019; Kuhn-Régnier

et al., 2020). I explore this by analysis of ridge regression coefficients in Section 3.7. Finally, I

will outline some of the challenges for the future of emulation of long-term climate response,

particularly with respect to potential performance gains by incorporating larger training datasets,

as highlighted in Mansfield et al. (2020).

3.2 Data

To train our learning algorithms, I take advantage of a unique set of GCM simulations per-

formed in recent years using the Hadley Centre Global Environment Model 3 (HadGEM3),

described in Section 1.2.1. The simulations were run in previous academic studies and model

intercomparison projects, namely the Precipitation Driver and Response Model Intercomparison

Project (PDRMIP) (Myhre et al., 2017; Liu et al., 2018b; Samset et al., 2016), Evaluating

the Climate and Air Quality Impacts of Short-lived pollutants (ECLIPSE) (Stohl et al., 2015;

Aamaas et al., 2017; Baker et al., 2015) and Kasoar et al. (2018, 2016); Shawki et al. (2018). In

these, step-wise perturbations were applied to various forcing agents to explore characteristic

short- and long-term climate responses to them. There are 21 simulations in total for a range of
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forcings, including long-lived greenhouse gas perturbations (e.g. carbon dioxide (CO2), methane

(CH4), CFC-12), short-lived pollutant perturbations (e.g. sulfur dioxide emissions (SO2, the

precursor to sulfate aerosol (SO4)), black carbon (BC), organic carbon (OC)) and a solar forcing

perturbation. As described in Section 1.1.2, the forcing types differ in that the long-lived forcers

are homogeneously distributed in the atmosphere so that the region of emission is effectively

inconsequential for the global temperature response pattern, while the response to short-lived

forcers is highly dependent on the emission region. Therefore the long-lived forcing simula-

tions are global perturbations, while for the short-term pollutants, both global and regional

perturbations exist, to account for the influence of emission region to the response (Shindell

and Faluvegi, 2009; Shindell et al., 2012). Table 3.1 shows all the scenarios with their source,

name and description.

The long-lived greenhouse gas (CO2, CH4, CFC-12) simulations were performed by altering

the global atmospheric concentrations, since these pollutants are well-mixed throughout the

atmosphere. However, the short-lived pollutant concentration can vary significantly across the

globe and therefore the model relies on spatial fields as inputs (either concentration fields or

emissions fields). For these perturbations, emission fields were scaled abruptly from the present-

day baseline in experiments performed by ECLIPSE (Stohl et al., 2015; Aamaas et al., 2017;

Baker et al., 2015) and Kasoar et al. (2018, 2016); Shawki et al. (2018), while the atmospheric

concentration fields were scaled abruptly in the PDRMIP experiments (Myhre et al., 2017; Liu

et al., 2018b; Samset et al., 2016). The solar forcing experiment was performed by changing the

solar irradiance constant (Myhre et al., 2017). The GCM was run until it converges towards a

new climate state, to reach an approximate equilibrium (70-100 years1). Independent control

simulations were run for each project and the ‘response’ is calculated by differencing the outputs

from the perturbation simulations with the outputs from their corresponding control simulation.

The evolution of the GCM’s global mean temperature response to some example forcing scenarios

is highlighted in Figure 3.1a. All scenarios show an initial sudden response in the first few years,

which we label the ‘short-term response’. The global mean temperature then converges towards

a new (approximately) equilibrated steady state, which we label the ‘long-term response’.
1Simulations produced by Kasoar et al. (2018, 2016); Shawki et al. (2018) were run for up to 200 years, but

70-100 were taken here for consistency
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Table 3.1: Table of scenarios by short name and description, categorised by the source which
generated the data.

Short name Description
Source: PDRMIP, Myhre et al. (2017); Liu et al. (2018b); Samset et al. (2016)

2xCO2 PDRMIP Global doubling of carbon dioxide concentration (PDRMIP)
3xCH4 Global tripling of methane concentration
10xCFC-12 10x increase in global chloroflorocarbon-12 concentration
+2% Solar Constant 2% increase in solar forcing
5xSO4 Global 5x increase in sulfate aerosol concentration globally
10xBC Global 10x increase in black carbon concentration globally
10xSO4 Europe 10x increase in sulfate aerosol concentration over Europe
10xSO4 Asia 10x increase in sulfate aerosol concentration over Asia
10xBC Asia 10x increase in black carbon concentration over Asia
SO4 pre-industrial Pre-industrial sulfate levels

Source: ECLIPSE, Stohl et al. (2015); Aamaas et al. (2017); Baker et al. (2015)
2xCO2 ECLIPSE Global doubling of carbon dioxide concentration (ECLIPSE)
20% CH4 20% reduction in methane emissions globally
No BC Global 100% reduction in black carbon emissions globally
No SO2 Global 100% reduction in sulfur dioxide emissions globally
No CO Global 100% reduction in carbon monoxide emissions globally

Source: Kasoar et al. (2018, 2016); Shawki et al. (2018)
No SO2 NHML 100% reduction in sulfur dioxide emissions over the Northern Hemi-

sphere mid-latitudes
No SO2 China 100% reduction in sulfur dioxide emissions over China
No SO2 East Asia 100% reduction in sulfur dioxide emissions over East Asia
No SO2 Europe 100% reduction in sulfur dioxide emissions over Europe
No SO2 US 100% reduction in sulfur dioxide emissions over the US
No BC NHML 100% reduction in black carbon emissions over the Northern Hemi-

sphere mid-latitudes

For the long-term response, we discard the transient response and average from year 70 to 100

for simulations from PDRMIP and Kasoar et al. (2018) to smooth out internal variability over

the 30-year period, as done in previous studies (Kasoar et al., 2016, 2018; Mitchell, 2003). For

the 5 ECLIPSE simulations, we average from year 70 to year 80, since this is the full temporal

extent of ECLIPSE simulations. For the short-term response, we average over the first 10 years

of the simulation to reduce the influence of natural variability of the GCM (Mitchell, 2003). Note

that these averages are over time and not space as we are interested in not just the global mean

response but, more importantly, in the global response patterns. This results in spatial maps of

short-term response and long-term response, such as the example shown in 3.1b for the 2xCO2

scenario. The goal of the statistical model presented here is to predict the behaviour of the full
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GCM for a specific target climate variable of interest; here we choose surface temperature at

each GCM grid-cell, a central variable of interest in climate science and impact studies.

(a) Smoothed timeseries for global mean response (b) Map of short-term and long-term
temperature response of GCM to
2xCO2 forcing

Additional simulations had also been performed by Shawki et al. (2018); Stohl et al. (2015);

Aamaas et al. (2017); Baker et al. (2015), but we only consider simulations where the global

mean temperature response exceeds the natural variability, calculated as the standard deviation

among the control simulations. This is to limit the noise in the still relatively small dataset

available. Scenarios that were not used for this reason were the global removals of organic

carbon, volatile organic compounds and nitrogen oxides (ECLIPSE), the removal of BC in

regional perturbations and the removal of SO2 over India (Shawki et al., 2018).

To motivate the problem, I first consider correlations between the short-term and long-term

responses on large scales. Figure 3.2 shows the relationship between short-term responses on the

x-axis and long-term responses on the y-axis, both of which are averaged globally and regionally

over Europe and East Asia, as example regions. This shows us not only local relationships

between the short-term and long-term response over the same fixed region (Europe or East Asia),

but also remote relationships between short-term response in Europe and the long-term response
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Figure 3.2: Relationships between short- and long-term responses for the data points averaged
globally, over Europe and over East Asia. The black line shows linear least squares fit, with the
slope and Pearson’s coefficient of correlation, R2, also shown.

in East Asia and vice-versa. Although these regions are distant, we find strong correlations

between short- and long-term responses which can be exploited when building the machine

learning models. This provides us with some initial evidence that it is sensible to build predictive

models in this way, as well as motivation for the linear models presented in the following section.

3.3 Prediction Methods

With these simulations, we aim to learn the function f(x) that maps the short-term responses

x, to the long-term responses, y (Figure 3.3). Both the short- and long-term responses are

multi-dimensional, with a contribution from every grid point. We write these in vector form by

flattening the longitude-latitude grid, i.e. x = (x1, · · · , xp) and y = (p1, · · · , yp), where the index

refers to a specific grid-point and p is the total number of grid-points. We use an independent
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regression model of the long-term response for each grid-cell, i.e. Equation (2.2). Each one

depends on the short-term response at all grid-cells, so that predictions are not only based on

local information but can draw predictive capability from any changes in surface temperature

worldwide. This regression is carried out independently for each output yi for i ∈ (1, p). This

does not explicitly account for spatial correlations in the outputs as each grid-cell is treated

separately, with no sharing of information between adjacent grid-cells. In the following results,

we find that correlations between neighbouring grid-cells appear naturally due to the smoothness

in the outputs of the training data, as found in other studies (Ryan et al., 2018; Wilkinson,

2010; Conti and O’Hagan, 2010). However, we will later introduce principal component analysis

applied to the outputs (Section 3.6.2) which exploits relationships between the output grid and

guarantees new predictions contains the same correlations These correlations can be exploited

to reduce provides another benefit as it enforces correlations in the outputs, which are otherwise

not guaranteed through the independent regression presented previously. For the methods

described below, the outputs are scaled prior to training the model. The inputs are not scaled

in the results presented below, although we explore the effect of scaling in Section 3.6.

We use Ridge regression and Gaussian Process Regression (GPR) as approaches for constructing

this mapping. Ridge regression (Section 2.1.4) penalises large coefficients so that Equation (2.15)

can be uniquely solved when there is limited training data available but high number of outputs

(N < p). Cross-validation is used to learn the regularisation parameter, λ, with 3-folds (Section

2.1.6). We use the scikit-learn package in Python to do this (Pedregosa et al., 2011). As well

as using this for prediction, we explore the underlying mechanics of the regression method, by

examining the learned coefficients, βi, corresponding to the short-term response at grid-point i.

This indicates which regions most strongly influence the prediction for a particular output. We

have also explored the use of LASSO regression (Section 2.1.5) which penalises some coefficients

to be zero, although we find poorer performance, as well as a less intuitive model.

Gaussian process regression is implemented with an additive kernel, consisting of a linear kernel

and a squared exponential kernel described in Section 2.1.7. The hyperparameters, which

correspond to the slopes of the linear fit and the lengthscales and variances for the squared

exponential kernel (Equation (2.24)), are fitted by maximising the likelihood with the BFGS
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Figure 3.3: Training and prediction schematic. The training process learns f(x) to map short-
term responses to the long-term responses from all but one of the simulations. The prediction
process uses the short-term response of the last simulation, currently unseen to f(x), to predict
the long-term response.
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optimiser in the GPy package (GPy, 2014).

Both these approaches make the assumption of linearity, which is sensible based on Figures 3.2

and considering the limited data available. These two methods should handle well the limited

sample size for training, which also limits how effectively the number of free parameters for other

approaches such as deep learning, including convolutional neural networks, could be constrained.

However, future data collaborations to increase dataset size could make deep leaning an option.

For the learning process, we use all but one of the available simulations at a time for training.

Then, the learned regression functions can be used to predict the long-term response for new,

unseen inputs (x∗), (Figure 3.3), corresponding to the one remaining simulation that was left

out. This remaining simulation is the test scenario. We assess the prediction skill of our machine

learning models by comparing the predicted response maps f(x∗) to the results of the complex

GCM simulations for this test scenario. This training and testing is repeated so that every

simulation available is used as test scenario and is predicted based on the information learned

from all other independent simulations. This is done to maximise the number of simulations

available for training given the limited dataset and to replicate a typical use of predicting

the response to a single scenario. In the following section, we show the results of both Ridge

regression and GPR and also compare their predictions with pattern scaling predictions.

3.4 Performance

We evaluate the performance of the two different machine learning methods (Ridge, GPR) by

benchmarking them against the traditional pattern scaling approach described in Section 1.2.2

which is often used for estimating future patterns of climate change (Santer et al., 1990; Mitchell,

2003; Hulme et al., 1995; Murphy et al., 2007; Watterson, 2008). For the reference pattern, the

2xCO2 scenario (from PDRMIP (Myhre et al., 2017; Liu et al., 2018b; Samset et al., 2016)) is

used. Pattern scaling is carried out using both ERF and the global mean short-term response

as the scaler value s for determining the magnitude of the response (Equation (1.1)). Although

the latter is not the typical approach, it is more comparable to inputs used for Ridge and GPR
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here. The long-term surface temperature response predictions along with the true output of the

complex GCM for some example test scenarios is shown in Figures 3.4 to demonstrate some

important features. These figures also show the short-term GCM response, i.e. the inputs. The

complete list of figures for all test scenarios are shown in Figure A.1 of Appendix A for reference.

Both Ridge regression and GPR capture some broad features that pattern scaling is also known

to predict effectively, such as enhanced warming over the Northern Hemisphere, particularly

over land, and Arctic amplification (Tebaldi and Arblaster, 2014). For example, Figure 3.4a

shows the output from the 3xCH4 simulations, for which all methods provide a similar, accurate

response when compared against the GCM response.

However, the key advantage of both machine learning methods is that they capture regional

patterns and diversity in the response that is not predicted by pattern scaling. This is a feature

seen throughout the range of test scenarios (Figure A.1 in Appendix A), but it is particularly

important in improving predictions in short-term pollutant scenarios, which feature particularly

inhomogeneous responses.

Figure 3.4b, which shows the predictions for the global removal of SO2 scenario, highlights this

in two ways. Firstly, the true long-term GCM response exhibits a strong temperature gradient

between the Northern and Southern Hemisphere, because most of the SO2 emissions are located

in the Northern Hemisphere and their removal leads to warming focused over these regions.

Both Ridge and GPR recognise this gradient, with GPR more accurately capturing the extent

of this with the cooling in the Southern Hemisphere. The pattern scaling methods cannot reflect

this enhanced gradient compared against that found in the reference 2xCO2 scenario. Secondly,

there exists response patterns that appear on smaller spatial scales in the GCM response, due to

the short-lived nature of the sulfate aerosol, such as the increased warming over a few grid-cells

in East Asia which tend to have high emission levels (as sulfate aerosols have a cooling effect on

local surface temperature, their removal leads to warming). This increased warming relative

to surrounding areas is represented at the grid cell level fairly accurately in Ridge and GPR,

but it does not appear in the pattern scaling methods since 1) Ridge/GPR treats individual

grid cells as independent regressions and 2) Ridge/GPR makes use of regional patterns in the
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Figure 3.4: Maps showing short-term GCM response (inputs) and long-term GCM response
(aim) compared to the machine learning predictions, Ridge and Gaussian process regression
and the benchmark pattern scaling methods estimated with the ERF and the short-term global
mean response (T), for (a) a long-lived forcing scenario, 3xCH4 and (b) a short-lived forcing
scenario, No SO2 Global. All other predictions can be found in Appendix A, Figure A.1
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short-term response, such as the enhanced short-term warming over North America the Arctic

and parts of East Asia (e.g. the tongue of warming extending into the Pacific ocean). Similar

regional responses are also successfully predicted over Asia in the Gaussian process regression

prediction of 10xBC Asia, 10xSO4 Asia and No SO2 China (Appendix Figure A.1). It is the

ability to learn these spatial patterns that gives data-driven methods the edge over any pattern

scaling method for such predictions.

This is further highlighted by Figure 3.5, which shows the distribution of predicted temperature

responses over all individual grid-boxes for all test scenarios. For the long-lived forcings, such as

3xCH4, all model predictions produce a similar distribution of surface temperature responses to

the GCM. However, for the No SO2 Global scenario, GPR predicts the distribution of response

most accurately, capturing the feature where some grid-points that respond more strongly (up

to 2 °C) while the majority of grid-points respond fairly weakly (less than 0.5°C). The pattern

scaling methods are particularly poor in representing this as they cannot contain a response

with strong variations between regions, such as strong warming in the Northern Hemisphere

with weaker warming or even cooling in the Southern Hemisphere. Even though the global mean

response estimated from the temperature approach to pattern scaling is fairly close to the true

GCM prediction, the variation in response across the grid is underestimated greatly. This is a

fairly consistent result across short-lived forcing scenarios because pattern scaling is constrained

to the same pattern, regardless of the scaling factor used to estimate the global mean response.

Furthermore, the reference pattern used here was the 2xCO2 scenario and therefore it is not

surprising that this pattern does not perform well on the short-lived forcing scenarios. Applying

pattern scaling to an alternative reference pattern for the short-lived pollutants, such as a global

SO2 perturbation, may improve performance for these scenarios. Another caveat with pattern

scaling occurs in the case that the short-term response contains strong regional warming and

cooling, which cancel out to give a weak global mean radiative forcing (e.g. No CO Global

and No BC NHML) or a weak global mean short-term temperature response (e.g. 0.005°C in

No BC Global). This can potentially lead to weak predictions in terms of both response and

spatial variability, e.g. No BC Global. Therefore spatial variability in the short-term response

can be a valuable predictor of long-term response, which is exploited only with the machine
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Figure 3.5: Spatial variability of long-term surface temperature response in °C for all prediction
methods and for all scenarios. The distribution of predicted surface temperature responses
constructed from all spatially weighted grid-points is shown along the vertical axis for each
prediction method. From left to right the plots show the prediction from the general circulation
model (GCM), Ridge regression prediction, Gaussian Process Regression (GPR) prediction and
Pattern Scaling (PS) using effective radiative forcing (ERF) and using the short term global
mean surface temperature (T). The central vertical boxes indicate the interquartile range shown
on a standard box plot, the horizontal line shows the median and the black point shows the
mean. Note the different vertical scales for each row.
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learning methods.

In the following, we quantify how well the two machine learning models and pattern scaling

perform on different spatial scales. At the grid-scale level, we calculate the Root Mean Squared

Error (RMSE) by comparing the prediction and GCM response at every grid-point. We highlight

that grid-scale error metrics need to be interpreted with care because they can present misleading

results, particularly for higher resolution models. For example, they penalize patterns that - as

broad features - are predicted correctly but are displaced marginally on the spatial grid (Rougier

et al., 2009). This issue is, by nature, more prevalent for the machine learning approaches

where smaller scale patterns are more frequently predicted, while pattern scaling predicts more

consistently smooth, cautious patterns with reduced spatial variability. This consideration

is a key reason why predictions for larger scale domains are often selected in impact studies

(Nowack et al., 2017; Hartmann et al., 2019). We therefore also compare the absolute errors

in global mean temperature and in regional mean temperature over ten broad regions, four of

which are the main emission regions (North America, Europe, South Asia and East Asia) and

the remaining cover primarily land areas where responses affect the majority of the world’s

population.

The boxplots in Figure 3.6 show how these errors are distributed over all predicted scenarios for

each regression method. Note that scenario-specific pattern scaling errors are dependent on the

approach chosen to scale the global CO2 response pattern, but all pattern scaling approaches

share their fundamental limitation in predicting spatial variability as described above. Overall,

both Ridge and GPR generally outperform the pattern scaling approach, but we find that, in

most cases, it is GPR errors that are lowest. The main exception to this is over Europe, which is

poorly predicted with GPR. Figure A.1 in Appendix A shows that many scenarios are predicted

with a cool bias over Europe with GPR which appears to be learned due to the 10xSO4 Europe

scenario in the training data. For example, the 10xSO4 Asia and 10xBC Asia scenarios are

both predicted with similar patterns to the 10xSO4 Europe scenario, due to similarities in the

short-term GCM responses. Furthermore, Europe and surrounding regions also exhibit higher

levels of noise in the training data, discussed further in Section 3.5, which may hinder GPR

prediction.
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Figure 3.6: Prediction skill comparison for RMSE at grid-cell level, global mean errors and
regional mean errors in ten major world regions, in °C for all scenarios. R = Ridge regression,
G = Gaussian Process Regression, P(E) = Pattern scaling calculated from the ERF and P(T)
= Pattern scaling calculated from the short-term global mean temperature response. Boxplots
show the distribution of errors across scenario predictions. Boxes show the interquartile range,
whiskers show the extrema, lines show the medians and black diamonds show the mean. The
dots indicate the errors for each individual scenario. Note the different scale for the Arctic and
that points exceed the scale in Arctic (9.5), Northwest Asia (4.7), East Asia (3.7) and the Grid
RMSE (3.8).

Figure 3.7 further highlights the point regarding the performance in different spatial scales, as

the RMSE is calculated for boxes of different sizes, starting at the standard grid-box of the GCM

(140km) and increasing in size by taking a sliding window average over multiple grid-boxes.

The performance of the machine learning does not degrade as poorly when the grid-box size is

decreased compared to the pattern scaling methods, indicating they are better at predicting on

smaller spatial scales. Although making predictions at the grid-scale level is the ultimate goal,

care should be taken when interpreting results of individual grid-cells, as mentioned earlier.
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Figure 3.7: RMSE in °C calculated on different spatial scales, spanning increasing sizes, each
point is the error for one test simulation. R = Ridge regression, G = Gaussian Process Regression,
P(E) = Pattern scaling calculated from the ERF and P(T) = Pattern scaling calculated from
the short-term global mean temperature response.

3.5 Noise and Internal Variability

The large spread in absolute errors in Figure 3.6 is due to the large spread in response

magnitude for the different scenarios. Specifically, the large errors, & 1 °C arise mostly from

regions/scenarios with a large magnitude of response, e.g. & 6 °C. This is demonstrated by

Figure 3.8a, which shows the mean response magnitude against the absolute prediction error for

each method, region and scenario. This feature tends to be more pronounced for the scenarios

with strong forcings (e.g. strong solar or greenhouse gas forcings). However, these errors are

often small relative to the overall magnitude of scenario response, typically falling below the

20% prediction error line. However, the opposite tends to be true for scenarios with a weak

mean response magnitude, e.g. < 1 °C in Figure 3.8a. Although the absolute prediction error

may not be particularly large these errors can be large relative to the magnitude of response,
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some of which are greater than 200%.
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Figure 3.8: Absolute and relative prediction errors for all methods, all scenarios and all regional
averages. The methods are ridge regression (R, blue), Gaussian process regression (G, yellow),
pattern scaling estimated with ERF (P(E), red) and pattern scaling estimated with short-term
global mean temperature response (P(T), dark red). Global mean averages are represented by
the points in bold. The relative prediction errors are calculated as a percentage of the magnitude
of the true GCM long-term response.

Figure 3.8b shows the relative error for all scenarios over all regions compared to the global

mean short-term response magnitude, i.e. the magnitude of the predictor variables. The large

relative prediction errors mentioned previously tend to come from predictions of scenarios with

weaker short-term responses, which will have lower signal-to-noise ratios. These tend to be

the short-lived pollutant scenarios, (BC, SO4, SO2, CO). These scenarios are less likely have

strong and clear signals that exceed the internal variability. This means predictions may be

made based on noisy inputs, leading to larger prediction errors relative to the true response.

This is motivation for a training dataset with more strongly forced scenarios with greater

signal-to-noise ratios in the short-term response. It also explains some of the features in Figures

A.1 and 3.5, in which weak forcing short-lived pollutants are less accurately predicted in all

methods, e.g. No BC NHML, No BC Global and No SO2 US. This is a key limitation for any

method, whether it makes use of individual grid-cells as predictors or not, since weaker scenarios

often suffer low signal-to-noise ratios, making them inherently more difficult to predict.

There is also a difference in magnitude of response between regions, which has an effect on the

magnitude of errors in Figure 3.6. The mean absolute error maps for all prediction methods

are shown in Figure 3.9. High latitude regions typically have larger errors, in particular the
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Figure 3.9: Mean absolute prediction errors in °C for all four methods over all test simulations

Arctic and Europe, indicating these are more difficult to predict with any of these methods,

based on the available data. These regions are also noted as regions of high variability amongst

the simulation data available, shown Figure 3.10a, and of high internal variability within the

GCM itself, Figures 3.10b-3.10c which are calculated as the standard deviation in the control

run responses over the short and long timescales, respectively. There are particularly similar

signatures over the Arctic and North of Europe that appear in both the error maps of the

machine learning models and the internal variability maps, suggesting that this internal noise is

one of the limitations for machine learning methods. This is a sign that care should be taken

when attempting to predict these regions, given the implicit noise in the GCM data. This could

further motivate research into the benefits of reducing, or even eliminating, noise in climate

model datasets prior to building surrogate models. Recent studies have used machine learning

methods to disentangle the signal associated with a forcing from the internal variability in

climate data (Sippel et al., 2019; Wills et al., 2018, 2020b). These methods could potentially be

used to build a training dataset that is not obscured with internal variability, which could then

be combined with methods presented here to build a surrogate model that learns on signals in

the data alone.
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(a)

(b)

(c)

Figure 3.10: (a) Variability in long-term response across simulations available for training,
calculated as standard deviation across available data (b) internal variability in long-term
response and (c) internal variability in short-term response, calculated as standard deviation
across control run simulations
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3.6 Variations on Regression Inputs

In this section, we will cover the variations we have explored in the regression inputs, by scaling

the inputs, applying dimension reduction techniques, working with different predictor variables

and using a different timescale to define the ‘short-term’ response.

3.6.1 Scaling Inputs
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Figure 3.11: Absolute errors in °C for scaled and unscaled inputs for Ridge regression and
Gaussian process regression, where the (S) indicates each individual input has been scaled to
between between 0 and 1 before training.

The results presented so far did not involve scaling of the inputs independently. This maintains

the temperature structure of the grid of inputs and gives greater weighting to regions that

typically respond more strongly. However, we have also explored the effect of scaling the inputs

independently between 0 and 1, so that the short-term response at every grid cell is relative to
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the training dataset, rather than the grid itself. This removes the dependence on the magnitude

of response, but can introduce dependence on the types of training data available when there are

limited simulations available (e.g. if there is a bias towards more warming in a particular region

in all training simulations). Figure 3.11 shows the results of both Ridge and GPR predictions

when the inputs are scaled, compared against the unscaled approach. There are very little

differences between these choices, so for interpretibility we use unscaled inputs unless otherwise

stated.

3.6.2 Dimension Reduction

A key challenge of working with the climate model information here is its high dimensionality

(27,840 grid-cells) given the small scenario sample size of 21 simulations. We have explored

sensible approaches to dimension reduction, both statistical and physical, on both the short-term

and long-term temperature response. For the statistical approach, we use principal component

analysis (PCA) described in Section 2.2.1. Since the number of components is limited by the

number of simulations available (20), we use all components here (Hastie et al., 2001). PCA

exploits correlations between the outputs in the training data, which reduces the cost of training,

as well as enforcing correlations in the outputs in new predictions, which are otherwise not

guaranteed through the independent regression presented previously. Although we do not see

improvements in the performance of the response, this choice can make resulting predictions

easier to interpret because of the en For physical dimension reduction we make predictions on

key regions, informed by knowledge of coherent climate characteristics rather than statistical

relationships. We use the regions over land described previously along with additional regions

over the oceans (divided into North Atlantic, South Atlantic, North Pacific, South Pacific,

Indian Ocean, Southern Ocean and the Antarctic) to cover the full grid. Figure 3.12 shows

the absolute GPR prediction errors in each region using these dimension reduction methods on

the inputs (the short-term response), on the outputs (the long-term response) and on both the

inputs and outputs. By using dimension reduction on the short-term responses, the problem

becomes better constrained as there are fewer parameters to optimise. However, we do not find
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significant improvements in the predictions with either approaches.
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Figure 3.12: Absolute errors in °C for Gaussian process regression where different approaches to
dimension reduction are used. The first column shows no dimension reduction, the next three
columns use principal component analysis (PCA), on the inputs, the outputs and both inputs
and outputs respectively and the last two columns use regional dimension reduction on the
inputs, the outputs and both inputs and outputs respectively.

3.6.3 Different Predictors

We have also explored the use of different variables as the short-term predictors, as there are a

range of sensible GCM variables that could be chosen as inputs to the regression for predicting

the long-term temperature response. Figure 3.13 shows the prediction errors when using various

predictor variables in the regression, where errors are calculated from the absolute error over

the same regions. These predictor variables are surface air temperature, air temperature at 500

hPa, geopotential height at 500 hPa (as an indicator of the large-scale dynamical responses),

ERF and sea level air pressure. Both sea level pressure and ERF produce large absolute errors
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suggesting these are not suitable predictors for long-term surface temperature response patterns.

However, air temperature and geopotential height at 500 hPa offer predictions to a similar degree

of accuracy as the surface temperature response. This suggests there is similar information

encoded in these variables and their patterns. Still, surface air temperature appears to be

the predictor variable with consistently lower prediction errors and is most interpretable for

predicting the long-term surface temperature response.
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Figure 3.13: Absolute errors in °C for Gaussian process regression where different predictor
variables are used as inputs for all key regions: ST=Surface Temperature, AT500=Air Tempera-
ture at 500hPa, GPH500=Geopotential Height at 500hPa, ERF=Effective Radiative Forcing,
SLP=Sea Level Pressure. Note that when using SLP as a predictor for the response for the
Arctic, two points exceed the axis maximum (5.0 and 5.6 °C).

3.6.4 Five year Inputs

Throughout, we have defined the short-term response to be the first 10 years to allow the GCM

some time to respond to the forcings to remove as much natural variability as possible, with 10
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years deemed to be sufficient for pattern scaling problems in Mitchell (2003). However, we find

that using a shorter time period of only 5 years already shows promise. Figure 3.14 shows the

absolute prediction errors when the short-term response is defined as the first 5 years of the

GCM response. The prediction errors for Ridge regression and Gaussian process regression are

increased compared to Figure 3.6, but in most regions are competitive when compared against

both pattern scaling methods, particularly the ERF approach. As before, it is expected that an

increased training dataset will further reduce prediction error, when using this 5 year approach.

This would make a strong enhancement to the speed of prediction of new unseen scenarios, as

fewer years of the GCM would be required.
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Figure 3.14: Absolute error in °C but calculating using 5-year mean in definition of short-term
response.
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3.7 Learning Early Indicators

As well as advancing our predictability skills, the machine learning methods inform us about

regions that experience the earliest indicators of long-term climate change in the GCM. By

assessing the structure of learned Ridge regression coefficients, we find patterns in the short-term

response that consistently indicate the long-term temperature response. There are a large

number of regression coefficients; specifically, for each of the 27,840 outputs, there are 27,840

regression coefficients as described in Section 2.1.4. We consider the regression coefficients for

prediction of the long-term response at a single grid-cell. The nature of ridge regression drives

most of these coefficients to close to zero and therefore they have little influence on the predicted

response. However, the coefficients of larger magnitudes correspond to regions in short-term

response that are the best predictors of the long-term response at the particular grid-cell of

interest.

Figure 3.15 show these coefficients for predicting the response a single grid-point, indicated by

the star, in (from top left to bottom right) Europe, East Asia, Central Africa, South Africa,

North America, South Asia, South America and South-East Asia. Note that these are the

coefficients β calculated when the input variables x are normalised between 0 and 1, in order to

treat all predictors equally.

In the points selected in Europe, East Asia, Central Africa, South Asia and South America,

the dominant coefficients appear in regions close to the predicted grid cell, indicating a strong

relationship between the short- and long-term responses in the localized region. This is intuitive

as it makes sense for a model to make predictions of long-term response predominantly based

on short-term responses in surrounding areas. Still, some patterns in the coefficients exist that

indicate influences in the prediction from further afield.

In contrast, some regions draw more predictive power from remote regions. For example, the

point in South East Asia and South Africa both maintain fairly weak coefficients in their

surrounding area, but rather rely on coefficients located near South America. This is generally

seen in Southern Hemisphere predictions. These coefficient patterns are indicative of noise seen
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Figure 3.15: Ridge regression coefficients for a single grid-cell regression at the point indicated
by the star.
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in GCMs, e.g. the Southern Ocean Oscillation. Another example of this is that the coefficients

for the European prediction are strongly influenced by the short-term responses in sea ice regions

over the Arctic, which is also seen in other high-latitude predictions. As the short-term response

in this Arctic region is highly variable (Figure 3.10c) and strongly responding (due to Arctic

amplification), this could lead to these regions being picked up as important for the long-term

response prediction. This is not necessarily surprising since previous studies find that GCM

climate response is often projected onto typical modes of variability (Kasoar et al., 2018), and is

not inherently a negative feature of the regression model, since this can be a realistic indicator

of how a GCM will project climate response. However, if the training data contains high levels

of noise in certain regions, this can lead to inaccurate selection of coefficients. Figure 3.10a

showed particularly high variability in the training data in the Arctic region, which may lead to

poor predictions if the regression is strongly dependent on these regions. This may explain why

European predictions suffer poorer performance relative to other regions, which confirms that

predictions can be highly dependent on noise in the training data.

(a) Inputs scaled to between 0 and 1 for each grid-
point (b) No scaling applied

Figure 3.16: Ridge regression coefficients globally averaged over all outputs, where (a) scaling
has been applied to remove dependence on magnitude of response at each grid cell and (b) no
scaling has been applied

There are spatially similar features in the regression coefficient maps that appear regardless

of prediction region, such as the larger coefficients over East and South Asia, Northern Africa

and over the Southern Hemisphere jet stream. This is further highlighted when an average is

taken across all 27,840 outputs to find the global mean regression coefficient map shown in

Figure 3.16a. This suggests that these regions are robust early indicators of long-term response

in the GCM. These also feature strong coefficients in regions over East Asia which is a typical
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indicator in the short-term response based on the training data available. Since many of the

simulations consist of strong perturbations in that region (SO2 perturbations in particular), it is

not surprising that the coefficients select these regions as important in predicting future response.

When the input variables are not scaled, demonstrated by the global mean coefficient map in

Figure 3.16b, we find similar patterns in the coefficients, with a slight increase in intensity of

the coefficients associated with warming patterns (over the tropics and land). The coefficients

also place slightly greater weighting in the ice and snow regions (e.g. Greenland, the Arctic)

and high-altitude regions (e.g. Himalayas), both of which are known to warm more rapidly

due to ice/snow albedo feedback (Hall et al., 2019) and faster upper tropospheric warming

(Nowack et al., 2017; Fu et al., 2011) respectively. The choice not to scale the input variables

naturally gives stronger weighting to regions that typically respond more strongly and so it can

be used to pick out regions that typically respond more rapidly to perturbations in the model.

However, the fact that these patterns are still present in the scaled coefficients, indicates that

the accelerated warming in these regions is also a robust harbinger of long-term change within

the model. We highlight the implications for future studies that attempt to interpret already

observed warming patterns from a climate change perspective.

An alternative approach to ridge regression is the LASSO regression described in Section 2.1.5.

In LASSO regression, most coefficients are sent to 0, which leads to strong dependence on just

a few grid points (sparsity). This structure does not lead to particularly intuitive coefficient

maps, and in fact it was found that often remote regions were picked out. Figure 3.17 shows

the coefficient map built using LASSO regression for the two grid-points in Figures 3.16(a) and

(b). These both depend entirely on just a few grid-points and furthermore the grid-points are

not local to the region of prediction grid-point over Europe. The use of Ridge regression makes

more sense over LASSO because Ridge better deals with the collinearity of predictors (Nowack

et al., 2018; Dormann et al., 2013).
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Figure 3.17: Lasso regression coefficients for a single selected grid-cell regression at the point
indicated by the star

3.8 Data Constraints

We identify more extensive training data (additional simulations and forcing scenarios) as key to

further improving the skill of the machine learning methods. In Figure 3.18 it is demonstrated

that as the number of data training samples increases, the mean prediction accuracy significantly

increases and becomes more consistent. Note that this is estimated by repeating the training

and predicting process over different combinations of training data, which reduces the mean

error (c.f. bootstrapping, (Wasserman, 2004)). We would expect significant potential for further

improvements in predictions with even more training data, particularly for the RMSE, the Arctic

and Europe which show larger errors. More simulations would better constrain parameters of

the statistical models and improve the chances that a predicted scenario contains features seen

during training of the statistical model.

Since obtaining training data from the GCM is expensive, sensible choices can also be made

about how to increase the dataset by choosing which new scenarios will benefit the accuracy of

the method the most, e.g. to address some complex regional aspects of the responses to short-

lived pollutants. We recommend increasing the dataset to include more short-lived pollutant

scenarios, noting that those with large forcings have the potential to reduce the noise in the

training data so as to better constrain learned relationships (Figure 3.8b).

Some regions stand out as particularly challenging for our machine learning approaches, with

Europe being a prominent example noted above. It is thought this could be down to several

factors or a combination of them. Firstly, the large variations in the long-term response across
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Figure 3.18: Mean of absolute errors in °C across all predicted scenarios against number of
training simulations, with each line representing a different region. RMSE at the grid-scale level
is also shown in black with white dots. For a fixed number of training data points, the process
of training and predicting is repeated several times over different combinations of training data
to obtain multiple prediction errors for each scenario.

the training data over Europe and surrounding regions (Figure 3.10a) means predictions are

less well constrained and would benefit more from increased training data. Secondly, the

internal variability in the GCM-predicted temperature time series is generally larger over Europe

compared to other regions in both the control and perturbation simulations, which gives rise to

a weaker signal-to-noise ratio for both short- and long-term responses in this region, increasing

the difficulty of learning meaningful predictive relationships (Figure 3.10b). And finally it

was also noted that Ridge regression predictions for Europe depend strongly on parts of the

Arctic (Figure 3.15) where the short-term response is stronger but also highly variable (Figure

3.10c) These reasons point to the issue that internal variability can introduce noise to the

inputs and outputs of the regression, which can have unintended consequences. This is partially

addressed with temporal averages in the definitions of the short- and long-term responses, under

the limitation that we have only a single realization of each simulation available. If, however,

future studies have an ensemble of simulations available for each perturbation, an average over

ensembles would more effectively separate the internal variability from the response. The use
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of several diverse simulations in the training dataset also allows the noise in the inputs and

outputs to be treated as random noise in the regression, which, however, would be even better

determined with increased training data.

3.9 Conclusions

This chapter has covered how Ridge regression and Gaussian process regression can be used to

predict long-term temperature response, given short-term temperature response of a particular

GCM. These methods outperform the standard approach, pattern scaling, particularly for

forcings that are non-homogeneous, such as short-lived pollutants. However, there are still

challenges to come for the prediction of climate change using machine learning techniques.

One of these challenges is the high levels of noise due to internal variability in GCMs. There

is potential for future machine learning models of this form to be assisted by recent research

into tools that help uncover the signal from the noise in climate data (both observations and

simulations) (Sippel et al., 2019; Wills et al., 2018, 2020a,b). If these techniques are to become

refined and well-used in climate science, machine learning emulators could be built to learn

from signals alone, without major interference of unwanted noise.

Another of the challenging aspects of this work is the high-dimensionality, as is common in

climate science and which motivates developments made in Chapter 5. In this section, we

carried out independent single output Gaussian processes for each grid-point, not accounting

for correlations between them. However, recent ongoing literature in the field of Gaussian

processes could help exploit correlations to leverage information with this. A review of potential

approaches for this can be found in Liu et al. (2018a). A fairly well-used approach is to build

co-regionalised models, where multiple outputs are treated like inputs and indexed by the spatial

grid. This was not used here because it would be highly expensive for this particular problem

as the cost scales as O(N3p3) for p = 27, 840 outputs and N training data simulations.

One of the focal points of Mansfield et al. (2020) is the relevance of this study for the future

of data-driven climate modelling, especially concerning the incorporation of even larger model
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datasets in the future. Although this work made use of existing simulations from a single

global climate model, it opens the door for similar approaches to be taken with datasets from

other climate models. We therefore encourage widespread data-sharing to test the limits of

this approach as an important part of future research efforts in this direction, which can

hopefully lead towards more powerful climate response emulators and thus faster climate change

projections.

Note that we have explored the use of these methods in the context of predicting temperature

responses, however, we leave open the topic of predicting other variables such as precipitation,

which we expect to be more challenging due to its spatial and temporal variability (Pendergrass

et al., 2017; Pendergrass and Knutti, 2018) but for which pattern scaling approaches are

well-known to perform particularly poorly (Mitchell, 2003; Murphy et al., 2007; Tebaldi and

Arblaster, 2014; Pendergrass and Knutti, 2018).

This method presented here has the potential to drastically accelerate the process of long-term

climate prediction by reducing the length of simulations required from multi-decadal timescales

to the order of 5-10 years. However, even further computational savings can be made by

coupling this method with the short-term response emulator presented in the following chapter

(i.e. multi-level emulation (Cumming and Goldstein, 2009; Tran et al., 2016)). Without the

need to repeatedly run expensive GCM simulations, this work provides a starting point for rapid

climate prediction as a tool for both scientific and policy purposes.



Chapter 4

Short-term Climate Response

Prediction with an Emulator

4.1 Introduction

In Chapter 3, I described a surrogate model built to predict the long-term response of a global

climate model (GCM), given the short-term response. The goal of this chapter is to build a

surrogate model that predicts the short-term climate response based on emission perturbations.

While Chapter 3 focused on a comparison of machine learning regression methods to predict

single point estimates of the output, given the input and trained on a set of existing data, this

chapter will take a more probabilistic approach. The analysis will include a discussion of the

probability distributions which are estimated by a Gaussian process. Although both chapters

make use of Gaussian processes, I will distinguish the two different viewpoints as ‘machine

learning’ in Chapter 3 and ‘emulation’ in this chapter. This highlights the focus on probabilistic

estimation and the exploration of uncertainty in the current chapter, as well as remaining

consistent with the emulation literature. This chapter will also include a complete design of

the training data, exploration of sensitivity of the GCM to the different emission perturbations

studied and a demonstration of how this type emulator could be useful in climate change studies.

As discussed in Section 1.2.3, Gaussian process emulators have been used to assist atmospheric

114
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and climate modelling, through sensitivity analyses, uncertainty quantification and calibration

(e.g. Carslaw et al., 2013; Lee et al., 2012; Salter and Williamson, 2016; Williamson et al., 2015;

Ryan et al., 2018). However, this study is the first to make use of emulators for climate change

projection under different emissions scenarios for use in policy-relevant studies.

This emulator is designed for predicting the short-term global surface temperature response to

different emission perturbations. We are interested in the climate response to both greenhouse

gases and aerosol perturbations and therefore the input variables will include a selection of both,

based on their importance shown in previous studies. We take the inputs to be categorical,

distinct emission settings (rather than emission fields). For instance, the well-mixed GHGs can

be perturbed via the global concentrations. For short-lived pollutants, we use scaling factors

over broad regions on continental scales and assume that the relative distribution of emissions

within these regions remains the same, following the same approach as the datasets in Chapter

3. The outputs of the emulator are the short-term surface temperature response at every grid

cell of the GCM, giving a high-dimensional output space. The short-term temperature response

is defined as the average over the first 5 years of the GCM response, in order to reduce the high

cost of running the GCM, although ultimately the simulations could be extended to 10 years

in future work. As in Chapter 3, each grid cell will be treated independently, with a separate

Gaussian process emulator built for each one. Before describing the emulator in further detail, I

will outline the set-up and design of the input parameters chosen, starting with an overview of

the GCM used in this study.

4.2 Global Climate Model Configuration

We use the same GCM as in Chapter 3, HadGEM3, in the most recent configuration, the third

Global Coupled configuration 3.1 (GC3.1) (Williams et al., 2018) which consists of the global

atmosphere-land (GA7/GL7.1) (Walters et al., 2019), global ocean (GO6) (Storkey et al., 2018)

and sea-ice (GSI8.1) (Ridley et al., 2018). This configuration uses the modal version of the

Global Model of Aerosol Processes (GLOMAP-mode) two-moment aerosol microphysics scheme
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(Mann et al., 2010), which differs from the aerosol scheme used in Chapter 3 as it simulates

aerosol number as well as mass and includes aerosol microphysical processes such as nucleation

(Bellouin et al., 2013). The same model resolution is used as Chapter 3, with a grid of 145×192,

giving an average grid cell of width 140 km at the equator. The same model configuration is

described for historical simulations in Andrews et al. (2020). ‘Present-day’ conditions are taken

from the end of these simulations, using a 2014 timeslice of the climate quantities. This is run

for 300 years as ‘spin-up’, to reach an approximate equilibrium, which is used as a start point

for simulations for the emulator.

Before computing any perturbation runs, 6 independent control runs were simulated starting

from this equilibrium state. These were run for 5 years each, to be consistent with our definition

of ‘short-term’ climate response in this chapter. These control runs will be used in two ways.

Firstly, we aim to predict the surface temperature response to any perturbations, which is

calculated as the surface temperature of the perturbation run minus the surface temperature of

the control run. To reduce the impact of short-term internal variability, we subtract an average

over all 6 independent control runs, i.e.

y = Tpert −
1
6

6∑
i=1

Tcontrol,i (4.1)

where Tpert and Tcontrol are the spatio-temporal temperature outputs of the perturbation and

control runs respectively, i.e. for the entire grid and over the 5 years. For the emulator outputs,

the temporal average of y is taken over these 5 years, to reduce short-term variability. Secondly,

the control runs will be used to estimate the internal variability, which will be viewed as a limit

of the accuracy of the emulator, later discussed in Sections 4.4 and 4.6.

4.3 Emulator Design

Due to the high cost of running the GCM, we aim to minimise the number of simulations

run when building and testing this emulator. This can be done with a careful choice of input

parameters and structured design of simulations to be run. In this section, I will outline the
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steps and decisions made in the design of the emulator.

4.3.1 Choice of Inputs

First, we select a few of the main climate forcers to vary, to limit the number of possible

input parameters. These include long-lived climate pollutants, specifically the two dominant

greenhouse gases carbon dioxide (CO2) and methane (CH4), which are usually regarded as the

strongest drivers of climate (Stocker et al., 2013). For the short-lived pollutants, we perturb

sulfur dioxide (SO2, the precursor to sulfate aerosol (SO4)) and biomass burning carbonaceous

aerosols (black carbon (BC) and organic carbon (OC)). Sulfate aerosol is chosen because it has

a strong cooling impact on the climate, particularly at a regional level, and because its precursor

is emitted mostly from fossil fuel burning, making it is highly relevant for scenario projection

studies (Stocker et al., 2013). Biomass burning OC/BC are chosen as they strongly affect the

climate through scattering and absorption of radiation and due to aerosol-cloud interactions

(Section 1.1.2). In addition, biomass burning is a particularly high source of uncertainty in

future scenarios, but has not been studied as extensively as other forcing perturbations (e.g.

Tosca et al., 2013; Ward et al., 2012; Lasslop et al., 2019; Voulgarakis and Field, 2015). Other

pollutants (e.g. NOx, VOCs, OC/BC from other sources) would require particularly large,

unrealistic forcing magnitudes (e.g. 5-10x current emissions) to cause significant climate change

and therefore we do not extend the emulator to this regime (e.g. ECLIPSE (2014); Shindell and

Faluvegi (2009)).

For the greenhouse gases, we make global perturbations to the GCM, due to their long lifetimes

and homogeneous spatial forcing. However, as discussed in Section 1.1.2, the region of emission

is paramount when considering the effect of short-lived pollutants such as aerosols. We select

broad regions to perturb the SO2 emissions which will be scaled up with a scaling factor over

this region, keeping the distribution of emissions constant. Most of these regions are selected so

as to maintain consistency with previous studies, particularly those used to train the emulator

described in Chapter 3, (Kasoar et al., 2018, 2016; Shawki et al., 2018). Specifically, I perturb

SO2 in North America, Europe, East Asia and South Asia (the same regions as Kasoar et al.
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(2018); Lewinschal et al. (2019); Westervelt et al. (2020)). SO2 emissions from North America

and Europe peaked several decades ago and have been decreasing in the last few decades, whilst

East and South Asian emissions were on the rise recently, although emissions from East Asia

have started to fall since 2013 (Westervelt et al., 2020). We also extend our study beyond this

by perturbing SO2 in Africa and South America, which currently have low levels of SO2 relative

the to the rest of the world but are likely to see increasing emissions in the coming decades, due

to changes in agricultural use in South America (Popp et al., 2017) and rapid growth of cities

in Africa (Liousse et al., 2014).

Finally, we perturb the carbonaceous aerosols in the Tropics (between 24°S and 24°N), which

covers tropical regions of Africa, South America and South East Asia, where biomass burning

due to fires is the largest source of OC/BC (Pechony and Shindell, 2010; Van Der Werf et al.,

2010; Tosca et al., 2013; Cachier et al., 1989). We perturb BC and OC in the same proportions,

assuming that their ratio remains constant as done in other studies (Tosca et al., 2013; Hodnebrog

et al., 2016). This would allow the emulator to be used to explore future scenarios under different

levels of tropical biomass burning, whether it be due to anthropogenic suppression/ignition, a

consequence of a warmer planet (e.g. alongside increasing GHGs) or under natural variability

(Pechony and Shindell, 2010). Table 4.1 shows a summary of the pollutants and regions used,

which gives a total of 9 input parameters.
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Table 4.1: Summary of chosen emission inputs to emulator

Pollutant Regions

CO2 Global

CH4 Global

SO2

North America

Europe

East Asia

South Asia

Africa

South America

Carbonaceous Aerosols Tropics

In HadGEM3, to run a simulation with perturbed greenhouse gases (CO2, CH4), we would

change the global mean atmospheric concentrations. To run a simulation with perturbed aerosol

(SO2, OC, BC), we would vary the emissions fields directly. To build the emulator, we first

decide on the minimum and maximum values of these concentrations and emissions for each

input (pollutant and region). This allows us to define the total parameter space that embodies

all the possible scenarios that would be of interest to the user of the emulator (e.g. policy-makers,

scientists). In the following section, I present the minimum and maximum values for each input

and the justification for these choices.

4.3.2 Input Ranges

First, the range of input values for the emulator to cover is determined. As it is designed for

exploring climate change projections, these input values are not necessarily precise or reflect a

likely future scenario, rather they are chosen to be broad and to cover a wide range of scenarios.

I assess the approximate minimum and maximum plausible values based on previous studies,

which include projections of the Shared Socioeconomic Pathways (SSPs) (Riahi et al., 2017;

van Vuuren et al., 2017) and Evaluating the Climate and air quality Impacts of short-lived
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pollutants (ECLIPSE) project (ECLIPSE, 2014; Stohl et al., 2015; Aamaas et al., 2017; Baker

et al., 2015), as well as independent studies (Liousse et al., 2014; Pechony and Shindell, 2010).

For the greenhouse gases, I take the pre-industrial levels as the minimum value and for the

short-lived pollutants I take the minimum value as a scaling factor of zero. For all forcings,

I determined the maximum levels to be the worst case estimate from both future projections

and historical scenarios (up to pre-industrial) in previous studies. We use different studies to

select the maximum values independently for each parameter so that the emulator can be used

for the maximum possible range of predictions. Table 4.2 shows the ranges selected for each

input and for the reasoning behind the maximum values. CO2 and CH4 are treated as global

concentrations (for reference, the ‘present day’ (2014) concentration of CO2 is 390 ppm and of

CH4 is 1813 ppb (van Vuuren et al., 2017)) and all other pollutant perturbations are treated as

scaling factors relative to present day emissions.
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Table 4.2: Input ranges for all input perturbations and associated reasoning for maximum
value. Minimum is taken to be pre-industrial levels. All are scaling factors of present day
emission levels except for CO2 and CH4 which are global concentrations. Note that some input
parameters have two sources that are roughly equivalent for the maximum value.

Input Parameter Range Reasoning

Global CO2 concentration 282 - 834 ppm SSP3 baseline projection in 2100 (Riahi et al.,

2017)

Global CH4 concentration 248 - 3238 ppb SSP3 baseline projection in 2100 (Riahi et al.,

2017) and RCP3.4 projection (van Vuuren

et al., 2017)

SO2 North America 0 - 3× Historical data from 1990 (ECLIPSE, 2014)

SO2 Europe 0 - 5× Historical data from 1990 (ECLIPSE, 2014)

SO2 East Asia 0 - 2× Historical data from 2005 (ECLIPSE, 2014)

and SSP1 projection in 2100 (Riahi et al.,

2017)

SO2 South Asia 0 - 3× ECLIPSE projection in 2030 (ECLIPSE,

2014)

SO2 Africa 0 - 7× Inventory based projection in 2030, (Liousse

et al., 2014)

SO2 South America 0 - 3× SSP3 baseline projection in 2080 (Riahi et al.,

2017)

OC/BC Tropics 0 - 2× Estimates of fire activity by 2100 (Pechony

and Shindell, 2010)

In Table 4.2, most of the maximum perturbation values are selected from either a historical

database (ECLIPSE, 2014) or from SSPs (Riahi et al., 2017). The maximum value of SO2

emissions over Africa is based on a bottom-up approach in Liousse et al. (2014), which suggests

that growth in African combustion emissions could be much larger than SSP projections (Riahi

et al., 2017) based on projected fuel consumption and emission factors. Future fire emissions are

highly uncertain because they depend on a range of factors, including future climate from other
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pollutants, land use and human activity such as fire suppression. Projections of fire activity

by Pechony and Shindell (2010) suggest that it could vary by ±100% relative to present day

levels in the Tropics, which we can use to infer an approximate maximum of a 100% increase in

biomass burning emissions. Note that these ‘maximum’ scaling factors do not reflect accurate or

realistic scenarios, but instead they are only chosen as an approximate upper limit for scenarios

that one may wish to emulate.

4.3.3 Distribution of SO2 Emissions

The short-lived pollutant scaling factors are applied so that the distribution of emissions over

each region remains constant. Previous studies which perturb SO2 emissions over North America,

Europe, East Asia and South Asia do this by multiplying present day emissions fields by a

single scaling factor in each grid point (Kasoar et al., 2018; Lewinschal et al., 2019; Westervelt

et al., 2020). In other words, they assume that while the level of emissions increases or decreases

over the broad continental scales, the relative distribution of emissions within that region

(e.g. on country scales) remains constant. The distribution typically attributes most of the

emissions in the main urban areas, which is a reasonable assumption for these 4 regions as

they have been strong emitters of SO2 over the past few decades (Westervelt et al., 2020).

However, this assumption is not necessarily valid for Africa and South America where present

day SO2 emissions are low and particularly isolated in nature, as shown in Figures 4.1a and 4.1c.

Applying a scaling factor to these emission fields results in very high localised emissions in some

regions but still virtually no emissions across the rest of the continent, which does not agree with

the emissions pathways that we aim to project (e.g. rapid development across the continent).

Liousse et al. (2014) suggest that a rapid growth in new cities and megacities in Africa may lead

to a rise in SO2 emissions which will take on a different distribution to the present day levels, as

these cities will grow at a more rapid rate relative to regions already urbanised. For Africa and

South America, we therefore use the emission distribution from an SSP scenario (specifically

the SSP5 baseline scenario with rapid growth (Riahi et al., 2017)) while keeping the same total

emissions, shown in Figures 4.1b and 4.1d. This does not have much effect on the response to
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(a) Present day (b) SSP projection (c) Present day (d) SSP projection

Figure 4.1: Distribution of SO2 emissions for (a-b) Africa and (c-d) South America using present
day estimates and SSP5 projections

present day or reduced emissions (since these perturbations are weak) but for strong positive

perturbations, the response is strengthened, particularly for the emissions over Africa. This

is because applying a strong scaling factor to present day emissions give very strong isolated

sources of SO2 where emissions already exist, which becomes saturated with sulfate aerosol.

As the air is saturated with the aerosol, the climate response also becomes saturated, whereas

new emissions over cleaner air are known to have a larger climate effect per unit increase in

emission levels (Carslaw et al., 2013). For all other aerosol emission perturbations, we keep

the present day distribution of emissions, remaining consistent with the approaches taken in

previous studies (Kasoar et al., 2018; Lewinschal et al., 2019; Westervelt et al., 2020; Pechony

and Shindell, 2010).

4.3.4 One At a Time Tests

Prior to developing the training simulations for the emulator, it is worthwhile running simulations

at the maximum and minimum values of the input ranges decided, while keeping all other input

parameters fixed. This is done to make sure that the input ranges are sensible and that they

lead to significant changes in the output that would be relevant for an emulator to predict.

The results of these are shown for each input parameter in Figure 4.2, with panels on the left

showing the responses to the minimum possible values and panels on the right showing the

responses to the maximum possible values.
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(a) 282 ppm CO2 (b) 834 ppm CO2

(c) 288 ppb CH4 (d) 3238 ppb CH4

(e) zero SO2 Europe (f) 5x SO2 Europe

(g) zero SO2 North America (h) 3x SO2 North America

(i) zero SO2 East Asia (j) 2x SO2 East Asia

Figure 4.2: (a-j): 5 year averaged temperature response to one at a time simulations for first
five input parameters, with minimum perturbation on left panel and maximum perturbation on
right panel. Figure continued on following page for remaining input parameters.
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(k) zero SO2 South Asia (l) 3x SO2 South Asia

(m) zero SO2 Africa (n) 7x SO2 Africa

(o) zero SO2 South America (p) 3x SO2 South America

(q) zero OC/BC Tropics (r) 2x OC/BC Tropics

Figure 4.2: (k-r): 5 year averaged temperature response to one at a time simulations for all
input parameters, with minimum perturbation on left panel and maximum perturbation on
right panel.

These responses are generally as expected with strong global responses to the long-lived GHGs

and strong regional responses to the short-lived aerosol perturbations. They also exhibit similar

response patterns over the Northern Hemispheric continents to SO2 perturbations over North

America, Europe and East and South Asia, as also found in Kasoar et al. (2018) (see Figure

1.5). Some of this response, however appears to be a feature of noise, with the strong cooling
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over Europe appearing in most aerosol perturbations, both positive and negative. Additional

noise patterns over the Southern ocean also feature both positive and negative perturbations.

For this analysis, the simulations were also run out to 10 years, to help decide on the ideal

length of time to be chosen as an output. 10 year simulations give higher signal-to-noise ratios,

however, the choice of 5 years was made because of the high computational savings, allowing

double the number of simulations to run given the same computational cost. The current GCM

set-up allows these simulations to be extended if desired in the future.

4.3.5 Latin Hypercube Design

A typical approach to designing the set of training simulations is to generate samples that

fill the parameter space (O’Hagan, 1978; Currin et al., 1991; Santner et al., 2003). This is

a common procedure throughout in climate emulation studies (e.g. Wild et al., 2020; Ryan

et al., 2018; Lee et al., 2016). A maximin Latin hypercube sampler (LHS) can be used to

generate samples that cover the entire parameter space evenly and maximise distance between

new samples (i.e. space-filling) (Santner et al., 2003). This improves the efficiency of samples

compared to a random sampler, which is particularly important for this study as obtaining

samples is expensive (around 80 node hours per sample on Cray XC40 Met Office). An informal

rule of thumb is that the number of runs for training should be around 10 times the number of

input dimensions (Loeppky et al., 2009). Given the 9 input parameters of interest in this study

but the high computational cost of the simulations, we use 80 simulations for training selected

with a maximin LHS design and an additional 18 simulations for testing.

The main parameter space of interest is determined by the input ranges selected in Table 4.2.

However, as this emulator is designed for also exploring future unknown and possibly extreme

forcing scenarios and there are high uncertainties on the short-lived pollutant estimates, we

cannot rule out exploring beyond this input range for the short-lived pollutants. Furthermore,

the fact that we break down the short-lived pollutants into smaller than global perturbations

inevitably leads to lower abundances and weaker forcings. This can give weaker climate response

signals that are difficult to separate from the internal noise (Kasoar et al., 2018; Shawki et al.,
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Figure 4.3: Training data generated from Latin Hypercube Sampler for each input against
every other input. The bottom row shows the overall histogram for each input parameter
independently.



128 Chapter 4. Short-term Climate Response Prediction with an Emulator

2018). We expect that including some simulations with stronger perturbations, which should

have larger signal-to-noise ratios, could be beneficial for constraining the emulator prediction

to these perturbations. We therefore extend the parameter space so that 25% of samples are

generated within the input range that is double that provided in Table 4.2 for the short-lived

pollutants only. This means most of the training simulations fall under the feasible range

determined by Table 4.2, with some additional simulations extending beyond this. Figure

4.3 shows the 80 samples generated from the maximin LHS for each combination of input

parameters, with the bottom row showing the histogram of points for each input parameter

independently.

4.3.6 Input-Output Relationships

As in Chapter 3, we first assess the nature of the data. The emulator output is multivariate

as we are interested in emulating the temperature response at every grid cell. However, we

first examine the relationships between each input parameter and the global mean temperature

response in Figure 4.4. There is a strong linear relationship between the CO2 concentration and

the global mean temperature response, indicating that at the global scale, this input has the

greatest effect.

At smaller spatial scales and after removing the first order effect of CO2, we see regional patterns

in the response. The CO2 concentration is used to estimate the global mean response with a

linear regression and the residual from this is shown in Figure 4.5, in each region local to the

perturbation. This highlights that, for example, when SO2 emissions are increased in Europe,

the temperature response over Europe is decreased relative to the prediction made from CO2

alone. The same trends are seen across all SO2 perturbations to varying degrees, while the

global effect of CH4 appears to be positive, as expected. The effect of OC/BC on the Tropics is

not so clear, but this is not surprising as an average is taken over the entire Tropics, a broad

area that also includes other emission regions (South Asia, South America and Africa) which

may have strong localised responses. Furthermore, this data is created from the LHS design, so

each point consists of a combination of perturbations over the 9 input parameters. It should
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be noted that there are remote effects from the other perturbations that makes it difficult to

disentangle the trends from simple scatter plots alone. In the next section, I will proceed to

building the Gaussian process emulator and testing its performance on new, unseen test data.

Global Mean Temperature Change
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Figure 4.4: Global mean temperature response against each different input parameter. Each
point is an independent simulation, with no importance given to the colours.

4.4 Emulator Method

In this set-up, the input vector, x, is the vector of the 9 parameters that control the CO2 and

CH4 concentrations and the emission scaling factors described above. The output, y, is the

multivariate, temperature response of the GCM averaged over the first 5 years. We build a

Gaussian process emulator (Section 2.1.7) to estimate each grid-cell’s response independently.

Prior to doing so, the inputs and outputs are scaled to be centred around 0 with standard

deviation of 1. The Gaussian process uses an additive kernel, composed of a linear kernel plus a

squared exponential kernel (Equation (2.24)), decided after testing a range of different choices

of kernel and finding this gives the best result. The linear component can be viewed as imposing
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Regional Average Temperature Change Residual from Global Mean CO2 Prediction
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Figure 4.5: Regional mean temperature residual from the estimated response based on a linear
regression against the global CO2 concentrations alone, against each input parameter. Each
point is an independent simulation, with no importance given to the colours.

a basic linear relationship between the inputs and outputs, while the squared exponential covers

remaining non-linearities. The hyperparameters of these kernels are optimised by maximising

the likelihood in the same procedure as Chapter 3 (GPy, 2014).

Additionally, I will treat the uncertainty due to the internal noise in the GCM separately from

the Gaussian process uncertainty. The uncertainty due to internal noise, σGCM is estimated as

the standard deviation between as many 5 year control runs as available. We have available 8

segments from one long, 40 year control run after equilibrium had been reached in the spin-up

simulation and 6 independent 5-year control runs that branched off from this. Ideally, all control

runs would be strictly independent but the 8 segments of the longer control run are included to

improve the sample size for estimating the standard deviation. The standard deviation across

the 14 control runs is calculated for each grid point independently, giving a map of uncertainty

associated with the internal noise. This is an error associated with any prediction from the

GCM, due to the limited number of years we have averaged over. Therefore, we will include

this as a fixed noise term in our emulator, present for any prediction, even at the training data.

When the emulator predicts the temperature response at new unseen input values, there is an

additional uncertainty introduced due to the probabilistic nature of the Gaussian process. This

arises due to the distance between the new input values and the training data and is governed
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by the covariance function (see Section 2.1.7). We will call this σGP. The total uncertainty

arising due to both the Gaussian process fit and the GCM internal noise is denoted σtotal and

these are related via σ2
total = σ2

GP + σ2
GCM. These two forms of uncertainty are presented and

compared in Section 4.6.

4.5 Emulator Performance

To test the performance of the emulator, we can predict the output for 18 test simulations,

where the input values have been sampled randomly from a Latin Hypercube Sampler (Section

4.3.5), with a uniform distribution across all parameter ranges of interest (Table 4.2). This

ensures the emulator is tested on samples from the main distributions of interest.

Figure 4.6 shows a few examples of the emulator performance, with the input values shown along

the top panel, relative to the baseline, minimum and maximum possible values. The top left map

shows ytest, the true prediction from the GCM, the top right shows ypred, the prediction from

the Gaussian process, the bottom left shows the absolute difference between these, |ypred − ytest|

and the bottom right shows the 1 standard deviation error associated with this prediction, σtotal

(which combines both the internal variability contribution and the GP estimate). The stippling

in the bottom right figure shows the regions where the true GCM prediction lies outside of the

1σ range of the Gaussian process prediction, i.e. |ypred − ytest| > σtotal. All 18 test simulations

can be found in Figure A.2 of Appendix A.

Most test simulations are reasonably accurately predicted by the emulator, as demonstrated in

Figures 4.6a-c, which are chosen at random from the 18 test simulations. These show patterns

of warming or cooling are typically predicted in the correct spatial location. The absolute

difference between the GP and GCM prediction, |ypred−ytest| tends to be larger at high latitudes,

particularly around the Arctic, North America, Greenland and Northern Europe. Although

the magnitude of σtotal is slightly larger in these regions than the Tropics, the stippling where

|ypred − ytest| > σtotal is more prominent in these high latitude areas, indicating that prediction

is still poor here relative to other regions worldwide. Interestingly, these regions are highly
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(a) Test scenario 1. 78% grid points within 1σ, 97% grid points within 2σ.

(b) Test scenario 2. 81% grid points within 1σ, 98% grid points within 2σ.

Figure 4.6: (a-b): Example test scenarios. Top panel shows input values, relative to the
baseline, minimum and maximum possible values. The top left map shows ytest, the true GCM
prediction, the top right shows ypred, the GP prediction, the bottom left shows the absolute error,
|ypred − ytest| and the bottom right shows the 1 standard deviation from GP, σtotal. Stippling on
the bottom left indicates |ypred − ytest| > σtotal.



4.5. Emulator Performance 133

(c) Test scenario 3. 80% grid points within 1σ, 96% grid points within 2σ.

(d) Test scenario 4. 41% grid points within 1σ, 76% grid points within 2σ.

Figure 4.6: (c-d): Example test scenarios. Top panel shows input values, relative to the
baseline, minimum and maximum possible values. The top left map shows ytest, the true GCM
prediction, the top right shows ypred, the GP prediction, the bottom left shows the absolute error,
|ypred − ytest| and the bottom right shows the 1 standard deviation from GP, σtotal. Stippling on
the bottom left indicates |ypred − ytest| > σtotal.
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correlated with the regions that experienced larger errors in the regressions presented in Chapter

3, which were typically areas that experience both increased sensitivity to forcings and increased

variability (e.g. Figure 3.10). Statistically, we would expect ∼ 32% predicted points to fall

outside the 1σ prediction level. However, based on the stippling across all test scenarios (Figure

A.2), these points do tend to have this regional pattern and occur more often in the Northern

Hemisphere, rather than being distributed randomly across the globe. This indicates a slight

bias in these regions being predicted less accurately compared to the Southern Hemisphere,

highlighting regions of the response that should be interpreted more cautiously.

In contrast to these example scenarios, which are generally well predicted, the emulator does not

predict the test simulation in Figure 4.6d to the same level of accuracy. The input parameters

in this scenario are positive relative to the present day levels for all inputs and are fairly strong

across most of them. This means these points are fairly close to the corner of the input parameter

space, where there are fewer training data points to constrain the prediction. Generally the

emulator predicts the correct sign of response in most regions with general warming in most

regions, but cooling over North America, the Pacific Ocean and parts of Europe. Furthermore,

the relative patterns of warming are fairly consistent, for instance, the increased warming over

South America, Africa and Australia relative to the global mean, but again the GP does not

predict these patterns as strongly as the GCM. However, it is the magnitude of these warming

and cooling contributions that are significantly weaker than the true GCM output, suggesting a

global bias in the prediction in this regime of the parameter space, rather than a regional one.

Furthermore, as discussed later in Section 4.7, a feature of the emulator is that it reveals a linear

relationship between the SO2 emissions and the temperature response. This is in contrast to

GCM studies, that find that as the emissions are increased, there is a saturation of temperature

response (Carslaw et al., 2013; Kasoar et al., 2018). The emulator, however, overestimates

the cooling attributed to the aerosol pollutants when forced with strong aerosol perturbations,

giving a cool bias when all SO2 input variables are high, as in Figure 4.6d.

This test simulation highlights where caution should be taken when interpreting emulator results

and, in particular, that strong perturbations on all input parameters can lead to poor predictions

with an underestimated uncertainty estimate. Future studies may wish to refine the accuracy of
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the emulator in this region of the parameter space, by running additional training simulations

with even stronger aerosol perturbations. This would be particularly important if the emulator

were to be used to study this regime of the parameter space further. We will take care to avoid

this regime in Section 4.8 when demonstrating an application of this emulator. Overall, however,

the test simulations indicate that the Gaussian process emulator can predict the response to a

range of scenarios under these 9 input parameters. Based on all 18 test simulations, 76.1% of

grid points are predicted to within 1 σ of the true response and 95.0% are predicted to within 2

σ. This is roughly in line with expectations based on the definition of σ assuming a Gaussian

distribution of responses.

Regional Mean Responses

Next, we explore the response for each region by taking broad averages over the key regions

of interest. The response predicted by the GP is plotted against the true GCM response for

all test scenarios in Figure 4.7, where the error bars indicate the 1 σ uncertainty levels. A

perfect prediction would correspond to the y = x line (black dashed line) and coefficient of

determination, R2 = 1. Most regional mean predictions fall either on this line, or within 1 σ

from it. The exception to this is the outlier with a positive true response of around 1°C in most

regions, that is strongly underestimated, which corresponds to the test scenario presented in

Figure 4.6d. Other than this scenario, however, the majority of responses are well predicted and

cover a fairly broad range of responses including both cooling and warming of up to 1-2 °C. The

high R2 values, all above 0.87, demonstrates the closeness of the predicted response to the true

response across all predictions. These plots also highlight the increased uncertainty associated

with some regions, namely North America and Europe, in comparison to the tropical regions

such as South Asia, South America and Africa. As well has exhibiting increased uncertainties,

these regions also show a wider range of temperature responses in the test data. The mean

predictions for these regions are still close to the ground truth, as highlighted by the high R2

values. This gives confidence to the use of an emulator in this way for quick predictions for

instance, in policy-relevant studies. We will demonstrate an example of this in Section 4.8.
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(a) Global, R2 = 0.952
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(b) Europe, R2 = 0.873
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(c) North America, R2 = 0.940

2 1 0 1 2
True Response (°C)

2

1

0

1

2

Pr
ed

ict
ed

 R
es

po
ns

e 
(°

C)

(d) East Asia, R2 = 0.882
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(e) South America, R2 = 0.920
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(f) South Asia, R2 = 0.934
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(g) Africa, R2 = 0.929
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(h) Tropics, R2 = 0.935

Figure 4.7: Regional mean predicted responses of test data against true GCM response, where
error bars represent 1σ uncertainty level of Gaussian process prediction.
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4.6 Emulator Uncertainty and Errors

I have discussed emulator performance and found accurate predictions on the test data in terms

of the mean response and especially when accounting for the Gaussian process uncertainty. In

this section, I will explore the patterns of uncertainty and errors further, in order to diagnose

any pitfalls of the emulator.

Figure 4.8 shows a) the mean absolute error (MAE) and b) root-mean-squared error (RMSE)

across all test simulations, the key difference being that the RMSE gives greater weighting to

outliers with larger errors (e.g. the test simulation in Figure 4.6d). Both maps show the errors

are greatest close to the poles and also at high latitudes over the continents, particularly on the

Eastern side of North America and over Northern Europe, as noted in Section 4.5. Furthermore,

the general patterns of MAE are similar to those seen in analysis of the Gaussian process

regression in Chapter 3, where Figure 3.9 showed the MAE for the predicted long-term response.

The MAE in the Gaussian process prediction (and other statistical approaches to prediction)

also showed increased errors over high latitudes and Northern Europe, reduced errors in the

Tropics and the highly localised errors over high altitude parts of East Asia. As noted previously,

these regions typically respond more strongly to perturbations and exhibit increased variability,

making these regions inherently more difficult to predict.

(a) MAE (b) RMSE

Figure 4.8: Mean Absolute Errors (MAE) and Root Mean Squared Errors (RMSE) across all
test data.

We used the internal variability of the GCM as a fixed component of uncertainty when building

the emulator, as described in Section 4.4. Figure 4.9a shows this internal variability, calculated

over 14 control simulations of 5 year segments. We see patterns associated with noise, such
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as those around the Southern Ocean, and around sea-ice over the Arctic. The GP provides a

complete uncertainty estimate that includes this internal variability as a constant term. For each

prediction, the GP uncertainty estimate is calculated from the covariance function (Equation

(2.23)) based on the new input parameter values. We can decompose this estimated uncertainty

into the fixed term, σGCM and the residual term which arises from GP covariance function, σGP.

These are related with σ2
total = σ2

GP +σ2
GCM. Figure 4.9b and 4.9c show the mean estimates across

all test simulations for σGP and σtotal respectively. The majority of the total uncertainty comes

from the fixed GCM term, with small additional contributions from the GP predominantly over

the Arctic, the Antarctic and Northern Europe/Russia where σGCM is low.

(a) GCM contribution to uncertainty σGCM (b) GP contribution to uncertainty σGP

(c) Total GP uncertainty σtotal (d) GP uncertainty only σGPonly

Figure 4.9: Different Gaussian process uncertainty measures (a) GCM contribution to uncertainty
which is the GCM internal variability, calculated as the average variance across X simulations of
length 5 years, (b) GP contribution to uncertainty, which arises due to uncertainty in dataset (c)
Total GP uncertainty, which includes contributions from both (a) and (b), σ2

total = σ2
GCM + σ2

GP.
(d) GP uncertainty when we do not specify a fixed component from GCM uncertainty in which
case σ2

total = σ2
GPonly. Note that while (a) is fixed based on GCM simulations, (b-d) are a mean

across all 18 test simulations.

As an additional experiment, the Gaussian process emulator was also built without including

the fixed contribution σGCM. This emulator learned almost exactly the same distribution of

uncertainties, shown in Figure 4.9d and performs virtually identically to the emulator that does

include σGCM as a fixed component. This result is encouraging, as it suggests that even without
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knowledge of the GCM internal variability, the same patterns associated with these are learnt

through the Gaussian process anyway. The only differences in Figure 4.9c and 4.9d appear

to be the higher uncertainty regions over Eastern North America, Greenland, the Northern

Hemispheric jet streams and the Inter Tropical Convergence Zone around the equator over the

Pacific Ocean. This would then lead to an overestimate in confidence in predictions in these

regions. However, these regions are fairly small areas and in most regions showing that the

choice is not crucial and that future studies could implement a GP without necessarily needing

to specify the error in this way.

4.7 Sensitivity Analysis

The climate modelling community has benefited from a wide range of Gaussian process emu-

lation studies concerned with uncertainty quantification and sensitivity analysis, which aims

to characterise the uncertainty on the outputs and identify where it arises from. Both un-

certainty quantification and sensitivity analysis require a large set of often computationally

heavy simulations, which is why Gaussian process emulators have become a popular tool in

these communities to speed up model evaluations. These types of studies have been utilised

to diagnose uncertainties and sensitivities in a wide range of GCM components and settings,

including atmospheric chemistry models (Lee et al., 2012; Wild et al., 2020; Beddows et al.,

2017), sea-ice models (Edwards et al., 2019; Urrego-Blanco et al., 2016), climate-vegetation

models (Bounceur et al., 2015) and convection parameterisations (Souza et al., 2020). The

inputs to these are typically climate model parameters which are not known perfectly, where

gaining an understanding of how sensitive the outputs are to each input parameter is beneficial

to the modelling groups. In this study, the input parameters are emission perturbations and we

are primarily interested in exploring patterns of potential future climate responses to a range

of scenarios. The goal is to develop a deeper understanding of climate response to competing

pollutants and to explore the sensitivity of the different world regions to different types of

emissions.
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A naive approach to sensitivity analysis would involve varying one input parameter while

keeping all others fixed at a baseline value, in ‘one-at-a-time’ experiments similar to those

perturbations explored in Section 4.3.4. This does not, however, explore fully the sensitivity

to each input under different possible situations in terms of other inputs and it ignores any

interaction effects entirely which can lead to biased results (Saltelli and Annoni, 2010; Saltelli

et al., 2019). Instead, we will carry out a global sensitivity analysis, which quantifies sensitivities

to each input parameter averaging over the effects of all other input parameters. The input

parameters, x, are indexed from i = 1, · · · , 9 and the output variable is the entire map of

responses, y, for grid cells k = 1, · · · ,m.

4.7.1 Main Effects

Here, we will explore the main effect of each pollutant, by running the emulator with pertur-

bations from the minimum to the maximum value of each input range. This is repeated for

many independent realisations where the other input parameters are sampled at random. The

mean behaviour of each parameter perturbation is calculated by averaging over the different

realisations. Figure 4.10 shows the resulting main effect on each key region (y-axis) to each of the

pollutant perturbations (x-axis). Here, 200 different realisations are run with input parameters

sampled from a normal distribution centred at the present day levels with a standard deviation

1/4 of the input range, ensuring the average behaviour of all simulations does not deviate

significantly from present-day levels. The black line shows the mean over the 200 different

realisations, while the red lines show 1 standard deviation across these different realisations (not

the GP uncertainty).

We find that the main effect is linear for all pollutants, both GHGs and aerosols, over the

ranges explored here. This is intuitive under small forcing perturbations, as we have long known

that the relationship between emissions and response is fairly linear at low forcing levels. In

fact, it has long been used as a method to estimate climate response given forcing, via the

equilibrium climate sensitivity, for GHGs (Hansen et al., 1997; Boer and Yu, 2003; Gregory

et al., 2004) and aerosols, using an adjusmtment based on individual aerosol efficiacy (Collins
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et al., 2013b; Hansen et al., 2005; Richardson et al., 2019). Although many of these studies

assume the equilibrium climate sensitivity to be constant to the first order, other studies have

demonstrated that it can change under a changing climate (Friedrich et al., 2016; Gregory

and Andrews, 2016) or under larger magnitude forcings (Rugenstein et al., 2020; Knutti et al.,

2017; Zhu and Poulsen, 2020; Meraner et al., 2013) . One may not expect the emulator to

capture large non-linearities due to a changing climate (or only to the degree that they manifest

themselves within the first five years) as it is trained on abrupt perturbations from a fixed

initial climate. However, based on past studies, we may expect to see non-linearities caused by

particularly large forcings in this study. The CO2 perturbation range selected here gives the

largest range of forcing perturbations (up to ∼2xCO2). However, it does not extend as far as

the forcings explored in previous studies where the relationship between forcing and response is

found to deviate from linearity (up to 4xCO2 from pre-industrial levels) (Rugenstein et al., 2020;

Knutti et al., 2017; Zhu and Poulsen, 2020; Meraner et al., 2013). Furthermore, many of the

non-linearities are explained by transient effects, that would not be captured in the short 5 year

simulations used to train the emulator. Knutti et al. (2017) find that the first few years of a

model simulation gives a linear relationship between forcing and temperature response and that

the slope of this relationship changes at longer timescales of 50-100 year, due to slow climate

adjustments, feedbacks and as warming patterns change over time. For instance, CO2 sinks,

such as the ocean, become less efficient as they become saturated (Gregory et al., 2015), which

is an effect that would not been seen in the short 5 year timescales predicted here but could

lead to increased response at high forcings on longer timescales (Ceppi et al., 2017). Other

feedbacks include the positive water vapour feedback in which increasing temperatures allow

the atmosphere to hold more water vapour, a greenhouse gas (Meraner et al., 2013), and the

negative lapse rate feedback in which surface warming caused by increased CO2 weakens the

lapse rate, making the climate less sensitive to further warming (Colman and McAvaney, 2009).

These feedbacks appear after the climate has already warmed significantly, which requires some

time even after an abrupt forcing perturbation. The main effects of emulators built on longer

timescales may reveal these non-linearities in the long-lived climate pollutants.

Past studies also suggest that we would expect a saturation effect of temperature response as
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the short-lived pollutants increase. Firstly, the SO2 perturbations made here are a precursor

to the sulfate aerosol SO4. SO4 formation begins with nucleation where the precursor gas

forms clusters of sulfuric acid (Curtius, 2006). This is more efficient in cleaner air, where new

clusters form as opposed to existing clusters growing in size (Carslaw et al., 2013). Therefore

increases in SO2 in regions with lower pollution levels directly leads to a larger increase in SO4

compared regions with highly polluted air. Secondly, a greater increase in concentration of cloud

condensation nuclei (CCN) also leads to a greater increase in cloud droplet number because

higher droplet concentrations suppress supersaturation within clouds. Finally, increased water

droplet number enhances the cloud albedo effect more when there are fewer water droplets, with

the sensitivity of cloud albedo falling with 1/N for N cloud droplets.

As a consequence of this, several studies have found that regions with lower SO2 levels experience

greater climate response to increases in SO2 per unit emission, (Collins et al., 2013b; Liu et al.,

2018b; Kasoar et al., 2018). Following this reasoning, as SO2 emissions are increased, we

would expect the decrease in temperature to decelerate, which would lead to a decreasing

gradient at high SO2 perturbations in Figure 4.10 (Carslaw et al., 2013). Unlike the GHG

perturbations, these effects are not limited by the short 5 year timescale of the output. However,

the main effect of each perturbation appears linear across the entire perturbation range, over all

regions. The fact that these non-linearities are not learned by the emulator may explain why the

scenario predicted in Figure 4.6d. These non-linearities may be too small to be realised by the

emulator given the reduced number of training points at high perturbations and the significant

uncertainty associated with the internal variability. Increasing the number of training points at

large perturbations and increasing the input ranges to include more extreme forcing may be

beneficial for better constraining the response under strong aerosol perturbations.
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Figure 4.10: Main effects of each pollutant on x-axis on each region of interest on y-axis, averaging over all other pollutants. The black line
shows the mean across many realisations run with randomly sampled input values for all other pollutants. The red lines show 1 standard
deviation across these different realisations. A steeper gradient indicates stronger change due to that pollutant.
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Another key feature of Figure 4.10 is the diversity of the regional response to the regional

perturbations. As expected, local perturbations give rise to stronger responses, particularly

European response to SO2 from Europe, East Asian response to SO2 from East Asia and

South Asia response to SO2 from South Asia. Furthermore, often the second most important

contributor is an emissions perturbation in an area that is closer than others. For example, aside

from African emissions, the response over Africa is sensitive to SO2 from Europe, consistent with

literature that finds Africa responds to European aerosol perturbations due to interactions with

radiation and clouds and changes to the hydrological cycle and atmospheric circulation (Dong

et al., 2014). Remote regions show reduced response, often with a gradient of approximately zero.

The response to North America SO2 is particularly low across all regions, including in North

America. This perturbation, however, is weaker in terms of total maximum SO2 perturbation

(∼10 Tg) compared to, for instance, the East Asian SO2 perturbation (∼80 Tg), based on the

maximum levels of historical emissions.

The main effects strongly depends on the magnitude of the perturbations. One may wish to

interpret the aerosol perturbation main effects in terms of the magnitude of emissions rather

than scaling factors, relative to present day emissions. Figure 4.11 shows the main effects of

each pollutant per unit Tg of emissions released, in each emission region. This is calculated by

estimating the gradients of the main effects in Figure 4.10 assuming linearity. The error bars

represent the 1 standard deviation uncertainty propagated from Figure 4.10.

These demonstrate similarities to previous studies, which estimate the temperature change in

the first 20 years of response to an abrupt response per unit Tg emissions (Aamaas et al., 2017;

Shindell and Faluvegi, 2009; Collins et al., 2013b). For instance, Aamaas et al. (2017) find

European SO2 perturbations to consistently produce larger responses per unit Tg than East

Asian SO2. Shindell and Faluvegi (2009) also find that broad latitudinal SO2 perturbations

in the Tropics give fairly equal responses globally, while Northern hemispheric perturbations

responses are much stronger in the latitude band of emission relative to other regions. Figure

4.11 shows consistencies with this as the Northern hemispheric perturbations show much stronger

regional effects in other Northern hemispheric response regions while tropical perturbations

(SO2 Africa, South Asia, and South America) show more evenly distributed responses, after
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accounting for the localised effect. Note the key difference in this study is that we have averaged

over the effect of other pollutants, rather than keeping them fixed at present day levels and that

these show only the 5 year response, rather than 20 years. However, this is the first study to

explore the response to regional tropical perturbations (SO2 South America, SO2 Africa and

OC/BC Tropics), rather than broad latitudinal perturbations.
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Figure 4.11: Main effects of each aerosol pollutant per unit Tg of emissions in each response
region. The error bars represent 1 standard deviation uncertainty estimated by the different
realisations in Figure 4.10.
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4.7.2 Sensitivity Indices

We will also carry out a variance-based sensitivity analysis, by estimating how much of the

variance in the output can be attributed to the variance in the input parameters, while averaging

over all other inputs as before. Following the notation of Saltelli et al. (2010), Xi will be used

to denote the i-th input, Y |Xi to denote the estimated output due to input variable Xi. We

will average over all other input variables and denote this EX∼i(Y |Xi). The variance due to

input variable Xi is then denoted VarXi (EX∼i (Y |Xi)). The first order sensitivity index (SI) is

given by

SIi = VarXi (EX∼i (Y |Xi))
Var(Y ) (4.2)

where Var(Y ) is the total variance over all inputs. Higher order effects can also be estimated

from this as the difference between 1 and the sum of the first order indices for all input variables.

Calculating Equation (4.2) exactly is expensive, but we can estimate it using the Sobol method

(Saltelli et al., 2008). We introduce two randomly sampled matrices of the input parameters, with

9 columns, indexed by i for each input variable and N rows indexed by n for each independent

sample. For this, we uniformly sample across the ‘maximum feasible’ ranges for all inputs

described in Section 4.3.2, although we note that these are only approximate. These matrices

are denoted A and B. From these, we can construct a new matrix, AB
(i) where all columns are

from A except the i-th column, which is from B. The variance due to input variable i can then

be estimated with

V̂arXi (EX∼i (Y |Xi))
Var(Y ) = 1

N

N∑
n=1

f (An) f
(
AB

(i)
n

)
− E(Y )2 (4.3)

where the proof for this can be found in Saltelli et al. (2010).

We use the Sobol method to estimate the first order sensitivity indices for each of the 9 input

parameters independently for each output variable, i.e. for each grid point. Firstly, we find the

that in all grid points, the variance due to the CO2 concentration is responsible for the majority

of the variance in the emulator. It is not necessarily surprising that the GHGs dominate the

variance, given the wide input ranges covered by the emulator based on the high uncertainty of
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future emissions. Figure 4.12 shows the degree to which the above is the case for the major

regions of interest, through stacked bar plots showing the sensitivity indices for CO2, CH4 and

the sum of the aerosol pollutant perturbations studied here. There are significant differences

across different regions, with South Asia standing out as the main region that is more sensitive

to both CH4 and aerosols (predominantly the South Asian SO2 perturbation). This appears

part of a tendency in which tropical regions (South Asia, Africa, Tropics) are more sensitive

to CH4 while higher latitude regions (e.g. North America, Europe) are more sensitive to the

CO2 perturbation. This is likely a consequence of enhanced warming at mid- and high-latitudes

under CO2 forcings that is not as strong under CH4 forcings (e.g. one-at-a-time perturbations

in Figure 4.6).

Figure 4.12: Regional mean first order sensitivity indices for CO2, CH4 and aerosols.

The first order sensitivity indices in CO2, CH4 and the aerosols sum to 1 almost exactly, leaving

< 10−4 down to higher order terms, which would describe sensitivity due to interactions between

multiple perturbations. This falls inline with aerosol perturbation studies that have found the

effects of multiple perturbations across different regions to be approximately additive at low

levels (Kasoar et al., 2018), but at high levels we may expect the atmosphere to become more

saturated with aerosol particles, reducing the efficiency of subsequent perturbations as described

in Section 4.7.1. Furthermore, previous studies have found non-linear effects when perturbing

GCMs with both GHGs and aerosols (Ming and Ramaswamy, 2009; Feichter et al., 2004; Marvel
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et al., 2015). The lack of interaction terms between these perturbations indicates these are not

significant on the timescales performed here. As with any non-linearities due to GHGs alone,

these would take longer than 5 years to affect the temperature response, as climate feedbacks

caused by temperature change takes time to be realised.

Figure 4.13: Regional mean first order sensitivity indices for aerosols perturbations: the regional
SO2 perturbation and the tropical biomass burning aerosols (OC/BC).

The sensitivity indices for the aerosol perturbations in these regions are shown in Figure 4.13.

These show a high dependence on region, particularly, from the local perturbations in Europe,

East Asia, South Asia and Africa. Although there are slight increases in sensitivities in North

America and South America due to the localised perturbations, these sensitivity indices are still

low, even relative to remote perturbations, such as SO2 over Africa. This is partially because

the SO2 perturbations over North America and South America are considerably weaker than

over Africa, due to the high uncertainty in future emissions in Africa (Liousse et al., 2014).

Regardless of the localised effect, Figure 4.13 also highlights significant differences in the

sensitivity indices in terms of the latitudinal band of the region of response. In the top row,

which consists of sensitivity indices over Northern mid-latitude regions (Europe, North America

and East Asia) the sensitivity indices for European and East Asian SO2 are relatively larger. In

the bottom row, showing sensitivity indices over tropical regions (South Asia, Africa, South
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America and the Tropics), the sensitivity indices of African SO2 and tropical biomass burning

are most relevant. This is consistent with other aerosol perturbation studies that have found

the response to aerosol perturbations strongest in the latitudinal bands of emission, when one

at a time perturbations are carried out (Shindell and Faluvegi, 2009).

This is revealed further in Figure 4.14, which shows the complete maps of sensitivity indices for

each pollutant, on independent scales based on their relative magnitudes. Firstly, as expected,

these show stronger sensitivity indices over the region of emission. These signals are clearer than

seen in the one at a time perturbations in Figure 4.2, where short-term fluctuations appear to

interfere with the initial response. Ignoring the strong localised effect, the patterns of sensitivity

to SO2 from Europe and East Asia, (Figure 4.14c and d) are remarkably similar. This is

reminiscent of results from Kasoar et al. (2018), where removal of SO2 from different Northern

Hemisphere regions gave similar response patterns. As shown in Figure 1.5, this study found

enhanced warming over North America and the Northern Atlantic and also over East Asia and

the Northern Pacific. Those regions also show enhanced sensitivity in response to European

and East Asian SO2 perturbations. While sensitivity to SO2 from North America does not

follow the same pattern, it should be noted that this perturbation is relatively weaker than the

others (Table 4.2), and because of this, the emulator does not attribute a strong response to

this pollutant (e.g. Figure 4.10), leading to reduced sensitivity.

Additionally, the tropical perturbations (SO2 from South America, Africa and South Asia and

OC/BC from the Tropics) give rise to similar sensitivity maps. A common feature of these

maps is the enhanced sensitivity over the tropical Atlantic and Pacific oceans. This mirrors the

enhanced sensitivity over the Northern hemispheric oceans due to the Northern hemispheric

perturbations. Kasoar et al. (2018) found that Northern hemispheric pollutant perturbations are

projected onto the natural modes of variability of the GCM, based on an Empirical Orthogonal

Function (EOF) decomposition. This is a principal component analysis (Section 2.2.1 carried

out across the time axis of a long control run, to obtain a map of principal components, which

are usually referred to as EOFs. The leading order EOFs represent the areas of maximum

variability in the control run. Kasoar et al. (2018) found that the second EOF showed a high

degree of similarity to the warming caused by removal of SO2. Carrying out the same analysis,
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(a) CO2 Global (b) CH4 Global

(c) SO2 Europe (d) SO2 North America

(e) SO2 East Asia (f) SO2 South Asia

(g) SO2 South America (h) SO2 Africa

(i) OC/BC Tropics

Figure 4.14: First order sensitivity indices (SI(1)) for each input to emulator.
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Figure 4.15 shows the first and second EOFs for the model used in this study over the 45 year

control run. The second EOF contains elevated features in the Northern Pacific, corresponding

to regions particularly sensitive to the Northern hemispheric pollutants. Also, the first EOF

shows some similar patterns in the Southern Pacific as those seen in the sensitivity map for

SO2 Africa (Figure 4.14h), suggesting that the tropical perturbations may project onto this

mode. This is in line with other studies that suggest the climate response is often projected

onto existing natural modes (Kasoar et al., 2018; Shindell et al., 1999; Ring and Plumb, 2008;

Corti et al., 1999; Palmer, 1999).

(a) EOF1, 11.8% variance explained (b) EOF2, 10.2% variance explained

Figure 4.15: First and second EOFs calculated as the modes of variability across the 45 year
control run.

4.8 Emulator Application

Th emulator developed in this chapter has proven to be fairly successful at predicting responses

to a range of GHG and aerosol perturbations. However, at large aerosol perturbations, it does

not capture known effects which would limit additional temperature change, leading to an

over-estimate in the response to aerosols under the high forcing regime (Figure 4.6d). In this

section, I will demonstrate an example of the emulator use, avoiding this regime of the parameter

space.

We will follow two vastly different scenarios from the Shared Socioeconomic Pathways (SSPs)

which project socio-economic changes and their associated emissions into the future (Riahi et al.,

2017). These are:

• SSP1: Taking the Green Road (Low challenges to mitigation and adaptation).
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The world shifts towards a more sustainable path with reductions in consumption and

energy use. Environmental goals are respected globally and inequality across and within

countries is also reduced.

• SSP3: Regional Rivalry – A Rocky Road (High challenges to mitigation and

adaptation). Nations focus on domestic or regional development and inequalities worsen

with time. Consumption is material-intensive and there is little focus on environmental

concerns.

From these pathways, I will use baseline scenarios of projected emissions, which give a radiative

forcing of 1.9 W/m2 for SSP1 (SSP1(1.9))and 7.0 W/m2 for SSP3 (SSP3(7.0)) by 2100 (van

Vuuren et al., 2017). The projected emissions from 2020-2100 in terms of the emulator inputs

(GHG concentrations and aerosol scaling factors) are shown in Figure 4.16 for both these

scenarios. The two scenarios differ greatly, SSP1(1.9) showing strong reductions in both GHG

concentration and the aerosol perturbations, resulting in very small levels of SO2 emissions by

2100 in all regions. In contrast, SSP3(7.0) projects a steady increase in GHG concentrations

and a divergence in SO2 emissions across the differing regions i.e. the regional rivalry.

To apply the emulator to make prediction under SSP scenarios, we must make several approxi-

mations. Firstly, the emulator only covers the main pollutant perturbations, CO2, CH4, regional

SO2 and tropical biomass burning. Gidden et al. (2019) show that in terms of radiative forcing,

these contribute to ∼ 75% of the total forcing in SSP1(1.9) and ∼80% of the total forcing

in SSP3(7.0). The remaining forcing comes from other sources such as tropospheric ozone,

N2O and Montreal Protocol gases, most of which are positive forcings, so may lead to a slight

additional warming effect. Secondly, the regional perturbations make an approximation of a

fixed distribution of emissions, although the SSP projections allow the entire emissions field

to vary. Finally, we use the emulator to predict the initial short-term response to an abrupt

perturbation from present-day conditions, rather than the transient response outlined by the

SSPs. For the short-lived pollutants, a change in scaling factor would be realised rapidly due to

their short lifetime. However, a sudden change in GHG concentration from present-day levels is

a different style of perturbation to the slowly changing transient response given in Figure 4.16,
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where climate feedbacks and adjustments would have time to be realised in a transient GCM

simulation.

(a) SSP1(1.9)

(b) SSP3(7.0)

Figure 4.16: Projected conditions over time for two Shared Socio-economic Pathways (SCPs)
where top panel shows GHG concentrations (CO2 axis on left, CH4 axis on right) and bottom
panel shows aerosol scaling factors. Scenarios SSP1(1.9) and SSP3(7.0) are described in the
text.

Regardless, the emulator can provide a rapid estimate of the short-term climate response to an

abrupt jump in emissions and concentrations, without the need to run an expensive, transient

GCM simulation. It can therefore be viewed as a ‘fast adjustment’ emulator. The emulator

is run with a timeslice of the conditions at year 2050 and 2100 and the response maps are
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(a) SSP1(1.9)

(b) SSP3(7.0)

Figure 4.17: Emulator predicted short-term response to SSP scenarios in 2050 and 2100.

plotted in Figure 4.17 for both scenarios outlined. The stippling indicates where the response

exceeds the 1σ level predicted by the emulator (i.e. the emulator is confident of the sign of

response to at least 1σ). Figure 4.17a demonstrates that for SSP1(1.9) there is an expected

initial rise in surface temperature, predominantly in the Northern Hemispheric, due to both

an increase in GHGs and a decrease in SO2. This warming is relatively stronger in regions of

large SO2 reductions, particularly East Asia. Following this, by 2100 the decrease in GHGs give

rise to a net global cooling, although this does not exceed 1σ of the emulator uncertainty. In

the SSP3(7.0) scenario, the dramatic increase in GHGs appears to dominate the prediction,

with large increases in surface temperature. In this scenario, the difference in response between

regions is large, highlighted by the anomalies with respect to the global mean response, in

Figure 4.18. The stippling here indicates where the anomaly exceeds the global mean response

to a significance of at least 1σ. While the anomalies in SSP1(1.9) are fairly weak across the

globe, the anomalies in SSP3(7.0) show large differences between the different regions, caused

by the ‘regional rivalry’ in this scenario. The emulator prediction under the 2100 conditions

shows significantly more warming over land, particularly over the Northern Hemisphere. The
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temperature response is relatively weaker over tropical regions such as Africa, South Asia and

the Southern tip of South America, these being the regions of roughly no change or increases in

SO2 emissions.

(a) SSP1(1.9)

(b) SSP3(7.0)

Figure 4.18: Emulator predicted anomalies relative to the global mean short-term response for
SSP scenarios in 2050 and 2100.

These projections highlight how the emulator can be used to predict a complete map of how a

GCM would respond in the first five years to a specific scenario, at a fraction of the cost of the

complete GCM. Running the GCM for 5 year timescales takes on the order of days to estimate

the climate response, whereas the emulator prediction takes on the order of seconds. This type

of tool could benefit policy studies in widening the number of scenarios that could be explored

in a limited period of time.
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4.9 Conclusions

This chapter presents the first climate emulator with the ability to predict the short-term

temperature response to a range of perturbations that include both long-lived greenhouse gases

and short-lived aerosol pollutants, including regional perturbations of these. Testing of the

emulator on a range of test data shows accurate performance across most of the parameter

space, the exception to this being a test scenario with strong aerosol perturbations across all

regions in the emulator design. This appears to be a consequence of the emulator learning a

linear relationship between aerosol perturbation and temperature response, although in reality

one would expect the climate to become less sensitive under high aerosol perturbations (Carslaw

et al., 2013). Given this caveat, the emulator is still a useful tool for predictions of scenarios

with smaller aerosol perturbations, which are more relevant to climate policy studies as large

positive aerosol perturbations are typically deemed less likely in climate projection scenarios

(Riahi et al., 2017).

The main source of uncertainty in the emulator predictions is the internal variability of the

GCM. Since this is also a source of uncertainty in GCM runs on the same timescales, the choice

of simulating climate response with an emulator is a sensible one. Naturally, one of the next

steps would be to reduce this uncertainty. This could be done by enhancing the quality of the

emulator training data by taking a mean over an ensemble of perturbation simulations in order

to reduce internal noise in the data. Alternatively or additionally, the simulations could be

averaged over for longer timescales to reduce the effect of year-to-year fluctuations. Although

both options add computational cost, it would be fairly simple to extend the existing simulations

to achieve either of these methods given the adequate computational resources.

One of the novelties of this emulator is that the inputs include both global GHGs and aerosol

perturbations for different regions, allowing a wide range of different future projections to be

made. The limitation here is that the aerosol perturbations are scaling factors over continental

scales with fixed emission distributions. This means the emulator is limited to increasing or

decreasing emissions by the same factor everywhere and cannot introduce new emission patterns.

Future studies may be interested in broadening the range of aerosol perturbations to not only
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include a greater variety of aerosols but also a range of different emission distributions. Not only

would this lead to an emulator with increased predictive power, but it could also provide an

opportunity for a larger scale sensitivity analysis into the different plausible aerosol perturbations.

Given the sensitivity analysis carried out here was based on very approximate feasible input

ranges in Section 4.3.2, the sensitivity indices could be refined based on a more accurate range

of possible future scenarios, informed by expert knowledge.

Ultimately, to make predictions of the long-term response based on emissions, the emulator

presented here could be combined with the surrogate model in Chapter 3. However, doing

this requires some consideration of error propagation, as the first emulator will introduce some

errors that are then used as inputs to the second surrogate model. In particular, the emulator

presented here predicted some regions at a lower accuracy, namely the high latitude continental

regions i.e. Greenland, North America and Northern Europe. If coupling these emulators

together, errors within these regions could become enhanced under the application of the second

surrogate model. However, with further work, this multi-level emulator would be an achievable

objective. The choice of a Gaussian process emulator benefits this task because it provides an

uncertainty estimate with each prediction and therefore allows error propagation. This could

highlight where regions have increased uncertainty and thereby assist the user when interpreting

results. To properly test the performance of this multi-level emulator, additional long-term

GCM simulations would be crucial. These could also be used to explore how residual errors

in the short-term response emulator could be enhanced in the predicted long-term response,

which may shine a light on how both these emulators could improved e.g. through additional,

carefully selected training simulations.

Regardless, both surrogate models presented here and in Chapter 3 are useful as standalone

tools. In particular, an application of the emulator developed here is demonstrated in Section

4.8, for two contrasting scenario projections. This exercise showed how the emulator can provide

rapid estimates of the short-term response to perturbations even under a scenario with high

inequality and regional rivalry. The scenarios explored here were taken directly from policy

related studies, in which the CO2, CH4 and SO2 forcings contribute to 75-80% of the total

radiative forcing. Even policy studies interested in the complete range of forcings could benefit
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from an emulator in this format, by making rapid estimates based on such inputs. This could

allow a wider range of scenarios to initially be explored, to help narrow down the choice of

inputs to a GCM and thereby reduce the total computational burden. While the purpose of

such an emulator is not to replace a GCM entirely, it can complement GCM studies by allowing

rapid prediction for a wide range of scenarios and, furthermore, could be accessible to a wider

range of users without the need for expensive computer hardware.



Chapter 5

A Bayesian Approach for Dimension

Reduction

5.1 Introduction

In previous chapters, one of the noticeable characteristics of the data was the large number

of features. This is unavoidable when working with spatio-temporal data, such as the output

from climate models, making it common to employ dimension reduction techniques, before

carrying out analysis. Previously, in Chapter 3 we made use of principal component analysis

(PCA) to reduce the number of dimensions. This is a commonly used tool in prediction studies,

particularly for Gaussian process emulation (Salter and Williamson, 2016; Ryan et al., 2018;

Williamson et al., 2015; Higdon et al., 2008; Lawrence, 2005). When applied to the quantity that

is being predicted, not only does PCA provide a lower dimensional variable to predict, but it also

ensures correlations between the output, that are not guaranteed otherwise. However, working

with a reduced space, rather than the complete dataset, introduces additional uncertainties that

are not accounted for in these studies. In particular, when applying any dimension reduction

method, a choice is made on the number of dimensions to keep, which can influence the accuracy

of the prediction. It would therefore be useful and, if following a fully Bayesian approach,

necessary to quantify the uncertainties associated with a dimension reduction method used,

159
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prior to applying a statistical prediction. Bayesian methods allow this to be done by estimating

the probability distribution over the reduced space, including the distribution over the size of

the reduced space. Then, not only can the optimal size of the reduced space be determined,

but the uncertainty associated with it can be quantified and carried through to any subsequent

analysis. For instance, an uncertainty on the reduced space can be used to estimate the total

uncertainty associated with a prediction via emulation.

In this chapter, we will focus on factor analysis, a model for describing a large dataset in

terms of underlying common factors, outlined briefly in Section 2.2.2. Factor analysis, like

PCA, reduces a dataset to a lower dimensional space, but while PCA treats the variances across

all variables equally and aims to maximise the variance in the principal components, factor

analysis assumes there are two contributions to this variance. It assumes that the variance

in each observed variable can be partitioned into a common variance that is equal for all

variables (like PCA) and a unique variance (i.e. a measurement error, independent for each

variables). This leads to a more general model for dimension reduction that allows independent

measurement errors on each variable. This model reduces to probabilistic PCA in the case that

these measurement errors are equal across all variables.

This chapter will start with an outline of factor analysis and the Bayesian approach to dealing

with it for a fixed number of factors (Press and Shigemasu, 1989). However, when the number

of underlying factors is unknown, which is typical for high dimensional climate data, Bayesian

inference can be carried out on the number of factors as well as the factors themselves. Lopes

and West (2004) does this through a reversible jump Markov chain Monte Carlo algorithm, but

this particular method becomes computationally infeasible in high dimensions. To address this,

I will develop and compare multiple new algorithms in this chapter.

5.2 Factor Analysis

We have a multivariate dataset y of m dimensions with a total of N separate observations or

data points. Factor analysis assumes that there is an underlying structure of lower dimension,
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k < m, that can be used to describe the dataset (Lopes and West, 2004). First, the data is

assumed to be a sample from a zero-mean multivariate normal distribution with covariance

matrix Ω) (size m×m)

y ∼ Nm(0,Ω) . (5.1)

We decompose each data point yn for n ∈ 1, · · ·N into a vector of latent factors, ηn of length k

and a factor loading matrix, Λ of size m× k, with some residual noise vector εn of length m, i.e.

yn = Ληn + εn . (5.2)

The residual noise is a measurement error, unique to each variable dimension i = 1, · · · ,m. This

equation can be extended for all N observations, by writing each observation as a row in the

matrix Y = (y1, · · · ,yN), of size N ×m. Similarly, we write the k latent factors as a row in

the matrix of latent factors η = (η1, · · · , ηk), a matrix of size N × k, and each of the m residual

noise vectors as a row in a residual noise matrix ε = (ε1, · · · , εN). In matrix form, Equation

(5.2) becomes

Y = ηΛT + ε . (5.3)

The result of this is that we can describe the data, which has original dimension m, with the

latent factor vector which has smaller dimension k. This latent factor vector η can then be used

instead of the full data in subsequent data analysis, such as regression problems. Then, the

matrix Λ and noise vector ε can be used to recover any results in the original size of the data

(N ×m).

Firstly, note that this model is non-identifiable, because even with infinite observations, we

cannot learn a unique solution for Λ and η. This is because we can always find an orthogonal

transformation that can be applied to Λ and η that leaves ηΛ invariant. For orthogonal matrix

P of size k × k, we can let Λ∗ = ΛP T and η∗ = Pη, which gives η∗Λ∗T = Pη(ΛP T )T =

ηPTPΛT = ηΛT , meaning that the choices (η,Λ) and (η∗,Λ∗) are observationally equivalent

(Aguilar and West, 2000; Geweke and Zhou, 1996). Following Lopes and West (2004); Geweke
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and Zhou (1996) and Aguilar and West (2000), we will ensure identifiability with the constraints

on Λ so that it is a block lower triangular matrix of full-rank, with positive values on the

diagonals. This lower triangular structure does not limit the form of the underlying space.

This is because the order of variables do not matter and therefore any rotation matrix A can

be applied to re-order the data, Ay. This gives a factor analysis model with the same latent

factors but a rotated loading matrix, AΛ without the lower triangular structure. However, an

orthonormal matrix P can always be found so that the resulting factor loading matrix has a

lower triangular structure. This makes the problem identifiable. The order of variables y has no

effect on the resulting model when k is known, however, when determining k a consequence of

the lower triangular structure on AΛ is that the latent variables must all appear within the

first k measured variables in y (Lopes and West, 2004). This can be checked by re-arranging

the vector y and repeating the analysis when estimating k, which is done in all analysis here.

Following Lopes and West (2004), we can let the latent factor vector ηn = (η1, η2, · · · , ηk)′ ∼

Nk(0, Ik) for n = 1, · · · , N , and then carry out analysis to determine the matrix Λ. The residual

errors explain the unique variance for each observed variable and it is typical to assume that

this has the form εn ∼ Nm(0,Σ) with diagonal covariance matrix Σ = diag(σ2
1, · · · , σ2

m) (Lopes

and West, 2004). This allows us to write the covariance matrix Ω defined in Equation (5.1), as

Ω = ΛΛT + Σ . (5.4)

The likelihood of the data y, marginalised over latent factors, is

p(y|Λ,Σ) = N (0,Ω)

∝ |Ω|
−N

2 exp
(

trace
(−1

2 Ω−1yyT
)) (5.5)

The goal is to estimate the underlying parameters with Λ and Σ = diag(σ2
1, · · · , σ2

m). In the

following section, I will outline a Bayesian method to do this.
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5.2.1 Gibbs sampler when k is known

The use of Markov chain Monte Carlo (MCMC, Section 2.4) to estimate parameters Λ and

Σ has been around for several decades, first formulated by Press and Shigemasu (1989). This

study assumes that the number of factors, k, is known in advance. A Gibbs sampler (Section

2.4.3) can be used to estimate Λ and Σ as we can derive the complete posterior conditional

distributions, given the following priors. This method also forms the basis of the algorithms

developed by Lopes and West (2004) and Dunson (2006), which will be described subsequently.

Priors

We define the following prior on components of the factor loading matrix Λ, labelled λij for row

i and column j:

λij ∼


N (µ0, C0) i 6= j

N (µ0, C0)1λii>0 i = j

(5.6)

with mean and covariance parameters chosen by the user, which are set to µ0 = 0 and C0 = 1

throughout, following Lopes and West (2004). Note that positive values are satisfied on the

diagonals. The prior on σ2
i components are:

σ2
i ∼ IG(ν/2, νs2/2) (5.7)

where IG is an inverse gamma distribution, ν = 1 is the prior degrees of freedom and s2 = 0.2

is the prior mode of the inverse gamma distribution.

Likelihood

Equation (5.3) breaks down the data y into the mean value ηΛT and some additional nor-

mally distributed noise which has variance Σ. We can therefore write likelihood of the data,
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f(y|Λ,Σ,η), as

f(y|Λ,Σ,η) = N (y; Λη,Σ)

∝ |Σ|−N/2 exp
(
−1

2(y − ηΛT )TΣ−1(y − ηΛT )
)

∝ |Σ|−N/2 exp
(
−1

2ε
TΣ−1ε

) (5.8)

where the last equality uses ε = y− ηΛT .

Furthermore, we can marginalise out the latent factors η, to find the marginal likelihood,

f(y|Λ,Σ). Recall that η is normally distributed with mean 0 and variance 1, meaning Λη is

also normally distributed with mean 0 and and variance ΛΛT . This gives

f(y|Λ,Σ) =
∫
N (y; Λη,Σ)N (η; 0, 1)dη

∝ |Ω|−N/2 exp
(
−1

2(yTΩ−Ty)
)

= N (y; 0,Ω)

(5.9)

where this derivation involves completing the square and can be found in e.g. MacKay (1998).

Conditional Posteriors

Full conditional posterior distributions can be derived from the likelihood in Equation (5.8)

with the choice of priors provided in Equations (5.6)-(5.7), allowing Gibbs sampling to be used

(Section 2.4.3) (Press and Shigemasu, 1989; Lopes and West, 2004). The conditional distribution

for η for each n ∈ 1, · · · , N is

ηn ∼ N
((

Ik + ΛTΣ−1Λ
)−1

ΛTΣ−1yn ,
(
Ik + ΛTΣ−1Λ

)−1
)

(5.10)

where Ik is an identity matrix of size (k × k).
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For the non-zero components of Λ, the conditional posterior of the values along row i, denoted

λi, are

λi ∼ N (mi,Ci)1λii>0 (5.11)

where
mi = Ci(C−1

0 µ01i + σ−2
i η

T
i yi)

 i ≤ k
C−1
i = C−1

0 Ii + σ−2
i η

T
i ηi

mi = Ci(C−1
0 µ01k + σ−2

i η
Tyi)

 i > k .
C−1
i = C−1

0 Ik + σ−2
i η

Tη

(5.12)

The subscript i notation on ηi indicates the η vector is truncated at the i-th value for the first

k rows. This results in λi of length i, with the remaining columns set to zero to maintain the

triangular structure. For the remaining rows where i > k the full η vector is used and λi is of

length m. Note that the diagonal components are fixed to be positive with 1λii>0.

The conditional posterior for σ2
i is

σ2
i ∼ IG

(
(ν +N) /2 ,

(
νs2 + di

)
/2
)

(5.13)

where di = (yi −ΛηTi )T (yi −ΛηTi ).

Gibbs sampler

Following Lopes and West (2004) and Press and Shigemasu (1989), These conditional posterior

distributions can be used to construct a Gibbs sampler, described in Section 2.4.3. This involves

updating each model parameter incrementally. The algorithm below shows a single Gibbs step

for where we first update η, followed by Λ, and then Σ.

Iterating over this forms the MCMC algorithm that can be used to infer the probability

distributions on η, Λ, and Σ. Importantly, this algorithm is an integral part of the methods
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Algorithm 6 Gibbs sampling step for factor analysis (Lopes and West, 2004; Press and
Shigemasu, 1989)

Start with θ = (η,Λ,Σ)

1. For n ∈ 1, · · · , N , draw new ηn with Equation (5.10)

2. For i ∈ 1, · · · ,m, draw the components of λi with Equations (5.11)-(5.12).

3. For i ∈ 1, · · · ,m, draw σ2
i with Equation (5.13).

The new parameters are θ∗ = (η∗,Λ∗,Σ∗)

also used to infer the probability distribution on k presented in Dunson (2006) and Lopes and

West (2004) which are explained in the following section.

Example: 3 Factor Model

First, we apply the above MCMC algorithm to a test dataset that we will re-use throughout the

following section to demonstrate the results of several algorithms. This test dataset is simulated

from a known factor loading matrix and variance vector, where k = 3 , m = 10. The dataset is

the same as that presented in Dunson (2006) for Λ and with Σ divided by a factor of three to

make the dataset more informative. This means most of the unique variances are small relative

to the magnitude of Λ, with the exception being the 8th component of Σ which is set to be

significantly larger than other values, designed to test the methods under higher levels of noise.

These values are shown by the red lines in Figure 5.1 for all 10 components of Σ and the 27

non-zero components of Λ. This plot also shows the trace of the first 5000 iterations of the Gibbs

sampler in black (out of 104 iterations in total). The chains begin to converge towards the true

values at around 2000 iterations, if not earlier, for all components. The diagonal components of

Λ appear to be over-estimated slightly relative to the ground truth, as does the λ8,2. This means

that the common factor associated with these components appear stronger than they should in

the simulated data. Similarly, the unique variances associated with these (σ1, σ2, σ3, σ8) are also

over-estimated slightly, as a consequence of this.
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(a) Σ (b) Λ

Figure 5.1: Trace plots for each non-zero component of Σ and Λ inferred with the Gibbs sampler.
The upper triangular components of Λ are zero. Red line indicates true value.
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5.2.2 Model selection when k is unknown

When the value of k is also unknown, the goal is to infer both k and θ = (Λ,Σ). Since k

determines the model, this is ‘model selection’. A naive approach to this would be to explore

several different candidate models by repeatedly running MCMC algorithms with different values

of k and comparing the output of each one. Ideally, we would compare the marginal likelihood

of each model by integrating out all prior values of θ, e.g. for k = k1

f(y|k1) =
∫
f(y|k1, θ)p(θ)dθ . (5.14)

To compare two different models, with k = k1 and k = k2, the Bayes Factor can be calculated,

as the ratio of the marginal likelihoods, i.e.

BF1:2 = f(y|k1)
f(y|k2) . (5.15)

The marginal likelihood tells us how well model k1 fits the data without assuming particular

values of θ. This means models with many latent variables are penalised relative to those with

fewer latent variables, since the marginalisation takes place over a greater space (i.e. the integral

in Equation (5.14) is over the entire parameter space specified by the prior on θ, which is larger

when θ has more dimensions). It is typical to see that increasing the number of latent variables

initially increases the marginal likelihood, as the model better fits the data, but then decreases

when the number of variables is increased beyond what is needed to describe the data (Everitt

et al., 2020). In model selection, we are therefore interested in the model that provides the

highest marginal likelihood, i.e. the model that best fits the data without too much additional

complexity.

However, the marginal likelihood is an unknown quantity in standard MCMC and evaluating

this integral is not a straightforward task, especially when θ is high dimensional. There are

various approximation methods that can be used to estimate the marginal likelihood (Chib,

1995; Newton and Raftery, 1994; Gelfand and Dey, 1994; Tierney and Kadane, 1986). These are

outlined and compared in Lopes and West (2004) where they are shown to have varying levels
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of accuracy in different simulation studies but are outperformed by an RJMCMC approach

introduced in this paper (discussed in Section 5.2.4). Furthermore, these methods require

independent MCMC simulations for each k, which can become expensive in high dimensional

spaces, as there are many possible k values to explore. In the following section, we will outline

an existing approach that approximately infers k with a single MCMC chain (Dunson, 2006).

5.2.3 Over-parameterised Approximation when k is unknown

Model selection as described above requires an independent MCMC analysis on each possi-

ble model. For many dimensions, this can become infeasible. Dunson (2006) uses an over-

parameterisation approach to estimate the posterior probabilities for each model k. An MCMC

analysis is carried out in model k = kmax using the Gibbs sampler described in Section

5.2.1. This gives the model parameters for model k which we label θ(k) = (Λ(k),Σ(k), η(k)).

These model parameters are transformed down to model k′ = k − 1, with model parameters

θ(k′) = (Λ(k′),Σ(k′), η(k′)). Dunson (2006) proposes a transformation in which the last two

columns of matrix Λ(k) are collapsed to find the last column of matrix Λ(k′):

λ
(k′)
i,j =


λ

(k)
i,j j < k′

sign(λ(k)
i,k−1)

(
λ

(k)
i,k

2
+ λ

(k)
i,k−1

2
)1/2

j = k′
(5.16)

and the variance parameters of Σ remain the same:

σ
(k′)
i = σ

(k)
i . (5.17)

The latent factor vector η is marginalised out here but η can be sampled using Equation (5.10).

This provides us with an MCMC chain in the k − 1 model at much lower costs than running a

Gibbs sampler. Furthermore, these model parameters can then be transformed down to obtain

the parameters of model k − 2, k − 3, and so on. Dunson (2006) shows that when the model is

over-parameterised with k > ktrue, this transform provides a reasonable approximation to the

true posterior and that the MCMC chain in this reduced model exhibits efficient mixing (in
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fact, more efficient than the original MCMC chain in the over-parameterised model (Ghosh

and Dunson, 2009)). An example of this approach is presented in Figure 5.2, where the Gibbs

sampler has been run for 104 iterations in three separate models, k = 3, k = 4 and k = 10.

After removing 5000 iterations for burn-in, the parameters of the k = 4 and k = 10 models have

been transformed down to obtain parameters of the k = 3 model. These parameters are plotted

as histograms for each component of Σ and Λ, where the black dashed line indicates the true

model parameters.

The blue histogram showing the the parameter values obtained when run with k = 4 and

transformed down to k = 3 make a very good approximation to the parameter distributions

inferred by the k = 3 Gibbs sampler. The same is true for the violet histogram, produced by

the Gibbs sampler run in the largest possible model k = 10 and then transformed down to

k = 3. Although this approach relies on 6 transformations, most distributions remain similar

to those obtained with the k = 3 Gibbs sampler. The exception of this is the 8th row, in

which both σ8 and λ8,3 are poorly represented. Note that this is the row in which the large

variance is introduced to test the methods under large residual noise levels. The transformation

proposed in Dunson (2006) is a reasonable approximation for the correct model, but can result

in inaccuracies, particularly for data with large residual noise and with high dimensions, where

more transformations would be required.

The accuracy of the transform in an under-parameterised model, k = 2, is shown in Figure

5.3 where the Λ and Σ distributions obtained through the Gibbs sampler with k = 2 in black,

compared against the Gibbs sampler run with k = 3, transformed down to the k = 2 model in

blue. These distributions differ significantly for many of the transformed Λ and Σ variables.

There is a good agreement between some of the Σ distributions but this is overshadowed by the

fact that in some cases there are almost no overlap between the distributions (σ1, σ5). This

transform therefore no longer provides a good approximation to an under-parameterised model,

which will be relevant to the methods presented later that use this transformation as a starting

point.

Dunson (2006) use these transformations to carry out model selection by comparing the Bayes
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(a) Σ (b) Λ

Figure 5.2: Histograms of the parameters of the k = 3 model obtained from a Gibbs sampler
run for 5000 iterations (after 5000 iterations for burn-in) in the k = 3 model and in over-
parameterised models, k = 4 and k = 10, transformed into the k = 3 model space following the
method presented in Dunson (2006). The black dashed line shows the true values of which the
data is simulated from.
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(a) Σ (b) Λ

Figure 5.3: Histograms of the parameters of the k = 2 model obtained from a Gibbs sampler
run for 5000 iterations (after 5000 iterations for burn-in) in the k = 2 model and in the
over-parameterised model, k = 3 transformed into the k = 2 model space following the method
presented in Dunson (2006).
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factors for the transformed models. This relies on estimating the marginal likelihood, Equation

(5.14), which is done by averaging over all iterations obtained through Gibbs sampling in the

largest model, θ(m) = (Λ(m),Σ), called ‘model averaging’. The estimated Bayes factors are

plotted in blue in Figure 5.4 as boxplots for 20 estimates made with different independent seeds.

The same is done using the full Gibbs sampler for every model for comparison in black. We

find that the k = 3 model is selected in most instances, but in some cases the k = 4 model is

incorrectly selected as the best model, also found in Ghosh and Dunson (2009). The inaccuracy

of the transform in the underparameterised regime, for k = 1 and k = 2 leads to underestimated

marginal likelihoods compared to those obtained with the full Gibbs sampler. This is not

problematic when the goal is simply to determine which model is best, but it does not give

an accurate distribution over k. For a more accurate Bayesian assessment of this, we propose

approaches that makes use of this transform, since it is known to perform reasonably well, but

then allow adjustments to find the exact posterior distribution on model parameters. This

should be a remedy for the small inaccuracies introduced at each step of the transform, which

can build to an overall large inaccuracy as seen in the k = 10 transform down to k = 3 in Figure

5.2b. It should also improve upon the poor approximation seen in the under-parameterised

models (Figure 5.3). We do this through a reversible jump MCMC approach in Section 5.3 and

through Sequential Monte Carlo (SMC) in Section 5.4. These methods provide another benefit,

as we can carry out Bayesian model comparison without relying on model averaging to estimate

the Bayes’ factor, as done in Dunson (2006) and in Figure 5.4.

5.2.4 RJMCMC when k is unknown: a psuedo-marginal algorithm

A reversible jump MCMC (RJMCMC) algorithm, described in Section 2.5, is a suitable candidate

as a Bayesian method for determining number of underlying factors, as it can learn the true

posterior distribution on k. The first use of RJMCMC to do this was proposed by Lopes

and West (2004) and is still the only widely known RJMCMC approach in the factor analysis

literature to date. We note that the algorithm in Lopes and West (2004) is a form of the

pseudo-marginal target algorithm, outlined in Section 2.4.6, in which the marginal likelihood
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Figure 5.4: Bayes factors estimated using model averaging, presented in Dunson (2006) for
simulated data with k = 3 underlying factors. Estimates are made across 20 independent seeded
runs. In black are the estimates made with the full Gibbs sampler run separately for each k.
In blue are the estimates made from the over-parameterised Gibbs sampler run with k = 10
transformed down to each model.

f(y|k) is estimated in the acceptance ratio (Equation (2.56)). For the RJ version of this, we

require estimating f(y|k) with

f̂(y|k) = f(y|k, θ(k)) p(θ(k)|k)
q(θ(k)|k, θ′(k′), k′) . (5.18)

where q(θ′(k′)|k, θ(k), k) is a proposal distribution that we can sample θ′(k′) from at each iteration,

for model k. This assumes that we have a proposal distribution on k, i.e. q(k′|k), which will

follow the standard RJMCMC approach of taking one step up or down in dimension with equal

probability (k′ = k + 1 or k′ = k − 1). As before, the model parameters are θ(k) = (Λ(k),Σ(k)).

Specifically, Lopes and West (2004) build the proposal distribution based on preliminary MCMC

runs when k is fixed, that are used to obtain posterior distributions on Λ(k) and Σ(k) for each

k independently. These preliminary runs are used to compose a proposal distribution on the
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independent components of σ(k)2
i and on the matrix Λ(k):

q(σ(k)2|k) =
m∏
i=1
IG(a, av(k)2

i ) (5.19)

q(Λ(k)|k) = N (b(k), bB(k)) (5.20)

where v(k)2
i is the mode of the σ(k)2

i MCMC chain for model k (chosen rather than the mean due

to the large tails seen in the posterior distributions), b(k) and B(k) are the mean and variance

matrices of the Λ(k) chain for model k and a and b are positive scale parameters chosen by the

user. Following Lopes and West (2004), we let a = 18 and b = 2.

In this form of RJMCMC, note that the new parameter values (Λ′(k′),Σ′(k′)) depend only on k

and not on the previous parameter values (Λ(k),Σ(k)) i.e.

q(θ(k)|k, k′, θ(k′)) = q(θ(k)|k) = q(Λ(k)|k) q(Σ(k)|k) (5.21)

The result is an acceptance rate of

rpm(k → k′) = f(y|θ′(k′), k′) p(θ(k′)|k′) p(k′)
f(y|θ(k), k) p(θ(k)|k) p(k)

q(θ(k)|k) q(k|k′)
q(θ′(k′)|k′) q(k′|k) . (5.22)

As the proposals are independent of θ, the Jacobian term is reduced to dk′

dk
= d(k±1)

dk
= 1.

Note here that f(y|θ(k),k) p(θ(k),k)
q(θ(k)|k) is a single point importance sampling estimate of π(θ(k)) with

importance weight q(θ(k)|k) (Equation (2.56)). As this method uses a pseudo-marginal approach

to estimate the acceptance ratio, we will call refer to this approach as pseudo-marginal RJMCMC

(or pmRJ for short). Algorithm 7 describes the algorithm in full.

The main drawback of this algorithm is that it requires generating a preliminary MCMC for

every possible value of k = (1, · · · , kmax), (Step 0) making this an expensive approach for highly

multivariate data. For large kmax this becomes infeasible. In particular, data from climate

models is often high resolution in time and/or space. Furthermore, for large k and m, these

chains may also require many iterations to reach convergence. The total complexity of the

algorithm scales with O(m3), due to the cost of running m independent MCMCs, each scaling
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Algorithm 7 Reversible jump MCMC algorithm for factor analysis that uses pseudo-marginal
target approximation (pmRJ), first presented in Lopes and West (2004).

0. Separately run all MCMC models for k = 1, 2, · · · , kmax . Then for each k, find the
mean and variance of the chain on λ to give b(1), b(2), · · · , b(kmax) and B(1), B(2), · · · , B(kmax)

respectively, and the mode of the chain on σ2
i to give v(1)2

i , v
(2)2
i , · · · , v(kmax)2

i . These are
used in the proposal distributions in the reversible jump method in step 2b.

1. Set initial k and draw prior θ(k). Set X0 = (k, θ(k))

2. For n = 1, · · · , N : Current model is Xn = (k, θ(k))

(a) Do 1 MCMC step (algorithm 6)
(b) Do 1 RJ step:

i. Propose new k = k′ from proposal k′ ∼ q(·|k).
ii. Propose new values for θ′(k′) = (Λ′(k′),Σ′(k′)) ∼ q(θ(k)|k) from Equations (5.19)-

(5.21).
iii. Calculate acceptance probability α = min(1, rpm) where rpm is given by Equation

(5.22).
iv. Accept proposed model with probability α and set Xn+1 = (k′, θ′(k′)), otherwise

reject and set Xn+1 = Xn = (k, θ).

with O(m2) based on the required sampling from the truncated multivariate normal distribution,

as well as the O(m3) cost of inverting the matrix Ω in the likelihood (Equation (5.8)). In Section

5.3, I present alternative reversible jump algorithms that do not require these independent

MCMCs.

Example: 3-Factor Model

This algorithm is implemented on the same simulated data described in Section 5.2.1 with

k = 3 underlying factors. In MCMC methods, convergence is checked initially through trace

plots of each parameter, as done in Figure 5.1. In RJMCMC, there are many parameters to

check for, both k and θ = (Λ(k),Σ(k)). This is complicated by the fact that the nature of θ

changes depending on which value k takes. Also, θ is often high-dimensional, such as in this

example, where even with only m = 10, θ includes at least 20 dimensions and can extend up to

50 dimensions depending on the value of k. To assess convergence, it is simpler to check the

trace plot of a scalar value that is a function of all θ and that maintains the same meaning

regardless of k (Brooks and Giudici, 2000). A common example is to plot the log likelihood
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(Equation (5.8)), alongside k, as shown in Figure 5.12 for the first 1000 iterations. Both k and

the log likelihood appear to vary in synchronisation with each other, as the log likelihood jumps

between different states along side jumps between different factor models.
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Figure 5.5: Trace plots of (top panel) k and (bottom panel) the log likelihood for the first 1000
iterations of the pmRJ algorithm on the simulated data with k = 3 underlying factors.

The trace plot of k shows that the algorithm spends the majority of its time in model k = 2 and

k = 3, indicating that the method is quickly able to find roughly the correct number of factors.

However, the algorithm is not perfect, as model k = 2 is slightly favoured over the true model

k = 3. This is shown further in the posterior distribution of k plotted as log(p(k)) in Figure 5.6,

calculated as the relative number of iterations spent at each model k after burn-in. The error

bars are calculated from repeating this with 20 parallel chains initialised with a different seed.

As this algorithm targets πk(θ|y), the parameters learned in the model k = 3 are roughly

consistent with the Gibbs sampler in k = 3 model. This is shown by the red histograms in

Figure 5.7 where the Gibbs sampler with k = 3 fixed are shown for reference in black. The

pmRJ algorithm finds the distribution of the parameters to be very similar, which is expected

since the proposal distribution is built from the preliminary Gibbs sampler simulations. Some λ

parameters have narrower distributions in the pmRJ algorithm. This is likely a consequence of

the proposal distribution being independent of the value of θ at the previous iteration. Points

at the edges of the distribution are proposed less frequently, and even if they are proposed, they

are less likely to be accepted because they are compared against a previous iteration that is

often in a high density region of the parameter space.
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Figure 5.6: Log posterior probabilities of the pmRJ algorithm estimated from 20 independently
seeded simulations on the simulated dataset with k = 3 underlying factors.

One of the potential problems with this algorithm is that it does not make use of parameter

values in previous iterations, which is an unusual feature in MCMC algorithms. Instead, the

use of proposals on θ(k′) that depend only on model k′ and not on the previous value, θ(k),

can lead to a significant proportion of time and therefore computational effort being spent in

undesired regions of the parameter space (e.g. k = 5, 6, · · · in Figure 5.6). In the next section,

we introduce an RJMCMC algorithm that does not use independent proposals which also means

it does not require independent preliminary MCMCs. We will build proposals that make use of

current parameter values, θ(k), based on the transformation presented by Dunson (2006).

5.3 A new Reversible Jump MCMC

Existing methods of Bayesian model selection for factor analysis are either inexact (Dunson,

2006) or expensive (Lopes and West, 2004). Here, I will present a novel RJMCMC algorithm to

infer the posterior distributions on (k, θ(k)) that avoids the need for preliminary independent

MCMCs.
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(a) Σ (b) Λ

Figure 5.7: Histograms of samples when k = 3 in the pmRJ algorithm (Lopes and West, 2004)
(red) compared against the Gibbs sampler with fixed k = 3 (black). Both algorithms are run for
5000 iterations (after 5000 iterations for burn-in). The black dashed line shows the true values
of which the data is simulated from.
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5.3.1 Proposal Distributions

The RJMCMC algorithm requires a new proposal distribution, which will be built using the

transformation outlined in Dunson (2006), discussed in Section 5.2.2. This transform was shown

to propose sensible parameters for the new model when moving down in dimension, from model

k to k′ = k − 1, with Equation (5.16). We call this the merge transform as it merges the last

two columns of matrix Λ(k).

To move up in dimension from model k to k′ = k+1, we must build an equivalent split transform

that is consistent with this merge transformation. As the merge transform involves merging two

columns together, there are multiple versions of Λ(k) that can give the same Λ′(k′). To do this,

we introduce some randomness that determines the new parameters, as done in Richardson and

Green (1997). We define the split transform as

λ
(k′)
i,j =



λ
(k)
i,j j < k′ − 1

sign(λ(k)
ik )u1/2

i λ
(k)
ik j = k′ − 1

γi
(
λ

(k)2
ik (1− ui)

)1/2
j = k′

(5.23)

where ui and γi are additional auxiliary variables. The first k columns of Λ and Λ(k′) are equal.

The last two columns are then split into two with auxiliary variable, ui ∈ (0, 1) determining

the proportion. The sign of Λ(k′) in column k′ − 1 is consistent with the sign of Λ(k) and the

sign of the column k′ is determined at random with auxiliary variable γ = ±1, noting that this

must be positive when i = j so that the diagonal values are positive. These choices are made to

ensure that the transform down via Equation (5.16) is satisfied. As done in the merge move

Dunson (2006), the variance parameters remain the same.

We take

ui ∼ Unif(0, 1) (5.24)

as this choice is general enough to cover most situations, in both under-parameterised and
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over-parameterised models. For the sign of the last column, we let

γi =


+1 i = k′

Bernoulli(1,−1) otherwise .
(5.25)

We assess the accuracy of the split transform in a similar manner to the merge transform (Figures

5.2-5.3) with the same data with underlying k = 3 factors. First, in the under-parameterised

case, we run the Gibbs sampler in model k = 1 and use the split transform to expand this

into the k = 2 model. The resulting distributions for Λ and Σ are shown in red in Figure 5.8,

compared with the results of the Gibbs sampler for the k = 2 model in black. The same is done

for k = 2 transformed to k = 3 in Figure 5.9, k = 3 transformed to k = 4 in Figure 5.10 and

k = 4 transformed to k = 5 in Figure 5.11. In each of these figures, the red histogram shows how

the split move in Equation (5.23) transforms the lower model onto the extended k + 1 space, in

other words, representing the proposal distribution, while the black histogram represents the

target distribution.

For each Λ at a single iteration, the split transform distributes the last column into two based

on the auxillary variables u and γ. u determines the second-last column and is selected from

a uniform distribution between 0 and 1, which effectively smears the distribution of the first

column between 0 and Λi for each row i. The final column is determined by the remaining

contribution to Λ for each row and the sign is selected at random. This is what leads to the

symmetry around Λi = 0 in the second column. This symmetry is seen in all examples but

appears more prominent when there are two separate peaks some distance from Λi = 0.

In the under-parameterised regime, the split transform applied to the k = 1 and k = 2 models

give distributions that differ significantly for some of the Λ and Σ variables. This is more

problematic for the k = 1 model, as this is a poorer approximation to the true k = 3 factor

model. Most of the Λ variables overlap with the larger models, although this is not always true,

for example λ91, λ10,1 in the split k = 1 → 2 and λ1,1 for k = 2 → 3. This is not ideal for a

proposal distribution as it is near-impossible for valid points to be proposed, unless variations

on the RJMCMC are made, such as annealing (Section 2.6.1).
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(a) Σ (b) Λ

Figure 5.8: Histograms of the parameters of the k = 2 model obtained with a Gibbs sampler
run for 5000 iterations (after 5000 iterations for burn-in) and in the k = 1 model transformed
into the k = 2 model with the split transform described by Equation (5.23).
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(a) Σ (b) Λ

Figure 5.9: Histograms of the parameters of the k = 3 model obtained with a Gibbs sampler
run for 5000 iterations (after 5000 iterations for burn-in) and in the k = 2 model transformed
into the k = 3 model with the split transform described by Equation (5.23). The black dashed
line shows the true values of which the data is simulated from.



184 Chapter 5. A Bayesian Approach for Dimension Reduction

(a) Σ (b) Λ

Figure 5.10: Histograms of the parameters of the k = 4 model obtained with a Gibbs sampler
run for 5000 iterations (after 5000 iterations for burn-in) and in the k = 3 model transformed
into the k = 4 model with the split transform described by Equation (5.23).
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(a) Σ (b) Λ

Figure 5.11: Histograms of the parameters of the k = 5 model obtained with a Gibbs sampler
run for 5000 iterations (after 5000 iterations for burn-in) and in the k = 4 model transformed
into the k = 5 model with the split transform described by Equation (5.23).
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Since the Σ variable is not transformed, it is not surprising that some of these variances do not

match when the Gibbs sampler is run in a different model. Σ describes the residual variances

which picks up any remaining noise that are not attributed to the underlying factors. When the

model is under-parameterised, there are factors that cannot be determined which contributes

to the residual variance of this particular row, σ2
i . This is why the Σ is often over-estimated

in the lower model (in row 2, 8 and 9). The same feature is seen when the k = 2 model is

transformed up to the k = 3 space in Figure 5.9 in rows 1, 5 and 7. Again, this makes the

proposal suboptimal for targetting the k + 1 model when in the under-parameterised regime.

However, the split transform performs much more reasonably in the over-parameterised regime.

The transform from k = 3 (the correct model) to k = 4 (an overparameterised model) shows

that the peak of the distribution is sometimes missed in the last column of Λ, but there are no

regions of the distribution that are not covered by some of the proposal distribution. When the

split transform is applied to the k = 4 chain which is already over-parameterised, the resulting

distributions are very similar to those found directly with the k = 5 chain (Figure 5.11). In this

over-parameterised regime, the split transform makes a good approximation, particularly since

it is only the last column that is added in the transform, of which there are only m − k = 6

non-zero elements.

This proposal distribution is likely to be more effective in the over-parameterised regime and

therefore result in higher acceptance rates compared to in the under-parameterised regime. It

is expected that some adjustments to the RJMCMC may be needed to improve the proposal

distribution in the under-parameterised regime, which can be dealt with by introducing annealing

distributions (Section 2.6.1). First, however, I will outline how we can construct a reversible

jump MCMC algorithm.

5.3.2 RJMCMC Algorithm

In this section, I will discuss the new RJMCMC algorithm that moves between models via

these split and merge transforms. Following the same notation as Section 2.5, the proposal

distribution for θ(k′) is built by introducing new auxiliary variable, u(k′), according to distribution
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ψk→k′(u(k′)), i.e.

q(θ(k′), u(k′)|k′, k, θ(k)) =ϕ(θ(k′)|u(k′), k′, k, θ(k))ψk→k′(u(k′)|k′, k, θ(k)) (5.26)

=ϕ(θ(k′))ψk→k′(u(k′)) (5.27)

where the second line is used to simplify the notation. These auxiliary variables are those

that must be drawn during the split move, ui for i = k, · · · ,m and γi for i = k + 1, · · · ,m, as

described by Equations (5.24) and (5.25) respectively. This gives

ψk→k′(u(k′)|k′, k, θ(k)) =
m∏
i=k

ψk→k′(ui, γi) =
m∏
i=k

Beta(1, 1) Bernoullii 6=k′(1,−1)1i 6=k . (5.28)

Then, to move up in dimension via the split move, we draw these auxiliary variables and apply

deterministic functions to calculate (Λ(k′),Σ(k′)) with Equation (5.23). In contrast, to move

down in dimension via the merge move, (Λ(k′),Σ(k′)) is entirely deterministic and calculated

with Equation (5.16). There are no auxiliary variables from model k to k − 1, but we can

calculate the auxiliary variables that would be obtained through the reverse process from model

k − 1 to k. These will be used in the acceptance rate.

We will use this proposal to estimate the ratio f(y|k′)/f(y|k), as done in the pseudo marginal

ratio algorithm (Section 2.4.7). We estimate this with an importance sampling estimate, drawn

from the proposal q described above.

̂(
f(y|k′)
f(y|k)

)
= f(y|k′, θ′(k′)) p(θ′(k′)|k′)

f(y|k, θ(k)) p(θ(k)|k)
q(θ(k)|k, k′, θ′(k′))
q(θ′(k′)|k′, k, θ(k))

(5.29)

As we have introduced the auxiliary variables, u(k) and u(k′), the ratio becomes

̂(
f(y|k′)
f(y|k)

)
= f(y|k′, θ′(k′)) p(θ′(k′)|k′)

f(y|k, θ(k)) p(θ(k)|k)
ϕ(θ(k))ψk′→k(u(k))
ϕ(θ(k′))ψk→k′(u(k′))

∣∣∣∣∣∣
∂
(
θ(k), u(k)

)
∂ (θ′(k′), u′(k′))

∣∣∣∣∣∣ (5.30)

where the Jacobian is introduced to ensure dimension matching between q(θ(k)|k, k′, θ′(k′)) and
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q(θ′(k′)|k′, k, θ(k)) as described in Equation (2.69). The acceptance ratio from k to k′ is

rRJ(k → k′) = f(y|k′, θ′(k′))
f(y|k, θ(k))

p(k′) p(θ′(k
′)|k′)

p(k) p(θ(k)|k)
q(k|k′)
q(k′|k)

ϕ(θ(k))ψk′→k(u(k))
ϕ(θ(k′))ψk→k′(u(k′))

∣∣∣∣∣∣
∂
(
θ(k), u(k)

)
∂ (θ′(k′), u′(k′))

∣∣∣∣∣∣ .
(5.31)

The algorithm is outlined in Algorithm 8. Like the pseudo marginal target RJMCMC algorithm,

presented in (Lopes and West, 2004), the cost of this algorithm scales with O(m3) due to

likelihood (Equation (5.8)) which requires inverting the matrix Ω of size (m×m) . However, it

does not require the preliminary independent MCMC simulations for each k, making it overall

significantly less costly.

Algorithm 8 Reversible jump MCMC algorithm designed for factor analysis that uses split
and merge moves.

1. Set initial k and draw prior θ(k). Set X0 = (k, θ(k))

2. For n = 1, · · · , N , current sample is Xn = (k, θ(k))

(a) Do 1 MCMC step (Gibbs sampler)
(b) Do 1 RJ step:

i. Propose k′ = k+ 1 (split) or k′ = k−1 (merge) with probability q(·|k) (Equation
(2.63)).

ii. If k′ = k − 1: Merge with transform given by Equation (5.16).
iii. Else k′ = k + 1: Split by proposing new auxiliary variables, u, γ from Equations

(5.24)-(5.25) and transform with 5.23.
iv. Calculate acceptance rate rRJ(k → k′) with Equation (5.31).
v. With acceptance probability

α = min
(

1, q(k
′, k)

q(k, k′)rRJ(k → k′)
)
, (5.32)

either accept and set Xn+1 = (k′, θ′T−1
k′ ) or otherwise reject and set Xn+1 = Xn =

(k, θ).

5.3.3 Annealed Reversible Jump

The proposal distribution is built based on the assumption that the merge and split transforms

make a reasonable approximation to the posterior distribution for the parameters in model
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k± 1. However, when the model is underparameterised Figure 5.3 and 5.8 showed this not to be

the case for the merge and split transforms respectively. This could give low acceptance rates,

when k is underparameterised. This leads us to improve the acceptance rate by introducing the

method of annealed importance sampling (AIS, Section 2.6.1) embedded within the RJMCMC

moves. AIS was first introduced within an MCMC algorithm by Neal (2005) and then applied

to RJMCMC by Karagiannis and Andrieu (2013). As described in Section 2.6.1, AIS involves

generating a sequence of intermediate probability distributions between the proposal distribution

and the target distribution. These are designed to reduce the distance between intermediate

distributions so that each intermediate distribution is a better proposal for the next one, leading

to higher acceptance rates. We can implement this within a pseudo marginal ratio MCMC

algorithm because, as pointed out in Section 2.4.7, the ratio of likelihoods in the acceptance

rate can be estimated with an importance sampling estimate, i.e. Equation (2.59). Since the

RJMCMC algorithm presented above (Algorithm 8) uses an importance sampling estimate in

the acceptance rate (Equation (5.29)), we can apply the concept of AIS to this, in order to

improve the acceptance rate . This should reduce the chance of the algorithm becoming ‘stuck’

due to high rejection rates, which is a common problem in RJMCMC in high dimensions.

We will denote the probability density function of model k by πk and introduce intermediate

probability distributions from t = 1, · · · , T − 1 to bridge the gap from πk to πk′ . Following the

same notation as Equation (2.90), these intermediate distribution are

πk→k′;t(θ(k′), u(k′)) =
(
πk′

(
θ(k′), u(k′)

))γt (
πk
(
θ(k), u(k

))1−γt (5.33)

where γt increases from 0 to 1, as t increases from 1 to T. We will use γt = t
T

(Neal, 2001).

Introducing annealing changes Algorithm 8 in two ways. Firstly, the process of proposing new val-

ues θ(k′) involves multiple steps across the intermediate distributions, (θ(k′)
1 , u

(k′)
1 ), · · · , (θ(k′)

T , u
(k′)
T ).

Secondly, we must modify the acceptance rate, Equation (5.31), to include this sequence of

points, in order to obtain a higher acceptance rate.

For this first task, we require a way to generate samples from (πk→k′;1, · · · , πk→k′;T ). We do
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this by constructing an MCMC kernel Kt that targets πk→k′;t for all t. For simplicity, we will

do this by working in the larger dimensional model (k′ for the split move or k for the merge

move), so that we do not need to build an MCMC move on the auxiliary variables, u(k). This

is because in the k + 1 model, the parameters are (θ(k+1)) = (Λ(k+1),Σ2). Then, the results

of this move can then be projected into the smaller model deterministically with the merge

transform, to find (θ(k), u(k)) = (Λ(k), u(k),Σ2). We use a Metropolis within Gibbs sweep where

first we move the Λ parameters incrementally, followed by the Σ2 parameters incrementally

(Section 2.4.4). It is logical to update Λ on a row-by-row basis, because the prior and conditional

posterior distributions on each row follow a multivariate normal distribution (Equation (5.6)

and 5.11). For consistency, we will also use a multivariate normal distribution to update λi

for each row i ∈ 1, · · · ,m. We will use a normal distribution, truncated at zero, to update

σ2
i for i ∈ 1, · · · ,m. For both parameters, the proposal distributions are random walks with

pre-specified variances Σλ and Σσ2 . As this algorithm targets πk→k′;t, the acceptance rate is

given by

rMWG,t = πk→k′;t(θ(k′), u(k′))
πk→k′;t−1(θ(k′), u(k′))

q
(
θ(k), u(k)|θ(k′), u(k′)

)
q (θ(k′), u(k′)|θ(k), u(k)) (5.34)

=

(
πk′

(
θ(k′), u(k′)

))γt (
πk
(
θ(k), u(k

))1−γt

(πk′ (θ(k′), u(k′)))γt−1 (πk (θ(k), u(k))1−γt−1

q
(
θ(k), u(k)|θ(k′), u(k′)

)
q (θ(k′), u(k′)|θ(k), u(k)) (5.35)

=
πk′

(
θ(k′), u(k′)

)
πk (θ(k), u(k))

γt−γt−1
q
(
θ(k), u(k)|θ(k′), u(k′)

)
q (θ(k′), u(k′)|θ(k), u(k)) . (5.36)

This step is described in full in Algorithm 9 in the context of the split move. There is one

key difference between this and moving down in dimension via the merge move. Since these

two moves must be reversible, we must reverse the order of the updates. Therefore the merge

equivalent of this would involve update σ2
i first, from i ∈ m, · · · , 1, followed by updating λi

from row i ∈ m, · · · , 1.

We can use Algorithm 9 to generate a path of samples (θ(k)
1 , u

(k)
1 ), · · · , (θ(k)

T , u
(k)
T ) from

πk→k′;1, · · · , πk→k′;T .
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Algorithm 9 Metropolis within Gibbs algorithm that targets πk→k+1;t

1. We start with (θ(k)
t−1, u

(k)
t−1) so must project this into the k + 1 space to obtain (θk+1

t−1 ) =
(Λ(k+1)

t−1 ,Σt−1)

2. λ block: For i ∈ 1, · · · ,m

(a) Propose row λi

λ∗i ∼

Ni(·;λi,Σλ)1λ∗ii>0 i < k

Nk(·;λi,Σλ) i ≥ k
(5.37)

(b) Set (θ∗(k+1)) = (Λ∗(k+1),Σ) and project back into k space with Equation (5.16) to
find (θ∗(k), u∗(k)) = (Λ∗(k),Σ, u∗(k)).

(c) Evaluate acceptance rate from Equation (5.36).
(d) Accept row λi = λ∗i with probability α = min(1, rMWG,t)

3. σ2 block: For i ∈ 1, · · · ,m,

(a) Propose new σ2
i

σ∗2i ∼ N (·;σ2
i ,Σσ)1σ∗2i >0 (5.38)

(b) Set (θ∗(k+1)) = (Λ(k+1),Σ∗) and project back into k space with Equation (5.16) to
find (Λ(k),Σ∗, u∗(k)).

(c) Evaluate acceptance rate from Equation (5.36).
(d) Accept σ2

i = σ∗2i with probability α = min(1, rMWG,t)
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These samples are used to calculate the annealed importance weight, first discussed in the

context in AIS in Section 2.6.1, where the importance weights are calculated and multiplied

at each transition in Equation (2.75). Because we must account for dimension matching, we

can follow the same process as the reweighting discussed in Transformation SMC (Section 2.6.4,

Equations (2.89)-(2.92)) to obtain annealed importance weights given by

wAIS =
T∏
t=1


ϕ(θ(k+1)

t−1 )ψ(k+1→k)(u(k+1)
t−1 )

∣∣∣∣∂(θ(k+1)
t−1 ,u

(k+1)
t−1 )

∂(θ(k)
t−1,u

(k)
t−1)

∣∣∣∣
ϕ(θ(k)

t−1)ψ(k→k+1)(u(k)
t−1)


γt−γt−1

. (5.39)

The final value in the sequence of samples, (θ(k+1)
T , u

(k+1)
T ), is then a proposed point from the

target distribution πk→k+1;T = πk+1. We then calculate the acceptance rate with

rAIS = q(k|k′)
q(k′|k)wAIS (5.40)

i.e. using annealed importance sampling to estimate the ratio of πk+1 to πk.

5.3.4 Multiple-points Reversible Jump

In the above section, we increased the number of annealing transitions between each proposed

point, in order to increase the acceptance rate and thus improve mixing. The algorithm could

also be improved in terms of convergence. One way to do this is to increase the number of

samples of (k, θ(k)) used to estimate the acceptance ratio, since this would lead to a lower

variance. This could be done in the pseudo-marginal example, where we can increase the number

of importance sampling points to reduce the variance of the estimate of f(y|k). However, in

the pseudo-ratio case, we are estimating the ratio f(y|k′)
f(y|k) . In this case, increasing the number

of points N does not lead to unbiased estimator (Andrieu et al., 2018). Andrieu et al. (2020)

introduce a novel a way around this by using averaged acceptance ratios.

The main idea of Andrieu et al. (2020) is to average the acceptance rate, over many possible

realisations of the latent variable θ, noting that in the case of reversible jump, each θ exist
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Algorithm 10 Annealed reversible jump MCMC designed for factor analysis that uses inter-
mediate distributions between moves.

1. Set initial k and draw prior θ(k). Set X0 = (k, θ(k))

2. For n = 1, · · · , N , current sample is Xn = (k, θ(k))

(a) Do 1 MCMC step (algorithm 6)
(b) Do 1 aRJ step:

i. Propose k′ = k+ 1 (split) or k′ = k−1 (merge) with probability q(·|k) (Equation
(2.63)).

ii. Dimension match by drawing u(k→k′)
0 and compute (θ(k′)

0 , u
(k′→k)
0 ) with Equation

(5.16) or 5.23)
iii. Annealing procedure: generate path from t = 1, · · · , T of samples where

(θ(k′)
t , uk

′→k
t ) ∼ πk→k′;t using algorithm 9.

iv. Calculate annealing importance weight given by Equation (5.39) and acceptance
rate rAIS with Equation (5.40).

v. With acceptance probability

α = min(1, rAIS) , (5.41)

either accept and set Xn+1 = (k′, θ(k′)
T ) or otherwise reject and set Xn+1 = Xn =

(k, θ(k))

on different spaces defined by k. This is done by sampling many realisations of θ′ from

proposal distribution q(θ′|k′, k, θ). Labelling these by p and generating NP samples, we have

θ′(1), · · · , θ′(NP ) ∼ q(·|k′, k, θ), each which has its own acceptance rate, rθ(p)(k → k′) calculated

with Metropolis-Hastings (Equation (2.50)). Based on these acceptance rates, which are

effectively weights, we would sample one point to carry through to the next iteration, if accepted.

This step would provide us with the ‘best’ point from the collection of samples, which could be

accepted with an averaged acceptance rate given by

r
(NP )
θ (k → k′) = 1

NP

NP∑
p=1

rθ(p)(k → k′) . (5.42)

Using this would reduce the variance of the estimator, however, it breaks detailed balance

with respect to π. Therefore, to preserve reversibility we must add an extra step in which we

randomly choose with probability β between two sampling mechanisms for θ′:
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1. Sample from q(θ′|k′, k, θ) as described above:

θ′(1), · · · , θ′(P ) ∼ q(·|k′, k, θ) . (5.43)

From these, sample s ∼ P (rθ(1)(k → k′)) · · · (rθ(NP )(k → k′)). Accept θ′(s) with averaged

acceptance rate given by Equation (5.42).

2. Sample one point from q(θ′|k′, k, θ), and then sample the remainder NP − 1 points from

the reverse proposal distribution given this first sample q(θ|k, k′, θ′(1)), i.e.

θ′(1) ∼ q(·|k′, k, θ) (5.44)

θ′(2), · · · , θ′(P ) ∼ q(·|k, k′, θ′(1)) . (5.45)

Accept θ′(1) with averaged acceptance rate 1
r

(P )
θ′

(k′ → k) where

r
(P )
θ′ (k′ → k) = 1

P

P∑
p=1

rθ′(1)(k′ → k) . (5.46)

This is shown to preserve reversibility in Andrieu et al. (2020). This can also be called an

asymmetric acceptance rate, due to the asymmetry that is introduced with these two different

sampling mechanisms (Andrieu et al., 2018). β must be chosen so that both sampling methods

are selected with equal probability. For MCMC, this is typically a fixed constant 1
2 . However,

Andrieu et al. (2020) note that β can be chosen to a be a function of the proposed value k′.

This is useful when a particular sampling mechanism is favoured for certain values of k′ that

can, for instance, reduce cost. For RJMCMC, we can exploit this asymmetry so that sampling

mechanism 1 is used when undergoing a split move up in dimension and sampling mechanism

2 is used when undergoing a merge move down in dimension. This means that when moving

up in dimension, a greater variety of proposed moves are explored, and the chance that one of

these moves is accepted is increased. When moving down in dimension (the deterministic merge

move) a variety of reverse split moves are explored to see if the choice to accept a transform

down would be favoured relative to other possible parameter values.
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Algorithm 11 Multiple point reversible jump designed for factor analysis

1. Set initial k and draw prior θ(k). Set X0 = (k, θ(k))

2. For n = 1, · · · , N , current sample is Xn = (k, θ(k))

(a) Do 1 MCMC step (algorithm 6)
(b) Do 1 mRJ step:

i. Propose k′ = k+ 1 (split) or k′ = k−1 (merge) with probability q(·|k) (Equation
(2.63)).

ii. If split k′ = k + 1 (sampling mechanism 1)
A. Sample NP split moves by sampling auxiliary variables and applying deter-

ministic function to obtain (Equation (5.23))
(
θ′(k

′), u(k′)
)(1)

, · · · ,
(
θ′(k

′), u(k′)
)(NP )

∼ q
(
·|k′, k,

(
θ(k), u(k)

))
B. Evaluate acceptance rate for each sample rθ(1)(k → k′)), · · · , rθ(NP )(k → k′)

with Equation (5.31).
C. Sample

s ∼ P (rθ(1)(k → k′)), · · · , (rθ(NP )(k → k′))
D. Evaluate averaged acceptance rate, Equation (5.42)
E. With acceptance probability

α = min
(
1, r(NP )

θ (k → k′)
)
, (5.47)

either accept and set Xn+1 = (k′, θ′(k′)(s)) or otherwise reject and set Xn+1 =
Xn = (k, θ(k))

iii. Else merge k′ = k − 1 (sampling mechanism 2)
A. Sample 1 merge move with deterministic Equation (5.16) to obtain

(θ′(k′), u(k′)(1).
B. Evaluate acceptance rate for this sample, rθ(1)(k → k′) with Equation (5.31)

and set rθ′(1)(k′ → k)) = 1
r
θ(1) (k→k′)

C. Sample NP split moves from this by sampling auxiliary variables and applying
deterministic function to obtain (Equation (5.23))

(
θ′(k), u(k)

)(2)
, · · · ,

(
θ′(k), u(k)

)(P )
∼ q

(
·|k, k′,

(
θ′(k

′), u(k′)
)(1)

)
D. Evaluate acceptance rate for each sample, rθ′(2)(k′ → k)), · · · , rθ′(NP )(k′ → k)

with Equation (5.31).
E. Evaluate averaged acceptance rate, Equation (5.46)
F. With acceptance probability

α = min
(

1, 1
r

(P )
θ′

(k′ → k)
)
, (5.48)

either accept and set Xn+1 = (k′, θ′(k′)(1)) or otherwise reject and set Xn+1 =
Xn = (k, θ(k))
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The reversible jump version of this algorithm is outlined in Algorithm 11. This algorithm was

designed as an alternative to the Metropolis-Hastings step and in particular, when applied

to reversible jump algorithms, it was found to have significant improvements in performance.

These improvements were comparable to those found by introducing multiple annealing steps

when both were applied to a multiple change-point algorithm (Andrieu et al., 2020). However,

these two algorithms have not yet been tested on the factor analysis. Finally, we may wish to

combine both of these algorithms, which is possible by replacing the proposal distributions with

the annealing procedure outlined in Algorithm 10. This would also require using Equations

(5.39)-(5.40) to calculate the acceptance rate for each sample, instead of Equation (5.31).

Next, we will compare the outcomes of these different RJMCMC algorithms, with increasing

intermediate steps NT > 1 and increasing number of samples NP > 1. We will compare these

methods to those of Dunson (2006) and Lopes and West (2004).

5.3.5 Example: 3 Factor Model

First, the RJMCMC algorithm is demonstrated on the simulated data where there are 3

underlying factors (Section 5.2.1). Following the same process as used on the pmRJ algorithm,

we check the trace plots for convergence. Figure 5.12 shows the trace plot of k and the log

likelihood. Here we compare the basic RJ algorithm in Figure 5.12a, alongside the results of

increasing the number of intermediate distributions to NT = 50 in Figure 5.12b and of also

increasing the number of ‘particles’ to NP = 50 in Figure 5.12c.

When NT = 1 and NP = 1, Figure 5.12a shows that the algorithm spends most of the time in

the k = 1 model, with several jumps into the k = 2. However, once in the k = 2 model, the

algorithm does not spend long there and quickly jumps back into the k = 1 model. It does not

move much between these and has a high rejection rate, which is not unusual for RJMCMC as it

can be difficult to propose entirely new parameters in the additional dimensions (e.g. Green and

Mira, 2001; Al-Awadhi et al., 2004). For this problem in particular, the merge move is successful

(particularly in the over-parameterised regime e.g. Figure 5.2) and thus quickly accepted, but

once in the under-parameterised regime the split move is a poor proposal for the k + 1 model
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(c) NT = 50, NP = 50

Figure 5.12: Trace plots of (top panel) k and (bottom panel) the log likelihood for the first
1000 iterations of RJMCMC with (a) NT = 1 and NP = 1, (b) NT = 50 and NP = 1 and (c)
NT = 50 and NP = 50 on the simulated data where the true number of factors is k = 3.
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(e.g. Figure 5.8). This means the algorithm does not explore the parameter space well, further

highlighted by the sudden jumps in the log likelihood.

The introduction of more intermediate distributions NT > 1 improves the probability of

acceptance of the split transform, as shown in Figure 5.12b. These trace plots explore the

same area of the parameter space but with significantly more mixing between models k = 1

and k = 2. Introducing intermediate distributions has a large effect here, because the proposal

is further from the target distribution when in the underparameterised regime (Figure 5.8).

However, the split move to k = 3 is still rarely accepted, and the merge move appears to be

favoured significantly. The asymmetry between these two moves is motivation for introducing

more particles NP > 1. As described above, this involves comparing NP different moves at each

step, which should increase the probability of proposing a suitable split move, and ensure that

the merge move is accepted when it is actually better than alternative options. This leads the

algorithm to have a more even distribution between split and merge moves, and we find that the

model favours k = 2 and k = 3 in Figure 5.12c. Furthermore the likelihood, which summarises

the effect of all parameter values, is generally higher, indicating a better model fit has been

found under these models.

In short, the stark differences between the quality of the split move and the merge move leads to

major asymmetries in acceptance rates when moving up and down in dimension when NP = 1.

Increasing NP > 1 is a remedy for this, at each step, a wider range of possible moves are

evaluated. This increases the quality of the proposed moves, leading to convergence to the

true distribution. Meanwhile, increasing NT > 1 improves the probability of acceptance, by

bridging the gap between the proposal and target distribution. Table 5.1 summarises the effects

of introducing NT > 1 and NP > 1.

We explore this further by assessing the posterior distribution of k for different combinations of

NT and NP . The algorithm is run for N = 104 steps and the first 5000 iterations discarded as

burn-in. This is repeated with 20 independent chains initialised with different seeds so that the

distributions can be assessed with the box-plots in Figure 5.13.

First, in Figure 5.17a, we vary NP while fixing NT = 100. When NP = 1, the algorithm spends
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Table 5.1: Summary of behaviour of RJMCMC under increasing the number of annealing
distributions (NT ) and the number of points (NP )

NP = 1 NP > 1
NT = 1 Split rarely accepted Split proposal improved

Merge frequently accepted Merge acceptance reduced when under-
parameterised

NT > 1 Split acceptance increased Split proposal/acceptance improved
Merge acceptance reduced when under-
parameterised

the majority of the time in k = 1 and k = 2, but the merge move is quickly accepted, as in

the trace plot in Figure 5.12b. However, as discussed above, increasing NP leads to a better

quality proposal which leads to quicker convergence to the true distribution. For NP = 50 and

NP = 100, the distributions are very similar, with the peak at k = 3, which is true for the

underlying model.

Next, in Figure 5.17b, we keep NP fixed at NP = 100 and plot the distribution of k for different

values of NT . When NT = 1, but NP = 100, the algorithm does not accept many merge moves

because increasing NP reduces the acceptance rate of the merge. This gives the peak incorrectly

at k = 4. Increasing NT assists with the acceptance of both merge and split moves particularly

when the proposal is distant from the posterior, leading to a posterior distribution with a peak

at k = 3 when NT = 50 and NT = 100. The findings presented here differs slightly from

results found by Medina-Aguayo et al. (2020), where adding intermediate distributions did not

substantially improve results. However, the problem here is slightly different and the proposal

is often far from the truth, especially when in the underparameterised regime, which are the

cases that would benefit the most from additional intermediate distributions. The posterior

distribution is consistent for different variations where NT ≥ 50 and NP ≥ 50, indicating that

these parameters are suitable to achieve convergence to the posterior distribution.

These distributions on k differ significantly from those found from the pmRJ algorithm (Figure

5.6), with a much sharper peak in the distribution at k = 3. Unlike pmRJ, this algorithm

never revisits large k after burn-in, giving k > 4 small posterior probabilities (less than 1

in 5 × 103 iterations). This is because of the difficulty in proposing a split move to higher

dimensional models, via the transform, in contrast to the pmRJ proposal distribution that is
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Figure 5.13: Log of posterior distributions on k under different settings of (a) number of particles,
NP , and (b) number of intermediate distributions, NT .

built from preliminary MCMC runs. Furthermore, the pmRJ proposals do not depend on the

current θ(k) values, so new points are proposed without considering all information regarding the

current iteration. As a result, pmRJ explores the full parameter space more, while the method

presented here spends more time in models closer to the peak of the posterior distribution. This

can be beneficial, as computational effort is not spent simulating models with low posterior

probabilities.

As before, we should check that the parameters have converged to the correct posterior distri-

bution. Figure 5.14 shows the distribution of the θ(k) when k = 3 in the NT = 100, NP = 100

simulation in red, with the true value of Λ and Σ shown by the black dashed line and the result

of the Gibbs sampler with k = 3 fixed shown by the black histogram. The Gibbs sampler and

RJMCMC with k = 3 give very similar distributions, as expected because the RJMCMC uses

the Gibbs sampler as within model moves. Although we cannot ever be 100% sure, this is some

evidence that the RJMCMC is converging to the correct distribution for θ. Furthermore, the

distributions agree with the Gibbs sampler better than the results found from pmRJ in Figure

5.7, which gave a distribution too narrow relative the Gibbs sampler for some components. This

indicates that the proposal distribution presented here is better suited as areas of the underlying

parameter space are explored better.
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(a) Σ (b) Λ

Figure 5.14: Histogram of samples where k = 3 from RJ algorithm with NP = 100 and NT = 100
(red) compared against Gibbs sampler with fixed k = 3 (black). Both algorithms are run for
5000 iterations (after 5000 iterations for burn-in). The black dashed line shows the true values
of which the data is simulated from.
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5.3.6 Computational Cost

Overall, we see major improvements to the RJ algorithm when adding in both multiple interme-

diate distributions and multiple points. These improvements appear at around NT = 50 and

NP = 50. Increasing NT and NP beyond this does not significantly change the distribution of k

but is more expensive. In this section, we will explore the cost of these different algorithms.

Figure 5.15 shows the approximate computational cost in seconds per 10000 iterations of each

algorithm, run on a single Intel Xeon Processor E5-2680 v3 (Intel®). The first column shows

the cost of the MCMC Gibbs sampler, when k is known. The variance on this is high due to

the difference in cost between setting k = 1 and k = 10.
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Figure 5.15: Computational cost of different RJMCMC methods measured in time per 10000
iterations run on a single core. Uncertainty bars estimate 1 standard deviation across 20
independent simulations run. The dashed line indicates theoretical cost that could be achieved
if parallelised across 24 cores.

The cost of pmRJ and RJ are very similar as they consist of the same structure of within model

and between model moves. Both scale with O(m3) due to the likelihood evaluation at the end

of each RJ step. However, the total cost of the m independent MCMC makes pmRJ around an

order of magnitude more expensive than the basic RJ method. Here we have used 104 iterations

of the independent MCMC chains, and assume that the first 5000 iterations are discarded as

burnin so the remaining 5000 can be used for obtaining the proposal distributions. Furthermore,
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the cost of the Gibbs sampler scales with O(m2), so this additional cost of pmRJ scales with

O(m3), meaning computational savings would be increased with larger m.

However, we found the basic RJ version of the algorithm does not feature ideal convergence or

mixing properties. Introducing NT > 1 and NP > 1 improves these properties but increases the

computational complexity with O(NTNP ). Figure 5.15 shows that with NT = 10 or NP = 10,

there is a large computational benefit over pmRJ, but extending this to both NP = 10 and

NT = 10 under the single node set-up used here becomes comparable to pmRJ in terms of cost.

However, the multiple ‘particles’ can be parallelised by proposing and evaluating the acceptance

rates of each particle independently (Steps 2(b)ii.A-B and 2(b)iii.B-C in Algorithm 11). These

acceptance rates can be averaged at the end of each loop to find the modified acceptance rate.

The dotted lines indicate the theoretical cost that could be achieved with this parallelisation

with up to 24 available cores. Therefore, the choice of NT = 10, NP = 10 on parallelised

architecture could achieve computational savings of around an order of magnitude relative to

the pmRJ algorithm presented in Lopes and West (2004), which would increase further with m

as the algorithms both scale with O(m3).

We found that overall, setting NT = 50 and NT = 50 gave the better convergence properties.

As the final column of Figure 5.15 shows, this is computationally more expensive than pmRJ

without parallelisation, but has the potential to be on par in terms of cost, if run with 24

cores. This measure of cost, however, does not represent the other key benefits of choosing this

algorithm over pmRJ:

1. The difference between the distributions on k differ significantly, with the RJ algorithm

presented here finding a peak at the correct value k = 3 (Figure 5.13) while pmRJ favours

k = 2 (Figure 5.6).

2. The algorithm presented here spends less computational effort on low probability models

and converges more rapidly to k = 3, meaning fewer iterations may be required.

3. The converged parameter distributions on Λ(k) and Σ(k) for k = 3 match the Gibbs

sampler better (Figure 5.14 compared to Figure 5.7).
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4. In pmRJ, each independent MCMC simulation must reach convergence, so a large portion

of the computational time and effort is spent simulating points that will be thrown away

as a part of burn-in. This issue is enhanced for larger m.

5.3.7 Example 2: 7 Factor Model

These RJMCMC algorithms have also been tested on a larger simulated dataset. This dataset

has been simulated in the same way, with m = 14 observed variables, k = 7 latent factors and

Nobs = 100 observations. First, we check the trace plots of the relevant algorithms, testing this

on pmRJ in Figure 5.16a and on the new RJMCMC method developed here, setting NP = 100

and NT = 100 in Figure 5.16b. The pmRJ algorithm suffers from poor mixing and rarely

explores beyond k = 2, which would lead to the incorrect conclusion that there are k = 2

underlying factors. Previously, this algorithm also underestimated the number of factors on

the 3 factor model, however, the problem is significantly worse here. This is because one of the

inherent difficulties is proposing new variables that are accepted, which is increasingly difficult

as the dimensions increase, because more variables must be proposed (Agapiou et al., 2017). In

pmRJ, the entire Λ and Σ matrix is proposed at each RJ step, giving up to m× (k + 1)/2 +m

new variables to be proposed. As m increases, the number of variables to be proposed increases

linearly and therefore the probability of acceptance decreases exponentially (Agapiou et al.,

2017). In contrast, the new approach taken here uses the previous value of θ and only the last

column of Λ is proposed, i.e. m− k variables. This still scales linearly with increasing m and

so the probability of acceptance still decreases exponentially, but the introduction of annealing

intermediate distributions reduces this problem, as discussed in Section 5.3.3.

Figure 5.17 explores the posterior distribution on k for different values of NT and NP . As before,

we find the same posterior distributions when increasing NT or NP beyond 100, suggesting few

changes to the inferred distribution when extending NT and NP beyond this. However, the

algorithm still substantially underestimates the true underlying factors (k = 7), suggesting that

the optimal choice would be k = 4. Previously we had seen some evidence that this RJMCMC

favours moves down in dimension, and here we see that as a consequence, this approach is
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Figure 5.16: Trace plots of (top panel) k and (bottom panel) the log likelihood for the first 1000
iterations of (a) pmRJ and (b) RJ with NT = 100 and NP = 100 on the simulated data where
the true number of factors is k = 7.
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prone to underestimating the optimal number of factors. Although this is significantly better

than pmRJ, it is still not ideal, particularly as larger datasets would be of interest. In the next

section we will explore another approach to estimating the posterior distribution on k.
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Figure 5.17: Log of posterior distributions on k under different settings of (a) number of particles,
NP , and (b) number of intermediate distributions, NT .

5.4 Sequential Monte Carlo

This chapter so far has shown how a variety of different reversible jump algorithms can be

applied to estimate the posterior distribution on the number of latent factors. However, in high

dimensions, these methods appear to have poor mixing and convergence properties making it

difficult to know whether or not samples from these algorithms are from the correct posterior

distribution. As an alternative, we could make use of Sequential Monte Carlo (SMC, Section

2.6) in this task. With SMC, we can sample from the posterior distribution, and importantly,

we can estimate the marginal likelihood in the process. This is typically not easily accessible

with MCMC, since it requires integrating over all parameters θ (Equation (5.14)).

As described in Section 2.6, the main idea of SMC is to transition from one distribution to

another, via a sequence of intermediate probability distributions (Doucet et al., 2001). One

approach to do this is to start with the prior distribution and transition to the posterior

distribution for each model k. Alternatively, we can transition between the posterior distribution
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of each model k, using transformation SMC, discussed in Section 2.6.4. This will make use of

the same concepts as RJMCMC, where we transform from one space to another.

5.4.1 Within model SMC

First, I will outline the SMC algorithm designed on the common space of model k (Algorithm

4) (Del Moral et al., 2006). This involves transitioning from the prior distribution, π0 to the

posterior distribution, π, for a given model k. At each transition, the algorithm targets

πt(θ) = (π(θ))γt(π0(θ))1−γt (5.49)

where the prior π0 is given by Equations (5.6)-(5.7) and the posterior is the target distribution,

reached at the end of the algorithm. We implement this by selecting γt adaptively at each step

t (Section 2.6.3). Unlike RJMCMC, we can estimate the normalising constant, Ẑ with the SMC

algorithm. In this chapter, we will apply this algorithm for each model k independently, to

estimate Ẑk for each value of k. This is outlined in Algorithm 12.

5.4.2 Transformation SMC

In Section 2.6.4 we presented the method of transformation SMC (tSMC), first described in this

way in Everitt et al. (2020), which allows us to transition from one distribution, πk to another

distribution that lies in a different space, πk′ for k′ = k + 1 or k′ = k − 1. This is possible

with ideas from RJMCMC, in which we transform the variables (k, θ(k), u(k)) into the new space

(k′, θ(k′), u(k′)). This involves drawing auxiliary variables u(k) and u(k′) in order to meet dimension

matching criteria during the reweighting step. We start with samples from πk, which can be

obtained either through the Within model SMC sampler described above or through a previous

iteration of the tSMC sampler. We then target intermediate distributions, πk→k′ , given by from

Equation (2.90), at each transition t, using Metropolis within Gibbs sampling moves (Algorithm

9). γt is determined adaptively, at each step t. This process is detailed in Algorithm 13, for
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Algorithm 12 Within model SMC sampler for factor analysis with fixed k.

1. For all particles, p = 1, · · · , NP , initialise θ
(p)
0 ∼ π0 from Equations (5.6)-(5.7), and

W
(p)
0 = 1

NP

2. Set γt = 0 and t = 0

3. While γt < 1:

(a) Reweight all particles p = 1, · · · , NP with

w
(p)
t = w̃

(p)
t w

(p)
t−1 = πt(θ(p)

t−1)
πt−1(θ(p)

t−1)
w

(p)
t−1

(b) Resample if necessary
i. Renormalise all particles p = 1, · · · , NP with

W
(p)
t = w

(p)
t∑NP

p=1 w
(p)
t

ii. Calculate ESS with Equation (2.83)

ESS = 1∑NP
p=1(W (p)

t )2

iii. If ESS < α resample with stratified sampling and set W (p)
t = 1

NP

(c) Move all particles p = 1, · · · , NP

θ
(p)
t ∼ Kt(·, θt−1)

where Kt is a Metropolis-within-Gibbs move that targets πt, with same proposal
distribution outlined in Algorithm 9 but with acceptance rate

rMWG,t =
(
π (θ)
π0 (θ)

)γt−γt−1 q (θ|θ′)
q (θ′|θ) (5.50)

(d) Calculate next γt ∈ (0, 1] such that CESS(γt) = βNP and set t = t+ 1.



5.4. Sequential Monte Carlo 209

tSMC that transitions from k to k + 1. The reverse process can also be implemented from k to

k − 1.

Algorithm 13 tSMC sampler for factor analysis increasing in dimension from k to k + 1, with
adaptive intermediate distributions.

1. Start with particles, p = 1, · · · , NP , (θ(k)
0 , u

(k)
0 )(p) ∼ πk from previous SMC iteration and

W
(p)
0 = 1

NP

2. Transform all particles p = 1, · · · , NP , transform
(
θ

(k)
0 , u

(k)
0

)(p)
into k + 1 model space,

with split move in Equation (5.23) to obtain
(
θ

(k+1)
0 , u

(k+1)
0

)(p)
.

3. Set γt = 0 and t = 0

4. While γt < 1:

(a) Reweight all particles p = 1, · · · , NP with

w
(p)
t = w̃

(p)
t w

(p)
t−1

where w̃(p)
t is given by Equation (2.89).

(b) Resample if necessary
i. Renormalise all particles p = 1, · · · , NP with

W
(p)
t = w

(p)
t∑NP

p=1 w
(p)
t

ii. Calculate ESS with Equation (2.83)

ESS = 1∑NP
p=1(W (p)

t )2

iii. If ESS < α resample with stratified sampling and set W (p)
t = 1

NP

(c) Move all particles p = 1, · · · , NP

(θ(k+1)
t , u

(k+1)
t )(p) ∼ Kt((θ(k+1)

t−1 , u
(k+1)
t−1 )(p), ·)

where Kt is a Metropolis within Gibbs move that targets πk→k+1;t with Algorithm 9.
(d) Calculate next γt ∈ (0, 1] such that CESS(γt) = βNP and set t = t+ 1.

In this section, I will describe the results of the various SMC algorithms to determine the

number of factors. This includes both the SMC run within model k (Algorithm 12) and tSMC

(Algorithm 13) with transforms moving up and down in dimension. Firstly, we will use the same

split/merge transforms presented in Section 5.3.1. We will also introduce two new proposals
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(Medina-Aguayo et al., 2020). To move down in dimension, rather than merging the last two

columns of Λ, we could remove the last column of Λ entirely, while keeping the remaining

columns the same, i.e.

λ
(k′)
i,j =

{
λ

(k)
i,j j < k (5.51)

We will call this the death transform as the last column is removed entirely.

The equivalent move up in dimension would be to keep the same matrix Λ but with an additional

column, drawn from the prior, i.e.

λ
(k′)
i,j =


λ

(k)
i,j j < k

λ
(k)
i,j

(5.52)

We will call this the birth transform as the last column is drawn from the prior. We would not

expect the death transform to necessarily perform as well as the merge transform presented in

5.2, which was designed specifically to summarise an over-parameterised factor analysis model.

However, moving up in dimension has so far proved to be difficult due to the multiple new

auxiliary variables that must be drawn appropriately. The birth transform draws new values

directly from the prior, as these should always cover the possible space of the prior.

To summarise, all 5 algorithms to be compared in the following section, are as follows:

• Within SMC: starting from the prior distribution for model k and run to the posterior

for model k, run independently for each model k.

• Split SMC (tSMC increasing dimension): starting from the k = 1 model found from

the Within SMC and using the split move to find the posterior for model k = 2, · · · , K

• Birth SMC (tSMC increasing dimension): starting from the k = 1 model found from

the Within SMC and using the birth move to find the posterior for model k = 2, · · · , K

• Merge SMC (tSMC decreasing dimension): starting from the k = K model found

from the Within SMC and using the merge move to find the posterior for model k =

K − 1, · · · , 1
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• Death SMC (tSMC decreasing dimension): starting from the k = K model found

from the Within SMC and using the death move to find the posterior for model k =

K − 1, · · · , 1

5.4.3 Example: 3 Factor Model

Using same dataset simulated from a 3 factor model as described previously, each of the SMC

variations has been run, with 20 independent simulations, seeded with a different value. For

the following results, I have set NP = 1000 particles and parameters β = 0.9 and α = 0.5 to

control the CESS and ESS respectively. First, we compare the log marginal likelihood for each

model in figure 5.18, where the distribution indicates the spread across different independent

simulations with different seeds (plotted in the same way as Figure 2a of (Everitt et al., 2018)).
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Figure 5.18: Log marginal likelihood estimated by all SMC algorithms with NP = 1000.

Figure 5.18 determines k = 3 as the model with greatest marginal likelihood, in all 5 variations

of the SMC algorithm. The within model SMC algorithm, which is run independently for

each k starting with samples from the prior, has the lowest variance between the independent

runs, making it robust against different initialisations. However, it is the most expensive of the

algorithms, as each possible model k requires an independent simulation and no information
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is shared between different k. The relative cost of this and other algorithms is compared in

Section 5.4.6.

The tSMC algorithms that increase in dimension (split and birth) start from the within SMC

estimate of the k = 1 posterior distribution. Figure 5.18 show that beyond the peak at k = 3,

these algorithms to estimate the log marginal likelihood significantly lower than the within

model estimates. Along with this, at k = 3 there is an increase in the variance across the

different seeded simulations. These factors are an indication of a poor quality SMC (Everitt

et al., 2018). If there are only a few particles with high weights but many with low weights, the

normalising constant (Equation (2.32)) would be underestimated and there would be a large

variance on this calculation as seen here. This could arise if the proposal distribution does

not cover the full space of the target distribution. The sudden increase in variance appears

during the transition from k = 2 to k = 3, where we know that the transform does not provide

the best proposal distribution (Figure 5.9). For the split algorithm, these large variances and

underestimations persist and worsen as k increases, whereas the birth algorithm shows accurate

estimates are recovered as k increases, suggesting it to make a better proposal distribution than

the split transform.

The SMC algorithms that decrease in dimension (merge and death) start at the k = 10 posterior

estimated from the within model algorithm. The merge SMC algorithm performs well when

in the over-parameterised regime, k ≥ 3, with marginal likelihoods close to the within SMC

model estimates and low variances, in contrast to the death SMC algorithm which consistently

underestimates the marginal likelihood. However, the performance of both algorithms degrade

rapidly in the under-parameterised regime for k = 2 and k = 1, where the marginal likelihoods

are overestimated and with high variance (particularly for the death SMC algorithm). As noted

in Figure 5.3, the merge proposal distribution is too narrow to capture the true distribution,

which would lead to an overestimation of the weights and therefore an overestimated marginal

likelihood. The high variance also confirms this to be a poor quality SMC proposals in this

regime.
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5.4.4 Parameter Distributions

Figure 5.19 compares the distributions obtained for θ(k) for the true number of factors, k = 3,

for all SMC algorithms. These can also be compared to the Gibbs sampler results in Figure 5.2.

All 5 SMC algorithms produce almost identical distributions centred over the true value of λij

and σj . The exception to this is in the 8th row, which has a particularly large σ8, designed to test

the methods under large variances. The different algorithms give slightly different distributions

on σ8, all of which are quite wide but still centre on the true value. Also, the merge SMC

algorithm estimates a wider distribution of λ8,3 compared to the other methods. A similar result

is obtained on row 5, although to a lesser degree, where all methods slightly underestimate σ5

and overestimate in λ5,3. However, this is a significant improvement upon the merge transform

alone, presented in Figure 5.2 for k = 4→ 3 and k = 10→ ...→ 3.

In general, all SMC algorithms are able to reproduce distributions that are almost identical to

the Gibbs sampler, as well as correctly identifying k = 3 as the underlying model. Next, we

examine in detail different factors that play into the relative performance of these methods,

including number of particles, the variance and computational cost.

5.4.5 Number of particles

Figure 5.20 shows the log marginal likelihood for all methods when the number of particles is set

at (a) NP = 10 and (b) NP = 100. As the number of particles increase, we expect the estimates

of the log marginal likelihoods to become more accurate and the variance between different

simulations to decrease. With only 10 particles, there are inconsistencies and high variances in

log(Z), with particularly large errors introduced in the tSMC algorithms. However, with 100

particles, the results are fairly consistent between different seeds and different algorithms, giving

almost identical results to setting NP = 1000 as in Figure 5.18.

By taking the log(Z) estimates from the Within SMC with NP = 1000 as the ‘ground truth’,

we can directly compare the errors introduced with the transforms and with NP < 1000. Figure
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(a) Σ (b) Λ

Figure 5.19: Histogram of samples from k = 3 model generated by all SMC algorithms,
NP = 1000. The black dashed line shows the true values of which the data is simulated from.
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(b) NP = 100

Figure 5.20: Log marginal likelihood estimated by all SMC algorithms with (a) NP = 10 and
(b) NP = 100.

5.21a shows the maximum absolute error introduced and and the mean absolute error across

all k and all seeds. Here we see the benefit in increasing NP from 10 to 100, but there is little

additional benefit in further increasing this to 1000 for the Within SMC algorithm and for the

transforms that move up in dimension. The birth move in particular shows the smallest errors

in Figure 5.21a.

Ideally, the algorithm that would be favoured would also achieve a low variance on log(Z) between

different independent simulations. Figure 5.21b shows the maximum and mean variances achieved

for these different algorithms with different NP . This shows significant improvements with

increasing NP in terms of the mean variance and (excluding the death transform) the maximum

variance. The death transform appears to maintain a large maximum variance across differently

seeded simulations regardless of NP , which is introduced in the under-parameterised, as seen in

k = 2 and k = 1 in Figure 5.18 and 5.20.

Based on both the errors introduced and the variance, the Within SMC algorithm with only

100 particles appears sufficient, whereas to achieve this low variance with the other tSMC

algorithms, more particles are needed. Of the tSMC algorithms, the most reliable is the Birth

SMC approach, which maintains fairly low errors and low variances even with NP = 100. In the

next section, we will explore the computational costs of these algorithms, which may influence

the algorithm selected by a user with a fixed computational budget.
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Figure 5.21: Maximum and mean (a) errors of each SMC algorithm relative to the within model
SMC with NP = 1000 and (b) variances across independent SMC simulations initialised with
different seeds.

5.4.6 Performance in terms of cost

To assess computational cost independent of the machine the algorithm is run on, we compare

the number of Gaussian evaluations required to complete the algorithm for all models. This is

done by cumulatively summing the number of evaluations for each model, from k = 1 to k = 10

for the Split/Birth algorithms and from k = 10 to k = 1 for the Merge/Death algorithms. This

calculation requires the number of intermediate steps for each simulation, NT , the number of

particles, NP , and the number of times the likelihood is evaluated at each step for each particle.

The likelihood must be evaluated twice in the reweighting plus the number of times it is required

in the Monte Carlo move step (m times in the update for Σ and k times in the update for Λk).

NG = NTNP (2 + (m+ k)NMCMC) (5.53)

Note that the factor (2 + (m+ k)NMCMC) is roughly constant across models for when potential

values for k do not differ greatly and NMCMC is large, meaning the number of evaluations is

roughly proportional to the number of intermediate steps. Figure 5.22 shows the number of

evaluations needed to reach each model k, where (a) shows the Split/Birth algorithms which

start in model k = 1 and increase in dimension and (b) shows the Merge/Death algorithms

which start in k = 10 and decrease in dimension. Both approaches also require the cost of
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the within model SMC for the first step. We also include the cumulative sum of the number

of evaluations for the Within SMC, either increasing or decreasing in dimension. From this,

we can see the that the total cost is significantly lower when using tSMC, although note that

the within model SMC algorithm is independent for each k and can therefore be processed in

parallel if resources are available and time is the limiting factor rather than total cost.
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Figure 5.22: Number of Gaussian Evaluations required to cover entire parameter space (a)
starting in model k = 1 and increasing in dimension and (b) starting in model k = 10 and
decreasing in dimension.

Taking the maximum error (measured as the difference between the Within SMC (NP = 1000)

algorithm) and the maximum variance as measures of accuracy, we compare the computational

cost of running these algorithms to completion in terms of number of Gaussian evaluations

in Figure 5.23. Increasing NP increases the cost linearly, but if given a set computational

budget, we can achieve as low as a variance as possible by opting for an algorithm that occupies

the lower left-hand corner of both plots. Due to the high maximum errors introduced in the

NP = 10 algorithms, we cannot justify these algorithms, even though some achieve low variances.

However, the Within SMC and Birth or Split SMC algorithms with NP = 100 would be preferred,

based on achieving the lowest error at the lowest relative cost.

Based on the above results, setting NP = 100 appears to be sufficient for achieving reliable results,

especially for the Within SMC and the transforms that move up in dimension (Split/Birth).

Figure 5.24 shows the total cost of running these algorithms with NP = 100. For reference, we
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Figure 5.23: (a) Maximum error calculated as the difference relative to the NP = 1000 Within
SMC algorithm for each model k and (b) Maximum variance of log(Z) for each k against total
number of Gaussian evaluations required as a measure of computational cost.

also show the total cost of running pmRJ, including all preliminary MCMC runs and RJ with

NT = 50 and NP = 50 for 10,000 iterations (previously shown in Figure 5.15.) Although slightly

more costly to complete a full sweep over the parameter space with an SMC method, we have

found SMC to provide more informative results without the risk of experiencing convergence

or mixing issues. Furthermore, these costs could be significantly reduced by introducing

parallelisation in the reweighting and move steps of Algorithms 12 and 13. The dashed line

shows theoretical computational savings of more than an order of magnitude if run on 24 cores

based on the relative time spent in the two parallelisable steps of the algorithms. Finally, the

Within SMC relies on independent simulations for each value of k, which means that these can

be completely parallelised on separate nodes, for k = 1, · · · ,m. As this algorithm also gave the

results with the lowest variance and that it appears most consistent with the more expensive

simulations run with NP = 1000, this appears to be the algorithm of choice for gaining an

accurate picture of the marginal likelihoods across different values of k.
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Figure 5.24: Computational cost of different SMC methods measured as the total time for
the simulation to complete. All methods are run with NP = 1000 and the uncertainty bars
estimate 1 standard deviation across 20 independent simulations run. The dashed line indicates
theoretical cost that could be achieved if parallelised across 24 cores. Also shown are the times
to run the pmRJ algorithm and RJ with NT = 50 and NP = 50 up to 10000 iterations from
Figure 5.15.

5.4.7 Example 2: 7 Factor Model

We explore how well the methods perform on a higher dimensional simulated dataset, with

7 underlying factors and 14 total dimensions, for a dataset of 100 samples (k = 7,m =

14, Nobs = 100). Fig 5.25 shows the marginal log likelihoods for all 5 SMC methods, where again,

NP = 1000. Most notable is the poor performance of the merge and death algorithms in the

under-parameterised region, k < 6, where they both overestimate the log marginal likelihoods

and give the best number of factors to be around k = 1 (death) or k = 4 (merge), the latter

being in agreement with the RJMCMC algorithms in Section 5.3.7. They also show very high

variances between different SMC runs, which is not ideal. As observed before, the split and birth

algorithms systematically underestimate the log marginal likelihood in the over-parameterised

regime. Overall, however, the split and birth algorithms appear preferable to their merge

and death counterparts, because they have significantly lower variances and show a posterior

distribution that is closer to the Within SMC estimates. These methods select the number of

k to be the same as the within SMC model (k = 6), which is fairly close to true underlying

number of factors and a substantial improvement upon the RJMCMC methods, which selected

k = 2 or k = 4. Furthermore, both RJMCMC algorithms methods experienced poor mixing,

which made it difficult to establish whether or not convergence to the true posterior distribution
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has been achieved. From this perspective, within SMC method or the tSMC methods that move

up in dimension give much more reliable results.
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Figure 5.25: Log marginal likelihood estimated by all SMC algorithms with NP = 1000 on
simulated dataset with 7 factors.

5.5 Application to Weather Dataset

In this section, I will apply these methods to a weather dataset introduced by Ramsay and

Silvermann (1998), that contains temperature observations from 35 different weather stations

located across Canada (m = 35) (Ramsay et al., 2014). There are 365 observations of daily

average temperature (N = 365). The data is standardised to remove the annual fluctuations and

keep the temperature anomalies relative to the average yearly temperature across all weather

stations.

Based on the comparison between RJMCMC and SMC so far, we have found that SMC

algorithms tend to perform better, with the RJMCMC algorithms frequently underestimating

the total number of factors. In particular, the RJMCMC algorithms in this setting appear

to favour the model with k = 2, with little exploration of the complete parameter space. An

example trace plot is shown for NT = 50, NP = 50 in Figure 5.26.



5.5. Application to Weather Dataset 221

2

4

6

8

k

0 200 400 600 800 1000
Index

1500

2000

2500

3000

L

Figure 5.26: Trace plots of (top panel) k and (bottom panel) the log likelihood for the first 1000
iterations of the RJ algorithm with NP = 50 and NT = 50 applied to the observational weather
dataset.

For the remainder of this section, we will rely on the SMC methods, which have so far proven

to be more suitable as they guarantee an exploration of all possible k values and provide an

estimation of the normalising constants. We also found these to computationally more efficient,

when setting NP = 100. Furthermore, a tSMC algorithm can be used starting from k = 1

and increasing in dimension, until the peak maximum likelihood has passed. This can be

used to determine the best value of k, without running the full algorithm. Figure 5.27 shows

the resulting log marginal likelihoods for the split and birth tSMC algorithms run with N100

alongside the within SMC algorithm, which we expect to be the most accurate choice. Using

this method, with either the split or birth algorithm, we find the peak marginal likelihood to

be k = 6, beyond which Ẑ starts decreasing. In this observational dataset, the Split SMC

algorithm appears to give better a estimation of Ẑ for large k, with lower variances and closer

to the Within SMC algorithm.

5.5.1 Latent factors

The results of the SMC algorithm suggest that there are k = 6 underlying factors in this dataset,

that explain the behaviour of the 35 different weather stations. The factors, η(6) represent

features of the weather stations over the observed time series, relative to the mean behaviour
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Figure 5.27: Log marginal likelihood estimated by within SMC, birth SMC and split SMC
algorithms with NP = 100 on observational weather dataset.

across all stations (as the dataset is normalised by the mean). The factor loading matrix, Λ(6)

represents the relationship between the factors and the dataset, which informs us of how each

weather station is comprised of the 6 factors. The left-hand panel of Figure 5.28 shows the 6

factors across the time series, η(6)
i for i ∈ 1, · · · , 6, in black, as well as the mean behaviour in

red. The right-hand panel shows each column of the factor loading matrix (i.e. following the

row-column notation used throughout, the first column, Λ(6)
∗1 describes how the data relates

to Factor 1). These are shown for on a map that shows the spatial location of each weather

stations, with the colour of each point representing the strength of the factor for each station.

This allows us to make sense of the factors in relation to their geography. We can also compare

against the results of Ramsay and Silvermann (1998) where PCA is applied to the monthly mean

of the dataset, assuming a known number of components. There, four principal components

are chosen in order to represent the four key regions of Canada that influence the weather: the

Atlantic effect, the Pacific effect, the Continental effect and the Arctic effect (Ramsay, 2003).

Figure 5.28a shows that the first factor represents a warmer than average winter. From Figure

5.28b, this effect appears strong in coastal regions, near the Pacific and Atlantic oceans. This

effect is identical to the Pacific effect found in Ramsay and Silvermann (1998) defined as a
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Figure 5.28: Left hand panel shows the factors in black, compared against the annual mean
temperature in red. Right hand panel shows the associated column of the factor loading matrix,
the colour indicating the strength of the factor at each weather station. Estimated by the within
model SMC with k = 6 and NP = 1000.
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summer temperature close to the Canadian average, but much warmer in the winter. There is

also a cluster of weather stations over the North-East, surrounding the Hudson Bay, which are

negatively correlated to this factor, indicating a colder winter relative to the average. This is

indicative of the Continental effect defined by Ramsay and Silvermann (1998) as colder than

the average in the winter and only slightly warmer than average in the summer.

The second factor, Figure 5.28c, indicates systematically warmer temperature all year round

and highlights a clear divide between the North and South in Figure 5.28d, with the Southern

weather stations having strong positive components while more Northern weather stations

having strong negative components. This is particularly strong in the cluster of weather stations

near the South-West on the Atlantic side of Canada. This is in agreement with the Atlantic

effect in Ramsay and Silvermann (1998), found to be a nearly constant 5 °C across the year.

In contrast, the Arctic regions appear to have strongly negative components of this factor, i.e.

systematically cooler all year round, which is a signature of the Arctic effect found in Ramsay

and Silvermann (1998) to be a colder than average all year found, even more so in March than

December. This latter feature of the Arctic effect appears to be present in Factor 3 (Figure

5.28e) where there is a signicantly colder temperature in Spring months. This is also highly

correlated to the Arctic regions in Figure 5.28f.

The remaining factors appear to represent higher frequency fluctuations in the temperature

observations, roughly weekly to fortnightly for Factors 4 and 5 and monthly to seasonal for

Factor 6. Weather stations close to each other are highly correlated in their relationships to

these factors while distant weather stations are anti-correlated, for instance, Factor 5 shows

negative factor loadings in the North West and positive factor loadings in the South East. This

indicates that on short timescales these regions experience opposing effects as each other, as

weather systems take time to pass from one region of the country to the other. Note that these

short timescales are not assessed in the approach of Ramsay and Silvermann (1998), as the

PCA is carried out over monthly means.

Figure 5.29 shows the values of Σ, the independent noise unique to each weather station. These

are significantly higher in the Northern and Arctic regions, which are known to be generally
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Figure 5.29: Unique variances Σ(6)
∗ for each weather station estimated by the within model SMC

with k = 6 and NP = 1000.

more variable compared to lower latitudes (e.g. as discussed based on climate model data in

Chapter 3, Figure 3.10).

From this, we can work with the reduced vector of only now 6 dimensions instead of 35. After

analysis, we can reconstruct the original 35 dimensions through Equation (5.3). Figure 5.30

shows a reconstruction of the factors to represent all 35 weather stations in black compared to

the true data in red, which are almost in perfect agreement.

These results have shown a broad agreement with the dimension reduction method applied to

monthly means in Ramsay and Silvermann (1998) where the number of principal components is

fixed at four, based on expert knowledge of the four key regions. However, the Bayesian factor

analysis approach used here does not assume any prior knowledge of the number of factors. This

method finds that six factors give a complete representation of the data, going beyond these

four assumed effects alone. As well as capturing mean effects, the factor analysis model is able

to replicate high frequency fluctuations in the time series, including the different magnitudes of

these fluctuations which tend to be larger in winter relative to the summer months.

5.6 Conclusions

This chapter explored various methods of Bayesian model selection, designed to estimate the

number of latent factors in a dataset. These were tested on two simulated datasets and on one

real observational dataset. Firstly, I presented a newly developed RJMCMC algorithm, based on

the transform presented in Dunson (2006), to estimate the posterior probability distribution on
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Figure 5.30: Construction of time series based on 6 factor model learned by Within SMC
algorithm (black) compared against true time series for all stations (red).

the number of factors. Although much cheaper than the existing RJMCMC algorithm designed

for the problem in Lopes and West (2004), this new algorithm was found to show poor mixing

and strongly favoured moves that decrease the number of factors. However, improvements to

this were seen when introducing additional steps to this algorithm, by adding intermediate

distributions between the proposal and target (NT > 1) and by evaluating multiple possible

moves at each step (NP > 1) (Karagiannis and Andrieu, 2013; Andrieu et al., 2020). These

gave the RJMCMC better mixing and convergence properties at a cost comparable to the

existing method of Lopes and West (2004) on a simulated dataset consisting of 10 variables

and 3 underlying factors. This benefit is expected to increase with the size of the dataset,

however, when applied to a larger simulated dataset of 14 variables and 7 underlying factors,

the algorithm suffers from problems with mixing, even when NP and NT are large.

The second approach taken to determine the number of latent factors was SMC, which estimates

the marginal likelihood directly. This approach is not only more accurate but it also does not

suffer from poor mixing and convergence properties, making it significantly cheaper, especially
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if parallelisation is taken advantage of. An SMC simulation can be run independently within

each model of a fixed number of factors, starting with samples from the prior distribution.

Alternatively, transformation SMC can be run to move from a k = 1 factor model to the

maximum number of factors, and vice-verse. Of the possible transforms explored, the transforms

that progressively increase the number of factors performed much better than those that decrease

the number of factors at each step. This was due to the suboptimal performance of the transforms

when underparameterised, which can lead to the algorithm underestimating the optimal number

of factors. The most accurate tSMC algorithm uses a birth transform to sample the new factors

from the prior, at a lower cost than the within model SMC but achieving a similar accuracy.

However, if many nodes are available, the within model SMC is more accurate and can be run

independently and in parallel. Both choices can be run while monitoring the marginal likelihood

until passing the maximum marginal likelihood value.

Finally, these algorithms were tested on a weather dataset, comprised of 35 different weather

stations across Canada. The SMC algorithms suggest 6 as the optimal number of factors that

describe the data with a factor analysis model, which is consistent with the geography and

climatology of the region (Ramsay and Silvermann, 1998; Ramsay, 2003). This means the dataset

could be reduced from 35 dimensions to just 6 dimensions, to carry out subsequent analysis,

such as emulation. However, this is still a relatively small dataset compared to some climate

data, such as the output of climate models which typically consist of 10000s of datapoints (e.g.

the climate model dataset used in Chapter 3). Naturally the next step would involve applying

these methods to even larger datasets. With this, we could envisage applying Bayesian factor

analysis to spatiotemporal climate model output to uncover relationships between different

climate variables, regions or time periods. Given the increasing costs involved with higher

dimensional datasets, parallelisation of the algorithms (not done here) would be more beneficial,

along with further exploration of the choice of NP and limits on the ESS (α) and the CESS (β)

to infer the number of factors with the most cost-effective approach.
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Conclusions

6.1 Summary of Thesis

This research sits in the context of exploring how human-induced emissions affect the global

climate and addresses two key research topics: firstly, climate change projection via statistical

methods and secondly, dimension reduction of large datasets that are typical of climate model

output. The first of these is approached in two stages, one which predicts the short-term

response of a global climate model (GCM) to a sudden emission perturbation and one which

predicts the long-term response of a GCM given the short-term response. Both prediction tools

use statistical models trained on GCM data.

In Chapter 3, the global pattern of long-term temperature response, averaged over years 70

to 100 of the GCM, is predicted from the global pattern of short-term temperature response,

averaged over the first 10 years of the GCM. This chapter finds that generally the two machine

learning methods explored (ridge regression and Gaussian process regression) hold greater

predictive power relative to a traditional pattern scaling approach. This is particularly true

when predicting responses to short-lived pollutant perturbations, which produce more spatially

inhomogeneous responses compared to the long-lived GHGs. The developments made here could

accelerate long-term climate change projections, requiring only the first 5-10 years of a GCM, or

taking this even further, could be combined with the statistical emulator of Chapter 4, removing

228
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the need to run an expensive GCM entirely.

This second statistical emulator is built to predict the probability distributions of the first 5 years

of the temperature response, given 9 different emission-related input parameters, describing

both long-lived greenhouse gases and short-lived aerosol pollutants. The emulator performs well

on the test dataset in all but one case where it overestimates the cooling associated with strong

positive aerosol forcings. It appears here that the emulator does not capture the non-linearity

in temperature response, where a stronger response is expected when new aerosols are added to

clean air, compared to additional aerosols being added to an already aerosol-heavy atmosphere

(Carslaw et al., 2013). To improve upon this, more strong aerosol perturbations should be added

to the training dataset to provide a better picture of the behaviour of the GCM under larger

aerosol perturbations.

A recurring theme of the first two results chapters was the high dimensionality of the datasets

used, due to the high resolution of the GCM. Chapter 5 tackled dimension reduction with a

Bayesian approach to determining the underlying number of factors required to describe a large

dataset. An array of different Monte Carlo techniques were developed and applied to infer the

probabilistic distribution on the number of factors and on the factors themselves. A reversible

jump Markov chain Monte Carlo (RJMCMC) algorithm was developed (Green, 1995), based on

previous studies in factor analysis that found a sensible approximation to the underlying factor

model, given an over-parameterised version of it (Dunson, 2006). Recent techniques developed

for RJMCMC were also incorporated to improve convergence and mixing properties (Andrieu

et al., 2018; Karagiannis and Andrieu, 2013). Although this algorithm performed competitively

compared against the existing RJMCMC for factor analysis (Lopes and West, 2004), both

suffered from poor mixing when in high dimensions, making these approaches infeasible for

infering the underlying factors of a large dataset. However, Sequential Monte Carlo (SMC)

achieved much more promising results in this task (Del Moral et al., 2006). One of the key

benefits of SMC is that it provides an estimate of the marginal likelihood which can be used

to determine the number of factors of a dataset. Additionally, SMC can be parallelised which

makes it a cheaper option than the RJMCMC methods explored.
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6.2 Future Directions

This thesis has taken the first step towards building a surrogate model that emulates climate

response to emission perturbations at a cheaper and faster rate than a complex GCM. Although

both statistical models presented in Chapters 3 and 4 are useful standalone tools, a natural

continuation of this would be to combine the two together. In doing so, the surrogate model

could act as a rapid prediction tool for predictions of the long-term climate response to abrupt

perturbations that then remains constant in time. This would be the first emulator that could

predict the entire global pattern of long-term climate response from a range of scenarios. To

achieve this, a surrogate model could be built that takes the emissions as inputs and first

predicts the short-term response using the emulator in Chapter 4. The output of this would be

used as inputs to the surrogate model in Chapter 3, to estimate the long-term climate response

projection. For consistency, it would be sensible to select the Gaussian process option for the

second surrogate model, which would also allow for propagation of the uncertainty from the

short-term response to the long-term response (Girard et al., 2002; Damianou et al., 2016).

Before putting such a surrogate model into practise, it would, however, be important to carry

out further testing on GCM simulations. In particular, there were some differences between

the types of training simulations used in Chapters 3 and 4. For instance, Chapter 3 made use

of simulations with only single forcing perturbations (i.e. one at a time perturbations), under

the assumption that the type of forcing was realised in the first 10 years of the response. To

check that this is valid, additional simulations with multiple forcing perturbations should be

tested under this surrogate model. Further to this, a more recent version of HadGEM3 was

used in the emulator presented in Chapter 4. Ideally, the same version of the model should be

used to train both models, or if not, the performance of the surrogate model should be verified

with the version one aims to emulate. Finally, the short-term response emulator in Chapter

4 was derived from 5 year simulations, while the timescale used for the short-term definition

in Chapter 3 was predominantly 10 years, to reduce the effect of noise. It would therefore be

logical to extend the emulator in Chapter 4 to estimating the 10-year averaged response, before

coupling the two surrogate models.
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Building a hierarchy of surrogate models has been carried out in previous studies, but it is more

typical that these use simulations run on a simpler model, or with a lower spatial resolution,

as an estimation for a more complex one (Tran et al., 2016; Cumming and Goldstein, 2009;

Kennedy and O’Hagan, 2000). Instead, the methodology proposed here is built on the idea of

taking the climate response at an early stage can be used to predict the response at a later stage.

This becomes a ‘dynamic emulator’ where, rather than emulating a complete multi-step run of

a complex model, the emulator is built to run a simpler, single timestep of the model which

is then run iteratively (Conti and O’Hagan, 2010; Conti et al., 2009; Kennedy and O’Hagan,

2000). This shorter timestep could be chosen to be every 5 or 10 years, thereby reducing the

complexity that is modelled at each step. Additionally, taking this approach could make the

most of the many shorter (e.g. 5-10 years) segments of GCM simulations available for training

and testing. However, as discussed previously, each emulator must be highly accurate in order

to reduce the chance of errors becoming enhanced after several emulator iterations.

So far, this discussion has focused on an emulation tool that can predict the climate response at

a set time in the future to emission perturbations made abruptly today. For a more realistic

emulation tool, however, transient response emulators would be of interest. This thesis introduces

this idea slightly, via the multi-step emulator discussed above, but further work could potentially

take this much further so that time-varying scenarios can be emulated. For example, a dynamic

emulator could be built that takes as inputs A) the output of the previous emulator (i.e. the

‘current’ estimated temperature response), and B) any changes to emission perturbations. This

could then account for changing inputs as time progresses, as well as containing some ‘memory’

based on emission perturbations that occured in the past.

Furthermore, this thesis only emulates temperature response, whereas there are many other

relevant properties of the climate that would be of interest in climate change studies. This

includes climate variables such as precipitation, air pollution levels, humidity, pressure and wind

speeds. Surrogate models could be implemented using the same techniques presented in this

thesis, although variables such as precipitation have increased spatial and temporal variability

(Pendergrass et al., 2017; Pendergrass and Knutti, 2018), which may bring additional prediction

challenges, as it does for pattern scaling (Mitchell, 2003; Murphy et al., 2007; Tebaldi and
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Arblaster, 2014). Learning these would provide a deeper understanding of future climate change

under different projections. Future work may also be interested in emulating other statistical

properties of climate that are relevant to policy decisions, not just the mean response over

several years. This could include variability of climate variables and probabilities of extreme

events, such as heat waves, droughts and flooding events. The latter poses additional challenges

as longer GCM runs are necessary to simulate low probability events. However, with more

resources going into machine learning and emulation, these tools are likely to emerge in all areas

of climate change projection.

Both chapters find one of the main barriers to building a surrogate model trained on GCM

output is the high levels of noise in GCM data, due to internal variability. This was identified as

a cause of reduced accuracy when predicting certain regions, such as the Arctic and the Northern

Hemisphere mid- and high- latitudes. These are regions are typically more sensitive to forcings,

have increased internal variability and increased noise in the data, thus making them more

difficult to predict relative to other parts of the globe. Future work on global climate emulation

could benefit from limiting the noise present in the training data. This would traditionally

require many more expensive GCM simulations, for instance, by taking an ensemble mean for

the climate response. Alternatively, recent refinements in statistical methods such as pattern

recognition could be employed to disentangle the signal from the noise (Sippel et al., 2019; Wills

et al., 2018, 2020a,b). The use of these methods in climate science could prompt future research

into emulators built to learn from signals alone, without interference of internal variability.

The factor analysis approach taken in Chapter 5 demonstrates an example of how the key

underlying factors of a dataset can be found. This work could be continued by emulating the

latent factors, rather than the entire high dimensional dataset. Samples could then be generated

by projecting the latent factors back into the original space of the data. This could give more

meaning behind the emulator, as it is built to learn how the underlying factors behave under

different scenarios, rather than the noise. Additionally, the input-output relationships could be

explored, for instance, through the regression coefficient analysis carried out in Chapter 3 or the

sensitivity analysis carried out in Chapter 4. If these techniques were applied to understand

how the climate’s latent factors are emulated, it may reveal how they behave under different
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climate scenarios.

While Chapter 5 focused on and refined a Bayesian methodology to determining the number of

factors and their structure, further analysis could be carried out on climate model data. The

example at the end of the chapter showed how a 35 dimensional observational dataset could be

reduced to just 6 key factors explaining the behaviour of the data. This could be understood

through spatial location and geography of the weather stations. These stations were, however,

not equally spaced and often sparsely located over the region. The next step would be to apply

the method to a high resolution gridded dataset, such as climate model output, which could

highlight key patterns and relationships between different climate variables, regions or time

periods. One of the difficulties in doing this is the increasing cost of the methods explored,

as the data size increases. This provides an opportunity for additional research into how the

computational cost could be reduced, aided by the knowledge of the performance of the methods

under different situations discussed here.

With signatures of climate change is becoming harder to ignore, climate change projection under

different possible future scenarios is becoming a crucial task. The methods explored in this

thesis demonstrate some novel examples of how statistical methods can assist in this field, taking

varying perspectives from machine learning to Bayesian statistics. In the future, climate science

is likely to rely on these types of methods more to complement expensive GCMs. This thesis

establishes their potential, in terms of how statistical methods can bring a deeper understanding

to the underlying structure of climate data and how machine learning/emulation techniques can

aid the depth, breadth and speed of climate change projection.
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Additional Figures
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(a) Test scenario 2xCO2 PDRMIP
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(b) Test scenario 3xCH4
Figure A.1: (a-b): Short-term GCM response, long-term GCM response, machine learning
predictions (Ridge and Gaussian process regression) and pattern scaling predictions estimated
with ERF and the short-term global mean temperature response (T)
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(c) Test scenario 10xCFC-12
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(d) Test scenario +2% Solar Constant
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(e) Test scenario 5xSO4

Figure A.1: (c-e): Short-term GCM response, long-term GCM response, machine learning
predictions (Ridge and Gaussian process regression) and pattern scaling predictions estimated
with ERF and the short-term global mean temperature response (T)
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(f) Test scenario 10xBC Global
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(g) Test scenario 10xSO4 Europe
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(h) Test scenario 10xSO4 Asia
Figure A.1: (f-h): Short-term GCM response, long-term GCM response, machine learning
predictions (Ridge and Gaussian process regression) and pattern scaling predictions estimated
with ERF and the short-term global mean temperature response (T)
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(i) Test scenario 10xBC Asia
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(j) Test scenario SO4 pre-industrial
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(k) Test scenario 2xCO2 ECLIPSE
Figure A.1: (i-k): Short-term GCM response, long-term GCM response, machine learning
predictions (Ridge and Gaussian process regression) and pattern scaling predictions estimated
with ERF and the short-term global mean temperature response (T)
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(l) Test scenario -20% CH4
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(m) Test scenario No BC Global
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(n) Test scenario 2xSO2 Global
Figure A.1: (l-n): Short-term GCM response, long-term GCM response, machine learning
predictions (Ridge and Gaussian process regression) and pattern scaling predictions estimated
with ERF and the short-term global mean temperature response (T)
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(o) Test scenario 2xCO Global
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(p) Test scenario No SO2 NHML
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(q) Test scenario No SO2 China
Figure A.1: (o-q): Short-term GCM response, long-term GCM response, machine learning
predictions (Ridge and Gaussian process regression) and pattern scaling predictions estimated
with ERF and the short-term global mean temperature response (T)
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(r) Test scenario No SO2 East Asia
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(s) Test scenario No SO2 Europe
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(t) Test scenario No SO2 US
Figure A.1: (r-t): Short-term GCM response, long-term GCM response, machine learning
predictions (Ridge and Gaussian process regression) and pattern scaling predictions estimated
with ERF and the short-term global mean temperature response (T)
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(u) Test scenario No BC NHML

Figure A.1: (u): Short-term GCM response, long-term GCM response, machine learning
predictions (Ridge and Gaussian process regression) and pattern scaling predictions estimated
with ERF and the short-term global mean temperature response (T)
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(a) Test scenario 1. 78% grid points within 1σ, 97% grid points within 2σ.

(b) Test scenario 2. 81% grid points within 1σ, 98% grid points within 2σ.

Figure A.2: (a-b): Test scenarios, also shown in Figure 4.6a-b. Top panel shows input values,
relative to the baseline, minimum and maximum possible values. The top left map shows ytest,
the true GCM prediction, the top right shows ypred, the GP prediction, the bottom left shows
the absolute error, |ypred − ytest| and the bottom right shows the 1 standard deviation from GP,
σtotal. Stippling on the bottom left indicates |ypred − ytest| > σtotal.
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(c) Test scenario 3. 80% grid points within 1σ, 96% grid points within 2σ.

(d) Test scenario 4. 41% grid points within 1σ, 76% grid points within 2σ.

Figure A.2: (c-d): Test scenarios, also shown in Figure 4.6c-d Top panel shows input values,
relative to the baseline, minimum and maximum possible values. The top left map shows ytest,
the true GCM prediction, the top right shows ypred, the GP prediction, the bottom left shows
the absolute error, |ypred − ytest| and the bottom right shows the 1 standard deviation from GP,
σtotal. Stippling on the bottom left indicates |ypred − ytest| > σtotal.
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(e) Test scenario 5. 77% grid points within 1σ, 93% grid points within 2σ.

(f) Test scenario 6. 87% grid points within 1σ, 99% grid points within 2σ.

Figure A.2: (e-f): Additional test scenarios. Top panel shows input values, relative to the
baseline, minimum and maximum possible values. The top left map shows ytest, the true GCM
prediction, the top right shows ypred, the GP prediction, the bottom left shows the absolute error,
|ypred − ytest| and the bottom right shows the 1 standard deviation from GP, σtotal. Stippling on
the bottom left indicates |ypred − ytest| > σtotal.
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(g) Test scenario 7. 74% grid points within 1σ, 96% grid points within 2σ.

(h) Test scenario 8. 73% grid points within 1σ, 89% grid points within 2σ.

Figure A.2: (g-h): Additional test scenarios. Top panel shows input values, relative to the
baseline, minimum and maximum possible values. The top left map shows ytest, the true GCM
prediction, the top right shows ypred, the GP prediction, the bottom left shows the absolute error,
|ypred − ytest| and the bottom right shows the 1 standard deviation from GP, σtotal. Stippling on
the bottom left indicates |ypred − ytest| > σtotal.
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(i) Test scenario 9. 80% grid points within 1σ, 98% grid points within 2σ.

(j) Test scenario 10. 78% grid points within 1σ, 96% grid points within 2σ.

Figure A.2: (i-j): Additional test scenarios. Top panel shows input values, relative to the
baseline, minimum and maximum possible values. The top left map shows ytest, the true GCM
prediction, the top right shows ypred, the GP prediction, the bottom left shows the absolute error,
|ypred − ytest| and the bottom right shows the 1 standard deviation from GP, σtotal. Stippling on
the bottom left indicates |ypred − ytest| > σtotal.
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(k) Test scenario 11. 74% grid points within 1σ, 95% grid points within 2σ.

(l) Test scenario 12. 77% grid points within 1σ, 98% grid points within 2σ.

Figure A.2: (k-l): Additional test scenarios. Top panel shows input values, relative to the
baseline, minimum and maximum possible values. The top left map shows ytest, the true GCM
prediction, the top right shows ypred, the GP prediction, the bottom left shows the absolute error,
|ypred − ytest| and the bottom right shows the 1 standard deviation from GP, σtotal. Stippling on
the bottom left indicates |ypred − ytest| > σtotal.
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(m) Test scenario 13. 83% grid points within 1σ, 97% grid points within 2σ.

(n) Test scenario 14. 83% grid points within 1σ, 98% grid points within 2σ.

Figure A.2: (m-n): Additional test scenarios. Top panel shows input values, relative to the
baseline, minimum and maximum possible values. The top left map shows ytest, the true GCM
prediction, the top right shows ypred, the GP prediction, the bottom left shows the absolute error,
|ypred − ytest| and the bottom right shows the 1 standard deviation from GP, σtotal. Stippling on
the bottom left indicates |ypred − ytest| > σtotal.
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(o) Test scenario 15. 74% grid points within 1σ, 93% grid points within 2σ.

(p) Test scenario 16. 69% grid points within 1σ, 94% grid points within 2σ.

Figure A.2: (o-p): Additional test scenarios. Top panel shows input values, relative to the
baseline, minimum and maximum possible values. The top left map shows ytest, the true GCM
prediction, the top right shows ypred, the GP prediction, the bottom left shows the absolute error,
|ypred − ytest| and the bottom right shows the 1 standard deviation from GP, σtotal. Stippling on
the bottom left indicates |ypred − ytest| > σtotal.
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(q) Test scenario 17. 76% grid points within 1σ, 95% grid points within 2σ.

(r) Test scenario 18. 84% grid points within 1σ, 99% grid points within 2σ.

Figure A.2: (q-r): Additional test scenarios. Top panel shows input values, relative to the
baseline, minimum and maximum possible values. The top left map shows ytest, the true GCM
prediction, the top right shows ypred, the GP prediction, the bottom left shows the absolute error,
|ypred − ytest| and the bottom right shows the 1 standard deviation from GP, σtotal. Stippling on
the bottom left indicates |ypred − ytest| > σtotal.
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