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Abstract

We develop a unifying econometric framework for the analysis of heterogeneous panel data
models that can account for both spatial dependence and common factors. To tackle the chal-
lenging issues of endogeneity due to the spatial lagged term and the correlation between the
regressors and factors, we propose the CCEX-IV estimation procedure that approximates fac-
tors by the cross-section averages of regressors and deals with the spatial endogeneity using
the internal instrumental variables. We develop the individual and Mean Group estimators,
and establish their consistency and asymptotic normality. By contrast, the Pooled estimator is
shown to be inconsistent in the presence of parameter heterogeneity. Monte Carlo simulations
confirm that the finite sample performance of the proposed estimators is quite satisfactory. We
demonstrate the usefulness of our approach with an application to the house price growth for
Local Authority Districts in the UK over 1997Q1-2016Q4.
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1 Introduction

The increasingly globalised nature of the world economy and pervasive evidence of cross-section

dependence (CSD) found in empirical studies (e.g., Pesaran (2015); Mastromarco et al. (2016)) have

driven considerable interests in developing panel data models that can explain observed patterns

of comovement among economic and financial variables. As the interdependence among different

economic agents could arise from strategic interaction or a common third factor, such as common

technological shocks and regulatory changes, two strands of work have been proposed accordingly.

The first uses a spatial-based approach by assuming that the behaviour of each spatial unit is

related to the behaviour of its neighbours. The second uses a factor-based approach which allows

each individual to be affected by unobserved factors with different intensities. While these two

methods are mostly developed separately, researchers are now paying more efforts to combine them

and develop a unified characterisation of CSD.

To date, some progress has been made in the literature. Pesaran and Tosetti (2011) allow the

error components to be spatially dependent and contain unobserved factors, and propose the com-

mon correlated effects (CCE) estimator advanced by Pesaran (2006). Bailey et al. (2016a) develop

a multi-step estimation procedure that can distinguish CSD that is purely spatial from the one that

is due to common factors. Mastromarco et al. (2016) propose a technique for modelling stochas-

tic frontier panels by combining the exogenously driven factor-based approach and an endogenous

threshold regime selection mechanism. Bai and Li (2014) consider a homogeneous spatial panel

data model with common shocks, and develop the quasi maximum likelihood (QML) estimation.

Using a similar model structure, Yang (2021) develops consistent estimators that combine CCE

and instrumental variable (IV)/generalised method of moments (GMM) estimation. See also Bai

and Li (2021), Shi and Lee (2017) and Lu (2017).

The aforementioned studies have developed the joint analysis of the spatial and factor depen-

dence under the assumption that the slope parameters are homogeneous. In a data-rich envi-

ronment, slope homogeneity is a restrictive assumption, as the strength and direction of spatial

dependence between entities may vary over space. In the spatial literature, only recently, Aquaro

et al. (2021) and Shin and Thornton (2020) have explicitly allowed the slope parameters to be

heterogeneous and develop the QML and the control function-based estimators, see also LeSage

and Chih (2018).

Following this research trend, our primary objective is to develop a unifying econometric frame-

work for the estimation of heterogeneous panel data models that can jointly accommodate the

spatial and factor dependence. To tackle the challenging issues for developing consistent estima-

tion in the presence of spatial heterogeneity and endogeneity caused by the spatial lagged term and

the correlation between the regressors and unobserved factors, we propose to combine the CCE and

IV methods. Notice, however, in the panel data literature with interactive effects that most studies

impose some restrictions on the factor structure affecting the dependent and independent variables

(Pesaran and Tosetti (2011), Bai and Li (2014), Bai and Li (2021), and Yang (2021)). Following the

forecasting literature (Bai and Ng (2008)), we propose a more general factor structure by explicitly
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allowing the factors affecting the dependent and independent variables to be arbitrarily different, so

far as the rank condition is satisfied (see Assumption 3 in Section 2). We may apply the standard

CCE approach to approximate unobserved common factors by employing the cross-section averages

(CSA) of dependent and independent variables, denoted ȳt and x̄t, and then deal with the spatial

endogeneity via the IV method. This is referred to as the CCE-IV estimation. The conventional

use of ȳt as factor proxy leads to the small sample bias, due to its correlation with idiosyncratic

errors unless N is large. This issue will be more complicated in the presence of spatial dependence.

We conjecture that such a bias will be non-negligible, especially if the spatial weighting matrix

remains relatively dense for all the sample sizes. In this regard, we propose the simple and robust

approach of using x̄t only as factor proxies that can directly control the factors correlated with the

regressors, which is referred to as the CCEX-IV estimation. The factors specific to the regression

residuals may be left unaccounted for, but this is shown not to affect consistency of the CCEX-IV

estimator. Hence, our approach is in line with the robust estimation, which is widely employed to

avoid uncertainty in (consistently) estimating nuisance parameters for potential efficiency gain.

The CCEX-IV estimation has several advantages over existing methods developed for homo-

geneous spatial panel data models with interactive effects. The QML/PC methods developed by

Bai and Li (2014, 2021) are computationally demanding, especially if N is large, and require the

consistent estimation of the number of unobserved factors, which is a challenging task. Kuersteiner

and Prucha (2020) propose a quasi-differencing transformation to eliminate the individual factor

loadings and treat the factors as estimands in homogeneous dynamic spatial panel models. Their

GMM method is developed for fixed T panels while our approach is for large T panels. Moreover,

the GMM procedure is more complicated in the presence of the multiple factors, which also re-

quires the number of factors to be estimated consistently. More importantly, an extension of these

methods to the heterogeneous spatial panels with interactive effects is currently unavailable. Fur-

thermore, our method can be relatively easily extended to the development of nonlinear/quantile

heterogeneous panel data models with both spatial dependence and common factors, e.g., Boneva

and Linton (2017).

We show that the parameters in the individual regressions can be estimated consistently by

applying the de-factored IVs directly to the original regressions. These estimators are
√
T -consistent

and follow asymptotic normal distributions. We also establish
√
N -consistency and asymptotic

normality for the mean group (MG) estimator. We provide nonparametric variance estimators,

robust to residual heteroskedasticity and serial correlation. Moreover, we find that the pooled

estimator is no longer consistent in the presence of the heterogeneous parameters. This is mainly

due to the remaining correlation between the spatial lagged term and the random spatial coefficients.

This is a new finding, extending the seminal work by Pesaran and Smith (1995) who establish that

the pooled estimator is inconsistent in the heterogeneous dynamic panels. Only in the special case

with the homogeneous parameters, the pooled estimator becomes
√
NT -consistent and follows a

normal distribution asymptotically.

Via Monte Carlo simulations, we investigate the finite sample performance of CCEX-IV and
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CCE-IV estimators. The biases of the CCEX-IV individual and MG estimators are relatively small

in almost all cases. On the other hand, the performance of the CCE-IV estimator depends crucially

upon the degree of sparsity of the spatial weighting matrix. If the network is relatively sparse, then

its performance is satisfactory. However, if the network is relatively dense, the biases of the CCE-IV

spatial coefficients remain substantial at all the sample sizes. In this case RMSEs of the CCE-IV

estimator are also significantly higher than the CCEX-IV counterpart even for large N . This is

in line with our conjecture that the conventional use of ȳt as factor proxies may suffer from the

remaining endogeneity due to the correlation between ȳt and idiosyncratic errors, provided that

the network remains relatively dense even for large N . Furthermore, we establish that the pooled

estimators exhibit substantial biases under the parameter heterogeneity.

We apply our approach to analyse not only the spatial patterns of quarterly real house price

growth for Local Authority Districts in the UK over the period 1997Q1-2016Q4, but also the

impacts of income and population growth. Our main findings are summarised as follows: (i) The

individual spatial coefficients are quite heterogeneous, but overall positive. This is in line with

a priori expectation that the house price increase in nearby area causes the local house demand

to rise. (ii) The MG spatial coefficients at the regional level are all positive and heterogeneous,

but tightly clustered around the national mean of 0.57. The impacts of population growth are

larger for North East & York, North West and South West while the impacts of income growth are

larger in the rest of regions. (iii) Following Greenwood-Nimmo et al. (2021) and Shin and Thornton

(2020), we conduct the generalised connectedness measure (GCM) analysis at the regional level and

identify London and East Midlands as the most influential transmitters of population and income

growth shocks affecting the house price growths in the UK. However, our findings do not provide

full support for the London-centric view of ripple effects where house price appreciation begins in

South East and London before spreading to the rest of the country. We find that the ripple effects

originated from London may have eventually spread to North East & York and South West, but

not to North West and Wales.

The rest of the paper is organised as follows. Section 2 describes the model and assumptions.

Section 3 develops the asymptotic theory. Section 4 presents the finite sample performance of

the proposed estimator. Section 5 provides an empirical application. Section 6 concludes. The

mathematical proofs and the additional simulation and empirical results are presented in the Online

Supplement.

Notations. C represents a positive constant. For any N × N real matrix, A = (aij), ‖A‖ =√
tr(AA′) denotes the Frobenius norm. The row and column sum norms of A are defined as

‖A‖∞ = max
1≤i≤N

∑N
j=1 |aij | and ‖A‖1 = max

1≤j≤N

∑N
i=1 |aij |. We denote vec(A) as the vectorisation

operator that stacks the columns of A into a column vector, λmax(A) as the largest eigenvalue of

A, and tr(A) as the trace of A. We use ⊗ as the Kronecker product operator, a ∼ b representing

that a and b are equivalent in the order of magnitude, and (N,T )→∞ implying that N and T tend

to infinity jointly.
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2 The Model and Assumptions

Consider the heterogeneous spatial autoregressive panel data model with unobserved common fac-

tors:

yit = ρiy
∗
it + x′itβi + γ ′1if1t + γ ′2if2t + εit = ρiy

∗
it + x′itβi + γ ′yifyt + εit, (1)

where yit is the dependent variable of the i-th spatial unit at time t, y∗it =
∑N

j=1wijyjt is the

spatial lagged variable with wij the (i, j)-th entry of the N × N spatial weighting matrix, W , ρi

is the heterogeneous spatial autoregressive parameter, xit = (xit,1, . . . , xit,k)
′ is a k × 1 vector of

independent variables and βi is a k × 1 vector of heterogeneous parameters, f1t and f2t are r1 × 1

and r2 × 1 vectors of unobserved factors with γ1i and γ2i being the factor loadings, and εit is the

idiosyncratic disturbance. fyt = (f ′1t,f
′
2t)
′ and γyi = (γ ′1i,γ

′
2i)
′ are ry × 1 vectors of factors and

loadings with ry = r1 + r2. Next, we consider the following data generating process (DGP) for xit:

xit = Γ′1if1t + Γ′3if3t + vit = Γ′xifxt + vit, (2)

where f3t is an r3 × 1 vector of unobserved factors, Γ1i and Γ3i are r1 × k and r3 × k matrices of

factor loadings, and vit = (vit,1, . . . , vit,k)
′ is a k×1 vector of idiosyncratic disturbances. Moreover,

fxt = (f ′1t,f
′
3t)
′ and Γxi = (Γ′1i,Γ

′
3i)
′ are rx × 1 vector and rx × k matrix with rx = r1 + r3.

The model given by (1) and (2) is general and practical. It can accommodate both weak

and strong CSD through the spatial lagged term and common factors. Furthermore, it allows the

dependent and independent variables to be influenced by different factors (e.g., Bai and Ng (2008)):

yit and xit share the common factors, f1t, but they are subject to their specific factors, f2t and f3t.

Importantly, the slope heterogeneity renders the data speaking about the relative susceptibility of

each spatial unit to external conditions. In this regard, our model encompasses several existing

studies, e.g., Pesaran (2006), Bai (2009), Bai and Li (2014), Aquaro et al. (2021) and Yang (2021).

To develop consistent estimation of the (k + 1) × 1 vector of parameters, θi = (ρi,β
′
i)
′, we

should address two sources of endogeneity: the regressors, xit are correlated with factors while the

spatial lagged term, y∗it is correlated with both factors and idiosyncratic error, εit. Econometric

methods have been developed separately for dealing with the spatial or factor dependence. The

spatial endogeneity can be resolved by using QML (Lee (2004)) or IV/GMM estimation (Kelejian

and Prucha (1998, 1999)). The common factors can be approximated by the PC estimates (Bai

(2003, 2009)) or the CSA of the variables (Pesaran (2006)). Only recently, a number of studies

have attempted to combine both approaches. Bai and Li (2014) consider a homogeneous spatial

panel data model with common shocks and develop the QML estimator whilst Yang (2021) pro-

poses to combine CCE and IV/GMM analysis. See also Bai and Li (2021), Bailey et al. (2016a),

Mastromarco et al. (2016), Shi and Lee (2017) and Kuersteiner and Prucha (2020).

Following this trend, we propose to combine the CCE and IV estimation for consistently esti-

mating θi. We first stack (1) over i:

y.t = ρWy.t + Bx.t + γyfyt + ε.t, (3)
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where y.t = (y1t, · · · , yNt)′, xit = (xit,1, · · · , xit,k)′, x.t = (x′1t, · · · ,x′Nt)′, ρ = diag(ρ1, · · · , ρN ),

βi = (β1i, · · · , β1k)
′, B = diag(β′1, · · · ,β′N ), γy = (γy1, · · · ,γyN )′, and ε.t = (ε1t, · · · , εNt)′.

We then stack (3) over t:

y = (IT ⊗ ρW )y + (IT ⊗B)x+ (IT ⊗ γy)fy + ε, (4)

where y = (y′.1, · · · ,y′.T )′, x = (x′.1, · · · ,x′.T )′, fy = (f ′y1, · · · ,f ′yT )′, and ε = (ε′.1, · · · , ε′.T )′.

Assume for the moment that fyt, t = 1, . . . , T , are observable, and define the idempotent matrices:

M̃Fy = MFy ⊗ IN , MFy = IT − Fy(F ′yFy)−1F ′y,

where Fy = (fy1, . . . , fyT )′ is a T × ry matrix. It is then easily seen that

M̃Fy(IT ⊗ γy)fy = (MFy ⊗ IN )(IT ⊗ γy)fy = vec(γyF
′
yM

′
Fy

) = 0,

M̃Fy(IT ⊗B)x = (MFy ⊗ IN )(IT ⊗B)x = (IT ⊗B)(MFy ⊗ IN )x,

M̃Fy(IT ⊗ ρW )y = (MFy ⊗ IN )(IT ⊗ ρW )y = (IT ⊗ ρW )(MFy ⊗ IN )y. (5)

The equivalence in (5) suggests that M̃Fy(IT ⊗ ρW )y can be interpreted as the de-factored

spatial lagged term of the dependent variable or the spatial lagged term of the de-factored dependent

variable. Pre-multiplying (4) by M̃Fy , we obtain:

ỹ0 = (IT ⊗ ρW )ỹ0 + (IT ⊗B)x̃+ ε̃0, (6)

where ỹ0 = (MFy ⊗IN )y is the de-factored y, and x̃ and ε̃0 are defined similarly. The transformed

model, (6) is a heterogeneous spatial panel data (HSPD) model for the de-factored data, to which

we can apply the IV/GMM method. Next, to derive the IVs internally, we rewrite (6) as

(IT ⊗ (IN − ρW ))ỹ0 = (MFy ⊗ IN )(IT ⊗B)x+ ε̃0.

Assuming that IN − ρW is invertible (see Assumption 4 below), we obtain:

ỹ0 = (IT ⊗ (IN − ρW )−1)(MFy ⊗ IN )(IT ⊗B)x+ (IT ⊗ (IN − ρW )−1)ε̃0

= (MFy ⊗ IN )(IT ⊗ (IN − ρW )−1)(IT ⊗B)x+ (IT ⊗ (IN − ρW )−1)ε̃0, (7)

which implies that valid instruments can be constructed by (higher orders of) spatial lagged terms

of the de-factored regressors or the de-factored (higher orders of) spatial lagged terms of regressors.

This analysis is not feasible because factors are latent.

Yang (2021) studies a homogeneous spatial panel data model with interactive effects:

yit = ρy∗it + x′itβ + γ ′ift + εit. (8)
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Assuming that yit and xit share the same common factors, she develops the CCE estimator with

(ȳt, x̄
′
t)
′ as factor proxies. In the presence of spatial dependence, however, the use of ȳt may result

in non-negligible biases unless N is large. To illustrate, consider the homogeneous panel data model

with unobserved factors:

yit = x′itβ + γ ′ift + εit,

and the augmented model with (ȳt, x̄
′
t)
′ as factor proxies:

yit = x′itβ + η′1ix̄t + η2iȳt + ε̂it,

where ȳt =
∑N

i=1 yit/N , x̄t =
∑N

i=1 xit/N , and ε̂it = γ ′ift−η′1ix̄t− η2iȳt + εit. Assuming that εit is

independent of fs, xjs for all j and s, and cross-sectionally independent with uniformly bounded

variance, σ2
ε,i = var(εit), we have:

E(ȳtεit) =
1

N

N∑
j=1

E[(x′jtβ + γ ′jft + εjt)εit] =
1

N

N∑
j=1

E(εjtεit) =
σ2
ε,i

N
∼ 1

N
.

Hence, for small N , the CCE estimator may suffer from finite sample bias due to the “smearing

effect” (Greene (2010)). This issue will be more complicated in the presence of spatial dependence.

From (8), we obtain:

E(ȳtεit) =
1

N
ι′N E[(IN − ρW )−1(X.tβ + γ ′ft + ε.t)εit] =

1

N
ι′N E

[
(IN − ρW )−1ε.tεit

]
=

1

N

∞∑
r=0

N∑
j=1

ρrwrji E(εit)
2 =

∞∑
r=0

N∑
j=1

ρrwrji
σ2
ε,i

N
∼ C(ρ,W )

N
, (9)

where ιN is an N × 1 vector of ones, X.t = (x1t, . . . ,xNt)
′, γ = (γ1, . . . ,γN ), ε.t = (ε1t, . . . , εNt)

′ ,

wrji is the (j, i)-th element of W r. C(ρ,W ) is expected to increase with |ρ| and becomes larger as

the spatial weighting matrix, W is denser.

In this regard, we propose a simple and robust approach to use x̄t only as proxies for unobserved

factors. This is referred to as the CCEX estimator.1 The main motivation behind the CCE estima-

tion lies in dealing with endogeneity caused by the correlation between regressors and unobserved

factors (see Section 3.3 in Bai (2009)). If so, it will be sufficient to control the factors fxt in (2)

that are correlated with fyt in (1), which can be approximated by x̄t. Following the similar logic,

Norkuté et al. (2021) propose the IV estimator for dynamic panel data models with exogenous co-

variates and a multifactor error structure by using the de-factored covariates as instruments. But,

they employ the PC approach and do not consider the spatial effects.

1Only two studies have used this approach: Boneva and Linton (2017) apply the corresponding CCE estimator
in a binary choice model. Chen and Yan (2019) propose a three-step CCE estimator for a homogeneous panel data
model with common factors.
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We stack (2) over i and vectorise it:

vec(X ′.t) = Γ′1f1t + Γ′3f3t + vec(V ′.t) = Γ′xfxt + vec(V ′.t), (10)

whereX.t = (x1t, . . . ,xNt)
′, Γ1 = (Γ11, . . . ,Γ1N ), Γ3 = (Γ31, . . . ,Γ3N ), Γx = (Γ′1,Γ

′
3)′ = (Γx1, . . . ,ΓxN ),

and V.t = (v1t, . . . ,vNt)
′. Next, pre-multiply (10) by Υ = ι′N ⊗ Ik/N :

x̄t = Γ̄′xfxt + v̄t, (11)

where x̄t = Υ vec(X ′.t) =
∑N

i=1 xit/N , Γ̄x = (ΥΓ′x)′ =
∑N

i=1 Γxi/N , and v̄t = Υ vec(V ′.t) =∑N
i=1 vit/N . Assuming that Γ̄x has a full row rank, namely, rank (Γ̄x) = rx ≤ k for all N including

N →∞, we have:

fxt = (Γ̄xΓ̄
′
x)−1Γ̄x(x̄t − v̄t). (12)

Under Assumption 2, as N → ∞, v̄t converges to 0 in quadratic mean (Lemma 1 in the Online

Supplement).2 Hence, under Assumption 3, fxt can be approximated by x̄t:

fxt = (Γ̄x0Γ̄
′
x0)−1Γ̄x0x̄t + op(1),

where Γ̄x
p−→ Γ̄x0 = E(Γxi) as N → ∞. Augmenting (1) with x̄t only may leave f2t unaccounted

for, in which case we may concern about any efficiency loss. However, if the dimension of f2t is

larger than 1, the use of ȳt does not always achieve efficiency gain because ȳt may not provide good

approximation to f2t.
3

Now, we make the following assumptions:

Assumption 1. The ry × 1 vector of unobserved factors, fyt = (f ′1t,f
′
2t)
′ and the rx × 1 vector

of unobserved factors, fxt = (f ′1t,f
′
3t)
′ are covariance stationary with absolutely summable auto-

covariances, and distributed independently of the idiosyncratic errors, εis and vis, for all i, t and

s. Furthermore, F ′yFy/T and F ′xFx/T are nonsingular for all T , where Fy =
(
fy1, . . . ,fyT

)′
and

Fx =
(
fx1, . . . ,fxT

)′
.

Assumption 2. The idiosyncratic errors εit and vjs are cross-sectionally uncorrelated and dis-

tributed independently of each other, for all i, j, t, s. For each i, {εit}Tt=1 and {vit}Tt=1 follow station-

ary linear processes: εit =
∑∞

l=0 ailεi,t−l and vit =
∑∞

l=0Bilζi,t−l, where (εit, ζ
′
it)
′ ∼ IID(0k+1, Ik+1),

over both i and t, with finite fourth-order moments. Furthermore, {εit}Tt=1 and {vit}Tt=1 have ab-

solutely summable autocovariances uniformly in i. In particular, let σ2
ε,i := var(εit) =

∑∞
l=0 a

2
il and

Ωv,i := var(vit) =
∑∞

l=0BilB
′
il. Then, for all i, σ2

ε,i > 0 and Ωv,i is a positive definite matrix, and

there exists a positive constant C such that |σ2
ε,i| ≤ C and ‖Ωv,i‖ ≤ C.

Assumption 3. The factor loadings, γyi and Γxi, 1 ≤ i ≤ N , are cross-sectionally indepen-

dently distributed and uniformly bounded in probability and follow the following processes: γyi ∼

2This holds with unequal weights if the granular condition in Pesaran (2006) is satisfied.
3The rank condition specified in Pesaran (2006) fails in this situation.
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IID(0, Ωγ) and Γxi = Γ̄x0 + ΞΓ,i, where ΞΓ,i ∼ IID(0, ΩΓ) is independent of γyj for all i and

j, Γ̄x0
rx×k

= ( Γ̄′10
k×r1

, Γ̄′30
k×r3

)′ is a matrix with full row rank, and Ωγ and ΩΓ are positive definite matrices.

Both γyi and ΞΓ,i are independent of εjt, vjt and fat for all i, j, and t. Moreover, the matrix

Γ̄x =
∑N

i=1 Γxi/N has full row rank for all N including N →∞.

Assumption 4. The N ×N spatial weighting matrix, W = (wij) with wii = 0, has bounded row

and column sum norms, i.e., ‖W ‖∞ < C and ‖W ‖1 < C, and

ρsup := sup
i
|ρi| < max{1/‖W ‖1, 1/‖W ‖∞}. (13)

Assumption 5. The parameters, θi = (ρi,β
′
i)
′ follow a random coefficient model:

θi = θ + ξi, ξi ∼ IID(0,Ωξ), i = 1, . . . , N, (14)

where θ := E(θi) = (E(ρi),E(βi)
′)′ = (ρ,β′)′ and Ωξ is a positive definite matrix. Moreover, ξi is

independent of γyj , Γxj, εjt, vjt, and fat for all i, j and t.

Remark 1. Assumptions 1–3 and 5 are standard. Assumption 1 allows f1t, f2t, and f3t to be

correlated. If we use ȳt and x̄t as factor proxies, then the means of both factor loadings, E(γyi) and

E(Γxi), should be nonzero (see Pesaran (2006)). Since we propose using only x̄t as factor proxies,

we require the weaker condition, E(Γxi) = Γ̄x0 6= 0. The rank condition, rank(Γ̄x0) = rx ≤ k, is no

more restrictive than the one imposed by Pesaran (2006) and Yang (2021).4

The IVs can be obtained by X.t and their higher order spatial lagged terms such that

Q
NT×ι

= (Q′.1, . . . , Q
′
.T )′,

whereQ.t is anN×ι (ι ≥ (k+1)) matrix consisting of the ι columns of the IV set (X.t, . . . ,W
rX.t, . . .)

for r = 0, 1, 2, · · · and for each t. To make the columns of Q.t valid instruments, we first need to de-

factorise them (see the discussion below (7)). Using x̄t as factor proxies, we construct the following

de-factorisation matrix:

M̃X̄ = MX̄ ⊗ IN with MX̄ = IT − X̄(X̄ ′X̄)+X̄ ′, (15)

where X̄ = (x̄1, . . . , x̄T )′ and (X̄ ′X̄)+ is the Moore-Penrose inverse of X̄ ′X̄. We construct the

NT×ι matrix of instrumental variables, denoted Q̃ = (MX̄⊗IN )Q. Even if the factors, f2t specific

to yit, may be left unaccounted for, this does not affect the validity of IVs, because (MX̄ ⊗ IN )Q

is uncorrelated with f2t under Assumption 1.

We next introduce the identification conditions for the individual coefficient, θi and its mean,

4For convenience, we assume: E(γyi) = 0 (e.g. Norkuté et al. (2021)). But as pointed out by an anonymous
referee, we need only to assume E(γ2i) = 0. Furthermore, we can also develop our theory based on the assumption
E(f2t) = 0 instead.
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θ = E(θi). Define:

Q̃i0
T×ι

= MFx(IT ⊗ b′i)Q and Zi0.
T×(k+1)

= ((IT ⊗ b′iG)(IT ⊗B)x,Xi.),

where MFx = IT − Fx(F ′xFx)−1F ′x, Fx = (fx1, . . . ,fxT )′, bi is the N × 1 column vector with the

i-th entry being 1 and 0 otherwise, G = WS−1 and Xi. = (xi1, . . . ,xiT )′.

Assumption 6. For all i and T ≥ 1:

(i) The ι× ι matrix, Q̃′i0Q̃i0/T is nonsingular and has bounded second order moment.

(ii) The ι× (k + 1) matrix, Q̃′i0Zi0./T has full column rank and bounded second order moment.

(iii) The ι× 1 vector, Q̃′i0F2γ2i/
√
T has bounded second order moment.

(iv) As (N,T ) → ∞, there exist an ι × ι nonsingular matrix Φi, an ι × (k + 1) full-column-rank

matrix Ψi, and an ι× ι positive definite matrix Σi, such that

Φi = plim
T→∞

Q̃′i0Q̃i0

T
, Ψi = plim

T→∞

Q̃′i0Zi0.
T

,

Σi = lim
T→∞

E

(
Q̃′i0F2Ωγ2F

′
2Q̃i0

T
+
Q̃′i0Ωε,iQ̃i0

T

)
, (16)

where Ωγ2 = E (γ2iγ
′
2i) and Ωε,i = E (εi.ε

′
i.).

Remark 2. Assumption 6(i)-(iii) to be held for all T ≥ 1 is needed to derive consistency of the

Mean Group and Pooled estimators for fixed T , see also Pesaran (2006) and Norkuté et al. (2021).

If we are only concerned with large T asymptotics, Assumption 6(i)-(iii) needs to hold as T →∞.

Assumption 6(iii) is implied by Assumptions 1-4, but we keep it to facilitate the proofs for Theorems.

Assumption 6(iv) ensures the existence of the asymptotic variance of the individual estimators in

Theorem 1.

Remark 3. As pointed out by one of the referees, if B = 0 in (3), then the IVs defined above are

invalid and the full rank condition in Assumption 6 (ii) fails. To account for this situation, we

follow Lee and Yu (2014) and Yang (2021), and provide some discussions on how to develop the

GMM estimation using both linear and quadratic moment conditions in Section S1 in the Online

Supplement. But, the construction of quadratic moments for each individual requires consistent

estimation of idiosyncratic errors and the parameters from all other individual regressions. This

implies that all the parameters need to be determined simultaneously, which would pose a heavy

computational burden, especially if N is large. Furthermore, the construction of optimal quadratic

moment conditions relies on an analysis of the asymptotic properties of the GMM estimator. This

analysis is challenging because of parameter heterogeneity and beyond the scope of the current

study. Also, due to space constraints, we leave this important topic for future research.
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3 Asymptotic Theory

3.1 The Individual Estimator

Stacking equations (1) and (2) over t, we have:

yi. = ρiy
∗
i. +Xi.βi + Fyγyi + εi. = Zi.θi + Fyγyi + εi., (17)

Xi. = FxΓxi + Vi., (18)

where yi. = (yi1, . . . , yiT )′, y∗i. = (IT ⊗ wi)y = (y∗i1, . . . , y
∗
iT )′, wi = b′iW is the i-th row of W ,

Zi. = (y∗i.,Xi.) and Vi. = (vi1, . . . ,viT )′. We pre-multiply (17) by Mx̄ defined in (15). Under this

transformation, f2t are not removed from (17). Nevertheless, by augmenting (17) with X̄, we can

consistently estimate θi using the IVs, Q̃i = MX̄(IT ⊗ b′i)Q.5 The individual CCEX-IV estimator

is given by

θ̂i =
(
Z ′i.ΠiZi.

)−1
Z ′i.Πiyi., (19)

where Πi = Q̃i(Q̃
′
iQ̃i)

−1Q̃′i. Since MX̄ is an idempotent matrix, we have Z ′i.MX̄Q̃i = Z ′i.Q̃i.

This suggests that we can estimate θi equally in two different ways. The first uses Q̃i as IVs in

the de-factored regression of MX̄yi. against MX̄Zi.. The second applies the IVs, Q̃i directly to

estimate (17). Substituting (17) into (19), we obtain:

θ̂i − θi =

(
Z ′i.ΠiZi.

T

)−1 Z ′i.Πi(F1γ1i + F2γ2i + εi.)

T
. (20)

As shown in Section S2.1 in the Online Supplement, the right hand side (RHS) of (20) converges

in probability to 0 and follows a limiting normal distribution for each i.

Theorem 1. Consider the heterogeneous spatial panel data model with common factors given by (1)

and (2). Under Assumptions 1–4 and 6(i)–(iii), as (N,T )→∞, the individual estimator, θ̂i in (19),

is consistent for θi. In addition, if Assumption 6(iv) holds and T/N2 → 0, then as (N,T )→∞,

√
T (θ̂i − θi)

d−→ N(0, Ωi),

where Ωi =
(
Ψ′iΦ

−1
i Ψi

)−1 (
Ψ′iΦ

−1
i ΣiΦ

−1
i Ψi

) (
Ψ′iΦ

−1
i Ψi

)−1
, and Ψi, Φi, and Σi are defined in

Assumption 6(iv).

5The instruments for the i-th individual regression can be expressed interchangeably as

(IT ⊗ b′i)(MX̄ ⊗ IN )Q = (MX̄ ⊗ 1)(IT ⊗ b′i)Q = MX̄(IT ⊗ b′i)Q.
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A consistent estimator for Ωi, is given by

Ω̂i =

(
Z ′i.ΠiZi.

T

)−1
(
Z ′i.Q̃i

T

)(
Q̃′iQ̃i

T

)−1

Σ̂i

(
Q̃′iQ̃i

T

)−1(
Q̃′iZi.
T

)(
Z ′i.ΠiZi.

T

)−1

, (21)

and Σ̂i can be constructed by the Newey and West (1987) robust estimator:

Σ̂i = Σ̂i,0 +

pT∑
h=1

(
1− h

pT + 1

)(
Σ̂i,h + Σ̂′i,h

)
,

where Σ̂i,h =
∑T

t=h+1 êitêi,t−hq̃itq̃
′
i,t−h/T , pT is the bandwidth of the Bartlett kernel, êi. = MX̄(yi.−

Zi.θ̂i) = (êi1, . . . , êiT )′, and the ι× 1 vector q̃it is the t-th column of Q̃′i.

3.2 The Mean Group Estimator

Consider the CCEX-IV Mean Group estimator for θ defined as

θ̂MG =
1

N

N∑
i=1

θ̂i. (22)

Under Assumption 5 and using (20), we expand (22) as follows:

θ̂MG − θ =
1

N

N∑
i=1

(θ̂i − θi) +
1

N

N∑
i=1

ξi =
1

N

N∑
i=1

ξi +
1

N

N∑
i=1

(
Z ′i.ΠiZi.

T

)−1 Z ′i.ΠiF1γ1i

T

+
1

N

N∑
i=1

(
Z ′i.ΠiZi.

T

)−1 Z ′i.ΠiF2γ2i

T
+

1

N

N∑
i=1

(
Z ′i.ΠiZi.

T

)−1 Z ′i.Πiεi.
T

. (23)

As shown in Section S2.2 in Online Supplement, the first term,
∑N

i=1 ξi/N dominates and deter-

mines the asymptotic property of the Mean Group estimator.

Theorem 2. Consider the heterogeneous spatial panel data model with common factors given by

(1) and (2). Under Assumptions 1 – 5 and 6(i)–(iii), as N →∞, the Mean Group estimator θ̂MG

in (22), is consistent for θ for either fixed T or T →∞. Furthermore, as (N,T )→∞, we have

√
N
(
θ̂MG − θ

)
d−→ N (0,ΩMG) ,

where ΩMG = Ωξ = var(ξi).

We can estimate Ωξ consistently by the nonparametric estimator (Pesaran (2006)):

Ω̂MG = Ω̂ξ =
1

N − 1

N∑
i=1

(θ̂i − θ̂MG)(θ̂i − θ̂MG)′. (24)
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3.3 The Pooled Estimator

To derive the CCEX-IV Pooled estimator for θ, we de-factor the data by pre-multiplying by MX̄ ,

and obtain ỹ = (ỹ′1, · · · , ỹ′N )′ with ỹi = MX̄yi., and Z̃ = (Z̃ ′1, · · · , Z̃ ′N )′, with Z̃i = MX̄Zi. where

yi. and Zi. are defined in (17). We then run the IV regression of ỹ on Z̃ using the NT × ι matrix

of IVs, Q̃ = (Q̃′1, · · · , Q̃′N )′ where Q̃i = MX̄(IT ⊗ b′i)Q. The Pooled estimator for θ is given by

θ̂P = (Z̃ ′Q̃(Q̃′Q̃)−1Q̃′Z̃)−1Z̃ ′Q̃(Q̃′Q̃)−1Q̃′ỹ. (25)

Under Assumption 5 and using (17) and (25), we have:

θ̂P − θ =

( 1

N

N∑
i=1

Z ′i.Q̃i

T

)(
1

N

N∑
i=1

Q̃′iQ̃i

T

)−1(
1

N

N∑
i=1

Q̃′iZi.
T

)−1

(
1

N

N∑
i=1

Z ′i.Q̃i

T

)(
1

N

N∑
i=1

Q̃′iQ̃i

T

)−1
1

N

N∑
i=1

Q̃′i(Zi.ξi + F1γ1i + F2γ2i + εi.)

T
.

(26)

The Pooled estimator is inconsistent, due to the non-vanishing correlation between ξi and y∗i. in

Zi., see Remark 4 and Section S2.3 in the Online Supplement.

In the special case where the parameters are homogeneous, i.e., θi ≡ θ for all i, the Pooled

estimator, denoted as θ̂∗P , has the following representation:

θ̂∗P − θ =

( 1

N

N∑
i=1

Z ′i.Q̃i

T

)(
1

N

N∑
i=1

Q̃′iQ̃i

T

)−1(
1

N

N∑
i=1

Q̃′iZi.
T

)−1

(
1

N

N∑
i=1

Z ′i.Q̃i

T

)(
1

N

N∑
i=1

Q̃′iQ̃i

T

)−1
1

N

N∑
i=1

Q̃′i(F1γ1i + F2γ2i + εi.)

T
.

(27)

To establish the asymptotic properties of θ̂∗P , we assume:

Assumption 7. (i) For all T ≥ 1, as N →∞, the ι× ι matrix,
N∑
i=1
Q̃′i0Q̃i0/NT is non-singular,

and the ι× (k + 1) matrix,
∑N

i=1 Q̃
′
i0Zi0./NT has a full column rank.

(ii) As (N,T ) → ∞, there exist an ι × ι non-singular matrix, Φ, an ι × (k + 1) matrix, Ψ with

the full column rank, and a positive definite matrix. Σ∗P such that

Φ = plim
(N,T )→∞

1

N

N∑
i=1

Q̃′i0Q̃i0

T
, Ψ = plim

(N,T )→∞

1

N

N∑
i=1

Q̃′i0Zi0.
T

,

Σ∗P = lim
(N,T )→∞

1

N

N∑
i=1

E

(
Q̃′i0F2Ωγ2F

′
2Q̃i0

T
+
Q̃′i0Ωε,iQ̃i0

T

)
.

Theorem 3. Consider the spatial panel data model with common factors given by (1) and (2).

Suppose that the parameters are heterogeneous and follow the random coefficient model (14). Then,
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the Pooled estimator θ̂P in (25) is inconsistent for θ. In the case where the parameters are ho-

mogeneous, i.e., θi ≡ θ for all i, the Pooled estimator θ̂∗P is consistent as N → ∞ for fixed T or

T → ∞ under Assumptions 1–4, 6(i)–(iii) and 7(i). In addition, if Assumption 7(ii) holds and

T/N2 → 0, then as (N,T )→∞,

√
NT (θ̂∗P − θ)

d−→ N(0, Ω∗P ),

where Ω∗P =
(
Ψ′Φ−1Ψ

)−1 (
Ψ′Φ−1Σ∗PΦ−1Ψ

) (
Ψ′Φ−1Ψ

)−1
.

Following Cui et al. (2019) we estimate Ω∗P by

Ω̂∗P =

(
Z̃ ′ΠZ̃

NT

)−1(
Z̃ ′Q̃

NT

)(
Q̃′Q̃

NT

)−1

Σ̂∗P

(
Q̃′Q̃

NT

)−1(
Q̃′Z̃

NT

)(
Z̃ ′ΠZ̃

NT

)−1

, (28)

where Π = Q̃(Q̃′Q̃)−1Q̃′ and

Σ̂∗P =
1

N

N∑
i=1

Q̃′iê
∗
i.ê
∗′
i. Q̃i

T
, ê∗i. = yi. −Zi.. (29)

Remark 4. It is the interplay between parameter heterogeneity and the spatial autoregressive struc-

ture that renders the Pooled estimator of θ in (25) inconsistent. This is a new finding in the litera-

ture, which extends the seminal work by Pesaran and Smith (1995) who establish that the Pooled

estimator is inconsistent in the dynamic panels with the heterogeneous parameters. To see this, we

write the i-th individual de-factored regression at time t from (6) as follows:

ỹit = ρiỹ
∗
it + x̃′itβi + ε̃it = ρỹ∗it + x̃′itβ + ẽit, (30)

where ẽit = ξρi ỹ
∗
it+x̃

′
itξβi

+ε̃it and we have decomposed the error term, ξi of the random coefficients

in (14) as ξi = (ξρi , ξ
′
βi

)′. Then, the Pooled estimator for θ defined in (25) is equivalent to applying

the 2SLS estimation to (30) with the new composite error term, ẽit. Notice that the mean of

ξρi ỹ
∗
it in ẽit is no longer zero because ỹ∗it contains ξρi . More importantly, the IVs in Q̃ become

correlated with ẽit as Q̃ is correlated with ỹ∗it. Thus, the Pooled estimator in (25) is inconsistent

(see Section S2.3 in the Online Supplement). Notice that the term, x̃′itξβi
is uncorrelated with Q̃

under Assumption 5. Hence, in the mixed case where the spatial coefficient is homogeneous (i.e.,

ξρi = 0 for all i) but the slope coefficients βi are heterogeneous, the Pooled estimator in (25) is still

consistent. In the special case where all the parameters are homogeneous, the Pooled estimator in

(27) becomes
√
NT -consistent.

Remark 5. The second result in Theorem 3 is slightly different from Theorem 1 in Yang (2021).

This is mainly because Yang (2021) assumes that yit and xit share the same common factors.

Importantly, the CCEX approach only requires the condition, T/N2 → 0, as the order for the third

term in (S.22) is Op(1/
√
N) due to the independence between V̄ = (v̄.1, . . . , v̄.T )′ and εi.. But,
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if ȳt is also included as a factor proxy, the order of this term becomes Op

(√
T/N

)
because the

factor approximation error is correlated with εi.. In this case, one requires the stronger condition,

T/N → 0.

4 Monte Carlo Simulations

We investigate the finite sample performance of the CCEX-IV and CCE-IV individual, Mean Group

and Pooled estimators. To make the simulation design realistic, we construct the DGP in a data-

oriented manner by calibrating the values of the parameters following our empirical application:

yit = ρiy
∗
it + β1ixit1 + β2ixit2 + γ1if1t + γ2if2t + κ1εit, (31)

xit,p = Γ1i,pf1t + Γ3i,pf3t + κ2vit,p, p = 1, 2, (32)

for i = 1, . . . , N and t = 1, . . . , T , where we set the number of regressors at 2 and unobserved

factors in both equations for yit and xit at 2.

We conduct four Monte Carlo experiments (see Table 1). In Experiments 1 and 2 we set f2t = f3t

while we generate f2t and f3t independently in Experiments 3 and 4. Each factor is generated as

an AR(1) process:

fr,t = φfrfr,t−1 + ξfrt , t = −49, . . . , T ; r = 1, 2, 3,

with φfr = 0.5 and ξfrt ∼ IIDN(0, 1 − φ2
fr

). We discard the first 50 observations as the burn-in

sample. We generate the factor loadings from IIDN(0, 0.5).6 In Experiments 1 and 3, we set the

homogeneous parameters as

ρi = ρ = 0.5, βi1 = β1 = 1, βi2 = β2 = 0.5, i = 1, . . . , N,

whereas in Experiments 2 and 4, we generate the heterogeneous parameters by

ρi = 0.5 + ξρi , βi1 = 1 + ξβi1 , βi2 = 0.5 + ξβi2 , i = 1, . . . , N,

where ρi ∼ ρ+ IIDU(−0.2, 0.2), ξβi1 ∼ IIDN(0, 0.5) and ξβi2 ∼ IIDN(0, 0.3). We also consider a

higher spatial dependence with E(ρi) = 0.8.

Table 1: Experiment Settings

Factors for yit and xit
Same Different

Coefficients
Homogeneous Experiment 1 Experiment 3
Heterogeneous Experiment 2 Experiment 4

6We have also provided the simulation results for non-zero mean factor loadings with γ1i(γ2i) ∼ IIDN(0.5, 0.5)
in Section S4.5 in the Online Supplement. Overall results are qualitatively similar to those reported here though
RMSEs of CCE-IV estimator are more improved.
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We allow idiosyncratic errors in (31) and (32) to be heteroskedastic and serially correlated. For

εit, the first half cross-section units are generated from an AR(1) process:

εit = φεiεi,t−1 + σi(1− φ2
εi)

0.5ξεit , i = 1, . . . bN/2c; t = −49, . . . , T,

whilst the second half cross-section units are from a MA(1) process:

εit = σi(1 + ψ2
εi)

0.5(ξεit + ψεiξεit−1), i = bN/2c+ 1, . . . , N ; t = −49, . . . , T,

where φεi = ψεi = 0.5 for all i, σ2
i ∼ IIDU(0.5, 1.5), ξεit ∼ IIDN(0, 1), and b.c denotes the integer

part. We generate each component of vit as an AR(1) process:

vit,p = φvi,pvi,t−1,p + ξvi,p , i = 1, . . . , N ; t = −49, . . . , T ; p = 1, 2,

where φvi,p = 0.5 and ξvi,p ∼ IIDN(0, 1 − φ2
vi,p) for all i and p. We also discard the first 50

observations of εit and vit.

The κ1 in (31) and κ2 in (32) are used to control the proportion of the variance of the unobserved

components due to the idiosyncratic errors, and we set κ1 = 2 and κ2 = 3.7 For the spatial

weighting matrix, W , we use the standard h-ahead-and-h-behind neighbour specification, i.e., its

elements are zero apart from those off-diagonal elements that are within h rows on either side of

the principal diagonal, which are set to be 1/2h. Then, we apply the row-sum normalisation. In

order to investigate the (robust) performance of the CCEX-IV and CCE-IV estimators against the

different degrees of sparsity of the spatial weighting matrix, we consider three different values of

h = 2, 6, 0.3N . In particular, the design with h = 0.3N implies that the overall level of spatial

dependence does not decay even as N increases. Each experiment is replicated 1,000 times for each

(N,T ) pair with N = {20, 50, 100} and T = {20, 50, 100}.
We employ the following estimation algorithm:

• Step 1: Construction of Factor Proxies, F̂ . We consider three cases:8 (i) the CCEX

estimator using F̂t = x̄t; (ii) the CCE estimator using F̂t = (ȳt, x̄
′
t)
′; and (iii) the infeasible

estimator using the true factors.

• Step 2: De-factorisation of the Data. To deal with endogeneity caused by the correlation

between the regressors and the unobserved factors, we run regressions of yi., y
∗
i., and Xi. on

factor proxies, F̂ , and save the respective residuals.

• Step 3: Construction of the IVs. To deal with endogeneity caused by the spatial lagged

term, we use the instruments (X̃, X̃∗), where X̃ = (MF̂ ⊗IN )X and X̃∗ = (MF̂ ⊗IN )(IT ⊗

7We have provided the simulation results for κ1 = 1 and κ2 = 2 in Section S4.6 in the Online Supplement, finding
that the results are qualitatively similar.

8We have also used (ȳt, ȳ
∗
t , x̄

′
t)
′ as factor proxies, where ȳ∗t =

∑N
i=1 y

∗
it/N . The simulation results are generally

worse than those reported here but available upon request.
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W )X with MF̂ = IT − F̂ (F̂ ′F̂ )−1F̂ ′ and X = (X ′.1, . . . ,X
′
.T )′.9

• Step 4: Computation of the individual, Mean Group and Pooled Estimates. For

Experiments 2 and 4 with the heterogeneous parameters, we obtain the individual estimates,

θ̂i = (ρ̂i, β̂1i, β̂2i)
′, i = 1, . . . , N , by (19) and the Mean Group estimate by (22). For Experi-

ments 1 and 3 with the homogeneous parameters, we obtain the Pooled estimate by (25).

To evaluate the finite sample performance of the estimators, we calculate:

• Bias and RMSE. The bias and RMSE for the q-th element of θ̂i, denoted as θ̂qi, q = 1, 2, 3,

are defined as
∑M

m=1(θ̂mqi − θqi)/M and
√∑M

m=1(θ̂mqi − θqi)2/M , where M is the number of

replications, θqi is the corresponding true value and θ̂mqi is the m-th estimation result. For

individual estimators we only report the average Bias and RMSE. Bias and RMSE of the

Mean Group and Pooled estimators are also provided. For convenience the values of Bias and

RMSE are multiplied by 100.

• Size and Power. The size of the t-test for an individual coefficient at the 5% significance

level is evaluated as

Sizeθ̂qi =
1

M

M∑
m=1

1(
|θ̂mqi − θqi|
σ̂θ̂mqi

> 1.96), q = 1, 2, 3,

where 1(.) is the indicator function, and σ̂2
θ̂mqi

is the estimated variance using (21). Following

the standard practice in the literature (e.g., Zhang and Boos (1994)), we report the size-

adjusted power. For individual estimators, the average size and power are reported. The

size and power of the Mean Group and Pooled estimators are evaluated using the variances

estimated respectively by (24) and (28).

4.1 Simulation Results

We only report the simulation results for the individual and Mean Group estimators under Exper-

iment 4.10 Biases and RMSEs for the individual estimators are presented in Table 2. The biases of

the CCEX-IV individual estimator of (ρi, β1i, β2i) are all relatively small in almost all cases, even

in small samples with (N,T ) = (20, 20). These bias values are also close to those of the infeasible

estimator. If the spatial weights matrix is sparse with h = 2, then the performance of the CCE-IV

individual estimator is relatively satisfactory except for N = 20. As h and/or ρ rise (e.g. h = 6 and

ρ = 0.8), its biases become substantially larger for N = 20, especially for the spatial coefficient,

though the biases decline sharply with N . However, if we set h varying with N (i.e. h = 0.3N),

9We have also tried using (X̃, X̃2∗), (X̃, X̃3∗) and (X̃, X̃∗, X̃2∗) as IVs, where X̃r∗ = (MF̂ ⊗IN )(IT ⊗W r)X.
The results are quite similar to those presented here and available upon request.

10We provide the complete simulation results for Experiments 1 to 3 in Section S4 in the Online Supplement.
Overall, the results are qualitatively similar to those reported here.
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then the biases for the spatial coefficient remain substantial at all the sample sizes. This is in line

with our conjecture in Section 2 that the use of ȳt as factor proxies will suffer from the remaining

endogeneity due to the correlation between ȳt and εit, so far as the spatial weighing matrix remains

dense even for large N .

RMSEs of the CCEX-IV individual estimator of (ρi, β1i, β2i) decrease with T , verifying Theorem

1 that the convergence rate of the individual estimator is
√
T . RMSEs for (β1i, β2i) do not depend

on N , though RMSEs for ρi decline with N if h is fixed and rise with N if h is increasing with

N . Similar patterns are observed for the CCE-IV estimator. Interestingly, we observe that RMSEs

for ρi increase with h but fall with ρ, whereas RMSEs for (β1i, β2i) show little variations. Overall,

we find that RMSEs for the CCE-IV estimator is no smaller than the CCEX-IV counterparts,

suggesting that the potential efficiency gain from using ȳt as a factor proxy does not offset the higher

biases. In particular, if the spatial weighing matrix remains dense with h = 0.3N , then RMSEs

for the spatial coefficient are significantly higher for the CCE-IV estimator than the CCEX-IV

counterparts for all the sample sizes.

[Table 2 about here]

In Table 3 we report the biases and RMSEs for the Mean Group estimator. Overall, we obtain

qualitatively similar results to those reported for the individual estimators. The biases of the

CCEX-IV Mean Group estimator for (ρ, β1, β2) are more or less negligible and close to those of the

infeasible estimator in almost all cases. On the other hand, the CCE-IV estimator tends to display

non-negligible biases as h or ρ starts to rise, especially for N = 20. In particular, if the spatial

weighing matrix remains dense with h = 0.3N , then the bias of the Mean Group estimator for ρ

remains relatively large even when N = 100.

RMSEs of both CCEX-IV and CCE-IV Mean Group estimators of (ρ, β1, β2) decrease sharply

with N , verifying Theorem 2 that the convergence rate of the Mean Group estimator is
√
N , though

its speed is rather slower for the Mean Group estimation of ρ in the case with h = 0.3N . Overall,

we observe that RMSEs of CCEX-IV and CCE-IV Mean Group estimators display similar patterns

and magnitudes in most cases. This again suggests that the potential efficiency gain from using ȳt

as a factor proxy does not necessarily offset the higher bias.

[Table 3 about here]

The size and power of the t-tests for the individual and Mean Group estimators are summarised

in Tables 4 and 5. As sample size increases (particularly T ), the size of the t-tests for the CCEX-IV

individual estimator (and the infeasible estimator) tends to the 5% nominal level in most cases.

But, we observe that the t-tests for the CCE-IV individual spatial coefficient tend to be slightly

over-sized for small h but under-sized for large h if N is small, even for large T . The powers of

the t-tests for CCEX-IV and CCE-IV estimators are more or less similar, and both tend to 1 as

the sample size (in particular, T ) increases if h is fixed. In the case with h = 0.3N , the power falls

18



with N due to RMSEs increasing with N , but rises sharply with T . Moreover, the power of the

t-tests for the spatial coefficient decreases with h.

Turning to the Mean Group estimator, we find that the size and power of the t-tests display

qualitatively similar patterns to those reported for the individual estimator. Now, the size distortion

for the CCE-IV estimator of ρ is more noticeable, especially for small N . The power of the t-tests

for all the parameters approaches 1 quickly as sample size (in particular, N) rises.

[Tables 4 and 5 about here]

In sum, we establish that the finite sample performance of the CCEX-IV estimator is quite

satisfactory in almost all cases considered. On the other hand, the performance of the CCE-

IV estimator depends crucially upon the degrees of sparsity of the spatial weighting matrix. If

the network is relatively sparse, then its performance is satisfactory. However, if the network is

relatively dense, the biases of the CCE-IV estimated spatial coefficient remain substantial at all the

sample sizes. In this case the RMSEs are also significantly higher than the CCEX-IV counterparts

even for large N . This is in line with our conjecture that the use of ȳt as factor proxies may suffer

from the remaining endogeneity due to the correlation between ȳt and idiosyncratic errors, which

leads to bias that becomes larger when the network becomes denser.

We also report the complete simulation results in the Online Supplement, which provide the

support for the robust performance of the CCEX-IV estimator under the different experiments.

Furthermore, we establish that the Pooled estimators exhibit substantial biases under parameter

heterogeneity (see Sections S4.2 and S4.4 in the Online Supplement).

5 Empirical Application

The study of comovements in house prices in the UK has a long history (Giussani and Hadjimatheou

(1991)). Recently, spatial techniques have become more popular in studying comovement of regional

house prices and the ripple effects in the UK (Holly et al. (2011); Gray (2012); Chelva and Shin

(2017)). Furthermore, Holly et al. (2011) argue that the comovement of house prices could also be

originated from (unobserved) economy-wide common shocks (e.g. the introduction of Help to Buy

or Buy to Let policies in UK) that affect all the regions. Another important issue is the parameter

heterogeneity. This will be of great relevance when the analysis is based on the regional level instead

of the national level, because of different economic conditions and house market structures across

regions (Meen (1999)). Many empirical studies have also confirmed the parameter heterogeneity

for regional studies in the UK, (Holly et al. (2011); Meen (2001); Chelva and Shin (2017)) and for

other countries (Aquaro et al. (2021)).

To analyse the spatial patterns of the UK house price growths, we apply our proposed model,

that can address the spatial dependence, unobserved common shocks and parameter heterogeneity

simultaneously, to the quarterly changes of real house price for 339 Local Authority Districts (LAD)
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in the UK over the period 1997Q1-2016Q4 (T = 80).11 Following the literature, we focus on the

demand side12 by analysing the two most popular determinants of house price growths: personal

income and population growths.13 See Section S5.1 in the Online Supplement for the data details.

As a preliminary examination of the data, we apply the cross-section dependence (CD) test

developed by Pesaran (2015) to house price growth. We find the CD statistic is 781.9, well above

the critical value of 1.96 at the 5% level, and strongly reject the null hypothesis of weak CSD. We

also report the estimate of CSD exponent (denoted α hereafter) proposed by Bailey et al. (2016b),

which is quite close to 1 (0.99). Both results indicate that there exists strong CSD in real house

price growths. Hence, we employ the heterogeneous spatial data model with common factors:

hpit = ρihp
∗
it + βpopi popit + βinci incit + eit, (33)

eit = γ ′yifyt + εit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T,

where hpit is the real house price growth, popit the population growth and incit the per capita

personal income growth for LAD i at time t. We include the spatial term, hp∗it =
∑N

j=1wijhpit

with wij being the (i, j)-th element of the spatial weighting matrix. As pointed out by Meen

(2001), the spatial weighting matrix should specify the relationship between house prices in different

locations, using the spatial contiguity or distance decay (see Section S5.2 in the Online Supplement

for the construction of the spatial weighting matrices). Here we focus on the distance-based spatial

weighting matrix.14

To control for spatial endogeneity and unobserved factors, we employ the CCEX-IV estimator

using x̄t only and the CCE-IV estimator using (ȳt,x̄
′
t)
′ as factor proxies. In both cases we use the

combinations of X̃∗ and X̃2∗ as IVs for the spatial lagged term.

5.1 Estimation Results for Individual LADs

First, we analyse the CCEX-IV estimation results for each LAD. To provide an overall visualisation

of the heterogeneous effects of the spatial term and explanatory variables on the real house price

growths, we display spatial maps of the individual coefficients in Figure 1. We match the individual

spatial coefficient, ρ̂i, to the corresponding LAD on the choropleth map in Figure 1a. LADs colored

in green depict positive coefficients: darker shades are associated with estimates closer to unity while

11LADs are local governments that are responsible for providing full or partial services to the public. In 2019,
there are 382 LADs in the UK (317 in England, 22 in Wales, 11 in Northern Ireland and 32 in Scotland). Due to the
data availability, we only analyse 339 LADs in England and Wales.

12Housing economics theory suggests that any demand shock will lead to a temporary change in real house prices
while housing supply is inelastic in the short-run (Meen (2001)). Extensions to including dynamics and characterising
house price growths from the supply side deserve a separate future research.

13An extensions of our study to include more determinants, such as interest rate and unemployment rate, is
straightforward. But, their effects on house prices are negligibly small and tend to appear with the wrong sign, see
Case and Shiller (2003); McQuinn and O’Reilly (2008); Chelva and Shin (2017).

14When employing the contiguity-based spatial weighting matrix, the estimation results are less satisfactory. In
particular, the spatial coefficients fall outside (-1,1) for 92 LADS (as compared to 51 in the model with the distance-
based one). These results at the regional and national level are presented in Table S35 in the Online Supplement.
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the lighter shades refer to ρ̂i closer to zero. Similarly, blue areas are associated with negative spatial

coefficients, with the lighter shade indicating ρ̂i closer to zero while darker blue areas representing

more sizable coefficients. We find that 51 of 339 individual spatial coefficients fall outside the

interval (-1,1), which are regarded as outliers, plotted in the category ‘Outlier’.

[Figure 1 about here]

The individual spatial coefficients are quite heterogeneous, but overall positive (269, 93.4%)

and significant (174, 60.4%). This finding is in line with a priori expectation that the house price

increase in nearby area causes the local house demand to rise as they share amenities, but it also

causes the local house supply to fall as the suppliers will switch to an area with high house price

growth. Only 19 LADs exhibit a negative spatial coefficient but all insignificant. Negative spatial

coefficients can be observed under very specific cases in which the less developed districts, where

the house is of very poor quality in terms of economic and social values, are surrounded by more

developed areas.15

Turning to the CCE-IV results, we find that their individual spatial coefficients are much smaller

than CCEX-IV counterparts. There are much more negative spatial coefficients (91, 31.6%) (see

Figure 1b),16 and many of them are insignificant. This rather unsatisfactory outcome may reflect the

combination of two perspectives. First, we observe that the correlation between hp∗t and h̄pt tends

to be higher than 0.5 for 275 out of 339 LADs. Such a high proportion of positive correlations may

cause multicollinearity in the CCE-IV estimation, leading to unstable and insignificant estimation

results. Next, we observe that the distance-based weighting matrix is relatively dense. Then, the

smaller CCE-IV spatial coefficients may indicate downward biases of the CCE-IV estimator, which

could occur if the network is relatively dense, as shown in Monte Carlo experiments in Section 4.

Next, we analyse the impacts of population growth, obtained by CCEX-IV estimation and

plotted in Figure 1c, which are quite heterogeneous. The population growth exerts a positive effect

on the real house price changes for 172 LADs (50 significant) whilst its impact is negative for 116

LADs (34 significant). We expect a positive relationship between population growth and house

price growth since a natural population growth will increase the demand for house (Day (2018)).

However, if population growth is mainly due to migration flows, its effects on house price would be

ambiguous. As discussed by Sá (2015), immigration may be associated with negative house price

changes through the following channels: (i) immigration accompanied by native out-migration from

15This is the case for Ribble Valley (ρ̂i = −0.25), a mainly rural district surrounded by the Greater Manchester
area, for South Bucks (ρ̂i = −0.21) and Slough (ρ̂i = −0.07), largely rural districts surrounded by the Great London
area, and for Monmouthshire (ρ̂i = −0.11), a mainly rural district in the south coast of Wales, close to the two cities,
Cardiff and Newport. See the Rural-Urban Classification defined in Section S5.3 in the Online Supplement.

16Applying the CCE-based de-factoring, Bailey et al. (2016a) and Aquaro et al. (2021) have reported a substantially
high incidence of negative spatial connections in the study of the US house price. In the context of the housing market,
this outcome is puzzling given the lack of convincing explanations. Chelva (2017) has also obtained an unexpectedly
high proportion of negative spatial coefficients when the similar method is applied to English house price inflation.
As described earlier, some areas may be inversely related to neighbourhood house price changes due to substantial
dissimilar values of the house. Following Chelva and Shin (2017), we hypothesise these cases would be in the minority.
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the richer areas, has adverse effects on the average local income; (ii) immigration may generate more

crime or affect the quality of local public goods due to overcrowding. In Figure 1c we find that

negative estimates of βpopi appear mostly in London, the Great Manchester and their neighbourhood

areas, which have higher immigration rates.17

Finally, we analyse the CCEX-IV coefficients, β̂inci , plotted in Figure 1e, which are also quite

heterogeneous. Although many (95) are negative, they are small and only 13 of them are significant.

We expect that the effects of income growth on house price are generally positive, since the higher

income makes the house purchase more affordable. However, there are two situations under which

income growth could be associated with negative house price growths. The first is when income

growth involves redistribution of income from the poor to the rich such that the positive impact by

the rich may be overtaken by the negative impact from decreased income in poor people. The overall

house price may go down, see Määttänen and Terviö (2014). The second is the rural-urban migrants

decision. Zang et al. (2015) find that the income growth in rural areas encourages local people to

migrate to urban areas for better job and education, etc. This will in turn lower the demand

for house in rural areas because of out-migration.18 Since the measurement of income inequality

data (e.g. the Gini coefficient) is unavailable at LAD level, we use the income deprivation index,

which measures the proportion of the population experiencing deprivation due to low income. For

the 13 LADs with significantly negative β̂inci , 6 are located in the high income deprived LADs:

Thanet (-5.16), Enfield (-3.38), Nuneaton and Bedworth (-2.57), Wolverhampton (-2.29), Bolton

(-1.91) and Kingston upon Hull (-1.64), while 7 are located in rural or suburban areas: Surrey

Heath (-2.77), East Hertfordshire (-2.49), Fareham (-2.01), Basingstoke and Deane (-1.38), South

Oxfordshire (-1.27), Hambleton (-0.90) and Richmondshire (-0.86).

Turning to the CCE-IV results, we find that the spatial patterns of β̂popi and β̂inci , are not

as clear as CCEX-IV counterparts. There are several cases which are difficult to interpret, for

example, negative β̂popi in several rural LADs in South West and negative β̂inci in mainly urban

LADs, Somerset West & Taunton (-1.44) and Trafford (-1.32).

5.2 Estimation Results at the Regional and National Level

England is divided into 9 regions: North East, The Yorkshire and Humber, North West, East

Midlands, West Midlands, East of England, London, South East and South West. To ensure that

each region contain a reasonable number of LADs, we merge North East and The Yorkshire and

Humber (denoted North East & York). Finally, together with Wales, we have 9 regions.

In Table 6 we report the Mean Group estimation results at the regional and national level.19

17Inspecting further, negative estimates are observed for LADs with high immigration rate, such as Brent (-1.25),
Ealing (-1.06) and Westerminister (-0.35), Reading (-0.67), Oxford (-0.48) and Brighton and Hove (-5.3), South
Cambridgeshire (-4.08) and Norwich (-3.14).

18These two reasons also turn out to explain the negative estimates for βinc
i in our analysis.

19In computing the Mean Group estimates, we exclude 51 and 49 LADs with their spatial coefficients outside
(-1,1) for CCEX-IV and CCE-IV. In addition, we exclude 6 and 9 more LADs that exhibit extremely large, β̂pop

i and

β̂inc
i , greater than 15. Hence, we exclude 57 and 58 LADs respectively for CCEX-IV and CCE-IV estimation.
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Overall the regional Mean Group estimates are heterogeneous, but we are now able to provide more

vivid spatial patterns across regions. We first analyse the Mean Group estimation results for CCEX-

IV. The spatial coefficients are all positive and significant, mitigating the small number of negative

and insignificant individual coefficients. They are tightly clustered around the national mean of

0.57, suggesting the existence of positive spatial linkage of house prices growths across regions.

Notice that the spatial coefficient for London is the lowest at 0.40. The lower spatial coefficient

implies that the house price growth is more likely to be affected by fundamental determinants rather

than the house price growth in neighbouring regions. For the regions sharing a border with London

(East of England and South East), they are not only influenced by London, but also affecting

neighbour regions, making their spatial coefficients relatively lower than those in other regions.

This provides the support for the central role played by London.

On the other hand, the spatial coefficients by the CCE-IV estimation are negligibly small and

insignificant for some regions with the national mean of 0.23, which is not in line with the widespread

evidence of the spatial dependence and the ripple effects in the UK housing market documented

in the literature (e.g Meen (1999) and Holly et al. (2011)). Further, some estimation results, for

example, that London has the fourth highest spatial coefficient among all the regions, are hard to

explain. These unsatisfactory results could be due to the small sample bias or the downward bias

of the CCE-IV estimator under the distance-based weighting matrix that is relatively dense, as

shown in Monte Carlo experiments in Section 4.

Next, the coefficients on population and income growths display interesting spatial patterns.

β̂popMG,r is larger and significant for North East & York, North West and South West, whilst β̂incMG,r

is larger and significant in the rest of regions. Population growth will increase house price when it

contributes the new formation of house (Day (2018)). From Table 7, we observe that the household

growths for East Midlands, London, East of England and South East are lower than in other regions.

This implies that population growth does not necessarily induce the demand for new house. Indeed,

population growths in rich regions are largely caused by immigrants. Then, they are likely to live

in the multi-family and two or more unrelated adults household types.20 Thus, house price growths

in these regions are relatively less affected by population growths. By contrast, population growths

in less rich regions transform into the demand for new house as observed in their relatively high

household growth (Table 7).

Our finding that house prices are more responsive to income changes in South-East regions is

in line with the regional “ripple effects” in the UK house market, see Meen (1999). The significant

impacts of income growth on house price growth provide support for the leading position of South-

East regions (in particular, London). Overall, the CCEX-IV results suggest that personal income

growth is the dominant factor behind the house price growth in rich regions while the population

growth would be the more dominant factor for less rich regions.

There are two regions, South West and Wales, which may require further explanations. South

West has the fourth highest average income with the lowest population density, making it largely

20These two types of households account for almost 10% of the total households in London.
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a rural region due to its geographical and climate features. Income growth in rural area could

be associated with the lower local demand because of out-migration. We find that 10 out of 19

LADs display negative impacts of income growths, which are all rural or suburban LADs. Thus,

the house price growth in South West, which has the third highest household growth, is mainly

driven by population growth. Next, the impact of population growth in Wales is higher than the

income effect. A high household growth in Wales suggests that the population growth has induced

more demand for house. The personal incomes in Wales and North East are very similar, but the

average house price in Wales is 8.7% higher, rendering the house in Wales less affordable. This also

makes the income growth a significant determinant.

By contrast, it is rather difficult to interpret the spatial patterns of the results provided by

CCE-IV. For example, we observe that the population growth is a more dominant driver than the

income growth behind the house price growth in London, which deems unreliable, given its highest

population density and lowest household growth.

Turning to the CCEX-IV results at the national level, we find that all the coefficients are

statistically significant at 1% level while the impacts of population growths are substantially larger

than income growths, in line with the US studies reported by Aquaro et al. (2021) and Yang (2021).

[Tables 6 and 7 about here]

Finally, we notice that the CD test rejects the null of weak CSD for some regions and at

the national level while the CSD exponent, α̂ becomes moderate. This suggests that house price

growth may be affected by other factors that are not associated with population and income growth.

However, our proposed CCEX-IV method can still provide consistent estimates if strong factors

from the regressors can be removed effectively.21

5.3 The GCM Analysis of Direct, Spill-in and Spill-out Effects

In a model with the spatial dependence, it is now standard to provide a summary measure of the

direct and indirect effects of the regressors on the dependent variable using the following system

representation of (33):

hp.t = ρWhp.t + βpoppop.t + βincinc.t + e.t, (34)

where ρ is a N ×N diagonal matrix with i th diagonal element, ρi, and βpop and βinc are defined

similarly with ith diagonal elements, βpopi and βinci . We construct heterogeneous direct, spill-in and

spill-out effects for the ith LAD (see LeSage and Chih (2016)):

21 We find that the CD test results are 182.5 and 1613.8 for the raw data, popit and incit with α̂ being 0.86 and 1,
respectively. When applying to the defactored data obtained using (popt,inct) as factor proxies, we find that the CD
test results reduce to 5.18 and -2.91 while α̂ become 0.73 and 0.74. This shows that unobserved factors have been
effectively removed by CCEX.
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• Heterogeneous Direct Effect (HDE): the direct effect of the population or income growth

on the real house price changes, given by the ith diagonal element of (IN − ρW )−1βpop or

(IN − ρW )−1βinc.

• Heterogeneous Spill-in Effect (HSI): the sum of the effects of population or income growths

from all the other LADs on house price changes in the ith LAD, given by ith row-sum minus

ith diagonal element of (IN − ρW )−1βpop or (IN − ρW )−1βinc.

• Heterogeneous Spill-out Effect (HSO): the sum of the effects of population or income growth

from the ith LAD on house price changes in all the other LADs, given by the ith column-sum

minus ith diagonal element of (IN − ρW )−1βpop or (IN − ρW )−1βinc.

Our approach may operate at two extremes: (i) complete aggregation, where the N(N − 1)

bilateral linkages among N individual LADs are aggregated into the single indices at the national

level, and (ii) no aggregation, where the N(N − 1) bilateral linkages are studied at the individual

LAD level. On the one hand, a single index to summarise the connectedness of the system will

obscure the amount of details of regions completely. On the other hand, for large N , it would

become almost infeasible to study the network topology on a disaggregated basis. In this regard,

we follow the GCM approach by Greenwood-Nimmo et al. (2021) and introduce intermediate levels

of aggregation by analysing the R(R− 1) bilateral linkages among R regions rather than among N

individual LADs.22 We focus on the CCEX-IV estimation results with N = 282 but R = 9. The

number of LADs in the `th region is denote by N` for ` = 1, . . . , R.

We re-order the individual LADs so that they are gathered together into desired regions. We

write the N ×N matrix, (IN − ρW )−1βpop or (IN − ρW )−1βinc as

C
(N×N)

=



φ1←1 · · · φ1←N1 φ1←N1+1 · · · φ1←N1+N2 · · · φ1←N

...
. . .

...
...

. . .
...

. . .
...

φN1←1 · · · φN1←N1 φN1←N1+1 · · · φN1←N1+N2 · · · φN1←N

φN1+1←1 · · · φN1+1←N1 φN1+1←N1+1 · · · φN1+1←N1+N2 · · · φN1+1←N

...
. . .

...
...

. . .
...

. . .
...

φN1+N2←1 · · · φN1+N2←N1 φN1+N2←N1+1 · · · φN1+N2←N1+N2 · · · φN1+N2←N

...
. . .

...
...

. . .
...

. . .
...

φN←1 · · · φN←N1 φN←N1+1 · · · φN←N1+N2 · · · φN←N


. (35)

The (k, `)th block in (35), denoted as Bk←` for k, ` = 1, ..., R, is given by:

Bk←`
(Nk×N`)

=


φÑk+1←Ñ`+1 · · · φÑk+1←Ñ`+N`

...
. . .

...

φÑk+Nk←Ñ`+1 · · · φÑk+Nk←Ñ`+N`

 , (36)

22 We provide the results for individual HDE, HSI and HSO in Section S5.4 in the Online Supplement. Their
spatial patterns are closely related to those of individual coefficients reported in Figure 1c and 1e. For all LADs, the
signs of HDE are the same as the corresponding individual coefficients. Moreover, if population (income) growth in
the ith LAD increases its own house price, then this will induce positive spill-outs from the ith LAD as well as positive
spill-ins for its neighbourhood LADs, because the house price growths are mostly positively spatially correlated.
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where Ñk =
∑k−1

j=1 Nj for k = 2, . . . , R, and Ñ1 = 0. We evaluate the sum of the elements of Bk←`

and normalise it by the average number of LADs in the pair as:

ψk←` =
1

0.5(Nk +N`)
ι′Nk

Bk←`ιN`
, (37)

where ιNk
is an Nk × 1 column vector of ones. Then, we can construct the following R × R

connectedness matrix at the regional level:

CR
(R×R)

=


ψ1←1 ψ1←2 · · · ψ1←R

ψ2←1 ψ2←2 · · · ψ2←R
...

...
. . .

...

ψR←1 ψR←2 · · · ψR←R

 . (38)

Now, it is straightforward to derive the direct, spill-in and spill-out effects of population and

income growths on the house price growths at the regional level using (38), denoted RDE, RSI and

RSO, respectively, defined by

RDEi = ψi←i; RSIi =
R∑

j=1,j 6=i
ψi←j ; RSOi =

R∑
j=1,j 6=i

ψj←i.

We construct the regional net effect (RNE) by the difference between RSO and RSI, which may allow

us to distinguish between net-transmitting and net-receiving regions with respect to population or

income growth shocks (e.g. Antonakakis et al. (2018)).

The regional direct/spillover results are summarised in Table 8. We first analyse the bilateral

impacts of population growth. The spatial pattern of RDE of population growth is qualitatively

similar to that of regional Mean Group coefficients, βpopMG,r as reported in Table 6. RDE is substan-

tially larger for North East & York, South West and Wales. Notice that the RDE of population

growth for London is the lowest, reflecting the combined effects of its highest population density

and lowest household growth (see Table 7).

Turning to the interplay between RSI and RSO, North East & York exhibits the largest RSI,

mainly due to the large spill-ins from North West and East Midlands, whilst having the smallest

RSO. Thus, its net effect is most negative. Since the sum of net effects is zero by construction,

North East & York can be regarded as the most passive receiver in terms of the population growth

impacts.

By contrast, London displays the smallest RSI. This negative spill-in effect from South East

and East of England mainly reflects that more people tend to escape from London to neighbouring

regions where houses are more affordable but they remain close to commute, see Meen (2001).

Hence, population growths in South East and East of England are likely to reflect out-migration

from London,23 thus exerting negative effects on house price growth in London. London shows the

23Out-migration from London to South East and Est of England is nearly twice as out-migration from London to
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larger RSO. Thus, London becomes the most influential transmitter of population growth shocks.

East Midlands and North West are another influential transmitters of population growth shocks.

They exert large positive spill-outs to North East & York. Though East Midlands is also influenced

significantly by South East, its net effect is the largest, albeit slightly larger than London, reflecting

that it is a region with a very strong manufacturing sector. By contrast, North West receives

relatively small spill-ins. South East and South West belong to the class of receivers. But, the

former can be regarded as the active receiver as it has the second largest RSI and the fourth largest

RSO.

The remaining three regions (West Midlands, East of England and Wales) are relatively neutral

with their spill-outs approximately matching their spill-ins. East of England and West Midlands

are mildly active in terms of its sizable and contradictory RSI and RSO associated with neighbors.

On the other hand, Wales appears to be rather independent of the regions in England.

Next, we analyse the bilateral impacts of personal income growth. The spatial pattern of RDE

of income growth is somewhat similar to the regional Mean Group coefficients, βincMG,r as reported

in Table 6. RDE is substantially larger for East Midland, South East, London and Wales. On

the other hand, RDE of income growth for South West is the lowest followed by North West. As

discussed above, South West is largely a rural region, and its lowest RDE may be in line with the

rural-urban migrants decision.

East Midlands and London become the two most influential transmitters of income growth

shocks. London exerts the large positive spill-outs particularly on South East while receiving

rather small spill-ins from South East and East of England. East Midlands produces the larger

positive spill-outs to North East & York, while receiving relatively small spill-ins from South East

and West Midlands.

South East exhibits the largest RSI of income growth mainly due to the substantial spill-ins

from London, but it also has the fourth largest RSO. Though it has the largest negative net effects,

it can be regarded as the active receiver. North East & York has the second largest RSI (receiving

the largest spill-ins from East Midlands) while exerting negligible spill-outs to the other regions.

Thus, it is still regarded as the most passive receiver. South West belongs to the class of receiver,

mainly due to the spill-ins from South East and Wales.

The remaining four regions are neutral with their net effects being rather small, though East

of England is mildly active in terms of its contradictory RSI and RSO. Wales is again independent

of the regions in England. Interestingly, North West exerts a slightly negative spill-outs to North

East & York, suggesting that its income growth induces the residents in North East & York to

make the rural-urban migration decision.

[Table 8 about here]

Finally, we define a pair of indices to address two issues of particular interest (i) ‘how dependent

is the ith region on external conditions from other regions’; and, (ii) ‘to what extent does the ith

all other regions during 2002-2012, see a report by Mayor of London available at https://www.london.gov.uk/site

s/default/files/wp62-migration-commuting-final.pdf.
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region influence/is the ith region influenced by the system as a whole?’ We follow Shin and Thornton

(2020) and construct the External Motivation (EM) and Systemic Influence (SI) indices given by

EMi =
RSIi

ATOTi←•
; SIi =

RNEi
TNPi

, (39)

where ATOTi←• =
∑R

j=1 |ψi←j | is the absolute row-sum for region i, and TNPi = 0.5
∑N

i=1 |NEi|
is the total absolute net effects. EMi measures the relative importance and direction of RSI in

determining the conditions in the ith region while SIi captures the systemic influence of the ith

region.24

The coordinate pair (EMi, SIi) displayed in Figure 2, will provide a vivid representation of

region’s relative position in the UK house market. There is the tendency for regions to cluster along

a line north-west to south-east, since positive (negative) spill-ins contribute negatively (positively)

to a region’s net effect. A region in the north-east quadrant would be one for which spill-ins were

outweighed by spill-outs, leading to a positive net connectedness. In our empirical application, this

corresponds to East Midlands and North West in terms of population growth shocks. A region in

the south-west quadrant would be one for which spill-ins outweigh spill-outs, leading to a negative

net effect. This corresponds to South East in terms of income growth shocks.

[Figure 2 about here]

From Figure 2a, we find that only London has negative EM with respect to population growth

shocks while London has positive spill-outs to East of England and South East. As a result, London

is located in the far north-west as the most influential net transmitter of population growth shocks

in the UK. On the other hand, North East & York is positioned at the far south-east, clearly

showing that it is the most passive receiver. The position of Wales is close to the coordinate pair

(0,0), showing that its housing market condition may be independent of those in England.

From Figure 2b, we find that the external motivation is universally positive for all the regions.

London and East Midlands are located in the far north-west as the most influential net transmitters

of income growth shocks whereas North East & York is positioned at the far south-east as the most

passive receiver. Wales still maintains a rather independent position with its coordinate pair close

to (0,0). Interestingly, North West is now located at the south-west quadrant with slightly negative

net effects.

In sum, we have identified London and East Midlands as the most influential transmitters of

population and income growth shocks affecting the house price changes in the UK. However, our

findings do not provide full support for the London-centric view of ripple effects where house price

appreciation begins in South East and London before spreading to the rest of the country. The

24Both EMi and SIi stay within [−1, 1]. If EMi → 1(−1), then the house market condition in region i is
dominated by positive (negative) RSIs, as opposed to direct effects. If region i receives contradictory spill-ins and/or
if the magnitude of RSI is small in comparison to direct effects, then EMi → 0. If 0 ≤ SIi ≤ 1 (−1 ≤ SIi ≤ 0), then
region i is a net shock transmitter (receiver). If SIi is close to zero, then region i is neutral with its RSOs matching
its RSIs.
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ripple effects originated from London may have eventually spread to North East & York and South

West via spatial interactions with East Midlands and South East. But, we fail to detect evidence

that this effect does spread to North West and Wales. Both regions seem to have their own house

market drivers, because North West has the second largest urban area in the UK while Wales is a

country with its own economic development strategy, see also Chelva and Shin (2017).

6 Concluding Remarks

In this paper, we have developed a unifying econometric framework for the analysis of heterogeneous

panel data models that can account for spatial dependence and common factors, simultaneously. In

particular, we develop a CCEX-IV estimation procedure, that approximates unobserved factors by

CSA of the regressors, and then deals with the spatial endogeneity through employing the (internal)

instrumental variables.

We show that the individual parameters can be estimated consistently by applying the de-

factored IVs directly to the original regressions and the resulting estimators are asymptotically

normal-distributed. We also establish
√
N -consistency and asymptotic normality for the Mean

Group estimator. By contrast, we find that the Pooled estimator is inconsistent in the presence of

parameter heterogeneity. This is a new finding, extending the work by Pesaran and Smith (1995)

who establish that the Pooled estimator is inconsistent in heterogeneous dynamic panels.

Monte Carlo simulations confirm that the finite sample performance of the proposed estimators

is quite satisfactory. We also demonstrate the usefulness of our approach with an application to

the house price growth for Local Authority Districts in the UK over 1997Q1-2016Q4.

We conclude by noting a few avenues for future research. A natural extension is to develop a

dynamic heterogeneous spatial panel data model with interactive effects, which can shed further

lights on improving our understanding of the dynamic network, e.g., Shin and Thornton (2020).

Another extension is the development of nonlinear/quantile heterogeneous panel data models with

spatial dependence and common factors. In particular, the CCEX estimator can be easily extended

to developing the binary choice model with unobserved factors, e.g., Boneva and Linton (2017).

Finally, as discussed in Remark 3, we aim to develop the GMM estimation procedure using both

linear and quadratic moment conditions.
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(a) CCEX-IV estimates of ρi (b) CCE-IV estimates of ρi

(c) CCEX-IV estimates of βpop
i (d) CCE-IV estimates of βpop

i

(e) CCEX-IV estimates of βinc
i (f) CCE-IV estimates of βinc

i

Figure 1: The Spatial Patterns of Individual Coefficients for LADs
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(a) The population growth (b) The income growth

Figure 2: Regional GCM Analysis

Table 6: Mean Group Estimation Results at the Regional and National Level

Region Nr ρ̂MG,r β̂pop
MG,r β̂inc

MG,r CD test α̂ Nr ρ̂MG,r β̂pop
MG,r β̂inc

MG,r CD test α̂

CCEX-IV Estimation CCE-IV Estimation
North East&York 26 0.699‡ 2.504‡ 0.161 1.44 0.65 24 0.415‡ 2.077† 0.421∗ 0.40 0.60

(0.041) (0.917) (0.185) [0.15] (0.04) (0.086) (1.004) (0.246) [0.69] (0.04)
North West 33 0.596‡ 1.340∗ 0.283 4.97 0.76 32 0.346‡ 1.164 0.284 3.03 0.63

(0.053) (0.813) (0.199) [0.00] (0.04) (0.091) (0.852) (0.188) [0.00] (0.04)
East Midlands 35 0.633‡ 0.492 0.863‡ 6.38 0.76 36 0.064 0.680 0.724‡ 3.14 0.65

(0.038) (0.726) (0.138) [0.00] (0.05) (0.091) (0.512) (0.155) [0.00] (0.02)
West Midlands 24 0.539‡ 0.352 0.862‡ 6.86 0.79 26 0.078 0.258 0.366 0.79 0.54

(0.062) (1.022) (0.338) [0.00] (0.04) (0.092) (0.738) (0.420) [0.43] (0.03)
East of England 40 0.550‡ 0.963 0.747‡ 13.28 0.82 36 0.240‡ 1.605† 0.455‡ 2.44 0.68

(0.051) (0.770) (0.261) [0.00] (0.04) (0.069) (0.765) (0.194) [0.02] (0.04)
London 25 0.400‡ 0.161 1.059‡ 2.83 0.70 25 0.308‡ 1.693‡ 0.629‡ 0.83 0.60

(0.081) (0.660) (0.332) [0.00] (0.03) (0.075) (0.589) (0.262) [0.41] (0.04)
South East 59 0.512‡ 0.194 0.632∗ 13.86 0.82 60 0.145‡ -0.360 0.707‡ 10.88 0.76

(0.044) (0.653) (0.323) [0.00] (0.04) (0.056) (0.624) (0.166) [0.00] (0.03)
South West 21 0.668‡ 2.453‡ 0.187 7.68 0.81 26 0.200† 0.754 0.231 2.59 0.74

(0.057) (0.810) (0.156) [0.00] (0.04) (0.096) (0.691) (0.297) [0.01] (0.03)
Wales 19 0.605‡ 0.972 0.573‡ 1.79 0.70 16 0.470‡ 0.889 0.409∗ -1.51 0.61

(0.069) (0.855) (0.162) [0.00] (0.04) (0.089) (0.902) (0.244) [0.13] (0.03)
England&Wales 282 0.569‡ 0.922‡ 0.557‡ 9.04 0.68 281 0.225‡ 0.821‡ 0.505‡ 0.73 0.56

(0.019) (0.272) (0.079) [0.00] (0.03) (0.028) (0.251) (0.078) [0.46] (0.02)

Notes: All the Mean Group estimates are calculated as simple averages from district level parameter estimates and the standard errors in

() are calculated using the formula in (24). The superscripts ‡,† and ∗ denote the significance at 1, 5 and 10% level. CD test is the statistic

for the null of weak cross section dependence proposed by Pesaran (2015) with the figure in [] indicating the p-value. α̂ is the estimate of

exponent of cross section dependence proposed by Bailey et al. (2016b) with the figure in () indicating the standard error.
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Table 7: Three-Year Average (2014-2016) of Demographic Statistics for Each Region

Region North
East

North
West

Yorkshire
& Humber

East
Midlands

West
Midlands

East of
England London

South
East

South
West Wales

Population Density

(people/km2)
308 515 354 305 451 323 5620 476 233 151

Per Capita Income (£)
15725 16833 16224 16921 16667 19995 26862 22218 19079 15754

House Price (£)
150753 170169 169996 182726 192571 274760 538803 324207 247792 163723

Household Growth (%)
2.48 0.73 1.38 -0.57 0.84 0.72 0.54 0.53 1.18 2.24

Table 8: Regional Direct, Spill-in, Spill-out and Net Effects

Region North East
& York

North
West

East
Midlands

West
Midlands

East of
England London

South
East

South
West Wales

Population Growth
Regional Connectedness Matrix (%)

North East & York 563.55 24.20 60.41 0.04 0.02 0.00 0.00 0.00 0.00
North West 2.10 273.57 -0.01 5.10 0.00 0.00 0.00 0.00 -0.39

East Midlands 1.38 4.94 83.18 -1.19 0.14 -0.01 9.90 0.01 0.00
West Midlands 0.04 0.57 1.11 110.02 0.00 0.00 -0.02 7.59 2.53
East of England 0.04 0.00 0.02 0.00 158.56 19.97 -6.57 0.00 0.00

London 0.00 0.00 0.00 0.00 -4.17 31.59 -6.98 0.00 0.00
South East 0.00 0.00 -0.05 0.30 11.79 14.72 78.48 0.04 0.00
South West 0.07 0.22 0.04 0.86 0.00 0.01 21.83 494.13 7.66

Wales 0.04 5.02 0.02 1.05 0.00 0.00 0.00 4.76 442.10
Regional Effects (%)

RSI 84.68 6.80 15.17 11.82 13.46 -11.15 26.8 30.71 10.90
RSO 3.68 34.97 61.54 6.17 7.79 34.69 18.16 12.39 9.80
RNE -81.00 28.17 46.36 -5.65 -5.67 45.84 -8.64 -18.31 -1.10

Personal Income Growth
Regional Connectedness Matrix (%)

North East & York 84.27 -2.46 20.79 0.10 0.00 0.00 0.00 0.00 0.00
North West 0.36 44.66 0.02 1.57 0.00 0.00 0.00 0.00 0.08

East Midlands 0.84 0.03 182.64 1.44 0.09 0.02 2.67 0.00 0.00
West Midlands 0.04 0.20 0.50 93.50 0.00 0.00 0.01 -0.02 0.86
East of England 0.00 0.00 2.59 0.00 99.40 5.90 0.49 0.00 0.00

London 0.00 0.00 0.00 0.00 1.01 150.43 1.72 0.00 0.00
South East 0.00 0.00 0.450 0.17 9.40 15.85 160.55 0.21 0.00
South West 0.02 0.02 0.06 0.62 0.01 0.04 2.69 22.93 1.86

Wales 0.02 0.01 0.02 -0.01 0.00 0.00 0.01 0.05 121.97
Regional Effects (%)

RSI 18.44 2.03 5.09 1.58 8.98 2.73 26.08 5.31 0.10
RSO 1.28 -2.21 24.44 3.88 10.52 21.81 7.59 0.23 2.80
RNE -17.16 -4.23 19.34 2.30 1.54 19.08 -18.49 -5.08 2.71
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