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Dynamic Network Quantile Regression Model

Xiu Xu ∗ Weining Wang † Yongcheol Shin ‡ Chaowen Zheng§

Abstract

We propose a dynamic network quantile regression model to investigate the

quantile connectedness using a predetermined network information. We extend the

existing network quantile autoregression model of Zhu et al. (2019b) by explicitly al-

lowing the contemporaneous network effects and controlling for the common factors

across quantiles. To cope with the endogeneity issue due to simultaneous network

spillovers, we adopt the instrumental variable quantile regression (IVQR) estima-

tion and derive the consistency and asymptotic normality of the IVQR estimator

using the near epoch dependence property of the network process. Via Monte Carlo

simulations, we confirm the satisfactory performance of the IVQR estimator across

different quantiles under the different network structures. Finally, we demonstrate

the usefulness of our proposed approach with an application to the dataset on the

stocks traded in NYSE and NASDAQ in 2016.
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1 Introduction

The topology of financial networks is central to the study of financial contagion and

systemic risk, see Fafchamps and Gubert (2007), Acemoglu et al. (2015), Hautsch et al.

(2015) among others. Given the relevance of tail dependence for financial supervision and

risk management (Betz et al., 2016), a joint analysis of network effect and tail dependence

becomes more important because the implications derived from network models evaluated

by conventional conditional mean estimators cannot necessarily be generalized to the

tails. Ando et al. (2021) show that major adverse events are associated with an increase

in average connectedness but that their effects on the tails significantly differ.

Quantile regression (QR) has been a powerful tool for characterizing the heterogeneous

policy impacts and measuring tail-event driven risk (e.g. Härdle et al. (2016)). Following a

seminal work by Bassett and Koenker (1978), QR can be used to evaluate the entire range

of the conditional distribution. Recently, the literature on quantile time series regression

has been rapidly growing. Koenker and Xiao (2006) propose a quantile autoregressive

model while Galvao et al. (2013) study QR in an autoregressive dynamic framework

with exogenous stationary covariates. Following the analysis of quantile cointegration in

Xiao (2009), Cho et al. (2015) bring QR to the autoregressive distributed lag (ARDL)

model literature. The quantile ARDL process captures both the long-run and short-run

relationships at any desired location in the conditional distribution. Engle and Manganelli

(2004) advance a conditional autoregressive value at risk model whilst White et al. (2015)

propose a vector autoregressive (VAR) model for analyzing quantile dynamics.

However, in most financial systems, multiple entities are often intertwined and inter-

acted with each other, which can be represented as networks (Hautsch et al., 2015; Härdle

et al., 2016; Chen et al., 2019). In this context, Zhu et al. (2017) develop a network au-

toregression (NAR) model, which has gained great popularity in social network analysis.

A number of extensions have been developed. Zhu et al. (2020) consider a multivariate

spatial autoregression model. Zhu et al. (2019a) investigate a screening method to select

influential nodes. Zhu (2020) studies nonconvex penalized estimation methods in high-

dimensional VAR models while Zhu and Pan (2020) extend the network VAR model to

allow for group-specific parameters.
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In particular, Zhu et al. (2019b) extend the NAR model by Zhu et al. (2017) and

propose a network quantile autoregression (NQAR) model in order to analyze tail depen-

dency in a dynamic network with a large number of nodes. The NQAR model consists

of a system of equations, in which a continuous response is related to its lagged con-

nected nodes, the response of the same node in the previous time period as well as node

specific characteristics in a quantile autoregression process. However, main weakness of

the NQAR model lies in that it does not accommodate the contemporaneous impact of

connected nodes, even though the simultaneous network/peer effects are pervasive in em-

pirical studies (Liu, 2014; Forni and Gambetti, 2010). If they are statistically significant,

the estimation of the NQAR model would become inconsistent and misleading.

In this paper, as a main contribution, we extend the NQAR model and propose a

general dynamic network quantile regression model (DNQR) by explicitly incorporating

contemporaneous and lagged network effects of connected nodes as well as the impacts

of node-specific variables and observed common effects. Notice, however, that the simul-

taneous network effects are inherently endogenous to the system, which leads to incon-

sistent estimates at conditional mean regression as well as in QR, see Wüthrich (2019,

2020); Chernozhukov et al. (2020). To cope with the endogeneity issue in the different

contexts, many studies have attempted to apply the instrumental variable quantile re-

gression (IVQR) estimation advanced by Chernozhukov and Hansen (2006), e.g. Frölich

and Melly (2013), Su and Hoshino (2016) and Machado and Silva (2019).

To deal with this challenging issue we adopt the IVQR approach. The social network

data are similar to the spatial data, in the sense that observations from connected users

are correlated. This makes the spatial autoregressive model good candidate for network

data analysis. However, our work can be regarded as a nontrivial extension of Su and

Yang (2011), who apply the IVQR approach to analyzing the cross-section data using a

linear spatial autoregressive model, to a dynamic network quantile model with nodal het-

erogeneity and common factors, which can shed further lights on uncovering the complex

tail dependency in dynamic networks with a large number of nodes and time periods.

Our study is also closely related to the growing literature on the tail comovements in a

complex financial system, see Diebold and Yilmaz (2014), Hautsch et al. (2014), White

et al. (2015) and Ando et al. (2021).
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More importantly, we follow Jenish and Prucha (2012) and Xu and Lee (2015), and de-

velop the general asymptotic theory for the IVQR estimator by applying the spatial near

epoch dependence (NED) of the underlying network processes. We derive the detailed

conditions on the network processes in order to establish the consistency and asymptotic

normality of the IVQR estimator. Via Monte Carlo simulations, we confirm that the

finite sample performance of the IVQR estimator is satisfactory across quantiles and the

different error distributions under the different network structures.

Finally, we demonstrate the utility of our approach with an application to the dataset

on the stocks traded in NYSE and NASDAQ in 2016, through the common shareholder

network constructed using the information on the common mutual fund ownership, e.g.

Anton and Polk (2014). We find that the contemporary network effects (measured by

returns of connected stocks in the same period) are positive and significant and dominate

all the other effects across all quantiles. Furthermore, they are stronger at the lower tails

than at the upper tails, suggesting that the contemporaneous network effects should be

explicitly and carefully analysed in the dynamic network quantile model.

This paper proceeds as follows. In Section 2 we outline the DNQR model and derive

the stationarity condition of the underlying network process. Section 3 introduces the

IVQR estimation and develops its asymptotic properties using the spatial NED approach.

In Section 4 we provide simulation results, showing that the IVQR estimation performs

satisfactory. In Section 5 the DNQR model is applied to the US financial market data.

Section 6 provides concluding remarks. The mathematical proofs and the additional

simulation and empirical results are presented in the Online Appendix. The replication

code can be found here on GitHub.

Notations: For a vector v = (v1, . . . , vm)⊤ ∈ Rm, we denote |v|k = (∑m
i=1 |vi|k)1/k,

∥v∥k = (∑m
i=1 E |vi|k)1/k, and |v|∞ = maxi≤m |vi|, where k is a positive integer, and E

is the expectation operator. For any n × m matrix A = (aij)1≤i≤n,1≤j≤m, we define the

two norm and the max norm by |A|2 = sup{v∈Rm,|v|2=1} |Av|2 and |A|max = maxi,j |aij|,

respectively. Define the column-sum and the row-sum by ∥A∥1 = max
1⩽j⩽m

n∑
i=1

|aij| and

∥A∥∞ = max
1⩽i⩽n

m∑
j=1

|aij|. We write an = O(bn) or an ≲ bn if there exists a positive constant

C such that an/bn ⩽ C for all large n, and denote an = o(bn) (resp. an ∼ bn), if an/bn → 0
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(resp. an/bn → c for a positive constant c). For two sequences of random variables (Xn)

and (Yn), we write Xn = op(Yn) if Xn/Yn → 0 in probability. Let IN be an N×N identity

matrix, I(·) the indicator function, 1N a N × 1 vector with each element as one, and N

the integer set.

2 The Model

Consider the large scale network time series data with N nodes for 1 ⩽ i ⩽ N , and T

time periods for 1 ⩽ t ⩽ T , which is observationally equivalent to a regular panel data.

To describe their relationship, we construct an adjacency matrix, A = (aij) ∈ RN×N ,

where aij = 1 if the node i follows the node j, and aij = 0 otherwise. We do not allow

the self-following relation, aii = 0. Define the row-normalised network matrix as W =

(wij) ∈ RN×N , where wij = n−1
i aij and ni = ∑N

j=1 aij. Let Yt = (Y1t, · · · , YNt)⊤ ∈ RN be

the continuous response (e.g., tweet length) collected at time t, and Uit be a sequence of

i.i.d. uniform random variables on the set [0, 1].

We then consider the following DNQR model:

Yit = γ0
0(Uit) +

q∑
l=1

α0
l (Uit)Zil + γ0

1(Uit)
N∑

j=1
wijYjt (1)

+ γ0
2(Uit)

N∑
j=1

wijYj,t−1 + γ0
3(Uit)Yi,t−1 +

p∑
k=0

F⊤
t−kβ

0
k(Uit)

def= h(Uit, Zi1, . . . , Ziq,
N∑

j=1
wijYjt,

N∑
j=1

wijYj,t−1, Yi,t−1, Ft, . . . , Ft−p),

for i = 1, · · · , N and t = 1, · · · , T , where γ0
j (·) for j = 0, 1, 2, 3, α0

l for l = 1, · · · , q,

and each elements in β0
k ∈ Rm for k = 0, 1, · · · , p are unknown parameter functions

from [0, 1] to R, and the superscript 0 is used to denote the true value of parameters.

Zi = (Zi1, · · · , Ziq)⊤ ∈ Rq is a q× 1 vector of time-invariant node-specific covariates, and

Ft = (Ft1, · · · , Ftm)⊤ ∈ Rm is an m × 1 vector of time-varying common covariates that

capture the systematic influences on response variable Yit.

If the right hand side of the DNQR model (1), i.e. h(u, · · · ), is monotonically in-

creasing in u with other values fixed at any point, then we can write the τ -th conditional
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quantile function of Yit as

QYit
(τ |Ft) = γ0

0(τ) +
q∑

l=1
α0

l (τ)Zil + γ0
1(τ)

N∑
j=1

wijYjt (2)

+ γ0
2(τ)

N∑
j=1

wijYj,t−1 + γ0
3(τ)Yi,t−1 +

p∑
k=0

F⊤
t−kβ

0
k(τ),

where Ft = {Z1, · · · , ZN ,Yt−1,Yt, Ft, Ft−1, · · · , Ft−p} is the information set. The first

component, γ0
0(τ)+∑q

l=1 α
0
l (τ)Zil is the quantile-specific nodal impact of the node i, where

γ0
0(τ) is the baseline function and Zils are assumed to be independent from Uits. Next,

network interactions between nodes are captured via both contemporaneous and lagged

network variables, ∑N
j=1 wijYjt and ∑N

j=1 wijYj,t−1, with γ0
1(τ) capturing the quantile-

specific simultaneous network effects and γ0
2(τ) measuring the lagged diffusion network

effects. γ0
3(τ) is the quantile-specific momentum function, capturing the temporal dy-

namics for the same node. Furthermore, we control for the dynamic impacts of the

(observed) common macroeconomic and financial factors, Ft, which can mitigate any

remaining common shock effect in the data.

Let Ft = (F⊤
t , · · · , F⊤

t−p)⊤ ∈ R(p+1)m. Define A0t = (γ0
0(Uit) + ∑q

l=1 α
0
l (Uit)Zil, 1 ⩽ i ⩽

N)⊤ ∈ RN , A1t = diag{γ0
1(Uit), 1 ⩽ i ⩽ N} ∈ RN×N , A2t = diag{γ0

2(Uit), 1 ⩽ i ⩽ N} ∈

RN×N , A3t = diag{γ0
3(Uit), 1 ⩽ i ⩽ N} ∈ RN×N , and Bt = ((β0⊤

0 (Uit), · · · , β0⊤
p (Uit))⊤, 1 ⩽

i ⩽ N)⊤ ∈ RN×(p+1)m. The DNQR model (1) can be expressed compactly in a matrix

form:

Yt = Γ + A1tWYt + HtYt−1 + BtFt + Vt, (3)

where Ht = A2tW + A3t ∈ RN×N , Γ = E (A0t), and Vt = A0t − Γ ∈ RN is i.i.d. over t

with mean 0 and variance-covariance matrix, ΣV = σ2
V IN ∈ RN×N .

Notice that the DNQR model can be regarded as a substantial extension of Koenker

and Xiao (2006), who provide a classic framework for the analysis of the random-coefficient

model in the quantile autoregression. Moreover, the DNQR model encompasses the NAR

model by Zhu et al. (2017) and the NQAR model by Zhu et al. (2019b), through jointly

incorporating contemporaneous and lagged network effects of connected nodes as well as

exogenous common effects.

We show that the DNQR model is subject to the endogeneity issue due to contempo-
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raneous network spillovers across nodes. Consider a simple two-equation system:

Y1t = γ0
0(U1t) + γ0

1(U1t)a12Y2t, (4)

Y2t = γ0
0(U2t) + γ0

1(U2t)a21Y1t. (5)

Assuming that 1 − a21a12γ
0
1(U1t)γ0

1(U2t) ̸= 0, we obtain the following solutions:

Y1t = (γ0
0(U1t) + γ0

0(U2t)γ0
1(U1t)a12)/(1 − a21a12γ

0
1(U1t)γ0

1(U2t)), (6)

Y2t = (γ0
0(U2t) + γ0

0(U1t)γ0
1(U2t)a21)/(1 − a21a12γ

0
1(U1t)γ0

1(U2t)). (7)

As Y1t is a function of U1t and U2t, the monotone argument cannot be applied because

P
(
Yit ⩽ γ0

0(τ) + γ0
1(τ)Y it|Y it

)
̸= τ a.s. for i = 1, 2, (8)

where Y 1t = a12Y2t and Y 2t = a21Y1t. This shows that the endogeneity is caused by the

contemporaneous network term, Y it.

The simultaneous network spillover would cause inconsistency. Consider the simple

mean regression, Yit = λ
∑

j ̸=i wijYjt + εit. Let wi = (wi1, ..., wij, ..., wiN)⊤ ∈ RN , and w̃ij

as the (i, j) element of the matrix (IN − λW )−1. Assuming that E(εitεjt) = 0 if i ̸= j

and E(ε2
it) = σ2

i , then the bias term (the average correlation between the endogenous

variable and the error term) will be of the order, limN,T →∞(NT )−1 ∑
i

∑
t E(w⊤

i Ytεit) =

limN→∞N
−1 ∑

i

∑
j ̸=i wijw̃jiσ

2
i ≲ c, where c is a constant. This is not negligible to zero

unless limN→∞N
−1 ∑

i

∑
j ̸=i wijw̃jiσ

2
i = o(1). Thus, the estimation is likely to be biased

unless the link of the network is very weak. In the quantile case, the leading bias term

will be of the order:

limN,T →∞(NT )−1 ∑
i

∑
t

E((τ − I(εit,τ ⩽ 0))w⊤
i Yt), (9)

which does not tend to zero, where εit,τ = Yit −QYit
(τ |Yt) is the τ -th QR error.

The nontrivial estimation issue for the DNQR model lies in that the endogeneity

caused by contemporaneous network spillovers renders the ordinary QR estimator to be

inconsistent. Chernozhukov and Hansen (2005, 2006, 2008) propose the IVQR approach
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to estimating quantile treatment effects and develop the robust inference. Chernozhukov

et al. (2020) develop a novel technique to constructing simultaneous confidence bands for

quantile functions and quantile effects in nonlinear network panels.

We follow the IVQR approach to cope with the simultaneous network endogeneity.

Notice that Su and Yang (2011) apply the IVQR approach to an analysis of the cross-

section data using a linear spatial autoregressive model. However, our work can be

regarded as a nontrivial extension of Su and Yang (2011) to a dynamic network quantile

model with nodal heterogeneity and common factors, which can shed further lights on

uncovering the complex tail dependency in dynamic networks with a large number of

nodes and time periods. More importantly, we derive a general asymptotic theory by

using the spatial NED property of the network process in Section 3.2.

It is worthy to note that one can possibly explore GMM method to estimate the

DNQR model. As noted in Chernozhukov and Hansen (2006), the IVQR estimator is

asymptotically equivalent to a GMM estimator and some researcher have also developed

exact computation of the GMM estimates of the IVQR parameters, see Chen and Lee

(2018) and Firpo et al. (2021). Under the GMM framework, we would also have more

issues that deserve investigation, e.g. the efficiency of the estimation. We leave these for

further research directions.

2.1 Stationarity

In this section we derive the stationarity conditions for Yt in (3), and its asymptotic

distribution. Notice that the DNQR model can easily produce predictions of quantiles,

Q̂Yit
(τ |Ft), given the network structure and the data history, by plugging the estimated

parameters into (2). To this end, it is important to derive the conditions under which

the network process is stationary. Further, stationarity may be required to identify some

parameters. For example, if we wish to uncover the variance structure of series of interest,

it would be crucial to check whether it changes over time or not.

Define St = IN − A1tW . Then, we make the following assumptions:

Assumption 2.1. (1) Let Υ = maxi |γ0
1(Uit)| ⩽ c1 < 1 and |W |2 ⩽ 1, where W is a row
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normalized network matrix with ∑N
j=1 wij = 1, and c1 is a positive constant. Assume that

Uit and Zi are i.i.d. over i and t, and Ft are i.i.d. The kth moments of Ft and Zi are

finite, k > 2.

(2) maxi |γ0
2(Uit)| + maxi |γ0

3(Uit)| ⩽ c23 < 1 and c1 + c23 < 1, where c23 is a positive

constant.

(3) maxi |γ0
0(Uit)| + maxi

∑q
l=1 |α0

l (Uit)||Zil| ⩽ dz, and |Bt|∞|Ft|1 ⩽ df , where dz and

df are random variables with bounded moments. Let Dt = S−1
t (BtFt +A0t) with D = EDt

and the elementwise maximum value Dmax < ∞. Then, maxt | E{vec(Dt−l1D⊤
t−l1)}|∞ ⩽

σd max < ∞, where l1 = (0, 1, · · · , t− 1).

(4) The right hand side of the model (1), i.e. h(u, · · · ), is monotonically increasing

in u ∈ [0, 1].

Assumption 2.1(1) assures the invertibility of St. The model (3) has a unique solution

if and only if every principal minor of IN − A1tW is positive, which is met by Assump-

tion 2.1(1), though it is only a sufficient condition. Assumption 2.1(2) is necessary to

obtain the strict stationarity of {Yt}t. Under Assumptions 2.1(2) and (3), the covariance

stationarity can be achieved. Then, we have the following lemma.

Lemma 2.1. Let Cz
def= σ(Z1, · · · , ZN), where σ(·) denotes a sigma field. Then, under

Assumption 2.1 and conditional on Cz, the process {Yt}t is strictly stationary as well as

covariance stationary.

We introduce the NED concept in Section 3.2 to ensure that the dependency of the

processes is decaying appropriately, which is the key in proving the consistency and

asymptotic normality of the proposed IVQR estimator. In sum, stationarity is required

for moment estimation and forecasting while the NED property is utilized to prove the

parameter consistency and asymptotic normality.

Once Yt is shown to be strictly stationary, Yt is covariance stationary if Var(Yt) and

Γl = Cov(Yt,Yt−l) exist. Rewrite the model (3) as

Yt = S−1
t HtYt−1 + S−1

t BtFt + S−1
t A0t (10)
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where St = IN − A1tW . Then we have the following covariance stationary solution:

Yt =
∞∑

l=0
ΠlDt−l =

∞∑
l=0

ΠlS
−1
t−lBt−lFt−l +

∞∑
l=0

ΠlS
−1
t−lA0t, (11)

where Dt = S−1
t (BtFt + A0t), Mt = S−1

t Ht and Πl = Mt × · · · × Mt−l+1 for l > 1 with

Π0 = IN and Π1 = Mt. In the Online Appendix A.1 we prove that the covariance of Yt

exist under Assumption 2.1.

2.2 Asymptotic Stationary Distribution

Define any vector a ∈ RN with |a|2 = 1 and fixed d number of non zero elements. Let

Ỹt = Yt −µY, LT = ∑T
t=1 a

⊤Ỹt, and Lt = L⌊t⌋ +(t−⌊t⌋)a⊤Ỹ⌊t⌋+1, t ⩾ 1, where µY = E(Yt)

and ⌊t⌋ = max{k ∈ Z : k ⩾ t} is the floor function. We then show that the average

response is asymptotically normally distributed.

Theorem 1. Consider any vector a ∈ RN with |a|2 = 1 and fixed d < N number of

nonzero elements. Under Assumption 2.1 and conditional on Cz, then

LT ν√
T

⇒ σaYB(ν), 0 ⩽ ν ⩽ 1 (12)

where σ2
aY

def= ∑
l⩾0 a

⊤Γla is the long run variance of a⊤Ỹt and B(ν) (0 ⩽ ν ⩽ 1) is a

Brownian motion.

Remark For ν = 1, Theorem 1 implies:

√
T (a⊤(Y − µY)) L−→ N(0, σ2

aY), as T → ∞. (13)

where Y = T−1 ∑T
t=1 Yt. Thus, the mean of Yt converges in law to a normal distribution.

3 The IVQR Estimation

We first introduce the estimation algorithms of the IVQR approach. We then discuss the

underlying assumptions and develop the asymptotic theories.
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3.1 IVQR Estimator

Suppose that there exists an N × ℓ matrix of instrumental variables (IV), denoted Rt =

(R1t, · · · , RNt)⊤ ∈ RN×ℓ, which is assumed to be independent of Uit. Then, we have the

following quantile conditions:

P
(
Yit ⩽ γ0

1(τ)Y it +X⊤
it ϕ

0(τ)|Xit, Rit

)
= τ a.s. (14)

where Y it = ∑N
j=1 wijYjt and Xit =

(
1, Z⊤

i , Y i,t−1, Yi,t−1, F
⊤
t , · · · , F⊤

t−p

)⊤
with ϕ0(τ) =

[γ0
0(τ), α0

1(τ), ..., α0
q(τ), γ0

2(τ), γ0
3(τ), β0⊤

0 (τ), ..., β0⊤
p (τ)]⊤ ∈ R3+q+(p+1)m. The above condi-

tional probability is a measurable function of (Xit, Rit).

In general, the valid IVs should satisfy the quantile conditions in (14), and do not

lead to collinearity among Rit and Xit. See Theorem 3 for the asymptotic formula of the

variance matrix of the IVQR estimator. The estimation efficiency will be improved by

choosing Rit appropriately. Following the literature (see e.g. Su and Yang (2011)), we

may choose Rit to be the higher network orders of lagged dependent variables such as

e⊤
i W

2Yt−1, [e⊤
i W

2Yt−1, e
⊤
i WYt−2] and so on, where ei is a vector with unity on the i-th

element and zeros otherwise. Based on the satisfactory simulation evidence reported in

Section 4, we suggest using [e⊤
i W

2Yt−1, e
⊤
i W

3Yt−1] as IVs.

To solve (14) we need to find the unknown true parameters (γ0
1(τ), ϕ0⊤(τ))⊤ such that

0 is a solution to the quantile estimation of Yit − γ0
1(τ)Y it −X⊤

it ϕ
0(τ) on Rit:

0 ∈ arg min
g∈G

E
[
ρτ

{
Yit − γ0

1(τ)Y it −X⊤
it ϕ

0(τ) − g (Rit)
}]
, (15)

where G is the class of measurable functions of Rit and ρτ (u) = u{τ − I(u < 0)} is

the check function with I(·) the indicator function. We then restrict G to the class of

linear-in-parameter functions:

G = {g (Rit) = R⊤
itλ(τ) : λ ∈ Λ}, (16)

where Λ is a compact set in Rℓ. Alternatively, we may construct the transformed IVs by

the least squares projection of Y it on Rit as in Chernozhukov and Hansen (2005, 2006).
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Then, we obtain the sample analogue of the objective function:

Q(γ1(τ), ϕ(τ), λ(τ)) =
N∑

i=1

T∑
t=1

[
ρτ

{
Yit − γ1(τ)Y it −X⊤

it ϕ(τ) −R⊤
itλ(τ)

}]
. (17)

Let θ(τ) = (γ1(τ), ϕ⊤(τ))⊤ and η(τ) = (ϕ⊤(τ), λ⊤(τ))⊤. The IVQR estimator,

(γ̂1(τ), ϕ̂⊤(τ), λ̂⊤(τ))⊤, obtained by minimizing (17), is expected to converge to the true

parameters, (γ0
1(τ), ϕ0⊤(τ),0⊤)⊤. For a given value of endogenous parameter, γ̃1(τ), over

a grid set of the interval (−1, 1), we first run the ordinary QR of Yit−γ̃1(τ)Y it on (Xit, Rit)

and obtain the corresponding estimator, denoted η̂(γ̃1(τ), τ) =
[
ϕ̂⊤(γ̃1(τ), τ), λ̂⊤(γ̃1(τ), τ)

]⊤
.

Next, we select γ̃1(τ) which minimizes |λ̂(γ̃1(τ), τ)|22 over the interval (−1, 1), denoted as

γ̂1(τ). The IVQR estimator of θ(τ) is then obtained by θ̂(τ) = (γ̂1(τ), ϕ̂⊤(γ̂1(τ), τ))⊤.

For a given quantile index τ , the IVQR estimation can proceed as follows:

Step 1. For a given value of γ̃1(τ), run the QR of Yit − γ̃1(τ)Y it on (X⊤
it , R

⊤
it)⊤ and

obtain:

η̂(γ̃1(τ), τ) = arg min
(ϕ,λ)

Q(γ̃1(τ), ϕ(τ), λ(τ)). (18)

Step 2. Minimize a weighted norm of λ̂(γ̃1(τ), τ) over γ̃1(τ) to obtain the IVQR

estimator of γ1(τ):

γ̂1(τ) = arg min
γ̃1∈(−1,1)

λ̂⊤(γ̃1(τ), τ) A λ̂(γ̃1(τ), τ), (19)

where A is some positive definite matrix. Without loss of generality we set A = I

throughout the paper.

Step 3. Run the QR of Yit−γ̂1(τ)Y it on Xit, and obtain the estimator of ϕ(τ), denoted

ϕ̂(τ) = ϕ̂(γ̂1(τ), τ). Finally, we obtain the IVQR estimator by

θ̂(τ) = (γ̂1(τ), ϕ̂⊤(τ))⊤ = (γ̂1(τ), ϕ̂⊤(γ̂1(τ), τ))⊤. (20)
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3.2 Asymptotic Theory

To develop the asymptotic theory for the IVQR estimator, we need to deal with some

topological properties of Yt that are spatially and temporally dependent. We follow

Jenish and Prucha (2009, 2012) and utilize NED to address the spatial dependence of

the statistics. The derivation of the asymptotic property follows from the standard M-

estimation, including the quantile loss function as a special case. First, conditional on the

common factors, we show in Section 3.2.1 that the elements of {Yt}t is an NED process.

Then, in Section 3.2.2, we derive the asymptotic distribution of the IVQR estimator

under certain regularity conditions. As we aim to apply the DNQR model to a network

dataset with the large number of nodes and time periods, we mainly employ the large

N and large T asymptotics, though the asymptotic theory can be equally developed for

large T and fixed N or fixed N and large T (as pointed out by an anonymous referee.)

3.2.1 NED Properties of the Network Processes

The NED process definition adopted in this paper is developed by Jenish and Prucha

(2012) that extends the notion of NED processes used in the time series to random fields.

It is a more generalized dependence concept than the mixing dependence. The resulting

process therefore can accommodate a wide range of models with weak spatial dependence.

In particular, the NED property is preserved under general data transformations that does

not necessarily hold for a mixing process. We first review some theories of NED random

fields in Jenish and Prucha (2012).

The observations for each node can be modeled as a realization of a dependent het-

erogeneous process indexed by a point in Rd with d ⩾ 1. We consider a random field

D ⊆ Rd. The space Rd is endowed with the metric ρ(j, j′) = max1⩽l⩽d |jl − j′
l| with the

corresponding norm, |j| = max1⩽l⩽d |jl|, where jl is the l-th element of j. The distance

between any subsets U, V ⊆ D is defined as ρ(U, V ) = inf{ρ(j, j′) : j ∈ U and j′ ∈ V }.

Let |U | denote the cardinality of a finite subset, U . In the two dimensional case with

d = 2 and j = j(i, t), we have: ρ((i, t), (i′, t′)) = max(|i− i′|, |t− t′|).

Assumption 3.1. Let the lattice DNT ⊆ D ⊆ Rd with d = 2, be countably infinite, where
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the cardinality of DNT satisfies lim
N,T →∞

|DNT | → ∞. Then, ρ(j, j′) ⩾ ρ0,∀j, j′ ∈ D, where

ρ0 is a constant. We set ρ0 = 1 w.l.o.g.

The minimum distance assumption in Assumption 3.1 is used for increasing domain

asymptotics. It ensures the growth of the sample size as the sample regions DNT ex-

pands. The setting is introduced in Jenish and Prucha (2012) for spatial mixing and

NED processes. Note that the space D can be a space of socio-economic characteristics

or geographical space, and the metric is not restricted to physical distance.

Definition 3.1 (NED). Let Z = {Zit, (i, t) ∈ DNT , NT ⩾ 1} and ζ = {ζit, (i, t) ∈

DNT , NT ⩾ 1} be random fields with ∥Zit∥p′ < ∞ for p′ ⩾ 1, where DNT ⊆ D with its

cardinality given by |DNT | = NT . Let {dit, (i, t) ∈ DNT , NT ⩾ 1} be an array of positive

constants. Then, the random field Z is Lp′-NED on the random field ζ if

∥Zit − E(Zit|Fit(s))∥p′ < ditφ(s),

for some sequence φ(s) ⩾ 0 with lim
s→∞

φ(s) = 0, where φ(s) is the NED coefficient, dit is

the NED scaling factor, and Fit(s) = σ(ζi′t′ : (i′, t′) ∈ DNT , ρ((i′, t′), (i, t)) ⩽ s) is the

σ-field generated by ζi′t′ within distance s from (i, t). If sup
N,T

sup
(i,t)∈DNT

dit < ∞, then Z is

uniformly Lp′-NED on ζ.

The above definition actually requires Zit to have decayed dependence both in terms

of the time and cross-sectional distance. Thus ψ(s) can be made arbitrarily small by

increasing the size of the neighborhood, i.e. s. In this paper, we consider the L2-NED

properties of random field Z on some α-mixing random field.

Define Cf
def= σ(Ft, · · · ,Ft−p), Cz

def= σ(Z1, · · · , ZN), where σ(·) denotes a sigma field,

and C = Cf ∪ Cz. We now discuss the NED properties of {Yit}i,t on the base {Uit}i,t,

where Fit(s) = σ(Ui′t′ , C : (i′, t′) ∈ DNT , ρ((i′, t′), (i, t)) ⩽ s) is the σ-field generated by

random vectors, Ui′t′ located within distance s from (i, t).

Notice that the innovation Uit is assumed to be i.i.d. over i and t in Assumption

2.1(1), though it is well-known that i.i.d. is a special case of α-mixing. The above

condition implies that {Uit}i,t is an α-mixing random field.
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Following Xu and Lee (2015), we outline some conditions on NED properties of Yt.

Assumption 3.2. The network matrix W is non-stochastic with zero diagonals and

uniformly bounded for all N with absolute row and column sums such that the matrix

St = IN − A1tW is nonsingular. We consider two cases for wij ⩾ 0 for any i, j.

(1) Case 1: |wij| ⩽ π0ρ(i, j)−cw with constants π0 ⩾ 0 and cw > d. In addition, there

exists at most K(⩾ 1) number of columns in W , with minu |γ0
1(u)| ∑n

i=1 |wij| > Υ, where

K is an integer and the positive constant Υ is defined in Assumption 2.1 (1).

(2) Case 2: Two nodes influence each other only if they are located sufficiently close;

namely, wij ̸= 0 if ρ(i, j) ⩽ ρ̄0 and wij = 0 otherwise, where we set the constant ρ̄0 > 1

w.l.o.g.

Assumption 3.2 is mainly used to restrict the NED coefficients, φ(s) → 0 as s →

∞. Assumption 3.2 (1) allows two individuals to have direct interaction even though

their locations are far away from each other, with the requirement that the strength of

interaction wij declines with the distance ρ(i, j) in the power of cw. This assumption

is in line with Xu and Lee (2015). By excluding a limited number of nodes K(⩾ 1),

the total effects on other units from each node should be bounded, i.e., we assume that

sup|γ0
1(u)| supj

∑N
i=1 |wij| < Υ or sup|γ0

1(u)| supj

∑N
i=1 |wij| < 1 w.l.o.g. This corresponds

to the existence of a narrow number of units with large aggregate effects on others even

as the total number of nodes rises. Assumption 3.2(2) allows two individuals to have

direct interaction only if they are located within a specific distance. Notice that this

assumption does not allow star nodes, but one can see Pesaran and Yang (2020, 2021)

and Kapetanios et al. (2021) for some extensions.

Let uit = uit(γ1, ϕ, λ, τ) = Yit − γ1(τ)Y it − X⊤
it ϕ(τ) − R⊤

itλ(τ) with the check func-

tion, ρτ (u) = (τ − I(u ⩽ 0))u and ψτ (u) = τ − I(u ⩽ 0) (the directional derivative of

ρτ (u)). Proposition 3.1 provides the NED properties of {Yit}i,t, and its transformations

{ρτ (uit)}i,t, {ψτ (uit)}i,t on the base {Uit}i,t.

Proposition 3.1. (1) Under Assumptions 2.1(1), 3.1 and 3.2(1), and conditional on C,

{Yit}i,t is uniformly L2-NED on {Uit}i,t such that ∥Yit − E(Yit|Fit(s))∥2 < Cs−(cw−d) for

cw > d and some C > 0 that does not depend on i and t. The same conclusion holds for

{uit}i,t. The transformations {ψτ (uit)}i,t and {ρτ (uit)}i,t are also L2-NED on {Uit}i,t.
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(2) Under Assumptions 2.1(1), 3.1 and 3.2(2), and conditional on C, {Yit}i,t is uni-

formly L2-NED on {Uit}it such that ∥Yit − E(Yit|Fit(s))∥2 < CΥs/ρ̄0 (Υ < 1) for some

C > 0 that does not depend on i and t. The same conclusion holds for {uit}i,t. The

transformations, {ψτ (uit)}i,t and {ρτ (uit)}i,t are also L2-NED on {Uit}i,t.

Define sit(γ0
1 , η

0(γ0
1 , τ), τ) = ψτ

{
Yit − γ0

1(τ)Y it − Ψ⊤
itη

0(γ0
1 , τ)

}
Ψit where Ψit = (R⊤

it , X
⊤
it )⊤,

šit = šit(γ0
1 , η

0(γ0
1 , τ), τ) = sit(γ0

1 , η
0(γ0

1 , τ), τ)−E sit(γ0
1 , η

0(γ0
1 , τ), τ) and E sit(γ0

1 , η
0(γ0

1 , τ), τ) =

0. Conditioning on C, it is easily seen that the process {šit}i,t is also uniformly L2-NED

on {Uit}i,t. To derive the central limit theorem for G0
NT = 1√

NT

∑N
i=1

∑T
t=1 šit =

1√
NT

∑N
i=1

∑T
t=1[sit(γ0

1 , η
0(γ0

1 , τ), τ) − E sit(γ0
1 , η

0(γ0
1 , τ), τ)], where the variance of G0

NT is

given by Ω0 = τ(1−τ) lim
N,T →∞

(NT )−1 ∑
i,t

E(ΨitΨ⊤
it |C), we make the following assumptions:

Assumption 3.3. {ρτ (uit)}i,t is uniformly Lp′-bounded for p′ > 1, i.e.,

sup(γ1,ϕ,λ,τ) supN,T sup(i,t)∈DNT
E |ρτ (uit)|p

′
< ∞, where p′ is an integer.

Assumption 3.4. (Uniform L2+δ Integrability)

(1) {šit}i,t is uniformly L2+δ integrable for some δ > 0,

i.e., lim
k→∞

sup
N,T

sup
(i,t)∈DNT

E{|šit|2+δI(|šit| > k)} = 0.

(2) Ω0 exists and is positive definite.

(3) NED coefficients of {šit}i,t satisfy: ∑∞
h=1 h

d−1φ(h) < ∞.

Assumption 3.3 imposes the moment conditions of ρτ (uit) and requires the existence

of moments of order slightly greater than 1, which is employed in weak law of large

numbers to achieve the uniform consistency. Assumption 3.4 sets the mixing coefficients

of the underlying mixing fields and is utilized for the limit theory. Since Uit is assumed

to be i.i.d., these conditions are automatically satisfied.

3.2.2 Asymptotic Distribution of the IVQR Estimator

Assumption 3.5 (Conditions for identification and estimation). (1) (Compactness and

Convexity) For all τ , (γ1(τ), ϕ(τ)) ∈ A × B, where A × B is compact and convex.
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(2) (Full Rank and Continuity) Yt has bounded conditional density, a.s. supYt∈RN fYt|Ft(y) <

∞, where Ft = {Z1, · · · , ZN ,Yt−1,Yt, Ft, Ft−1, · · · , Ft−p} is the information set. Define

SNT (π, τ) = 1
NT

N∑
i=1

T∑
t=1

[
ψτ

{
Yit − γ1(τ)Y it −X⊤

it ϕ(τ) −R⊤
itλ(τ)

}
Ψit

]
, (21)

S∞(π, τ) = lim
N,T →∞

E [SNT (π, τ)|C] , S∗
∞(π, τ) = lim

N,T →∞
E [SNT (π, τ)] , (22)

SNT (θ, τ) = 1
NT

N∑
i=1

T∑
t=1

[
ψτ

{
Yit − γ1(τ)Y it −X⊤

it ϕ(τ)
}

Ψit

]
, (23)

S∞(θ, τ) = lim
N,T →∞

E [SNT (θ, τ)|C] , S∗
∞(θ, τ) = lim

N,T →∞
E [SNT (θ, τ)] , (24)

where π ≡ (γ1, ϕ
⊤, λ⊤)⊤, θ ≡ (γ1, ϕ

⊤)⊤, ψτ (u) = τ − I(u < 0), and Ψit = (X⊤
it , R

⊤
it)⊤.

Then, the Jacobian matrices, ∂S∞(θ, τ)
∂(γ1, ϕ⊤) and ∂S∞(π, τ)

∂(ϕ⊤, λ⊤) are continuous and have full rank,

uniformly over A × B × G × T , where G is a compact set with λ(τ) ∈ G, T is a compact

set with τ ∈ T , and the image of A × B under the mapping θ ≡ (γ1, ϕ
⊤)⊤ 7→ S∞(θ, τ) is

simply connected.

(3) For a fixed τ ∈ T , the unknown true parameter, θ0(τ) = (γ0
1(τ), ϕ0⊤(τ))⊤ uniquely

solves S∞(θ, τ) = 0 over A × B.

The compactness of the parameter space in Assumption 3.5(1) is needed for γ1(τ) due

to the non-convex objective function. Assumption 3.5(2) implies the global identification

of the parameters while the continuity condition is required for deriving the asymptotic

normality. Assumption 3.5(3) requires that θ0(τ) = (γ0
1(τ), ϕ0⊤(τ))⊤ to be the unique

solution to S∞(θ, τ) = 0, which is necessary for consistency of the estimator.

Let θ̂(τ) = (γ̂1(τ), ϕ̂⊤(τ))⊤ be the IVQR estimator of θ0(τ) = (γ0
1(τ), ϕ0⊤(τ))⊤, where

ϕ̂(τ) = ϕ̂(γ̂1(τ), τ). Define the (4 + q + (p+ 1)m) × (4 + q + (p+ 1)m) matrices:

J(τ) = ∂S∞(π, τ)
∂(γ1, ϕ⊤)

∣∣∣∣
γ1=γ0

1 ,ϕ=ϕ0,λ=0
, J∗(τ) = ∂S∗

∞(π, τ)
∂(γ1, ϕ⊤)

∣∣∣∣
γ1=γ0

1 ,ϕ=ϕ0,λ=0
. (25)

Theorem 2 (Linearization). Under Assumptions 3.1–3.3 and 3.5, as min{N, T} → ∞,

√
NT

{
θ̂(τ) − θ0(τ)

}
= − J−1(τ)G0

NT (θ0, τ) + op(1). (26)

Under Assumption 3.4, the NED process {šit}i,t satisfies the central limit theorem:
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G0
NT (θ0, τ) = 1√

NT

∑N
i=1

∑T
t=1 šit follows a zero mean Gaussian process with covariance

function, Ω0 = τ(1 − τ) lim
N,T →∞

(NT )−1 ∑
i,t

E(ΨitΨ⊤
it).

Theorem 3. Under Assumption 3.1–3.5, we have Ω−1
0 Ω∗

0 →p I, and J−1(τ)J∗(τ) →p I,

where Ω0 = τ(1−τ) lim
N,T →∞

(NT )−1 ∑
i,t

E(ΨitΨ⊤
it |C), Ω∗

0 = τ(1−τ) lim
N,T →∞

(NT )−1 ∑
i,t

E(ΨitΨ⊤
it),

and J(τ), J∗(τ) are defined in (25). Then, as min{N, T} → ∞,

√
NT

{
θ̂(τ) − θ0(τ)

}
d→ N(0,Σθ), (27)

where Σθ = J∗(τ)−1Ω∗
0J

∗(τ)−1.

We estimate Ω∗
0 and J∗(τ) consistently by

Ω̂∗
0 = (NT )−1τ(1 − τ)

N∑
i=1

T∑
t=1

ΨitΨ⊤
it , (28)

Ĵ∗(τ) = (2NThb)−1
N∑

i=1

T∑
t=1

I(ûit ⩽ hb)Ψit(Y it, X
⊤
it ), (29)

where ûit = uit(θ̂(τ), τ), and hb is the bandwidth (see (30) below for details). Notice that

the use of valid IVs do not result in Ĵ∗(τ) and Ω̂∗
0 having or being closer to singularities,

which causes the variance of the estimator θ̂(τ) to be unreliably large.

4 Monte Carlo Simulations

In this section, we examine finite sample properties of the IVQR estimator via a Monte

Carlo simulation study using three different network structures.

4.1 The Setup

We construct the data generating process based on the DNQR model as follows: First, we

generate the five nodal covariates, Zi = (Zi1, · · · , Zi5)⊤ ∈ R5, (q = 5) from a multivariate

normal distribution N(0,Σz), where Σz = (σj1j2) and σj1j2 = 0.5|j1−j2|. Then, we construct

the two common covariates, Ft = (F1t, F2t)⊤ ∈ R2, (m = 2) from the i.i.d standard normal
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distribution. Let the true parameters γ0
j,it = γ0

j (Uit) for j = 0, 1, 2, 3, α0
j,it = α0

j (Uit) for

j = 1, ..., 5, and β0
jk,it = β0

jk(Uit) for j = 1, 2 and k = 0, 1, where we set the lag of two

common covariates to 1 (p = 1). We then generate the random coefficients by

γ0
0,it =uit, γ

0
1,it = 0.1Φ(uit), γ0

2,it = 0.4{1 + exp(uit)}−1 exp(uit), γ0
3,it = 0.4Φ(uit),

α0
1,it =0.5Φ(uit), α0

2,it = 0.3G(uit, 1, 2), α0
3,it = 0.2G(uit, 2, 2),

α0
4,it =0.25G(uit, 3, 2), α0

5,it = 0.2G(uit, 2, 1),

β0
10,it =0.1Φ(uit), β0

11,it = 0.3G(uit, 2, 2), β0
20,it = 0.2G(uit, 1, 2), β0

21,it = 0.3G(uit, 2, 1),

where Φ(·) is the standard normal distribution function, G(·, a, b) is the Gamma distri-

bution function with shape parameter a and scale parameter b, and uits are i.i.d random

variables, generated either from (a) the standard normal distribution or from (b) the t-

distribution with 5 degrees of freedom. Notice that Uit can be generated by Uit = F (uit),

where F (·) is cumulative distribution function of uit. Finally, Yts are generated by (1).

To check the robustness of the finite sample performance of the IVQR estimator, we

consider the following three different adjacency matrices, e.g. Zhu et al. (2019b).

Type 1. (Dyad Independence Model) Holland and Leinhardt (1981) introduce this

model with a dyad, Dij = (aij, aji) for 1 ⩽ i < j ⩽ N , where Dijs are assumed to

be independent. We set the probability of dyad being mutually connected to P(Dij =

(1, 1)) = 2N−1 to ensure the network sparsity. Then, we set P(Dij = (1, 0)) = P(Dij =

(0, 1)) = 0.5N−0.8, which implies that the expected degree for each node is O(N0.2).

Accordingly, we have P(Dij = (0, 0)) = 1 − 2N−1 −N−0.8, which tends to 1 as N → ∞.

Type 2. (Stochastic Block Model) We first consider the Stochastic Block Model

with an important application in community detection by Zhao et al. (2012). We follow

Nowicki and Snijders (2001) and randomly assign each node a block label index from 1

to L, where L ∈ {5, 10, 20}. We then set P(aij = 1) = 0.3N−0.3 if i and j are in the same

block, and P(aij = 1) = 0.3N−1 otherwise. Thus, the nodes within the same block have

higher probability of connecting with each other than the nodes between blocks.

Type 3. (Power-law Distribution Network) In practice, the majority of nodes in

the network have a small number of links while a small number of nodes have a large
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number of links, see Barabási and Albert (1999). In this case the degrees of nodes can

be characterized by the power-law distribution. We simulate the adjacency matrix as

follows: For each node, we generate the in-degree, di = ∑
j aji according to the discrete

power-law distribution such as P(di = ǩ) = cǩ−β, where c is a normalizing constant and

the exponent parameter β is set at 2.5 as in Clauset et al. (2009). Finally, for the i-th

node, we randomly select di nodes as its followers.

To estimate the variance of the IVQR estimator, we follow Koenker and Xiao (2006)

and select the bandwidth hb in (28) as follows (Hall and Sheather (1988)):

hb = (NT )−1/3ϱ2/3
α

[
1.5φ̄2(Φ−1(τ))
2(Φ−1(τ))2 + 1

]1/3

, (30)

where φ̄(·) and Φ(·) are the probability density and distribution function of standard

normal distribution and ϱα satisfies Φ(ϱα) = 1 − α/2 for the construction of 1 − α

confidence intervals. We have also considered an alternative selection criterion by Bofinger

(1975), and obtained qualitatively similar results that are available upon request.

For the IVQR estimation, we suggest using Rt = [W 2Yt−1,W
3Yt−1], where Rt =

(R1t, · · · , RNt)⊤ and W is the row-sum normalized network matrix. Although we may

select the higher network orders such as [W 2Yt−1,W
3Yt−1,W

2Yt−2,W
3Yt−2, ...], we find

that these two instruments are often the best choice.

4.2 Simulation Results

Using 1000 replications, we evaluate the finite sample performance of the IVQR estimator

at the different quantiles, τ = 0.1, 0.5, 0.9 for the (N, T ) pairs with N, T = 100, 200, 500.

Table 1 presents the simulation results for Type 1 network in terms of RMSE. Overall,

RMSEs of all the parameters decrease monotonically as N or T increases across the

different quantiles and for the different distributions of uit, which is in line with the

asymptotic theory. But, RMSEs of γ1 are larger than those of other parameters, especially

in small samples (N, T = 100), which mainly reflects uncertainty associated with the

selection of the IVs. As the sample size grows (N = 500 or T = 500), all RMSEs decline

sharply. Turning to the simulation results for Type 2 and Type 3 networks, reported
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in B1 and B2 in the Online Appendix, we observe qualitatively similar findings. In the

Online Appendix, we also provide the simulation results for biases, see Tables B5–B7.

The biases of the IVQR estimators are mostly negligible across the different quantiles,

for the different distributions of uit and for all the sample pairs of (N, T ).

[Insert Table 1 here]

Next, in Table 2, we report the coverage probability for the Type 1 network by eval-

uating if the estimates fall into the 95% confidence interval at each replication. Overall,

we find that the coverage probabilities of all the parameters are close to the nominal 95%

level across the different quantiles and the different distributions of uit, and for all the

sample pairs (N, T ). This implies the accuracy of the inference for the IVQR estimator.

From the results for Type 2 and Type 3 networks, reported in Tables B3 and B4 in the

Online Appendix, we also find that the coverage probabilities of all parameters are close

to the nominal 95% level.

[Insert Table 2 here]

For comparison, we report the simulation results by applying the ordinary QR es-

timator in Tables B8–B16 in the Online Appendix B.2. We observe that RMSEs are

larger. More importantly, RMSEs barely decrease with the sample size, especially for γ1.

Furthermore, coverage probabilities are well below the nominal 95% level, and the biases

are large especially for γ1, which remain substantial as the sample size increases. This

clearly demonstrates the importance of using the IVQR estimator for the DNQR model.

5 Application

We explore the financial network quantile connectedness among the stock returns. Anton

and Polk (2014) find that stock returns tend to display significant comovements due to

common active mutual fund owners. In addition, Pirinsky and Wang (2006) document

strong comovements in the stock returns of firms headquartered in the same geographic

area. Garcia and Norli (2012) point out that the firms headquartered in the same geo-

graphic area have achieved uniformly excessive returns compared to geographically dis-
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persed firms (the return local bias).

We consider the two different financial network structures: the common shareholder

based network and the headquarter location based network. Notice that the order of

network nodes can be randomly pre-determined and has no effect on the estimation

results. For simplicity, we set up Yt ∈ RN in which the row elements are arranged in

alphabetical order by the unique trading code. Then the order of nodes in the pre-

determined networks are the same as the individual order in Yt, that is alphabetically

ordered by the unique stock trading code. The pre-determined networks are constructed

by using information on the common mutual fund ownership and the uniform headquarter

location. In particular, we let the stocks be connected if they are invested in by at least

five common shareholders (WCS5) while the companies with headquarters located in the

same city are treated as connected (WHQ).

We collect the data on all the stocks traded in NYSE and NASDAQ in 2016 from

Datastream. The dataset on mutual fund holdings are downloaded from Thomson Reuters

whilst the addresses of firms’ headquarters are collected from COMPUSTAT. After merg-

ing these data from the databases according to the unique trading code and removing

the stocks with missing values, we finally obtain 943 stocks (N = 943) over the whole

time period T = 252. We then collect these stock return data from Datastream. We also

obtain node-specific covariates such as market capitalization, book value per share, cash

flow and price-earning ratio from Datastream, which are then standardized. Finally, we

collect VIX from Datastream and the Fama-French three factors (excess market return,

SMB, HML) from the website of French’s homepage as the common covariates.

The network density is 3.24% for WCS5 and 0.63 % for WHQ, respectively. In Figure

1 we display the topology of two networks for the top 100 market-value stocks only for

visualization convenience. The larger nodes imply the higher market capitalization while

the darker nodes present the higher connectedness especially for the network with WCS5.

Here we observe quite different network structures. There is a large connected group in

Figure 1a, showing that the stocks are more centrally connected by common investors.

On the contrary Figure 1b displays more small groups, implying that the stocks are more

locally connected when the network is measured by uniform headquarter locations.
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[Insert Figure 1 here]

Following the simulation results, we select IVs as Rt = [W 2Yt−1,W
3Yt−1]. We present

the estimation results for the proposed DNQR model together with the two alternative

models: (i) the original NQAR model without contemporaneous network effects and com-

mon covariates, and (ii) the factor-augmented NQAR model without contemporaneous

network effects, denoted NQARF. To compare the relative performance of the alternative

models, we follow Koenker and Machado (1999) and evaluate the goodness of fits across

the different quantiles. Consider a linear model for the conditional quantile function,

QYit
(τ |Xit) =X⊤

1itθ1(τ) +X⊤
2itθ2(τ) (31)

where Xit = (X⊤
1it, X

⊤
2it)⊤. Let θ̂(τ) = (θ̂⊤

1 (τ), θ̂⊤
2 (τ))⊤ be the unrestricted estimator,

which is the minimizer of V̂ (τ) = min
N∑

i=1

T∑
t=1

ρτ

{
Yit −X⊤

it θ
}

while θ̃(τ) = (θ̃⊤
1 (τ),0⊤)⊤

denotes the minimizer for the constrained model, Ṽ (τ) = min
N∑

i=1

T∑
t=1

ρτ

{
Yit −X⊤

1itθ1
}
.

Define the goodness-of-fit criterion as

R2(τ) =1 − V̂ (τ)/Ṽ (τ), (32)

which measures the overall decreased percentage of the quantile loss function of the

unrestricted model with respect to the restricted model.

The estimation results for the network WCS5 are presented in Table 3. For convenience

we present the coefficients and the standard errors multiplied by 102. We find that the

estimated contemporaneous network effects (γ1) by the DNQR model, are significantly

positive and dominate all other effects across all quantiles. The lagged network coefficient

(γ2) and the dynamic coefficient (γ3) are also significant across quantiles with relatively

smaller magnitudes. Furthermore, the goodness of fit, R2(τ) reported in the last row,

shows that the overall loss function of the DNQR model drops about 7%–9.5% rela-

tive to the NQAR and 6.9%–9.5% relative to the NQARF, respectively, suggesting that

the contemporaneous network effects should be explicitly accommodated in the dynamic

network quantile model. Moreover, the effects of node-specific covariates are significant

across quantiles (except Cash) while those of common covariates are all significant across
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quantiles.

[Insert Table 3 here]

Next, we display the QR coefficients across the different quantiles in Figure 2. The

dashed line is the QR coefficient while the grey area indicates a kernel density based con-

fidence band advanced by Powell (1991). The contemporaneous network and dynamic

coefficients, γ̂1(·) and γ̂3(·), are significant (as their bands exclude the null effect), while

the lagged diffusion network coefficient, γ̂2(·) tends to be insignificant only at the middle.

γ̂1(·) shows a downward trend with the quantile level, suggesting that the contemporane-

ous quantile connectedness is stronger at the lower tails (mainly characterised with the

market turmoils). On the other hand, both γ̂2(·) and γ̂3(·) display the U -shaped pattern,

implying that their effects are stronger at the tails than at the median. The QR effects of

node-specific covariates mostly display a downward trend with the quantile level (except

for insignificant Cash), suggesting their effects are stronger at the lower tails than at the

upper tails (mainly characterised with the bulls market). Turning to the QR effects of

common factors, we observe a mixed finding: the impacts of VIX and the market factor

increase with quantiles whilst those of SMB and HML factors decrease with quantiles.

[Insert Figure 2 here]

Finally, as the robustness check, we provide the two additional estimation results

in the Online Appendix. First, we reconstruct the network matrix by changing the

number of common shareholders to CS = 3 (WCS3) and CS = 7 (WCS7), and the results

are reported in Tables C1–C2 and Figures C1–C2. Notice that the network density of

WCS3 is dense at 25.25% and relatively sparse at 0.41% for WCS7. Overall, we find

qualitatively similar results to those reported for WCS5. One notable observation is that

the contemporaneous network effects measured by γ1 tend to decrease monotonically as

the network becomes more sparse. For example, at τ = 0.1, γ̂1 is estimated at 0.69 for

WCS3, 0.54 for WCS5, and 0.35 WCS7, respectively. Still, we find that the patterns of the

quantile specific coefficients reported in Figures C1–C2 are qualitatively similar to those

displayed in Figure 2.

Next, we estimate the models using the headquarter location network WHQ, and

present the estimation results in Table C3 and Figure C3 in the Online Appendix. Again,
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we find the qualitatively similar results, highlighting the importance of the contempora-

neous network effect, which is also stronger at the lower tails than at the upper tails.

6 Conclusion

We develop a dynamic network quantile model that accommodates both temporal and

cross-sectional dependence. Using the predetermined network information, we analyse

the dynamic quantile connectedness within a network topology. The distinguishing fea-

ture of the DNQR model lies in that the behavior/response of a given node is not only

influenced by its previous behavior/response, but also connected with a weighted average

of contemporaneous and lagged behaviors/responses from peers.

The main challenge associated with the DNQR model is the presence of endogeneity

stemming from the simultaneous network effect. In this regard, we develop the IVQR

estimation, and derive the consistency and asymptotic normality of the IVQR estimator

using the NED property of the network process. Monte Carlo exercises confirm the

satisfactory performance of the IVQR estimator with the predetermined internal IVs

across different quantiles under the different network structures.

Finally, we demonstrate the usefulness of our proposed approach with an application

to the dataset on the stocks traded in NYSE and NASDAQ in 2016. In particular, we find

that the contemporary network effects are significant and dominant across all quantiles.

Furthermore, their effects display a downward trend with the quantile level, suggesting

that the contemporaneous quantile connectedness is stronger at the lower tails.

Supplementary Materials

The online supplement contains all technical proofs, additional simulation and application

results, as well as the codes and data for the simulation and application.
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Table 1: RMSE (×100) for Type 1 Network

Dist. τ γ0 γ1 γ2 γ3 α1 α2 α3 α4 α5 β1 β2 β3 β4
N = 100

T = 100

N(0, 1) 0.1 1.64 5.35 1.41 3.04 1.75 1.87 1.77 1.83 1.61 1.47 1.64 1.42 1.42
0.5 1.49 4.75 1.19 2.66 1.38 1.58 1.46 1.51 1.31 1.17 1.33 1.14 1.13
0.9 1.71 5.18 1.39 2.95 1.63 1.74 1.73 1.74 1.52 1.32 1.56 1.31 1.32

t(5) 0.1 1.95 4.98 1.27 2.82 1.98 2.17 2.17 2.22 1.92 1.67 1.79 1.66 1.68
0.5 1.55 3.81 0.94 2.13 1.37 1.68 1.59 1.53 1.41 1.16 1.28 1.14 1.15
0.9 2.00 4.84 1.23 2.72 1.94 2.08 2.07 2.05 1.89 1.57 1.75 1.53 1.54

T = 200

N(0, 1) 0.1 1.18 4.28 1.01 2.38 1.21 1.29 1.34 1.27 1.14 1.03 1.14 1.00 0.95
0.5 1.06 3.62 0.87 2.00 1.00 1.14 1.06 1.06 0.92 0.81 0.95 0.75 0.76
0.9 1.24 4.28 1.00 2.38 1.18 1.27 1.26 1.25 1.06 0.97 1.09 0.89 0.88

t(5) 0.1 1.38 4.15 0.92 2.19 1.43 1.51 1.51 1.57 1.42 1.21 1.29 1.15 1.17
0.5 1.07 3.09 0.64 1.55 0.98 1.14 1.10 1.06 0.97 0.80 0.93 0.80 0.81
0.9 1.33 4.07 0.88 2.18 1.37 1.48 1.57 1.42 1.30 1.09 1.28 1.02 1.10

T = 500

N(0, 1) 0.1 1.01 3.85 0.82 2.10 0.97 1.03 1.06 1.11 0.97 0.82 1.00 0.84 0.79
0.5 0.89 3.24 0.70 1.76 0.83 0.93 0.86 0.83 0.74 0.63 0.77 0.62 0.68
0.9 1.00 3.64 0.81 2.05 0.99 1.02 1.01 0.98 0.89 0.80 0.89 0.74 0.77

t(5) 0.1 1.14 3.50 0.72 1.81 1.12 1.22 1.27 1.28 1.13 0.98 1.03 0.94 0.93
0.5 0.91 2.56 0.56 1.29 0.82 0.94 0.90 0.93 0.78 0.67 0.77 0.61 0.63
0.9 1.13 3.22 0.71 1.76 1.18 1.17 1.23 1.16 1.05 0.90 0.99 0.89 0.87

N = 200

T = 100

N(0, 1) 0.1 1.13 4.11 0.98 2.28 1.19 1.33 1.29 1.26 1.10 1.05 1.17 1.00 0.96
0.5 1.00 3.39 0.84 1.92 0.91 1.11 1.00 1.03 0.92 0.82 0.91 0.79 0.78
0.9 1.14 3.88 0.96 2.27 1.11 1.22 1.18 1.20 1.07 0.95 1.08 0.91 0.93

t(5) 0.1 1.32 3.89 0.88 1.98 1.39 1.52 1.51 1.49 1.31 1.19 1.36 1.21 1.21
0.5 1.02 2.81 0.65 1.44 1.00 1.10 1.03 1.08 0.94 0.83 0.92 0.83 0.82
0.9 1.34 3.64 0.89 2.00 1.30 1.48 1.41 1.40 1.27 1.12 1.28 1.14 1.07

T = 200

N(0, 1) 0.1 0.81 3.39 0.76 1.80 0.88 0.92 0.91 0.86 0.77 0.72 0.85 0.70 0.70
0.5 0.71 2.68 0.64 1.52 0.66 0.76 0.64 0.67 0.64 0.59 0.70 0.53 0.52
0.9 0.85 3.30 0.68 1.74 0.90 0.88 0.86 0.81 0.77 0.71 0.83 0.65 0.62

t(5) 0.1 0.93 2.95 0.63 1.53 1.00 1.08 1.05 1.04 0.97 0.90 0.96 0.85 0.81
0.5 0.72 2.17 0.47 1.08 0.64 0.83 0.74 0.73 0.67 0.60 0.63 0.55 0.55
0.9 0.92 2.92 0.65 1.59 0.97 1.06 0.99 1.03 0.95 0.77 0.90 0.79 0.76

T = 500

N(0, 1) 0.1 0.62 2.44 0.56 1.42 0.72 0.80 0.78 0.70 0.66 0.58 0.61 0.55 0.55
0.5 0.60 1.97 0.50 1.17 0.49 0.69 0.58 0.56 0.52 0.47 0.56 0.43 0.40
0.9 0.64 2.29 0.56 1.35 0.72 0.74 0.68 0.69 0.66 0.56 0.60 0.50 0.55

t(5) 0.1 0.71 2.35 0.57 1.29 0.78 0.84 0.85 0.86 0.82 0.69 0.72 0.69 0.69
0.5 0.61 1.49 0.38 0.79 0.55 0.65 0.63 0.62 0.51 0.47 0.49 0.43 0.45
0.9 0.77 2.22 0.50 1.16 0.81 0.87 0.94 0.82 0.74 0.61 0.71 0.58 0.57

N = 500

T = 100

N(0, 1) 0.1 0.92 3.59 0.82 2.01 0.95 1.08 1.07 0.99 0.90 0.85 0.97 0.81 0.81
0.5 0.82 2.85 0.66 1.57 0.75 0.83 0.83 0.84 0.73 0.66 0.78 0.61 0.62
0.9 0.94 3.35 0.82 1.84 0.97 1.02 1.02 1.00 0.88 0.76 0.86 0.75 0.74

t(5) 0.1 1.08 3.33 0.75 1.69 1.06 1.25 1.23 1.22 1.06 0.99 1.10 0.94 0.91
0.5 0.85 2.35 0.55 1.21 0.73 0.93 0.81 0.85 0.79 0.67 0.74 0.67 0.66
0.9 1.05 3.17 0.72 1.69 1.07 1.11 1.15 1.17 0.99 0.89 1.01 0.90 0.93

T = 200

N(0, 1) 0.1 0.70 2.70 0.60 1.49 0.72 0.72 0.68 0.66 0.65 0.61 0.68 0.57 0.56
0.5 0.60 2.24 0.49 1.19 0.58 0.65 0.61 0.64 0.53 0.46 0.60 0.46 0.46
0.9 0.63 2.69 0.62 1.43 0.65 0.74 0.71 0.66 0.63 0.57 0.64 0.49 0.51

t(5) 0.1 0.70 2.42 0.51 1.26 0.86 0.89 0.95 0.89 0.78 0.70 0.78 0.65 0.67
0.5 0.61 1.65 0.39 0.84 0.53 0.62 0.61 0.59 0.54 0.46 0.56 0.48 0.45
0.9 0.81 2.29 0.52 1.26 0.73 0.87 0.82 0.83 0.72 0.69 0.76 0.63 0.66

T = 500

N(0, 1) 0.1 0.51 2.33 0.52 1.25 0.59 0.57 0.58 0.64 0.60 0.45 0.56 0.46 0.41
0.5 0.45 1.63 0.43 0.91 0.40 0.65 0.47 0.45 0.47 0.40 0.42 0.31 0.34
0.9 0.61 2.10 0.49 1.11 0.61 0.56 0.56 0.57 0.50 0.37 0.53 0.41 0.45

t(5) 0.1 0.56 2.10 0.45 1.11 0.70 0.59 0.71 0.82 0.66 0.60 0.68 0.63 0.51
0.5 0.52 1.30 0.35 0.67 0.46 0.60 0.49 0.43 0.43 0.39 0.40 0.36 0.35
0.9 0.64 2.10 0.46 1.10 0.72 0.77 0.64 0.62 0.56 0.47 0.59 0.48 0.58

Notes: The simulation results are based on the DGP in Section 4.1 with 1000 replications and reported
across the three different quantiles, τ = (0.1, 0.5, 0.9) for the sample pairs, (N, T ) = 100, 200, 500, where
we generate uit from either a standard normal distribution, N(0, 1) or a t-distribution with 5 degrees of
freedom, t(5).
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Table 2: Coverage Probability (×100) for Type 1 Network

Dist. τ γ0 γ1 γ2 γ3 α1 α2 α3 α4 α5 β1 β2 β3 β4
N = 100

T = 100

N(0, 1) 0.1 93.5 97.8 92.9 97.3 93.1 93.2 94.9 94.6 94.8 94.7 95.3 94.5 94.7
0.5 93.0 97.2 93.5 95.3 94.2 93.0 95.4 95.0 94.8 94.2 96.1 94.7 94.4
0.9 92.8 97.3 94.0 94.4 93.8 92.1 94.8 95.1 94.6 95.6 94.6 94.8 94.6

t(5) 0.1 93.3 98.6 92.7 95.0 94.5 94.6 94.0 94.5 95.0 95.2 94.4 94.8 94.4
0.5 92.1 96.8 93.0 96.7 95.0 94.3 94.3 95.1 95.6 96.2 95.0 96.2 95.8
0.9 93.0 97.2 94.2 95.1 93.9 94.9 94.5 94.8 95.8 94.5 94.2 95.5 94.8

T = 200

N(0, 1) 0.1 93.4 96.2 95.6 95.4 95.6 92.8 94.6 97.0 94.0 95.0 95.8 94.4 94.4
0.5 95.3 93.6 93.9 94.7 96.4 94.8 96.5 94.6 94.6 94.5 94.0 96.0 95.3
0.9 93.1 92.9 93.9 94.9 93.7 94.8 94.6 94.8 94.9 93.9 95.4 94.6 95.8

t(5) 0.1 94.8 98.8 93.8 97.0 96.3 94.3 96.3 96.5 96.5 96.8 96.5 97.3 96.5
0.5 94.2 92.8 94.2 91.4 95.4 94.8 95.8 95.2 95.0 96.0 95.0 94.8 96.8
0.9 93.8 98.3 92.8 96.5 93.5 96.3 95.8 96.8 96.0 96.0 95.8 93.0 96.5

T = 500

N(0, 1) 0.1 92.4 95.9 92.7 94.8 94.1 96.4 94.8 94.3 94.4 96.4 94.1 93.1 94.9
0.5 90.9 92.6 91.5 92.9 93.5 93.5 95.7 95.7 96.0 96.9 95.2 96.7 94.7
0.9 90.9 95.3 92.9 92.7 92.9 94.7 95.1 95.5 95.2 94.1 95.5 94.1 95.9

t(5) 0.1 93.9 93.7 94.7 94.1 95.2 95.3 95.1 94.8 95.7 94.8 95.5 94.0 95.7
0.5 92.3 93.2 92.7 93.3 96.1 94.0 95.6 94.1 95.6 96.0 95.6 97.1 96.8
0.9 91.5 92.9 93.7 92.7 93.3 95.5 94.0 94.8 94.0 95.7 96.5 95.6 95.6

N = 200

T = 100

N(0, 1) 0.1 93.3 96.5 95.5 95.8 95.5 94.3 96.0 96.8 95.5 94.3 94.8 95.0 94.8
0.5 91.0 94.0 93.3 97.0 96.5 92.0 94.5 95.5 94.5 95.8 94.5 96.0 95.3
0.9 92.5 95.5 91.5 94.8 94.5 93.8 95.3 93.5 96.3 95.0 94.0 93.3 94.0

t(5) 0.1 94.3 97.6 92.9 97.2 93.9 94.1 94.7 95.4 94.9 94.8 94.1 94.1 93.7
0.5 90.8 93.7 91.5 94.2 94.2 93.2 94.5 94.4 94.9 95.1 94.7 94.7 94.9
0.9 91.1 97.3 91.9 94.5 94.8 93.5 94.3 94.6 94.5 94.7 94.1 93.7 95.3

T = 200

N(0, 1) 0.1 94.0 93.5 91.0 92.0 94.5 93.5 95.5 93.5 94.5 93.0 95.5 96.0 94.0
0.5 90.4 93.2 94.3 92.4 96.2 95.2 97.0 95.6 95.8 95.4 93.6 95.8 96.8
0.9 91.3 94.2 92.4 93.4 90.4 93.6 94.2 96.4 94.4 93.0 93.8 95.2 96.0

t(5) 0.1 94.6 93.0 93.4 94.0 94.2 95.4 95.6 95.4 94.2 93.6 92.4 95.6 95.4
0.5 94.2 92.2 91.4 93.8 97.0 92.4 94.8 96.0 95.8 95.4 96.0 96.0 96.4
0.9 93.5 95.0 95.5 94.5 93.5 96.0 95.0 97.5 94.5 95.5 96.0 96.0 95.0

T = 500

N(0, 1) 0.1 95.2 92.8 92.8 93.6 93.2 94.4 93.6 95.6 94.0 96.4 96.4 95.6 95.6
0.5 93.7 92.7 96.0 94.3 95.0 94.4 95.3 94.7 93.3 94.7 94.5 95.2 95.3
0.9 92.7 93.1 94.6 93.3 94.6 94.0 94.7 96.0 94.7 95.3 94.7 94.7 94.9

t(5) 0.1 94.2 95.3 96.0 94.6 95.0 94.7 94.6 94.9 95.3 95.5 94.3 95.2 95.6
0.5 94.3 94.4 92.0 95.6 94.0 94.8 94.8 95.6 96.4 94.4 95.2 96.8 97.2
0.9 92.6 95.3 94.6 94.2 95.7 95.1 95.3 94.6 95.6 96.3 94.00 94.3 96.0

N = 500

T = 100

N(0, 1) 0.1 93.2 96.4 94.0 94.2 95.6 93.6 94.8 95.6 96.0 96.0 93.8 94.6 95.4
0.5 94.3 94.6 93.8 94.0 95.6 95.0 95.0 95.4 95.2 97.0 96.2 96.6 96.2
0.9 92.5 93.5 92.0 93.5 95.0 94.0 95.0 95.3 95.5 93.7 96.5 96.3 94.1

t(5) 0.1 93.4 96.4 94.0 96.0 96.8 93.2 95.0 95.4 95.8 94.4 95.0 96.0 96.6
0.5 93.0 92.5 93.0 93.5 95.0 90.0 96.0 94.0 95.0 95.5 93.5 95.5 95.5
0.9 93.2 94.0 92.4 94.0 95.8 96.8 95.8 95.6 95.4 97.0 94.4 96.2 94.4

T = 200

N(0, 1) 0.1 92.6 92.4 93.3 93.3 92.8 94.3 96.7 95.2 94.8 94.3 93.3 94.3 95.7
0.5 91.7 92.5 93.0 92.8 94.5 95.9 94.5 95.5 94.8 95.7 95.3 94.5 95.2
0.9 91.0 92.5 93.2 93.3 93.3 95.2 93.8 94.3 94.8 93.3 96.2 98.1 97.1

t(5) 0.1 94.3 92.4 93.8 93.3 93.3 94.3 92.4 93.8 93.3 95.2 95.2 94.8 94.8
0.5 91.6 94.8 96.2 95.7 96.7 94.8 96.2 95.2 96.2 97.1 94.3 97.1 97.1
0.9 93.5 93.9 94.3 95.4 95.2 95.2 95.2 94.8 95.2 94.3 94.8 94.3 94.3

T = 500

N(0, 1) 0.1 92.7 93.6 93.6 95.5 93.6 91.8 95.5 96.4 94.7 93.6 93.6 95.5 95.6
0.5 91.8 93.6 93.6 92.7 95.5 95.2 95.5 95.5 94.3 96.4 94.6 94.6 94.6
0.9 92.9 94.1 94.6 92.3 92.7 90.9 90.9 93.6 95.2 95.5 92.7 94.6 94.8

t(5) 0.1 93.9 93.2 93.6 92.2 92.7 94.6 92.7 99.1 94.6 96.4 93.6 97.3 96.4
0.5 93.1 92.4 92.7 90.0 95.5 93.1 97.3 96.4 96.4 95.5 92.7 95.5 96.4
0.9 93.9 95.4 93.8 93.6 94.8 95.1 95.2 95.3 94.3 95.6 94.4 95.7 95.5

Notes: See the notes to Table 1.
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Table 3: Estimation Results for the Network WCS5

DNQR NQARF NQAR
τ = 0.1 τ = 0.5 τ = 0.9 τ = 0.1 τ = 0.5 τ = 0.9 τ = 0.1 τ = 0.5 τ = 0.9

γ̂0 −2.28∗∗∗ 0.02∗∗∗ 2.33∗∗∗ −2.55∗∗∗ 0.05∗∗∗ 2.64∗∗∗ −2.55∗∗∗ 0.04∗∗∗ 2.65∗∗∗

(0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)
γ̂1 54.07∗∗∗ 57.55∗∗∗ 47.09∗∗∗ - - - - - -

(1.43) (0.81) (1.49)
γ̂2 3.39∗∗∗ 0.55∗∗∗ 2.56∗∗∗ 3.96∗∗∗ −0.62∗∗∗ 2.67∗∗∗ 4.90∗∗∗ −0.55∗∗∗ 2.47∗∗∗

(0.48) (0.33) (0.53) (0.66) (0.21) (0.63) (0.65) (0.20) (0.62)
γ̂3 −1.29∗∗∗ −2.41∗∗∗ −2.45∗∗∗ −0.41 −2.10 −2.17 −0.09 −1.59 −2.19

(0.35) (0.27) (0.34) (0.42) (0.13) (0.39) (0.41) (0.13) (0.39)

SIZE 0.09∗∗∗ 0.00∗∗∗ −0.09∗∗∗ 0.09∗∗∗ 0.00∗∗∗ −0.09∗∗∗ 0.10∗∗∗ 0.00∗∗∗ −0.09∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
BM 0.13∗∗∗ 0.01∗∗∗ −0.11∗∗∗ 0.14∗∗∗ 0.02∗∗∗ −0.12∗∗∗ 0.14∗∗∗ 0.02∗∗∗ −0.12∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Cash 0.00 0.00 0.02 0.00 0.01 0.02 0.00 0.01 0.02

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
PE 0.04∗∗∗ 0.00∗∗∗ −0.02∗∗∗ 0.03∗∗∗ 0.01∗∗∗ −0.02∗∗∗ 0.03∗∗∗ 0.01∗∗∗ −0.01∗∗∗

(0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)
VIX −0.16∗∗∗ −0.04∗∗∗ −0.07∗∗∗ −0.23∗∗∗ −0.08∗∗∗ −0.12∗∗∗ - - -

(0.02) (0.01) (0.02) (0.02) (0.01) (0.02)
Rm - Rf −0.07∗∗∗ 0.02∗∗∗ 0.10∗∗∗ −0.14∗∗∗ 0.03∗∗∗ 0.15∗∗∗ - - -

(0.02) (0.01) (0.02) (0.02) (0.01) (0.02)
SMB 0.02∗ 0.00∗ −0.01∗ 0.00 0.01 0.04 - - -

(0.01) (0.00) (0.01) (0.01) (0.00) (0.01)
HML 0.03∗∗ 0.00∗∗ −0.04∗∗ 0.01 −0.01 −0.10 - - -

(0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

Goodn.fit. - - - 8.68 9.45 6.88 9.39 9.50 7.00

Notes: The dataset consists of N = 943 stocks with T = 252 time periods. The network matrix, WCS5

is constructed by checking if the stocks are invested in by at least five common shareholders with the
network density, 3.24%. The estimates (×102) are reported across different quantiles τ = 0.1, 0.5, 0.9,
and the value in parentheses is the standard error (×102). DNQR denotes the proposed model, NQAR
is the model without contemporaneous network effects and common factors, and NQARF is the factor-
augmented NQAR model. Goodn.fit. (×102) represents the goodness of fit of DNQR model with respect
to the other models. The 1%, 5% and 10% significance levels are denoted by ***, **, *, respectively.
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(a) The Topology of the Network WCS5 (b) The Topology of the Network WHQ

Figure 1: We depict the top 100 market value stocks out of 943 firms selected. (a): the common
shareholder network WCS5, constructed by checking if the stocks are invested in by at least five common
shareholders. (b): the uniform headquarter location network WHQ, constructed by checking if the head-
quarters of companies are located in the same city. The larger nodes imply higher market capitalization
while the darker nodes present higher connectedness.
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Figure 2: Quantile-specific Coefficients for the Network WCS5

Notes: The dashed line is the QR coefficient while the grey area indicates a kernel density based confidence
band advanced by Powell (1991). They are displayed across quantiles, τ = 0.1, 0.2, · · · , 0.9.

35


	Introduction
	The Model
	Stationarity
	Asymptotic Stationary Distribution

	The IVQR Estimation
	IVQR Estimator
	Asymptotic Theory
	NED Properties of the Network Processes
	Asymptotic Distribution of the IVQR Estimator


	Monte Carlo Simulations
	The Setup
	Simulation Results

	Application
	Conclusion

