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Abstract 

 Pollen beetles (Brassicogethes (Meligethes) aeneus) are a common and pernicious pest of 

oilseed rape. This study investigated the migration ecology of B. aeneus using suction-trap data 

from the longest-running terrestrial insect dataset in the world alongside field-collected data from a 

five-year sampling campaign. In addition, next-generation sequencing techniques and flight-mills 

were used to investigate the flight behaviour and migratory potential of B. aeneus. Populations 

have increased in abundance by ~162% in the UK since the 1980s alongside, but not correlated 

with, an increase in oilseed rape. The abundance of spring migrants in spring is related to the 

abundance of beetles caught in suction-traps the previous summer, suggesting that it may be 

possible to forecast the scale of the spring migration into crops. The number of B. aeneus in daily 

suction-trap samples is influenced by a small range of environmental variables, time of year and the 

number of beetles trapped in the previous summer. A selection of statistical approaches (GAM, 

zero-inflated GLM, random forest and an artificial neural network) were used to investigate daily 

suction-trap samples, however, none were able to predict the eruptive dynamics that quickly lead 

to very high counts. The spatial ecology of B. aeneus showed a strong positive relationship between 

suction-trap and field-caught data and suction-trap data showed spatial synchrony of migrating 

beetles up to ~150 km. However, no spatial synchrony was found in the field-caught data indicating 

that at the farm scale the beetle may be locally irruptive, and infestations of the crop are difficult to 

predict. Studies on the dispersal ability of B. aeneus in the UK proved inconclusive, but indicated 

that there is a single, homogeneous, UK population with a proportion migrating long distances 

within the UK. In addition, studies on adult B. aeneus emergence in the field and collated life cycle 

parameters for B. aeneus are presented as appendices. Together, these findings demonstrate the 

potential to use suction-traps to forecast the timing and abundance of B. aeneus spring migration 

and provide growers with timely warnings for crop inspections and control. 
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Chapter 1. 

Introduction to oilseed rape and pollen beetles  

1.1 Oilseed rape 

1.1.1 History of oilseed rape as a crop plant 

The early history of oilseed rape (Brassica napus L., OSR) use in the UK and the rest of 

Europe is difficult to interpret due to a lack of consistent nomenclature in the literature, causing 

confusion with other similar crops in older manuscripts, particularly turnip rape B. rapa L. (Bunting 

1986). Probably arising as a hybrid between turnip rape and cabbage (B. oleracea L.) in the Middle 

Ages (Allender & King 2010), OSR was almost certainly introduced to England by Dutch engineers 

working on fenland drainage projects in the late 16th or early 17th century (Fussell 1955). Although 

the oil produced from the seeds was too high in glucosinolates to be palatable for food, rapeseed 

production, especially in the East of England, increased rapidly through the 17th century and 

rapeseed oil became the preferred product for oil lamps, with the residual oil used as lubricant 

(Lamb 1989) or cattle feed (Bunting 1986). Through the 18th century OSR cultivation gradually 

extended into other areas of the country but by the 19th century processing plants were being set 

up at ports as the emphasis shifted to imported seed (Bunting 1986). By the mid-19th century there 

was still some OSR growing in the fens of Eastern England, but its use was more as a forage crop for 

sheep. Mineral oil had largely replaced organic oils for lighting and lubrication and the crop was 

effectively absent from British agriculture for that reason (Bunting 1986).  

 Throughout the early 20th century OSR remained unused in the UK; there were small 

amounts imported from China and India for non-edible uses, particularly as an engine lubricant, but 

the levels were so low as to remain insignificant (Bunting 1986). In Europe there was a brief period 
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of increased production during the war years (Appelqvist et al. 1973) but it was not until the middle 

of the century that production began to increase in Europe, alongside a general surge in production 

worldwide (Appelqvist et al. 1973, Bunting 1986). In Britain the crop remained a minor element as a 

break crop in intensive wheat cultivation (Appelqvist et al. 1973, Almond et al. 1986), with 

production levels per unit area much lower than the rest of Europe until the mid-1970s (Bunting, 

1984).  

Research in the 1960s - 70s, particularly in Canada, to reduce glucosinolate content resulted 

in varieties (for example canola) that were suitable for use in food production and the economic 

value of the crop increased significantly (Downey & Craig 1964, Downey 1987, Wittkop et al. 2009, 

Freidt et al. 2018). These new varieties led to a rapid rise in the area under OSR cultivation in the 

UK concomitant with its increased economic value and relaxation of regulatory pressures on 

cropping (Champion et al. 2003, Hillocks 2012).  

From 1984 to 1994 production in the UK declined but by 2004 the EU was the largest 

producer of rapeseed in the world, with the UK the third largest producer within the EU (Newcastle 

University, 2006). After a decade of fluctuation, since 2004 yields have improved (Knight et al. 

2012) alongside an increase in area under OSR crop (Gehringer et al. 2007), with 2012 seeing a 

record 737,000 hectares for harvest in Great Britain alone (HGCA 2013). OSR is now grown in the 

UK for the oil contained within the seed which is used for cooking oils and margarines and as 

vegetable oil in processed foods (Freidt & Snowdon 2009). The meal left after oil extraction is 

utilised as a high protein animal feed (Lamb, 1989). Increasingly, the potential for OSR and other 

oleaginous crops are being investigated for exploitation within the bioeconomy, for example 

lubricants, plastics, soaps and biofuel (Dumont & Narine 2008, Wu et al. 2009, Manamperi et al. 

2010, Zainal et al. 2018). 
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1.1.2 Current agronomy 

Oilseed rape is usually grown as a break crop in cereal rotation (Christen & Sieling 1995), 

which has three primary benefits: an effective break into higher yielding first cereal crops, control 

of grass weeds and an early drilling window which spreads farm workload (HGCA 2013). Initially 

oilseed rape was grown in one in five rotations with cereals, however economic pressure has led to 

shorter rotations and one in three, or even one in two rotations have become more common 

(HGCA 2013). Variety selection is primarily governed by gross output, with other qualities 

considered being: stem factors (stiffness, shortness, resistance to lodging), maturation factors 

(earliness of flowering and maturity), oil and glucosinolate content, and disease resistance factors 

(particularly light leaf spot and phoma stem canker resistance) (HGCA 2013). There are four classes 

of variety: conventional open-pollinated which are wind and/or self-pollinating and can be grown 

from farm-saved seed without paying breeders royalties, Clearfield ® herbicide tolerant hybrids for 

use with specific herbicides, semi-dwarf hybrids which produce short, stiff-stemmed plants which 

are easy to harvest but have lower yields and restored hybrids created by crossing male-sterile 

‘female’ plants with pollen producing ‘male’ plants. Hybrid cultivar seed cannot be farm-saved 

without royalty payments but are potentially more adaptable to a wide range of growing conditions 

(Thompson & Hughes 1986, HGCA 2013). In addition there are varieties for specific markets; High 

eruic acid rape (HEAR) varieties are for use in industrial processes such as inks, lubrication etc. and 

High oleic, low linoleic (HOLL) rape varieties which produce oils that are low in trans fatty acids and 

saturated fats and are used as cooking oils (Thompson & Hughes 1986, HGCA 2013). Care must be 

taken to avoid contamination between HOLL and other varieties that are unpalatable, or unfit for 

consumption, particularly HEAR to the extent that land used for HEAR cultivation should never be 

used for HOLL crops (HGCA 2013). 
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 Yield is measured by 1000 grain weight, with oil content an important factor. Seed number, 

usually 15-20 seeds per pod in OSR (Diepenbrock 2000) is determined by the amount of 

photosynthesis carried out by the crop during the period 19-25 days after flowering (Habekotté 

1997a, Weightman et al. 2010, Bennett et al. 2017); for best yields the optimum density of pods for 

efficient photosynthesis 6,000-8,000 pods per m2 (Berry & Spink 2006, Weightman et al. 2010), a 

lesser density indicates the canopy size is too small to trap all incident radiation, whereas a greater 

density will likely mean the flowering layer is preventing sunlight reaching the photosynthetic 

tissues (Berry & Spink 2006). Seed weight is determined by the length of the seed filling period and 

amount of photosynthesis during that time (Habekotté 1997a, b, c, Weightman et al. 2010); factors 

that can curtail seed filling are shallow rooting, drought, disease, early desiccation and lodging 

causing sub-optimal canopy structure (HGCA, 2013). There is evidence that increased winter 

temperatures cause yield loss, although the mechanism is still unclear (Brown et al. 2019). Pest and 

disease pressure can also reduce the number and quality of seeds per pod and the number of pods 

per plant (Williams 2010).  

 Inputs into an oilseed rape crop are relatively high (Muthmann 2007) and include: nutrient 

provision, primarily nitrogen and sulphur but also phosphorous, potassium and magnesium for 

long-term soil maintenance and the micronutrients boron, manganese and molybdenum; 

fungicides, primarily to control phoma leaf spot, light leaf spot, Sclerotina stem rot, powdery 

mildew and grey mould; molluscicides to control slugs; herbicides including graminicides to target 

black grass which is an increasing problem in cereal crops, pre-emergent herbicides for broad-leaf 

weed control with some post-emergent herbicides for specific weed problems (e.g. cleavers and 

crane’s-bill); desiccant application at harvest; insecticides to control specific insect pests, the most 

important being the aphids Myzus persicae (Sulzer) and Brevicoryne brassicae (L.), the flies 

Dasineura brassicae (Winnertz) and Delia radicum (L.), and the beetles Psylliodes chrysocephala L., 
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Ceutorhynchus obstrictus (Marsham) and the pollen beetle Brassicogethes aeneus (Fab.); the most 

numerous insect found on OSR and subject of this thesis. Fig. 1.1 shows the timing of the major 

interventions through a winter OSR growth season. 

Due to concerns expressed about the potential of neonicotinoids to harm bees and wild 

pollinators (Gill et al. 2012, Whitehorn et al. 2012, Henry et al. 2012), though disputed by some 

(Cresswell & Thompson 2012, Carreck & Ratnieks 2014), neonicotinoid seed dressings – used in the 

UK to protect OSR from aphids and flea beetles (Scott & Bilsborrow 2019) - were subjected to an 

EU-wide moratorium on flowering crops from December 2013 (OJEU 2013, Scott & Bilsborrow 

2019), leading in turn to a reduction in area of OSR in most countries (Dewar 2017, Carreck 2017, 

Scott & Bilsborrow 2019), with the crop being replaced by barley, field beans, peas or sugar beet in 

many situations in the UK (de la Pasture 2016, Stephens pers. comm.). 

 

1.2 Pollen Beetles  

1.2.1 Taxonomy & nomenclature 

Pollen beetles, or blossom beetles, are a group of small (1-5mm) species within the 

subfamily Meligethinae (Coleoptera: Nitidulidae). The subfamily has a global distribution, absent 

only from the Neotropical and Antarctic regions with the approximately 700 known species being 

anthophagous (i.e. flower-feeding), of which some species are monophagous, or narrowly 

oligophagous as larvae (Kirk-Spriggs 1996, Audisio et al. 2009). The species in the genus Meligethes 

s.l. Stephens are characterised by the presence of semi-circular impressed lines on the base of the 

pygidium (Fig. 1.2a) and the outer edge of the anterior tibiae are often toothed (Fig. 1.2b) (Kirk-

Spriggs 1996, Audisio et al. 2009); the size and arrangement of these tibial teeth is often an aid to  



 

 

 

Fig. 1.1: Oilseed rape crop management practices in relation to crop growth stage, from Skellern & Cook (2017).
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species identification, however there is a great deal of inter- and intra-specific variation in 

these and other identification characters, making identification of the group somewhat difficult 

(Kirk-Spriggs 1996). A recent review of the Meligethinae by Audisio et al. (2009) created a suite of 

new genera within the subfamily and reassigned many species, including Brassicogethes 

(Meligethes) aeneus (Fab.) and B. (Meligethes) viridescens (Fab.), both species specialising on  

 Fig. 1.2: Diagram of the pollen beetle (Brassicogethes aeneus), showing the distinctive semi-

circular depressions on the pygidium (a), the fore-tibia (b) and the middle femur of 

Brassicogethes viridescens (c) showing the diagnostic projection on the lower edge of the middle 

femur that is absent from Brassicogethes aeneus.  
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brassicas as a larval food plant (Kirk-Spriggs 1996, Audisio et al. 2009), the latter having a projection 

on the lower edge of the middle femur (Fig. 1.2c) and slightly larger & more diffuse puncturation 

(Hoebeke & Wheeler 1996, Kirk-Spriggs 1996). 

 

1.2.2 Pest Status 

Although most species are of no economic importance, some species of Meligethes s.l. are 

considered pests; in Europe M. flavimanus Stephens attacks cultivated roses, though only rarely 

(Fowler 1885, Audisio et al. 2014) and Fabogethes (Meligethes) nigrescens (Stephens) feeds on 

decorative sweet pea flowers (Kirk-Spriggs 1996) but is known as a pest on cultivated clover in 

North America (Hatch 1957). In Europe only B. aeneus and, to a lesser extent, B. viridescens are 

economically important crop pests (Williams & Free 1978, Valantin-Morison et al. 2007, Valantin-

Morison & Pinochet 2010, Williams 2010). Both species feed on cruciferous crops and can cause 

serious yield loss in agricultural crops – mainly OSR, through adult feeding on buds, causing them to 

abscise (Free & Williams 1978, Winfield 1992). In horticultural crops such as cauliflower and 

broccoli the feeding of adults in the flower heads can cause spoilage making them unsellable (Finch 

et al. 1990). The larvae of both species also feed on pollen and nectaries (Cook et al. 2004a, 

Seimandi Corda et al. 2018) but rarely cause the significant yield loss associated with adult feeding 

(Free & Williams 1978). 

Brassicogethes viridescens has a later phenology and usually arrives in crops once they are 

past their susceptible stage, and at lower abundance meaning that it is less economically important 

than B. aeneus in winter OSR (Alford et al. 2003, Hiiesaar et al. 2003). The species can occasionally 

be a significant pest in spring OSR when temperatures are high enough for them to occur at 

damaging levels of abundance (Finch et al. 1990, Alford et al. 2003). Brassicogethes viridescens was 
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introduced to North America in the mid-20th century (Hoebeke & Wheeler 1996, Mason et al. 2003) 

and, though currently restricted to eastern Canada and Maine (Hoebeke & Wheeler 1996, Mason et 

al. 2003), could prove to become a key pest of North American canola crops (Olfert & Weiss 2006, 

Dosdall & Mason 2010). However, since most of the work on pollen beetles in Europe has been 

based on B. aeneus, this species will be the focus of this research. 

In Europe the abundance and early emergence of B. aeneus means that it is a major pest of 

both winter and spring OSR (Finch et al. 1990, Alford et al. 2003, Hansen 2004). Whilst females 

chew oviposition holes in the base of developing buds (Ekbom & Borg 1996), the primary damage is 

through adults chewing holes in unopened flowers to access the pollen, causing them to abscise 

(Fig. 1.3 inset) and resulting in loss of yield (Nilsson 1987, Cook et al. 2004a, Ferguson et al. 2015). 

This rarely causes significant impact on winter OSR yields as the crop is usually well into flower by 

the time the beetles emerge from hibernation and migrate in any significant numbers into the crop 

(Williams 2010). However, late-flowering varieties of winter OSR or those with delayed 

development due to later sowing, poor emergence conditions or pigeon damage can be vulnerable 

to B. aeneus attack (Hiiesaar et al. 2003) especially when population abundance is high and when 

warm conditions trigger large mass migrations into the crop within a short period of time (Zlof 

2008). Spring OSR can, however, be seriously affected by B. aeneus attack with yield losses of up to 

80% reported in some years (Hansen 2004), in large part due to the large population abundance of 

all emerged overwintered adults as well as some new generation beetles. In addition, female B. 

aeneus mature their eggs continuously through their life (Ekbom & Ferdinand 2003) and thus are 

able to move onto spring OSR to feed and reproduce when it is at the vulnerable green bud stage 

(Nilsson 1987, Ekbom 2010). Fig. 1.3 details the timing of the different life stages of B. aeneus 

alongside the development of the oilseed rape crops in the UK, experimentally and observationally 

derived parameters for each stage are collated from the literature and presented in Appendix D.   



 

 

Fig. 1.3: Life cycle of the pollen beetle (Brassicogethes aeneus) alongside the crop development stage of winter (top) and spring oilseed rape (bottom). 
Orange coloured bars indicate life stages where the beetle can be considered a pest. The stronger colours in the life stage bar indicates the peak period. 

The inset photo shows typical damage caused by the beetle, podless stalks caused by abscission of damaged buds. (Photo courtesy of Sam Cook).
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Pre-flowering infestation of an OSR crop often results in the appearance of podless stalks due to 

the loss of buds (Williams & Free 1979). However, brassicas naturally abort up to 50-60% of their 

flowers and buds, therefore insect damage can be compensated for by retaining those that would 

otherwise have been aborted (Williams & Free 1979, Tatchell 1983, Lamb 1989). It is thought that 

OSR can withstand at least 6-8 B. aeneus per plant at the 'separated green bud stage' without yield 

loss, even though there is visible damage to the crop (Lerin 1988). However, higher numbers of B. 

aeneus can lead to yield loss (Zlof 2008). 

  

Fig. 1.4: Area (1000’s ha) of brassica oilseeds (B. napus and B. rapa) grown in the top four 

producing countries in Europe (1955 -2016, Poland: 1987-2016): data from Eurostat. 

 

Brassicogethes aeneus has been shown to be able to rapidly shift from native hosts to OSR 

when the crop is introduced to an area (Hokkanen 2000) and shows a significant increase in 
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reproductive success on OSR compared to populations on the natural host (Hokkanen 2000). This 

adaptive advantage - i.e. being able to rapidly exploit a new host - appears key to the success of B. 

aeneus as a pest and there is some indication that conventional plant management (i.e. synthetic 

insecticide use) may enhance the adaption of this species (Hokkanen 2000). This ability to shift to 

OSR allowed it to exploit the increase in acreage that occurred in Europe in the second half of the 

20th century – particularly in the four main countries where OSR is grown (Fig. 1.4) – and become an 

abundant pest throughout the region. 

 

1.2.3 Biology, ecology and life cycle of Brassicogethes aeneus 

1.2.3.1 Basic life cycle 

The basic aspects of the life cycle of B. aeneus are well-known (Fig. 1.3, Appendix D). Adults 

overwinter in hibernation in the leaf litter and top layers of soil in woodlands and hedges 

(Hokkanen 1993, Alford et al. 2003, Rusch et al. 2012, Juhel et al. 2017) before emerging in the 

spring and migrating either directly to their larval host plants or via feeding stops on the pollen of 

other flowering plants (Williams & Free, 1978, Ouvrard et al. 2016, Juhel et al. 2017). The threshold 

temperature for emergence is still an open question, however the lowest temperature recorded for 

a solitary flight is 5.9oC in a laboratory environment (Ferguson et al. 2015) and 10.2oC in the field 

(Láska & Kocourek 1991); gregarious migrations (Cooter 1977, Kenward 1984) have been predicted 

for a mean air temperature for migration of 8oC in a phenological model for Luxembourg (Junk et al. 

2016) and noted in-field at temperatures in the range 12.3oC - 15oC (Taimr et al. 1967, Tulisalo & 

Tuomo 1986, Nilsson 1988a, Finch et al. 1990, Láska & Kocourek 1991, Šedivý & Kocourek 1994, 

Ferguson et al. 2013, 2015, Skellern et al. 2017). Flights are predominantly diurnal (Mauchline et al. 

2017), with Lewis & Taylor (1965) establishing a peak flight time of 12:44 GMT. 
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The adults of B. aeneus feed on pollen from many plant families (Fritzsche 1957, Free & 

Williams 1978, Williams & Free 1978, Williams 2010, Ouvrard et al. 2016) from which they obtain 

nutrients such as proteins, amino acids, lipids, sterols, starch, vitamins and minerals (Roulston & 

Cane 2000) and can be abundant, comprising over 25% of flower visitors in one survey (Baldock et 

al. 2015). However, as the larvae are monophagous, they oviposit exclusively on brassicas (Free & 

Williams 1978, Williams & Free 1978, Charpentier 1985, Nilsson 1988c, Ekbom & Borg 1996, Bartlet 

et al. 2004, Cook et al. 2004a). Brassica spp. L. are particularly favoured for oviposition (Veromann 

et al. 2012, Kovács et al., 2013), however, other studies find Sinapis spp L. and Raphanus spp. L. are 

equally, or more attractive (Kaasik et al. 2014a, b). 

On reaching the larval host plant, females lay eggs inside the developing flower buds (Free & 

Williams 1978, Charpentier 1985) preferring buds in the 2-3mm size range (Ekbom & Borg 1996, 

Ferguson et al. 2015). The eggs are 0.8mm-3mm long (Ekbom & Popov 2004; Ekbom & Borg 1996) 

with egg size being smaller on lower-quality hosts (Ekbom & Popov 2004). Each female can lay 

more than 200 eggs over a two-month period (Hopkins & Ekbom 1996), laying up to 3 eggs per bud 

(Ekbom 1998) with clutch size being larger on more suitable hosts (Hopkins & Ekbom 1999, Ekbom 

& Popov 2004). Most eggs are laid in the morning and early afternoon (Ekbom & Ferdinand 2003) 

with oviposition behaviour generally positively related to temperature (Ferguson et al. 2015). Egg 

development usually takes around 4-7 days (Cook 2000, Cook et al. 2004a, 2006b) and there are 

two larval instars (Cook 2000), feeding mainly on pollen but all parts of the flower may be 

destroyed (Giamoustaris & Mithen 1996). The first instar usually feeds on the pollen of the 

developing anthers inside the closed flower bud. In warmer weather buds sometimes open before 

the larvae hatch causing the eggs to perish (Nilsson 1987). Upon budburst the larvae usually moult 
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to the 2nd instar and larvae feed on the pollen from open flowers, moving up the plant (Free & 

Williams 1978). Development time is between 9-13 days under laboratory conditions (Osborne 

1965, Cook et al. 2004a, Seimandi Corda et al. 2018), on reaching maturity the larvae drop to the 

soil to pupate within an earthen cell. Pupation takes a few weeks before the adults emerge and 

feed on flowers of several late-summer flowering plants, including spring oilseed rape, before 

seeking shelter over winter (Hokkanen 1993, Valantin-Morison et al. 2007, Juhel et al. 2017).  

 

1.2.3.2 Natural enemies 

 As small beetles with an apparent lack of predator defence such as toxins, spines or startle 

colouration it is expected that B. aeneus is a target for most generalist predators, both invertebrate 

and vertebrate (Holling 1961, Buckner 1966, Taylor 2013). The species is known to form a 

significant part of the diet of the common swift (Apus apus (L.)) (Lack & Owen 1955) and they are 

recorded as prey of a range of invertebrates (reviewed by Skellern & Cook, (2018)) including 

predators such as spiders (Wolff & Krausse 1926, Osborne 1960, Harenberg 1997, Cassel-

Lundhagen et al. 2009), beetles (Friedrichs 1921, Osborne 1960, Williams et al. 2010) and lacewings 

(Börner & Blunck 1920, Osborne 1960). These predators have been demonstrated to have a 

depressant effect on B. aeneus abundance in OSR fields (Büchi 2002, Büchs & Alford 2003, 

Hokkanen 2004, Frank et al. 2010, Williams et al. 2010) with losses to predators of 50-80% reported 

(Büchs & Nuss 2000, Büchi 2002), although some studies suggest much lower predation rates 

(Hokkanen et al. 1988). In addition, there is a suite of parasitoids (parasitic wasps that lay eggs on 

or in the host, usually killing it during development) known to attack B. aeneus larvae (Osborne 

1960, Ferguson et al. 2010, Ulber et al. 2010, Rusch et al. 2011, 2013, Vinatier et al. 2012). The four 

key, economically important species are: Phradis interstitialis (Thomas); P. morionellus (Holmgren); 
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Tersicholus heterocerus Thompson; and Diospilus capito (Nees) (Ferguson et al. 2010). Other 

recorded parasitoids are: Aneuclis incidens (Thompson); Blacus nigricornis Haeselbarth; Eubazus 

sigalphoides (Marshall); Cerchysiella planiscutellum (Mercet); and Brachyserphus parvulus (Nees) 

(Osborne 1960, Ulber et al. 2010). Reported rates of parasitism of B. aeneus in the field vary widely 

between studies from 0% to more than 90% (Nilsson & Andreasson 1987, Nielsen & Axelsen 1988a, 

Hokkanen 2000, Büchi 2002, Williams 2006, Thies et al. 2008, Tölle 2014, Riggi et al. 2017, Seimandi 

Corda 2018). 

 

1.2.3.3 Migration 

As mentioned above (Section 1.2.3.1), aside from localised movements between feeding 

sites, B. aeneus migrates twice a year, between overwintering sites and reproductive sites in spring 

and between feeding and overwintering sites in late summer (Williams & Free, 1978, Ouvrard et al. 

2016, Juhel et al. 2017). How far individuals are able to migrate is a matter of conjecture; Taimr et 

al. (1967) used radioactive tracers to establish that they can travel at least 13.5 km whilst more 

recently, Juhel et al. (2017) used geomatics to model distances from woodland edge to infested 

fields and estimated mean dispersal at 1.2 km. Brassicogethes aeneus has been recorded by high 

altitude (200m) nets and vertical-looking radar (Mauchline 2003, Mauchline et al. 2017) indicating 

that their potential migration distance is much further. It should be noted that B. aeneus has not 

been recorded in offshore traps (Hardy & Milne 1937, 1938, Glick 1939, Gressitt et al. 1962, Hardy 

& Cheng 1986) which may indicate that long-distance migrations are uncommon. 
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1.2.3.4 Host plant location 

 The primary visual cue for B. aeneus is colour; they are known to be differentially attracted 

to the colour yellow (Wassman 1926, Láska et al. 1986, Buechi 1990, Evans & Allen-Williams 1994, 

Giomoustaris & Mithen 1996, Döring et al. 2012, Cook et al. 2013b). Traps coloured yellow attract 

more B. aeneus than other colours (Blight & Smart 1999, Williams et al. 2003, Cook et al. 2006b). 

The importance of these visual cues has led to some successful investigations into reducing B. 

aeneus infestation by changing the colour of the flowers (Giamoustaris & Mithen 1996, Cook et al. 

2013b) or removing the petals completely (Frearson 2006, Frearson et al. 2006). However no 

preference for a yellow-flowered OSR over an isogenic line with white flowers was found (Frearson 

2006, Frearson et al. 2006); this may be due to the white-petalled variety used having high 

reflection in the UV range, as pollen beetles have high sensitivity to UV alongside the green and 

blue wavelengths that combine to make yellow (Döring et al. 2012; Cook et al. 2013b). The use of 

colour cues may explain the findings of Dlabola & Taimr (1965) that beetles can locate OSR fields 

from at least 300m away, however the second cue – olfaction – may be enough to attract beetles to 

OSR from that distance (Charpentier 1985, Murlis et al. 1992, Moser et al. 2009). 

 OSR produces a suite of volatile compounds (Kjaer 1976, Tollsten & Bergstrom 1988, 

Robertson et al. 1993, Jakobsen et al. 1994, Chen & Andreasson 2001, Jönsson et al. 2005, Cook et 

al. 2007) and these are known to attract B. aeneus (Kirk 1992, Blight et al. 1995, Smart et al. 1995, 

Ruther & Thiemann 1997, Smart & Blight 2000, Cook et al. 2002, Cook et al., 2007, Williams & Cook 

2010, Mauchline et al. 2013). These attractive compounds are summarised in Williams & Cook 

(2010) and have been identified as important in host-plant attraction studies using olfactometers 

(Evans & Allen-Williams 1994, Ruther & Thiemann 1997, Cook et al. 2002, Jönsson et al. 2005, 

Mauchline et al. 2005), wind tunnels (Cook et al. 2006b, 2007) and in the field (Free & Williams 
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1978, Evans & Allen-Williams 1994, Blight & Smart 1999, Smart & Blight 2000). These compounds 

have mostly been tested singly however and there is evidence that specific ratios of compounds are 

used by insects to find their hosts (Bruce et al. 2005). These compounds are detected by the beetle 

via their antennae (Blight et al. 1995, Mauchline et al. 2008) at least 20m away (Evans & Allen-

Williams 1994) and perhaps up to 300m (Taimr et al. 1967). Upwind anemotaxis (movement in 

response to wind stimulus) is used to retain contact with the odour plume from the crop (Evans & 

Allen-Williams 1994, Williams et al. 2007, Williams & Ferguson 2010; Skellern et al. 2017). This is 

supported by the findings of Ferguson et al. (2003a, b) that B. aeneus mainly colonises crop fields 

from the downwind edge. In addition, Moser et al. (2009) found that the presence of OSR 

downwind from a study site was a significant predictor of B. aeneus density. Visual cues (i.e. 

presence of yellow flowers) appear to be a strong stimulus for the landing response of incoming 

beetles (Blight & Smart 1999, Williams et al. 2003, Cook et al. 2006b, 2007) but the abundance of 

buds is an important factor in the length of time that the beetles remain on the plant (Frearson et 

al. 2005). Brassicogethes aeneus causes most damage to the OSR crop when it is at the green bud 

stage, and it is at this time, according to Free & Williams (1978) that the beetle numbers are highly 

concentrated at the edges of the fields, though Mauchline (2003) found no evidence for edge 

distribution. Ferguson et al. (2003a, b) found that B. aeneus colonises crop fields from the 

downwind edge and that the larvae & resultant new generation tended to cluster in the downwind 

half of a field, the upwind parts remaining relatively uninfested (Williams & Ferguson 2010).  

 

1.2.4 Pollen beetle control and resistance 

Since the second half of the 20th Century, control of B. aeneus and other pests of OSR in 

Europe has been predominantly via synthetic insecticides (Thieme et al. 2010b). Historically 
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dichlorodiphenyltrichloroethane (DDT) and organophosphates have been used before being phased 

out (Thieme et al. 2010b). Under the current regulatory environment in the EU pyrethroids, 

indoxacarb, pymetrozine and a limited range of neonicotinoid insecticides are the only synthetic 

insecticides available, with Chlorpyrifos – an organophosphate approved (until recently) for 

emergency actions (Thieme et al. 2010b, AHDB 2013). All applications of insecticide for B. aeneus 

are as sprays, often in response to populations in the crop exceeding a threshold set by the relevant 

regulatory body (Thieme et al. 2010b), for example the threshold for the UK ranges between 7-25 

beetles per plant depending on crop density (HGCA 2013, Ramsden et al. 2017), whilst in Denmark 

it is as low as 1 beetle per plant in the early bud stage (Nielsen & Axelsen 1988b, Hansen 2004) with 

other European countries generally setting a threshold between 3-8 beetles per plant, depending 

on growth stage (Richardson 2008; Williams 2010). It is clear that threshold levels for pollen beetles 

are generally based on little scientific evidence that is often outdated and are frequently ignored by 

growers (Thieme et al. 2010b, Rose et al. 2016, Ramsden et al. 2017). Given that the cost of 

insecticides is relatively low this leads to widespread prophylactic use (Thieme et al. 2010b, 

Médiène et al. 2011, Ferguson et al. 2016, Ramsden et al. 2017). For example, the use of 

pyrethroids as a foliar application has increased since the introduction of fungicides due to the 

reduction in cost when using tank mixtures with both fungicides & insecticides (Thieme et al. 

2010b). In Europe, winter OSR typically receives between one and four insecticide applications 

against B. aeneus, with more than 90% of the area sown reported to be sprayed annually 

(Richardson 2008). 

Chemical control brings with it a risk of the target species developing resistance (Edwards et 

al. 2008, Yadouleton et al. 2009, Slater et al. 2011). Despite insecticidal control in OSR being 

relatively low in total compared to other crops (Muthmann 2007), OSR does have a consistently 

high insecticide input that is a central component of the crop protection strategy (AHDB 2013, 
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Hughes et al. 2014). The first reports of synthetic insecticide resistance in B. aeneus came from 

Poland in 1965 (Wegorek 1965, IRAC 2006, Thieme et al. 2010b), although one report from 

Germany suggests the possibility of synthetic chemical resistance developing in the late 1910s or 

early 1920s (Boerner et al. 1921). The first incidence of pyrethroid resistance was recorded in 

northern France in 1999 (Hansen 2003, 2008), with unvalidated anecdotal reports of resistance 

elsewhere in Europe dating back to 1997 (Thieme et al. 2010b). Brassicogethes aeneus resistance to 

a range of insecticides including all classes of pyrethroid is now widespread across Europe (Slater et 

al. 2011, Zimmer & Nauen 2011a, Nauen et al. 2012, Ferguson et al. 2013, Kaiser et al. 2014, 

Stratanovitch et al. 2014, Zimmer et al. 2014a, Heimbach & Brandes 2016). Richardson (2008) 

found a significant correlation at a country level between the number of spray applications of 

pyrethroids and the year of resistance development in B. aeneus. Riggi et al. (2016) found a 

significant effect of the proportion of OSR in the landscape and the mixture of spring and winter 

OSR on the development of resistance to the pyrethroid lambda-cyhalothrin (Karate®).  

There are two main mechanisms of resistance to pyrethroids that have been identified in B. 

aeneus (Nauen et al. 2012); one based on modification of the pyrethroid target-site (the sodium 

channels of the central nervous system (Khambay & Jewess 2005, Nauen 2007)); the second 

through metabolic detoxification of the pyrethroid from elevated levels of esterases and 

cytochrome P450 monooxygenases (Vontas et al. 2010), i.e. target-site resistance and metabolic 

resistance, respectively. The target-site mutation is a single amino acid (L1014F) change in the 

voltage-gated sodium channel (Nauen et al. 2012), this confers knock-down resistance (kdr) as the 

pyrethroid molecules are unable to bind to the sodium channel. Metabolic resistance in B. aeneus 

appears to be through the hydroxylation of the pyrethroid compound by microsomes (Zimmer & 

Nauen 2011b) mediated by elevated levels of oxidase enzymes containing cytochrome P450 

proteins in the CYP2, CYP3, CYP4, CYP6 and mitochondrial subfamilies (Zimmer et al. 2014a, b). 
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Metabolic resistance allows for increased cross-resistance to different pyrethroid compounds than 

kdr (Zimmer & Nauen 2011b, Zimmer et al. 2014a) further reducing control options. 

As yet, there is little evidence of neonicotinoid resistance developing in European B. aeneus 

populations (Thieme et al. 2010a, Zimmer et al. 2014a, Kaiser et al. 2015, Milovanović et al. 2019, 

but see Spitzer et al. 2020), meaning that neonicotinoid sprays had become an important 

alternative to pyrethroids in the control of B. aeneus. However, due to the potential harmful effects 

of neonicotinoids on bees, this is unlikely to last and products containing thiacloprid (e.g. Biscaya) 

will not be permitted for use against pollen beetles from 2021 onwards (but products containing 

Acetamiprid are still permitted). 

The prevalence of resistance in B. aeneus to the primary class of insecticide available in 

Europe, alongside the withdrawal of alternatives, means that steps need to be taken to reduce the 

risk of economically damaging infestations. An important tactic to reduce the spread of resistant 

strains is to reduce unnecessary prophylactic spraying of crops (Brown 1981, Brattsten et al. 1986). 

This requires an element of risk on behalf of the grower as not spraying when necessary may result 

in lower yields, whereas a successful spray when not needed is relatively cheap in costs and labour 

(Dewar 2017). To encourage growers to reduce prophylactic sprays a range of alternative methods 

have been, and continue to be, developed. Several methods, such as increased crop rotation (Rusch 

et al. 2011), intercropping or companion planting with pest repellent plants (Endersby & Morgan 

1991, Martin et al. 2020), trap cropping (Cook et al. 2004b, Thöming et al. 2020), pest resistant 

cultivars (Hervé & Cortisero 2016, Seimandi Corda 2019) or reduced tillage (Nilsson 2010) involve a 

degree of cultural change away from conventional agriculture which may elicit reluctance to adopt 

from more conservative growers.  
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One method that requires less cultural change is the use of decision support systems (DSS) 

that assist the grower in determining whether weather conditions and crop growth stage 

necessitate crop inspection. The internet has emerged as an important tool for disseminating 

forecasts and decision support systems (Bajwa et al. 2003, Damos 2015); some examples of this are 

available for B. aeneus, including proPlant, the Warwick MORPH model.  

The proPlant decision support tool was previously hosted at www.proPlantexpert.com 

(Johnen & von Richthofen 2013, Ferguson et al. 2013), but has been rebranded and available to 

subscribers only on the Xarvio platform (Hicks 2018). proPlant used accumulated spring 

temperatures in combination with weather parameters (daily mean & maximum temperatures, 

wind speed and sunshine hours) to forecast and report on the start and end of B. aeneus migration 

(Johnen et al. 2010). Further, the DSS allowed timely assessment of threshold levels of the pest, 

along with crop growth stage, to determine the need, or not, for control measures. It should be 

noted this covered a range of pest species beyond B. aeneus. 

The Warwick University MORPH model, one of a range of models available on the Warwick 

University Pest Compendium (https://warwick.ac.uk/fac/sci/lifesci/wcc/resources/morphexcel), is a 

Monte Carlo simulation of the timing of phenological events (spring development, egg maturation, 

egg and larval development, pupation and pupal development based on thresholds derived from 

laboratory rearing experiments (Collier et al. 2001). The model requires the input of hourly 

temperature, rainfall and humidity data with the output being a measure of the percentage of 

emergence of new adults from pupae (Collier et al. 2001).   

Whilst the proPlant DSS and the Warwick MORPH model for B. aeneus could report the 

timing of important phenological events well (pest migrations and the emergence of adults 

respectively) (Collier et al. 2001, Johnen et al. 2010, Ferguson et al. 2016), and the Xarvio scouting 

http://www.proplantexpert.com/
https://warwick.ac.uk/fac/sci/lifesci/wcc/resources/morphexcel
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tool can alert growers of an immediate threat, there are currently no tools that can forecast 

abundance. For other pest taxa these tools are available, e.g. aphids (Harrington & Woiwod 2007) 

demonstrating the possibility of developing this aspect of B. aeneus DSS tools further.  

An aspect of pest forecasting that remains poorly understood in many systems is dispersal, 

movement and migration (Jeger 1999, Carrière et al. 2006, Nathan et al. 2008, Huseth et al. 2012, 

Prasad & Prabhakar 2012), both within-field and at a larger scale. Whilst dispersal measures can be 

inferred from monitoring (Farrell 2000, Osborne et al. 2002) or genetics (Ross 2001, Nathan 2001, 

Jaquiéry et al. 2011) and insects are amenable to experimental manipulation to determine dispersal 

capacity (Chapman et al., 2015), there are still severe challenges in partitioning true dispersal from 

other ecological factors (Jacobson & Peres-Neto, 2010). It is rare that measures of dispersal 

distance are used in forecasting pests or decision support tools and when they are present these 

are often proxies, such as wind speed & direction (Leskinen et al. 2011, Burgin et al. 2013). Some 

models that utilise known dispersal parameters do exist, for example Græsbøll et al. (2014), who 

modelled passive and active dispersal in Culicoides midges. 

 

1.3 Migration and crop pests 

Migration is the seasonal movement of a population of animals from one area to another, 

usually as a response to changes in temperature, food supply, or the amount of daylight, and often 

undertaken for the purpose of breeding (Southwood 1962, Reynolds et al. 2006, Dingle 2014). For 

insects this can range from the continent- and generation-spanning migrations of the monarch 

butterfly (Reppert et al. 2016) and the silver Y moth (Chapman et al. 2012) to the post-aestivation 

dispersal of carabid beetles from hedgerows into adjacent cropped habitat in farmland (Fernandez 

Garcia et al. 2000).  
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1.3.1 Biology of dispersal 

In ecology, dispersal is the movement of individuals from one region to another for 

reproductive purposes leading to gene flow (Wright 1950, Croteau 2010, Dingle 2014). It is 

generally accepted that there are two primary types of animal dispersal in ecological systems: the 

movement away from the region of birth to the region where breeding first takes place (natal 

dispersal) and movement between two successive breeding areas (breeding dispersal) (Clobert et 

al. 2001, Croteau 2010, Dingle 2014). There are other types of movement, for example foraging and 

migration to non-breeding areas (Dingle 2014), but as these do not directly lead to gene-flow 

(though they may interact, e.g. Roff & Fairbairn 2001) they are not considered to be dispersal per 

se.  

Dispersal is predicated on some form of migratory movement (Kennedy 1985, Dingle 2014). 

Such movements in insect pests allow the possibility for detection before pest outbreaks become 

damaging (Pedgley 1993, Day & Knight 1995, Prasad & Prabhakar 2012), or, alternatively drivers of 

migration can be understood in order to allow forecasting of outbreaks in advance (Day & Knight 

1995, Harrington & Woiwod 2007, Prasad & Prabhakar 2012). In B. aeneus this migratory dispersal 

is manifested in their post-winter migration into new breeding areas (natal dispersion) and the 

movement of females between crop fields (breeding dispersal) (Williams et al. 2007, Williams & 

Cook 2010, Mauchline et al. 2013, Juhel et al. 2017, 2019).   

 

1.3.2 Modelling approaches 

 Forecasting migrations requires the modelling of these movements in time and space and 

requires an understanding of what drives them. Such models can be simple linear regressions of 
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temperature against first flight for example (Harrington & Woiwod 2007), or more complex 

dynamic models utilising life tables and/or simulations of pest outbreaks under different 

environmental conditions (Fitt et al. 1995, Prasad & Prabhakar 2012). All modelling approaches 

have advantages and disadvantages. For example, simple linear models may be relatively easy to 

produce and often outperform more complex models (Rogers 1995, Armstrong 2001, Smith et al. 

2005) but predicted values are often poor estimates and can struggle with non-linear changes in 

drivers over time (Smith et al. 2005, Oliver & Roy 2015). On the other hand, more complex models 

may be more accurate and adaptable to changes in drivers over time, but only for a specific 

location or set of environmental conditions (Smith et al. 2005), or are difficult to parametrise due to 

the wide range of drivers considered (Oliver & Roy 2015). What unifies all forecasting models is the 

requirement for data on pest abundance and the drivers of their migrations to base calculations on 

(Day & Knight 1995, Prasad & Prabhakar 2012). 

 

1.4 Monitoring methods to detect migration 

Monitoring pest insects to provide information on migration and abundance is difficult at a 

landscape scale (Day & Knight 1995, Prasad & Prabhakar 2012). Several methods have proved 

successful in providing the information growers need to control some pests, but others remain 

under-researched. 

 

1.4.1. Suction-traps  

Suction-traps of the Rothamsted design (Macaulay et al. 1988) are 12.2 metres high & draw 

air through a 244 mm ‘chimney’ at 45 m3/min. They have operated in the UK since 1964 and a 
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network of these traps now runs throughout the UK, and similar networks of traps of the 

Rothamsted design or similar operate across Europe (Dedryver et al. 2011), North America (Schmidt 

et al. 2012), China (Miao et al. 2011) and South Africa (Krüger et al. 2014). Originally designed to 

monitor aphids (Harrington & Woiwod 2007), in recent years their potential to monitor other aerial 

taxa has become apparent (Shortall et al. 2009, Sanders et al. 2011). 

 

1.4.1.1 Aphids 

The Rothamsted Insect Survey (RIS) celebrated its 50th anniversary in 2014 (Bell et al. 2015), 

for the entire period it has been monitoring aphids and has assembled the most comprehensive 

standardised dataset on terrestrial invertebrates in the world (Harrington 2014). Alongside their 

partners in Scotland - SASA (Science and Advice for Scottish Agriculture) – the RIS run a network of 

traps in England and Scotland. In addition to providing grist for a range of seminal papers in a range 

of disciplines (Harrington 2014, Bell et al. 2015) the RIS also provides data to growers on the timing 

and size of aphid migrations (Harrington et al. 2012). Currently these data are provided as a series 

of weekly bulletins that provide timely information for farmers, growers and agronomists 

throughout the critical periods in the growing season, with commentary provided to elucidate the 

raw numbers. 

 

1.4.1.2 Other taxa  

All samples taken by RIS are stored; as yet there are no other groups or species currently 

monitored quantitively on a regular basis from the suction-traps, though weekly reports on 

economically important insects noted in the traps are available to subscribers. There is potential to 
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monitor species of economic importance, including Culicoides biting midges (Diptera: 

Ceratopogonidae), vectors of bluetongue disease that affect livestock (Fassotte et al. 2008, Sanders 

et al. 2011), and two serious pests of brassica crops Psylliodes chrysocephala (Coleoptera: 

Chrysomelidae) and B. aeneus (this thesis).  

 

1.4.2 Radar entomology 

 The detection of insect migrations using various radar technologies such as vertical-looking 

radar (VLR) (Chapman et al. 2003); scanning entomological radar (SER) (Riley et al. 1995), tracking 

entomological radar (TER) (Westbrook et al. 1995), airborne entomological radar (AER) (Hobbs and 

Wolf 1989); or weather radar (Bauer et al. 2017) is an emerging and increasingly useful technology 

(Chapman et al. 2003, Leskinen et al. 2011, Bauer et al. 2017, Abd El-Ghany et al. 2020, Kelly & 

Stepanian 2020). VLR, TER and SER can be deployed at specific sites to provide an assessment of the 

migration of larger insect pests across a wide area (Chapman et al. 2003, Reynolds et al. 2006, 

Bauer et al. 2017, Pearson et al. 2020), a key strength of VLR being the ability to monitor at 

different altitudes simultaneously to give a profile of insect migration allowing for short-term 

forecasts (Chapman et al. 2003, Abd El-Ghany et al. 2020). In a similar manner, weather radar can 

be used to track insect movement (Chilson et al. 2012, Stepanian et al. 2016, Kelly & Stepanian 

2020) and be used to form the basis of a pest migration alarm system (Nieminen et al. 2000, 

Leskinen et al. 2011, Boulanger et al. 2017). However, it is difficult to monitor smaller sized insects 

using these radar technologies. 
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1.4.3 In-field sampling 

 There are several methods that are available to monitor pest migration in-field (Southwood 

& Henderson 2009, McCravy 2018), ranging from direct inspection of plants to trapping pest 

species to more recent technologies for remote detection of pests.  

 

1.4.3.1 Plant scouting 

 The simplest method for monitoring pests in fields involves visually inspecting (“scouting”) 

the crop for infestation (Pedigo & Buntin 1993). Various methods of inspection can be employed, 

for example, counting insects or their eggs on plants (Mitchell et al. 2000); beating individual plants 

into trays to count the number of insects present (Tuovinen & Parikka 1996, Walters et al. 2003); 

sweep-netting to gain an estimate of insect abundance (Morandin et al. 2014, Cato et al. 2019); 

determining the percentage of plants infested (Cartwright et al. 1987); or assessing the amount of 

damage to plants by pests (Mitchell et al. 2000). Brassicogethes aeneus is generally assessed by the 

beating tray method (Walters et al. 2003, AHDB 2013), with transects walked into the crop and 

random plants selected for beating at set intervals (AHDB 2013). Fera Science Ltd. (Fera), formerly 

the Food and Environment Research Agency, monitors a range of crops across the UK utilising this 

technique, including OSR for B. aeneus and Psylliodes chrysocephala – transects are taken through 

target fields and crop samples examined for presence of adults (B. aeneus) or larvae (P. 

chrysocephala) and damage. Data are disseminated via reports and through the trade press (AHDB 

2013) and online via https://secure.fera.defra.gov.uk/cropmonitor/wosr/surveys/wosrPestAssLab.cfm , 

the CropMonitor website (Collins pers. comm). 

 

 

https://secure.fera.defra.gov.uk/cropmonitor/wosr/surveys/wosrPestAssLab.cfm
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1.4.3.2 Water traps 

 Water traps (Moericke 1951) are frequently deployed to monitor in-field pests. Yellow 

water traps in particular are known to preferentially attract a range of crop pests, including aphids 

(Northing & Dale 2009) and pollen beetles (Williams 2010). Fera operate water-traps around the 

country, primarily in potato fields to monitor aphids. Data are disseminated to registered users in 

the form of alerts on the first Myzus persicae record in the season and once potato virus index 

values reach a certain threshold (Northing & Dale 2009). 

 Alongside their contribution to the UK suction-trap network, SASA also carry out yellow 

water tray trapping in potato crops throughout Scotland with aphids the main target (Highet pers. 

comm.). Results from the suction-trap are summarised in a weekly bulletin with interpretation 

available to subscribers. Water-trap results are passed on to growers in the form of weekly updates 

on the SASA website, with additional work on virus transmission risk also provided (Highet pers. 

comm.). 

Yellow water tray traps in sugar beet are run by the British Beet Research Organisation in 

the major sugar beet growing areas – predominantly in Eastern England – to monitor aphid 

populations. Results are available as weekly bulletins, with summaries in the trade press 

(https://bbro.co.uk/publications/beet-review/). In addition, the AHDB report online on horticultural 

pests in water tray traps based at the Warwick Crop Centre station at Wellesbourne 

(https://blogs.warwick.ac.uk/rosemarycollier/).  

As part of their DSS package (Hicks 2018), Xarvio offer automated yellow trap analysis as 

part of their scouting package (https://www.xarvio.com/gb/en/products/scouting/yellow-trap-

analysis.html). Growers are able to identify and count harmful insects in their traps using the app 

https://bbro.co.uk/publications/beet-review/
https://blogs.warwick.ac.uk/rosemarycollier/
https://www.xarvio.com/gb/en/products/scouting/yellow-trap-analysis.html
https://www.xarvio.com/gb/en/products/scouting/yellow-trap-analysis.html
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and can share their results with other users to gain a general impression of the insect pressure in 

their region.  

 

1.4.3.3 Sticky traps 

Sticky traps (Broadbent 1948) consist of a sheet, cylinder, or globe covered in glue and 

mounted at varying heights, either in or around the crop. Sticky traps have been used to monitor a 

range of pests, including fruit flies (Cytrynowicz et al. 1982), whiteflies – both in greenhouses 

(Webb & Smith 1980) and in the field (Atakan & Canhilal 2004) – cornworms (Midgarden et al. 

1993) and leafhoppers (Chancellor et al. 1997).   

In the UK, the use of sticky trap monitoring for use within warning systems in agricultural 

crops is limited to carrot flies Chamaepsila rosae (Fab.) (Collier et al. 1990), with monitoring results 

and weather-based forecasts distributed via the AHDB Pest Bulletin 

(https://ahdb.org.uk/knowledge-library/ahdb-pest-bulletin). Brassicogethes aeneus and other pests 

are recorded and reported as bycatch but are not the target pests 

(https://blogs.warwick.ac.uk/rosemarycollier/). In addition, sticky traps are used as a research tool 

for understanding the phenology and distribution of pest and natural enemy species (e.g. 

Heathcote 1957, Finch & Collier 1989, Collier et al. 1990, , Longley et al. 1997, Bruce et al. 2005), 

including B. aeneus (Skellern et al. 2018).  

 

1.4.3.4 Pheromone traps 

 Despite being known for many decades prior (e.g. Fabre 1879, Lintner 1882), and posited 

even earlier (Butler 1609, Darwin 1896, Wyatt 2009), pheromones were named as such in 1959 

https://ahdb.org.uk/knowledge-library/ahdb-pest-bulletin
https://blogs.warwick.ac.uk/rosemarycollier/
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(Karlsen & Lüscher 1959) after the first chemical identification was made by Butenandt (1959). 

Pheromones are a suite of chemicals that are excreted by individuals that elicit a behavioural or 

endocrine response from individuals of the same species (Hardie & Minks 1999, Doty 2010), 

although they may also influence the behaviour of other species such as allowing host location by 

parasitoids (Feener Jr. et al. 1996, Du et al. 1998). Utilising pheromone attractants to trap insects 

was first posited in the early 1960s (Coppel et al. 1960, Jacobsen & Beroza 1964), with a range of 

traps developed for different target insects (Elkington & Cardé 1984, Wyatt 2009). These traps 

utilise the attractant potential of (usually) female sex pheromones to attract the target species and 

either include sheets covered with glue or, more rarely, a non-lethal means of collection (Elkington 

& Cardé 1984) in order to monitor the target species. 

 In the UK, pheromone traps have been used to monitor a range of insect pests, including the 

orange wheat blossom midge (Sitodiplosis mosellana (Gehin)) (Bruce et al. 2007), the saddle gall 

midge (Haplodiplosis marginata (von Roser)) (Rowley et al. 2017), the oak processionary moth 

(Thaumetopoea processionea L.) (Williams et al. 2013), orchard moths (Cydia pomonella (L.) and 

Archips podana (Scopoli)) (Alford et al. 1979). As yet, only a potential epideictic (repellent) 

pheromone has been identified in B. aeneus (Ruther & Thiemann 1997, Cook et al. 2006a), however 

there has been progress in developing a sticky-trap baited with the plant volatile 

phenylacetaldehyde, known to attract B. aeneus (Cook et al. 2013a). This trap has been deployed 

around the UK allowing growers to make their own assessments about B. aeneus infestation rates 

within their crops. 

1.4.3.5 Other technologies 

 One aspect that unites both in-field sampling and observation through trapping methods is 

the large amount of time required for counting and identifying samples. This includes the time 
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spent collecting and quantifying samples and the training required in order to carry out these tasks 

(Southwood & Henderson 2009, Ahmad et al. 2018, Preti et al. 2020). There are several automated 

techniques that can detect species of interest without the input of a human observer. These 

techniques include automated traps with infra-red (Hendricks 1985, Ahmad et al. 2018), optical 

(Hendricks 1990, Doitsidis et al. 2017, Pearson et al. 2020, Preti et al. 2020), acoustic (Potamitis et 

al. 2017, Sandrini Moraes et al. 2019) or lidar (Mei et al. 2012, Ahmad et al. 2018, Jansson & 

Brydegaard 2018, Kirkeby et al. 2021) sensors to relay pest occurrence information to growers, 

either directly or via a data processing centre. As yet there are few applications of these novel 

technologies relating to B. aeneus and thus further discussion of these techniques is outside the 

remit of this thesis. 

 

1.5 Pest forecasting 

The monitoring of pests has a major benefit for growers: the ability to forecast future 

outbreaks, spatially and/or temporally (Bardner et al. 1982). There are many approaches to best 

determine the location, timing and extent of pest outbreaks in crops. Many utilise weather factors, 

for example air and soil temperature (Junk et al. 2016, Johnen et al. 2010), rainfall (Thackray et al. 

2009, Veran et al. 2015), mean temperature in autumn (Thackray et al. 2009) or winter (Yamamura 

et al. 2006, Eickermann et al. 2014, Matsumura et al. 2015), maximum temperature of the previous 

year (Hameed et al. 2015), day degrees (Wilson & Barnett 1983, Tu et al. 2014), sunshine hours 

(Junk et al. 2016) or relative humidity (Hameed et al. 2015). Others consider land cover (Veran et al. 

2015) and a few combine a range of weather variables with time of year to account for pest 

development (Sanders et al. 2011, Hirschi et al. 2012). Most forecasting measures also rely on 
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accurate measurements of the pest abundance in previous years (Yamamura et al. 2006, Hameed 

et al. 2015, Matsumura et al. 2015, Veran et al. 2015).  

 The lack of formal pest information forecasts and related decision support systems across 

production systems obstructs the development of improved pest management (McBratney et al. 

2005, Damos 2015). A further complication is the changing agricultural landscape, technological 

advances and climate change creating a shifting context for solving pest management problems 

(Strand 2000).  

 

1.6 Aims and objectives of this study 

 This study aims to fill some of the knowledge gaps in our understanding of B. aeneus 

population dynamics. Namely: their long-term population dynamics; the drivers of annual and daily 

abundance as estimated by trap catches; the spatial distribution and their dispersal ability and 

population structure in the UK. This knowledge is needed to develop models using historic and 

current suction-trapping data to form predictions of pollen beetle migration into both winter and 

spring oilseed rape crops over a useful time frame for farmers. These models should also provide 

estimates of the size of the migrating population. Together these outputs can be built into a 

decision support system (DSS) for farmers so that they can more accurately assess and manage the 

risk of pollen beetle damage to their oilseed rape crops and therefore reduce unnecessary 

insecticide applications. 

The aims were addressed via a series of objectives: 

1) Use suction-traps to define the environmental and metrological drivers of migration in B. 

aeneus to enable prediction of timing of migration (Chapters 2 & 3). 
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2) Investigate population dynamics of B. aeneus to predict the size of the immigrating 

population (Chapters 2 & 3). 

3) Investigate the relationship between suction-trap catch and population abundance in 

crops to determine whether suction-trap catches can inform field observations or provide 

insight into B. aeneus spatial distribution in England (Chapter 4).  

4) Use flight-mills and molecular data to investigate the dispersal ability and population 

structure of the English B. aeneus population(s) (Chapter 5).   

 



 

50 

 



 

51 

 

Chapter 2. 

Long-term trends in Brassicogethes aeneus abundance and oilseed rape cultivation. 

 

Chapter Summary 

Data on pollen beetle (Brassicogethes aeneus) numbers caught in Rothamsted suction-traps 

from 1987-2018 were investigated to determine long-term trends in annual counts and their 

relationship with area of oilseed rape (Brassica napus) grown at a national and regional level. The 

trend at seasonal and monthly levels were compared to the overall trend, and the relationship 

between counts in late summer of newly-emerged beetles and counts in spring/early summer of 

overwintered beetles the following year and the inter-generational relationship within year were 

also investigated.  

It was found that, although both B. aeneus counts and area of oilseed rape grown in the UK 

increased over time, annual counts of B. aeneus were negatively related to the area of oilseed rape 

grown nationally that year. Conversely, the relationship was positive when oilseed rape area was 

considered on the regional level. The increasing trend in B. aeneus annual counts was also shown in 

most seasons and months except for March/April and July which showed no overall trend across the 

time period studied. In addition, it was found that counts of beetles from June 1st onwards (the 

newly emerged generation) showed a positive relationship with counts up to June 1st the following 

year, indicating that it may be possible to forecast the abundance of the spring migration of B. 

aeneus a few months in advance utilising suction-trap samples.  
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2.1 Introduction 

2.1.1 Long-term Monitoring 

2.1.1.1 What is long-term monitoring? 

Long-term monitoring is the study of a system over an extended period of time using 

repeatable, standardised sampling methods (Callahan 1984, Franklin 1989, Lindenmayer & Likens 

2010, Magurran et al. 2010, Johnson 2012, Lindenmayer et al. 2012). The definition of this 

extended period varies between systems and the hypothesis being tested; for insects the temporal 

scale and extent can vary from a few months (Englund 2001) to several decades (Gibbs 2000, 

Szentkirályi 2002, Hughes et al. 2017, Bell et al. 2020). Long-term monitoring in ecological systems 

allows researchers to assess trends in abundance, phenology and/or distribution of the target 

species or habitats over time (Storkey et al. 2016, Hughes et al. 2017) and allows for the 

development and testing of ecological theories (Hanski & Woiwod 1993, Lovett et al. 2007, Gitzen 

et al. 2012). This in turn allows the study of population dynamics (Franklin 1989, Gibbs 2000, Doak 

et al. 2008) and gives a greater knowledge of the effects of environmental change (Willis et al. 

2007, Clutton-Brock & Sheldon 2010, Magurran et al. 2010, Hughes et al. 2017) and interventions 

(Bell et al. 2012) on populations and habitats. The knowledge gained can then allow for remedial 

action in the case of species of conservation concern (Legg & Nagy 2006, Lovett et al. 2007, Willis et 

al. 2007, Magurran et al. 2010, Carpenter et al. 2011, Lindenmayer et al. 2012), or inform control 

options of economic pest species (Bell et al. 2012, Wang et al. 2019). 
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2.1.1.2 Long-term insect monitoring and forecasting in agriculture 

Monitoring agricultural pest systems allows us to forecast future outbreaks over space and 

time (Bardner et al. 1982, Finch et al. 1996). Currently, most insecticide application decisions are 

made either prophylactically or based upon economic thresholds of pest presence on inspection 

(Teng 1994, Lima et al. 2014, Onstad et al. 2019), however these are not economically viable in all 

cropping systems (Reisig et al. 2012, Ramsden et al. 2017) and, indeed, thresholds are often 

inaccurate and not widely used (Ramsden et al. 2017). Predictions generated from forecasts can be 

a major benefit if this knowledge is disseminated to growers, allowing them to take preventative 

rather than prophylactic measures to control the target pest (Teng 1994, de Freitas Bueno et al. 

2011, Holzworth et al. 2015), provided that they are issued within a generous treatment window. 

These types of forecasts are often referred to as decision support systems (DSS) when the 

prediction is linked to a possible intervention to exercise control over a pest (Coulson & Saunders 

1987, Lagos-Ortiz et al. 2018, González-Andújar 2020). DSSs are a crucial tool in Integrated Pest 

Management (IPM) cultivation (Teng 1994, Kogan 1998, Lima et al. 2014, González-Andújar 2020), 

which has been shown to reduce pesticide use (Teng 1994, de Freitas Bueno et al. 2011) and 

improve economic performance (Rola & Pingali 1993) in certain cropping systems. 

 

2.1.1.3 The Rothamsted Insect Survey 

There are very few datasets which allow long-term quantitative trends in insect populations 

to be derived (Montgomery et al. 2019, Saunders, 2019). Perhaps the best is the Rothamsted Insect 

Survey (Bell et al. 2015) database and archives. The database contains >50 M records of, primarily, 

moth and aphid abundance data over more than 50 years across the UK from a network of light 

traps and 12.2m suction-traps (Harrington 2014, Storkey et al. 2016), whilst the archive contains 
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~200,000 samples of bycatch from 39 suction-traps (Shortall 2013). This long-term dataset has 

enabled forecasting tools to be developed for some species of aphid that show a strong relationship 

between winter temperature and their phenology and abundance (Harrington & Woiwod 2007, Bell 

et al. 2015) and has also shown the potential for forecasting in other taxa found in the bycatch, for 

example biting midges (White et al. 2017). The bycatch has recently been demonstrated to have 

the potential to inform studies of a range of aerial taxa (Shortall et al. 2009, Sanders et al. 2011, 

Pérez-Rodríguez et al. 2015), however, previous to this work, pollen beetles (Brassicogethes aeneus 

(Fab.)) had not been studied in detail using the 12.2 m suction-trap network. 

 

2.1.2 Pollen beetles 

2.1.2.1 Pollen beetles and oilseed rape 

Pollen beetles (Brassicogethes aeneus (Fab.)) are a pernicious pest of oilseed rape (OSR) and 

other brassicas (Williams & Free 1978, Finch et al., 1996, Williams 2010), causing feeding and 

oviposition damage in buds causing them to abscise (Free & Williams 1978, Ekbom & Borg 1996, 

Williams 2010). As most winter OSR is past the susceptible stage by the time the beetles emerge 

from hibernation in the spring the damage to these crops is usually minimal (Williams 2010), 

although early emergence or late flowering can lead to economic loss (Zlof 2008). In spring OSR and 

horticultural crops, however, damage can be extensive (Finch et al. 1990, 1996, Alford et al. 2003, 

Hansen 2004). Thus, it is of interest to both researchers and growers to measure seasonal and 

overall abundance of B. aeneus across years. This may then give insight into how the populations 

fluctuate through time with changes in climate and land-use and allow the development of 

forecasting and DSS tools.  



 

55 

 

2.1.2.2 Pollen beetle habitat has increased through time 

Much of the recent research on long-term insect trends has focussed on declines in 

abundance, with habitat loss often cited as an important driver of these declines (e.g. Biesmeijer et 

al. 2006, Conrad et al. 2006, Van Dyck et al. 2009, Dirzo et al. 2014, Fox 2013, Spiller & Dettmers 

2019, Saunders 2019). Conversely, in the UK and northern and eastern Europe, B. aeneus has seen 

its area of habitat increase in recent years (Hokkanen 2000, Gehringer et al. 2007). The 

development of reduced glucosinolate and eruic acid varieties of OSR in Canada in the 1970s 

(Bunting 1984, Booth & Gunstone 2004) led to a rapid rise in the area under oilseed cultivation in 

the UK (Fig. 2.1). The crop briefly became the second most widely grown crop in the UK, reaching a 

peak in 2012 at 756,000 hectares with more than 600,000 hectares grown in most years – 

representing around 9-12% of the total cropped area in the UK (DEFRA, 2014, 2018). This increase 

in acreage was reflected across most of northern and eastern Europe (Gehringer et al. 2007). It has 

already been demonstrated that B. aeneus is able to rapidly shift to OSR from native brassica hosts 

when these crops are introduced to an area (Hokkanen 2000). This ability to shift to OSR allowed 

the beetle to exploit the increase in acreage that occurred in Europe in the second half of the 20th 

century and become an abundant pest throughout the region (Hokkanen 2000). There are 

indications that area increase has plateaued since 2012, UK-wide sown area has declined in all 

years except 2018, along with yield in most years (DEFRA 2018, 2019a). The crop is now at its 

lowest acreage in a decade (AHDB). 
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Fig. 2.1: DEFRA June Census statistics for oilseed rape in the UK 1900-2010. The crop was not 

grown in sufficient quantity to appear in the statistics until 1970 and has since risen to become an 

important UK crop. 

 

2.2 Aims and objectives 

The main aims of this study were to understand the long-term pollen beetle population 

trends in the UK and to elucidate the meteorological and landscape level drivers of these trends in 

order to assess the potential for forecasting beetle abundance using suction-traps. 
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The objectives were: 

1) to use suction-trap catches to visualise annual and daily flight patterns of B. aeneus over 

more than thirty years using data from two suction-traps in the south-east of England and 

over four years using data from multiple suction-traps across England. 

2) to use statistical methods to compare the trends in B. aeneus population dynamics to 

changes in the area of OSR cultivation.  

3) to determine any meteorological drivers of change in the B. aeneus flight patterns.  

 

2.3 Materials and Methods 

2.3.1 Suction-traps 

Rothamsted Insect Survey (RIS) suction-traps (Macaulay et al. 1988, Bell et al. 2015) have 

been used to monitor and forecast aphids in the UK since 1964 (Harrington & Woiwod 2007). The 

traps sample aerial insect populations at 12.2m above ground level at 45 m3/min (Macaulay et al. 

1988); samples are collected daily with the aphids removed, identified and counted and the bycatch 

stored in a mixture of ethanol & glycerol (Shortall et al. 2009). The presence of glycerol means that, 

though samples do become dehydrated over time, they remain undamaged on rehydration. 

 

2.3.1.1 Beetle Counts 

For the duration of this study the RIS suction-trap network in England consisted of 12 sites 

(Fig. 2.2). Daily or weekly samples from all suction-trap sites between January and September (the  



 

58 

 

 

 

 

Fig. 2.2: The Rothamsted Insect Survey suction-trap network in England. Site codes, from north to 

south are: N: Newcastle, Y: York, P: Preston, KII: Kirton II, BB: Broom’s Barn, We: Wellesbourne, 

H: Hereford, RT: Rothamsted Tower, Wr: Writtle, SP: Silwood Park, W: Wye, SX: Starcross. 
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known flight period of B. aeneus in the RIS samples) for the years 2015-2018 were sorted and B. 

aeneus were identified and counted, with the exception of Preston, where, due to low beetle 

counts in high volume samples, only 2015 samples were investigated. In addition, two sites were 

selected for investigation of the long-term trends of B. aeneus abundance based on trap longevity, 

consistency of operation and known high counts: Rothamsted Tower 1987-2014 and Broom’s Barn 

1989-2014; B. aeneus from these site years were counted in the same way as the 2015-18 samples. 

Due to the time needed to process samples, no more than two sites could be used for the long-

term part of this study. Brassicogethes aeneus is difficult to separate quickly from the closely 

related B. viridescens (Fab.), however the latter is far less common (Billqvist & Ekbom 2001, 

Metspalu et al. 2011, Ouvrard et al. 2016) thus, all pollen beetles were assumed to be the former. 

To assess the interaction between generations within the year and the effect of 

overwintering on beetle numbers the annual total of beetles caught at the trap was subdivided for 

each year at June 1st. Those caught between the start of the year and June 1st were assumed to be 

those emerging from hibernation and migrating to breeding sites (the Overwintering Beetles), with 

those caught from June 1st onwards assumed to be those of the new generation and labelled Newly 

Emerged Beetles.  

 

2.3.2 Oilseed rape data sources 

It is difficult, if not impossible, to determine the precise locations and area of oilseed rape 

cultivation in the vicinity of the suction-trap sites, particularly historically. Instead, regional-level 

data were sourced. Data for area of OSR sown (ha), yield (t/ha) and production (t) from 1983-2019 

(total OSR) and 1983-2015 (winter OSR) for the UK as a whole and 2001-2015 for English regions 

were accessed from the Defra statistics portal (https://www.gov.uk/government/statistical-data-

https://www.gov.uk/government/statistical-data-sets/structure-of-the-agricultural-industry-in-england-and-the-uk-at-june
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sets/structure-of-the-agricultural-industry-in-england-and-the-uk-at-june date last downloaded 

10/01/2010) and data.gov.uk (https://data.gov.uk/dataset/76ca636f-a449-44ba-ac2f-

f8febecec2a2/cereals-and-oilseeds-production-harvest date last downloaded: 09/01/2020), 

respectively. 

 

2.4 Analyses 

2.4.1 Statistics 

All analyses were carried out in R versions 3.5.0 and 3.6.1 (R Core Team 2018) using RStudio 

Version 1.1.453 (RStudio Team 2015). A priori the statistical distribution of all observations (daily 

count of B. aeneus and annual values for area of OSR) was assessed using the fitdistrplus library 

along with the post-hoc model diagnostics in the routine gam.check, the negative binomial or the 

quasipoisson distributions proved to be the best fit to the data (Delignette-Muller & Dutang 2015, 

Wood 2017).  

The R package poptrends (Knape 2016) was used for trend analysis of the data, poptrends is 

an extension of the mgcv library (Wood 2017) for generalized additive models (GAMs) and 

generalized additive mixed models (GAMMs).  

The following analyses were carried out:  

i) an analysis of the long-term trends of OSR cultivation in the UK as a whole and the south-

east region.  

ii) an assessment of the long-term trends in annual B. aeneus counts at Rothamsted and 

Broom’s Barn.  

https://www.gov.uk/government/statistical-data-sets/structure-of-the-agricultural-industry-in-england-and-the-uk-at-june
https://data.gov.uk/dataset/76ca636f-a449-44ba-ac2f-f8febecec2a2/cereals-and-oilseeds-production-harvest
https://data.gov.uk/dataset/76ca636f-a449-44ba-ac2f-f8febecec2a2/cereals-and-oilseeds-production-harvest
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iii) an assessment of the relationship between annual B. aeneus counts and the area sown of 

OSR both at a national scale and at a scale local to the traps. 

iv) an exploration of how B. aeneus counts change between years and generations. 

 

2.4.1.1 Generalized Additive Models 

In ecology, it is often the case that the relationship between explanatory variables and 

observations are non-linear. In these circumstances, rather than using linear regression, it is 

preferable to utilise smoothing models such as generalized additive models (GAMs) that allow for 

non-linear relationships between observations and multiple explanatory variables (Zuur et al. 

2009).  

 

2.4.1.1.1 Smooth functions 

GAMs can be defined as a generalized linear model with a smooth function. These smooth 

functions, splines (piecewise polynomial functions) in the mgcv package used here, can be linear 

but are more usually allowed to be flexible (wiggle) to give a better fit to the data. A GAM allows a 

spline to be fitted to the data by, effectively, splitting the fitted curve into separate sections of 

polynomial smoothers delineated by knots (Wood 2017). Each section of smoothed curve has a 

different coefficient, but they match with their neighbours at the knot points (Wood 2017).  
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2.4.1.1.2 Knots 

Knot points are essentially a mathematical function to ensure that the smoothers are neatly 

connected (Zuur et al. 2009), they can be estimated from the data but it is argued (Zuur et al. 2009, 

Wood 2017) that they should be fixed at a sufficiently large number to capture the maximum 

wiggliness required and use penalised splines and cross-validation to estimate the shape of the 

relationship. Here, knots occur at the annual or monthly period along the trend. 

 

2.4.1.1.3 Penalised Splines 

Penalised splines reduce overfitting by introducing a penalty to the amount of wiggle in the 

data and forcing the model to minimise this penalty whilst still optimising the fit. This optimisation 

allows the model to find the best compromise between wiggliness and smoothness for each section 

of the data and thus reduces overfitting.  

 

2.4.1.1.4 Cross-validation 

Cross-validation refers to a suite of mathematical techniques that drop observations from a 

dataset, estimate the smooth terms from the remaining n-1 observations, calculate the value of the 

dropped observation, compare the observed value to the calculated value, then repeat for all 

observations in the dataset giving an estimation of the prediction error of the model (Zuur et al. 

2009, Wood 2017). Estimation of the smoothing parameter can then be based on the mean square 

prediction error from the cross-validation process with the smoothed fit being the one that 

minimises the prediction error (Wood 2017). 
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2.4.1.1.5 Restricted Maximum Likelihood 

The suggested cross-validation method to use for GAMs is Restricted Maximum Likelihood 

(REML) (Wood 2011, Simpson 2018). This approach measures the fit of the smoothing parameters 

across the (scaled) average of the likelihood over all values of the variable in question (Wood 2017). 

Since this approach does not use any degrees of freedom in the model by estimated fixed effects 

(as found in other cross-validation methods), it tends to avoid under-estimating the level of smooth 

required, allowing for a more flexible model than other methods (Wood 2017). 

 

2.4.1.2 Generalized Additive Mixed Models 

A restriction of GAMs is that they assume that data points are independent, an assumption 

violated by time-series data. One way of accounting for correlation between observations is to use 

mixed models. As GAMs are an extension of GLMs with a smooth parameter, so are generalized 

additive mixed models (GAMMs) an extension of generalized linear mixed models (GLMMs) with 

smoothing (Lin & Zang 1999). As with GAMs (described in section 2.4.1.1 above), GAMMs use 

nonparametric regression to allow the explanatory variables to have a flexible functional 

relationship with observations while accounting for correlation between data points by using 

random effects (Lin & Zang 1999). In all models used here, site was included as a random effect 

component which allowed a region-wide spatial scale to be adopted. 

 

2.4.1.2.1 Mixed Models 

A mixed model contains both fixed effects and random effects in assessing the relationship 

between observations and explanatory variables. In a linear regression without autocorrelation the 
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explanatory variables are fixed effects, while the observation data can be assumed to be random 

because the data are drawn from a larger population and, in essence, represent a random sample 

from that population. The resulting variability between data points (or residual variance) allows the 

calculation of the amount of unexplained error in the regression (for example residual mean 

squared error). In autocorrelated data, such as time-series data, in addition to the random 

variability of the observations there may also be random variability in the explanatory variables. 

Mixed models account for this aspect of variability by using random effects. 

 

2.4.1.2.2 Random Effects 

Random effects come in two forms, which can be combined or computed separately: simple 

random intercepts allow observations to be higher or lower for each level of explanatory variable 

and random slopes allow the strength of each fixed effect to vary for each level of explanatory 

variable. This statistical infrastructure allows the model to derive inference about the larger 

population and incorporate the variability in explanatory variables to better describe how they 

relate to observations as fixed effects.   

 

2.4.1.3 Model Selection 

 Given the high number of variables under consideration at times it was necessary to 

determine which model of a range of choices was the best to use. I used the Akaike Information 

Criterion (AIC) (Akaike 1973, Sakamoto et al. 1986) method for model selection in these cases. AIC 

is a now-standard technique that gives the best compromise between the goodness of fit of the 

model and its simplicity by estimating the amount of information lost by a given model relative to 
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other, comparable, models using the same data. The less information lost by a model, the better 

that model is. AIC was estimated using the AIC() function in base R. 

 

2.4.2 Oilseed rape trends over time 

To ascertain that the data for regional and national trends in OSR production over time 

matched those reported, and were amenable to analysis, a smoothed GAMM model was fitted with 

a quasipoisson distribution and automatic selection of optimal degrees of freedom of the cubic 

smoothing spline (see Appendix A: Chapter 2 ). 

 

2.4.3 Long-term trends in pollen beetle abundance at Rothamsted and Broom’s Barn 

Annual B. aeneus population trends for the East of England, using Rothamsted and Broom’s 

Barn data combined, alongside some seasonal subsets of the data as defined in Table 2.1, were 

estimated using poptrend. A spline was fitted with a negative binomial distribution for 

overdispersed data and automatic selection of optimal degrees of freedom. The dispersion 

parameter theta (Θ) was estimated at 3.707052 after estimation using the nb function of mgcv. See 

Appendix A, Chapter 2 for the R code for this step. Year and site were set as a random effect and 

the trend was smooth, rather than loglinear or index and the distribution was a negative binomial.  

The poptrend package has an explicit test for short-term trend estimates along the overall 

trend. If significant, these short-term trends are depicted in orange for decline and green for an 

increase shown on top of the long-term trend coloured black (Figs. 2.8, 2.11-2.13, 2.15-2.18). 

Further information can be found at https://github.com/jknape/poptrend.  

https://github.com/jknape/poptrend
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Season/Month Duration theta (Θ) 

Spring 1st March – 31st May 3.961196 

Summer 1st June – 30th September 4.163855 

March/April 1st March – 30th April 3.305895 

May 1st – 31st May 4.361432 

June 1st – 30th June 3.521173 

July 1st – 31st July 2.858764 

August/September 1st August – 30th September 0.695337 

 

Table 2.1: Subsets of Brassicogethes aeneus count data analysed in poptrends alongside the full 
dataset with calculated theta (Θ) values. March/April and August/September were combined due 
to generally low counts in those months. 

 

2.4.4 Temporal autocorrelation 

Temporal autocorrelation is the correlation of population phenomena in time, in this case 

the behaviour of the timing of B. aeneus abundance was analysed using mgcv and itsadug (van Rij 

et al. 2017), a GAM was run as detailed below and the autocorrelation function (ACF) of the 

residuals was checked using the function acf_resid. Whilst there was an indication of a seasonal 

component in the residuals at both sites, notably with a lag of two years (Fig. 2.3), however this 

seasonal component was dropped by the GAM procedure, likely as a result of overfitting.  

 

2.4.5 Relationship between number of pollen beetles and area of OSR at different temporal and 

spatial scales 

The relationship between B. aeneus counts and area of OSR sown in the UK, at local and 

national scale was assessed using a GAM within the mgcv package (Wood 2017). See Appendix A 

Chapter 2 for detail on how the data were modelled. A cubic spline was used for the Area and Year 
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terms, the distribution was negative binomial with a log link specified. The smoothing method was 

set as Restricted Maximum Likelihood (REML), which tends to avoid under-smoothing (Wood 2017). 

 

 

Fig. 2.3: Autocorrelation Function (ACF) plots of Brassicogethes aeneus daily count residuals for 

Rothamsted Tower (RT) (left) and Broom’s Barn (BB) (right). Both sites show some sign of a 

lagged correlation at year 2 (further investigation revealed this to be unimportant in the models).  

 

For the shorter time period (2001-2015) where regional data were available for OSR area, 

Pearson correlation analyses were performed using the cor function in base R and plotted using the 

ggscatter function from the ggpubr library. Data from all sites from 2015 were compared with 

winter OSR area sown for the region (Fig. 2.4, Table 2.2). Correlation analysis was preferred over 
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more complex models such as GAMs here due to the reduced power from the restricted (one year) 

dataset. Pearson correlation analyses were performed using the cor function in base R and plotted 

using the ggscatter function from the ggpubr library (Kassambara 2019). 

 

Site latitude longitude Region 

Newcastle 55.213254 -1.685083 North East 

York 54.014616 -0.973205 Yorkshire 

Preston 53.854383 -2.766990 North West 

Hereford 52.124201 -2.638156 West Midlands 

Wellesbourne 52.205975 -1.605017 West Midlands 

Kirton 52.924454 -0.052153 East Midlands 

Broom’s Barn 52.260681 0.568430 Eastern Area 

Rothamsted 51.806997 -0.360091 Eastern Area 

Writtle 51.733599 0.429233 Eastern Area 

Silwood Park 51.409410 -0.643357 South East 

Wye 51.185507 0.944941 South East 

Starcross 50.629596 -3.454630 South West 

 
Table 2.2: Rothamsted suction-trap sites and their region (See Fig. 2.4 for a map of regions). 

 

2.4.6 Relationship between number of pollen beetles caught in spring and summer 

Each calendar year contains two generations of B. aeneus – an overwintered spring 

generation (Overwintered Beetles) and their offspring, which fly in late summer (Newly Emerged 

Beetles). In order to investigate the relationship between the abundance of these generations, daily 

data from all 12 suction-traps were used. Count data for each year was divided into the two 

generations, with an ecologically relevant estimated cut-off date marking the division set at 31st 
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May/1st June and summed to give a value for each generation in each trap year. Two correlation 

analyses were carried out 1) comparing the Overwintered Beetles with the following Newly 

Emerged Beetles and 2) comparing the Newly Emerged Beetles with the following year’s 

Overwintered Beetles. In effect asking whether a) the population size of the parent generation is 

related to the abundance of their offspring and b) whether the abundance of the emergent 

generation is reflected in the size of the population post-hibernation. Pearson correlation analyses 

were performed using the cor function in base R and plotted using the ggscatter function from the 

ggpubr library. 

The relationship between the overwintered generation in spring and the previous year’s 

new generation in late summer and selected meteorological parameters was investigated more 

closely using GAMs. For this, data from the two long-term suction-traps (Rothamsted and Broom’s 

Barn) were used. The following meteorological parameters were selected: Winter Rainfall, 

designated as the mean rainfall during the months December, January and February; Winter Grass 

Temperature, designated as the accumulated day degrees of the Grass Minimum Temperature 

below 0°C during the months December, January and February; Autumn Rainfall, designated as the 

mean rainfall during the months September, October and November; and Spring Temperature, 

designated as the accumulated day degrees of air temperature over 6°C during the months March, 

April and May. The rainfall parameters were selected to explore the effects of precipitation during 

overwintering (Winter Rainfall); and waterlogging of the soil prior to, or during, the beetles 

selecting their overwintering sites (Autumn Rainfall). The temperature parameters were selected to 

explore the effects of low temperatures at ground level where beetles are overwintering (Winter 

Temperature) and the direct effects of warm, or cold springs on the emerging overwintered 

generation in spring (Spring Temperature). Due to the lack of replication – only two sites were used  
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Fig. 2.4: English regions as used in this study (from https://techspolondon.co.uk/england-

regions/).  

https://techspolondon.co.uk/england-regions/
https://techspolondon.co.uk/england-regions/
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– it was not possible to include any random effects of, for example, year or site. Year was included 

as a fixed effect. The relevant code is included in Appendix A, Chapter 2. 

 

2.4.7 Drivers of overwintered beetle abundance 

To investigate drivers of abundance in the Spring population the tree package (Ripley 2019) 

was used to fit a regression tree to the data used in 2.4.6 above. This tree is “grown” by binary 

recursive partitioning; the explanatory parameter variable data are successfully split along their 

coordinate axes so that, at any node (or branching point), the split is chosen that maximally 

distinguishes the observation data (response) in the respective branches – at each node a higher 

value in the explanatory parameter gives a response in the right-hand branch, with a lower value 

the response is in the left-hand branch, the objective being to find the smallest, most parsimonious 

partitioning of the data (Brieman et al. 1984, Ripley 1996, De’ath & Fabricius 2000). See Appendix 

A, Chapter 2 for the relevant code. 

 

2.5 Results 

2.5.1 Oilseed rape cultivation trend analysis 

As Fig. 2.1 showed, oilseed rape cultivation over time has had a positive trend in the UK 

from 1983 to 2018. This is also true over the shorter-term in England (Fig. 2.5) and south-east 

England (Fig. 2.6) and, although yield has fluctuated (Fig. 2.7a), production has closely matched 

area (Figs. 2.6, 2.7b). The smoothed model (Fig. 2.8) suggests that in England the area of OSR has 

increased between 83% and 142% and that areas sown increased significantly between 2001 and 



 

72 

 

2011 before levelling out, reaffirming DEFRA reports that production has plateaued since 2012 

(DEFRA 2018, 2019a). 

Interestingly there is no sign of a significant change of shape in the trend around 2010-2012 

suggesting a slow levelling out, which is reflected in the shape of the plot. The indication of 

significant changes in curvature at the start and end of the series are potentially an artefact of end 

point influence. Table 2.3 shows the area sown, yield and production data for all regions used in the 

poptrends analysis. 

Fig. 2.5: Area of oilseed rape (OSR) sown in the UK 1984-2019, data from DEFRA. 
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Fig. 2.6: Area of winter oilseed rape sown in the South East of England 2001-2014 (blue) and 

recorded production for the region (red), data from DEFRA. 
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Fig. 2.7a: Area of winter oilseed rape sown in England 1999-2015 (blue) with the recorded yield 
(red), data from DEFRA (see section 2.3.2). 

Fig. 2.7b: Area of winter oilseed rape sown in England 1999- 2015 (blue) with the recorded 
production (red), data from DEFRA (see section 2.3.2). 
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  3.1   
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  3.1   
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  3   

2001 306 2.7 828 16 2.7 42 3 2.6 8 38 2.9 111 78 2.5 197 22 2.8 61 77 2.6 204 51 2.8 139 22 3 66 

2002 306 3.6 1099 17 3.7 63 3 3.2 9 39 3.9 151 79 3.6 284 21 4.1 85 73 3.4 249 51 3.5 177 23 3.5 81 

2003 367 3.6 1312 19 3.6 68 3 3.6 9 46 3.9 178 91 3.5 320 28 3.6 98 87 3.5 304 61 3.5 216 32 3.8 119 

2004 387 3.1 1183 22 3.2 69 3 3.4 10 56 3.5 196 95 3.1 293 29 3 89 79 2.7 212 66 3.2 213 37 2.7 100 

2005 455 3.4 1527 23 3 69 4 3.7 13 62 3.6 227 112 3.2 362 35 3.1 109 97 3.5 342 78 3.4 264 43 3.2 139 

2006 447 3.4 1512 22 3.2 71 3 3.6 12 60 3.7 219 111 3.2 360 32 3.5 113 102 3.6 361 75 3.2 239 41 3.3 137 

2007 550 3.2 1734 26 3.6 94 4 3.6 14 75 3.3 250 136 3 402 41 3.3 134 128 3.1 395 89 3 272 50 3.5 173 

2008 545 3.3 1799 26 3.2 84 4 3.3 13 77 3.3 251 135 3.4 459 41 3.5 146 128 3.3 418 85 3.1 267 48 3.3 161 

2009 493 3.5 1716 19 2.9 54 4 3.5 13 69 3.5 239 124 3.4 423 38 3.7 141 123 3.6 440 72 3.4 245 44 3.7 160 

2010 582 3.5 2052 24 3.2 79 5 3.7 17 84 3.6 306 148 3.6 528 47 3.6 167 139 3.4 477 83 3.6 296 52 3.5 181 

2011 638 4 2537 27 4 107 5 3.8 21 90 4.3 390 164 3.9 641 53 3.9 207 151 3.7 559 90 4 361 57 4.4 252 

2012 702 3.4 2411 29 2.9 85 6 3.3 19 98 3.5 340 180 3.4 615 60 3.3 200 166 3.7 608 100 3.3 333 63 3.3 211 

2013 584 3.1 1800 21 2.7 56 4 2.7 11 79 3 234 146 2.9 429 48 3 145 150 3.4 504 82 3.1 258 53 3 161 

2014 618 3.7 2266 24 3.7 87 5 3.9 18 83 3.8 318 155 3.7 578 50 3.9 196 158 3.7 590 87 3.3 287 58 3.3 190 

2015 605 3.9 2363 24 4.3 104 5 3.6 18 83 4.2 351 154 4.1 629 48 4.1 197 151 3.6 539 85 3.8 319 56 3.7 207 

Table 2.3: Winter oilseed rape statistics (area sown, yield and production) for England and its regions 1999-2015 data from DEFRA (see section 2.3.2). 
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2.5.2 Long-term beetle data 

In total 37,143 beetles were recorded. Table 2.4 details the annual counts recorded at each site. 

Both Rothamsted and Broom’s Barn showed similar values for B. aeneus abundance in each year 

(Fig. 2.9), and indeed they were closely correlated (Fig. 2.10) (t = 6.549, df = 28, p <0.001, R = 0.78). 

Trend analysis using the poptrends package suggests that beetle populations at the two sites have 

increased by 162% (s.e. 5.5%, 607%); they showed no significant trend in numbers until around 

2006, when a significant upturning began a positive trend that continued to increase significantly 

until the dataset ends in 2018 (Fig. 2.11). At the seasonal level there was a non-significant trend in 

abundance in all years except around 2010-12 where the upward trend was significant in the spring 

(Fig. 2.12) whilst the trend in the summer matched the annual trend, although there was no 

significant change in the curvature (Fig. 2.13). At the monthly level, populations in March/April 

showed no significant trend (Fig. 2.14), whilst May, June and August/September showed a similar 

pattern to the annual data (Figs. 2.15, 2.16 & 2.18) although the magnitude of the trend differs 

across months. March/April and May showed no significant curvature changes outside the end 

points (Figs. 2.14, 2.15) with the upward trend in May starting later than the full dataset, around 

2007 (Fig. 2.15). June and August/September showed upward curve changes and 2006-7 and 2009-

10 (Figs. 2.16 & 2.18), also comparable to the full dataset though the significant positive trend 

started earlier, around 2004. July showed a more complex result, with upward curvature noted 

around 1995-97, 2001 and 2005-6 but only the trace of a significantly increasing trend around 2011 

and a significant decline in 2003-4 (Fig. 2.17). Of those that show a significant upward trend the 

magnitude is similar across all datasets with the exception of August/September which has much 

higher trend.  
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Year Newcastle York Preston Hereford Wellesbourne Kirton Broom's 
Barn 

Rothamsted Writtle Silwood 
Park 

Wye Starcross 

1987 
       

388 
    

1988 
       

435 
    

1989 
       

1508 
    

1990 
       

1126 
    

1991 
       

148 
    

1992 
       

107 
    

1993 
       

365 
    

1994 
       

785 
    

1995 
       

787 
    

1996 
       

481 
    

1997 
       

137 
    

1998 
       

156 
    

1999 
       

208 
    

2000 
       

372 
    

2001 
       

222 
    

2002 
       

406 
    

2003 
       

267 
    

2004 
       

474 
    

2005 
      

233 31 
    

2006 
      

141 165 
    

2007 
      

142 182 
    

2008 
      

159 194 
    

2009 
      

436 274 
    

2010 
      

1189 928 
    

2011 
      

964 508 
    

2012 
      

953 372 
    

2013 
      

714 283 
    

2014 
      

1838 784 
    

2015 526 409 16 25 686 714 2495 1488 1885 140 2056 229 

2016 729 668 
 

84 628 670 2864 1149 1759 270 1479 295 

2017 1267 1132 
 

107 788 1072 1544 1091 836 171 1063 417 

2018 708 308 
 

181 678 584 1534 685 648 148 930 165 

Table 2.4. Number of Brassicogethes aeneus recorded each year from a network of 12 suction-
traps operating across the UK. Recording started in 2015 for all sites except for Rothamsted and 
Brooms Barn which were recorded from 1987 and 1989, respectively. Blank cells indicate that the 
trap was not investigated for that year. 
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Fig. 2.8: Standardized trends for area of winter oilseed rape in England with random effects (dots 

and whiskers), indicating yearly mean and variances, and 95% confidence intervals (blue). All 

trends are relative measures that are standardised against the total predicted area in the first 

year (the reference year). Significantly different increasing short-term trends at the 5% level are 

coloured green and extend for the time period of the increasing trend. These short-term trends 

are imposed on top of the long-term trend, coloured in black. The shape of change (i.e. second 

derivatives) are indicated along the x axis, with upturning (  - green bars) curvatures in the trend 

indicated. 
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Fig. 2.9: Annual count of Brassicogethes aeneus caught at Rothamsted and Broom’s Barn suction-

trap sites 1987-2018. 
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Fig. 2.10: Correlation between annual counts of Brassicogethes aeneus caught in suction-traps at 
Rothamsted and Broom’s Barn 1987-2018. 

Fig. 2.11: Standardized regional trends for the annual count of Brassicogethes aeneus caught in 
suction-traps at Rothamsted and Broom’s Barn. All trends are relative measures that are 
standardised against the total predicted area in the first year (the reference year). See Fig. 2.8 for 
a detailed explanation of the features of this plot. 
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Fig. 2.12: Population trend of Brassicogethes aeneus in spring months (up to June 1st) at Rothamsted and Broom’s 
Barn. All trends are relative measures that are standardised against the total predicted area in the first year (the 

reference year). See Fig. 2.8 for a detailed explanation of the features of this plot. 

Fig. 2.13: Population trend of Brassicogethes aeneus in summer months (June 1st onwards) at Rothamsted and 
Broom’s Barn. All trends are relative measures that are standardised against the total predicted area in the first year 
(the reference year). See Fig. 2.8 for a detailed explanation of the features of this plot. 
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Figs 2.14-2.18: Monthly or bi-monthly population trends of Brassicogethes aeneus abundance at 

Rothamsted and Broom’s Barn. See Fig. 2.8 All trends are relative measures that are standardised 

against the total predicted area in the first year (the reference year).  for a detailed explanation of 

the features of these plots. 
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2.5.3 Relationship between number of pollen beetles and area of oilseed rape at different temporal 

and spatial scales 

The GAM of annual B. aeneus counts from suction-traps at Rothamsted and Broom’s Barn 

showed a similar, and significant, relationship with year as revealed in the poptrends analysis. 

There was a significant negative relationship found between the area of OSR and B. aeneus at 

Broom’s Barn (Table 2.5, Fig. 2.19), this relationship was also negative, although non-significant, at 

Rothamsted (Table 2.5, Fig. 2.20). At a regional scale there was no correlation between numbers at 

Broom’s Barn (Fig. 2.21) (t = 2.0865, df = 13, p-value = 0.057, R = 0.5) and the area of oilseed rape 

sown in the eastern England, whilst Rothamsted showed a weak positive correlation between 

counts and area sown (Fig. 2.22) (t = 2.205, df = 13, p < 0.05, R = 0.52). The annual number of 

beetles in 2015 was weakly correlated with the area of winter oilseed rape crop in the respective 

region (Fig. 2.23) (t = 2.3924, df = 10, p < 0.05, R = 0.6). 

 

 

 
Broom's Barn Rothamsted 

A. parametric 
coefficients 

Estimate Std. 
Error 

t-value p-value Estimate Std. 
Error 

t-value p-value 

(Intercept) 6.191 0.06 103.501 < 0.0001 6.072 0.12 50.806 < 0.0001 

B. smooth terms edf Ref.df F-value p-value edf Ref.df F-value p-value 

s(Area) 1.968 9 13.139 0.0001 0.874 9 1.592 0.108 

s(Year) 7.866 9 191.46 < 0.0001 2.525 9 17.496 < 0.0001 

 

Table 2.5: Summary statistics for GAM of the relationship between Brassicogethes aeneus 

abundance at Rothamsted and Broom’s Barn and year and area of oilseed rape. 
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Fig. 2.19: GAM of the relationship between the area (left) of oilseed rape sown in the UK and year 

(right) with annual Brassicogethes aeneus numbers caught at Broom’s Barn 1989-2018. The 

estimated smoothed terms are a transformed function of area or year which on the y‐axis is 

centred on zero and scaled by the effective degrees of freedom. The solid line shows the 

calculated relationship with 95% confidence intervals represented by dashed lines. Rug marks on 

the x axis represent sampling points. Counts of B. aeneus are negatively related to area of crop 

(left) and show a complex relationship with year (right). 
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Fig. 2.20: GAM of the relationship between the area (left) of oilseed rape sown in the UK and year 

(right) with annual Brassicogethes aeneus numbers caught at Rothamsted 1987-2018. The 

estimated smoothed terms are a transformed function of area or year which on the y‐axis is 

centred on zero and scaled by the effective degrees of freedom. The solid line shows the 

calculated relationship with 95% confidence intervals represented by dashed lines. Rug marks on 

the x axis represent sampling points. Counts of B. aeneus are negatively related to area of crop 

(left) and show a u-shape relationship with year (right). 
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Fig. 2.21: Relationship between area of oilseed rape (OSR) sown in eastern England and the 
annual count of Brassicogethes aeneus in the suction-trap at Broom’s Barn 2001-2015. 

  

Fig. 2.22: Relationship between area of oilseed rape (OSR) sown in eastern England and the 
annual count of Brassicogethes aeneus in the suction-trap at Rothamsted 2001-2015. 
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Fig. 2.23: Relationship between number of Brassicogethes aeneus caught in the Rothamsted 

Insect Survey suction-trap network and the area of winter oilseed rape (OSR) in their respective 

regions in 2015 (see Table 2.2). 

 

2.5.4 Relationship between spring and summer counts of pollen beetles at all sites 

Correlation analysis suggested that both the relationship between Overwintered Beetles 

and the following Newly Emerged Beetles was significantly positive (Fig. 2.24) (t = 5.2832, df = 96, p 

< 0.001), as was the relationship between the Newly Emerged Beetles entering hibernation and the 

Overwintered Beetles emerging in the spring (Fig. 2.25) t = 11.108, df = 85, p < 0.001). There is an 

interesting pattern of scatter in the first plot, with Overwintered Beetles numbers in the low 200s 

leading to high Newly Emerged Beetles counts at Hereford, Wellesbourne and Broom’s Barn. 
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Fig. 2.24: Correlation plot showing relationship between the overwintered generation of 

Brassicogethes aeneus in spring (beetles caught before June 1st) and the subsequent newly 

emerged generation in summer (beetles caught after June 1st). 

 

Closer examination of the potential drivers of the overwintered generation population size 

in spring resulted in a model including all the weather parameters selected. Despite several terms 

being non-significant in the model (Table 2.6), model selection using AIC suggested that this model 

was the best option compared to models that excluded parameters. GAM plots (Fig. 2.26) showed 

that year and winter temperature had linear effects on overwintered generation numbers, with 
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Fig. 2.25: Relationship between the emergent new generation of Brassicogethes aeneus in 

summer (beetles caught after June 1st) and the subsequent overwintered (spring) generation 

(beetles caught before June 1st the following year).  

 

later years and colder temperatures having positive effects on beetle population numbers. The 

relationship with other parameters was more complex: winter rainfall had little effect though 

extremely wet winters appear to result in higher beetle counts in spring (although it should be 

noted that this is based on very few data points – only three above a mean daily rainfall of 3mm); 

increased autumn rainfall appears to have a generally negative effect on beetle counts at the 

extremes, although between ~1.5mm/day and 3mm/day the effect of greater rainfall is positive; 
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spring temperature has a humped relationship with beetle counts, with extreme high and low 

temperatures having negative influence on numbers. The size of the new generation population in 

summer had a positive effect on overwintered beetle counts in spring, though not linear, increasing 

Newly Emerged Beetles abundance generally led to an increase in Overwintered Beetles counts, 

however it must be noted that beyond ~750 beetles the data are sparse, which may explain the 

levelling of the relationship between 500 & 1000 Newly Emerged Beetles counts. 

The tree plot (Fig. 2.27) indicates that the population of the Newly Emerged Generation 

(Summer) is the most important factor in explaining the population in the following Spring, with 

counts from June 1st onwards above 478.5 leading to counts in the following Spring that are higher 

than if the counts post-June 1st are below this 478.5 threshold (Fig 2.26). Further, at very high 

counts of beetles (1219+) post-June 1st, a mean number of 673.6 beetles are found in Spring. 

Between 479 & 1218 Newly Emerged Generation beetles the accumulated grass minimum 

temperature (below zero) is important, with accumulated winter temperature below -167.55°C 

leading to higher counts (mean no. = 460.2) and warmer winter temperatures giving lower counts 

(mean 287.6). Where low Summer beetle counts (130 or fewer) occur, low numbers (mean 87.22) 

are found the following Spring. Finally, if Summer counts are between 131 and 478 then the 

Overwintered Generation counts are higher post-2001 (mean 331.1) than before (mean 183.7). 
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Fig. 2.26: Generalized Additive Models of the relationship between the numbers of 

Brassicogethes aeneus caught in suction-traps in the spring and meteorological and population 

parameters selected to explain the counts. The estimated smoothed terms are a transformed 

function which on the y‐axis is centred on zero and scaled by the effective degrees of freedom. 

This GAM is estimated by penalized restricted maximum likelihood to minimise overly wiggly 

smoothers, hence linear terms with estimated degrees of freedom for year and winter 

temperature equal to 1, as indicated on the y axes. Conversely, the remaining smoothers were 

non-linear, the most complex of which was autumn rainfall. Only accumulated spring 

temperature and summer beetle numbers were significant.   
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A. parametric 
coefficients 

Estimate Std. 
Error 

t-value p-value 

(Intercept) 241.3517 13.5578 17.8016 < 0.0001 

B. smooth terms edf Ref.df F-value p-value 

s(Year) 1 1 2.1051 0.1545 

s(Winter.rain) 2.6575 3.3068 0.917 0.4626 

s(Winter.Grass.Acc) 1 1 1.6062 0.2123 

s(Autumn.Rain) 6.0412 7.0431 1.9913 0.0771 

s(Spring.Temp.Acc) 3.3432 4.1091 2.8991 0.0337 

s(Summer) 4.9882 5.8891 17.2944 < 0.0001 

 

Table 2.6: Summary statistics for Generalized Additive Models of relationship between the 

numbers of Brassicogethes aeneus caught in suction-traps in the spring and meteorological and 

population parameters selected to explain the counts. 

 

2.6 Discussion 

2.6.1 Increase of pollen beetles and oilseed rape 

It is clear that B. aeneus populations are increasing in the UK along with an increase in the area of 

its cropped host plant. However, there is no correlation in the increase between these variables in 

the long-term at a national scale (Figs. 2.19, 2.20); regionally, there is at best only a weak positive 

correlation between 2000 and 2015 (Figs. 2.21-2.23). The contrasting shapes of change derived by 

the second derivative (continual increase in the B. aeneus population (Fig. 2.11) as opposed to a 

trend reaching asymptote in OSR (Fig. 2.8)), and the fact that B. aeneus populations continue to 

increase beyond 2011 goes some way to explaining the lack of a strong relationship between the 
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two variables in most cases and suggests that B. aeneus populations may not yet have reached 

equilibrium with habitat area, or that the recent development of pyrethroid insecticide resistance 

in B. aeneus has led to increased survival rates. Alternatively, these results could mean that B. 

aeneus numbers are not driven by area of cropped habitat, or that a key driver has not been 

included in this analysis. The strong negative relationship found between Broom’s Barn counts and 

cropped area in the UK (Fig. 2.19) is hard to explain, although indications are that these migrating 

beetles are likely to be determined at scales not dependent on the region. It could also reflect the 

fact that, in later years the area of OSR in the East and South-east regions has stayed stable or has 

decreased with cropping area increases elsewhere in the country while B. aeneus numbers 

continue to increase. However, in the absence of regional cropping data for the post-2015 period 

up this can, currently, only be a speculation. Other potential reasons include the presence of a 

significant lag between increased resource and increased pest populations or management changes 

in the region. As will be seen in Chapter 4, suction-trapped catches of migrant beetles may not 

accurately reflect B. aeneus counts at the field level and represent a limitation in this study. With 

cropped area of OSR set to drop significantly in the short term (DEFRA 2020) it will be interesting to 

see whether B. aeneus populations continue to increase or whether they follow the well-

established population cycle dynamics seen in other ecological systems and reach a point where 

numbers crash before returning to a density-dependent multi-year cycle, albeit at a higher 

abundance than previously (Strong 1979, Kikkawa & Anderson 1986, Kaitala et al. 1996). 
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Fig. 2.27: Regression tree analysis of spring counts of Brassicogethes aeneus (beetles caught 

before 1st June) at Rothamsted and Broom’s Barn. Each of the five branching points (nonterminal 

nodes) is labelled with the explanatory variable and value of that variable that determines the 

split. For each of the six terminal nodes, the mean of the observed values of Spring B. aeneus 

counts is given. 

 

2.6.2 Pattern of increase within year 

It appears that the increasing trend in B. aeneus abundance is found across the year with 

only early season (March/April Fig. 2.14) and July (Fig. 2.17) trends differing from the overall trend 

(though it appears that August/September counts are increasing at a greater rate (Fig. 2.18)). The 

different pattern in July is hard to explain. It could perhaps be a function of delayed or advanced 
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emergence of the Newly Emerged Generation or related to the timing of oilseed rape harvest in 

different years.   

 

2.6.3 Context of pollen beetle increase against other brassica-feeding pests  

The increasing overall trend in B. aeneus is in alignment with the cabbage stem flea beetle 

(Psylliodes chrysocephala L.) which has shown large increases in larval abundance in recent years, 

although they may have peaked in 2015 (Collins 2017). Conversely, these beetle trends are contrary 

to the trend in brassica-feeding butterflies in England, with the small white butterfly (Pieris rapae 

(L.)) and large white butterfly (Pieris brassicae (L.)) both showing non-significant declines between 

1990 and 2018 (DEFRA 2019b). Overall, these different findings demonstrate that the complex 

interactions within an ecosystem mean that there is large variability between species in magnitude 

and/or direction of effects of any individual driver of change (e.g. Tylianakis et al. 2008). 

 

2.6.4 Conclusions 

The relationship between spring and summer generations – both within and between years 

is a promising finding, indicating that there may be potential to forecast numbers migrating in the 

Spring - the period when crops are most at risk – based on counts taken in the summer of the 

previous year. Given that there is a large amount of scatter in this relationship any conclusions 

drawn must be viewed as tentative, especially as the GAMs indicate that the meteorological 

parameters, including air temperature during March-May are important, if not significant, variables 

(Table 2.6). If this finding does prove sound this would mean that counts taken from suction-trap 

samples by August could be used to make an initial assessment of the size of the B. aeneus 
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migration the following spring, providing an early signal to growers as to the potential for crop 

infestation and therefore allowing growers to plan and adjust their management strategies in 

advance. 
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Chapter 3. 

Investigation of the daily abundance of pollen beetles in suction-traps 

 

Chapter Summary 

Daily data of Brassicogethes aeneus pollen beetles from the Rothamsted suction-trap 

network 1987-2018 were investigated using four modelling techniques in order to determine the 

best method for modelling daily abundance.  

It was found that generalized additive models were unable to adequately model the dataset 

due to the very large number of zero counts. Zero-inflated generalized linear models and two 

machine learning techniques; random forest and artificial neural networks did produce satisfactory 

models although none were able to forecast the sporadic high peaks in the counts that occur in the 

data. 

Drivers of daily abundance were identified, with time of year, temperature, wind speed, solar 

radiation and the numbers of B. aeneus recorded in the suction-traps after June 1st the previous year 

all considered important by one or more models. These results indicate that an accurate prediction 

of migration events that would be necessary for an improved decision support system for oilseed 

rape growers may not be possible. However, the conditions that favour migration events and lead to 

an increased likelihood of such can be determined. 
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3.1 Introduction 

3.1.1 Pollen beetles as pests 

Pollen beetles (Brassicogethes aeneus (Fab.)) are the most commonly found insect in oilseed 

rape (OSR) crops in Europe (Williams & Free 1978, Valantin-Morison et al. 2007, Williams 2010), 

where they can be a pernicious pest leading to significant yield loss (Finch et al. 1990, Williams 

2010). Brassicogethes aeneus migrates to oilseed rape crops in spring to feed and oviposit. They 

chew into the unopened buds to feed on the pollen within, causing damage which leads to bud 

abscission and consequent seed yield loss (Free & Williams 1978, Winfield 1992). As winter OSR is 

beyond the susceptible stage by the time the majority of beetles emerge from hibernation impact 

usually is minimal compared to spring OSR (Williams 2010). However, on the continent mass 

migrations have caused significant yield loss (Zlof 2008). In spring OSR, however, there can be 

significant yield loss to B. aeneus as the beetles arrive in the crop at an earlier, more susceptible, 

stage of flowering (Finch et al. 1990, Alford et al. 2003, Hansen 2004).  

 

3.1.2 Rise of insecticide resistance 

Control of B. aeneus and other pests of OSR in Europe has been predominantly via synthetic 

insecticide sprays, often in response to a threshold set by the relevant regulatory body (Thieme et 

al. 2010b). Resistance to synthetic insecticides in B. aeneus was first reported from Poland in 1965 

(IRAC 2006, Thieme et al. 2010b), with significant correlation recorded between the proportion of 

OSR in the landscape and resistance to pyrethroid insecticide (Riggi et al. 2016), the number of 

spray applications or the year of development of resistance (Richardson 2008). Resistance in B. 

aeneus to a range of insecticides, including all classes of pyrethroid, is now widespread across 
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Europe (Hansen 2003, Slater et al. 2011, Zimmer & Nauen 2011a, Nauen et al. 2012, Węgorek et al. 

2009, Palagacheva 2014, Zimmer et al. 2014, Heimbach & Brandes 2016) with a concomitant loss of 

effective control measures.  

 

3.1.3 Reduction of prophylactic spraying 

Growers need to move towards more sustainable systems and find approaches that can 

reduce the current level of crop inputs. Eliminating prophylactic spraying of crops is an important 

tactic to reduce the spread of resistant strains and facilitate a move away from an over-reliance on 

insecticides. This tactic requires an element of risk on behalf of the grower as not spraying when 

necessary may result in lower yields, whereas prophylactic actions are relatively cheap in costs and 

labour. To encourage growers to reduce prophylactic sprays a range of alternative methods have 

been, and continue to be, developed (Cook & Denholm 2008). Methods include trap crops 

(Hokkanen et al. 1986, Hokkanen 1989, Cook et al. 2004b) and other push-pull strategies (Cook et 

al. 2007, Balaso et al. 2019), deployment of semiochemicals (Mauchline et al. 2018) and developing 

host plant resistance (Hervé & Cortesero 2016) or reducing the attractiveness of the crop (Cook et 

al. 2013).  

 

3.1.4 Decision support systems 

An important, more sustainable, option in pest control is the use of decision support 

systems (DSSs) that assist the grower in determining whether weather conditions and crop growth 

stage necessitate crop inspection and/or chemical control. For B. aeneus the primary commercially 

available DSS in use until recently in Europe was ProPlant (www.proplant.com), now subsumed into 

http://www.proplant.com/
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the Xarvio DSS platform (www.xarvio.com) which used accumulated spring temperatures in 

combination with weather parameters (daily mean & maximum temperatures, wind speed and 

sunshine) to forecast B. aeneus phenology (i.e. the start, end and peaks of B. aeneus migration) 

(Johnen et al. 2010, Junk et al. 2016). Furthermore, the DSS helps to optimise the timing of 

monitoring to detect breaches in treatment thresholds. Ferguson et al. (2016) showed that this 

system can reduce monitoring effort required to detect thresholds by half. proPlant was recently 

acquired by BASF as part of the Xarvio agricultural decision support package (Ryan 2019) and it is 

currently unclear what access there will be in the future. Importantly, whilst current B. aeneus DSSs 

for growers can predict the timing of the spring arrival into crops 3-5 days in advance (Johnen et al. 

2010, Ferguson et al. 2016), they cannot forecast the scale (abundance) of the immigration and 

therefore the likelihood that thresholds will be breached. Furthermore, there are no DSSs currently 

supported for spring OSR as the metrics used (start of migration, good migration conditions, 

percentage migration) do not provide the required information for the time period that spring OSR 

is vulnerable. If these aspects were available then it would be possible for growers to assess both 

when, and how important it is in any given year to monitor both winter and spring OSR crops for 

beetles.  

 

3.1.5 The Rothamsted Insect Survey suction-trap network 

The Rothamsted Insect Survey suction-trap network (Storkey et al. 2016) may be able to 

provide data that improves these forecasts. This network (described in detail in Chapter 2) was 

initially designed to monitor aphid migrations (Bell et al. 2015) and forecast models which include 

abundance as well as phenology have been developed (Harrington & Woiwod 2007, Bell et al. 2015, 

Fabre & Dedryver 2017). RIS suction-traps (Macaulay et al. 1988, Bell et al. 2015) sample aerial 

http://www.xarvio.com/
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insect populations at 12.2m above ground level. Samples are collected daily, aphids removed, and 

the bycatch stored in 95% ethanol with 5% glycerol added (Shortall et al. 2009). The bycatch has 

been stored since 1974 (Shortall et al. 2009) and previous work on Culicoides biting midges in 

suction-traps (Sanders et al. 2011) resulted in the development of a seasonal abundance model 

allowing the prediction of daily Culicoides abundance according to time of year and weather 

conditions (White et al. 2017) thereby demonstrating the possibility of using suction-traps to 

develop this aspect of B. aeneus DSS tools. If it were possible to model B. aeneus seasonal 

abundance, the improved accuracy of forecasts beyond the mere phenological models currently 

available would be of great benefit to growers, reducing the need for monitoring in seasons where 

the abundance of beetles is likely to be low and therefore unlikely to breach spray thresholds. 

 

3.2 Aims and objectives 

The main aim of this work was to produce a farmer Decision Support System (DSS) model 

that captures the population dynamics and phenology of B. aeneus in the UK.  

The objectives were; 

1) to utilise suction-trap data to evaluate how different modelling approaches can best 

describe B. aeneus daily abundance both within-year across sites in England, and historically 

at two suction-trap sites. 

2) to explore whether these models can: 

i) use meteorological data to build a predictive model of pollen beetle activity. 

ii) improve the range of decision-support forecasts in order to advance the timing of 

forecasts beyond the current three days. 
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3) to improve the knowledge of pollen beetle dynamics beyond the spring migration to 

provide information on risk to growers of spring OSR. 

 

3.3 Data Collection 

3.3.1 Pollen beetle abundance data 

Data from the Rothamsted Insect Survey were used for this study. Samples from 12 English 

suction-traps were investigated (Fig. 3.1) gathering long-term datasets from two sites to allow 

investigation into long-term trends, and nine shorter datasets to provide a wider geographical 

spread: 

• Rothamsted (1987-2018) – 32 years daily data counts 

• Broom’s Barn (1989-2018) – 30 years of daily data counts 

• Nine sites with shorter datasets (2015-2018) – 9 x 4 years of daily data counts 

• Preston, providing data only for 2015. 

Samples are collected daily for the duration of the aphid season which typically runs from 

the end of March to the end of October, and weekly during the winter and early spring. All samples 

between the last week of February and the first week of September were investigated for this 

study. Brassicogethes aeneus beetles were identified and counted. Weekly samples from early in 

the year were divided by seven to produce daily figures. Note that B. aeneus is difficult to separate 

quickly from the closely related B. viridescens, however the latter is very rare in the samples and 

thus misidentification is not thought to have a significant impact on counts. 
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To explore the effect of the abundance of beetles entering hibernation, the Newly Emerged 

Beetles (See Chapter 2 Section 2.4.6) from the previous year were included as a potential 

explanatory variable. 

 

 

Fig. 3.1: The RIS suction-trap network in England. Site codes, from north to south are: N: 

Newcastle, Y: York, P: Preston, KII: Kirton II, BB: Broom’s Barn, We: Wellesbourne, H: Hereford, 

RT: Rothamsted Tower, Wr: Writtle, SP: Silwood Park, W: Wye, SX: Starcross. 
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3.3.2 Meteorological data 

Meteorological parameters that may have an effect on the daily abundance of B. aeneus 

were selected for investigation. Table 3.1 provides a summary of the selected variables. According 

to Dormann et al. (2013) a good strategy in variable selection is to collect ecologically relevant data 

that are feasible to collect and as close as possible to the mechanism (in the variable sequence: 

resource-direct-indirect-proxy, Austin 2002). Here, variables were selected as those that may 

predominantly have either an indirect effect on the beetle life history (i.e. temperature, dew point, 

humidity), a direct effect on their life history or behaviour (i.e. temperature, sunshine, 

precipitation, wind speed) or affect trap efficiency (e.g. wind speed). There is evidence that 

barometric pressure has an effect on insect behaviour (Fournier et al. 2005, Pellegrino et al. 2013, 

Musiolek & Kočárek 2016, Miao et al. 2021, but see Tansey et al. 2010). However, most research 

points to a change in pressure being the important cue, particularly for flight activation (Fournier et 

al. 2005, Pellegrino et al. 2013, Austin et al. 2014, Martini & Stelinski 2017, Martini et al. 2018). As 

change in pressure is a metric impossible to capture at the scale used here it is discounted from 

these models. 

 

3.3.2.1 Daily data 

Meteorological data were sourced from NASA via their online portal at 

https://power.larc.nasa.gov/data-access-viewer/ as solar radiation (sunshine) was considered to be 

a potentially important parameter and historical data for solar radiation was not available from 

other data providers such as the UK Met Office at the required spatial granularity.  

 

 

https://power.larc.nasa.gov/data-access-viewer/
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3.3.2.2 Winter weather 

To capture the effects of winter climate on daily counts the following meteorological 

parameters were selected: Winter Rainfall, designated as the mean rainfall during the months 

December, January and February; Winter Grass Temperature, designated as the accumulated day 

degrees of the grass minimum temperature below 0°C during the months December, January and 

February; and Autumn Rainfall, designated as the mean rainfall during the months September, 

October and November. The rainfall parameters were selected to explore the effects of 

precipitation during overwintering (Winter Rainfall); and waterlogging of the soil prior to, or during, 

the beetles selecting their overwintering sites (Autumn Rainfall). Accumulated grass minimum 

temperature was selected to explore the effects of low temperatures at ground level where beetles 

are overwintering (Winter Temperature). These parameters, alongside spring temperature, have 

been shown (Chapter 2) to have an effect on annual counts at Rothamsted and Broom’s Barn. The 

spring temperature from Chapter 2 was not used here as it is coincident with the daily temperature 

measures described above. 

 

3.4 Analysis and Results 

3.4.1 The challenge of suction-trap data 

The B. aeneus daily suction-trap data are characterised by sporadic peaks of very high counts within 

a wider context of low to zero counts and often show day-to-day changes of two orders of 

magnitude (Fig. 3.2). This, combined with a lack of spatial synchrony (explored in Chapter 4), makes 

modelling the data using traditional statistical techniques a challenge. Here, I outline the steps 
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taken to explore and analyse the data. All analyses were carried out in R versions 3.5.0 and 3.6.1 (R 

Core Team 2018) using RStudio Version 1.1.453 (Rstudio Team 2015). 

 

Parameter 
Type 

Parameter Name Units Derivation 

Pollen beetle 
response 

Number of B. aeneus per 
day 
 

Count data See Methods Chapter 2 

Meteorological 
drivers 

Minimum Temperature 
Maximum Temperature 
Mean Temperature 
Winter Grass Temperature 

Degrees Centigrade NASA 

 Sunshine (daily average 
solar radiation) 

MJ/m^2/day NASA 

 Precipitation 
Winter Rainfall 
Autumn Rainfall 

Millimetres NASA 

 Relative Humidity Percentage NASA 

 Dew point (daily average at 
2m) 

Degrees Centigrade NASA 

 Wind Speed (daily average 
at 10m) 

m/s NASA 

Geographical 
drivers 

Location Degrees 
Latitude/Longitude 

RIS data 

Pollen Beetle 
driver 

Number of B. aeneus in 
previous season 

Count See Methods  

 

Table 3.1: Data and data sources used for models. 

 

3.4.2 Data exploration 

Graphical representation of the daily data for all sites are presented in Appendix B, for 

illustration Fig. 3.2 shows the daily counts at Rothamsted from 1987 to 2017. The annual variability 

is clearly high (see also Chapter 2, which shows that counts at Rothamsted started quite high, 

dropped to low values through the 1990s before rising to the highest counts in the late 2010s). In 
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addition, within-year variability is also high, with spikes of high counts, possibly indicating single day 

migration events, found among generally low numbers. 

 

 

Fig. 3.2: Daily Brassicogethes aeneus counts – Rothamsted suction-trap 1987 to 2017.  

 

3.4.2.1 Data distribution 

In order to assess which modelling approaches would be appropriate to use the fitdistrplus 

package (Delignette-Muller & Dutang 2015) was used to establish the statistical distribution of the 
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daily data. Due to the sheer size of the dataset only a subset of one site year was possible to test at 

one time. The best fit distribution for the data was a negative binomial distribution (Fig. 3.3), 

although this does not properly account for zero-inflation. 

 

3.4.2.2 Principal Components Analysis 

The relationship between variables was examined using Principal Component Analysis (PCA). 

Appendix A, Chapter 3 details how this was done. PCA is a method that can be used to simplify data 

by identifying the principal components within the matrix which then allows the removal of those 

variables that show likely collinearity, although this approach is not a formal test of it (cf. variance 

inflation factors). In short, a PCA views the variables in multi-dimensional space, with the number of 

dimensions being the number of variables in the dataset, and recasts within that multi-dimensional 

space to find the direction(s) that explain the most variability in the data. These new directions 

(known as eigenvectors) are assigned an eigenvalue based on the amount of variance in the data in 

that eigenvector. The eigenvector with the highest eigenvalue is therefore the principal 

component. Eigenvectors can then be ranked in a scree plot (Fig. 3.4) which allows consideration of 

the removal of components with low information (eigenvalue), and PCA biplots (Fig. 3.5) that show 

potential collinearity between variables when they lie along the same axis. Collinearity in predictors 

can be undesirable in least-squares regression due to the non-orthogonality (correlation) between 

them (Dormann et al. 2013). These problems are exacerbated in stepwise selection methods 

because if one, rather than another collinear variable is dropped the selection process is 

compromised and may proceed along the wrong path (Meloun et al. 2002, Dormann et al. 2013, 

Harrell Jr. 2015). However, it is important to note that there are some situations in which 

collinearity has limited effects within a modelling framework. For example, if a model is used 
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to predict new cases within the range of sampled data this can be done reliably as long as the 

collinearity between variables remains constant (Dormann et al. 2013, Harrell Jr. 2015). On the 

other hand, extrapolation beyond the (e.g.) environmental or geographical range of a dataset could 

 

 

Fig. 3.3: Goodness-of-fit plot for daily data with a negative binomial distribution for 2017 

Brassicogethes aeneus count data at Rothamsted. The observed distribution matches the 

theoretical distribution as expected by a negative binomial model.  
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be prone to serious errors as patterns of collinearity may not remain constant outside the sampled 

range (Dormann et al. 2013). PCA was carried out using the tidyr package in R (Wickham & Henry 

2020), with graphics produced using ggfortify (Tang et al. 2016, Horikoshi & Tang 2016) and 

factoextra (Kassambra & Mundt 2020). 

 

 

  

Fig. 3.4: Scree plot showing the percentage of explained variances (eigenvalues) of each 
dimension (principal component). Ideal scree plots are steep, then bend at an “elbow” which is 
the cut-off point between principal components that capture enough information to be useful 
and those that don’t. Here the “elbow” is not as well-defined as an ideal plot, with the “elbow” 
situated across 2 and 4 principal components. 
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Fig. 3.5: PCA biplot of explanatory variables in the daily dataset. The cloud of are the location of 

each observation in the two dimensional space created by the first two principal components. 

The arrows show the strength (length) and direction (angle) of each variable’s influence on the 

principal component. The longer the arrow the stronger the effect on variance of that principal 

component a variable has. Variables that are collinear are aligned in the plot, for example year 

and Days from start, humidity and wind and t.max and dew. 
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3.4.2.3 Excess zero issue 

The dataset is characterised by a superabundance of zero counts, indeed even when all 

dates are removed post September 7th (the latest record in the dataset) the majority of daily counts 

are zero (Fig. 3.6). Unfortunately, even negative binomial regressions violate the assumption of 

normally distributed standardized residuals when there is a high proportion of zero scores (Lewsey 

& Thomson 2004).  

 

Fig. 3.6: Histogram of count classes in dataset of daily number of Brassicogethes aeneus caught in 

suction-traps. Most values are zeroes making it very difficult to model counts as a continuous 

variable. 

 

3.4.2.4 Tree model 

Given the high number of explanatory variables available and the possible collinearity issues 

identified in the PCA it was helpful to use a tree model to establish variable selection criteria a 

priori. Tree models are fitted using binary recursive partitioning to split the data and fit a simple 
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prediction model within each partition. As a result, the partitioning can be represented graphically 

as a decision tree (Crawley 2007, Loh 2011, Song & Ying 2015). Each explanatory variable is 

assessed in turn with the variable explaining the greatest amount of deviance in the response 

selected. The deviance is then calculated to find the threshold in the explanatory variable which 

produces two mean values in the response – one above the threshold, the other below. This 

creates two “branches” to the decision tree which are then assessed in the same way with further 

partitioning where required until the most parsimonious tree is selected (Brieman et al. 1984, 

Ripley 1996, De’ath & Fabricius 2000). See Appendix A, Chapter 3 for detail on how this was 

accomplished in R. 

The tree model (Fig. 3.7) suggested that, of the collinear temperature variables highlighted 

by the PCA, mean temperature is most important in explaining daily B. aeneus abundance. Day 

number (day) and sunshine (sun), which the PCA also showed as collinear with the temperature 

variables are also selected by the tree model as important variables. Other variables that the PCA 

highlighted as potentially problematical (wind/humidity and year/days from start) did not get 

selected as explanatory variables influencing B. aeneus catch by the tree model. These results 

should be accepted with caution, since multi-collinearity issues do not allow an absolute 

interpretation. 

 

3.4.3 Generalized Additive Models 

Generalized Additive Models (GAMs) were used to explore the relationship between daily B. aeneus 

abundance and a range of meteorological factors outlined above. GAMs are an extension of 

generalized linear models (GLMs) which fit smoothing terms with no a-priori selection of the 

parametric form of the function to be fitted (e.g. logarithmic, exponential, quadratic etc.). These 
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non-parametric terms thus allow the shape of the relationship between response and drivers to be 

captured without the (possibly erroneous) presumption of a particular parametric form (Crawley 

2007, Wood 2017). 

 

  

Fig. 3.7: Tree model for the explanatory values selected to explain the daily number of 

Brassicogethes aeneus caught in suction-traps. The mean number of beetles per day is given at 

the terminus of each branch, and the split in the selected variables is presented at the node. Here 

the model considers the amount of sunshine the variable that explains the greatest amount of 

deviance with the threshold being 17.2 MJ/m2 of solar radiation below which the mean number 

of B. aeneus per day is 1.238, above this figure there are further splits based on z.sum (the 

number of beetles caught at the trap after July 1st the previous year), day number (with the 

threshold at day 201/202 – the 20th/21st July) and mean temperature. 
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3.4.3.1 Method used for GAMs 

GAMs were assembled within the mgcv package (Wood 2017). After variable selection 

(section 3.3.2.2.5) the explanatory variables in Table 3.1 were selected, with humidity, rainfall and 

dew point removed, also latitude and longitude were combined as a spatial variable using a thin-

plate spline (Wood 2003). All explanatory variables were smoothed using the restricted maximum-

likelihood (REML) method that penalised overly-wiggly splines (Wood 2017). See Appendix A, 

Chapter 3 for more details on the model selected. 

 

3.4.3.2 Variable selection 

The final selection of explanatory variables based on the PCA and tree model exploration of 

the data was as follows: year was included and linked with latitude and longitude as a joint model 

term as a spatio-temporal variable. Day number was deemed important by the tree model and 

allows for within-year seasonal effects to be captured. Wind speed, a nuisance variable, was 

selected as it is known to have an effect on suction-trap efficiency (Taylor 1962) and B. aeneus flight 

activity (Skellern et al. 2017), its collinear variable as determined by PCA – humidity – was dropped. 

Accumulated winter temperature below 0°C, along with average autumn rainfall and average 

winter rainfall (with autumn defined as September, October & November and winter as December, 

January & February) were used to capture the effects of winter climate on overwintering beetle 

numbers, as in Chapter 2. Finally, the total count of beetles caught in the trap in the previous late 

summer (the Newly Emerged Beetles caught post-1st July) was included to represent the size of the 

previous year’s population.  
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3.4.3.3 GAM results 

Unfortunately, despite extensive efforts to select and tune the parameters, it proved 

impossible to create a GAM that did not either violate the statistical assumptions of a negative 

binomial distribution (Fig. 3.8) or reach the k-index values required for a complete model. This 

holds true whether the explanatory values are unmodified or scaled, indicating that it is the excess 

zeroes in the dataset that is the cause for the lack of model robustness. 

 

3.4.4 Zero-inflated Generalized Linear Models 

3.4.4.1 Introduction to Zero-inflated Generalized Linear Models 

 Excess zeroes are a common feature of ecological data (Barry & Welsh 2002). When a 

dataset contains an excessive number of zeroes, such that they exceed that allowed under the 

standard parametric family of statistical distributions it can be considered to have zero inflation (Tu 

& Liu 2014). Zero-inflated data need to be modelled carefully as the presence of excess zeroes can 

invalidate the underlying assumptions of the distribution within the analysis (Tu & Liu 2014, Zuur & 

Ieno 2016).  

Zero-inflated generalized linear models (GLMs) are an extension of the frequentist GLM 

approach that models overdispersion and zero-inflation where the data are modelled in two steps 

(Barry & Welsh 2002, Zuur & Ieno 2016). First, the presence-absence component of the data is 

modelled via a GLM, with the logistic link recommended (Barry & Welsh 2002, Zuur & Ieno 2016). 

Second, the observed abundance, conditional on a value of the response greater than zero is 

modelled with either a truncated Poisson or truncated negative-binomial model (Welsh et al. 1996, 

Barry & Welsh 2002, Zuur & Ieno 2016). 
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Fig. 3.8: Residual plots from the Generalized Additive Model (GAM) of daily Brassicogethes 
aeneus counts. These plots indicate that the statistical assumptions underlying the GAM are 
violated. The deviation in the Q-Q plot (top left) indicates that the right tail of the distribution in 
the GAM have deviated from the expected distribution in that they are more overdispersed than 
the model predicts, although otherwise well-behaved. The histogram (bottom left) is negatively 
skewed indicating that low counts are more frequent than the GAM predicts. The two biplots 
(right-side) indicate dysfunctionality in that the fitted values vs the response should be broadly 
positive and linear and there should be no pattern in the residuals v linear predictor, yet where 
observations were zero, a line intercepting 0 descending to 5 on the linear predictor scale, is 
clearly an artefact of the zero-inflation in the dataset. 
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3.4.4.2 Method for Zero-inflated GLM 

The R packages pcsl (Zeileis et al. 2008b, Jackman 2020) and MASS (Venables & Ripley 2002) 

were used to construct the model, with ggplot2 (Wickham 2016) and ggeffects (Lüdecke 2018) used 

to visualise the output. Given the wide range of values for each explanatory variable all values were 

scaled prior to modelling using the scale() function in R. Parameter selection was carried out using 

forward selection based on the relative importance of each individual explanatory variable as 

defined by the AIC and p-values from a zero-inflated linear regression on each variable (Table 3.2). 

Dew point, minimum and maximum temperature are all closely correlated with the more tractable 

mean temperature, likewise humidity correlated with wind speed (Fig. 3.5). Both wind speed and 

mean temperature were selected as variables that can easily be understood in terms of migration 

behaviour, with the other terms dropped. Latitude, temperature and precipitation in the previous 

seasons were low-ranking in terms of AIC and were excluded, even though they might be 

considered meaningful ecologically; Year and Days were excluded to avoid restricting the 

parameter space and allow for forecasting as far before the event as meteorological forecasts 

allow. See Appendix A, Chapter 3 for the modelling process in R. 

 

3.4.4.3 Results 

All terms in the model were significant (Table 3.3), more zeroes were expected when solar radiation 

was low, day number and wind speed was high and at lower longitudes (i.e. further west), with 

higher wind speeds and longitude (i.e. the further east) having a negative effect on count size, and 

higher temperature and the higher counts in the previous year having a positive effect (Table 3.3,  
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 Fig. 3.9). The east-west count result was surprising as it would be expected that B. aeneus counts 

would be higher in the eastern regions where more OSR is cultivated (Chapter 2, Table 2.3). This 

result should, however, be considered in the context of the binomial part of the model which 

predicts more zeroes further west. This may mean that non-zero counts of B. aeneus are less 

regular further west, and when they do occur in the suction-traps it is because migration conditions 

are very favourable, leading to high counts. Alternatively, given that predicted values are generally 

underestimated compared to observed values (Fig. 3.10), it may be that estimates are lower in the 

east, given the greater number, and amount of variability, of non-zero counts, than in the west.  

The underestimation of counts by the model shown in Fig. 3.10 is of concern, indicating that 

whilst a zero-inflated GLM does provide some clues as to what drives migration events in B. aeneus 

it may not provide enough predictive power to confidently forecast occasions when counts will be 

high enough to trigger crop inspections in a DSS.   

 



 

 

  
Degrees of 
freedom AIC 

Negbin 
intercept 

Negbin 
coef 

P 
Binomial 
intercept 

Binomial 
coef 

Exponent 
coef (b) 

P 

Count of pollen beetles in the previous 
summer 5 57596.76 

0.78005 
0.557669 <0.001 

-4.0649 0.53488 1.70725 
<0.05 

Julian day number 5 60944.8 0.82829 2.03963 <0.001 -14.389 11.8823 144677 <0.001 

Solar radiation (sunshine) 5 61320.18 0.95013 0.55755 <0.001 -2.2303 -3.8365 0.02157 <0.001 

Mean temperature 5 62350.51 0.93667 0.55695 <0.001 -3.4029 -4.6019 0.01003 <0.001 

Minimum temperature 5 63160.26 0.37302 1.54494 <0.001 -9.2669 4.27986 72.2302 <0.001 

Humidity 5 63319.12 1.07334 -0.3253 <0.001 -2.597 3.28633 26.7447 <0.001 

Dew point 5 63550.75 0.99031 0.46138 <0.001 -2.4018 -2.816 0.05985 <0.001 

Maximum temperature 5 63762.25 1.00123 0.41785 <0.001 -2.7917 -3.0046 0.04956 <0.001 

Wind Speed 5 64548.55 1.11162 -0.3751 <0.001 -1.1467 1.23017 3.42183 <0.001 

Days since Jan 1st 1984 5 65589.77 0.96633 0.2606 <0.001 -27.73 26.2626 2.5E+11 <0.001 

Year 5 65668.11 0.95269 0.24345 <0.001 -50.296 47.6248 4.8E+20 >0.1 

Longitude 5 65729.87 0.92082 0.28912 <0.001 -3.6406 -0.6084 0.54421 <0.001 

Rainfall 5 65796.72 1.18012 -0.0299 <0.1 -1.3043 0.48606 1.6259 <0.001 

Winter temperature preceding count 5 65811.29 0.92488 0.24297 <0.001 -4.3938 1.2596 3.52401 <0.1 

Latitude 5 65868.35 1.00897 0.1227 <0.001 -2.9107 0.74858 2.11399 <0.001 

Autumn precipitation preceding count 5 65872.31 0.95326 -0.2059 <0.001 -3.7577 -0.8686 0.41952 <0.01 

Winter precipitation preceding count 5 65916.05 0.95289 0.00251 >0.1 -4.7834 1.1425 3.13459 <0.001 

 

Table 3.2: Results of zero-inflated Generalized Linear Models of each explanatory variable, ranked by the Akaike Information Criterion (AIC) of each 

model. Negbin intercept and Negbin coef are the intercept and coefficient of the negative binomial portion of the model. Binomial intercept and 

Binomial coef are the equivalent terms for the binomial portion of the zero-inflated model, with the exponent given in Exponent coef (b) as 

exponentiating these coefficients place parameters on the odds ratio scale that estimates odds of not having beetles (zeros in other words).
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Count model coefficients (negbin with log link): 

                         Estimate  Std. Error  z value  Pr(>|z|)     

(Intercept)               0.78571 0.03211 24.47 < 2e-16 *** 

Beetle count in previous year   0.52684 0.02225 23.68 < 2e-16 *** 

Temperature               0.70084 0.03582 19.57 < 2e-16 *** 

Wind speed             -0.52678 0.02951 -17.85 < 2e-16 *** 

Longitude               -0.08125 0.025 -3.25 0.00115 **  

Log(theta)               -1.37363 0.03428 -40.07 < 2e-16 *** 
     

Zero-inflation model coefficients (binomial with logit link): 

             Estimate  Std. Error  z value  Pr(>|z|)     

(Intercept)  -0.40973 0.08904 -4.602 4.19e-06 *** 

Solar radiation (sunshine)   -2.13522 0.10518 -20.3 < 2e-16 *** 

Wind speed   0.23727 0.04598 5.16 2.47e-07 *** 

Julian day number    0.67251 0.05206 12.918 < 2e-16 *** 

Longitude   -0.21479 0.04227 -5.081 3.76e-07 *** 

 

Table 3.3: Summary statistics of zero-inflated Generalized Linear Model by model partition. 
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Fig. 3.9: Predicted non-zero counts of Brassicogethes aeneus in suction-traps given the count of 

beetles from June 1st the previous year at three levels of temperature (colours), three levels of 

wind speed (top to bottom) and three lines of longitude. Note, these values are scaled, not 

absolute. Predicted counts rise more or less exponentially with increasing numbers in the 

previous year; these counts are greater at higher temperatures, lower wind speeds and further 

west. 
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Fig. 3.10: Plot of observed versus predicted values from the zero-inflated Generalized Linear 

Model. Points denote individual counts, with the red line indicating the best fit spline with 95% 

error in grey. Counts are generally underestimated in the model compared to observations 

although there are several occasions where high (>100) counts are predicted when low (<50) 

numbers were observed. 

 

3.4.5 Machine learning 

Machine learning approaches are insightful and can be of use when more traditional 

statistical methods fail. Two approaches are investigated here: Random Forest, a supervised 

learning algorithm and artificial neural networks (ANNs) whose predictions arise from non-

linearities and complex interactions of potentially numerous environmental covariates.  
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3.4.5.1 Random Forest 

Random Forest is a machine learning method using a robust, iterative process to derive 

either a classification or regression trees (Breiman 2001, Cutler et al. 2007, Howard & Bickford 

2014). When the response variable is continuous the resulting tree is termed a regression tree, with 

classification trees formed when the response data are categorical (Crawley 2007). A Random 

Forest analysis fits a series of trees to a dataset, combining the predictions from these to produce a 

predictive model based on ranked variables scored by predictive value (Cutler et al. 2007, Dinsdale 

et al. 2013, Coulthard et al. 2019). These models can be displayed in the form of a flow chart-style 

decision tree where successive nodes split the tree into branches based on the value of the 

parameter selected, much like the tree model presented above (Fig. 3.7). The explanatory variables 

can also be ranked in order of importance, for each explanatory variable the mean decrease in Gini 

coefficient can be calculated. The Gini coefficient is a measure of homogeneity that ranges from 0 

(homogenous) to 1 (heterogenous). Each time an explanatory variable is used to split a node the 

Gini coefficient for the child nodes are calculated and compared to the original node, with variables 

showing a greater decrease in Gini coefficient deemed more important, in other words a “purer” 

split is favoured (Menze et al. 2009, Dinsdale et al. 2013). In ecology, Random Forest modelling has 

been used to investigate species interactions (e.g. Miller et al. 2014, Desjardins-Proulx et al. 2017, 

Pichler et al. 2020), species distribution modelling (e.g. Williams et al. 2009, Bradter et al. 2013, 

Shabani et al. 2016, Rowbottom et al. 2020), land-cover classification (e.g. Kane et al. 2014, Ahmed 

et al. 2015, Hao et al. 2015) and trait-based forecasting of species trends (e.g. Philibert et al. 2011, 

Holliday et al. 2012, Coulthard et al. 2019), however their use in time-series abundance modelling is 

less common (Shoemaker & Akçakaya 2014, Ward et al. 2014, Humphries et al. 2018). 
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3.4.5.1.1 Random Forest Method 

The R statistical packages RandomForest (Liaw & Wiener 2015), rpart (Thernau & Atkinson 

2018) and partykit (Zeileis et al. 2008a) were utilised. RandomForest was used to fit many 

classification trees to the dataset, combining the predictions from these trees to produce a decision 

tree with predictions based on variables ranked by predictive value (Cutler et al. 2007). Each model 

run generated 5000 trees with each run having an ‘mtry’ parameter (the number of variables 

available for splitting at each tree node) of four (the square root of the number of variables). There 

is some discussion as to the suitability of RandomForest for analysis that includes variables that vary 

in their scale of measurement as they do with the B. aeneus dataset (Strobl et al. 2007), however 

the tree partitioning algorithm should be independent of scaling for most circumstances, since they 

are merely attempting to establish thresholds within the data. Each model was run ten times 

(creating 50,000 trees) to obtain an estimate of variation in variable importance. The code for this 

model is shown in Appendix A, Chapter 3. 

 

3.4.5.1.2 Random Forest results 

 Julian day number was deemed the most important of the selected variables (Fig. 3.11) with 

sunshine, temperature and wind speed also ranking highly. Latitude and longitude were deemed 

the least important, indicating that, for the Random Forest model the spatial element of the 

explanatory variables is secondary to the meteorological and temporal elements. It is also worth 

noting that for this model the parameters derived from previous weather or recording events (the 

count of beetles in the previous year (noted as z.sum in Fig. 3.11), autumn and winter precipitation 

and winter temperature) are ranked below the variables recorded on the day of capture (Fig. 3.11). 
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Decision trees created using the variables from the random forest revealed Julian day 

number, minimum temperature, wind speed, longitude, sunshine and the count of beetles after 

June 1st the previous year to be the most important factors in determining daily (Fig. 3.12). Zero 

counts were considered the most likely at eight of the eleven terminal nodes, with low (<10) counts 

Fig. 3.11: Importance rank of the explanatory variables, using mean (+/- Standard Error) decrease 

in GINI index. Julian Day number (‘day’) is likely to be the most important variable, with latitude 

and longitude (lat, lon) the least important.  
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the most likely at the other three. Counts of less than ten were the second most likely outcome in 

all occasions when they were not the first (Fig. 3.12). 

Day number is the first consideration in the random forest model (Fig. 3.12) with days 

before March 8th (Day 67, Node 1) and after July 29th (Day 210, Node 3) highly likely to produce zero 

counts (Nodes 2 & 4). Between these dates if the minimum temperature is below 11.965°C (Node 

5) then, again, zero counts are likely, although there is a ~20% chance of a count between 1 and 10 

(Node 6). If minimum temperature exceeds 11.965°C (Node 5) then wind speed is considered (Node 

7), with values above 4.005 meaning that just over 60% of the time zeroes, and just over 20% of the 

time values of 1-10 are recorded (Node 8). If average wind speed is lower than 4.005 m/s (Node 7) 

and the date is between March 8th (Node 1) and April 8th (Day 98, Node 9) then it is more likely than 

not that a count of 1-10 will be recorded (Node 21). Between April 8th (Node 9) and July 29th (Node 

3) at lower wind speeds the value for the daily count rests on the count of B. aeneus after July 1st 

the previous year (Node 10), with counts higher or lower than 244 having outcomes that depend on 

different parameters. If the previous year’s count is lower than 244 (Node 10) then an average wind 

speed of greater than 2.585 m/s (Node 11) will lead to Node 12 which predicts either a zero or 1-10 

count in most cases, if winds are lighter then sunshine becomes important, with less than 11.39 

MJ/m2 (Node 13) leading to Node 14 where 0-10 B. aeneus are likely, and higher than 11.39 MJ/m2 

(Node 13) meaning a positive count is more likely than a zero, though low counts predominate 

(Node 15). If counts in the previous year are higher than 244 (Node 10) then more westerly traps 

(Newcastle, York, Preston, Hereford, Wellesbourne and Starcross, Node 16) will fall in Node 17 

where zero counts are most likely but counts of 10-30 or even higher have a larger chance of 

occurring than most other nodes. Traps east of longitude -0.667 (Kirton, Broom’s Barn, 

Rothamsted, Writtle, Silwood Park and Wye, Node 16)) will terminate in either Node 19 or Node 20 

depending on whether minimum temperature is above or below 14.355°C (Node 18), these nodes  



 

 

 
Fig. 3.12: Decision tree for the Random Forest model of daily suction-trap catches. The 21 nodes are divided between ‘splits’ where decisions that minimize 
the misclassification error in each leaf are made based on the thresholds of the explanatory variable under consideration (e.g. in the first split, the threshold 
is day 67.5 i.e. between March 8th and 9th) and ‘leaves’ where the breakdown of predicted counts is presented in a bar chart. Thus, if day is earlier than day 68 
(March 9th) Node 2 applies where the bar chart indicates that nearly all predicted counts will be zero, with very few in the 1-10 category. In fact, zero will be 
predicted most of the time at all nodes except Nodes 15, 20 and 21, in which 1-10 is the most commonly predicted count. 
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return a complex pattern of predicted values with all count levels potentially returned at different 

levels of likeliness (Fig. 3.12).   

 

3.4.6 Artificial Neural Networks 

3.4.6.1 Introduction to Artificial Neural Networks 

Artificial Neural Networks (ANNs) are composed of multiple processing layers which learn 

data representations with multiple layers of abstraction (LeCun et al. 2015). The allusion to ‘neural 

networks’ infers that computers perform like interconnected brain cells, finding patterns through 

decision-making. Just like the brain, in which neurons are clustered according to the task, ANNs 

have layers in which particular problems are solved and then passed on to other layers for 

completion. At its most basic, an ANN has three layers: input (training data), hidden (computation 

and processing) and output (results) and differs from standard statistical analyses in that there are 

few a priori assumptions. Instead ANNs promote self-adaptive and self-organising behaviours that 

use weights and biases, to capture subtle functional relationships within the data that are driven by 

unknown, or hard to determine processes, a compelling example of machine-learning to solve 

complex problems (Agrawal & Mehta 2007). Fig. 3.13 presents a schematic of a neural network in 

which the data are randomly split into two subsets, a training set (typically 2/3rds to ¾s of the 

data), with the rest of the data forming a testing, or validation set. The training set is then sent 

through the neural network which iteratively improves the model using hidden layers. Briefly, these 

hidden layers assign weights to each explanatory parameter then compare the weighted model 

result to the testing set (the forward propagation process), the weights are then adjusted 

depending on the accuracy of the model (the backpropagation), and this process continues until the 
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network is able to assign weights such that the network can predict the values correctly in most 

cases (Krenker et al. 2011). These hidden layers are termed thus because they estimate 

distributions that are not known explicitly using a combination of processes that are difficult, if not 

impossible, to visualise explicitly and thus they remain hidden – a “black box” process (Gevrey et al. 

2006, Tan et al. 2015). ANNs have been utilised in ecology for a range of systems from mapping and 

identifying habitats using remote sensing (Brodick et al. 2019) to microhabitat temperature (Bryant 

& Shreeve 2002) but, as yet, there has been little advance in the field of population dynamics 

(Joseph 2020). In agriculture, using ANNs to forecast pest and disease outbreaks is a rapidly 

developing field (Junjing et al. 2019) and some (predominantly weather driven) forecast models 

have been developed for specific crops/locations such as coffee yield in Brazil (de Oliveira 

Aparecido et al. 2020), and for diseases such as powdery mildew in wheat (Agrawal & Mehti 2007), 

anthracnose crown rot in strawberries (Lu et al. 2017) and verticillium wilt in mint (Wheeler et al. 

2019).  

 

3.4.6.2 ANN Methods 

To investigate the facility of ANNs for daily B. aeneus data, analysis was carried out using 

Keras (Chollet 2015), the high-level neural networks Application Programming Interface (API) for 

Tensorflow (Abadi et al. 2015) in R (R Core Team 2018). The model was trained on the 

meteorological, geographical and count parameters outlined in Table 3.1 with 60% of observations 

used as a training dataset, the remaining 40% as the testing dataset. The final network selection 

involved an Ordinal Regression Network with one hidden layer of 128 nodes. Greater numbers of 

layers and nodes were investigated but gave no better results and were increasingly heavy on 

computation time (measured in days). Ordinal Regression was selected as, due to the sparse nature 
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of the counts (Fig. 3.6), the count data had to be apportioned into categories (0, 1-10, 11-30 and 

>30, selected to best represent the range of the data without having categories with too few data 

within them). Training sessions were run with a maximum of 100 epochs (iterations of the forward 

propagation process) with a patience level set at 10, to reduce overfitting in the modelling process 

(Zhou et al. 2020) i.e., the patience level controls when the model should report when it is 

complete; if the model runs 10 consecutive epochs with no significant improvement the training is 

deemed complete (Fig. 3.14). 

 

Fig. 3.13: Schematic of a neural network. The observational data are randomly assigned into two 

sets, a larger training set and a smaller testing set. The training set is then used as input into the 

ANN, within which are several interlinked nodes in one or more layers. Within these layers 

explanatory parameters are assigned weights which are fed forward through the ANN to a 

classification output, known as a confusion matrix. The matrix, and the assigned weights are then 

compared against the testing set. The comparison informs changes in weights through the hidden 

layers as alterations are back-propagated through them before being fed forward again, 

compared again and weights altered again. This iterative process continues until there is no 

improvement to the model weights or a pre-designated cut off point is reached. 
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The batch size (the number of samples from the training dataset used to estimate the error 

gradient – which is the statistical estimate of the difference between predicted and observed values 

after a model epoch) was set to 10, this is lower than has been recommended (e.g. Bengio 2012), 

but appears to provide a more stable and reliable training for the model, as noted by Masters & 

Luschi (2018) and also in the tuning of this model. 

 

3.4.6.3 ANN results 

 Around 67% of zeroes are predicted correctly (69% in the testing set), however around 30% 

(29%-31%) observed zeroes are predicted in the 1-10 bin, with 2% forecast to be 10-30 beetles (Fig. 

3.15). Conversely, as with the other models above, high counts prove difficult to predict, with only 

0%-6% of high (>30) counts forecast accurately, and the majority (61%-69%) forecast to be 1-10 

range, 21%-27% in the 11-30 range and as many as 6%-10% high counts predicted as zeroes (Fig. 

3.15). The parameter selection behind these results are unknown due to the “black-box” nature of 

the hidden layer within the ANN (Gevrey et al. 2006, Tan et al. 2015). Hindcasts produced by the 

ANN to simulate suction-trap data from 2016 to 2018 (Fig. 3.16) appear to show that, in many cases 

the ANN is forecasting an extended season compared to what was observed, this is particularly true 

at sites such as Broom’s Barn, Writtle and Rothamsted (Fig. 3.16). The ANN is also unable to 

forecast high counts well, especially at sites where high daily counts are rare, for example at 

Hereford (Fig. 3.16). 
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Fig. 3.14: The ‘learning’ performance of the Ordinal Regression Network. The validation curve 

indicates that, after around 20 epochs (iterations of the model) the model does not improve as 

the curvature becomes less steep and there are signs that over-fitting begins around 30 epochs, 

as the variance increases around the validation curve. 
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Fig. 3.15: Confusion matrix for the training dataset, the test dataset and both combined. For each 

of the 16 ‘bins’ in each of the three matrices, the frequency value is scaled between 0-1 and 

coloured according to the level of agreement, with orange representing greater than 65% 

predictions assigned to that bin, conversely dark blue represents <25% of predictions in the bin 

(see legend). A perfect model would return 1 for each bin where observed & predicted values are 

the same (i.e. on a diagonal from bottom left to top right), with zeroes in other boxes. 
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Fig. 3.16: A comparison between the predicted Brassicogethes aeneus count for each day (blue 

lines) and the observed values (black lines) for all sites 2016-2018 for every day between Julian 

Day 50 (19th February) and Julian Day 250 (31st July). Site abbreviations: BB: Broom’s Barn; H: 

Hereford; K: Kirton; N: Newcastle; RT: Rothamsted; SP: Silwood Park; SX: Starcross; W: Wye; We: 

Wellesbourne; Wr: Writtle; Y: York.  

 

3.5 Discussion 

 Currently, a forecast for B. aeneus phenology is available commercially (xarvio.com) though 

that model tool is now only available in a more comprehensive DSS package. Aside from the cost 

and accessibility implications of this change (Ryan 2019), it remains unable to forecast the scale of a 

B. aeneus migration event (Johnen et al. 2010, Ferguson et al. 2016). Knowledge of whether a 
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migration event will be large or small could have a profound effect on the decision made at the 

farm level whether to take remedial control action or not. In addition, no models are available that 

forecasts migration into spring OSR crops at their susceptible stage (Johnen et al. 2010, Ferguson et 

al. 2016). The aim of this piece of research was to determine how best to model the daily data from 

the Rothamsted suction-trap network to inform a future DSS that extends the capabilities of 

current models. I present here four different methods for modelling this challenging dataset. The 

first, a GAM, failed to produce a satisfactory result, with the high number of zero counts proving 

too problematic to resolve. The other three methods produced varying results, none were able to 

predict high counts well, though lower counts and zero counts could be forecast.  

 The zero-inflated GLMM was the most parsimonious, with three parameters (sunshine, wind 

speed and day number) required for the binomial (presence-absence) step of the model and four 

parameters (number of beetles caught after June 1st the previous year, mean temperature, wind 

speed and longitude) required in the GLM step. These parameters were also utilised by the random 

forest model, with the exception of minimum temperature, which the random forest model 

selected instead of mean temperature. Minimum temperature was excluded in the model selection 

process for the zero-inflated GLM. The ANN did not outperform the zero-inflated GLM or the 

random forest model with the additional penalty of the “black box” nature of the model in that it is 

not known exactly how the hidden layer assigned weights to each parameter.  

 There is the possibility that beetle flight is driven by environmental cues not covered here, 

for example one possible trigger for beetle flight is the change in barometric pressure (Fournier et 

al. 2005, Pellegrino et al. 2013, Martini & Stelinski 2017, Martini et al. 2018). It would be a useful 

exercise to investigate how barometric pressure affects pollen beetle flight activity. 
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All models demonstrate that it is difficult to forecast rare extreme events – for example high 

catches – especially if those events are not previously recorded at a location. Given the rise in the B. 

aeneus population as measured by suction-traps (Chapter 2) this highlights a potential drawback in 

the utilisation of any models during a population expansion event. For B. aeneus it may be that 

population growth has levelled off in the south-east (Chapter 2) but if it continues to increase in 

areas where it is currently rarer then forecasts based on the model developed here would become 

rapidly more unreliable through underestimation. The difficulty of forecasting extreme events is 

accepted across disciplines (Stephenson et al. 2008, Goodwin & Wright 2010, Hitchens et al. 2013, 

Lerch et al. 2017, Farazmand & Sapsis 2019), including ecology (Denny et al. 2009, Van Doren & 

Horton 2018) and, whilst progress has been made there is not yet a satisfactory method to forecast 

outbreaks as extreme high counts are rare (Hitchens et al. 2013, Farazmand & Sapsis 2019). 

It may be possible to overcome these limitations by using new techniques in frequentist 

statistics such as GLMM with bagging (Osawa et al. 2011) or combining the deep learning aspect of 

an ANN with, for example, state space modelling (Hyndman et al. 2008, Rangapuram et al. 2018), 

hybrid data mining (Guikema & Quiring 2012) or universal differential equations (Rackauckas et al. 

2020). However, that step requires biostatical input and is beyond the scope of this thesis.  
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Chapter 4. 

The spatial ecology of pollen beetles in Great Britain 

 

Chapter Summary 

 Data on Brassicogethes aeneus abundance as recorded in Rothamsted Insect Survey suction-

traps and at field-level on yellow sticky-traps across Great Britain from 2008-2012 were used to 

investigate the spatial synchrony of British pollen beetles. 

 Field data were loosely correlated with suction-trap data, however the sampling regimes in 

the two datasets were not fully compatible, with the sticky-trap data using asynchronous multi-day 

sampling that was hard to reconcile with daily or standardised weekly data from the suction-trap 

network. 

 Field data indicated that there was no spatial synchrony in B. aeneus at the field level, 

meaning that it was impossible to predict beetle abundance in one field using data from a 

neighbouring field, indicating widespread heterogeneity at small scales. Over much larger landscape 

scales, suction-trap data showed some spatial synchrony, declining to zero at ~150 km. 

 This lack of relationship between suction-trap data and field data, and the lack of synchrony 

detected in the field data raises doubts over the suitability of using suction-trap data to inform 

forecasts of migration into brassica crops. 
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4.1 Introduction 

4.1.1 The need to consider spatial metrics in a DSS 

 Chapters two and three of this thesis demonstrate that there is some potential to estimate 

pollen beetle abundance and phenology from high-level movement of individuals as recorded in 

suction-traps. Potentially these data can provide useful information for a decision support system 

(DSS), however it is not yet demonstrated that these counts – observed or estimated – have any 

relationship to what occurs at the field level. It has long been known that the number of insects 

caught reduces with increasing height of a trap above ground level (Johnson 1957a, Taylor 1960) 

although there are differences between species (Wolfenbarger 1946, Taylor 1960). The pattern of 

insect abundance produces a density profile, the gradient of which is subject to weather (Johnson 

1957a, Taylor 1960), particularly decreasing temperature (Johnson 1957b) and increasing wind 

speed with increasing height (Taylor 1960). For suction-traps, most research to date has focussed 

on the aphid fraction and much is known about their density profile (Johnson 1957a, Taylor 1960, 

1973) and spatial distribution (Taylor 1973, Bell et al. 2012, 2015, 2019, Sheppard et al. 2016, 

Borhuis et al. 2020). Even so, whilst forecasting of aphid migrations from suction-traps has been in 

place for several decades (Cocu et al. 2005a, b, c, Harrington & Woiwod 2007, Bell et al. 2015), it is 

only relatively recently that these data have been shown to reflect aphid numbers within crops 

across Europe (McVean et al. 1999, Kasprowicz et al. 2008, Fabre et al. 2010). This broader 

understanding builds on earlier work by Leather & Lehti (1982) on the distribution patterns of just 

one aphid species (Rhopalosiphum padi (L.)) in Finland. No such analyses have been conducted for 

pollen beetles, and the question remains as to whether the suction-trap network is of use to 

growers as sentinels of infestation and outbreak at the field level. Specifically, to what degree do 
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pollen beetle numbers in the suction-traps reflect numbers found in the field and at what spatial 

scale? 

 More generally, an understanding of the spatial dynamics of pest insects and the 

mechanisms that drive them is important in developing control strategies (Taylor 1986, Nestel et 

al., 2004, Cocu et al. 2005b, c). Spatial scaling becomes even more important when developing 

Integrated Pest Management (IPM) strategies (Sciarretta & Trematerra, 2014) as spatial patterns 

and amount of heterogeneity in pest populations have implications for control at both the field- 

(Park et al. 2007) and landscape scales (Hendrichs et al. 2007). DSSs, usually based on software 

models (Rose et al. 2016), are widely used in IPM to assist with crop management, including the 

timing and locations of control measures (Johnen et al. 2010, Sciaretta & Trematerra, 2014, 

Lindblom et al., 2017). Dynamic DSSs are those whose recommendations vary according to user 

inputs such as weather, soil, crop variables etc. (Rossi et al., 2014, Rose et al., 2016). Dynamic DSSs 

need to interpolate predictions across landscapes, perhaps even at farm level, to make them 

worthwhile and useful in practice (Rose et al., 2016, Lindblom et al., 2017, Lundström & Lindblom, 

2018). As such, geostatistics – statistical methods for analysing spatial dependence among samples 

(autocorrelation and synchrony) and obtaining estimates for unsampled locations (Sciaretta & 

Trematerra, 2014) – can be powerful tools in elucidating pest systems (Liebhold & Gurevitch, 2002) 

and can improve the quality of DSSs for IPM.  

To understand the role of spatially explicit models in DSSs, several themes are worthy of 

mention. Spatial autocorrelation, spatial synchrony and the relationship of the drivers of those 

systems, such as temperature and rainfall, often referred to under the Moran’s Theorem, all 

determine the accuracy and precision of any spatial prediction.   
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4.1.2 Spatial Ecology 

The study of how space directly or indirectly affects ecological systems – termed spatial 

ecology (Tilman & Karieva 2018) – is a broad discipline that covers a range of separate, but related 

areas of study (Koenig 1999, Fletcher & Fortin 2018), including movement ecology focussed on 

dispersal and migration (Nathan et al. 2008, Fletcher & Fortin 2018). Across disciplines spatial 

ecology research is aimed at understanding the processes that affect species distribution and 

dynamics across space (Fletcher & Fortin 2019). One of the key challenges in spatial ecology is that 

the spatial structure of ecological populations is non-random, and observations are not 

independent of each other across space, a phenomenon known as spatial autocorrelation 

(Legendre 1993, Legendre et al. 2002, Dormann et al. 2007).  

 

4.1.2.1 Spatial autocorrelation  

Tobler’s First Law states that “everything is related to everything else, but near things are 

more related than distant things” (Tobler 1970, Miller 2004). This truism is central to the 

understanding of spatial autocorrelation where populations at nearby locations are more similar 

(positive autocorrelation) or less similar (negative autocorrelation) than expected for randomly 

associated pairs of observations and are thus are not independent from each other (Legendre 1993, 

Dormann et al. 2007). Most ecological systems show some degree of autocorrelation across all 

spatial scales (Legendre & Fortin 1989, Legendre 1993) such that the distribution of individuals is 

neither uniform nor random (Legendre & Fortin 1989) and as such violate the assumptions of 

classical statistics (Legendre 1993, Keitt et al. 2002, Dormann et al. 2007). This may cause spurious 

associations within data if not accounted for (Lennon 2000, Keitt et al. 2002, Liebhold & Gurevitch 

2002). However, discrete‐time autocorrelation models (corAR1) were investigated by Bell et al. 
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(2020) when examining long term change in aphid populations using suction-trap data. They found 

that whilst temporal autocorrelation within model residuals was present, the positive 

autocorrelation detected was very weak. This is typical for many animal systems (Knape 2016).  

 

4.1.2.2 Spatial synchrony  

Spatial synchrony, defined as correlated fluctuations among populations that are separated 

in space (Hanski & Woiwod 1993, Liebhold et al. 2004, 2006, Walter et al. 2017) is a form of spatial 

autocorrelation among separate populations, both within and between species. In effect, it is a 

formalisation of the idea that spatial autocorrelation between populations can be a predictable 

result of known processes (Bjørnstad et al. 1999, Liebhold et al. 2004, Cocu et al. 2005b). Spatial 

synchrony has been demonstrated in a range of insect taxa, including Lepidoptera (Miller & Epstein 

1986, Pollard 1991, Thomas 1991, Hanski & Woiwod 1993, Sutcliffe et al. 1996, Williams & Liebhold 

2000, Peltonen et al. 2002, Raimondo et al. 2004, Cooke & Lorenzetti 2006, Haynes et al. 2019), 

Diptera (Choi et al. 2011, Santoiemma et al. 2019), Hymenoptera (Lantschner et al. 2019), 

Hemiptera (Hanski & Woiwod 1993, Estay et al. 2009, Bell et al. 2020) and Coleoptera (Peltonen et 

al. 2002, Økland et al. 2005, Aukema et al. 2006). Three primary drivers of spatial synchrony have 

been identified (Bjørnstad et al. 1999, Ripa 2000, Liebhold et al. 2004), and the effect of these 

drivers may differ at different time or spatial scales (Bjørnstad et al. 1999, Haynes et al. 2019): 1) 

Dispersal among populations causing a levelling effect between large and small populations as 

individuals spill-over from the former to the latter (Hanski & Woiwod 1993, Ranta et al. 1995, Heino 

et al. 1997, Kaitala & Ranta 1998, Palmqvist & Lundberg 1998). 2) Trophic interactions with other, 

synchronous predator/prey/parasite populations (Ims & Steen 1990, de Roos et al. 1991, 1998, 

Gurney et al. 1998, Bell et al. 2012). 3) The effects of widespread, spatially autocorrelated but 
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density independent factors such as environmental fluctuations (Moran 1953, Royama 2012), 

named the Moran effect, or Moran’s theorem (Royama 2005, 2012, Hansen et al. 2020).  

  

4.1.2.3 Moran’s theorem 

Moran’s theorem is named after Patrick Moran, whose seminal paper (Moran 1953) found 

that the synchrony of population dynamics across space had a simple mathematical relationship 

with spatially autocorrelated environmental drivers, usually temperature (Hansen et al. 2020). 

Being simple, Moran’s theorem makes several assumptions about populations that are known to be 

difficult, or impossible to meet in field conditions (Lande et al. 1999, Engen & Sæther 2005, 

Liebhold et al. 2006, Hansen et al. 2020). Namely, the theory assumes: 1) No dispersal between 

populations, although Engen & Sæther (2005) assert that migration can be ignored when synchrony 

is examined at large spatial scales, provided that density regulation occurs, whereas Ranta et al. 

(1995) note that the effects of dispersal on synchrony can be detected by a theoretical decay in 

synchrony with increasing distance between populations. 2) A log-linear density dependence in 

populations. 3) Identical structure between population processes (Hansen et al. 2020). In addition, 

Kendall et al. (2000) found that it is difficult to separate the effects of environmental synchrony 

from other drivers such as dispersal or species interaction. Also, synchrony can change with time, 

along with patterns of spatial environmental autocorrelation (Koenig 2002, Post & Forchhammer 

2002). There have been efforts to formulate more “generalised” Moran effect models, including 

those that relax the assumptions on log-linear density (Engen & Sæther 2005) or population 

structure (Liebhold et al. 2006), incorporate dispersal (Ripa 2000) or time scale specificity 

(Sheppard et al. 2016). Those points aside, the significance of Moran’s theorem is that in principle, 

the cause of synchrony can be separate and independent from the drivers of cyclic population 
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fluctuations (Bjørnstad & Grenfell 2001, Royama 2012), allowing some flexibility in determining the 

causes of population cycles and, independently, their synchrony (Ripa 2000, Royama 2012) and 

understanding the effects of wide-scale environmental disturbance (e.g. climate change) on 

populations (Sheppard et al. 2016, Hansen et al. 2020). 

There are numerous ways to conceive spatial synchrony and thus test the evidence for 

Moran’s theorem. For example, a spline corellogram model has been developed using 

nonparametric covariance functions (Bjørnstad et al. 1999, Bjørnstad & Falck 2001). In a spline 

correlogram analysis synchrony is measured by means of using the difference between successive 

observations to create a first-differenced (the series of changes in a population from one time 

period to the next) time series of log-abundance using the formula log Nt – log Nt−1 = zt, where Nt is 

the abundance or density at time t (Bjørnstad et al. 1999, Bjørnstad & Falck 2001). Doing this puts 

emphasis on the synchrony in population growth rates rather than raw abundance as the latter can 

lead to spurious correlation through adding weight to long-term trends that may arise for different 

reasons in different populations (Bjørnstad et al. 1999). 

 

4.2 Aims and objectives 

The main aims of this chapter are to quantify the spatial component in pollen beetle 

populations by linking suction-trap data with field collected data. 

The objectives were; 

1) to investigate the correlation between suction-trap and field data to determine the 

geographical scale at which trap counts can be interpreted 

2) to determine measures of temporal and spatial autocorrelation  
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3) to determine the viability of using suction-trap data in farmer Decision Support System 

models to forecast immigration into oilseed rape fields  

 

4.3 Materials and Methods 

4.3.1 Temporal and spatial patterns in field abundance  

4.3.1.1 Sticky-trap data collection and standardisation 

Pollen beetle immigration from late February – early May 2008 to 2012 for a total of 138 

winter OSR field sites was monitored using yellow sticky-traps (Cook et al. 2014, Skellern et al. 

2017). At each site, standard “wetstick” 10 x 20 cm sticky traps (Oecos, Kimpton, Hertfordshire) 

were set, clipped to extendable poles at a 45° angle to the vertical (Blight & Smart, 1999) and 

maintained at crop canopy height through the trapping period. Traps were placed 3 m into the crop 

from the field edge, oriented to face outwards from the crop. Where practicable, traps were 

changed every 3-4 days, but this was often not the case with shorter and longer time periods 

common (2-21 days, with ~80% of intervals <7 days) (Skellern et al. 2017). Traps were operated by 

volunteer farmers or crop consultants at fields across the main UK OSR cropping region (Fig. 4.1) 

except for sites at Rothamsted and Woburn which were operated by Rothamsted staff. Some sites, 

including Rothamsted and Woburn, ran traps in multiple fields in the same year, or in individual 

fields in multiple years. Collected traps were returned to Rothamsted for assessment of pollen 

beetle catch. Due to the irregular, and largely asynchronous trapping periods (Fig. 4.2), trap data 

were aggregated to weekly counts across standardised weeks (16th February to 25th May). The 

Central England Temperature index (Parker et al., 1992) for each trapping day was analysed and 

any days below a maximum temperature threshold of 11°C were excluded, 11°C was set as the 
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threshold as this approximated to the temperature threshold for an increased chance of a non-zero 

count (see Chapter 3, Fig. 3.12) with a buffer of ~1°C. Trap samples were then averaged across the 

remaining days and summed into standardised weeks. 

 

4.3.1.2 Suction-trap data collection and standardisation 

The Rothamsted Insect Survey (RIS) network of suction-traps (Macaulay et al. 1988, Bell et 

al. 2015) began in 1964, primarily to monitor aphids (Harrington & Woiwod 2007). The traps 

sample aerial insect populations at 12.2 m above ground level at a rate of 50 m3 min-1(Macaulay et 

al. 1988). Daily samples are taken during the aphid season (roughly late March to November), with 

weekly samples over winter and early spring. The aphids are removed, identified and counted and 

the bycatch is stored in a mixture of ethanol & glycerol (Shortall 2013). The presence of glycerol 

means that, though samples do become dehydrated over time, they remain undamaged on 

rehydration. The bycatch was investigated for pollen beetles, with all B. aeneus present identified 

and counted. Data from all suction-trap sites from 2015-2018 were used, daily or weekly samples 

(depending on the time of year). See Chapters 2 and 3 for further details of the suction-trap 

sampling. The data from the traps were standardised to the same weeks as the field data with daily 

samples assigned to the relevant week and weekly samples divided between weeks in the same 

way as the sticky-trap data, i.e. days with a maximum temperature below 11°C were excluded and 

the count was then divided between the remaining days (Fig. 4.2). 
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Fig. 4.1: Locations of Rothamsted Insect Survey suction-trap sites (crosses) and sticky trap field 

sites (points). Field sites are coloured by year: Yellow = 2008; Orange = 2009; Red = 2010; Blue = 

2011; Black = 2012.  
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 a  

b  

c  

d  

e  

f  

Fig. 4.2: Schematic demonstrating the challenge of asynchronous weekly sampling. Consider a 
hypothetical situation with a Suction-trap (ST) & eight field sites, the ST runs weekly and over the 
28 day period is changed four times whilst the field sites are monitored for varying time periods - 
shown in (a) The number of beetles caught in those sampling periods is shown in (b). We could 
average these catches across the days to give a standardised weekly count (c, d). However if we 
have a single warm day that potentially encourages beetle flight (Day 15 in this example, 
coloured red with affected sampling periods highlighted in pink) (e) and we average across the 
sampling periods (f) then the beetles flying on that day would contribute more to the average 
sample of the previous week (or weeks) than the current week at all bar one of the field sites. 
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4.3.1.3 Analysis 

All data were analysed using the R statistical package (R Core Team 2018). Field data were 

compared to suction-trap data from Rothamsted by Pearson correlation. The resulting annual 

correlation estimates were then plotted against distance from Rothamsted. 

 

4.3.2 Temporal and spatial patterns of field and suction-trap data  

4.3.2.1 Visualising and modelling spatial autocorrelation  

Of the 15 standard weeks assessed the first week and the last three weeks were zero-

inflated and were not analysed. The remaining weeks 2-12 (23 Feb – 03 May) were used for 

analysis. After checking the statistical distribution of the standardised weekly data from both 

datasets using the R library fitdistrplus (Delignette‐Muller & Dutang, 2015), a generalized additive 

model (GAM) from the R package mgcv (Wood 2017) with location as a smooth term was used to 

produce a general trend that was interpolated across the spatial extent of the suction-trap and 

sticky-trap networks (Fig. 4.1). Due to the sparse nature of the data each standard week across all 

years was analysed separately alongside a combined total for all the data. 

 

4.3.2.2 Quantifying spatial synchrony: spline correlogram analysis   

To assess spatial synchrony in the field data 2008-12 and the suction-trap data 2014-18 for 

all sites (this thesis, Chapter 3) multivariate spline correlograms were used, where the y intercept 

indicated the local covariance function (Moran’s I), the x estimated the spatial extent (km), and, the 

intercept of the spline at x gave an estimate of the correlation length. A bootstrap confidence 

interval was calculated by sampling with replacement among sites (deleting cross‐correlations 



 

151 

 

arising from comparing a site with itself). One thousand bootstrap iterations were done, and the 

confidence intervals calculated using the percentile method (Efron & Tibshirani, 1993). Spline 

correlograms were calculated using the ncf package in R (Bjørnstad & Bjørnstad, 2016). 

 

4.4 Results 

4.4.1 Comparing field and suction-trap data  

The relationship between field and suction-trap data at a weekly level generally shows a 

moderate to strong relationship, although there is a lot of scatter (Fig. 4.3). It should be noted that 

for some locations correlation remains quite strong even at a distance, and the effect of year 

appears stronger than that of distance. Many sites showed no, or negative correlation with the 

suction-trap data in some years, which may be due to the effect of standardising asynchronous 

trapping periods (Fig. 4.2). As noted in Chapter 3, the daily counts of beetles from the suction-traps 

can vary by orders of magnitude from day to day, which may cause spurious results when 

comparing two different traps (as demonstrated in Fig 4.2). 

  

4.4.2 Generalized Additive Model of field data  

The GAM maps (Fig. 4.4) demonstrate that there is no clear national trend in the week to 

week abundance of pollen beetles as measured in the field. In all, only three weeks (7, 8 and 10) 

and the combined dataset showed any significant spatial correlation. It is also notable that the 

deviance explained was extremely low (<10%) in all cases apart from week 8 (Table 4.1). Generally, 

the counts were highest in south-east however the changes in site distribution and the variation in 

counts make it difficult to determine whether the direction of the trend (Fig. 4.4) is a reduction in 

https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/0012-9658%281999%29080%5B0622%3ASASIDO%5D2.0.CO%3B2#i0012-9658-80-2-21-efron1
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abundance towards the north (weeks 2, 11, 12), the north-east (weeks 6, 7, 10), the east (weeks 3, 

5, 9) or the south-east (weeks 4, 8). The rate of change across the interpolated values is also 

variable (Fig. 4.4), ranging from steep changes in abundance reflected by tight isoclines in some 

weeks (e.g. weeks 2 & 8) to less steep in others (e.g. weeks 4 & 6). 

 

  

Fig. 4.3: Pearson’s correlation coefficient for annual comparisons of standardised weekly 

Brassicogethes aeneus populations in field sites (sticky-traps) to the Rothamsted suction-trap 

plotted against the distance of each site from the suction-trap in kilometres. Different years are 

plotted in different colour/shape combinations (see legend). Two field sites: The Beeches (2011) 

and Haddo (2008 & 2011) both more than 600 kms away from the suction-trap have been 

excluded from this plot for clarity.  
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Fig. 4.4: Surface plots for GAM of sticky-trap and suction-trap data for individual weeks and the 

full dataset combined (bottom right). Red indicates higher counts, yellow lower counts. The 

isoclines on the maps are deviations from the GAM intercept in abundance. The unit value of 

each set of isoclines vary for each model from very small changes over space (e.g. week 12) to 

large differences (e.g. all weeks combined). The general pattern is for higher counts in the east 

and/or south-east of England, although the direction and amplitude of the drop from higher 

counts to lower changes from week to week.    

 

4.4.3 Multivariate spline analysis of field data 

The lack of pattern demonstrated above by the generalized additive models is reinforced by 

the multivariate spline correlogram of the field sticky-trap sites (Fig. 4.5). Whilst the spline 

intercepts the zero line at just above 122 km, from zero distance onwards the lower confidence 

interval crosses the zero-line indicating that there is no correlation even at a distance of zero. There 
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is some evidence of correlation between sites becoming negative at greater distance, however the 

confidence intervals illustrate that no substantial inference should be drawn from this. 

Week no. No. of sites edf Deviance explained (%) P 

2 106 0.0000226 0.000243 0.502 

3 44 1.114 8.14 0.16 

4 136 0.2729 0.415 0.334 

5 168 0.007042 0.00405 0.545 

6 175 0.8611 0.0858 0.33 

7 181 1.735 7.48 <0.001*** 

8 168 12.74 23.6 <0.001*** 

9 149 1.203 2.41 0.0506 

10 107 1.486 4.92 0.00601** 

11 76 0.0022 0.00353 0.463 

12 51 0.0002384 0.000054 1 

Combined 189 8.965 17.1 <0.001*** 

 

Table 4.1: Summary statistics for Generalized Additive Model shown in Fig. 4.4, edf is Estimated 

Degrees of Freedom which is estimated within the model. 

 

4.4.4 Multivariate spline analysis of suction-trap data 

Conversely, the spline correlogram for the suction-traps (Fig. 4.6) shows positive correlation 

between sites to 204.7 km (though the lower bound of the confidence interval suggests that ~150 

km is more prudent). There is good evidence that synchrony declines with distance, from a Moran’s 

index value of 0.23. 
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Fig. 4.5: Spline correlogram of standardised weekly data for all field sites (2008-2012). 

 

Fig. 4.6: Spline correlogram of daily data for all suction-traps (2015-2018). 
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4.5 Discussion 

4.5.1 Discussion of the findings 

 There is very little spatial relationship between counts of Brassicogethes aeneus populations 

at different sites over time, instead they appear locally eruptive and independent. There is at best a 

positive spatial synchrony across the number of beetles caught in flight by the suction-trap network 

at a distance of up to around 150 km, beyond which synchrony breaks down. For field sites, even a 

weak relationship in spatial synchrony is absent suggesting that B. aeneus population dynamics may 

amount to a chaotic system – or at least display complex nonlinear dynamics that approximate to 

chaos (Turchin & Taylor 1992, Solé & Bascompte 1995, Zhou et al. 1997, Dennis et al. 2001). 

However, the data are not of sufficient quality to investigate this further (Schaffer 1985). Chaotic or 

not, it appears from the results here that it is impossible to forecast the population numbers at the 

weekly level from one field to the next using sticky-trap data, which is expected of chaotic systems 

(Solé & Bascompte 1995). This finding reinforces the results of Skellern et al. (2017) who found 

that, whilst meteorological parameters and the area of OSR grown in the previous season were 

predictors of pollen beetle numbers at the field scale, other landscape factors such as area of 

woodland and length of hedgerow local to the site showed no relationship to counts. However, it is 

unlikely that the system is truly chaotic as the suction-trap data do demonstrate that there is some, 

albeit very weak, spatial correlation among suction-traps. 

The lack of a spatial signal or pattern contrasts with Chapters 2 and 3, that demonstrated 

that there is some potential to forecast temporal abundance – either from populations in the 

previous year/generation (Chapters 2, 3) or from meteorological and location data (Chapter 3). This 

could be due, in part, to the nature of the analyses in this chapter in that the comparison of data 

between traps on a standardised week-by-week basis across a latitudinal gradient may fail to 
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account for small-scale, phenologically-driven outbreaks, whereas the analyses in the previous 

chapters are annual or daily assessments at a site-specific level, albeit across several sites. It is also 

probably the case that the datasets presented here are not long enough at 5 years for the sticky-

trap data and 4 years for the suction-traps for comprehensive and successful analysis. Schaffer 

(1985) suggests that to detect low dimensional chaos in an ecological system requires i) a 

continuous sampling period that has ii) a frequency not less than ~10 data points per orbit (a 

complete rotation through the phase space of the system (Shaw 1981) – analogous to a population 

cycle) and iii) a sampling period long enough to encompass 30-50 orbits/cycles. Nearly all ecological 

research will fail to provide enough data under these conditions, but it was possible, even with this 

limited data, to detect the presence of spatial synchrony in the suction-trap data. Further 

investigation into long-term samples at other suction-traps may provide enough spatial coverage to 

better understand the synchrony (or lack of) of B. aeneus population dynamics. 

 

4.5.2 Other studies that show a lack of spatial synchrony 

Studies reporting a lack of spatial synchrony in populations are rare and often caveated due 

to the expectation that the Moran effect or other drivers will push systems towards synchrony 

more often than not in support of Tobler’s First Law. Wool (2002) found a lack of synchrony in 

pistachio aphid Baizongia pistaciae (L.) gall abundance over 20 years in Israel. This was attributed to 

synchronising drivers working on other, unstudied, aspects of the aphid’s complex life cycle. 

Processes affecting the gall-forming stage may be working in different directions to those affecting 

the root-feeding and migratory stages of the cycle (Yukawa 2000, Wool 2002) and thus synchrony 

may be present, undetected, in the pistachio aphid (Wool 2002). In the North Sea copepod Calanus 

finmarchicus (Gunnurus) a loss in spatial synchrony was attributed to the effect of climate change 
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on populations, with other plankton species retaining, or even showing an increase in synchrony 

(Defriez et al. 2016). Bell et al. 2021 (in prep.) have found similar evidence for a lack of spatial 

synchrony in peach-potato aphids Myzus persicae (Sulzer) recorded across a network of water traps 

in East Anglia. These data agree well with this pollen beetle study in that both support the theory 

that these field-level traps detect locally eruptive dynamics that are scaled at no more than a few 

hundred metres. Indeed, the lack of correlation with other locally sited traps, even at farm level, 

suggests that an effective DSS would require such a large field-level trap campaign aiming to 

include many traps per farm and many farms per landscape, that it may prove unsustainable.  

 

4.5.3 Spatial relationships in suction-trapped aphids 

This research finds that, in the suction-traps there is spatial synchrony in B. aeneus with a 

maximum covariance as measured by Moran’s I of 2.3, declining to zero at around 150 m, however 

field level data showed no synchrony, indicating that it may not be possible to show a link between 

field counts and data from suction-traps. In aphids, the relationship between suction-trap data and 

field counts has been established, if only in a limited fashion. Leather & Lehti (1982) first reported a 

relationship between suction-trap catches and field populations of Rhopalosiphum padi in Finland. 

There, significant correlations exist between alatae (winged, migrating aphids) caught in the trap 

and the logarithm of the number of aphids per 100 tillers in several cereal crops and also the 

number of gynoparae (parthenogenetic female aphids) found on the primary host Prunus padus L., 

albeit at a trap height of 1.2 m (Leather & Lehti 1982). McVean et al. (1999) found a regional 

relationship between counts of the pea aphid Acyrthosiphon pisum Mordvilko in catches from 12.2 

m suction-traps and both crop area and aphid density within pea Pisum sativum L. fields at the time 

when the crops would be most susceptible to aphid damage. They suggested that variability in this 
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relationship may be due to the lag between records of aphid migration in suction-traps and the 

establishment of populations in the field (McVean et al. 1999). These studies used relatively simple 

comparative statistics and it was not until Cocu et al. (2005a, b, c) that geostatistical methods were 

brought to bear on suction-trapped aphid data. This series of papers established the geographical 

pattern of M. persicae in suction-traps across Europe using the SADIE (spatial analysis by distance) 

technique (Cocu et al. 2005a), and used spatial analysis (Cocu 2005b) and multiple linear regression 

(Cocu 2005c) to show a significant association between landscape variables, particularly area of 

oilseed rape sown, and climate variables and the pattern of distribution in suction-traps, but did not 

attempt to compare suction-trap and field data. An indication that suction-trap catches reflect field 

data at the clonal level was noted by Kasprowicz et al. (2008) who observed that the more 

abundant clones of M. persicae in Scotland were found in similar proportions in field-caught and 

suction-trapped aphids, but did not produce a formal test of these relationships. The first, and thus 

far only, demonstration that suction-trap catches can predict numbers of aphids in the field was 

provided by Fabre et al. (2010) who used a hierarchical Bayesian modelling framework to show that 

suction-trap catches could predict to a satisfactory level the number of alate R. padi found in fields 

in northern France. The sparseness of the research in this field, even in such an intensively studied 

system as aphids in the suction-trap network (Bell et al. 2015) demonstrates the difficulty in 

determining any relationship between suction-trap sampling and field sampling.  

 

4.5.4 Spline correlogram studies that show spatial synchrony 

 Although no spatial synchrony was detected from the sticky-traps at crop height in this 

study, the suction-trap data did show some synchrony which decayed with distance. This finding is 

reflected by Bell et al. (2020) who found evidence of spatial synchrony in suction-trapped aphids at 
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12.2 m, but not moths caught in light-traps at 1.2 m. The comparison with these data should be 

caveated by noting that Bell et al. (2020) were investigating cross-species data and population 

fluctuations within individual species may obscure any synchrony in trends. That being said, Estay et 

al. (2009) found spatial synchrony in oak aphid, Tuberculatus annulatus (Hartig) catches in UK 

suction-traps, declining with distance and approaching zero at around 360 km (comparable to Bell 

et al. (2020)’s 338 km). In contrast, Hanski & Woiwod (1993) using combined species data from the 

same networks of traps found spatial synchrony in both aphids and moths. Synchrony in aphids was 

stronger than in moths and both declined with distance but both taxa retained a low level of 

synchrony at over 600 km, the longest possible distance in the study region. 

Other researchers have found spatial synchrony in insect populations using nonparametric 

covariance functions (ncf) to generate spline correlograms. Particular attention has been paid to 

outbreaking forest pest species (Williams & Liebhold 2000, Peltonen et al. 2002, Økland et al. 2005, 

Aukema et al. 2006, Choi et al. 2011, Lantschner et al. 2019) where measures of abundance were 

either qualitative, based on extent of damage (Williams & Liebhold 2000, Peltonen et al. 2002, 

Økland et al. 2005, Aukema et al. 2006, Lantschner et al. 2019) or quantitative, based on counts of 

pest-infested pine needles (Choi et al. 2011). All studies showed that synchrony declined with 

distance, but the rate and extent of this decline varied both between and within studies. Spruce 

budworm, Choristoneura fumiferana (Clemens), outbreaks were studied by Williams & Liebhold 

(2000) in North American forests where they found that synchrony decreased with distance, 

approaching randomness near 2000 km. Peltonen et al. (2002) found spatial synchrony in a range of 

outbreaking insect pests (mostly Lepidoptera, including the Williams & Liebhold (2000) dataset) in 

North America and Europe. Despite clear differences in dispersal ability between species the extent 

and level of synchrony did not vary significantly between them (Peltonen 2002). Økland et al. 

(2005) examined a suite of bark beetle species (Dendroctonus Erichson and Ips De Geer) in Europe 
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and North America. They found that patterns of synchrony were very similar, however a significant 

difference between the species in terms of maximum level of covariance and the rate of decline 

with distance was reported (Økland et al. 2005). Aukema et al. (2006) found that regional 

synchrony in tree mortality caused by mountain pine beetle Dendroctonus ponderosae (Hopkins) 

attacks in British Columbia differed between incipient (non-outbreak) years and epidemic years, 

with synchrony becoming more widespread in years when the beetle outbreaks occurred (Aukema 

et al. 2006). Choi et al. (2011) used percentage infestation of the pine needle gall midge, 

Thecodiplosis japonensis Uchida & Inouye, to determine the spatial synchrony of the pest in Korea. 

They found that the extent of spatial synchrony and rate of decline differed significantly between 

regions (Choi et al. 2011). Lantschner et al. (2019) found a high level of spatial synchrony in the 

woodwasp, Sirex noctilio Fabricius, outbreaks in Patagonian pine plantations. Notably they found 

that, though synchrony shows some decrease with distance, it remained at a high level of 

covariance across the 300 km study region. Weather was implicated as a major driver of synchrony 

across these studies of outbreak forest pests, in particular temperature (Williams & Liebhold 2000, 

Peltonen et al. 2002, Aukema et al. 2006, Choi et al. 2011) and precipitation (Williams & Liebhold 

2000, Peltonen et al. 2002, Choi et al. 2006, Lantschner et al. 2019), although Peltonen et al. (2006) 

found that synchrony dropped more rapidly in the taxa under consideration than weather variables, 

indicating other factors such as habitat quality were also important. In other systems, ncf splines 

have been used to show that synchrony in populations of the spotted-wing fruit fly Drosophila 

suzukii (Matsumura) declined with distance and altitude in all studied regions in Italy with the 

exception of the Dolomites where synchrony remained high at all altitudes, though this result 

should be treated with caution due to the short timescale of observations (Santoiemma et al. 

2019). As described above, Bell et al. (2020) reported spatial synchrony in aphids in the UK, but not 

in moths using a 47-year dataset. 



 

162 

 

4.5.5 Implications for the use of suction-traps in a DSS 

 One of the aims of this study was to determine if suction-trap records could function as part 

of a DSS. If there is a relationship between suction-trap counts and numbers caught in the crop, 

then this suggests the suction-trap can be used to inform risk in the field. Additionally, if spatial 

synchrony existed in B. aeneus populations then at the very least the numbers in one field can 

predict the situation in a nearby field, thus only 1 field per farm needs to be sampled for decision-

making. Indeed, it could be expected that if synchrony existed at the landscape level demonstrated 

for aphids in suction-traps (Hanski & Woiwod 1993, Estay et al. 2009, Bell et al. 2020), then one 

field or suction-trap can enable decision making at a regional level. However, I did not find evidence 

of spatial synchrony in B. aeneus at the field-scale, suggesting that decisions need to be made on a 

field-by field basis on each farm in each region. It could be hoped that, despite a lack of relationship 

between counts in the two networks studied here, crop inspections could still be informed by the 

findings in Chapters 2 and 3 of this thesis, in that the conditions that lead to higher counts, either 

seasonal or daily, provide a signal that crop inspections would be advised. 

 

4.5.6 Next steps 

 The work in this Chapter could be continued with the aim of developing a further 

understanding of the spatial ecology of B. aeneus. The asynchronous sampling detailed in Fig. 4.2 

may not have been adequately dealt with in the analysis and if a better weighting system for 

separating multi-day counts into standardised weeks could have been developed, there remains 

the possibility that synchrony at the field-level could have been identified. That being said, the 

method for assigning trap data to standard weeks – using the Central England Temperature series 

to remove colder days – would be expected to bring the field traps into a potentially spurious 
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alignment that would artificially increase synchrony. Sticky-traps are a good measure of migration 

into a crop but may not reflect establishment within the field. Studies comparing aphid counts in 

suction-traps with field counts relied on in-field sampling of aphid infestations (Leather & Lehti 

1982, McVean et al. 1999), though the most compelling relationship reported (Fabre et al. 2010) 

used alate migration into the crop as the field-level data, a system analogous to that used in this 

study. In-field transect data of B. aeneus on plants at the field sites in this study are available and it 

would be interesting to compare synchrony within those data, the dataset proved too difficult to 

analyse currently but this analysis remains an aspiration for future work.      
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Chapter 5. 

Dispersal and migration of British pollen beetles 

 

Chapter Summary 

Tethered flight mills and molecular methods were used to assess the dispersal ability of 

Brassicogethes aeneus and estimate their maximum flight distance. 

Brassicogethes aeneus proved intractable for use on the flight mills and, as no data could be 

gathered, this study was discontinued with no results 

Individuals of B. aeneus taken from suction-trap samples at five sites in 2018, and 

emergence trap samples from several fields at one farm site in 2017 and 2018 were investigated 

using next generation sequencing methods to determine population structure. 

Due to the poor quality of the degraded DNA extracted only a preliminary analysis could be 

completed. The results were inconclusive but low heterozygosity and high nucleotide diversity 

compared to published estimates of other coleopteran taxa indicates that the population of B. 

aeneus in the UK is likely to be homogenous and that a proportion of beetles are able to migrate 

long distances. 
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5.1 Introduction 

5.1.1 Pollen beetle dispersal 

Pollen beetles (Brassicogethes (Meligethes) aeneus (Fab.)) undergo two migration events 

every year, from and to overwintering sites (Williams et al. 2007, Williams & Cook 2010, Mauchline 

et al. 2013, Juhel et al. 2017, 2019). In addition, there is local dispersal to breeding habitat after a 

period of feeding on non-host plant pollen after emerging from hibernation and they may also 

disperse between and within the breeding habitat during the summer (Williams et al. 2007, 

Williams & Cook 2010, Mauchline et al. 2017).  

 

5.1.1.1 Dispersal from overwintering grounds 

Brassicogethes aeneus are thought to overwinter as adults in leaf litter or the top layer of 

soil (Hokkanen 1993, Alford et al. 2003, Rusch et al. 2012) of woodland and hedgerows (Fritszche 

1957, Marczali 2006), or in winter oilseed rape (OSR) fields (Sutter et al. 2018). In early spring they 

emerge and migrate, either directly to the host brassicas including oilseed rape (Cook et al. 2004a, 

Williams et al. 2007, Williams & Cook 2010) or via pollen feeding on non-host plants in the wider 

landscape (Free & Williams 1978, Ouvrard et al. 2016). During the early spring there is a threshold 

temperature for flight (Mauchline et al. 2017), thought to be between 8°C and 15°C (Taimr et al., 

1967; Tulisalo & Wuori, 1986; Láska & Kocourek, 1991; Šedivý & Kocourek, 1994, Junk et al. 2016). 

In the UK, migration into crops occurs around the end of April and early May (Mauchline et al. 

2017), with reproduction beginning in June and July. 
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5.1.1.2 Movement between habitats in summer 

Once the winter OSR has completed flowering, pollen beetles are known to move to spring 

OSR or native brassicas in July to continue breeding (Mauchline et al. 2017) or to other flowering 

plants in the landscape to continue feeding until their move to overwintering sites (Mauchline et al. 

2017).  

 

5.1.1.3 Dispersal to overwintering grounds 

Dispersal to overwintering sites is poorly understood, both in terms of their location and the 

timing of the migration. What is understood is that they normally disappear from suction-trap 

catches in mid-August (this thesis Chapter 2) and are very rarely seen beyond the start of 

September.  

 

5.1.2 What is known about the distance pollen beetles disperse 

There have been several studies regarding the distance individual pollen beetles migrate 

with little consensus reached. Estimates range from 1.2 km (Juhel et al. 2017) to 13.5 km (Taimr et 

al. 1967) and Stechmann & Schütte (1976) reported them able to fly at least 12 km when released 

over the sea. There are indications that the dispersal range could be much greater: One beetle has 

been recorded in an offshore trap 80-160 km from land (Hardy & Cheng 1986) and individuals have 

been recorded in vertical-looking radar traces and high altitude (200m) nets (Chapman et al. 2004b, 

Mauchline 2003, Mauchline et al. 2017), with one caught at an altitude of 5000 feet (1524m) in an 

aeroplane-mounted aeroplankton sampling device (Weidel 2008). Even a short period of time spent 
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at these heights would result in a passive horizontal movement of several kilometres (Johnson 

1969, Reynolds et al. 2017).  

 

5.1.3 Methods to study dispersal  

There are a range of methods to study dispersal in invertebrates. The study of insect flight 

performance on flight mills (Rowley et al. 1968, Bordon & Bennett 1969, Jones et al. 2016, Minter 

et al. 2018) allows measurement of flight duration and speed in controlled laboratory conditions. 

Field studies on insect dispersal are more difficult, primarily due to their small size and large 

numbers (Osborne et al. 2002). Some of the main field methods are outlined below.  

 

5.1.3.1 Observation 

Tracking the movement of a study organism through direct observation is possible with 

invertebrates (Williams 1957, Schneider 1962, Southwood 1962, Wratten 2012), in practise it is 

difficult with all but the largest of invertebrates and can only be done on a relatively small scale 

(Osborne et al. 2002). A further impediment is the near impossibility of direct observation of insect 

dispersal at altitude (Johnson et al. 1962, Southwood 1962) unless the study insect is large and/or 

forms cohesive swarms, such as locusts (Locusta migratoria L.) for example (Rainey 1962). 

 

5.1.3.1.1 Indirect Observation 

Tracking invertebrates indirectly through trackable tags allows individuals to be followed 

over a greater distance (Riley 1995, Osborne et al. 2002, Chapman et al. 2004a). Radio tracking is 
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rare in invertebrates (Hedin & Ranius 2002, Maitland et al. 2002, Godfrey & Bryant 2003, Brouwers 

et al. 2009). Tracking using harmonic radar (Mascanzoni & Wallin 1986, Riley et al. 1996, Lovei et al. 

1997, Osborne et al. 1999, Colpitts & Boiteau 2004) is more common, however both methods are 

restricted by the size of the insect (Riley et al. 1995, Godfrey & Bryant 2003, Boiteau & Colpitts 

2004), with pollen beetles too small to carry a tracker antenna at present, and restricted to tracking 

local movement rather than migration (Chapman et al. 2004a, 2011). 

 

5.1.3.1.2 Radar 

Radar aeroecology, the use of radar systems to observe airborne animals (Chilson et al. 

2017) has become an important area of research in recent decades (Bauer et al. 2017). Tracking 

insects, either with weather radar (Nieminen et al. 2000, Drake & Reynolds 2012, Stepanian et al. 

2016) or vertical-looking radar (VLR) (Chapman et al. 2011, Drake & Reynolds 2012), has been 

shown to be effective in forecasting the migrations of agricultural pests such as locusts (Drake & 

Wang 2013), aphids (Leskinen et al. 2011) and moths (Leskinen et al. 2011, Westbrook et al. 2014). 

Again, size is a restricting factor – the more so the greater the height at which the invertebrates fly 

(Chapman et al. 2011, Reynolds et al. 2017). In addition, the identification of the species 

responsible for a radar trace is difficult in most cases (Wood et al. 2009). 

 

5.1.3.1.3 Modelling using point-sampled abundance. 

Spatially explicit population models (Dunning et al. 1995) can use point-sampled abundance 

data, to combine population models with landscape-scale geographical data. These spatially explicit 

models can be used to explore the effects of landscape features on population dynamics, either 
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through space or time (Dunning et al. 1995, Juhel et al. 2017). These models can also be used to 

infer unobserved processes, such as dispersal, based on comparisons between observed patterns in 

abundance (Barbu et al. 2010), and has been used to investigate pollen beetle dispersal in 

Normandy, France (Juhel et al. 2017) estimating mean dispersal at 1.2 km. 

 

5.1.3.2 Mark-recapture and Capture-mark-recapture  

As the perennial problem of insect size restricts our ability to directly observe insect 

movement other methods have been developed to infer the distance invertebrates migrate, or the 

potential distance they are able to migrate. The principal technique for many years has been to 

mark individuals or populations and record the distance they travel before recapture (Reynolds et 

al. 1997, Southwood & Henderson 2000, Bennetts et al. 2001, Hagler & Jackson 2001). Two classes 

of this method can be delineated: Mark-recapture methods involve tagging subjects in the field, 

usually without direct handling, whereas capture-mark-recapture (or mark-release-recapture) 

methods have a collection step, either from the laboratory or the field, to gather subjects to mark 

(Hagler & Jackson 2001). Mark-recapture methods include general location techniques using 

markers present in the environment and measured by examining gut contents (Reynolds et al. 

1997); identifying pollen carried by the insect (Hendrix III et al. 1987); or analysis of the insect’s 

elemental composition (chemoprint) to determine the likely provenance of captured specimens 

(Turner & Bowden 1983). This can be taken a step further by experimentally adding traceable 

material to the environment through diet supplements (Quarterman et al. 1954a, b, Jones et al. 

1980) or as a substance such as glitter (Jackson et al. 1999), powder dye (Denholm et al. 1985, 

Byrne 1999, Southwood & Henderson 2000), radioactive markers (Quartermann et al. 1954a, b, 

Klick et al. 2014), fluorescent markers (Stechmann & Schütte 1976, Denholm et al. 1985, Jones et al. 
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1999); or stable isotopes (Graham et al. 1978) to be picked up by the insect and recovered post-

dispersal. Capture-mark-recapture of insects can involve using tags (Urquhart & Urquhart 1979, 

Rubink 1988, Osborne & Williams 2001), directly marking individuals, sometimes called mutilation 

(Gangwere et al. 1964, Winder 2004, Griffiths et al. 2005), or applying internal markers through 

injection or feeding (Gangwere et al. 1964, Strand et al. 1990). 

One of the drawbacks to these techniques is the low recapture rate, especially at greater 

distances (Hendrix III et al. 1987, Showers 1997, López-Pantoja et al. 2008). Attractant lures can 

increase capture rates but can introduce bias (Jones et al. 1999). Other problems include the 

expense of markers, both in researcher time and materials (Reynolds et al. 1997, Hagler & Jackson 

2001), and the safety aspects of using radioactive or persistent materials (Reynolds et al. 1997). 

Additionally, it is still unclear whether individuals marked using capture-mark-recapture methods 

are affected behaviourally by the process (Morton 1982, Hagler & Jackson 2001).   

 

5.1.3.3 Molecular methods 

Because dispersal leads to geneflow when reproduction is successful it is possible to use 

genomics to infer dispersal rate or distance (Rousset 2001, Broquet & Petit 2009). As genes flow 

between populations, molecular markers can be used to assess allele frequencies and infer 

dispersal rate and/or distance (Wright 1943, Slatkin 1987, Broquet & Petit 2009). Measurements of 

genetic divergence between populations can be used to estimate levels of gene flow, and by 

extension infer dispersal capacity (Kim & Sappington 2013). Dispersal rate refers to two processes – 

forward and backward dispersal (Broquet & Petit 2009). Forward dispersal refers to the proportion 

of individuals emigrating from a population and is tricky, if not impossible to measure in insects 

(Broquet & Petit 2009) although it has been modelled using known dispersal distances in Culicoides 
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midges (Eagles et al. 2014). The immigration into a population is known as backwards dispersal and 

is a more tractable measure across ecological systems and can be estimated using molecular 

markers (Broquet & Petit 2009). 

There are several ways to estimate backwards dispersal from molecular markers (Broquet & 

Petit 2009). The most commonly used molecular markers include: microsatellite markers (Waser & 

Strobeck 1998), DNA fingerprinting, or barcoding, using markers such as AFLP (amplified fragment 

length polymorphisms) (Vos et al. 1995, Mueller & Wolfenbarger 1999) and CoI (cytochrome 

oxidase I) (Lunt et al. 1996, Hebert et al. 2003). Using these markers modelling approaches based 

on allelic identity and/or isolation by distance can be undertaken (Wright 1943, Cockerham 1973, 

Weir & Cockerham 1984, Slatkin 1987, Meirmans 2006). In pollen beetles, efforts have previously 

been made to estimate dispersal (Kazachkova et al. 2007, 2008, Makünas 2012, Ouvrard et al. 2016, 

Juhel et al. 2019), with mixed results (Table 5.1), though differentiation between different 

populations was generally low across all studies (Ouvrard et al. 2016).  

Study authors Markers used Location Distance estimate 

Kazachkova et al. 
2007 

AFLP Sweden High local dispersal, but low gene 
flow between populations at a 
continental level. 

Kazachkova et al. 
2008 

AFLP Europe 

Makünas 2012 Mt DNA COI gene Lithuania & Finland 

Ouvrard et al. 2016 AMOVA Europe Unclear, probably high with 
longitudinal, rather than latitudinal, 
migration a feature. 

Juhel et al. 2019 Microsatellite 
markers 

Europe Continental scale. 

 

Table 5.1: Summary of previous genetic research into Brassicogethes aeneus dispersal. 

 

https://www.annualreviews.org/doi/full/10.1146/annurev.ecolsys.110308.120324
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5.2 Aims and objectives 

The main aim of this chapter is to understand the dispersal ability of B. aeneus in the UK and to 

attempt to elucidate their maximum flight distances. 

 

The objectives were; 

1) to use tethered flight mills to estimate maximum flight performance in terms of flight 

duration and speed 

2) to use molecular methods (DNA sequencing) to estimate geneflow between populations 

within the UK 

3) to use these data to infer dispersal distance of B. aeneus 

 

5.3 Methods 

5.3.1 Flight mill study 

5.3.1.1 Sample collection 

The RIS operates a 12.2m suction-trap (Macaulay et al. 1988) at Rothamsted for live 

sampling of aerial invertebrates. Samples were taken from this trap and swept from OSR and other 

vegetation around Rothamsted farm, Hertfordshire. Samples were taken in March and April of 2015 

and 2016. 
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5.3.1.2 Flight mill 

The flight mills used were adapted from Jones et al. (2016) (Patent: Lim et al. 2013) (Fig. 5.1) 

incorporating lighter weight metal than has been previously used. The mill consists of a pair of 

magnets between which is suspended the mill structure. The mill itself is comprised of a lightweight 

arm with attachment points at either end for an insect and a counterweight respectively, a central 

axis has a disc with a banded pattern so that it turns with the arm. In full operation, a light detector 

detects the movement of the disc to record the distance flown and the flight speed. On the day of 

sampling the beetles were chilled and attached to a spindle using superglue and then hung from 

the lightweight arm. Beetles were observed for 30 minutes to determine whether they would show 

intent to fly. Unfortunately, despite the lightweight materials employed and attempts made to alter 

temperature and light regimes around the mill to encourage flight, pollen beetles were either 

unable, or unwilling to fly when attached to the mill with only one beetle out of a total of 34 

completing a single circuit of the mill. Therefore, no results on flight duration or speed could be 

gathered using this method. 
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Fig. 5.1: Labelled diagram of flight mill design used for this study (Figure adapted from Jones et al. 

2016). 

 

 

5.3.2 Molecular study 

5.3.2.1 Sample Collection 

Beetles were taken from suction-trap and emergence trap (Fig. 5.2) samples in 2017 and 

2018. The UK suction-trap network (Macaulay et al. 1988, Bell et al. 2015) operates traps in England 

and Scotland (Fig. 2.2). These traps (Fig. 5.2) are 12.2m tall and draw air at 45 m3/min, capturing all 

insects that fly over the inlet pipe. Traps operate throughout the year, with samples changed daily 

during the peak aphid migration period (March-October) and weekly otherwise. Emergence traps 

were placed in oilseed rape (OSR) fields around the Rothamsted farm in 2017 and 2018 (Figs. 5.3 & 
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5.4). These traps capture insects emerging from eggs and pupae in the soil below them and were 

checked daily throughout the pollen beetle eclosion period (June-July). See Appendix C for more 

information on these traps. As the pollen beetle is a univoltine species that overwinters as an adult 

(Hokkanen 1993, Williams 2010), emergence trap samples from 2017 were paired with suction-trap 

samples from early 2018 (April-May) as “Generation 1” (those that emerged in 2017), with suction-

trap samples from July 2018 paired with 2018 emergence trap samples as “Generation 2” (those 

that emerged in 2018). Suction-trap samples from five locations (Newcastle, York, Rothamsted, 

Wye and Starcross (See Figure 2.2)) were utilised, however a lack of successful DNA extractions 

from Starcross precluded using that site for “Generation 2”. 

 

5.3.2.2 DNA extraction 

DNA was extracted using the QIAamp® DNA Micro Kit [Qiagen, UK]. Prior to the extraction process, 

whole individual beetles were immersed for ~15 seconds in liquid nitrogen and homogenised using 

a sterile pestle. Homogenised samples were incubated at 56°C overnight in a solution of 180µl of 

ATL buffer with 20μl of Proteinase K.; 200μl of AL buffer with 1% RNA carrier was added to the 

sample then spun for 1 minute in a spin column at 8000 rpm. Respectively 500μl of AW1 buffer and 

500μl of AW2 buffer were added to the sample and then spun down at 8000 rpm for 1 minute each 

time. Finally, samples were eluted in 30μl of AE buffer with a room temperature incubation for 10 

minutes before being centrifuged at 14000rpm for 1 minute. The eluted samples were then 

incubated at room temperature for 10 minutes before being passed through the spin column a 

second time at 14000rpm for 1 minute to elute any DNA remaining in the spin column. Samples 

were treated with RNAase to remove carrier RNA, then stored at -80°C. 
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Fig. 5.2: Emergence trap (left) and suction-trap (right). Not to scale. 

 

Fig. 5.3: Schematic of emergence trap locations within a field (yellow diamonds), temperature 

datalogger locations marked with red dots (see Appendix C for more information on the 

dataloggers). 
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Fig. 5.4: Map of Rothamsted farm with locations and names of oilseed rape field sites marked, 

boxed in yellow. Yellow star indicates the location of the Rothamsted Meteorological Station and 

the Rothamsted Insect Survey suction-trap compound. 

 

5.3.2.3 Sequencing 

Selected samples (Table 5.2) were genotyped using genome‐wide single nucleotide 

polymorphisms (SNPs) which were identified using genotyping by sequencing (GBS), a genomic 

reduced representation sequencing method. Single digest restriction-site associated DNA (sdRAD) 

library preparation and sequencing were carried out by the Edinburgh Genomics facility at the 
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University of Edinburgh. DNA was digested with the six-base cutting enzyme EcoRI, which has a cut 

site approximately every 4kb pairs. 

  

5.3.3.3 Analysis 

The quality of the genomic sequences was investigated using FastQC. The resulting 

sequence dataset was analysed using a de novo approach with Stacks 2.0 software (Catchen et al. 

2011, 2013), starting with process_radtags to demultiplex the individual samples. Sequences were 

then analysed using the populations wrapper for the pipeline. In Stacks the sampled loci from each 

individual were reassembled de novo from the sequenced reads using ustacks. The loci assembled 

from each individual independently were then synthesised into a complete view (catalogue) of all 

loci and alleles present in the population using cstacks (Rochette & Catchen 2017). Using a 

population map text file containing two columns, one for the samples and the other for the 

population, populations estimates, genetic diversity statistics and divergence between populations 

were identified in the text file. There are further analytical steps to be completed on these data, 

however these will be done at a later date.  

 

5.4 Results 

In total, DNA was successfully extracted from 229 pollen beetles. Table 5.2 details the 

number of beetles from each site and generation, of these a subset was sent for radSeq (Table 5.2). 

The total number of beetles included in the genetic analysis was 54 (across both generations and 5 

suction-trap sites); the analysis therefore looked at the diversity of the genetic makeup within this 

sample population.  
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DNA quality and quantity were lower than expected (Fig. 5.5) with evidence of molecular 

degradation in most samples. Due to difficulties encountered with the sequencing step as a result 

of the DNA degradation, currently only the Stacks step of the analysis has been completed and only 

the suction-trap samples have been analysed (Table 5.3). Given the degraded nature of the DNA, 

analyses have been carried out allowing five levels of mismatch in the catalogue assembly step in 

order to gain insight into the best level of sampling mismatches to accept in assembling the 

catalogue. Table 5.3 provides a summary of high-level parameters. 

The number of SNPs ranged from 76 to 255 depending on how many alignment mismatches are 

allowed. This number reduces with increasing mismatch allowance as the degradation of 

nucleotides causes gaps within SNPs which leads to a lack of alignment that causes the Stacks 

software to classify what would be identical SNPs as different. The mean number of samples per 

locus remains stable at between 44 and 45. The variant position (Pi) – a measure of nucleotide 

diversity (Nei & Li 1979) is between 0.02903 and 0.0355. Expected Heterozygosity (HE) is 0.0287-

0.0351 and observed Heterozygosity (HO) 0.0268-0.02968. These heterozygosity measures are used 

to assess genetic variation within a population (Harris & DeGiorgio 2017). Low values mean low 

diversity and can be a sign of recent bottlenecks in population size (Chakraborty & Nei 1977, 

Allendorf 1986). The comparison of HO and HE gives insight into the nature of the population under 

study. If HO is lower than HE this may indicate high levels of inbreeding within a population 

(Chakraborty 1987, Templeton & Read 1994) or clonal reproduction, such as that found in aphids 

(Morales-Hojas et al. 2020). Here the values are similar, suggesting there is little inbreeding 

occurring in the population. Similarly, a high value for the inbreeding coefficient (Fis) can indicate 

lower genetic diversity than would be expected in a normal population (Charlesworth 2003), here 

Fis ranged from 0.02276 to 0.18201 depending on the number of mismatched loci allowed. Again, 

these values are low and indicate that inbreeding is rare in UK B. aeneus.   
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Site Generation 1 Generation 2 

Rothamsted field sites (not 

included in the Stacks analysis) 

32 (18) 48 (28) 

Rothamsted suction-trap 20 (7) 12 (7) 

Starcross suction-trap 10 (6) 0 (0) 

Wye suction-trap 20 (5) 10 (7) 

York suction-trap 30 (5) 10 (6) 

Newcastle suction-trap 25 (6) 12 (5) 

Total number of beetles 

included in the Stacks analysis 

29 25 

 

Table 5.2: Number of beetles sampled from each location and each generation and (in 

parentheses) number sequenced. 
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No. of mismatches allowed 

between sample loci 

1 2 3 4 5 

No. genotyped loci 902,810 744,846 661,961 612,105 582,879 

Mean coverage loci 8.1x 8.1x 8.2x 8.2x 8.1x 

No. polymorphic loci shared 

between 80% samples in the 

population 

121 79 59 31 31 

No. SNPs (variant sites) 255 177 116 81 76 

Mean samples per locus 44.631 44.621 44.879 44.556 44.697 

Pi (variant positions) 0.02903 0.032 0.03023 0.0313 0.0355 

Expected Heterozygosity (HE) 

(variant positions) 

0.0287 0.03164 0.02989 0.03095 0.0351 

Observed Heterozygosity (HO) 

(variant positions) 

0.02682 0.02725 0.02482 0.02968 0.0268 

Fis (variant positions) 0.04616 0.06225 0.09996 0.02276 0.18201 

 

Table 5.3: Summary statistics of genetic diversity in the suction-trap samples as measured by 

Stacks. No. of mismatches refers to the number of incorrect matches allowed (given the degraded 

nature of the DNA this leads to more alignment and a reduced number of loci). No. genotyped 

loci is the sum total of all loci identified; these have a mean coverage of ~8. The number of 

polymorphic loci shared between 80% of samples is between 31 and 121, these numbers drop as 

the number of mismatches increases. 
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Fig. 5.5: High sensitivity DNA assay for 10 samples from Table 5.2. The x-axis shows the size of the 

DNA fragments between 35 and 10380 base pairs (bp), the y-axis shows the sample intensity (FU-

fluorescent units), a measure of the amount of DNA at each size in the sample. Samples 5 and 9 

have no large size DNA and appear highly degraded; Samples 2 and 6 show high molecular weight 

DNA with small amounts of degradation; Samples 1,3,4,7,8,10 show varying levels of 

degradation; Sample 11 is the control/reference. 

 

5.5 Discussion 

 In the absence of a robust and comprehensive analysis of the degraded DNA, and with the 

failure of the flight mills to provide data at all, conclusions drawn from this research must be 

considered tentative.  
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 The failure of the flight mills is particularly disappointing as this method has yielded robust 

results for flight distance in other beetle taxa (e.g. David et al. 2014, Kees et al. 2017, Barkan et al. 

2019), albeit the species surveyed are much larger in size than B. aeneus. It was clear that, although 

methods were made to encourage flight in the lab, for example altering time of day, changing the 

light levels and adding flowers of OSR to the vicinity of the mills, the beetles were unable to fly. 

Whether this inability was behavioural or physical remains unclear. 

The similarity between the HO and HE values indicates that this is likely a normal sexual 

population, or populations, in equilibrium in that there is no evidence for lower, or greater levels of 

genetic diversity than should be expected. These values appear to be low when compared to 

published estimates of heterozygosity in other beetle taxa. For example Desender et al. (1988) 

reported HE of 0.1 and 0.3 for two species of saltmarsh carabid beetle; Desender et al. (2005) 

reported HE of 0.126-0.256 and 0.013-0.115 for two species of flightless carabid beetles; Grapputo 

(2005) reported that Colorado beetles (Leptinotarsa decemlineata Say) had HE of 0.192-0.246 in 

their native range and 0.013-0.115 in their invasive range; Rafter et al. (2018) reported HE of 0.662-

0.679 and 0.858-0.887 in two species of grain beetle pest.  

Conversely the values for nucleotide diversity (Pi) reported here are higher than many other 

beetle taxa in the literature. For example Cai et al. (2008) reported Pi at levels of 0.003-0.014 in red 

turpentine beetles (Dendroctonus valens LeConte) in their native and invaded ranges; Giska (2015) 

reported Pi as 0.00075-0.003 in staphylinid beetles; Crossley et al. (2019) reported Pi to range 

between 0.0056 and 0.008 in the Colorado beetle.  

The next steps in the analysis of these genetic data are firstly to filter the single-nucleotide 

polymorphisms (SNPs) using vcftools v0.1.14 (Danecek et al. 2011) to maximise the quality of the 

SNPs and genotypes, whilst minimising missing data at the individual, or marker level as 
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recommended by O’Leary et al. (2018). To improve the chance of detecting subtle genetic structure 

the sampling locations will be set as priors, allowing the detection of a weak structure without 

biasing the results towards detecting structure when there is none (Morales-Hojas et al. 2020). The 

filtered SNPs can then be analysed using the Structure 2.3.4 software system (Pritchard et al. 2000), 

a Bayesian genetic clustering algorithm, to estimate geneflow between B. aeneus populations 

within the UK. 

The aim of this chapter was to determine the population structure of the British B. aeneus 

populations and, from that, to attempt to get an estimate of the amount and distance of dispersal 

in the species. Unfortunately, due to the preliminary nature of the analysis thus far undertaken 

these aims are not yet met, however the initial data suggest that there is a single population of B. 

aeneus in England that is sufficiently mobile between the sample locations to allow genetic mixing. 

There is not yet sufficient evidence that the English B. aeneus population has a different structure 

to the European population research previously published (Table 5.1), but future analysis of these 

data samples should allow investigation into the geneflow between the sample location and 

therefore provide an estimate of the dispersal ability of this species within the UK. 
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Chapter 6. 

General Discussion 

6.1 Primary findings and contributions of this study 

 This study aimed to gain an improved understanding of the temporal and spatial population 

dynamics of Brassicogethes aeneus (Fab.), a pernicious pest of oilseed rape (OSR; Brassica napus L.). 

The ultimate aim was to use this knowledge to improve the management of B. aeneus in OSR and 

thereby lead to improved performance of farms through reduced insecticide inputs. I approached 

this by gathering novel data on key population parameters, modelling the population dynamics of 

this species in the UK, developing predictive models that can inform decision support tools enabling 

farmers to modify their management practices. Specifically, I wanted to explore the potential of 

using suction-traps to investigate the drivers of differences in abundance in B. aeneus populations 

at both annual and daily timescales in order to improve the quality and range of decision support 

systems (DSSs) available for control of this pest in the UK. To do this I used suction-trap data from 

the longest-running terrestrial insect dataset in the world (Bell et al. 2020) alongside field-collected 

data from an extensive sampling campaign comprising 178 sites (Skellern et al. 2017). In addition, I 

used cutting-edge techniques in flight-mills (Jones et al. 2016) and next-generation sequencing 

(Miller et al. 2007) to examine the flight behaviour and migratory potential of this species. Using a 

series of modelling approaches, my research has furthered the understanding of B. aeneus ecology 

and I summarise here the impact this will have on achieving my aim of improved pest management. 

In Chapter 2 I established, from analysis of suction-trap data, that B. aeneus populations 

have been increasing in the UK along with an increase in cropped area of OSR. I could not 

demonstrate a link between these two trends, perhaps because B. aeneus populations continue to 
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increase beyond 2011 when the trend for OSR reaches asymptote. This may indicate that B. aeneus 

populations may not yet have reached equilibrium with habitat area in the UK (i.e. the carrying 

capacity, or maximum population size that can be supported sustainably within the ecosystem, for 

B. aeneus in new OSR habitat has not been filled (Hixon 2008)), alternatively it may be the recent 

development of pyrethroid insecticide resistance in B. aeneus (Zimmer & Nauen 2011a) that has led 

to increased populations. Either way, this apparent continued increase in B. aeneus may have 

severe consequences for growers as this could mean increased yield loss as larger populations 

overwhelm permitted control measures (Hokkanen 2000, Zlof 2008) and a larger pool of individuals 

allowing greater adaptation within the population (Neher et al. 2010, Neher & Shraiman 2011) and 

thus the increased likelihood of strains resistant to insecticides developing.  

Importantly for the development of DSSs for growers, I demonstrated that the abundance of 

B. aeneus migrating in the spring – the time when infestation in crops could cause yield loss – could 

be largely explained by the number of beetles caught in the suction-traps the previous summer. 

This suggests that there is potential to estimate the abundance of the spring migration in the 

autumn of the previous year. If this potential is realised in a DSS, either through the adaption of 

current models (e.g. the proPlant DSS now on Xarvio (Johnen et al. 2010)), or through development 

of a new model this would allow growers to make decisions based on earlier knowledge than 

previously available. Reports on B. aeneus abundance released in late summer could allow growers 

to adjust their rotation plans accordingly to choose an alternative to OSR in years of high forecast 

abundance or to increase OSR planting when forecast abundance is low. This could also allow 

growers more flexibility when it comes to whether to order insecticide in advance or save money by 

not purchasing product. It would also potentially allow growers to be ready and prepared to deal 

with B. aeneus problems in a timely manner. In the UK there are no pest forecast models able to 

predict pest pressure on an as yet unsown crop, although in certain systems research is ongoing 
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with some success, for example in wheat bulb fly (Delia coarctata Fállen) (Leybourne et al. 2021). 

Elsewhere an autumn forecast model is available for sugarbeet weevil (Bothynoderus punctiventris 

Germ.) in the Ukraine, although details are scant (Fedorenko 2006, FAO 2021). 

There is a clear need to understand more fully the daily dynamics of pest migration, 

particularly days of mass migration – migration events where total numbers in flight are measured 

in orders of magnitude over normal levels of abundance. Such mass migrations can lead to serious 

damage to crops (Markkula et al. 2008) and cause field populations to rapidly pass threshold levels 

for control in crops (Mumford & Norton 1984, Pedigo et al. 1986). Current DSS forecasting tools for 

B. aeneus can forecast the phenology of migration to a reasonable degree of accuracy (Collier et al. 

2001, Johnen et al. 2010) but are not designed to give an explicit daily forecast of when a mass 

migration event may occur (Ferguson et al. 2013). Other DSSs based around observations, for 

example the Xarvio water trap system ((https://www.xarvio.com/gb/en/products/scouting/yellow-

trap-analysis.html), or the Rothamsted Insect Survey (Harrington & Woiwod 2007) can give alerts 

pertaining to mass migration but, by definition, these are after the event. To attempt to gain a 

better understanding of daily B. aeneus migration dynamics to improve forecasting model in 

Chapter 3 I modelled the daily abundance of B. aeneus in suction-trap samples. This proved a 

challenging dataset characterised by large numbers of zeroes with sporadic peaks of very high 

counts and regular day-to-day changes of two or more orders of magnitude in count numbers. 

Despite these challenges, through various analytical approaches that attempted to account for the 

stochasticity and zero-inflated nature of the data, I found evidence that daily trap counts were 

driven by a small range of environmental variables (sunshine, wind speed and minimum or mean 

temperature), alongside the time of year (day number) and the number of beetles caught after 

June 1st the previous year – this last finding reinforces the conclusion from Chapter 2 that assessing 

the abundance in the suction-traps of the newly emerged generation in the late summer may prove 

https://www.xarvio.com/gb/en/products/scouting/yellow-trap-analysis.html
https://www.xarvio.com/gb/en/products/scouting/yellow-trap-analysis.html


 

190 

 

important in predicting the abundance of the spring migration. However, none of the models could 

predict the very high counts that constitute a mass migration event in the suction-traps. These 

events are rare and suggest that, whilst it may be possible to set out the conditions that favour 

mass migration events in B. aeneus, actually forecasting when these would occur may be less 

tractable using the frequentist statistical modelling and machine learning approaches considered 

here. An analogous problem that continues to vex the best scientists is volcanic eruptions, which 

despite research being highly instrumented and well-funded, has yet to deliver a reliable 

forecasting system (Palmer 2020). Forecasting rare events that seemingly do not have any 

precursors (i.e. in this instance zero one day, several hundred the next) will remain a challenge for 

science and may only be furthered with new real-time monitoring field data at a high resolution 

(i.e. hour-by-hour) to detect the upswing in movement. 

Chapter 4 focussed on determining whether suction-trap data could be related to field-

sampled data and at what distance. I found that there was generally a strong relationship between 

suction-trap and field data at the weekly scale even at distances of more than 100 km. In addition, 

the analysis of the suction-trap data found that some spatial synchrony of migrating beetles was 

evident up to ~150 km.  

However, there was a great deal of scatter in the relationship between the suction-trap 

counts and field counts and this relationship also varied from year to year reducing confidence in 

the result. Closer inspection of the spatial dynamics of B. aeneus, as measured by field-caught 

beetles, revealed that they appeared to have no spatial synchrony at the field level, suggesting that 

it is not possible to forecast population abundance in a field, even if using data sampled as close, 

geographically, as a neighbouring field. In the suction-traps some spatial synchrony of migrating 

beetles was evident up to ~150 km. If beetles are as locally irruptive and field outbreaks are 
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effectively independent as these results suggest, this means that control decisions by the grower 

must be made on a field-by-field basis on each farm in each region rather than be driven by a 

generic, national DSS based on suction-trap counts. However, the findings in Chapters 2 & 3 

identified the conditions (based on both meteorological indicators and suction-trap abundance 

data from the previous year) that lead to higher abundance of B. aeneus and spring migration 

events. Therefore, models based on suction-trap data and localised meteorological data could 

potentially provide farmers with a customised warning signal to begin crop inspections. 

The dispersal ability of B. aeneus was investigated in Chapter 5 using flight-mill and next-

generation sequencing techniques. Brassicogethes aeneus proved unwilling or unable to fly on 

flight mills with only a single full circuit performed across more than 30 test flights. In addition, an 

analysis of the molecular data from the next generation sequencing approach could not resolve the 

problem of the degraded DNA and the biostatistical pipeline that would inform levels of population 

mixing remains incomplete. Yet from the preliminary analysis of the diversity in the genetic data, in 

comparison to published estimates of other beetle taxa, heterozygosity appears to be low, whilst 

nucleotide diversity appears to be high indicating that it is likely there is a single UK population and 

suggesting that a proportion of the population migrates long distances within the UK. It should be 

stressed that these are preliminary findings and it would be unwise to draw any further conclusions 

from these results. 

Appendix D presents a suite of B. aeneus lifecycle parameters that could, in future, inform a 

process-based model of B. aeneus that, in turn, could provide the basis for a DSS for OSR and other 

brassicaceous crops much like that used in the Warwick MORPH model (Collier 2001). These 

parameters cover the entirety of the beetle’s lifecycle, the egg and larval stages have particularly 

detailed parameters gleaned from field and laboratory experiments and most authors are in 
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general agreement. Understanding of the pupal and adult life stages is less comprehensive with 

some aspects only found in single-paper studies and there is a need for further work on the 

understanding of the adult stages in particular.  

Together the results presented in this thesis enhance our fundamental knowledge of the 

ecology of this pest species and can be used to improve management decision making in the future. 

 

6.2 Further work 

 In addition to our enhanced knowledge of the ecology of B. aeneus, this study has made one 

major finding that is of great importance for farmers’ management of this pest species; the number 

of B. aeneus in spring migrations can be qualitatively forecast by the counts of beetles made in the 

summer the previous year, modulated by a suite of environmental variables that are relatively 

straightforward to collect. There is potential here to develop an early warning system for growers; 

either a qualitative forecast, based on suction-trap counts alone released at the end of summer for 

the following year, or a more detailed forecast released in early spring, based on trap numbers and 

weather forecasts. Further research is needed into the desirability of these forecasts, both in terms 

of usefulness and practicality.  

This study could not conclusively demonstrate a link between counts of migrating beetles in 

suction-traps and subsequent local field infestations, in part due to the large variability and 

sampling issues in the field data, and this should be a prime focus of any further work. A field 

campaign collecting daily samples, or perhaps using new pest detection technologies such as LIDAR 

(Jansson & Brydegaard 2018, Hassell et al. 2021, Kirkeby et al. 2021) that would cut down on 
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identification and processing time, could make this link explicit and enable the closer investigation 

of the apparently chaotic nature of field-caught B. aeneus data. 

 Further work on the molecular aspects of Chapter 5 would allow a full analysis of the 

genetic structure of B. aeneus in the UK. As suggested from the preliminary results, it is unlikely 

that these further analyses will reveal anything that differentiates the UK population from the 

European populations in previous research (Kazachkova et al. 2008, Ouvrard et al. 2016, Juhel et al. 

2019), however if there is demonstrated to be multiple genetically distinct populations in the UK 

this could have implications for control, as currently control strategies are based on the assumption 

that the European population is relatively homogenous. 

 The currently available modelling approaches used in Chapter 3 were unable to forecast 

rare, extreme population events – especially at traps where they had not previously occurred. This 

has important implications for the population modelling of any pest species where the population is 

increasing; as underestimation of pest pressure in a DSS could lead to a lack of control efficacy in 

the field and/or an erosion of trust in the DSS to the point that it has no use.  

This work has shown the potential for suction-trap data to provide unique data sets for 

investigation into the temporal and spatial ecology of B. aeneus. Further exploration and analysis of 

suction-trap collected data may yield yet more ecological and management perspectives. For 

example, it may be possible to investigate suction-trap samples from warmer regions, or regions 

with a higher proportion of spring OSR, to allow a better understanding of B. aeneus populations in 

future UK environmental change scenarios. In addition, further investigation of the suction-trap 

samples may provide insight into the population dynamics of an increasing pest species. 

Rothamsted Insect Survey has stored samples dating back to 1974 (Shortall 2013) and these could 

be investigated to determine how B. aeneus populations developed as OSR became established as 
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an important crop in the UK. This in turn may inform the protection of novel crops from pests in the 

future. 
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Appendix A, Chapter 2 

This chapter explored the the national and regional trends in oilseed rape cultivation in the UK 
and long-term pollen beetle data for two sites; Rothamsted and Broom’s Barn. 

Libraries 

Here are the R libraries required for this chapter: 

library("poptrend") 

library("mgcv") 

library("tree") 

library("fitdistrplus") 

library("tidyr") 

library("dplyr") 

library("itsadug") 

library("ggpubr") 

library("gridExtra") 

library("grid") 
library("ggplot2") 
library("lattice") 

library("ggplotify") 

The “tidyr” and “dplyr” libraries are used to rearrange a dataset if necessary. The “fitdistrplus” 
library is used to assess the statistical distribution. The “poptrend” and “mgcv” libraries are 
used to perform the analysis, the rest are for producing the tabular and graphical output. 

Data 

The following data files will be used. These data are available on request. 

setwd("P:/Final datasets") 
PBdist2<-read.csv("Rothamsted.csv") 
OSR<-read.csv("OSR and PB data 1987 to 2019.csv") 
AOSR<-read.csv("OSR data England.csv") 
OSR2<-read.csv("OSR data England 2.csv") 
OSR3<-read.csv("OSR Regions.csv") 
OSR4<-read.csv("OSR and PB data 2001 to 2015 East.csv") 
OSR5<-read.csv("2015 total with regional sown area.csv") 
PB<-read.csv("All sites spring & summer & overwinter.csv") 
TA3<-read.csv("Annual RT BB with NA new.csv") 
SPRING<-read.csv("LSG long term data.csv") 
Combined<-read.csv("Combined.csv") 
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Fitting statistical distribution 
First, the statistical distribution of the data is assessed (Note, the data used to fit distributions 
here (PBdist) is an example; this step of assessing the statistical distribution was done for all 
datasets but for brevity will only be demonstrated here once.) 

attach(PBdist2) 

It is necessary to remove “no trapping” records (here classed as “NA”s) 

PBdist2NoNA<-PBdist2%>% drop_na() 
summary (PBdist2NoNA) 

##   Julian.Date        X2015             X2016            X2017        
##  Min.   : 40.0   Min.   :  0.000   Min.   : 0.000   Min.   : 0.000   
##  1st Qu.:108.5   1st Qu.:  0.000   1st Qu.: 0.000   1st Qu.: 0.000   
##  Median :177.0   Median :  0.000   Median : 0.000   Median : 0.000   
##  Mean   :177.0   Mean   :  5.411   Mean   : 4.178   Mean   : 3.967   
##  3rd Qu.:245.5   3rd Qu.:  1.000   3rd Qu.: 0.000   3rd Qu.: 2.000   
##  Max.   :314.0   Max.   :109.000   Max.   :86.000   Max.   :85.000 

This dataset had too many zeroes for a statistical distribution to be resolved. It underwent two 
further filtering steps to obtain a workable dataset: 

PB20171stcut<-select(filter(PBdist2NoNA, Julian.Date >67), c(Julian.Date, 
X2017)) 
PBSpring<-select(filter(PB20171stcut, Julian.Date<154), c(Julian.Date, X2017)) 

Then we attempt to fit a range of statistical distributions to the data (note, for brevity these are 
set not to run in markdown) 

#GammaPBcountSpring <- fitdist(PBSpring$X2017, "gamma", discrete = FALSE, lower 
= c(0,0), start = list(scale = 1, shape = 1)) 
#WeibullPBcountSpring <- fitdist(PBSpring$X2017, "weibull", discrete = FALSE, 
lower = c(0,0), start = list(scale = 1, shape = 1)) 
#LognormalPBcount <- fitdist(PBSpring$X2017, "lnorm") 
#normPBcount <- fitdist(PBdist$X2017, "norm", discrete = FALSE, lower = c(0,0)) 
#expPBcount <- fitdist(PBSpring$X2017, "exp", discrete = FALSE, lower = c(0,0)) 
#poisPBcount <- fitdist(PBSpring$X2017, "pois", discrete = TRUE) 
#cauchyPBcount <- fitdist(PBSpring$X2017, "cauchy", discrete = FALSE, lower = 
c(0,0), start = list(scale = 1, shape = 1)) 
#logisPBcount <- fitdist(PBdist$X2017, "logis", discrete = FALSE, lower = 
c(0,0), start = list(scale = 1, shape = 1)) 
#nbinomPBcount <- fitdist(PBSpring$X2017, "nbinom", discrete = FALSE, lower = 
c(0,0), start = list(scale = 1, shape = 1)) 
#geomPBcount <- fitdist(PBSpring$X2017, "geom", discrete = FALSE, lower = 
c(0,0), start = list(scale = 1, shape = 1)) 
#betaPBcount <- fitdist(PBSpring$X2017, "beta", discrete = FALSE, lower = 
c(0,0), start = list(scale = 1, shape = 1)) 
#invgammaPBcount <- fitdist(PBdist$X2017, "invgamma", discrete = FALSE, lower = 
c(0,0), start = list(scale = 1, shape = 1)) 
#llogisPBcount <- fitdist(PBSpring$X2017, "llogis", discrete = FALSE, lower = 
c(0,0), start = list(scale = 1, shape = 1)) 
#invweibullPBcount <- fitdist(PBSpring$X2017, "invweibull", discrete = FALSE, 
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lower = c(0,0), start = list(scale = 1, shape = 1)) 
#paretolPBcount <- fitdist(PBSpring$X2017, "paretol", discrete = FALSE, lower = 
c(0,0), start = list(scale = 1, shape = 1)) 
#paretoBcount <- fitdist(PBdist$X2017, "pareto", discrete = FALSE, lower = 
c(0,0), start = list(scale = 1, shape = 1)) 
#lgammaPBcount <- fitdist(PBSpring$X2017, "lgamma", discrete = FALSE, lower = 
c(0,0), start = list(scale = 1, shape = 1)) 
#trgammaPBcount <- fitdist(PBSpring$X2017, "trgamma", discrete = FALSE, lower = 
c(0,0), start = list(scale = 1, shape = 1)) 
#invtrgammaPBcount <- fitdist(PBdist$X2017, "invrtgamma", discrete = FALSE, 
lower = c(0,0), start = list(scale = 1, shape = 1)) 

Then we produce graphical output for each successfully completed test (again, here for 
illustration purposes only for brevity): 

#plot(GammaPBcountSpring) 
#plot(WeibullPBcountSpring) 
#plot(LognormalPBcount) 
#plot(normPBcount) 
#plot(expPBcount) 
#plot(poisPBcount) 
#plot(cauchyPBcount) 
#plot(logisPBcount) 
#plot(nbinomPBcount) 
#plot(geomPBcount) 
#plot(betaPBcount) 
#plot(invgammaPBcount) 
#plot(llogisPBcount) 
#plot(invweibullPBcount) 
#plot(paretolPBcount) 
#plot(paretoPBcount) 
#plot(lgammaPBcount) 
#plot(trgammaPBcount) 
#plot(invrtgammaPBcount) 

(Note, all graphical output is saved as a PDF file like the example code below. This is done for 
all thesis plots, but the code will not be presented again for the sake of reducing repetition). 

#pdf(file = "P:/Analysis/fitdistgraphs/NegBinomial.pdf") 
#plot(nbinomPBcount) 
#dev.off() 
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Example graph: 
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This graph shows that the data follow a negative binomial distribution, compare with the 
following that attempts to fit a normal distribution to the data and fails: 

 

Oilseed rape trends over time 

Section 2.4.2 

Here, the poptrend package is used to investigate the trend in cultivation of oilseed rape over 
time. 

First some standard plots to give an overview of the data. 

Fig. 2.5: 

plot(OSR$Year, OSR$Area, type = "l", col = "black", bty = "n", ylab = "Area of 
OSR sown, '000 hectares") 
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Fig. 2.6: 

par(mar=c(5, 4, 4, 6)) 
plot(OSR2$Year, OSR2$Area, type = "l", col="blue", bty="n", ylab="Area sown 
(,000 ha)") 
par(new=TRUE) 
plot(OSR2$Year, OSR2$Production, type="l", axes=FALSE, bty="n", xlab = "", ylab 
= "", col="red") 
par(new=FALSE) 
axis(side=4, at=pretty(range(OSR2$Production))) 
mtext("Production (,000 tonnes)", side=4, line=3) 
legend("bottomright", inset=.05, cex=1, bty="n", c("Area", "Production"), 
lty=c(1, 1), lwd=c(1,1),col=c("blue", "red")) 
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par(mar=c(5, 4, 4, 2)) 

Fig. 2.7: 

par(mar=c(5, 4, 4, 6)) 
plot(AOSR$Year, AOSR$Area, type = "l", col="blue", bty="n", ylab="Area sown 
(,000 ha)") 
par(new=TRUE) 
plot(AOSR$Year, AOSR$Production, type="l", axes=FALSE, bty="n", xlab = "", ylab 
= "", col="red") 
par(new=FALSE) 
axis(side=4, at=pretty(range(AOSR$Production))) 
mtext("Production (,000 tonnes)", side=4, line=3) 
legend("bottomright", inset=.05, cex=1, bty="n", c("Area", "Production"), 
lty=c(1, 1), lwd=c(1,1),col=c("blue", "red")) 
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par(mar=c(5, 4, 4, 6)) 
plot(AOSR$Year, AOSR$Area, type = "l", col="blue", bty="n", ylab="Area sown 
(,000 ha)") 
par(new=TRUE) 
plot(AOSR$Year, AOSR$Yield, type="l", axes=FALSE, bty="n", xlab = "", ylab = "", 
col="red") 
par(new=FALSE) 
axis(side=4, at=pretty(range(AOSR$Yield))) 
mtext("Yield (t/ha)", side=4, line=3) 
legend("bottomright", inset=.05, cex=1, bty="n", c("Area", "Yield"), lty=c(1, 
1), lwd=c(1,1),col=c("blue", "red")) 
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Poptrend analysis 

First, calculate theta for the dataset: 

Trend3<-ptrend (Area ~ trend(Year, tempRE = TRUE, type = "smooth") + s(Region, 
bs = "re"), family = nb(), data = OSR3) 
Trend3$family$getTheta(TRUE) ## extract final theta estimate 

## [1] 12460615 

Then, run the poptrend analysis. Note that quasipoisson was selected as the best distribution 
for the oilseed rape cultivation data. 

Trend<-ptrend (Area ~ trend(Year, tempRE = TRUE, type = "smooth") + s(Region, bs 
= "re"), family = quasipoisson, data = OSR3) 
 
checkFit(Trend) 
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##  
## Method: GCV   Optimizer: outer newton 
## full convergence after 16 iterations. 
## Gradient range [-3.433998e-09,3.220934e-07] 
## (score 0.3271793 & scale 0.2688618). 
## Hessian positive definite, eigenvalue range [1.014493e-05,0.006269579]. 
## Model rank =  33 / 33  
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##  
## Basis dimension (k) checking results. Low p-value (k-index<1) may 
## indicate that k is too low, especially if edf is close to k'. 
##  
##                 k'   edf k-index p-value 
## s(Year)       9.00  2.45       1    0.46 
## s(Region)     8.00  7.00      NA      NA 
## s(Year__Fac) 15.00 10.29      NA      NA 

#Check rate of change 
change(Trend, 1987, 2017)  

## Estimated percent change from Year = 2000.86 to 2015.14: 113% (84%, 145%) 

#Summary 
print(Trend) 

##  
## Family: quasipoisson  
## Link function: log  
##  
## Formula: Area ~ trend(Year, tempRE = TRUE, type = "smooth") + s(Region,  
##     bs = "re") 
## Trend type:  smooth 

Fig. 2.8 
plot(Trend) 
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Long-term trends in pollen beetle abundance at 

Rothamsted and Broom’s Barn 

Section 2.4.3 

First, check for autocorrelation (Section 2.4.4): 

Fig. 2.3 
RT_ACF<-gam(RT ~ s(Year) +s(Area), family = nb(), method = "GCV.Cp", data = OSR, 
rho=r1, AR.start= OSRUK$start.event) 
acf_resid(RT_ACF) 

 

BB_ACF<-gam(BB ~ s(Year) +s(Area), family = nb(), method = "GCV.Cp", data = OSR, 
rho=r1, AR.start= OSRUK$start.event) 
acf_resid(BB_ACF) 
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Then plot the data. 

Fig. 2.9 
plot(OSR$Year, OSR$BB, type = "l", col="blue", bty="n", ylab="Number of pollen 
beetles") 
lines(OSR$Year, OSR$RT, type = "l", col="red", bty="n", ylab="Number of pollen 
beetles") 
legend("topleft", inset=.05, cex=1, bty="n", c("Broom's Barn", "Rothamsted"), 
lty=c(1,1), lwd=c(2,2), col=c("blue", "red")) 
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Run a correlation test between Rothamsted and Broom’s Barn. 

Fig. 2.10 
ggscatter(OSR, x="RT", y = "BB", add = "reg.line", conf.int=TRUE, cor.coef=TRUE, 
cor.method = "pearson", xlab = "Number of beetles recorded at Rothamsted", ylab 
= "Number of beetles recorded at Broom's Barn") 

## `geom_smooth()` using formula 'y ~ x' 
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res1 <- cor.test(OSR$RT, OSR$BB,  
                method = "pearson") 
res1 

##  
##  Pearson's product-moment correlation 
##  
## data:  OSR$RT and OSR$BB 
## t = 6.549, df = 28, p-value = 4.233e-07 
## alternative hypothesis: true correlation is not equal to 0 
## 95 percent confidence interval: 
##  0.5801277 0.8889810 
## sample estimates: 
##      cor  
## 0.777829 

Model the trend 

Fig. 2.11 
#Get theta 
Trend2<-ptrend (count ~ trend(year, tempRE = TRUE, type = "smooth") + s(site, bs 
= "re"), family = nb(), data = TA3) 
Trend2$family$getTheta(TRUE) ## extract final theta estimate 

## [1] 3.707052 

#take result from above and add it between the brackets after negbin 
Trends<-ptrend (count ~ trend(year, tempRE = TRUE, type = "smooth") + s(site, bs 
= "re"), family = negbin(3.707052), data = TA3) 
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checkFit(Trends) 
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##  
## Method: UBRE   Optimizer: outer newton 
## full convergence after 4 iterations. 
## Gradient range [3.32763e-09,1.080642e-06] 
## (score 0.4065971 & scale 1). 
## Hessian positive definite, eigenvalue range [0.004464057,0.137481]. 
## Model rank =  44 / 44  
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##  
## Basis dimension (k) checking results. Low p-value (k-index<1) may 
## indicate that k is too low, especially if edf is close to k'. 
##  
##                  k'    edf k-index p-value 
## s(year)       9.000  2.452    1.41       1 
## s(site)       2.000  0.759      NA      NA 
## s(year__Fac) 32.000 18.613      NA      NA 

plot(Trends) 

 

change(Trends, 1987, 2018)  

## Estimated percent change from year = 1987 to 2018: 162% (6.6%, 558%) 

print(Trends) 

##  
## Family: Negative Binomial(3.707)  
## Link function: log  
##  
## Formula: count ~ trend(year, tempRE = TRUE, type = "smooth") + s(site,  
##     bs = "re") 
## Trend type:  smooth 

ptrend is a function that estimates a smooth or linear trend, count is the annual number of B. 
aeneus, trend is the function that sets up the trend component for ptrend, year is the year 
(1987 to 2018), tempRE=TRUE means that year is set as a random effect, type = “smooth” sets 
the trend to a smooth, rather than loglinear or index type, s(site, bs=”re”) sets the regression 
spline for site (here two sites, Rothamsted and Broom’s Barn) as a random effect, family = 
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negbin(3.707052) indicates the distribution is a negative binomial with Θ (the dispersion 
parameter) specified. 

Seasonal trends 

Re-run the analysis using seasonal data, this requires a separate dataset that divides the annual 
total catch into two generations (Spring (beetles caught before June 1st) and Summer (beetles 
caught after June 1st)). 

Monthly data are filtered from the main dataset. 

For the sake of brevity only the Spring analysis is presented here, the the other analyses are 
run with the same code, with theta calculated separately for each model and inserted manually 
into the code. 

Fig. 2.12 

(Also, with alternative data for Figs. 2.13-2.18) 

TrendSPRING<-ptrend (Count ~ trend(Year, tempRE = TRUE, type = "smooth") + 
s(Site, bs = "re"), family = nb(), data = SPRING) 
TrendSPRING$family$getTheta(TRUE) ## extract final theta estimate 

## [1] 4.163855 

#take result from above and add it between the brackets after negbin 
TrendSPRING<-ptrend (Count ~ trend(Year, tempRE = TRUE, type = "smooth") + 
s(Site, bs = "re"), family = negbin(3.961196), data = SPRING) 
checkFit(TrendSPRING) 
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##  
## Method: UBRE   Optimizer: outer newton 
## full convergence after 5 iterations. 
## Gradient range [5.444445e-10,4.694216e-08] 
## (score 0.4421206 & scale 1). 
## Hessian positive definite, eigenvalue range [0.004322224,0.122088]. 
## Model rank =  44 / 44  
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##  
## Basis dimension (k) checking results. Low p-value (k-index<1) may 
## indicate that k is too low, especially if edf is close to k'. 
##  
##                  k'    edf k-index p-value 
## s(Year)       9.000  2.326    1.37       1 
## s(Site)       2.000  0.751      NA      NA 
## s(Year__Fac) 32.000 22.760      NA      NA 

plot(TrendSPRING, main = "Spring") 

 

change(TrendSPRING, 1987, 2018)  

## Estimated percent change from Year = 1987 to 2018: 182% (-1.2%, 822%) 

print(TrendSPRING) 

##  
## Family: Negative Binomial(3.961)  
## Link function: log  
##  
## Formula: Count ~ trend(Year, tempRE = TRUE, type = "smooth") + s(Site,  
##     bs = "re") 
## Trend type:  smooth 
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Relationship between number of pollen beetles 

and area of OSR at different temporal and spatial 

scales. 

Section 2.4.5 

The relationship between number of pollen beetles and oilseed rape was invesigated using a 
GAM. First, calculate theta: 

RTGAM<-gam(RT ~s(Area, bs="cs") + s(Year, bs="cs", k=15), family = nb(), 
data=OSR, rho=r1, AR.start=OSR$start.event) 
RTGAM$family$getTheta(TRUE) 

## [1] 2.199612 

BBGAM<-gam(BB ~s(Area, bs="cs") + s(Year, bs="cs", k=15), family = nb(), 
data=OSR, rho=r1, AR.start=OSR$start.event) 
BBGAM$family$getTheta(TRUE) 

## [1] 12.70305 

Then run the GAM using Area of OSR and Year as explanatory terms: 

RT_resid<-gam(RT ~s(Area, bs="cs") + s(Year, bs="cs"), family = 
negbin(theta=2.199612, link="log"), method = "REML", data=OSR) 
 
BB_resid<-gam(BB ~s(Area, bs="cs") + s(Year, bs="cs"), family = 
negbin(theta=12.70305, link="log"), method = "REML", data=OSR) 
 
summary(RT_resid) 

##  
## Family: Negative Binomial(2.2)  
## Link function: log  
##  
## Formula: 
## RT ~ s(Area, bs = "cs") + s(Year, bs = "cs") 
##  
## Parametric coefficients: 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept)   6.0726     0.1195    50.8   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Approximate significance of smooth terms: 
##            edf Ref.df Chi.sq  p-value     
## s(Area) 0.8747      9  1.592    0.108     
## s(Year) 2.5245      9 17.496 4.02e-05 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
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## R-sq.(adj) =  0.325   Deviance explained = 40.5% 
## -REML = 227.77  Scale est. = 1         n = 32 

summary(BB_resid) 

##  
## Family: Negative Binomial(12.703)  
## Link function: log  
##  
## Formula: 
## BB ~ s(Area, bs = "cs") + s(Year, bs = "cs") 
##  
## Parametric coefficients: 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept)   6.1880     0.0522   118.5   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Approximate significance of smooth terms: 
##           edf Ref.df Chi.sq  p-value     
## s(Area) 2.147      9  15.25 4.69e-05 *** 
## s(Year) 8.157      9 253.34  < 2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## R-sq.(adj) =  0.816   Deviance explained = 92.3% 
## -REML = 218.55  Scale est. = 1         n = 30 

Figs 2.19 & 2.20 
par(mfrow= c(1,2)) 
plot(BB_resid) 
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plot(RT_resid) 

 

par(mfrow=c(1,1)) 

For shorter-term, larger spatial-scale comparisons the data were not sufficient for a GAM, thus 
Pearson correlations were calculated. 
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Figs 2.21 & 2.22 
ggscatter(OSR4, x="Area", y = "BB", add = "reg.line", conf.int=TRUE, 
cor.coef=TRUE, cor.method = "pearson", xlab = "Area of OSR sown in eastern 
England,'000 hectares", ylab = "Number of beetles recorded at Broom's Barn") 

## `geom_smooth()` using formula 'y ~ x' 

 

resBB <- cor.test(OSR4$Area, OSR4$BB,  
                 method = "pearson") 
resBB 

##  
##  Pearson's product-moment correlation 
##  
## data:  OSR4$Area and OSR4$BB 
## t = 2.0865, df = 13, p-value = 0.0572 
## alternative hypothesis: true correlation is not equal to 0 
## 95 percent confidence interval: 
##  -0.01533395  0.80626079 
## sample estimates: 
##       cor  
## 0.5008632 

ggscatter(OSR4, x="Area", y = "RT", add = "reg.line", conf.int=TRUE, 
cor.coef=TRUE, cor.method = "pearson", xlab = "Area of OSR sown in south-east 
England,'000 hectares", ylab = "Number of beetles recorded at Rothamsted") 

## `geom_smooth()` using formula 'y ~ x' 
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resRT <- cor.test(OSR4$Area, OSR4$RT,  
                 method = "pearson") 
resRT 

##  
##  Pearson's product-moment correlation 
##  
## data:  OSR4$Area and OSR4$RT 
## t = 2.205, df = 13, p-value = 0.04607 
## alternative hypothesis: true correlation is not equal to 0 
## 95 percent confidence interval: 
##  0.01290969 0.81592254 
## sample estimates: 
##       cor  
## 0.5217223 

Fig. 2.23 
ggscatter(OSR5, x="Area.Sown", y = "X2015.total", add = "reg.line", 
conf.int=TRUE, cor.coef=TRUE, cor.method = "pearson", xlab = "Area of winter OSR 
sown (,000 ha)", ylab = "Number of beetles", ylim=c(0, 2500)) 

## `geom_smooth()` using formula 'y ~ x' 
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res5 <- cor.test(OSR5$Area.Sown, OSR5$X2015.total,  
                method = "pearson") 
res5 

##  
##  Pearson's product-moment correlation 
##  
## data:  OSR5$Area.Sown and OSR5$X2015.total 
## t = 2.3924, df = 10, p-value = 0.0378 
## alternative hypothesis: true correlation is not equal to 0 
## 95 percent confidence interval: 
##  0.04502568 0.87445366 
## sample estimates: 
##       cor  
## 0.6033369 

Relationship between number of pollen beetles 

caught in spring and summer 

Section 2.4.6 

Here, the two generations of pollen beetle are investigated to see if counts of one can predict 
counts of the following. In addition, data for beetles entering hibernation are used to forecast 
the abundance of those exiting hibernation the following year. 
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Figs. 2.24 & 2.25 
Trap<-factor(PB$Site) 
 
ggscatter(PB, x="Spring", y = "Summer", add = "reg.line", conf.int=TRUE, 
cor.coef=TRUE, cor.method = "pearson", xlab = "Number of beetles to Day 151 
(31st May)", ylab = "Number of beetles from Day 152 (1st June)") 

## `geom_smooth()` using formula 'y ~ x' 

 

res <- cor.test(PB$Spring, PB$Summer,  
                 method = "pearson") 
res 

##  
##  Pearson's product-moment correlation 
##  
## data:  PB$Spring and PB$Summer 
## t = 5.2832, df = 96, p-value = 7.92e-07 
## alternative hypothesis: true correlation is not equal to 0 
## 95 percent confidence interval: 
##  0.3049088 0.6151090 
## sample estimates: 
##       cor  
## 0.4746152 

ggscatter(PB, x="Summer", y = "Overwinter", add = "reg.line", conf.int=TRUE, 
cor.coef=TRUE, cor.method = "pearson", xlab = "Number of beetles from Day 152 
(1st June) in previous year", ylab = "Number of beetles to Day 151 (31st May)") 

## `geom_smooth()` using formula 'y ~ x' 
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res2 <- cor.test(PB$Summer, PB$Overwinter,  
                 method = "pearson") 
res2 

##  
##  Pearson's product-moment correlation 
##  
## data:  PB$Summer and PB$Overwinter 
## t = 11.108, df = 85, p-value < 2.2e-16 
## alternative hypothesis: true correlation is not equal to 0 
## 95 percent confidence interval: 
##  0.6669439 0.8434235 
## sample estimates: 
##       cor  
## 0.7694866 

After model selection the model defined as model1, was selected, gam is the GAM function in 
mgcv, Overwinter is the overwintered generation active in spring with all the explanatory 
parameters defined with smooth terms s(x). Due to the lack of replication – only two sites were 
used – it was not possible to include any random effects of, for example, year or site. 

par(mfrow=c(2,3)) 
model1<-
gam(Combined$Overwinter~s(Combined$Year)+s(Combined$Winter.rain)+s(Combined$Wint
er.Grass.Acc)+s(Combined$Autumn.Rain)+s(Combined$Spring.Temp.Acc)+s(Combined$Sum
mer)) 
plot(model1) 
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summary(model1) 

##  
## Family: gaussian  
## Link function: identity  
##  
## Formula: 
## Combined$Overwinter ~ s(Combined$Year) + s(Combined$Winter.rain) +  
##     s(Combined$Winter.Grass.Acc) + s(Combined$Autumn.Rain) +  
##     s(Combined$Spring.Temp.Acc) + s(Combined$Summer) 
##  
## Parametric coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   241.35      13.56    17.8   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Approximate significance of smooth terms: 
##                                edf Ref.df      F p-value     
## s(Combined$Year)             1.000  1.000  2.105  0.1546     
## s(Combined$Winter.rain)      2.657  3.307  0.917  0.4634     
## s(Combined$Winter.Grass.Acc) 1.000  1.000  1.606  0.2124     
## s(Combined$Autumn.Rain)      6.041  7.043  1.991  0.0775 .   
## s(Combined$Spring.Temp.Acc)  3.343  4.109  2.899  0.0340 *   
## s(Combined$Summer)           4.988  5.889 17.294  <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## R-sq.(adj) =  0.748   Deviance explained = 82.9% 
## GCV =  16556  Scale est. = 11029     n = 60 
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#Winter rainfall least significant 
model2<-
gam(Combined$Overwinter~s(Combined$Year)+s(Combined$Winter.Grass.Acc)+s(Combined
$Autumn.Rain)+s(Combined$Spring.Temp.Acc)+s(Combined$Summer)) 
plot(model2) 
summary(model2) 

##  
## Family: gaussian  
## Link function: identity  
##  
## Formula: 
## Combined$Overwinter ~ s(Combined$Year) + s(Combined$Winter.Grass.Acc) +  
##     s(Combined$Autumn.Rain) + s(Combined$Spring.Temp.Acc) + 
s(Combined$Summer) 
##  
## Parametric coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   241.35      13.96   17.29   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Approximate significance of smooth terms: 
##                                edf Ref.df      F p-value     
## s(Combined$Year)             1.000  1.000  4.573  0.0381 *   
## s(Combined$Winter.Grass.Acc) 1.000  1.000  2.889  0.0962 .   
## s(Combined$Autumn.Rain)      4.243  5.193  1.942  0.1075     
## s(Combined$Spring.Temp.Acc)  2.920  3.627  3.325  0.0222 *   
## s(Combined$Summer)           6.197  7.168 15.387  <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## R-sq.(adj) =  0.733   Deviance explained = 80.3% 
## GCV =  16073  Scale est. = 11690     n = 60 

par(mfrow=c(2,2)) 
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model3<-
gam(Combined$Overwinter~s(Combined$Year)+s(Combined$Winter.Grass.Acc)+s(Combined
$Spring.Temp.Acc)+s(Combined$Summer)) 
plot(model3) 

 

summary(model3) 
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##  
## Family: gaussian  
## Link function: identity  
##  
## Formula: 
## Combined$Overwinter ~ s(Combined$Year) + s(Combined$Winter.Grass.Acc) +  
##     s(Combined$Spring.Temp.Acc) + s(Combined$Summer) 
##  
## Parametric coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   241.35      14.47   16.68   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Approximate significance of smooth terms: 
##                                edf Ref.df      F p-value     
## s(Combined$Year)             1.000  1.000 10.307 0.00245 **  
## s(Combined$Winter.Grass.Acc) 1.000  1.000  0.769 0.38527     
## s(Combined$Spring.Temp.Acc)  4.752  5.777  2.498 0.03824 *   
## s(Combined$Summer)           7.575  8.418 13.874 < 2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## R-sq.(adj) =  0.713   Deviance explained = 78.3% 
## GCV =  16872  Scale est. = 12562     n = 60 

model4<-
gam(Combined$Overwinter~s(Combined$Year)+s(Combined$Spring.Temp.Acc)+s(Combined$
Summer)) 
plot(model4) 
summary(model4) 

##  
## Family: gaussian  
## Link function: identity  
##  
## Formula: 
## Combined$Overwinter ~ s(Combined$Year) + s(Combined$Spring.Temp.Acc) +  
##     s(Combined$Summer) 
##  
## Parametric coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   241.35      14.27   16.91   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Approximate significance of smooth terms: 
##                               edf Ref.df      F p-value     
## s(Combined$Year)            1.000  1.000 11.455 0.00149 **  
## s(Combined$Spring.Temp.Acc) 5.308  6.382  2.402 0.04089 *   
## s(Combined$Summer)          7.716  8.513 14.301 < 2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
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## R-sq.(adj) =  0.721   Deviance explained = 78.7% 
## GCV =  16308  Scale est. = 12225     n = 60 

AIC(model1, model2, model3, model4) 

##              df      AIC 
## model1 21.03009 746.4562 
## model2 17.35993 747.8812 
## model3 16.32746 751.5339 
## model4 16.02381 749.7007 

gam.check(model1) 
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##  
## Method: GCV   Optimizer: magic 
## Smoothing parameter selection converged after 24 iterations. 
## The RMS GCV score gradient at convergence was 0.000337139 . 
## The Hessian was positive definite. 
## Model rank =  55 / 55  
##  
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## Basis dimension (k) checking results. Low p-value (k-index<1) may 
## indicate that k is too low, especially if edf is close to k'. 
##  
##                                k'  edf k-index p-value 
## s(Combined$Year)             9.00 1.00    1.20    0.95 
## s(Combined$Winter.rain)      9.00 2.66    1.02    0.49 
## s(Combined$Winter.Grass.Acc) 9.00 1.00    1.01    0.50 
## s(Combined$Autumn.Rain)      9.00 6.04    1.17    0.92 
## s(Combined$Spring.Temp.Acc)  9.00 3.34    1.17    0.85 
## s(Combined$Summer)           9.00 4.99    1.22    0.93 

par(mfrow=c(2,3)) 
 
plot.gam(model1,select =1, residuals=T,se=T,pch=1, cex=0.1, all.terms=T, 
ylim=c(-200,200), shade=TRUE,  main="Year", ylab = "s(Year, 1)") 
 
plot.gam(model1, select=2, residuals=T, se=T, pch=1, cex=0.1, all.terms=T, 
ylim=c(-500, 500), shade=TRUE, main="Winter Rainfall", ylab="s(Winter.rain, 
2.66)")  
 
 
plot.gam(model1,select =3, residuals=T,se=T,pch=1, cex=0.1, all.terms=T, 
ylim=c(-200,200), shade=TRUE,  main="Winter Temperature", ylab = 
"s(Winter.grass.acc, 1)") 
 
plot.gam(model1, select=4, residuals=T, se=T, pch=1, cex=0.1, all.terms=T, 
ylim=c(-500, 500), shade=TRUE, main="Autumn Rainfall", ylab="s(Autumn.rain, 
6.04)")  
 
plot.gam(model1,select =5, residuals=T,se=T,pch=1, cex=0.1, all.terms=T, 
ylim=c(-500,500), shade=TRUE,  main="Spring Temperature", ylab = "s(Spring.acc, 
3.34,1)") 
 
plot.gam(model1, select=6, residuals=T, se=T, pch=1, cex=0.1, all.terms=T, 
ylim=c(-500, 1000), shade=TRUE, main="Summer Beetle Count", ylab="s(Summer, 
4.99)")  
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par(mfrow=c(1,1)) 

Drivers of overwintered beetle abundance 

Section 2.4.7 

The tree package was used to explore the autumn and winter environmental drivers of the 
abundance of beetles emerging from hibernation. 

Fig. 2.27 
modelt<-tree(Overwinter~.,data=Combined) 
plot(modelt) 
text(modelt) 
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Appendix A, Chapter 3 
This chapter used a range of analytical methods to interrogate the daily data from the suction-
traps. These data proved challenging, being zero-inflated and exhibiting day-to-day changes of 
pollen beetle abundance of two or more orders of magnitude. This meant that no statistical 
approach was wholly satisfactory, but some methods were more able to account for these 
challenges than others. 

Libraries 

The following R packages are required for the analyses in this chapter: 

library("mgcv") 

library("fitdistrplus") 

library("akima") 

library("lme4") 

library("mcmc") 

library("deSolve") 

library("spdep") 

library("spatstat") 

library("tree") 

library("abind") 
library("keras") 

library("reticulate") 

library("GSIF") 

library("raster") 

library("SearchTrees") 
library("MASS") 
library("psych") 

library("pscl") 

library("corrr") 

library("AER") 

library("broom") 

library("performance") 

library("sp") 
library("ROCR") 
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library("randomForest") 

library("poptrend") 

library("gratia") 

library("plotrix") 

library("ggeffects") 

library("tensorflow") 
 
library("chron") 

library("tidyverse")  

library("magrittr")  

library("dplyr") 
library("tidyr") 
library("tibble") 
 
library("ggplot2") 
library("RColorBrewer") 
library("cartography") 

library("gratia") 
library("ggfortify") 

library("scales") 

library("factoextra") 

library("rpart") 
library("partykit") 

Packages chron, tidyverse, magrittr, dplyr, tidyr and tibble were used to rearrange or prepare 
data where required for analyses, ggplot2, RColorBrewer, cartography, gratia, ggfortify, scales, 
factoextra, rpart and rpartykit were used for graphical output, the rest were required for the 
analyses. Note that the keras and reticulate packages require the Python machine learning 
software “tensorflow” to be installed (see: https://www.tensorflow.org/) plus the tensorflow R 
package. 

Data 

The following files were used, all are available on request, as are the original R code files: 

setwd("P:/Final datasets") 
daily<-read.csv("master dataset.csv") 
data <- read.csv("insectAndMeteo_12traps_1987to2018_new_z_sum.csv") 
positivedaily<-read.csv("master dataset nonnegative.csv") 

Statistical distribution of the data 

https://www.tensorflow.org/


 

239 

 

All datasets were interrogated using the fitdistrplus package to determine their statistical 
distribution. See Appendix A, Chapter 2 for details on this step. 

Histogram of data 

Fig. 3.6 
traps <- unique(data[,c("x", "trap")]) 
# remove 2 NA values 
data$sun[is.na(data$sun)] <- mean(data$sun, na.rm=TRUE) 
# discretise z into classes 
data$z.cut <- cut(data$z, breaks = c(-Inf, 0, 10, 30, Inf)) 
q <- ggplot(data.frame(table(data$z.cut))) + geom_col(aes(x=Var1, y=Freq)) +  
  theme_minimal() + theme(axis.title = element_blank()) 
q + scale_x_discrete(labels=c("0", "1-10", "11-30", ">30")) 

 

Many zeroes! 

Principal components analysis 

Section 3.4.2.2 

A PCA was run on the daily data, the following variables were selected for the PCA: 

Response variable: 

z (daily count of pollen beetles) 
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Explanatory variables: 

year (The calendar year of the observation) Days_from_start (Number of days from 1st January 
1987, the first record in the dataset) day (Julian day number) lat (Latitude) lon (Longitude) 
rain (Daily rainfall mm) wind (Average windspeed m/s) humidity (Relative humidity %) dew 
(Daily mean dew point degC) t.min (Minimum Temperature degC) t.max (Maximum 
temperature degC) sun (Solar radiation) temp (Mean temperature degC) Autumn.Prec 
(Accumulated rainfall for September, October & Novemer the previous year mm) Winter Prec. 
(Accumulated rainfall for December the previous year plus January and February mm) 
Winter.Temp (Accumulated day-degrees above 0 degC for December the previous year plus 
January and February degC) z.sum (Count of pollen beetles from the trap after June 1st the 
previous year) 

#Select data 
 
dailyPCA.unlog<-subset(daily, select = c(year, Days_from_start, day, z, lat, 
lon, rain, wind, humidity, dew, t.min, t.max, sun, temp, Autumn.Prec, 
Winter.Prec, Winter.Temp, z.sum)) 
 
#Remove NAs 
dailyPCA.unlog<-dailyPCA.unlog%>% drop_na() 
#View data 
head(dailyPCA.unlog) 

##   year Days_from_start day z      lat       lon rain wind humidity   dew 
t.min 
## 1 1992            1991 165 0 51.80700 -0.360091 0.01 1.78    62.02  9.83 
24.05 
## 2 1995            3102 180 5 51.80700 -0.360091 0.01 2.63    64.93 11.23 
24.95 
## 3 1995            3102 180 2 52.26068  0.568430 0.02 2.37    70.28 11.35 
23.29 
## 4 1996            3455 168 0 51.80700 -0.360091 0.00 1.82    68.89 10.04 
22.78 
## 5 1999            4559 176 4 51.80700 -0.360091 0.01 2.31    70.14  9.24 
20.30 
## 6 2000            4918 170 1 51.80700 -0.360091 0.00 2.84    71.80 14.24 
25.66 
##   t.max   sun  temp Autumn.Prec Winter.Prec Winter.Temp z.sum 
## 1  8.56 31.61 17.21    1.658132   0.8033844      -76.79    47 
## 2 10.92 31.57 17.96    2.416264   2.7629989      -33.94   550 
## 3 10.11 31.54 16.82    2.124176   2.4285156      -21.36   190 
## 4  7.14 31.43 15.84    1.973407   2.3080108     -130.99   234 
## 5  8.47 31.21 14.60    2.969560   2.2802351      -50.43    44 
## 6 11.95 31.14 19.49    2.039890   2.2130161      -38.82   143 

#Run PCA 
dailyPCA.unlog.prcomp<-prcomp(dailyPCA.unlog, center=TRUE, scale. = TRUE) 
 
#View 
print(dailyPCA.unlog.prcomp) 

## Standard deviations (1, .., p=18): 
##  [1] 2.3726857150 1.5700840169 1.3107705401 1.2262899236 1.1322440094 
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##  [6] 1.0148924483 0.9576248397 0.8865136652 0.8376403125 0.7713377804 
## [11] 0.7320672290 0.6531070354 0.4841234340 0.3467649338 0.2196149262 
## [16] 0.0779567535 0.0187993893 0.0000517825 
##  
## Rotation (n x k) = (18 x 18): 
##                          PC1          PC2         PC3         PC4          
PC5 
## year             0.013832867 -0.584762925 -0.20654404 -0.03111932 -
0.066727955 
## Days_from_start  0.021656429 -0.584562200 -0.20519413 -0.03032612 -
0.068232179 
## day              0.381976490 -0.010274371  0.05884254  0.03766064 -
0.075073086 
## z                0.086864048 -0.052264714 -0.19799190 -0.07725167  
0.145658188 
## lat             -0.025285769 -0.123276462 -0.13370703  0.04828437 -
0.541564300 
## lon              0.012396334  0.349340633 -0.37333799  0.23412610  
0.126525834 
## rain            -0.044864759 -0.111695729  0.22867363  0.57815212 -
0.078025732 
## wind            -0.137091857 -0.049680708  0.07995310  0.37412117  
0.074703315 
## humidity        -0.286503967 -0.130349796  0.17805679  0.30125085 -
0.063762453 
## dew              0.380338896 -0.052007942  0.12937961  0.24010780 -
0.031363044 
## t.min            0.412858663  0.026156272  0.03111738  0.04795948 -
0.001113091 
## t.max            0.385713963 -0.049539968  0.10366912  0.23279579 -
0.020408811 
## sun              0.329812236  0.013333637 -0.10757890 -0.32912561  
0.022436990 
## temp             0.410834831 -0.008762253  0.06644066  0.13132893 -
0.010219470 
## Autumn.Prec     -0.022125916 -0.083566437  0.49728519 -0.22121670 -
0.078399137 
## Winter.Prec     -0.004656759 -0.293578722  0.36626827 -0.20082627  
0.323552187 
## Winter.Temp      0.008849843 -0.113558613  0.01434465  0.11934082  
0.704623963 
## z.sum            0.012942967 -0.179348624 -0.44590527  0.15929160  
0.172243776 
##                          PC6          PC7         PC8          PC9        
PC10 
## year             0.181793391 -0.059127758 -0.02033160 -0.032321880  
0.13231087 
## Days_from_start  0.181925441 -0.057664790 -0.01965167 -0.032549041  
0.12955848 
## day              0.012373878  0.069660988  0.03262268 -0.012249151 -
0.13109708 
## z               -0.618258541 -0.528675202 -0.48125360  0.105495449  
0.06982533 
## lat             -0.421606765  0.334092803  0.16633748  0.569265728 -
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0.14867556 
## lon             -0.160071578  0.094561545  0.25149744 -0.119074027  
0.19003332 
## rain            -0.074736130 -0.233458694 -0.04324231 -0.157966862 -
0.56617712 
## wind             0.001850209  0.550314417 -0.66613694 -0.018463062  
0.21199123 
## humidity        -0.077745472 -0.280734392  0.28741735  0.073166938  
0.30954546 
## dew             -0.014652700 -0.075871357  0.09737765  0.032003361  
0.20062020 
## t.min            0.024004092 -0.005315734  0.01699053 -0.005323933  
0.05287828 
## t.max            0.000456389  0.011215425  0.02260155  0.021659348  
0.15925841 
## sun             -0.015750877  0.113984456 -0.11657524 -0.007833120 -
0.19494927 
## temp             0.008683943  0.005138815  0.01046454  0.007859388  
0.09387762 
## Autumn.Prec     -0.401289894  0.132763385  0.12319523 -0.258732929  
0.41797143 
## Winter.Prec     -0.239517594  0.204168553  0.11178324 -0.098496760 -
0.35571673 
## Winter.Temp      0.002099001  0.087205174  0.18412933  0.556645924  
0.04104703 
## z.sum           -0.341947138  0.257415864  0.24867172 -0.479147971 -
0.07725741 
##                         PC11        PC12         PC13         PC14 
## year             0.190641893  0.12867403 -0.021616737 -0.031377728 
## Days_from_start  0.192168339  0.12796068 -0.034628432 -0.018307481 
## day              0.079612577 -0.02887941 -0.635218199  0.637016441 
## z               -0.045674766  0.05738835 -0.091422890  0.014985444 
## lat             -0.004670473  0.01767756  0.020002676 -0.078445111 
## lon              0.416225572  0.58725963  0.010265423  0.035505582 
## rain             0.397854907 -0.09342503  0.112463578 -0.073255511 
## wind            -0.039824517  0.06173724  0.062448016  0.141202930 
## humidity        -0.275335504  0.06460673  0.290758348  0.525010944 
## dew             -0.172695524  0.04509609  0.155155602 -0.017608818 
## t.min           -0.062421230  0.01631104  0.122122907 -0.183625525 
## t.max           -0.123122100  0.03792030 -0.017720200 -0.177204461 
## sun              0.236788132 -0.07386018  0.662240807  0.427832761 
## temp            -0.082519684  0.02125531  0.066157450 -0.174473317 
## Autumn.Prec      0.449705040 -0.21357658 -0.039958798 -0.069637794 
## Winter.Prec     -0.270159706  0.55978311  0.003481400 -0.021812557 
## Winter.Temp      0.220088651 -0.27078387 -0.030517698 -0.004140113 
## z.sum           -0.271911245 -0.39887433  0.009922098  0.007507915 
##                          PC15          PC16          PC17          PC18 
## year            -0.0190770633  0.0010255812  0.0006781423 -7.067897e-01 
## Days_from_start -0.0201654132  0.0014267591  0.0011681251  7.072751e-01 
## day             -0.0538032492  0.0189749151  0.0116537162 -1.449945e-02 
## z                0.0004337322  0.0049386846  0.0004885108  3.384415e-07 
## lat             -0.0234208987  0.0044474054 -0.0001322247  1.508621e-06 
## lon              0.0018427826 -0.0024262386  0.0015570612  3.233934e-06 
## rain            -0.0172546053  0.0085109924 -0.0013949272  5.057865e-07 
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## wind            -0.0740575252  0.0142991366  0.0021114883  1.091786e-06 
## humidity        -0.0548578190  0.1516063891  0.1990259410 -3.101348e-05 
## dew             -0.1057066679 -0.4816743052 -0.6489314171  1.199787e-04 
## t.min           -0.6285011131  0.6113774602 -0.0168967128 -3.292377e-06 
## t.max            0.7398611809  0.4014697453  0.0076617814 -7.526856e-06 
## sun              0.1501380798  0.0065591489  0.0060595212  1.375794e-06 
## temp            -0.1009154533 -0.4574656022  0.7339945650 -1.279054e-04 
## Autumn.Prec     -0.0187488194  0.0049187043  0.0005155531 -2.009229e-05 
## Winter.Prec     -0.0019383871 -0.0003658002  0.0001697751  3.003174e-05 
## Winter.Temp     -0.0175275857  0.0034716002  0.0004847267 -4.935949e-06 
## z.sum           -0.0045729191 -0.0008592697 -0.0007084059  3.263832e-06 

Plot these values as a biplot 

Fig. 3.5 
autoplot(dailyPCA.unlog.prcomp, colour="white", loadings = TRUE, 
loadings.label=TRUE, loadings.label.size = 5) 

 

Alternative view 
fviz_pca_var(dailyPCA.unlog.prcomp, repel = TRUE)     # Avoid text overlapping 



 

244 

 

 

Create a Scree plot ## Fig. 3.4 

plot(dailyPCA.unlog.prcomp, type ="l") 

 Suggests 2-5 PCAs 

summary(dailyPCA.unlog.prcomp) 
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## Importance of components: 
##                           PC1    PC2     PC3     PC4     PC5     PC6     PC7 
## Standard deviation     2.3727 1.5701 1.31077 1.22629 1.13224 1.01489 0.95762 
## Proportion of Variance 0.3128 0.1369 0.09545 0.08354 0.07122 0.05722 0.05095 
## Cumulative Proportion  0.3128 0.4497 0.54516 0.62871 0.69993 0.75715 0.80810 
##                            PC8     PC9    PC10    PC11   PC12    PC13    PC14 
## Standard deviation     0.88651 0.83764 0.77134 0.73207 0.6531 0.48412 0.34676 
## Proportion of Variance 0.04366 0.03898 0.03305 0.02977 0.0237 0.01302 0.00668 
## Cumulative Proportion  0.85176 0.89074 0.92379 0.95356 0.9773 0.99028 0.99696 
##                           PC15    PC16    PC17      PC18 
## Standard deviation     0.21961 0.07796 0.01880 5.178e-05 
## Proportion of Variance 0.00268 0.00034 0.00002 0.000e+00 
## Cumulative Proportion  0.99964 0.99998 1.00000 1.000e+00 

Suggests maybe 10? 

Tree model 

Section 3.4.2.4 

Fig. 3.7 
dailytree<-subset(daily, select = c(year, trap, Days_from_start, day, z, lat, 
lon, rain, wind, humidity, dew, t.min, t.max, sun, temp, Autumn.Prec, 
Winter.Prec, Winter.Temp, z.sum)) 
 
library(tree) 
modelt<-tree(z~.,data=dailytree) 
plot(modelt) 
text(modelt) 
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Generalized Additive Models 

Section 3.4.3 

Model selection 

Initial model selection looked at the number of variables and various methods of smoothing to 
find a model that would converge. These steps are available on request, but for the sake of 
brevity are omitted here. 

The code for the final model was: 

gc() 

##           used  (Mb) gc trigger  (Mb) max used  (Mb) 
## Ncells 4793622 256.1    8602728 459.5  8347882 445.9 
## Vcells 9831005  75.1   17829126 136.1 17808555 135.9 

Model4sel<-gam(z~s(lon,lat, k=5) + 
                 s(Days_from_start, k=100)+s(day, k=100)+  
                 s(wind, k=50)+ s(sun,k=100)+ s(temp, k=80) 
               + s(Autumn.Prec, k=50)+ s(Winter.Prec, k=50)+ s(Winter.Temp, 
k=50)+ s(z.sum, k=50), 
               select = TRUE, family = nb(), method = "REML", data=dailytree) 

Where, “Model” is the final model, “gam” is the term to select the GAM within R, “z” is the 
response, here the number of B. aeneus per day, the terms preceded by “s(“ are the explanatory 
variables (see Table 1) with “s” denoting the smooth term for the parameter, “bs=”ts”” denotes 
the thin plate spline (Wood 2003) used to link the spatial variates (“lat”=latitude, 
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“lon”=longitude), “k” is the knot term which determines the degree of smoothing or wiggliness 
of the trend, here set for each parameter as the default setting within mgcv (10) was too low, 
“select=TRUE” allows the model to penalise smooth terms to avoid overfitting, “family=nb()” 
denotes the negative binomial distribution. The smoothing method is set as Restricted 
Maximum Likelihood (REML) by method = “REML”, which penalises overly wiggly models 
(Wood 2017). 

Fig. 3.8 
gam.check(Model4sel, rep=500) 

 

##  
## Method: REML   Optimizer: outer newton 
## full convergence after 13 iterations. 
## Gradient range [-0.0002716857,0.0009599165] 
## (score 23967.64 & scale 1). 
## eigenvalue range [-0.000958787,2705.72]. 
## Model rank =  626 / 626  
##  
## Basis dimension (k) checking results. Low p-value (k-index<1) may 
## indicate that k is too low, especially if edf is close to k'. 
##  
##                          k'      edf k-index p-value     
## s(lon,lat)          4.00000  0.00261    0.84   0.050 *   
## s(Days_from_start) 99.00000 91.93795    0.69  <2e-16 *** 
## s(day)             99.00000 36.23367    0.77  <2e-16 *** 
## s(wind)            49.00000  4.26959    0.84   0.055 .   
## s(sun)             99.00000  7.80364    0.78  <2e-16 *** 
## s(temp)            79.00000  7.10865    0.85   0.130     
## s(Autumn.Prec)     49.00000 35.41336    0.88   0.910     
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## s(Winter.Prec)     49.00000  8.57823    0.88   0.905     
## s(Winter.Temp)     49.00000  4.75344    0.88   0.920     
## s(z.sum)           49.00000  5.54699    0.86   0.650     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

summary(Model4sel) 

##  
## Family: Negative Binomial(0.378)  
## Link function: log  
##  
## Formula: 
## z ~ s(lon, lat, k = 5) + s(Days_from_start, k = 100) + s(day,  
##     k = 100) + s(wind, k = 50) + s(sun, k = 100) + s(temp, k = 80) +  
##     s(Autumn.Prec, k = 50) + s(Winter.Prec, k = 50) + s(Winter.Temp,  
##     k = 50) + s(z.sum, k = 50) 
##  
## Parametric coefficients: 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept)  -3.7206     0.3115  -11.95   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Approximate significance of smooth terms: 
##                          edf Ref.df   Chi.sq p-value     
## s(lon,lat)          0.002613      4    0.004 0.00178 **  
## s(Days_from_start) 91.937952     99 1889.424 < 2e-16 *** 
## s(day)             36.233669     99 1820.945 < 2e-16 *** 
## s(wind)             4.269586     49  846.720 < 2e-16 *** 
## s(sun)              7.803635     99  147.190 < 2e-16 *** 
## s(temp)             7.108652     79  574.281 < 2e-16 *** 
## s(Autumn.Prec)     35.413357     49  335.473 < 2e-16 *** 
## s(Winter.Prec)      8.578227     49  110.928 < 2e-16 *** 
## s(Winter.Temp)      4.753444     49   55.351 < 2e-16 *** 
## s(z.sum)            5.546989     49   99.364 < 2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## R-sq.(adj) =  0.257   Deviance explained = 65.9% 
## -REML =  23968  Scale est. = 1         n = 21586 

As the gam.check results show (Fig. 3.8) the GAM does not converge satisfactorily and further 
work in this direction was deemed to not be useful. 

Zero-inflated Generalized Linear Models 

Section 3.4.3 

Next, a zero-inflated GLM was attempted 

#Use the "daily" datafile 
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#create an all-integer dataframe for correlaton plot 
daily1 <-modify_if(daily, is.factor, as.integer) 
daily1<-subset(daily1, select = c(year, trap, Days_from_start, day, z, lat, lon, 
rain, wind, humidity, dew, t.min, t.max, sun, temp, Autumn.Prec, Winter.Prec, 
Winter.Temp, z.sum)) 

The data were split into a training and a testing dataset 

set.seed(123) 
index<-sample(2,nrow(daily),replace = TRUE,p=c(.8,.2)) 
train<-daily[index==1,] 
test<-daily[index==2,] 
 
names(daily) 

##  [1] "year"            "trap"            "date"            "Value.Date"      
##  [5] "Days_from_start" "day"             "z"               "lat"             
##  [9] "lon"             "x"               "y"               "rain"            
## [13] "wind"            "humidity"        "dew"             "t.min"           
## [17] "t.max"           "sun"             "temp"            "Autumn.Prec"     
## [21] "Winter.Prec"     "Winter.Temp"     "z.sum" 

describe(daily) 

##                 vars     n     mean      sd   median  trimmed     mad      
min 
## year               1 24399  2007.88    9.66  2012.00  2008.87    7.41  
1987.00 
## trap*              2 24399     4.93    3.36     6.00     4.63    4.45     
1.00 
## date*              3 24399  4018.62 2307.05  4022.00  4019.96 2962.23     
1.00 
## Value.Date         4 24399 39546.05 3544.94 41008.00 39906.95 3033.40 
31778.00 
## Days_from_start    5 24399  7769.05 3544.94  9231.00  8129.95 3033.40     
1.00 
## day                6 24399   127.02   71.55   127.00   127.24   91.92     
1.00 
## z                  7 24399     2.55   11.79     0.00     0.42    0.00     
0.00 
## lat                8 24399    52.17    0.87    52.12    52.04    0.47    
50.63 
## lon                9 24399    -0.35    1.07    -0.36    -0.17    1.38    -
3.45 
## x                 10 24399   512.80   73.93   513.16   525.15   92.25   
297.21 
## y                 11 24399   254.45   96.61   247.51   240.36   50.71    
82.11 
## rain              12 24399     1.91    3.23     0.54     1.16    0.77     
0.00 
## wind              13 24398     3.47    1.57     3.24     3.33    1.48     
0.39 
## humidity          14 24399    82.43    8.25    82.17    82.48    9.01    
49.07 
## dew               15 24399     7.68    4.93     7.86     7.80    5.81   -
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10.42 
## t.min             16 24399    14.64    6.43    15.03    14.71    7.69    -
7.13 
## t.max             17 24399     6.76    5.03     6.86     6.86    6.05    -
8.84 
## sun               18 24393    12.61    7.29    12.38    12.33    8.82     
0.07 
## temp              19 24399    10.67    5.72    10.86    10.79    7.00    -
8.13 
## Autumn.Prec       20 24399     2.11    0.50     2.06     2.09    0.44     
1.11 
## Winter.Prec       21 24399     2.08    0.69     2.10     2.03    0.74     
0.80 
## Winter.Temp       22 24399   -49.49   47.32   -42.76   -43.75   31.73  -
401.23 
## z.sum             23 21591   396.81  445.72   210.00   305.38  210.53     
0.00 
##                      max    range  skew kurtosis    se 
## year             2018.00    31.00 -0.66    -1.00  0.06 
## trap*              12.00    11.00  0.33    -0.87  0.02 
## date*            8000.00  7999.00  0.00    -1.20 14.77 
## Value.Date      43350.00 11572.00 -0.65    -1.01 22.69 
## Days_from_start 11573.00 11572.00 -0.65    -1.01 22.69 
## day               250.00   249.00 -0.02    -1.18  0.46 
## z                 593.00   593.00 15.17   439.55  0.08 
## lat                55.21     4.58  1.82     4.29  0.01 
## lon                 0.94     4.40 -1.32     1.27  0.01 
## x                 605.90   308.69 -1.33     1.32  0.47 
## y                 591.05   508.94  1.80     4.24  0.62 
## rain               46.23    46.23  3.37    17.47  0.02 
## wind               12.17    11.78  0.91     1.09  0.01 
## humidity          100.00    50.93 -0.07    -0.53  0.05 
## dew                19.48    29.90 -0.21    -0.71  0.03 
## t.min              34.23    41.36 -0.09    -0.87  0.04 
## t.max              19.23    28.07 -0.13    -0.89  0.03 
## sun                31.61    31.54  0.23    -0.92  0.05 
## temp               25.18    33.31 -0.14    -0.94  0.04 
## Autumn.Prec         4.14     3.04  0.90     2.23  0.00 
## Winter.Prec         4.45     3.65  0.77     0.93  0.00 
## Winter.Temp         0.00   401.23 -3.73    24.19  0.30 
## z.sum            2286.00  2286.00  2.00     4.22  3.03 

The data were then centred. This prevents a true forecast as the data would have to be rescaled 
back to the original values post-processing. 

year.scaled<-scale(daily$year, scale=TRUE) 
Days_from_start.scaled<-scale(daily$Days_from_start, scale=TRUE) 
day.scaled<-scale(daily$day, scale=TRUE) 
daily.beetle.count.scaled<-scale(daily$z, scale=TRUE) 
lat.scaled<-scale(daily$lat, scale=TRUE) 
lon.scaled<-scale(daily$lon, scale=TRUE) 
rain.scaled<-scale(daily$rain, scale=TRUE) 
wind.scaled<-scale(daily$wind, scale=TRUE) 
humidity.scaled<-scale(daily$humidity, scale=TRUE) 
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dew.scaled<-scale(daily$dew, scale=TRUE) 
t.min.scaled<-scale(daily$t.min, scale=TRUE) 
t.max.scaled<-scale(daily$t.max, scale=TRUE) 
sun.scaled<-scale(daily$sun, scale=TRUE) 
temp.scaled<-scale(daily$temp, scale=TRUE) 
Autumn.Prec.scaled<-scale(daily$Autumn.Prec, scale=TRUE) 
Winter.Prec.scaled<-scale(daily$Winter.Prec, scale=TRUE) 
Winter.Temp.scaled<-scale(daily$Winter.Temp, scale=TRUE) 
previous.pbcount.scaled<-scale(daily$z.sum, scale=TRUE) 

As the daily data for the pollen beetles contained fractions where multi-day catches cought a 
number of beetles not wholly divisible from the number of days trapping these data had to be 
rounded and then scaled. 

rounded.beetle.count<-round(daily$z, digits=0) 
scaled.rounded.beetle.count<-scale(rounded.beetle.count, scale=TRUE) 

A process of model selection was undergone, details of which are excluded from this summary 
but the full code is available on request. 

The final model code in R was: 

mod13sel<-zeroinfl(rounded.beetle.count  ~ previous.pbcount.scaled + temp.scaled 
+ wind.scaled + lon.scaled |sun.scaled + wind.scaled + day.scaled + lon.scaled, 
dist = "negbin") 
 
summary(mod13sel) 

##  
## Call: 
## zeroinfl(formula = rounded.beetle.count ~ previous.pbcount.scaled + 
temp.scaled +  
##     wind.scaled + lon.scaled | sun.scaled + wind.scaled + day.scaled +  
##     lon.scaled, dist = "negbin") 
##  
## Pearson residuals: 
##     Min      1Q  Median      3Q     Max  
## -0.4993 -0.3651 -0.2320 -0.1385 35.3899  
##  
## Count model coefficients (negbin with log link): 
##                         Estimate Std. Error z value Pr(>|z|)     
## (Intercept)              0.78571    0.03211   24.47  < 2e-16 *** 
## previous.pbcount.scaled  0.52684    0.02225   23.68  < 2e-16 *** 
## temp.scaled              0.70084    0.03582   19.57  < 2e-16 *** 
## wind.scaled             -0.52678    0.02951  -17.85  < 2e-16 *** 
## lon.scaled              -0.08125    0.02500   -3.25  0.00115 **  
## Log(theta)              -1.37363    0.03428  -40.07  < 2e-16 *** 
##  
## Zero-inflation model coefficients (binomial with logit link): 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -0.40973    0.08904  -4.602 4.19e-06 *** 
## sun.scaled  -2.13522    0.10518 -20.300  < 2e-16 *** 
## wind.scaled  0.23727    0.04598   5.160 2.47e-07 *** 
## day.scaled   0.67251    0.05206  12.918  < 2e-16 *** 
## lon.scaled  -0.21479    0.04227  -5.081 3.76e-07 *** 
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## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
##  
## Theta = 0.2532  
## Number of iterations in BFGS optimization: 24  
## Log-likelihood: -2.646e+04 on 11 Df 

The vertical bar ‘|’ defines the model partition in terms of where the parameters are utilised. 
Those predictors on the left side being used for the count (negative binomial) component and 
those predictors on the right the zero-inflation (binomial) component of the model. In other 
words, those on the right side are explaining whether or not there is a risk of a zero count, with 
those on the left determining the size of the count when it is non-zero. 

For predictive purposes the NA values were removed 

df<-cbind(rounded.beetle.count, daily$wind, daily$sun, daily$z.sum) 
df1<-na.exclude(df) 

The observed values were stored and the number of nonzero values determined: 

obs <- df1[,1] 
obs.nonzero <- obs > 0 
table(obs) 

## obs 
##     0     1     2     3     4     5     6     7     8     9    10    11    12  
## 15852  1635   879   537   389   282   212   198   155   135    94    96    80  
##    13    14    15    16    17    18    19    20    21    22    23    24    25  
##    83    74    48    43    38    35    43    38    33    41    27    19    18  
##    26    27    28    29    30    31    32    33    34    35    36    37    38  
##    24    23    17    21    18    14    12    19    17    18    18    20    13  
##    39    40    41    42    43    44    45    46    47    48    49    50    51  
##     8     9     4     4     7     4    11     7     5     7     7     8     6  
##    52    53    54    55    56    57    58    59    60    61    62    63    64  
##    10    11     5     2     7     3     4     2     7     2     9     4     3  
##    65    66    67    68    69    72    73    74    75    76    77    79    80  
##     4     2     2     1     2     2     3     3     1     2     4     3     1  
##    81    82    83    85    86    88    90    91    92    93    94    95    96  
##     1     1     4     2     3     2     1     1     1     1     4     1     4  
##    97    99   100   103   105   106   107   108   109   111   116   120   124  
##     1     1     3     1     1     2     2     1     1     1     3     1     1  
##   125   127   128   129   131   132   135   136   141   148   150   151   152  
##     1     3     4     1     1     3     1     1     2     1     1     1     2  
##   154   157   159   174   179   196   200   219   222   233   248   257   295  
##     2     1     1     1     2     1     1     1     1     1     1     1     1 

table(obs.nonzero) 

## obs.nonzero 
## FALSE  TRUE  
## 15852  5734 

The predicted counts were stored and the number of non-zero counts determined: 
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preds.count <- predict(mod13sel, type="response") 
 
preds <- 1-predict(mod13sel, type = "prob")[,1] 
preds.nonzero <- preds > 0.5 
table(preds.nonzero) 

## preds.nonzero 
## FALSE  TRUE  
## 18708  2878 

The observed versus predicted could then be calculated: 

Fig. 3.10 
output <- as.data.frame(list(preds.count=preds.count, obs=obs)) 
#output2 <- stri_list2matrix(output) 
summary(output) 

##   preds.count             obs          
##  Min.   :  0.00212   Min.   :  0.000   
##  1st Qu.:  0.29696   1st Qu.:  0.000   
##  Median :  1.16003   Median :  0.000   
##  Mean   :  2.85777   Mean   :  2.471   
##  3rd Qu.:  3.25244   3rd Qu.:  1.000   
##  Max.   :119.76060   Max.   :295.000 

#class(output2) <- 'numeric' 
 
r<- ggplot(aes(x=obs, y=preds.count), data=output) + geom_point(alpha=0.3) + 
geom_smooth(col="red") 
r+ labs(x = "Observed Count", y = "Predicted Count") 

## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")' 
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Forecasting using the model. 

Taking third value from each scaled column plus a range within the range of scaled day a 
forecast can be made 

newdata <- expand.grid(list(previous.pbcount.scaled=3.103, 
                            temp.scaled=-2.006, 
                            wind.scaled=-0.941, 
                            lon.scaled=-0.0061, 
                            sun.scaled=-1.29, 
                            day.scaled=-1.7:1.7)) 
 
predict(mod13sel, newdata, se.fit = FALSE, conf = 0.95, 
        MC = 1000, type = "response", 
        na.action = na.pass) 

##         1         2         3         4  
## 1.2367754 0.7286707 0.4037233 0.2154716 

r2_zeroinflated(mod13sel) 

## # R2 for Zero-Inflated and Hurdle Regression 
##  
##        R2: 0.953 
##   adj. R2: 0.953 

coef(mod13sel) 

##             count_(Intercept) count_previous.pbcount.scaled  
##                    0.78571422                    0.52683651  
##             count_temp.scaled             count_wind.scaled  
##                    0.70083707                   -0.52678207  
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##              count_lon.scaled              zero_(Intercept)  
##                   -0.08125415                   -0.40973257  
##               zero_sun.scaled              zero_wind.scaled  
##                   -2.13521825                    0.23726687  
##               zero_day.scaled               zero_lon.scaled  
##                    0.67250901                   -0.21478931 

…and these forecasts plotted 

ggmodprev.temp.lon.wind<-ggpredict(mod13sel, terms = 
c("previous.pbcount.scaled", "temp.scaled", "lon.scaled", "wind.scaled")) 
 
ggplot(ggmodprev.temp.lon.wind,aes(x, predicted, colour = group)) +  
  geom_line() +  
  facet_grid(panel~facet) 

 

Then unscale the variables and rerun ## Fig. 3.9 

#turn the ggpredict output into a dataframe 
labelled.ggmod<-as_tibble(ggmodprev.temp.lon.wind) 
#relabel the columns 
labelled.ggmod<-labelled.ggmod %>%  
  rename( 
    Previous = x, 
    Temperature = group, 
    Longitude = facet, 
    Wind = panel) 
 
#make a separate dataframe for unscaling 
labelled.ggmod2<-labelled.ggmod 
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#convert the columns from factors to numeric 
labelled.ggmod2$Temperature <- as.numeric(labelled.ggmod2$Temperature) 
labelled.ggmod2$Wind <- as.numeric(labelled.ggmod2$Wind) 
labelled.ggmod2$Longitude <- as.numeric(labelled.ggmod2$Longitude) 
labelled.ggmod2$Previous <- as.numeric(labelled.ggmod2$Previous) 
 
#remove the NAs for the mean on Previous & wind 
wind.noNA<-na.exclude(daily$wind) 
Prev.noNA<-na.exclude(daily$z.sum) 
#unscale 
labelled.ggmod2$Temperature <- (labelled.ggmod2$Temperature * sd(daily$temp)) + 
mean(daily$temp) 
labelled.ggmod2$Wind <- (labelled.ggmod2$Wind * sd(wind.noNA)) + mean(wind.noNA) 
labelled.ggmod2$Longitude <- (labelled.ggmod2$Longitude * sd(daily$lon)) + 
mean(daily$lon) 
labelled.ggmod2$Previous <- (labelled.ggmod2$Previous * sd(Prev.noNA)) + 
mean(Prev.noNA) 
#round 
labelled.ggmod2$Temperature <- round(labelled.ggmod2$Temperature, digits=2) 
labelled.ggmod2$Wind <- round(labelled.ggmod2$Wind, digits=2) 
labelled.ggmod2$Longitude <- round(labelled.ggmod2$Longitude, digits=2) 
labelled.ggmod2$Previous <- round(labelled.ggmod2$Previous, digits=2) 
write.csv(labelled.ggmod2,"P://Analysis/Zero Inflated Models/ggmod2.csv", 
row.names = FALSE) 
 
 
 
p<-ggplot(labelled.ggmod2,aes(Previous, predicted, colour = 
factor(Temperature))) +  
  geom_line() +  
  facet_grid(Wind~Longitude, labeller=label_both) 
 
p<- p + labs(colour="Temperature") 
p<-p + labs(x = "Previous Year's Count", y = "Predicted 
Count")+theme_bw(base_size=10) 
p<-p + theme(axis.text.x = element_text(size=6, angle=45)) 
p + coord_fixed(ratio = 32) 
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Random Forest 

Section 3.4.4.1 

To investigate the Random Forest method for understanding the data the packages 
randomForest, Rpart and Rpartykit were used. 

First, the dataset was assembled 

#Use the daily datafile 
# 2 NA values 
daily$sun[is.na(daily$sun)] <- mean(daily$sun, na.rm=TRUE) 
daily1 <-modify_if(daily, is.factor, as.integer) 
daily1<-na.omit(daily1) 
 
data2<-subset(daily1, select = c(day, lat, lon, rain, wind, humidity, dew, 
t.min, t.max, sun, temp, Autumn.Prec, Winter.Prec, Winter.Temp, z.sum)) 
 
data2$z.cut <- cut(daily1$z, breaks = c(-Inf, 0, 10, 30, Inf)) 

The random forest model was created 

# Set random seed to make results reproducible: 
set.seed(17) 
# Calculate the size of each of the data sets: 
data_set_size2 <- floor(nrow(data2)/2) 
# Generate a random sample of "data_set_size" indexes 
indexes2 <- sample(1:nrow(data2), size = data_set_size2) 
# Assign the data to the correct sets 
training2 <- data2[indexes2,] 
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validation2 <- data2[-indexes2,] 
rf_classifier2 = randomForest(z.cut ~ ., data=training2, ntree=5000, mtry=4, 
importance=TRUE) 
#ntree is the number of trees, mtry is number of variables to try (4 is max 
here) 
rf_classifier2 

##  
## Call: 
##  randomForest(formula = z.cut ~ ., data = training2, ntree = 5000,      mtry 
= 4, importance = TRUE)  
##                Type of random forest: classification 
##                      Number of trees: 5000 
## No. of variables tried at each split: 4 
##  
##         OOB estimate of  error rate: 21.42% 
## Confusion matrix: 
##           (-Inf,0] (0,10] (10,30] (30, Inf] class.error 
## (-Inf,0]      7228    536       8         3   0.0703537 
## (0,10]        1180   1225      14         1   0.4938017 
## (10,30]        127    275      19         3   0.9551887 
## (30, Inf]       55    103       7        11   0.9375000 

varImpPlot(rf_classifier2) 

 

plot(rf_classifier2) 
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##Fig. 3.12 

fit2<-rpart(z.cut ~ ., data=training2) 
plot(as.party(fit2), col= cols) 

 

To determine the Gini index for each variable the following code was run 
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first_seed <- 50 
accuracies <-c() 
Importance<-c() 
result<-c() 
gc() 

##            used  (Mb) gc trigger   (Mb)  max used   (Mb) 
## Ncells  5052812 269.9    8602728  459.5   8602728  459.5 
## Vcells 72445526 552.8  589099977 4494.5 689780662 5262.7 

#for (i in 1:10){ 
#  set.seed(first_seed) 
#  first_seed <- first_seed+1 
#  modelFit <- randomForest(z.cut ~ ., #data=training2, ntree=5000, proximity = 
TRUE,importance =TRUE, votes=TRUE, mytry = 4) 
#  print (modelFit) 
#  result[[i]] <- modelFit 
#  write.csv(modelFit$importance, file = #paste("Importance_", i, ".csv", sep = 
"")) 
#} 
#Getting a memory error message after 7 iterations slight change for the last 3 

These values were written to csv files and then merged to create a single dataframe. Note, this 
assembly takes a few hours of PC processing time. 

#Imp1 <- read.csv("Importance_1.csv") 
#Imp2 <- read.csv("Importance_2.csv") 
# 
#... 
# 
#Imp9 <- read.csv("Importance2_2.csv") 
#Imp10 <- read.csv("Importance2_3.csv") 
 
#total <- merge(Imp1 ,Imp2 ,by="X") 
#Total <-merge(total ,Imp3 ,by="X") 
# 
#... 
 
#Total <-merge(Total ,Imp9 ,by="X") 
#Total <-merge(Total ,Imp10 ,by="X") 
#names (Total) 
 
#Assembled dataset for loading in markdown 
Total<-read.csv("P://Final datasets/RFTotal.csv") 

Calculate the mean, standard error and standard deviation and re-order by the mean: 

names (Total) 

##  [1] "X"                        "X..Inf.0..x"              
##  [3] "X.0.10..x"                "X.10.30..x"               
##  [5] "X.30.100..x"              "X.100..Inf..x"            
##  [7] "MeanDecreaseAccuracy.x"   "MeanDecreaseGini.x"       
##  [9] "X..Inf.0..y"              "X.0.10..y"                
## [11] "X.10.30..y"               "X.30.100..y"              
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## [13] "X.100..Inf..y"            "MeanDecreaseAccuracy.y"   
## [15] "MeanDecreaseGini.y"       "X..Inf.0..x.1"            
## [17] "X.0.10..x.1"              "X.10.30..x.1"             
## [19] "X.30.100..x.1"            "X.100..Inf..x.1"          
## [21] "MeanDecreaseAccuracy.x.1" "MeanDecreaseGini.x.1"     
## [23] "X..Inf.0..y.1"            "X.0.10..y.1"              
## [25] "X.10.30..y.1"             "X.30.100..y.1"            
## [27] "X.100..Inf..y.1"          "MeanDecreaseAccuracy.y.1" 
## [29] "MeanDecreaseGini.y.1"     "X..Inf.0..x.2"            
## [31] "X.0.10..x.2"              "X.10.30..x.2"             
## [33] "X.30.100..x.2"            "X.100..Inf..x.2"          
## [35] "MeanDecreaseAccuracy.x.2" "MeanDecreaseGini.x.2"     
## [37] "X..Inf.0..y.2"            "X.0.10..y.2"              
## [39] "X.10.30..y.2"             "X.30.100..y.2"            
## [41] "X.100..Inf..y.2"          "MeanDecreaseAccuracy.y.2" 
## [43] "MeanDecreaseGini.y.2"     "X..Inf.0..x.3"            
## [45] "X.0.10..x.3"              "X.10.30..x.3"             
## [47] "X.30.100."                "X.100..Inf."              
## [49] "MeanDecreaseAccuracy.x.3" "MeanDecreaseGini.x.3"     
## [51] "X..Inf.0..y.3"            "X.0.10..y.3"              
## [53] "X.10.30..y.3"             "X.30..Inf..x"             
## [55] "MeanDecreaseAccuracy.y.3" "MeanDecreaseGini.y.3"     
## [57] "X..Inf.0..x.4"            "X.0.10..x.4"              
## [59] "X.10.30..x.4"             "X.30..Inf..y"             
## [61] "MeanDecreaseAccuracy.x.4" "MeanDecreaseGini.x.4"     
## [63] "X..Inf.0..y.4"            "X.0.10..y.4"              
## [65] "X.10.30..y.4"             "X.30..Inf."               
## [67] "MeanDecreaseAccuracy.y.4" "MeanDecreaseGini.y.4" 

Total.Plot<-Total[,c(1,5,9,13,17,21,25,29,33,37,41)] 
Total.Plot$Mean<-rowMeans (Total.Plot[,2:11]) 
Total.Plot$SE<- apply(Total.Plot[,2:11],1,std.error) 
Total.Plot$SD<- apply(Total.Plot[,2:11],1,sd) 
Total.Plot <- Total.Plot[order(-Total.Plot$Mean),]  

Make the plot: 

Fig. 3.11 Fig. 3.14 

 

p<-ggplot(Total.Plot, aes(reorder(X, Mean),Mean)) +  
  geom_point(col="#AEAEAE", size=3) + # Draw points 
  geom_errorbar(aes(ymin=Mean-SD, ymax=Mean+SD), width=.4, 
                position=position_dodge(.9)) + 
  geom_segment(aes(x=X,  
                   xend=X,  
                   y=min(Mean),  
                   yend=max(Mean)+max(SD)),  
               linetype="dashed",  
               size=0.1) +   # Draw dashed lines 
  ylab("Mean Decrease Gini (n=10)")+   
  xlab("")+ 
  coord_flip()+ 
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  theme_bw()+ 
  theme(axis.line = element_line(colour = "black"), 
        panel.grid.major = element_blank(), 
        panel.grid.minor = element_blank(), 
        panel.border = element_blank(), 
        panel.background = element_blank(), 
        legend.position="none", 

        legend.title=element_blank()) 
 
p 

 

Artificial Neural Networks 

Section 3.4.5 

Note: the following code requires tensorflow to be installed 

An ordinal regression artificial neural network was employed as a final attempt to model the 
daily data. 

First, assemble the dataset: 

traps <- unique(data[,c("x", "trap")]) 
# remove 2 NA values 
data$sun[is.na(data$sun)] <- mean(data$sun, na.rm=TRUE) 
 
 
# discretise z into classes 
data$z.cut <- cut(data$z, breaks = c(-Inf, 0, 10, 30, Inf)) 
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data <- data[,c("day", "year", "x", "y", "z", "z.cut", "rain", "wind", 
"humidity",  
                "dew", "t.min", "t.max", "sun", "temp", "z.sum")] 
 
data <- data[order(data$year, data$day, data$x, data$y),] 
 
 
 
# normalise the numeric variables 
sc <- cbind(rbind(apply(data[,-6], 2, mean), apply(data[,-6], 2, sd)), 
z.cut=c(NA, NA)) 
sc <- sc[, colnames(data)] 

Keras works with what are know as long short-term memory (LSTM) layers. These need to be 
created (“shaped”) using the following function: 

 

lstm.shape <- function(table, # data.frame of covariates X and response var. Y 
                       by=c("x", "y"), # dimension by which to group the 
data.frame 
                       t, # time dimension along which to wrap the table 
                       Y="z", # reponse variable 
                       step.X=(-5):(-1), # time step relative to step.Y to use 
for covariates 
                       step.Y=0, # time step of Y to predict 
                       use.Y=TRUE, # include previous value of response var. as 
predictors 
                       scales=NULL, # a 2-line (mean, sd) matrix by which X and 
Y are to be normalised 
                       last=FALSE){ # include only the part of X that will 
predict the last steps of Y 
   
  arr.X <- array(NA, dim=c(nrow(table), length(step.X), ncol(table)))   
  arr.Y <- array(NA, dim=c(nrow(table), length(step.Y), 1))   
   
  t.Y <- sapply(step.Y, function(i) table[, t]+i) 
  t.X <- sapply(step.X, function(i) table[, t]+i) 
   
  for (i in 1:length(step.Y)){ 
    small.table <- cbind(t.Y[,i], table[, by]) 
    names(small.table)[1] <- t 
     
    temp <- left_join(small.table, table, by=c(t, by))[,Y] 
    if (sum(is.na(scales[,Y])) == 0) {temp <- (temp - scales[1,Y]) / 
scales[2,Y]} 
    arr.Y[,i,] <- temp 
  } 
   
  for (i in 1:length(step.X)){ 
    small.table <- cbind(t.X[,i], table[, by]) 
    names(small.table)[1] <- t 
    temp <- left_join(small.table, table, by=c(t, by)) 
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    for (j in 1:ncol(table)){ 
      if (sum(is.na(scales[,names(table)[j]])) == 0) { 
        arr.X[,i,j] <- (temp[,j] - scales[1, names(table)[j]]) / scales[2, 
names(table)[j]] 
      }else{ 
        arr.X[,i,j] <- temp[,j] 
      } 
    } 
  } 
   
  idx <- which(names(table) == Y) 
  if (!use.Y){ # use Y as a predictor; only sensible if !(step.Y %in% step.X) 
    arr.X <- arr.X[,,-idx, drop=FALSE]} 
   
  nas <- is.na(arr.X[,,(1 + length(t) + length(by)), drop=FALSE]) 
  weights <- 1 / (apply(nas, 1, sum) + 1) 
  arr.X[is.na(arr.X)] <- 0 
   
  if (last){ 
    arr.X <- arr.X[t.Y==max(t.Y),,,drop=FALSE] 
    arr.Y <- arr.Y[t.Y==max(t.Y),,,drop=FALSE] 
    weights <- weights[t.Y==max(t.Y)] 
  } 
   
  list(arr.X, arr.Y, weights) 
} 

 

The architecture of the Neural Network is then created: 

## number of LSTM/GRU memory time steps 

STEPS <-20  

 

## use covariates until today to predict today's cut counting 

arr <- lstm.shape(table=data[, names(data)!="z"],  

                  by=c("year", "x", "y"), t="day", Y="z.cut", 

                  step.X=(-STEPS):0, step.Y=0, use.Y=FALSE,  

                  scales=sc[, names(data)!="z"]) 

 

## separate labels from data, and drop the first STEPS days 

train_data <- arr[[1]][data$day > STEPS,,, drop=FALSE] #[,,-(1:4), drop=FALSE] # 
rm coords? 

train_labels <- labels_1d <- arr[[2]][data$day > STEPS,,, drop=FALSE] 
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samp_weights <- arr[[3]][data$day > STEPS] 

## also drop the first STEPS days from original data set 

data <- filter(data, day>STEPS) 

 

 

## this would become problematic if step.Y!=0 like in e.g. X1,X2,X3 -> Y1,Y2,Y3 

train_labels <- array(train_labels-1, dim=c(dim(train_labels)[1], 1)) 

## train_labels <- to_categorical(train_labels) # if one_hot CCE 

 

## ordinal regression one-hot 

table <- matrix(0, nrow(train_labels), length(unique(train_labels))) 

for(i in 1:nrow(train_labels)){ table[i, 1:(train_labels[i]+1)] <- 1 } 

train_labels <- table[,-1] 

 

## training/testing set, structured 

who_test <- which(data$year %in% 1989:2004 & data$x==traps$x[traps$trap=='Brooms 
Barn']) 

## who_test <- sort((1:nrow(train_data))[sample(1:nrow(train_data), 
floor(.3*nrow(train_data)))]) 

who_train <- (1:nrow(train_data))[!(1:nrow(train_data)) %in% who_test] 

 

## class weights 

class_weights <- 1/sqrt(table(data$z.cut[who_train])) * 
sqrt(nrow(data[who_train,])) 

names(class_weights) <- as.character(0:(length(table(data$z.cut))-1)) 

## aggregate class weights and sample weights in one single vector (required by 
keras) 

samp_weights <- samp_weights * class_weights[labels_1d] 

 

## set seed 

use_session_with_seed(42)  
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## network architecture 

model <- keras_model_sequential() 

 

model %>% 

  layer_gru(units = 128, input_shape = dim(train_data)[2:3], 

            return_sequences = FALSE, recurrent_dropout = .2, 

            kernel_regularizer = regularizer_l2(.001)) %>% 

  layer_dense(units = max(max(train_labels)+1, ncol(train_labels)), 

              activation ='sigmoid')  

 

# summary(model) 

model %>% compile( 

  optimizer = optimizer_adam(lr=.0002), 

  loss = 'binary_crossentropy' 

)  

 

The network is then trained on the dataset: 

history <- model %>% keras::fit( 

  x=train_data[who_train,,, drop=FALSE], 

  y=train_labels[who_train,, drop=FALSE], 

  validation_split=.2, 

  epochs = 100, 

  batch_size = 10, 

  sample_weight = samp_weights[who_train], 

  callbacks = callback_early_stopping( 

    monitor="val_loss", patience = 10, restore_best_weights = TRUE), 

  shuffle=TRUE 

)  

Fig. 3.14  
(p2 <- plot(history) + theme_bw() + labs(y="") +  
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    scale_x_continuous(limits=c(0, length(history$metrics$val_loss)))) 

 

 

 

 

 

## save model weights 

model %>% save_model_weights_hdf5("D:/pollenBeetle/Final/weightsFinal.hdf5") 

We then test the model predictions:  

temp <- model %>% predict(train_data) 

 

# ROC threshold based on f1  

levels <- levels(data$z.cut) 

roc <- function(thr, idx){ 

  preds <- factor(levels[apply(cbind(1, temp) > thr, 1, function(x) 
max(which(x)))],  

                  levels=levels) 

  y_pred=factor(preds[idx], levels = levels) 
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  y_true=factor(data$z.cut[idx], levels = levels) 

   

  table <- table(preds=y_pred, obs=y_true) 

  recall <- diag(table) / (apply(table, 1, sum) + 1E-9) 

  precision <- diag(table) / (apply(table, 2, sum) + 1E-9) 

  f1 <- mean(2 * (recall*precision) / (recall+precision + 1E-9)) 

   

  rmse <- mean(sapply(1:length(table(as.numeric(y_true))),  

                      function(i) sqrt(mean(i - 
as.numeric(y_pred)[as.numeric(y_true)==i])^2))) 

   

  c(recall=mean(recall), precision=mean(precision), f1=f1, rmse=rmse) 

} 

thr <- seq(0.01, .99, by=.01) 

res <- data.frame(thr=rep(thr, 3), 

                  rbind(do.call("rbind", lapply(thr, roc, 1:nrow(data))), 

                        do.call("rbind", lapply(thr, roc, who_train)), 

                        do.call("rbind", lapply(thr, roc, who_test))), 

                  what=rep(c("total", "trained", "test"), each=length(thr))) 

best <- which.max(filter(res, what=="trained")$f1) 

best <- which.min(filter(res, what=="trained")$rmse) 

 

temp <- model %>% predict(train_data) 

 

best.thr <- .5 

levels <- levels(data$z.cut) 

 

preds <- factor( 

  levels[apply(cbind(1, temp) > best.thr, 1, function(x) 
max(which(cumprod(x)==1)))],  

                levels=levels(data$z.cut)) 
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table(preds) / table(data$z.cut) 

 

# performance 

mean(preds == data$z.cut) 

mean(preds[who_test] == data$z.cut[who_test]) 

mean(abs(as.numeric(data$z.cut)[who_test] - as.numeric(preds)[who_test]) <= 1) 

mean(abs(as.numeric(data$z.cut)[who_test] - as.numeric(preds)[who_test]) <= 2) 

 

# Confusion matrix weighted by observations 

table <- table(preds=preds, obs=data$z.cut) 

conf.mat <- data.frame(t(t(table)/apply(table, 2, sum)), what="all") 

table <- table(preds=preds[who_train], obs=data$z.cut[who_train]) 

conf.mat <- rbind(conf.mat, data.frame(t(t(table)/apply(table, 2, sum)), 
what="training set")) 

table <- table(preds=preds[who_test], obs=data$z.cut[who_test]) 

conf.mat <- rbind(conf.mat, data.frame(t(t(table)/apply(table, 2, sum)), 
what="testing set")) 

colnames(conf.mat) <- c("predicted", "observed", "Freq", "what") 

 

Fig. 3.15 Fig. 3.16 
p <- ggplot(conf.mat) + geom_raster(aes(x=observed, y=predicted, fill=Freq)) + 

  scale_fill_gradientn(colours=rev(myPalette(100)), limits=c(0,1)) + theme_bw() 
+ 

  scale_y_discrete(drop=FALSE) + 

  facet_wrap(~what) + coord_equal() + geom_text(aes(x=observed, y=predicted, 
label=round(Freq,2)), 

 

                                                                                                
colour=c("white", "black")[(conf.mat$Freq > .1)+1]) 

p + scale_x_discrete(labels=c("0", "1-10", "11-30", ">30")) + 
scale_y_discrete(labels=c("0", "1-10", "11-30", ">30")) 

 

p 
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...and test forecasting ability by hindcasting against the test dataset: 

preds_df <- cbind(data, preds) 

 

preds_df$lo <- c(0,0.1,1.1,5.1,20.1)[as.numeric(preds_df$preds)] 

preds_df$hi <- c(.1,1.1,5.1,20.1,max(preds_df$z)+10)[as.numeric(preds_df$preds)] 

 

preds_df$trained <- !(1:nrow(preds_df) %in% who_test)  

preds_df <- merge(preds_df, traps) 

r <- filter(preds_df, year > 2015) %>% 

Fig. 3.16 
 

  ggplot + geom_line(aes(x=day, y=z+1, group=x), colour="black", show.legend = 
FALSE) + 

  geom_ribbon(aes(x=day, ymin=lo+1, ymax=hi+1), alpha=.5, fill="navyblue") + 
theme_minimal(base_size=8) +  

  facet_grid(trap~year, scales = "free") + scale_y_log10()  

 

r+ggtitle("") + 
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  xlab("Day") + ylab("Number of beetles") 
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Appendix A, Chapter 4 
This Chapter attempted to correlate suction-trap data with field-level data from sticky-traps. It 
also examined the spatial synchrony of populations recorded from both trap networks. 

Libraries 

The following libraries are required for this Chapter: 

library(mgcv) 

library(ncf) 

library(Hmisc) 

library(itsadug) 

library(RColorBrewer) 
library(tidyr) 

The tidyr package was used to format the data files when required, the RColorBrewer package 
was used for graphical output, the itsadug package was used to format table output. The Hmisc 
package was used for data exploration. The statistical analyses were performed using the 
mgcv, ncf and itsadug packages 

Data 

The following data files will be used. These data are available on request. 

setwd("P:/Final datasets") 
DATA<-read.csv("Field weekly data coded means.csv") 
CORRDATA <-read.csv("Correlation workbook 2019.csv") 
DFS<-read.csv("Field and trap weekly data.csv") 
TCI<-read.csv("Trap Count Index.csv") 
UKcoast <- read.csv("UK coastline R.csv") 
spline <- read.csv("SplineAllYears.csv") 
splineSTALL <- read.csv("All Sites Daily All Years v3.csv") 

Statistical distribution of the data 

All data were interrogated with the fitdistrplus package to determine the best statistical 
distribution. See Appendix A, Chapter 2 for more detail on this step. 

Filtering data using the Central England Temperature data in an 

attempt to overcome the asynchronous sampling issue. 

The Central England Temperature (CET) data series was downloaded from 
https://www.metoffice.gov.uk/hadobs/hadcet/ 

https://www.metoffice.gov.uk/hadobs/hadcet/
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A converter was used to transform the CET matrix into a csv file. The converter is available 
here: http://rstudio-pubs-
static.s3.amazonaws.com/2117_19f0a65e216747f38f13c5318ce546de.html. 

CET converter 

 
 
#Function to convert data to tabular form 
transform.cet <- function(url) { 
  # Libraries 
  require(reshape2) 
  require(lubridate)  # Excellent package for working with dates 
  # Read file 
  cet <- NULL  # reset object in case already exists 
  cet <- read.table(url, quote = "\"") 
  # Rename header 
  var_names <- c("year", "day", "01", "02", "03", "04", "05", "06", "07",  
                 "08", "09", "10", "11", "12") 
  colnames(cet) <- var_names 
  # Transpose data 
  cet.melt <- melt(cet, c("year", "day")) 
  cet.melt <- subset(cet.melt, value != -999)  # remove unvalid dates 
   
  cet.melt$date <- dmy(paste(cet.melt$day, "-", cet.melt$variable, "-", 
cet.melt$year,  
                             sep = "")) 
  cet.melt$temperature <- cet.melt$value 
  return(cet.melt[, c("date", "temperature")]) 
} 
 
#Process the files direct from URLs (check URLs remain the same!) 
cet.mean <- 
transform.cet("http://www.metoffice.gov.uk/hadobs/hadcet/cetdl1772on.dat") 

cet.min <- 
transform.cet("http://www.metoffice.gov.uk/hadobs/hadcet/cetmindly1878on_urbadj4
.dat") 
cet.max <- 
transform.cet("http://www.metoffice.gov.uk/hadobs/hadcet/cetmaxdly1878on_urbadj4
.dat") 
 
#Rename  
names(cet.mean)[names(cet.mean) == "temperature"] <- "mean_temp" 
names(cet.min)[names(cet.min) == "temperature"] <- "min_temp" 
names(cet.max)[names(cet.max) == "temperature"] <- "max_temp" 
 
#export to csv 
write.csv(cet.mean, "cet_mean.csv", row.names = F) 
write.csv(cet.min, "cet_min.csv", row.names = F) 
write.csv(cet.max, "cet_max.csv", row.names = F) 
 
#NOTE, Temperature is expressed in tenths of a degree C so need to divide by 10 
if you require centigrades 

http://rstudio-pubs-static.s3.amazonaws.com/2117_19f0a65e216747f38f13c5318ce546de.html
http://rstudio-pubs-static.s3.amazonaws.com/2117_19f0a65e216747f38f13c5318ce546de.html
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Once converted, the data were used to filter dates from the original sticky- and suction-trap 
datasets. All dates below 11 degrees Centigrade were removed and the count samples were 
divided across the remaining days to produce a weekly mean count for all sites in all years. 

This was done manually in Excel. 

The resulting file was then used to compare each standard week’s suction-trap data with 
sticky-trap data from the same week. A simple Pearson’s correlation was run for each site/year 
combination, for example: 

cor.test(DATA$Rothamsted2008a,DATA$S2008_02, na.action = "na.exclude") 

##  
##  Pearson's product-moment correlation 
##  
## data:  DATA$Rothamsted2008a and DATA$S2008_02 
## t = -0.056188, df = 4, p-value = 0.9579 
## alternative hypothesis: true correlation is not equal to 0 
## 95 percent confidence interval: 
##  -0.8209343  0.8017511 
## sample estimates: 
##        cor  
## -0.0280829 

Where, “Rothamsted2008a” is the weekly means for the Rothamsted suction-trap in 2008, and 
“s2008_X” is the weekly means for 2008 at field site no. X. 

The output from these correlations were assembled into a spread sheet and then plotted. 

Fig. 4.3 
#Convert Year to factor 
attach(CORRDATA) 
CORRDATA$Year <- factor(CORRDATA$Year, ordered = TRUE) 
#split into constituent years aslist "X" 
X<-split(CORRDATA, Year, drop=TRUE) 
#list those years in Global Environment 
names(X)<-c("2008", "2009", "2010", "2011", "2012") 
list2env(X, envir=.GlobalEnv) 

## <environment: R_GlobalEnv> 

detach(CORRDATA) 
#plot all four years on same graph 
attach(`2008`) 
plot(Distance, Correlation.coefficient, col="red", pch=15, xlab="Distance (km)", 
ylab= "Pearson's correlation coefficient", xlim=c(0,350), ylim=(c(-1, 1))) 
detach (`2008`) 
attach(`2009`) 
points(Distance, Correlation.coefficient, col="blue", pch=16) 
detach (`2009`) 
attach(`2010`) 
points(Distance, Correlation.coefficient, col="black", pch=17) 
detach(`2010`) 
attach(`2011`) 
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points(Distance, Correlation.coefficient, col="chartreuse", pch=18, 
xlim=c(0,350)) 
detach(`2011`) 
attach(`2012`) 
points(Distance, Correlation.coefficient, col="purple", pch=25) 
detach (`2012`) 
legend(x=290, y=0.32, legend=c("2008", "2009", "2010", "2011", "2012"), 
col=c("red", "blue", "black", "chartreuse", "purple"), pch = c(15, 16, 17, 18, 
25), box.lty=0) 

 

Visualising and modelling spatial autocorrelation 

Section 4.3.2.1 

Once the data had been assembled and their statistical distribution assessed a GAM was run on 
each week’s data across all field traps to determine the spatial structure of the data. 

For brevity only two weeks are shown here. 

myPalette <- colorRampPalette(brewer.pal(11, "Spectral")) 
# Run a model with Lat and Long inside an s() function. Set the degrees of 
freedom with k =. 
 
par(mar=c(5, 4, 4, 2)) 
par(mfrow=c(2,2)) 
 
Week7.gam<- gam(Week7~s(Longitude, Latitude, bs="ts"), data = DFS, family = 
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nb()) 
gam.check(Week7.gam) 

 

##  
## Method: REML   Optimizer: outer newton 
## full convergence after 5 iterations. 
## Gradient range [0.0001511175,0.0003108326] 
## (score 881.2502 & scale 1). 
## Hessian positive definite, eigenvalue range [0.8098846,109.7071]. 
## Model rank =  30 / 30  
##  
## Basis dimension (k) checking results. Low p-value (k-index<1) may 
## indicate that k is too low, especially if edf is close to k'. 
##  
##                          k'   edf k-index p-value 
## s(Longitude,Latitude) 29.00  1.73    0.74    0.26 

Week8.gam<- gam(Week8~s(Longitude, Latitude, bs="ts"), data = DFS, family = 
nb()) 
gam.check(Week8.gam) 
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##  
## Method: REML   Optimizer: outer newton 
## full convergence after 4 iterations. 
## Gradient range [5.462679e-10,6.122274e-09] 
## (score 922.0661 & scale 1). 
## Hessian positive definite, eigenvalue range [3.113599,100.6324]. 
## Model rank =  30 / 30  
##  
## Basis dimension (k) checking results. Low p-value (k-index<1) may 
## indicate that k is too low, especially if edf is close to k'. 
##  
##                         k'  edf k-index p-value 
## s(Longitude,Latitude) 29.0 12.7    0.84     0.6 

These GAMs were then mapped: 

Fig. 4.4 
par(mfrow=c(1,1)) 
plot(Week7.gam, select=1, main="Week 7: 23-29 Mar", xlab="Longitude",  
     ylab="Latitude", xlim=c(-11,3), ylim=c(49,60.9), cex.main=1.5, cex.lab=1.5,  
     cex.axis=1, scheme=2, hcolors=brewer.pal(n = 3, name = "YlOrRd"),  
too.far=0.1, cex = 5) 
lines(UKcoast) 
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plot(Week8.gam, select=1, main="Week 8: 30 Mar - 5 Apr", xlab="Longitude",  
     ylab="Latitude", xlim=c(-11,3), ylim=c(49,60.9), cex.main=1.5, cex.lab=1.5,  
     cex.axis=1, scheme=2, hcolors=brewer.pal(n = 3, name = "YlOrRd"),  
too.far=0.1, cex = 5) 
lines(UKcoast) 
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Multivariate spline analysis of field data 

Section 4.4.3 

The ncf package was used to create spline correlograms of the sticky trap and (below in Section 
4.4.4) suction-trap data. 

Fig. 4.5 
attach (spline) 
ncols <- dim(spline)[2] 
week<-spline[ , 4:ncols] 
 
attach(week) 
spline1 <- spline.correlog(x=Longitude, y=Latitude, z=week, resamp = 1100,  
                                     latlon = TRUE, xmax=800, na.rm = TRUE) 

## Warning in spline.correlog(x = Longitude, y = Latitude, z = week, resamp = 
## 1100, : Missing values exist; Pairwise deletion will be used 

## Warning in cor(x = x, y = y, use = "pairwise.complete.obs", method = 
"pearson"): 
## the standard deviation is zero 

## 100  of  1100 200  of  1100 300  of  1100 400  of  1100 500  of  1100 600  of  
1100 700  of  1100 800  of  1100 900  of  1100 1000  of  1100 1100  of  1100  

#summary.spline.correlog(spline) 
plot (spline1, xlab="Distance (km)", ylab="Correlation") 
title(main="Sticky traps, 2008-2012", cex.main=0.8) 
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summary(spline1) 

## $call 
## [1] "spline.correlog(x = Longitude, y = Latitude, z = week, resamp = 1100, " 
## [2] "    xmax = 800, latlon = TRUE, na.rm = TRUE)"                           
##  
## $estimate 
##                 x  e         y 
## estimate 121.7491 NA 0.1368644 
##  
## $quantiles 
##                 x         e           y 
## 0       0.2742335 0.1365596 -0.13498039 
## 0.025   3.6345163 0.1466514 -0.03352307 
## 0.25   47.6816768 0.2374781  0.08298438 
## 0.5   106.8945790 0.3383967  0.14252336 
## 0.75  144.9357542 0.9151758  0.20134528 
## 0.975 356.5950913 1.4342770  0.29768896 
## 1     761.5778412 1.4919550  0.37997711 

detach(spline) 
detach(week) 

Multivariate spline analysis of suction-trap data 

Section 4.4.4 
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Fig. 4.6 
attach (splineSTALL) 
ncols <- dim(splineSTALL)[2] 
day<-splineSTALL[ , 5:ncols] 
attach(day) 
spline2 <- spline.correlog(x=Long, y=Lat, z=day, resamp = 1100,latlon = TRUE, 
xmax=800, na.rm = TRUE) 

## Warning in spline.correlog(x = Long, y = Lat, z = day, resamp = 1100, latlon 
= 
## TRUE, : Missing values exist; Pairwise deletion will be used 

## 100  of  1100 200  of  1100 300  of  1100 400  of  1100 500  of  1100 600  of  
1100 700  of  1100 800  of  1100 900  of  1100 1000  of  1100 1100  of  1100  

plot (spline2, xlab="Distance (km)", ylab="Correlation") 
title(main="Suction Traps 2015-2018", cex.main=0.8) 

 

summary(spline2) 

## $call 
## [1] "spline.correlog(x = Long, y = Lat, z = day, resamp = 1100, xmax = 800, " 
## [2] "    latlon = TRUE, na.rm = TRUE)"                                        
##  
## $estimate 
##                 x  e         y 
## estimate 204.6627 NA 0.2314857 
##  
## $quantiles 
##               x          e           y 
## 0      24.04849   1.258517 -0.08438767 
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## 0.025 155.33379   2.571384  0.05561919 
## 0.25  189.15450  13.619554  0.17089633 
## 0.5   205.08136  25.813974  0.23244543 
## 0.75  223.55064  49.040372  0.30536255 
## 0.975 267.36404 126.804332  0.47395594 
## 1     666.24178 143.187711  0.99580953 
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Appendix B: Daily data plots for all site/years 

Site Codes: RT: Rothamsted; BB: Broom’s Barn; H: Hereford; K: Kirton II; N: Newcastle; SP: Silwood Park; SX: 

Starcross; W: Wye; We: Wellesbourne; Wr: Writtle; Y: York. In all plots the y-axis (z) is the daily count of 

Brassicogethes aeneus. 
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Appendix C: 

Study of pollen beetle eclosion using emergence traps within an oilseed rape crop 

This study was initiated in order to gain a better understanding of how suction-trapped B. 

aeneus relate to newly-emerged Brassicogethes aeneus in the field. The presence of teneral (not 

fully developed adult) beetles in the suction-traps indicates that they fly soon after eclosion. This 

work is still incomplete given the complications arising as described below. 

 

Abstract 

Emergence traps have been used to assess the abundance of insects developing in the soil 

under crops but, given the potentially insulative material of the trap they have not generally been 

used to study phenology. Here I studied B. aeneus eclosion (emergence from pupae) and compared 

their phenology and abundance to data from the suction-trap located on Rothamsted farm; I 

compared the temperature of the soil just below the surface inside emergence traps and outside 

within a mature oilseed rape crop on Rothamsted farm in two separate years. In year one, B. aeneus 

captures were recorded daily. In year two, pairs of temperature dataloggers were set in three 

different fields, one inside a trap and one outside. I found that emergence traps had a warming 

influence on the soil in the early summer but became a cooling influence later in the year.  

 

C.1 Introduction 

Emergence traps (Southwood & Henderson 2000) have been used in entomology for many 

years to assess populations of insects emerging from the soil or low-growing vegetation (Richards & 
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Waloff, 1954, Jepson & Southwood 1958, Richards & Waloff 1961, Southwood & Jepson 1962a, 

1962b Southwood & Siddorn 1965, Elliott & Powell 1966, Hadley 1969, Glen 1976, Way et al. 1969, 

Robinson 1979, Williamson et al. 1979, Lindelöw & Weslien 1986, Seddon 1986, Moeed & Meads 

1987, Roubos & Liburd 2010) but, perhaps due to the warnings given by Southwood & Siddorn 

(1965) regarding the relative temperature under the trap only a few have been used in relation to 

insect phenology (Robinson 1979, Williamson et al. 1979, Lindelöw & Weslien 1986, Moeed & 

Meads 1987, Ferguson et al. 2003a, Ferguson et al. 2004, Roubos & Liburd 2010). More recently 

emergence traps have been used in field crops to study insect pest abundance in oilseed rape 

(Brassica napus L) (OSR) (Ferguson et al. 2003a, 2003b, 2006) using a specially designed emergence 

trap (Fig. C.1). 

Southwood & Siddorn (1965) studied four different designs of emergence trap with respect 

to the temperature differential between inside and outside the trap. They found, for each trap 

design, that temperature differed between the trap and the control. To wit, cooler temperatures 

during the day with a slower loss of temperature at night in cloth-covered traps compared to metal 

traps (though both types remained warmer overnight than the control). The authors warned that 

these differences could have major effects on the development and phenology of the insects under 

the trap, however these issues were more important for assessing emergence of over-wintering 

populations than in the summer months. These conclusions were based on six weeks of recording 

during August in open habitat and thus potentially have restricted relevance outside that habitat 

and time period. Other authors have also assessed the effects of temperature on emergence traps 

(Hadley, 1969, Glen 1976) or on similar aphid cages (Woodford 1973). Hadley (1969) found similar 

differences – though the discrepancy was very small and was discounted. Glen (1976) found little 

difference but reported a dampening of temperature fluctuations and temperature differences 

were higher in less-shaded areas. Woodford (1973), working on much larger aphid-proof field cages 
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in September, found that maximum temperatures were not significantly different during the day, 

however nocturnal temperatures were higher inside the cage than outside and temperature 

fluctuations were less inside the cage. The most substantial effects were that air movement was 

reduced by over 85% and light intensity reduced by up to 58%, though humidity remained similar 

inside and outside the cage (Woodford 1973) which may explain some of the temperature 

differences found in smaller, but otherwise similar emergence traps. Given these findings it is still 

unclear how much effect there is on the temperature under emergence traps when situated in tall 

vegetation – such as OSR. 

 

C.2 Materials & Methods 

C.2.1 Emergence Traps 

The emergence traps (Fig. C.1) consist of a conical scaffold made from stainless steel over 

which a cloth mesh is fitted enclosing 0.5m2 of ground (Ferguson et al. 2003b). The steel frame is 

made up of a 798mm circular base 600mm deep with three struts raising to a plastic top-piece 1.5m 

high. A collecting jar is attached to the head piece via a screw joint and consists of a central tube of 

25mm diameter that opens into the jar which can be filled with trapping fluid (in this research this 

was made up of a solution of 60% industrial methylated spirits with 40% water). The trap base is 

buried in the soil to ~5cm depth to prevent egress & ingress from/into the trap. Emerging insects 

crawl or fly up to the head piece, pass through the opening and into the collecting jar. Traps are 

placed in the field in the late winter or early spring without the cloth cover. For sampling pollen 

beetles (Brassicogethes aeneus (Fabr.)). The crop is allowed to grow through the trap until green 

bud phase has passed, after which the crop is cut back in order to fit the mesh. The trap is then left 
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for ~1 week to allow any adult insects under the trap to escape before the collecting jar is then put 

in place and checked daily for beetles. 

 

 

Fig. C.1: Emergence trap with collecting net and collecting jar in place. 
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C.2.2 Temperature dataloggers 

TinyTag Talk 2 – TK-4023 dataloggers (Gemini) were used, set to record the temperature 

every hour, on the hour and the minimum and maximum temperatures recorded during the hour. 

The dataloggers were buried just below the soil surface inside a sealable plastic bag (for added 

waterproofing), one inside the emergence trap and one ~1m away from the trap.  

 

Fig. C.2: Field locations of the emergence traps. 2017 locations were Sawyers, Great Field and 

High Field, 2018 locations were Delharding, Little Knott and Pastures. 
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C.2.3 Study sites 

Three fields were sampled (Fig. 3 a-c) in 2017 and 2018. In each field the emergence traps 

were placed in a rough square, with two traps ~5 metres from the field edge and two ~30-40 

metres from the field edge.  

 

Fig. C.3: Schematic of sampling locations. The edge of the field is seen at the bottom of the 

picture, the yellow diamonds are the locations of emergence traps. The red dots show the 

locations of the TinyTag data loggers. 

 

C.3 Results 

C.3.1 Count data 

 At time of writing, only 2017 data has been analysed. The count data show that emergence-

trapped B. aeneus have a similar seasonality to suction-trapped beetles (Fig. C.4a), however the 
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correlation between the two traps is poor (Fig. C.4b), with a Pearson correlation coefficient of 0.27. 

Interestingly, there is evidence that B. aeneus eclosion appears to lead local air temperature (Fig. 

C.4c), however this is likely an artefact of the effect of the emergence traps on the temperature of 

the soil beneath. 

 

C.3.2 Temperature data 

 Mean daily temperature inside and outside the emergence traps were positively correlated 

(Fig. C.5) with Pearsons correlation coefficients of 0.99 (Delharding and Little Knott) and 0.98 

(Pastures) returned. However, further investigation suggests this promising finding may not tell the 

full story. It appears that in the early part of the season the traps have a warming effect on the soil 

below them, with mean daily temperature inside the traps reaching more than a degree Centigrade 

warmer than outside at Delharding and Pastures (Fig. C.6). Later in the season, as air temperatures 

increase, the effect of the emergence trap on temperature appears to switch to a cooling one, with 

temperatures inside the trap more than a degree Centigrade cooler than outside at Pastures and 

nearly one degree difference at Delharding and Little Knott. 
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a 

b 
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c 

 

Fig. C.4: Suction-trap and emergence trap data 2017. a: plot of daily counts of Brassicogethes 
aeneus at the Rothamsted suction-trap and in emergence traps (2017). b: Correlation plot of a. c: 
Daily emergence trap counts across all traps and air temperature recorded at Rothamsted 
meteorological station. 
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Fig. C.5: Correlation plots for TinyTag datalogger mean daily temperature inside and outside of 

emergence traps, with Pearson correlation coefficients given. 
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Fig. C.6: Mean daily temperature recorded (left) inside and outside emergence traps in three 

fields (top to bottom) sown to oilseed rape and the difference between these values (right). 

 

C.4 Discussion 

 More work needs to be done on how the emergence trap affects temperature of the soil 

below and, in turn, how that affects the development of the pupating B. aeneus. The difference in 

temperature of the soil inside and outside of the emergence trap, whilst generally low (1.5°C at 
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most) does have implications for using these traps to study the phenology of emergence. If it is the 

case that, despite the close correlation of temperatures inside and outside of the traps, the soil is 

warmed within the traps during May and June then this is likely to speed up pupal development 

(Bursell 1974, Cammell & Knight 1992) and may explain why eclosion appeared to lead temperature 

in 2017 (Fig. C.4c). This finding is complicated by the cooling effect two of the traps appear to have 

on the soil below from late June onwards (Fig. C.6), as this may, in turn, arrest pupal development 

compared to the wider environment. It should be noted that 2017 and 2018 are both in the ten 

hottest years on record in the UK and June 2018 was the driest June on record since 1925 (Kendon 

et al. 2019), which perhaps means that data from these years are non-typical. Questions also 

remain over whether this warming/cooling effect of the traps is restricted to those sited deep 

within the crop, or whether the effect is different closer to the field edge. A further experiment, not 

reported here was carried out in 2019 where traps with pairs of temperature loggers were set at 

different distances from the field edge. However, with some dataloggers failing there were an 

unsatisfactory number of replicates and the data are not yet fully analysed. 
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Appendix D: Collated Life cycle Parameters 
Life cycle parameters were assembled from the literature with a view to using them in a modelling 

exercise using the Dymex software that proved unsuccessful. These parameters are presented here 

and may provide the basis for future efforts to produce a holistic (predictive) life cycle model. 

Parameters arising from empirical studies reported on by the paper are left unmarked. Parameters 

quoted from other papers are marked with a numerical superscript referring to the source (see final 

table). Parameters arising from modelling assumptions within the paper are marked with a 

superscript “x”, while unreferenced parameters reported within papers are marked with an asterisk 

“*”.  

Spring Migration 
 

Start Arrival in Crop 

Blazejewska 
1958 

emerge at 9C 
 

Cook 2000 emerge at 10C1  

migrate at 15C2  

 

Ekbom & 
Ferdinand 2003 

migrate when temp exceeds 14C 
 

Ferguson et al. 
2015 

Propensity to fly follows a sigmoid 
temperature–response curve in the 
6–23 °C temperature range tested. 

 

Junk et al. 2016 
 

8.0 °C; mean soil temperature 4.6 °C; and sunshine duration 3.4 h. The optimal cut-
off for precipitation was 1.0 mm and optimal persistence of these conditions was 

one day onlyx 

Nilsson 1988a activity starts at 5-10C* long 
distance dispersal at 15C2,3,4 

 

Mauchline 2003 migrate at 12C*  

gregarious flights at 13.5C5  

 

Riggi et al. 2016 emerge at 11C*  
 

Seimandi Corda 
2018 

once temps reach 12C 
 

Skellern et al. 
2017 

 10°C. Arrivals in crop increase until an accumulated temperature of 4.5 degree 
heating days, then plateau. 

Stratanovich et 
al. 2014 

when mean air temp exceeds 9C 
for 5 consecutive daysx 

 

Tölle 2014 when air temp reaches 12C2  

fly long distances when temp 
reaches 15C* 

 

Williams 2010 emerge at 10C1,6  

migrate at 12C7  

 

Williams & 
Ferguson (2010) 

12-15C* 
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Egg 
 

Fecundity (eggs 
per female) 

Maturation in 
Ovaries 

Laying Density Laying Rate Egg Development Mortality 

Borg & Ekbom 
1996 

   
1131.6 seconds per egg 

  

Bromand 1983 17, 200-4008 67-
3449  

3.8 days 
 

3.8 per female per day 25.6 days at 22C 9.7-15.7% 

Cook 2000 
   

2-3 per bud, up to 102,9,10,11 
1.39-2.12 eggs per bud  

 
17-18% 

Ekbom & Borg 
1996 

54.4 (restricted 
period) 

 
0.125 eggs per bud 

(field), 0-0.91 eggs per 
bud (greenhouse)  

2.9 eggs per female per 
plant, 4.22 eggs per 2 day 

period 

  

Ekbom & 
Ferdinand 

2003 

can be more than 
200, average 

54.410,11  

45-55 days 
 

2.36 eggs per female per 
day11  

  

Hokkanen 
2000 

Only 40% of 
potential in field 

conditions 

     

Mauchline 
2003 

More than 20012  4-7 days* 
    

Nilsson 1988b 
   

3.4-6.6 eggs per female per 
day 

  

Nilsson 1988c 95-185 7-10 days Greater than 
30,000/m2 

 
45-50 days Greenhouse: 

6% (1-8%), Field 
estimation 
~25%+6% 

Scherney 1953 246 4-7 days at 
16-21C 

    

Seimandi 
Corda 2018 

Up to 2009  

up to 250*  

  
Batches of 2-3 (occasionally 

10)*  

  

Stratanovich et 
al. 2014 

250 on average* 
  

10 batches (minimum 15, 
maximum 35), every 85 day 

degreesx 

 
33%* 

Tölle 2014 78 (15-16C), 211 
(20-22C), 206 

(27C) all at 95% 
humidity2 200-

30013  

2-12 
days2,9,14,15 

    

Veromann et 
al. 2011 

  
~30 per plot (10 plants) 

   

Williams 2010 mean 2469  
     

Williams & 
Ferguson 

(2010) 

80-18011,16  
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Larva 
 

Density Development Mortality 
  

Overall 1st instar 2nd instar Overall 1st instar 2nd instar 

Bromand 1983 15.80% 
 

3 days 3.1 days 
  

5.80% 

Buechi 2002 
    

65.9-95.9% 
  

Cook 2000 0.19-0.96 larvae 
per 50 buds, 

0.47-1.33 larvae 
per 20 flowers 

 
4.23-6.11 days, 

5-10 days13 
5.3-5.87 days, 

14 days14 

 
37.4-67.1% 19.2-33.3% 

Ekbom & Borg 1996 0.094 larvae per 
bud 

      

Hokkanen 2000 
 

1 month* 
  

survival of 
one/bud 

60% of the 
time 

  

Mauchline 2003 
 

9-13 days* 
     

Nilsson 1988c 
  

5-10 days 17-25 days 50%x 5.3-29.3% 
(estimate) 

 

Riggi et al. 2017 
       

Scherney 1953 
 

27-30 days at 
16C 

     

Seimandi Corda 
2018 

    
88%19 

  

Skellern & Cook 
2014 

 
2 weeks* 

     

Skellern et al. 2017  2 weeks *      

Tölle 2014 
  

2-10 days2,9,14,15 3-20 days2,9,14,15 
   

Veromann et al. 
2011 

15-250 per plot 
(10 plants) 

      

Williams 2010 
  

5-10 days 
(Nilsson 1988c) 

2 weeks14 
   

Williams & 
Ferguson (2010) 

  
5-10 days* 14 days* 

   

Zaller et al. 2009 1797/m2 
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Larval Parasitization 
 

Rate Mortality 

Billqvist 1998 Greenhouse: 0.048 (eggs & larvae), 0.039 (larvae), field: 0.039-
0.057 (eggs & larvae) 0.038-0.040 (larvae) 

 

Hokkanen et al. 1988 21.8-49%, 50-90%18 
 

Nilsson 1988c up to 51% 
 

Riggi et al. 2017 
 

0.017% (0-0.24%) 

Seimandi Corda 2018 67%, 16%19, 97%20 
 

Tölle 2014 0% to more than 90%15,21,22,23,24,25 
 

Zaller et al. 2009 ~0.48% (Positively correlated with abundance) 
 

 

Adult 
 

Start of Autumn Migration Overwintering 
Mortality 

General Mortality 

Blazejewska 1958 "middle of August, disregarding the 
temperature" 

  

Hokkanen 1993 
 

85-98% 
 

Seimandi Corda 2018 
  

5.41 (    ) & 6.66 (    ) days (lab 
conditions inc. starvation) 

Stratanovich et al. 2014 when mean air temp falls below 
12C for 5 days* 

  

 

List of sources for the above tables: 

1: Láska & Kocourek 1991 6: Nilsson 1988a 11: Ekbom & Borg 
1996 

16: Blazejewska 1958 21: Nilsson & 
Andreasson 
1987 

2: Fritsche 1957 7: Free & Williams 
1978 

12: Hopkins & Ekbom 
1996 

17: Borg & Ekbom 
1996 

22: Hokkanen 
2000 

3: Müller 1941 8: Börner & Blunk 
1920 

13: Nilsson 1988c 18: Jourdhueil 1961 23: Büchi 2002 

4: Masurat 1966 9: Scherney 1953 14: Bromand 1983 19: Riggi et al. 2017 24: Williams 
2006 

5: Šedivý & Kocourek 1994 10: Nilsson 1988b 15: Nielsen & Axelsen 
1988a 

20: Ulber et al. 2006 25: Thies et al. 
2008 
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