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Abstract 

With the recent emergence of artificial intelligence, deep learning image inpainting methods have achieved 

fruitful results. These methods generated plausible structures and textures in repairing images with small 

missing areas. When inpainting an image with an excessively large missing area (the mask ratio is more than 

50%), however, it usually produces a distorted structure or a fuzzy texture that is inconsistent with the 

surrounding area. Therefore, we propose a self-attention based recurrent feature reasoning (SA-RFR) network. 

First, SA-RFR uses self-attention (SA) to enhance the correlation between known pixels and unknown pixels 

and the constraints on the hole center, so that the repaired content details are clearer and the edges are smoother. 

In addition, because ordinary convolution has feature redundancy for the generated feature map, some 

unnecessary information is generated, and some models are difficult to train. Therefore, we also propose an 

adaptive ghost convolution (AGC) to replace part of the ordinary convolution. Using the PReLu activation 

function instead of the ReLu activation function in the ghost module, AGC can effectively improve the 

overfitting problem of the model and the quality of the repaired image without increasing the computational 

cost. The proposed model has undergone extensive experiments on several public datasets, and the results show 

that our method is superior to the state-of-the-art methods. 
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1. Introduction 

Image inpainting aims to use the known information about an image to reconstruct the missing or 

damaged part of the image to generate a new image. It is difficult to judge whether the new image. It is 

widely used to repair damaged images, remove certain objects from the image, and remove watermarks 

or subtitles from the image. 

With the development of artificial intelligence and deep learning, excellent results have been achieved 

in the field of computer vision. Related convolutional neural networks (CNN) and generative adversarial 
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network (GAN) have also been applied to the field of image restoration, and they have achieved 

remarkable results. Currently, most image inpainting methods are aimed at repairing damaged images of 

regular missing areas and irregular small missing area. Pathak et al. [1] proposed a context encoder, which 

first used a deep generative network to deal with an image inpainting model. It used the predictive ability 

of the autoencoder to predict the missing content of the damaged image based on the known image 

information around the damaged image. Iizuka et al. [2] added the improvement of global and local 

discriminators on the basis of the context encoder, which repaired images with any shape mask. Based 

on the context encoder, Yang et al. [3] proposed a multi-scale neural patch synthesis method according 

to the joint optimization of image content and texture constraints. These image inpainting methods are 

reasonable to use for damaged images of small missing area, because the pixels in a local area are strongly 

correlated and can be inferred from their surroundings. As the missing area of damaged images becomes 

larger, and the distance between the known pixel and the unknown pixel increases, however, these 

correlations weaken, and the constraint on the hole center eases. Therefore, the information in the known 

area is not helpful for the inpainting of the hole center pixel, generating semantically ambiguous 

inpainting results. 

As such, many studies on image inpainting methods began to research on the damaged images of large 

missing area. Liu et al. [4] used a partial convolution strategy to repair the image and proposed a large 

irregular mask dataset. This method involves performing image restoration on irregularly shaped holes 

first. Image inpainting methods [5–10] are all two-stage network structures: predicting the structure 

information, and then performing content reconstruction. However, the error caused by the first-stage 

structure prediction can easily have an adverse impact on the second-stage content prediction, resulting 

in a poor final repair effect. Therefore, methods [11–16] use an end-to-end GAN structure. Nonetheless, 

the model based on the GAN structure is prone to overfitting problems during training, and it is difficult 

to conduct network training. 

To overcome the limitations of the methods above, Li et al. [17] designed a recurrence feature 

reasoning network (RFR-Net) that used the shared feature inference module to repair progressively 

missing images with large mask areas and irregular shapes. However, it still produced unreasonable repair 

structures and some diamond texture. Therefore, in order to achieve better visual effects and reduce 

feature redundancy, we add self-attention mechanism and adaptive ghost convolution (AGC) to RFR-Net 

and propose recurrent feature reasoning based on self-attention for image inpainting (SA-RFR). Self-

attention enhances the CNN’s ability to perceive image size. Then, PReLU can effectively improve the 

overfitting problem of the model without increasing the amount of calculation and perform network 

training better. Therefore, we use the PReLU activation function instead of ReLU activation function in 

the ghost module (GM) [18] and design AGC that enhances the obtained feature maps. It can use fewer 

parameters to generate the same number of feature maps as the ordinary convolutional layer, and then 

become integrated into other networks. 

Our contributions can be summarized as follows: 

1. We introduce a self-attention mechanism to enhance the correlation between known pixels and 

unknown pixels and strengthen useful local texture features and similar block features. The repair 

effect of damaged images in large missing areas is improved, and the details of the repaired content 

are clearer. 

2. We propose AGC instead of ordinary convolution. AGC enhances the obtained feature map and reduces 

feature redundancy. It can improve the quality of image restoration while reducing computational 

cost. 

3. We analyze our model in terms of efficiency and performance and show the advantages of our 

network over several latest methods in public datasets. 

The rest of this paper is organized as follows: Section 2 provides a brief review of related inpainting 

methods; Section 3 describes the proposed approach and loss functions in detail; Section 4 explains the 

experiments conducted for this work, the experimental comparison with other state-of-the-art methods, 

and the model analysis; and Section 5 summarizes this study. 
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2. Related Work  

In recent years, a large number of deep learning-based algorithms in image inpainting have been 

proposed, achieving excellent results. Pathak et al. proposed a context encoder [1], i.e., an encoder-

decoder architecture, as the earliest image inpainting method based on deep learning. Iizuka et al. [2] 

added the improvement of global and local discriminators on the basis of the context encoder, which 

repaired any shape mask. Yang et al. [3] proposed a multi-scale neural patch synthesis method based on 

the joint optimization of image content and texture constraints on the basis of the context encoder. It not 

only preserved the context structure but also produced high-frequency details. Yu et al. [5] proposed a 

contextual attention layer to extract features that approximated the area to be repaired from a distant area. 

It not only synthesized novel image structures but also explicitly used surrounding image features as 

references during network training. Yu et al. [6] introduced gated convolution to learn the dynamic 

feature selection mechanism of each channel at each spatial position, thereby improving the quality of 

inpainting images with arbitrary shapes of masks. The first step was to predict the foreground contour, 

and the second step was to repair the missing area content based on the foreground contour. It solved 

challenging inpainting scenarios involving foreground and background pixel prediction. Because the 

images in the local area have strong correlation, the pixels can be inferred from the surrounding 

environment. These methods are reasonable to use for repairing small or narrow defects. As the damaged 

area of the image becomes larger and the distance between the known pixel and the unknown pixel 

increases, however, these methods produce blurry and unreasonable repair results. 

Therefore, many novel methods have emerged in recent years. Liu et al. [4] proposed a large irregular 

mask dataset as well as partial convolutions to repair any non-central and irregular damaged areas. Nazeri 

et al. [8] suggested a two-stage adversarial model edge connection network (EdgeConnect) consisting of 

an edge generator and an image restoration network. The edge generator generated predicted edges in the 

missing areas of the image, and the image completion network used the predicted edges as a priori to fill 

the missing areas. EdgeConnect can better repair the details of the filled area. Liu et al. [9] proposed a 

deep generative model method with context semantic attention (CSA), which performed more efficient 

inpainting by processing the semantic correlation between the void features. Qin et al. [12] suggested a 

novel multi-scale attention network (MSA-Net) to fill the irregular missing regions where a multi-scale 

attention group (MSAG) with several multi-scale attention units (MSAUs) is introduced for fully 

analyzing the features from shallow details to high-level semantics. Gupta and Kishore [13] considered 

and audited numerous distinct algorithms available for image inpainting and clarified their methodology. 

Yang et al. [15] developed a multi-task learning framework that attempted to combine image structure 

knowledge to assist in image inpainting. They proposed a novel pyramid structure loss to supervise 

structure learning and embedding. Wang et al. [16] suggested a new image inpainting method for large 

irregular masks that introduced a multi-stage attention module and then used a partial convolution 

strategy to repair the image in a rough to fine way. Li et al. [17] designed an RFR-Net composed mainly 

of a plug-and-play recursive feature reasoning module and a knowledge consistent attention (KCA) 

module that can effectively repair damaged images missing in a large area. 

 

3. Methodology 

In order to repair the damaged images of a large missing area, we propose SA-RFR, which conducts 

training in an end-to-end manner. There are ground truth 𝐼𝑔𝑡 and binary mask 𝑀 whose value of known 

pixels is 0 and value of unknown pixels is 1. In this way, damaged image 𝐼𝑖𝑛 is obtained from the ground 

truth as 𝐼𝑖𝑛 = 𝐼𝑔𝑡  ⨀  (1 − 𝑀). SA-RFR takes [𝐼𝑖𝑛, 𝑀] as input, and the predicted image is 𝐼𝑜𝑢𝑡. In the 

next subsection, we introduce the network architecture and three modules of SA-RFR in detail. 
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3.1 Network Architecture 

As shown in Fig. 1, SA-RFR consists of three modules: the pretreatment module, the feature reasoning 

module, and the adaptive ghost fusion module. The damaged image and its mask are fed into the SA-

RFR. The feature map is extracted, and the mask area is judged and updated by the pretreatment module. 

The feature reasoning module then infers the content of the damaged image in the mask area to generate 

a repaired feature map. The pretreatment module and the feature reasoning module alternately recur six 

times, and the repaired feature map is saved in each recurrence. Finally, in the adaptive ghost fusion 

module, all repaired feature maps get merged into a fixed feature map and generate a predicted image. 

The details of the three modules are as follows. 

 

Pretreatment Module

Encoder Decoder

Feature Restoring Module

mean

×6

Adaptive Ghost Fusion Module

Partial

convolution
Self-attention

General

convolution
Dilated

convolution

Transposed

convolution
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Fig. 1. Framework of our method. 

 

3.1.1 Pretreatment module 

The pretreatment module performs four partial convolution operations on the input image and the 

mask. The partial convolution aims to identify the area to be updated in each recurrence. For inpainting 

large continuous holes of damaged images, however, the known information of the image is scarce 

because the mask area is large; hence the lack of constraints for the hole center. In order to strengthen the 

long-distance correlation between the known and unknown pixels of the input image, a self-attention 

mechanism layer is added after the first partial convolution. As a supplement to the convolution, the self-

attention module helps with modeling long-range, multi-level dependencies via image regions. It can 

correlate local details and relatively distant details, enriching the content information in the inpainting 

area. The mask and feature map are updated and saved in each recurrence, whose process is as follows: 
 

𝑋1, 𝑀1 = 𝑊𝑝1(𝐼𝑖𝑛, 𝑀) (1) 

𝑋2 = 𝑆𝐴(𝑋1) (2) 

𝑋3, 𝑀2 = 𝑊𝑝2(𝑋2, 𝑀1) (3) 

𝑋4, 𝑀3 = 𝑊𝑝4 (𝑊𝑝3(𝑋3, 𝑀2)) (4) 

 

where 𝑊𝑝𝑖 is the 𝑖-th partial convolution and 𝑆𝐴 is the self-attention mechanism operation, with 𝑋𝑖 , 𝑀𝑖  

as the corresponding feature maps and masks outputted by the 𝑖-th operation. 

 

Self-attention: In CNN, the size of each convolution kernel is very limited; therefore, each convolution 

covers only a small neighborhood around the pixel. For obtaining distant features, multi-layer 

convolution and pooling operations are exploited, making the height and width of the feature map smaller 

and smaller. Since multiple layers of mapping are required, the more layers there are, the larger the area 

covered by the convolution kernel to be mapped back to the original image; hence the difficulty in 

capturing the expected features. The self-attention mechanism can take advantage of distant area 

information. Each location can be combined with the information of related areas to ensure the regional 

consistency of the inpainting image. Therefore, we apply the self-attention mechanism to enhance the 
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correlation between known pixels and unknown pixels, so that the details of the inpainting content are 

clearer and the edges are smoother. The self-attention mechanism operates as shown in Fig. 2. 

 

 
Fig. 2. Self-attention mechanism. 

 

Suppose the feature map is 𝑋; two 1×1 convolutions are used for linear transformation and channel 

compression, and the output feature maps are 𝜃 and 𝛾. 
 

𝜃 = 𝑊𝜃 (𝑋), 𝛾 = 𝑊𝛾(𝑋) (5) 

 

where W𝜃  and 𝑊𝛾 are the 1×1 convolution. 

Then we reshape 𝜃 and 𝛾 into matrix form, transpose and multiply them, and pass them through the 

softmax activation function to derive the attention map. 
 

𝑆𝑗,𝑖 =  𝜎 (𝜃(𝑋𝑖)
𝑇𝛾(𝑋𝑗)) (6) 

 

where 𝑆𝑗,𝑖 is the model’s attention to the position of 𝑖-th when synthesizing the 𝑗-th area and 𝜎 is the 

softmax operation. 

Then 𝑋 is linearly transformed through a 1×1 convolution, and the number of channels remains the 

same. Afterward, it is multiplied and added with the attention map before a 1×1 convolution to obtain the 

self-attention feature maps. 
 

𝛽 = 𝑊𝛽(𝑋) (7) 

𝑔𝑖,𝑗 = 𝑆𝑗
𝑇𝛽(𝑋𝑖) (8) 

𝜙 = 𝑊𝜙(𝑔𝑖,𝑗) (9) 

 

where 𝛽 is the output feature map, 𝑊𝛽  is a 1×1 convolution operation, the 𝑖-th row of 𝛽(𝑋𝑖) is all pixel 

values of the 𝑖-th channel, 𝑆 is the attention map, 𝑆𝑗 is the 𝑗-th column of the attention map representing 

the influence of all pixels on the 𝑗-th pixel, 𝑔𝑖,𝑗 in row 𝑖 and column 𝑗 is the pixel value of the 𝑗-th pixel 

of the 𝑖-th channel of the feature map weighted by the attention map, 𝜙 is the self-attention feature map, 

and 𝑊𝜙 is a 1×1 convolution operation 

Finally, the self-attention feature map and the original feature map are weighted and summed as the 

final output. 
 

𝑦 = 𝑎𝜙 + 𝑋 (10) 
 

where 𝑎 is a weight parameter updated by backpropagation. 
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3.1.2 Feature reasoning module 

The pretreatment module judges the area of the damaged image to be repaired, and then the updated 

feature map is fed into the feature reasoning module that seeks to use the known information to repair the 

feature map with high-level semantic features and to generate an inpainting result with reasonable 

structure and rich texture. The feature reasoning module has an encoder-decoder structure: the encoder 

includes six down sampling, whereas the decoder includes three up sampling, a KCA module, and three 

transposed convolutions. Unlike ordinary attention, which is calculated independently, KCA is the 

weighted sum of the scores obtained from six recurrences. The feature reasoning module, which takes 𝑋4 

and 𝑀4 as the input, is expressed as follows: 
 

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 {
𝑋5 = 𝑊3 (𝑊2(𝑊1(𝑋4)))

𝑋6 = 𝑊𝑑3 (𝑊𝑑2 (𝑊𝑑1
(𝑋5)))

 (11) 

𝐷𝑒𝑐𝑜𝑑𝑒𝑟

{
 
 

 
 𝑋7 = 𝑊𝑑6 (𝑊𝑑5 (𝑊𝑑4

(𝑋6)))

𝑋8 = 𝐾𝐶𝐴(𝑋7)

𝐹𝑖 = 𝑊𝑇3 (𝑊𝑇2 (𝑊𝑇1
(𝑋8)))

 (12) 

 

where 𝑊𝑖  is the 𝑖-th convolution, 𝑊𝑑𝑖
 is the 𝑖-th dilated convolution, 𝑊𝑇3  is the 𝑖-th transposed convolution, 

and 𝐹𝑖  is the feature map generated in the 𝑖-th recurrence saved in each recurrence. 

 

3.1.3 Adaptive ghost fusion module 

The pretreatment module and the feature reasoning module alternately recur six times until the mask 

area is completely filled. Then the adaptive ghost fusion module first merges the feature maps saved by 

the six recurrences. Because the mask regions of different feature maps saved are not the same, merging 

feature maps can effectively avoid too abrupt values in certain positions that result in inconsistencies in 

the texture or structure of the predicted image. We use AGC instead of convolution as shown in Fig. 3, 

and this can reduce feature redundancy, deepen the network, and achieve better inpainting effect. Through 

three AGC layers, the merged feature map and the feature map generated by the sixth recurrence are 

concatenated together, and the predicted image is then outputted through a ReLU layer. Let the feature 

map saved in the 𝑖-th recurrence be 𝐹𝑖 , and 𝐹 is the merged feature maps. 
 

𝐹 =
1

6
∑𝐹𝑖

6

𝑖=1

 (13) 

 

The operations of the adaptive ghost fusion module are as follows: 

 

𝑦1 = 𝑅 (𝐵 (𝐶𝐴𝑔1(𝐹))) (14) 

𝑦2 = 𝑅 (𝐵 (𝐶𝐴𝑔2(𝑦1))) (15) 

𝑦3 = 𝐵 (𝐶𝐴𝑔3(𝑦2)) (16) 

𝑌 = 𝑅(𝐹 + 𝑦3) (17) 

 

where 𝐶𝐴𝑔 is the AGC layer, 𝐵 is the batch normalization (BN) layer, 𝑅 is the ReLU activation function, 

𝑦𝑖 is the result of the 𝑖-th layer, and 𝑌 is the output of the adaptive ghost fusion module. 
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Fig. 3. Changed adaptive ghost fusion module. 

 

Adaptive ghost convolution: Because the feature map generated by convolution contains a lot of 

redundant feature information, many feature maps are similar, resulting in the generation of redundancy 

and unnecessary information; the quality of the inpainting results is also poor. Furthermore, most of the 

existing methods are a two-stage network structure or a GAN-based network structure. This type of 

network structure consumes computational resources, and the network is not well-trained and is prone to 

overfitting. Therefore, we designed an AGC as shown in Fig. 4. AGC uses the PReLU activation function 

instead of the ReLU activation function in the ghost module. PReLU can effectively improve the 

overfitting problem of the model, and it also offers faster convergence and better network training. 

 

 

Fig. 4. Adaptive ghost convolution. 

 

AGC is similar to the ghost module, which is divided into three steps: conventional convolution, ghost 

feature maps generation, and feature maps stitching. 

First, feature map 𝑍 is taken as input, with intrinsic feature maps 𝐼 obtained through conventional 

convolution 𝑊. 
 

𝐼 = 𝑊(𝑋) = 𝑃 (𝐵(𝐶(𝑍))) (18) 

 

where 𝐶 is the conventional convolution layer, 𝐵 is the BN layer, and 𝑃 is the PReLU activation function. 

Adaptive ghost feature maps 𝐺𝑖𝑗 are then generated by group convolution 𝑊𝐺 . 

 

𝐺𝑖𝑗 = 𝑊𝐺𝑗,𝑖
(𝐼𝑖) = 𝑃 (𝐵(𝐶𝐺(𝑋))) , 𝑖 ∈ 1,2,⋯ ,𝑚, 𝑗 ∈ 1,2,⋯ , 𝑠 (19) 
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where 𝑃 (𝐵(𝐶𝐺(𝑋))) is the process of group convolution 𝑊𝐺 , 𝐶𝐺  is the group convolution layer, 𝐼𝑖 is the 

𝑖-th feature map in the intrinsic feature maps, 𝑖 is the sequence number in the 𝑚 intrinsic feature maps, 

and 𝑗 is the 𝑗-th linear transformation of the feature map in each intrinsic feature map, and it is convolved 

one feature map at a time.  

Finally, the intrinsic feature map 𝐼 obtained in the first step and the adaptive ghost feature map 𝐺 

obtained in the second step are concatenated together to obtain the final feature map 𝑌. 
 

𝑌 = 𝑐𝑎𝑡(𝐼, 𝐺) (20) 

 

3.2 Loss Functions 

We use a hybrid loss similar to that in [17] to repair the image, which includes four loss functions: 

perceptual loss, style loss, 𝐿1 as loss of unknown regions, and 𝐿1 as loss of known regions. 

Perceptual loss: It compares the feature map generated from the ground truth and the feature map 

generated from the predicted image and makes the texture content and the global structure and other high-

level information closer. 
 

𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 =∑||𝜙𝑖(𝐼𝑔𝑡) − 𝜙𝑖(𝐼𝑜𝑢𝑡)||
1

𝑖

 (21) 

 

where 𝜙𝑖 is the 𝑖-th feature map generated in VGG16. 

Style loss: The purpose is to maintain the color and pattern consistency between the predicted image 

and the ground truth. First, the Gram matrix is calculated. 
 

𝐺𝑗
𝜙(𝑥)𝑐,𝑐′ =

1

𝐶𝑗𝐻𝑗𝑊𝑗
∑∑𝜙𝑗(𝑥)ℎ,𝑤,𝑐𝜙𝑗(𝑥)ℎ,𝑤,𝑐′

𝑊𝑗

𝑤=1

𝐻𝑗

ℎ=1

 (22) 

 

where 𝐺𝑗
𝜙(𝑥)𝑐,𝑐′ is the inner product of the feature map of each channel 𝑐 and the feature map of each 

channel 𝑐′, 𝑗 is the 𝑗-th layer of the network, the input feature map is defined as 𝜙𝑗(𝑥)ℎ,𝑤,𝑐, and the size 

is 𝐶𝑗𝐻𝑗𝑊𝑗 . 

Therefore, style loss 𝐿𝑠𝑡𝑦𝑙𝑒 can be defined as: 

 

𝐿𝑠𝑡𝑦𝑙𝑒
𝜙,𝑗

(𝐼𝑔𝑡, 𝐼𝑜𝑢𝑡) = ||𝐺𝑗
𝜙
(𝐼𝑔𝑡) − 𝐺𝑗

𝜙(𝐼𝑜𝑢𝑡)||
𝐹

2

 (23) 

 

Hole loss: 𝐿ℎ𝑜𝑙𝑒 calculates 𝐿1 as loss of the unknown area. 
 

𝐿ℎ𝑜𝑙𝑒(𝐼𝑔𝑡, 𝐼𝑜𝑢𝑡) =
1

𝑛
∑𝑀𝑖 ∗

𝑛

𝑖

|𝐼𝑔𝑡𝑖 − 𝐼𝑜𝑢𝑡𝑖| (24) 

 

Valid loss: 𝐿ℎ𝑜𝑙𝑒 calculates 𝐿1  as loss of the known area. 
 

𝐿𝑣𝑎𝑙𝑖𝑑(𝐼𝑔𝑡, 𝐼𝑜𝑢𝑡) =
1

𝑛
∑(1 −𝑀𝑖) ∗

𝑛

𝑖

|𝐼𝑔𝑡𝑖 − 𝐼𝑜𝑢𝑡𝑖| (25) 

 

In summary, our total loss function is: 
 

𝐿𝑜𝑠𝑠 = 𝜆𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 + 𝜇𝐿𝑠𝑡𝑦𝑙𝑒 + 𝜂𝐿ℎ𝑜𝑙𝑒 + 𝛾𝐿𝑣𝑎𝑙𝑖𝑑 (26) 
 

The combination of loss functions in our model requires fewer parameters to be updated, and it can 

also achieve efficient training. 
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4. Experimental Results and Analysis 

4.1 Experimental Settings 

4.1.1 Training setup and strategy 

We evaluate SA-RFR on two public datasets: Places2 and CelebA. We randomly partition Places2 into 

36k images for training and 100 images for testing, and CelebA into 29k images for training and 100 

images for testing. Images in Places2 and CelebA are resized to 512×512 and 256×256, respectively, 

during training and testing. We use the irregular mask dataset provided by [6]. For our experiment, we 

empirically set λ=0.1, μ=180, η=6, and γ=1 in Equation (26). The training procedure involves using Adam 

optimizer. We divide the training model into two parts: normal training and fine-tuning training. We set 

the learning rate to 2𝑒−4 for normal training and to 5𝑒−5 for fine-tuning training. The batch size is 2. We 

apply PyTorch framework to implement our model and train it using NVIDIA GeForce RTX 3090 GPU 

(24 GB memory). The operating system is Ubuntu16.08, the CPU is Intel i5-10400F, and the memory 

size is 32 GB. 

We compare our approach with several state-of-the-art methods including EdgeConnect [8], DF-Net 

[19], PIC-Net [20], and RFR-Net [17]. We conduct qualitative analysis and quantitative analysis to 

demonstrate the superiority of our method. Finally, we perform ablation experiments on the CelebA 

dataset to check the design details of SA-RFR. 

 

4.1.2 Evaluation measures 

We measure the quality of our results using the following metrics: peak signal-to-noise ratio (PSNR) 

and structural similarity index (SSIM). 

PSNR: PSNR is an index that is widely used to evaluate the distortion of reconstructed images 

objectively. As shown in Equation (27), PSNR calculates the similarity based on the mean square error 

(MSE) between the repaired image and the original image, and the unit is decibel (dB). The greater the 

PSNR value is, the less the distortion of the repaired image and the better the effect. 
 

𝑃𝑆𝑁𝑅 = 10 ∙ 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) (27) 

 

SSIM: Objects in natural scenes have strong structural features, and such structural feature and the 

illumination information are independent of each other. As shown in Equation (28), SSIM estimates the 

similarity between the original image and the repaired image by combining the structure information, 

luminance information, and contrast information of the image. The greater the SSIM value is, the better 

the effect. 
 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 (28) 

 

4.2 Qualitative Comparisons 

As shown in Figs. 5 and 6, our inpainting results are significantly better than the state-of-the-art methods 

especially for large continuous holes of damaged images. For the CelebA dataset, our results have more 

real details and fewer artifacts compared to the comparison method. In addition, we compare our method 

and the latest method on the Places2 dataset. Our repair of the image structure is better than the other 

methods, and the image generated has more reasonable and beautiful results in semantics thanks to the 

self-attention mechanism and the AGC. 
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(a) (b) (c) (d) (e) (f) (g) 

Fig. 5. Results on CelebA: (a) masked input, (b) PIC-Net, (c) EdgeConnect, (d) DF-Net,  

(e) RFR-Net, (f) SA-RFR, and (g) ground truth. 

 

      
(a) (b) (c) (d) (e) (f) 

Fig. 6. Results on Places2: (a) masked input, (b) PIC-Net, (c) EdgeConnect, (d) DF-Net,  

(e) SA-RFR, and (f) ground truth. 

 

4.3 Qualitative Comparisons 

We measure the quality of our results using the PSNR and SSIM; the higher the SSIM and PSNR 

values are, the better the effect. Table 1 lists the results with different ratios of irregular masks for the 

two datasets. As shown in Table 1, our method produces excellent results on the Places2 and CelebA 

datasets. When the mask ratio is 10%–20%, the gain of PSNR and SSIM values is small; when the mask 

ratio is >50%, however, PSNR increases by 1.1. This is because self-attention enhances the correlation 

between the known and missing regions of the image, and AGC improves the features. Therefore, our 

PSNR and SSIM are enhanced. 

 

Table 1. Quantitative results on two testing datasets 

 
Places2 CelebA 

10%–20% 30%–40% >50% 10%–20% 30%–40% >50% 

PSNR PIC-Net 27.14 21.72 17.17 30.67 24.74 20.34 

EdgeConnect 26.41 23.11 18.35 33.04 25.72 21.24 

DF-Net 27.93 23.55 19.04 33.70 26.69 21.38 

RFR-Net 27.75 22.63 18.92 33.56 27.15 22.35 

SA-RFR (ours) 28.09 23.63 20.12 34.24 27.69 23.26 

SSIM PIC-Net 0.932 0.786 0.494 0.965 0.881 0.672 

EdgeConnect 0.913 0.806 0.553 0.957 0.856 0.728 

DF-Net 0.926 0.821 0.682 0.966 0.872 0.740 

RFR-Net 0.939 0.819 0.596 0.966 0.877 0.750 

SA-RFR (ours) 0.937 0.831 0.690 0.968 0.889 0.785 

The best values are marked in bold. 



Human-centric Computing and Information Sciences                                                                                                                          Page 11 / 13 

4.4 Ablation Study 

In order to synthesize the effect of self-attention and AGC module in the SA-RFR, we conduct an 

ablation study on the CelebA dataset. The comparison results are shown in Table 2. 

 

Table 2. Influence of adding self-attention and AGC on the network inpainting effect 

Model SA AGC GM 
CelebA (mask >50%) 

PSNR SSIM 

RFR-Net    22.35 0.750 

SA-RFR(-AGC)    22.88 0.766 

SA-RFR(-SA)    22.92 0.772 

SA-RFR(-AGC+GM)    22.71 0.766 

SA-RFR    23.26 0.785 

 

Effectiveness of self-attention: To investigate the effect of self-attention, we train SA-RFR without 

self-attention (SA-RFR(-SA)). As shown in Fig. 7(d), SA-RFR(-SA) produces unnatural textures. In 

contrast, SA-RFR produces the repaired content with clearer details and smoother edges. Furthermore, 

we compare the quantitative performance of these two models with mask ratio of >50% as shown in 

Table 2. Self-attention can use the information of a distant area to ensure the regional consistency of the 

predicted image. Therefore, SA-RFR can generate better texture details. SA- RFR is better than SA-

RFR(-SA) in the qualitative or quantitative aspects. 

 

     

     
(a) (b) (c) (d) (e) 

Fig. 7. Comparison results of different modules: (a) masked input, (b) RFR-Net, (c) SA-RFR(-AGC), 

(d) SA-RFR(-SA), and (e) ground truth. 

 

Effectiveness of AGC: In order to prove the effectiveness of AGC, we train SA-RFR without adaptive 

ghost convolution (SA-RFR(-AGC)) for comparison. As shown in Fig. 7, SA-RFR(-AGC) produces 

results with unreasonable structure, especially the parts of the eyes and eyebrows. However, SA-RFR has 

better facial features. At the same time, our model with AGC is better than RFR-Net without this module 

in the numerical indicators of PSNR and SSIM, as shown in Table 2. 

Furthermore, our AGC is improved on the ghost module. In order to prove the effectiveness of the 

improvement, we replace AGC with GM in SA-RFR (SA-RFR(-AGC+GM)). As shown in Fig. 8(b), the 

lip part of the image in the first row has obvious artifacts and unreasonable structures. The image 

generated in the second row has obvious fish scale artifacts around the neck. In contrast, the images 

generated by AGC (Fig. 8(c)) are more realistic and reasonable. In the last two rows in Table 2, under 

the premise of the same use of self-attention, our proposed AGC is significantly better than the value of 

the ghost module; thus proving the effectiveness of AGC. 
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(a) (b) (c) (d) 

Fig. 8. Comparison results of AGC and ghost module: (a) masked input, (b) SA-RFR(-AGC+GM),  

(c) SA-RFR, and (d) ground truth. 

 

5. Conclusion 

We have proposed SA-RFR for the damaged images missing in a large area. SA-RFR  uses self- 

attention and AGC, which enhance the correlation between known pixels and unknown pixels and 

improve the quality of the repaired image without increasing computational cost. Experiments have 

verified the effectiveness of our proposed method. 
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