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Abstract: Platelet and coagulation activation are highly reciprocal processes driven by multi-molecular
interactions. Activated platelets secrete several coagulation factors and expose phosphatidylserine,
which supports the activation of coagulation factor proteins. On the other hand, the coagulation
cascade generates known ligands for platelet receptors, such as thrombin and fibrin. Coagulation
factor (F)Xa, (F)XIIIa and activated protein C (APC) can also bind to platelets, but the functional
consequences are unclear. Here, we investigated the effects of the activated (anti)coagulation factors
on platelets, other than thrombin. Multicolor flow cytometry and aggregation experiments revealed
that the ‘supernatant of (hirudin-treated) coagulated plasma’ (SCP) enhanced CRP-XL-induced
platelet responses, i.e., integrin αIIbβ3 activation, P-selectin exposure and aggregate formation. We
demonstrated that FXIIIa in combination with APC enhanced platelet activation in solution, and
separately immobilized FXIIIa and APC resulted in platelet spreading. Platelet activation by FXIIIa
was inhibited by molecular blockade of glycoprotein VI (GPVI) or Syk kinase. In contrast, platelet
spreading on immobilized APC was inhibited by PAR1 blockade. Immobilized, but not soluble, FXIIIa
and APC also enhanced in vitro adhesion and aggregation under flow. In conclusion, in coagulation,
factors other than thrombin or fibrin can induce platelet activation via GPVI and PAR receptors.

Keywords: glycoprotein VI; protease-activated receptor 1; platelet activation; coagulation; coagulation
factor XIIIa; activated protein C

1. Introduction

Blood platelets and the coagulation system both contribute to hemostasis and throm-
bosis in a highly interactive manner [1,2]. Well-characterized coagulation products that
activate platelets are thrombin and fibrin. Thrombin induces platelet responses via the
G-protein coupled receptors, protease-activated receptor (PAR)1 and 4 [3]. Fibrin can stimu-
late platelet activation, jointly via molecular actions of the integrin αIIbβ3 and glycoprotein
VI (GPVI) [4,5], leading to thrombus growth and stabilization [6,7]. GPVI is also known to
be the central signaling collagen receptor on platelets [8,9].

Several other activated factors induced by the coagulation process have been de-
scribed to bind and activate platelets. Factor Xa (FXa) was reported to cleave PAR1 at
the thrombin-cleavage site and to evoke platelet responses which were inhibitable by
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PAR1 inhibitors [10,11]. The formation of FXa occurs at the surface of phosphatidylserine
(PS)-exposing platelets by the tenase complex, after which FXa cleaves prothrombin into
thrombin in a factor FVa-dependent way [12]. The transglutaminase factor XIIIa (FXIIIa),
which crosslinks fibrin fibers, supports platelet spreading and filipodia formation via the
activation of Tyr-kinases [13]. In addition, activated protein C (APC, an anticoagulation
factor) was found to stimulate platelets via the receptors ApoER2 and GPIb-V-IX [1,14].
Additionally, other factors, such as FV, FIX and FXI, are known to bind to platelets for
instance via GPIb-V-IX and integrin αIIbβ3 [15–17].

Targeting molecular interaction processes of both platelet and coagulation has been
shown to be beneficial in terms of cardiovascular risk reduction. Both, the ATLAS-ACS 2
TIMI 51 study, where the FXa inhibitor rivaroxaban was combined with dual antiplatelet
therapy and the COMPASS trial, where a low-dose rivaroxaban administered in addition
to aspirin, provided proof that combining platelet and coagulation inhibitors resulted in
a lower rate of cardiovascular events, compared to platelet inhibition alone [2,18,19]. In
addition, combined antiplatelet and anticoagulation therapy might be promising in other
patient populations as well, for example in patients with myocardial injury after non-
cardiac surgery (MINS) [20], in which the MANAGE trial recently showed that dabigatran
reduced the risk for major vascular complications [21].

In the literature, we encountered a gap in detailed knowledge regarding the relative
contribution of key coagulation and anticoagulation factors—other than thrombin and
fibrin—in platelet recruitment, platelet activation and thrombus formation. In the present
paper, we aimed to close this gap by investigating, on a molecular and signaling level, how
the interactions of FXa, FXIIIa and APC with platelets influenced the activation processes
of platelets. We hypothesize that all these factors support these processes and hence may
act together. We selected FXa, FXIIIa and APC for further investigation because of their
central role in the initiation of thrombin generation, fibrin crosslinking and anticoagulation,
respectively. In addition, these (anti)coagulation factors are clinically used or are of current
high interest for novel therapies to control thrombosis and hemostasis.

2. Results
2.1. Supernatant of Hirudin-Treated Coagulated Plasma Enhances Platelet Activation

To determine whether activated factors generated during the coagulation process,
other than thrombin, affect platelet activation processes, washed platelets were isolated
and exposed to supernatant of hirudin-treated coagulated plasma (SCP). SCP was used to
mimic the (patho)physiological situation upon injury and activation of extrinsic coagulation.
Platelets exposed to SCP were stimulated with varying concentrations of CRP-XL, where-
after platelet activation markers were assessed by flow cytometric analysis (Figure 1). SCP
did not induce platelet activation by itself, but significantly enhanced the CRP-XL-induced
integrin αIIbβ3 activation (PAC-1 labeling) and P-selectin exposure (anti-P-selectin mAb
labeling) by 30–50% over a range of submaximal concentrations (Figure 1A). In addition,
the effect of SCP on platelet aggregation in response to CRP-XL, TRAP-6 or ADP was
determined using a plate-based aggregation method. Again, SCP significantly increased
the percentage of platelet aggregation upon stimulation with submaximal concentrations of
CRP-XL, TRAP6 or ADP, compared to noncoagulated (control) plasma (Figure 1B). These
results indicated that components generated during coagulation, other than thrombin,
support platelet responses.

2.2. Effect of Individual Coagulation Factors on Platelet Activation

Since previous literature described that FXa, FXIIIa and APC interact with
platelets [10,13,14], we investigated whether these factors contribute to the enhancing
effects of SCP on platelet activation. Washed platelets were primed with FXa (10 µg/mL),
APC (10 nM), FXIIIa (10 U/mL) and activated with varying concentrations of CRP-XL,
thrombin or TRAP-6.
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scaled relative to aggregation obtained upon highest CRP-XL concentration in control condition 

(100%). Ordinary two-way ANOVA, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. (B) 

Aggregation of washed platelets in control or SCP induced by CRP-XL, TRAP-6 or ADP, as assessed 

by well plate-based aggregation method. Mean ± SD, n = 3. All data were scaled relative to 

aggregation obtained upon highest agonist concentration. in control condition (100%). Ordinary 
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2.2. Effect of Individual Coagulation Factors on Platelet Activation 

Since previous literature described that FXa, FXIIIa and APC interact with platelets 

[10,13,14], we investigated whether these factors contribute to the enhancing effects of 

SCP on platelet activation. Washed platelets were primed with FXa (10 µg/mL), APC (10 

nM), FXIIIa (10 U/mL) and activated with varying concentrations of CRP-XL, thrombin or 

TRAP-6. 

The addition of FXa significantly enhanced the platelet aggregation response 

triggered by submaximal doses of CRP-XL, TRAP-6 or ADP (Figure 2A). Flow cytometric 

analysis showed that FXa increased CRP-XL-induced integrin αIIbβ3 activation and P-

selectin exposure (Figure 2C). FXa alone also triggered platelet activation (Figure 2B). 

Strikingly, all effects evoked by FXa were abolished by the thrombin inhibitors dabigatran 

and hirudin (Figure 2B–D). Consistent with this, increased cytosolic Ca2+ levels measured 

in FXa-treated fura-2-loaded platelets were also inhibited by dabigatran (Figure 2D). This 

suggests that the FXa-dependent platelet responses are due to the in situ formation of 

thrombin traces. 

Figure 1. Coagulation-dependent activation of platelets independent of thrombin. (A) Washed
human platelets in the presence or absence of supernatant of hirudin-treated, coagulated plasma
(SCP) were stimulated with a range of CRP-XL concentrations. Activation of integrin αIIbβ3 and
P-selectin expression were assessed by flow cytometric analysis, using FITC labeled PAC-1 mAb
and Alexa Fluor (AF) 647-labeled anti-human CD62P mAb, respectively. Mean ± SD, n = 4. All
data were scaled relative to aggregation obtained upon highest CRP-XL concentration in control
condition (100%). Ordinary two-way ANOVA, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
(B) Aggregation of washed platelets in control or SCP induced by CRP-XL, TRAP-6 or ADP, as
assessed by well plate-based aggregation method. Mean ± SD, n = 3. All data were scaled relative
to aggregation obtained upon highest agonist concentration. in control condition (100%). Ordinary
two-way ANOVA, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

The addition of FXa significantly enhanced the platelet aggregation response triggered
by submaximal doses of CRP-XL, TRAP-6 or ADP (Figure 2A). Flow cytometric analysis
showed that FXa increased CRP-XL-induced integrin αIIbβ3 activation and P-selectin
exposure (Figure 2C). FXa alone also triggered platelet activation (Figure 2B). Strikingly, all
effects evoked by FXa were abolished by the thrombin inhibitors dabigatran and hirudin
(Figure 2B–D). Consistent with this, increased cytosolic Ca2+ levels measured in FXa-treated
fura-2-loaded platelets were also inhibited by dabigatran (Figure 2D). This suggests that
the FXa-dependent platelet responses are due to the in situ formation of thrombin traces.

In contrast, neither FXIIIa nor APC alone enhanced agonist-induced aggregation
(Figure 3A,B). Additionally, platelet activation markers following CRP-XL stimulation were
not altered by APC or FXIIIa (Supplementary Figure S1). However, in line with the effects
of SCP, combining APC and FXIIIa significantly enhanced CRP-XL-induced integrin αIIbβ3
activation by approximately 20% (Figure 3C).

2.3. Immobilization of APC and FXIIIa Favors Their Activating Effect on Platelets

Since the effects induced by soluble APC and FXIIIa were variable, we examined
whether immobilizing APC and FXIIIa could favor their interaction with platelets using
platelet spreading assays. FXa was not further investigated, as we observed that effects
evoked by FXa were entirely thrombin dependent.
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2.3.1. Immobilized APC

Surface-immobilized APC triggered the adhesion and spreading of unstimulated
platelets (Figure 4A). Of all adhered platelets, 18.29 ± 13.33% did not undergo shape
change, while only a small percentage of platelets protruded filopodia 14.68 ± 9.223% and
all others formed lamellipodia 67.03 ± 18.9%. Similar results were obtained for plasma-
derived APC (not shown). Since the binding of APC to the EPCR receptor on endothelial
cells results in N-terminal PAR1 cleavage [22], we studied a possible role of PAR1 in
APC-induced platelet spreading. Therefore, washed platelets were pretreated with the
PAR1 inhibitor Atopaxar before spreading on APC-coated surfaces. Atopaxar substantially
reduced platelet adhesion by 59.96 ± 15.04% (p = 0.0131) to the APC-coated surfaces and
abolished the formation of lamellipodia (p < 0.001), demonstrating the role of PAR1 in
APC-induced platelet spreading (Figure 4A).
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Figure 2. Factor Xa induces platelet activation and enhances agonist-induced platelet effects,
in a thrombin-dependent way. (A) Factor Xa enhances agonist-induced platelet aggregation.
Washed platelets preincubated with vehicle or FXa (10 µg/mL) were stimulated with CRP-XL
(0.003–3 µg/mL), thrombin (0.003–3 U/mL) or TRAP-6 (0.05–50 µM). Platelet aggregation was as-
sessed by well plate-based light transmission changes. All data were scaled relative to aggregation
obtained upon highest agonist concentration in the presence of vehicle (100%). Mean ± SD, n = 3;
two-way ANOVA, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. (B) FXa-induced platelet
activation is inhibitable by dabigatran or hirudin. Flow cytometry, washed platelets. Active integrin
and P-selectin expression are shown. Percentage positive platelets. One-way ANOVA, multiple
comparisons, mean ± SD, n = 4–5, one-way ANOVA, * p < 0.05 and ** p < 0.01, **** p < 0.0001.
(C) Enhancement of CRP-XL-induced platelet activation by FXa is abolished by dabigatran. One-way
ANOVA, multiple comparisons, data are compared to CRP-XL, * p < 0.05, mean ± SD, n = 4–5.
(D) FXa-induced cytosolic Ca2+ release is inhibitable by dabigatran. Washed platelets, loaded with
Fura-2 acetoxymethyl ester (3 µM). Changes in cytosolic [Ca2+]I were measured using FlexStation 3.
Outcome was assessed from slope of initial Ca2+ rises and representative time traces. Unpaired t-test,
* p < 0.05, mean ± SD, n = 3–4.



Int. J. Mol. Sci. 2022, 23, 10203 5 of 14
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 3. Combinations of coagulation factors (F)XIIIa and anticoagulation factor APC enhance 

CRP-XL induced platelet activation. (A,B) Washed platelets preincubated with vehicle, FXIIIa (10 

U/mL) or APC (10 nM) were stimulated with CRP-XL (0.003–3 µg/mL), thrombin (0.003–3 U/mL) or 

TRAP-6 (0.05–50 µM). Platelet aggregation was assessed by well plate-based light transmission 

changes. All data were scaled relative to aggregation obtained upon highest agonist concentration 

in the presence of vehicle (100%). Mean ± SD, n = 3; two-way ANOVA. (C) Washed platelets were 

preincubated with vehicle or FXIIIa and APC and activated with a submaximal CRP-XL 

concentration (0.03–0.5 µg/mL). Flow cytometry was used to measure activated integrin αIIbβ3 using 

FITC labelled PAC-1 mAb. Paired t-test, ** p < 0.01, mean ± SD, n = 4. 

2.3. Immobilization of APC and FXIIIa Favors Their Activating Effect on Platelets 

Since the effects induced by soluble APC and FXIIIa were variable, we examined 

whether immobilizing APC and FXIIIa could favor their interaction with platelets using 

platelet spreading assays. FXa was not further investigated, as we observed that effects 

evoked by FXa were entirely thrombin dependent. 

2.3.1. Immobilized APC 

Surface-immobilized APC triggered the adhesion and spreading of unstimulated 

platelets (Figure 4A). Of all adhered platelets, 18.29 ± 13.33% did not undergo shape 

change, while only a small percentage of platelets protruded filopodia 14.68 ± 9.223% and 

all others formed lamellipodia 67.03 ± 18.9%. Similar results were obtained for plasma-

derived APC (not shown). Since the binding of APC to the EPCR receptor on endothelial 

cells results in N-terminal PAR1 cleavage [22], we studied a possible role of PAR1 in APC-

Figure 3. Combinations of coagulation factors (F)XIIIa and anticoagulation factor APC enhance CRP-
XL induced platelet activation. (A,B) Washed platelets preincubated with vehicle, FXIIIa (10 U/mL)
or APC (10 nM) were stimulated with CRP-XL (0.003–3 µg/mL), thrombin (0.003–3 U/mL) or TRAP-6
(0.05–50 µM). Platelet aggregation was assessed by well plate-based light transmission changes. All
data were scaled relative to aggregation obtained upon highest agonist concentration in the presence
of vehicle (100%). Mean ± SD, n = 3; two-way ANOVA. (C) Washed platelets were preincubated with
vehicle or FXIIIa and APC and activated with a submaximal CRP-XL concentration (0.03–0.5 µg/mL).
Flow cytometry was used to measure activated integrin αIIbβ3 using FITC labelled PAC-1 mAb.
Paired t-test, ** p < 0.01, mean ± SD, n = 4.

2.3.2. Immobilized FXIIIa

Immobilized FXIIIa also induced platelet adhesion and spreading (Figure 4B). The
majority of platelets 69.41 ± 15.04% formed lamellipodia on FXIIIa surfaces. To assess the
contribution of the transglutaminase activity of FXIIIa in platelet adhesion and spreading,
platelets were pretreated with the transglutaminase inhibitor T101. There was no significant
decrease in platelet adhesion and in the formation of filopodia and lamellipodia when
transglutaminase activity was blocked (Figure 4B).

Since previous studies have demonstrated that the mechanism of FXIIIa-induced
platelet spreading and filopodia formation was dependent on integrin αIIbβ3 and tyrosine-
kinase activity [13,23,24], we preincubated the platelets with an inhibitor of the kinase
Syk, PRT060318 (Syk-IN). Platelet adhesion on surface-immobilized FXIIIa was reduced
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(p = 0.001) and lamellipodia formation was abolished (p < 0.0001) after treatment with
Syk-IN (Figure 5A). In platelets, the binding of Syk to the β3 cytoplasmic domain of αIIbβ3
integrin is known to be important in lamellipodia formation [25]. However, Syk is also
a major signaling molecule downstream of GPVI. Therefore, we reasoned that this may
indicate the stimulation of GPVI signaling by FXIIIa. Platelets were therefore treated with
the small-molecule GPVI inhibitor honokiol [26] or the blocking anti-GPVI Fab 9O12 [27]
with or without the integrin αIIbβ3 inhibitor tirofiban. Treatment with either GPVI inhibitors
or tirofiban significantly reduced platelet lamellipodia formation on FXIIIa (p < 0.01), but
not adhesion (Figure 5B). Combination of either one of the GPVI inhibitors with the
integrin αIIbβ3 receptor inhibitor tirofiban, resulted in a significant further decreased
platelet adhesion and inhibited lamellipodia formation (Figure 5B). These data indicate the
importance of GPVI in platelet activation by FXIIIa, and the synergistic roles of integrin
αIIbβ3 and GPVI in the binding and spreading of platelets to immobilized FXIIIa.
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Figure 4. Immobilized APC and FXIIIa induce platelet adhesion and spreading. (A) Role of PAR-1
in APC-induced platelet spreading. Washed platelets (20 × 109 platelets/L) were incubated with
vehicle (DMSO) or Atopaxar (5 µM) and were allowed to spread for 45 min under static conditions,
on a surface coated with APC. The platelets were then fixed, permeabilized and stained with CF543-
phalloidin. Spreading was assessed with fluorescence microscopy (bars, 20 µm). Two-way ANOVA,
*** p < 0.001 compared between lamellipodia, mean± SD, n = 4. Unpaired t-test, # p < 0.05 comparison
of platelets per visual field, mean ± SD, n = 4. (B) FXIIIa-induced platelet spreading is independent
of transglutaminase activity. Washed platelets (20 × 109 platelets/L) were treated with vehicle
or transglutaminase inhibitor T101 (20 µM) and were allowed to spread for 45 min under static
conditions, on surfaces coated with FXIIIa. Samples were fixed, permeabilized and stained with
CF543-phalloidin. Spreading was assessed by fluorescence microscopy (bars, 20 µm). Two-way
ANOVA, not significant, mean ± SD, n = 3–4. Unpaired t-test, not significant, mean ± SD, n = 3–4.

2.4. Immobilized FXIIIa and APC Enhance Platelet Adhesion under Flow

To obtain more insight into the effect of FXIIIa and APC on thrombus formation,
whole blood samples were used for the assessment of thrombus formation under flow
using the Maastricht flow chamber [28]. Coagulation factors in physiological conditions
can be found soluble in the plasma or immobilized by other ligands or vascular cells.
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Therefore, APC and FXIIIa were added either directly to the blood or coated on a surface.
Surfaces were coated with VWF, since this subendothelial matrix protein only induces weak
platelet responses. We reasoned that additional platelet effects evoked by APC or FXIIIa
would be rather detected on VWF than on more potent surfaces, such as collagens. To
investigate whether soluble FXIIIa and APC enhance thrombus formation on a VWF surface,
blood was incubated for 5 min with vehicle or FXIIIa or APC. For experimentation with
FXIIIa, citrated blood was used, which was recalcified in the presence of PPACK. For the
investigation of APC, blood was taken on hirudin, to avoid any inhibitory effects of PPACK
on APC [29]. Blood was perfused over a VWF-coated surface, at an arterial wall shear
rate of 1000 s−1 or venous wall shear rate of 300 s−1. There was no difference in overall
platelet deposition or microaggregate formation when blood was incubated with vehicle,
soluble FXIIIa (sFXIIIa) or soluble APC (sAPC) (Figures 6A and 7A). Interestingly, at an
arterial wall shear (1000 s−1), co-coating FXIIIa or APC with VWF significantly enhanced
VWF-induced platelet adhesion (p = 0.026 and 0.043) (Figures 6B and 7B). Additionally,
microaggregate formation was significantly increased upon FXIIIa co-coating (p = 0.043)
(Figure 6B). Moreover, co-coating FXIIIa and APC together with VWF increased platelet
adhesion to the surface with 32% or 15% compared to co-coating APC or FXIIIa with VWF
alone, respectively (not shown).
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Figure 5. The role of Syk, integrin αIIbβ3 and GPVI in platelet spreading on FXIIIa. (A) Spreading
on FXIIIa is Syk-dependent. Washed platelets (20 × 109 platelets/L) were treated with vehicle or
Syk inhibitor PRT-060318 (20 µM) and added to the FXIIIa-coated surface. Samples were fixed,
permeabilized and stained with CF543-phalloidin. Spreading was assessed by fluorescence mi-
croscopy (bars, 20 µm). Two-way ANOVA, **** p < 0.0001, comparison between lamellipodia, mean
± SD, n = 4. Unpaired t-test, ## p < 0.01, comparison of platelets per visual field, mean ± SD, n = 4.
(B) The role of GPVI in spreading on FXIIIa. Washed platelets (20× 109 platelets/L) were treated with
honokiol (50 µM) or 9O12 (50 µg/mL) ± tirofiban (1 µg/mL) as indicated and added to the FXIIIa-
coated surface. Samples were fixed, permeabilized and stained with CF543-phalloidin. Spreading
was assessed by fluorescence microscopy (bars, 20 µm). Two-way ANOVA, * p < 0.05, *** p < 0.001,
**** p < 0.0001, comparison between lamellipodia, mean ± SD, n = 3–5. Unpaired t-test, # p < 0.05,
## p < 0.01, comparison of platelets per visual field, mean ± SD, n = 3–5.
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Figure 6. Immobilized FXIIIa enhances platelet adhesion and aggregate formation on VWF. (A) Blood
samples were preincubated for 5 min with FXIIIa (10 U/mL) and perfused over a surface coated with
VWF. (B) Blood samples were perfused over surfaces coated with VWF ± FXIIIa. Wall shear rate was
300 s−1 or 1000 s−1. Representative brightfield images (bars, 40 µm). Platelet adhesion (expressed
as percentage surface area coverage, % PltSac). Platelets forming (micro)aggregates (expressed as
percentage microaggregates, %MicrAgg). Unpaired t-test, * p < 0.05, mean ± SD, n = 3–5.
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Figure 7. Immobilized APC enhances platelet adhesion on VWF. (A) Blood samples were preincu-
bated for 5 min with APC (10 nM) and perfused over a surface coated with VWF. (B) Blood samples
were perfused over surfaces coated with VWF ± APC. Wall shear rate was 300 s−1 or 1000 s−1. Rep-
resentative brightfield images (bars, 40 µm). Platelet adhesion (expressed as percentage surface area
coverage, %PltSac). Platelets forming (micro)aggregates (expressed as percentage microaggregates,
%MicrAgg). Unpaired t-test, * p < 0.05, mean ± SD, n = 3.

3. Discussion

Platelet and coagulation activation occur contemporarily, but are often studied sepa-
rately, while both mechanisms sustain thrombus formation and impact thrombosis. Our
data show that coagulation factors, factors other than thrombin or fibrin, can induce platelet
activation. FXIIIa induced platelet spreading via GPVI, and APC induced platelet spreading
via PAR1. As GPVI and PAR1 are interesting targets for novel antiplatelet therapy, it is im-
portant to identify the ligands for those receptors. Previously, the only coagulation-derived
product which was described to activate GPVI was fibrin(ogen), and the activation of PAR1
by APC was only described for endothelial cells. We observed that the effects of individual
(anti-)coagulation factors FXIIIa and APC on platelets were bigger when immobilized than
when soluble, and that the combined effects of soluble FXIIIa and APC were capable of
enhancing platelet activation. In pathological conditions, i.e., at sites of vascular injury or
atherothrombosis, the activated factors FXIIIa and APC, both of which are key in regulating
the extent of clot formation, are likely to act in a balanced way to prevent, allow and/or
restrict the formation of a thrombus.
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Given that during acute thrombotic events platelets are exposed to high levels of
multiple activated (anti-)coagulation factors, we investigated the effect of the supernatant
of hirudin-treated coagulated plasma (SCP) on platelets. Hereby, we have shown that
(anti-)coagulation factors formed upon the activation of the extrinsic pathway jointly en-
hanced agonist-induced platelet activation and aggregation in a thrombin-independent
manner. Although the formed fibrin clot was removed from the SCP and a thrombin
inhibitor was added to exclude thrombin and fibrin effects, the residual presence of fib-
rin(ogen) in SCP and thus its influence on platelet activity cannot be completely excluded.
To further explore which elements within SCP could be involved in the enhancement of
platelet activation, the effects of individual factors of the coagulation cascade on platelets
were investigated, by themselves and in combination.

We observed that the addition of FXa caused platelet integrin αIIbβ3 activation, secre-
tion, aggregation and the release of cytosolic Ca2+, confirming the effects reported by others.
A report by Al-Tamimi and colleagues [11] concluded that platelet activating effects of FXa
were mediated via PAR1 as effects were abolished in the presence of the PAR1-inhibitors
SCH79797. Accordingly, Petzold and colleagues reported that FXa-mediated effects on
platelets were abolished by the FXa inhibitor Rivaroxaban or the PAR1 inhibitor Vora-
paxar [10]. However, our data showed that all effects evoked by FXa were abolished upon
the addition of thrombin inhibitors, suggesting that the effects of FXa rely on the in situ
formation of low levels of thrombin, activating platelets via PAR1. Since platelets’ alpha
granules and open canalicular system contain several coagulation factors and co-factors, the
generation of thrombin could possibly be explained by the release of traces of prothrombin
and factor V/Va by platelets [30].

APC has previously been shown to mediate cytoprotective effects in endothelial
cells via PAR1 signaling [14,31,32], which are inhibited by the orthosteric PAR1 inhibitors
Vorapaxar and Atopaxar [33]. We revealed that APC-induced platelet spreading is also
dependent on PAR-1 and spreading could be inhibited by Atopaxar. Platelet adhesion,
however, was not completely abolished upon PAR1 inhibition, suggesting a complementary
role of other receptors, for example ApoER2 and GPIbα, which have also been shown to
be involved in APC-induced platelet spreading [14]. Compatible with earlier findings by
White et al. [14], we could detect an additive effect of APC on platelet adhesion under flow.

The endothelial cell protein C receptor (EPCR) captures and immobilizes APC on
the endothelium. Whether this can influence platelet responses in vivo and contribute
to platelet adhesion warrants further investigation. The action of APC in this context is
uncertain because as well as facilitating platelet adhesion, the binding of APC to platelets
could possibly also limit thrombus growth, by localizing the anticoagulant property of the
protein C system on the thrombus. To what extent platelet activating and anticoagulant
properties of APC influence thrombus formation and growth remains to be established.

FXIIIa has previously been shown to support platelet adhesion and spreading through
Syk and integrin αIIbβ3 [13,24]. For the first time, we show that GPVI also has a role in
FXIIIa-induced platelet spreading. We observed that the combined inhibition of GPVI and
integrin αIIbβ3 almost completely abolished platelet adhesion and spreading, pointing
towards synergistic roles of integrin αIIbβ3 and GPVI in the effects of FXIIIa on platelets.
Fibrin(ogen) is, to our knowledge, the only coagulation product previously described that
induces platelet responses via the platelet receptor GPVI. Complementary to our findings,
Moroi M. et al. reported proof that GPVI-dimer selectively binds to FXIII A-subunit [34].
Our study demonstrates the functional consequences of the interaction between FXIIIa
and GPVI.

Our results highlight the importance of the immobilization of FXIIIa, suggesting that
FXIIIa may need to be captured before eliciting a platelet response, which may be due to a
change in FXIIIa conformation [23], or due to the importance of clustering GPVI [35,36].
Under physiological conditions, FXIIIa is captured by fibrin(ogen), and by platelet surface
receptors in a growing thrombus [37]. FXIIIa is also exposed on the surface of activated
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platelets, suggesting that there are amble sources of immobilized FXIIIa in a forming
thrombus [38].

In conclusion, our data provide novel evidence that: (i) coagulation products generated
upon the activation of the extrinsic pathway support platelet activation, independently
of thrombin; (ii) coagulation factor (F)Xa-induced platelet responses rely solely on the in
situ formation of thrombin; (iii) immobilized anticoagulation factor APC induces platelet
adhesion and spreading, with a role for PAR1; and (iv) immobilized coagulation factor
(F)XIIIa induces platelet adhesion and spreading, through GPVI and integrin αIIbβ3. This
provides new insights into the molecular processes that drive the interactions between
coagulation-generated factors and platelets, and the roles of the platelet receptors PAR1
and GPVI herein. GPVI is a promising target for novel antiplatelet therapy, given its
involvement in the collagen-induced pathogenesis of thrombosis, but its minor role in
hemostasis [39]. There is, therefore, a need to elucidate the ligands for the GPVI receptor.
Similarly, it is clear that the interplay between platelet and coagulation activation needs
to be considered if we are to understand the propagation of thrombus, the formation of
pathological thrombosis and the efficacy of novel anti-thrombotic therapies.

4. Materials and Methods

Human blood was obtained by venipuncture from healthy volunteers, free from an-
tithrombotic medication after written informed consent in accordance with the Declaration
of Helsinki. Protocols were reviewed by the local ethics committee. Blood samples were
collected into 3.2% trisodium citrate (Vacuette tubes, Greiner Bio-One, Alphen a/d Rijn, The
Netherlands). The first 2 mL of blood was discarded to avoid contact activation effects. All
subjects had platelet counts within the reference range (150–450 × 109/L), as determined
with a Sysmex XP-300 thrombocounter (Sysmex, Cho-ku, Kobe, Japan). The platelets were
isolated, washed and resuspended in Hepes buffer pH 7.45 (10 mM Hepes, 136 mM NaCl,
2.7 mM KCl, 2 mM MgCl2, 0.1% glucose and 0.1% BSA), as described earlier [40]. For
further details, see supplementary data.

4.1. Preparation of Supernatant of Hirudin-Treated Coagulated Plasma (SCP)

Citrate anticoagulated platelet-poor plasma was obtained from blood samples by a
double centrifugation at 2200× g for 10 min (22 ◦C, acc. 9, brake 3; Rotina 380 R, Hettich
Benelux B.V., Geldermalsen, The Netherlands). As described earlier [41], the collected
plasma was recalcified with 16.6 mM CaCl2 and activated with 10 pM tissue factor at 37 ◦C
for one hour, resulting in the extrinsic activation of the coagulation cascade. Fibrin clots
were manually removed and the fluid remnant was centrifuged at 22,500× g for 5 min
(22 ◦C; Hettich EBA 12, Hettich Benelux B.V., Geldermalsen, The Netherlands) to remove
remaining fibrin fibers and cell debris. The collected supernatant was post-treated with
10 U/mL hirudin, at room temperature for 10 min, to completely block residual thrombin
activity. No additional inhibitors were added. Treated clot supernatants from four healthy
donors were pooled and frozen for later experimentation. See supplementary Data.

4.2. Statistical Analysis

GraphPad Prism 8 software (La Jolla, CA, USA) was used for statistical analysis. Data
are presented as mean ± SD. Mean values were compared using an ordinary one- or two-
way ANOVA. The Shapiro–Wilk test was used to test for normal distribution of the data.
P-values below 0.05 were considered statistically significant in that: * p < 0.05, ** p < 0.01
and *** p < 0.001.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231810203/s1. References [2,10,13,14,27,28,31,40,42] are cited
in the supplementary materials.
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