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Abstract
While skilful forecasts of heavy rainfall are highly desirable for weather warn-
ings and mitigating impacts, forecasting such events is notoriously difficult,
even with the most advanced numerical weather prediction models, due to the
strong dependence on convective-scale processes. The large-scale circulation,
on the other hand, is typically more predictable. Weather patterns (WPs) are
a set of circulation types obtained statistically that can be used to characterize
regional weather and harness the predictability of the large-scale circulation.
In this work we produce pattern-conditioned probabilistic rainfall forecasts by
projecting the horizontal winds from the Met Office GloSea5 prediction sys-
tem on to WPs and then using the observed relationship between each WP and
rainfall estimated by satellite. The WPs are derived following a novel two-tier
clustering technique: the WPs in the first tier represent planetary-scale variabil-
ity, such as El Niño–Southern Oscillation (ENSO), while the WPs in the second
tier capture synoptic-scale variability. We investigate WP predictability as well
as the improvement in skill of subseasonal rainfall forecasts gained by this tech-
nique. GloSea5 predicts the WP occurrence with skill extending beyond lead
day 10. The pattern-conditioned rainfall forecasts were evaluated against clima-
tological forecasts and model-simulated rainfall hindcasts. We show that the
pattern-conditioned forecasts are skilful and outperform the model-simulated
rainfall hindcasts for lead times extending to days 10–20, depending on the
specific exceedance criteria and region. Spatial aggregation leads to increased
levels of skill, but not to a significant extension of the skilful prediction horizon.
These results constitute a fundamental step for the development of subseasonal
prediction systems for Southeast Asia.
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1 INTRODUCTION

Reliable high-impact weather (HIW) forecasts facilitate
planning, preparation, and timely deployment of emer-
gency services (Vitart et al., 2017; White et al., 2017;
Moron et al., 2018). The ability to predict the risk of
HIW events at forecast horizons beyond the first fore-
cast week is critical for the reduction of their societal
impact. Over Southeast Asia, the most impactful HIW
events, in terms of economic and social insecurity, are
floods and landslides (Gupta, 2010; Eckstein et al., 2019).
Such extreme events are associated with heavy precipi-
tation due to tropical cyclones and convective weather
systems. Precipitation, however, is very poorly captured
by global numerical weather prediction systems at lead
times beyond 1–2 days in the Tropics (Vogel et al., 2020),
although greater skill at lead times of 1–3 days can be
obtained with convection-permitting ensemble forecasts
(Ferrett et al., 2021). In the case of Southeast Asia, the
intricate land–sea contrast due to the many islands and
the complexity of the mountainous terrain leads to very
small spatial and temporal features in precipitation that
most general circulation models cannot capture (Love
et al., 2011; Birch et al., 2016; Ferrett et al., 2020). By
contrast, there are variables related to the large-scale atmo-
spheric circulation that can be predicted more reliably
than rainfall, such as geopotential height or horizon-
tal wind components above the mixed layer (Boer, 2003;
Hohenegger and Schar, 2007; Zhang et al., 2007; Selz and
Craig, 2015; Ying and Zhang, 2017), and this has led to the
development of post-processing methods such as model
output statistics (MOS) to relate precipitation to the more
predictable components (Glahn and Lowry, 1972).

Over the last two decades, clustering and other sta-
tistical methodologies have been used to identify weather
patterns (WPs) and characterise these as the more pre-
dictable features of the large-scale circulation and associ-
ated surface impacts (Huth et al., 2008; Philipp et al., 2010;
Ghil et al., 2019). Furthermore, these methods have been
shown to be a promising technique for the enhancement of
skill in the subseasonal-to-seasonal (S2S) prediction range
(Mariotti et al., 2020; Mastrantonas et al., 2022). A lim-
itation of the WP approach is that each pattern has a
fixed spatial structure, while many of the relevant weather
phenomena may be propagating features (e.g., equatorial
waves, tropical cyclones). However, many features recur
in similar geographical locations, associated with orogra-
phy, land–sea contrast, and the more stationary elements
of the larger-scale flow. In recent years, several authors
have explored the subseasonal predictability of WPs over
different regions (Vigaud et al., 2018; Wang et al., 2019;
Cortesi et al., 2021). Even though there have been stud-
ies applying WPs over Southeast Asia (Moron et al., 2015;

Hassim and Timbal, 2019), to our knowledge their use for
the prediction of precipitation into the subseasonal range
has not been explored.

In a companion article, Howard et al. (2021). (referred
to as H21 hereafter) introduced a novel technique for
the identification of WPs over Southeast Asia based
on clustering lower tropospheric horizontal wind data.
Two approaches were explored and compared: a “tiered”
approach using a planetary-scale tropical domain (20% of
the Earth’s surface) to define the first tier of clusters, fol-
lowed by a second tier conditional on the occurrence of
the first, clustering only in the Southeast Asia region (25%
of the tier-1 area). The second “flat” approach used a sin-
gle clustering step on the smaller regional domain only,
imposing the same number of clusters as the second tier
of the tiered approach. Their results show that the WPs
obtained through both methodologies capture the variabil-
ity and circulation patterns associated with the seasonal
cycle over the region, and are therefore very likely to repre-
sent that aspect of precipitation variability. H21 also show
that there is a strong connection between the tiered and
flat WPs and extreme precipitation over the region, which
is of greater relevance from an impact-based perspective.
Furthermore, through the use of a perfect pattern forecast
approach they demonstrated that the pattern-conditioned
extreme rainfall predictions have the potential to outper-
form the climatology and also Madden–Julian Oscillation
(MJO)-conditioned forecasts.

Here, the objective is to design and evaluate pattern-
conditioned forecasts of extreme rainfall exceedance and
exploit their potential to extend the range of skilful HIW
predictions across Southeast Asia. In particular, the study
addresses the following research questions.

• Can we derive pattern-conditioned predictions of
extreme precipitation that are skilful on subseasonal-
to-seasonal (S2S) timescales relative to climatological
forecasts?

• Can they outperform the rainfall predictions simulated
by global models and at which scales?

• Does one of the clustering methodologies (“tiered” or
“flat”) lead to more skilful pattern-conditioned predic-
tions than the other?

The rest of the article is organised as follows: Section 2
describes the data and methodology followed to derive
pattern-conditioned forecasts. Section 3 focuses on the
ability of the UK Met Office GloSea5 extended-range
prediction system to capture the regimes and their cli-
matological features, as well as the system’s skill for
predicting pattern assignment. Section 4 introduces an
implementation of the pattern-conditioned forecasts of
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GONZALEZ et al. 21

precipitation exceedance and an initial assessment of their
skill compared with climatological forecast benchmarks
as well as with the simulated precipitation. This section
also explores the impact on skill of the spatial aggregation
of the predictions. A high-impact weather case study illus-
trating the implementation of the methods is presented in
Section 5. Finally, a discussion and conclusions regarding
the results are included in Section 6.

2 DATA AND METHODOLOGY

2.1 Data

Weather patterns were identified through the application
of k-means clustering to daily-mean 850-hPa zonal and
meridional wind fields from the ERA5 reanalysis set (Hers-
bach et al., 2020) over the period 1979–2018. The pattern
assignment used to represent “truth” in evaluation of the
predictions was based on the 0000 UTC ERA5 wind fields,
corresponding to the available valid time of the forecast
fields described below.

Daily precipitation estimates were obtained from the
National Aeronautics and Space Administration (NASA)
Global Precipitation Measurement (GPM) dataset (Huff-
man et al., 2015) over the period June 2000–December
2018. The GPM Dual-frequency Precipitation Radar
(DPR) and Global Microwave Imager (GMI) Combined
Precipitation L3 daily version 06 product was aggregated
and interpolated to a 1.5◦ × 1.5◦ grid to match the forecast
dataset. This dataset was used to calculate climatological
probabilities of precipitation exceedance, as the truth for
assessing forecast skill, and to condition them given the
occurrence of the different weather patterns.

A UK Met Office GloSea5 hindcast set (GS5: MacLach-
lan et al., 2015.) corresponding to operational forecast
starts in the period between July 2017 and June 2018
was obtained from the World Meteorological Organiza-
tion (WMO) S2S dataset (Vitart et al., 2017) through the
European Centre for Medium-Range Weather Forecasts
(ECMWF) archive at the common 1.5◦ horizontal resolu-
tion.1 This set comprises four start times per month (on
days 1, 9, 17, and 25 of each month), 23 years of hind-
casts for each start time (1993–2015), and seven ensem-
ble members. Fields corresponding to 850-hPa zonal and
meridional winds at 0000 UTC and daily total precipitation
accumulation (24 hours up to each valid time) were con-
sidered. This hindcast set includes forecasts for days 0–60,
but only the first 36 forecast steps (35 days) were used in
this study.

1https://apps.ecmwf.int/datasets/data/s2s

2.2 Weather-pattern definitions

A full description of the methodology to define WPs can be
found in H21, but a brief description is included here for
completeness. In H21, two approaches were explored and
compared. The first, called the two-tiered approach, made
use of a planetary-scale domain (35◦S–35◦N, 60◦E–180◦E)
to define the first tier of clusters (eight “tier-1 regimes”).
These clusters were able to isolate large-scale climatolog-
ical features such as the monsoon circulation and its sea-
sonal cycle and the influence of El Niño–Southern Oscilla-
tion (ENSO). A second cluster analysis was performed over
a smaller Southeast Asia region (15◦S–25◦N, 90◦E–140◦E)
using only data from the days assigned to one tier-1
regime to identify between five and eight “tier 2” weather
patterns. The result is 51 “tier-2” weather patterns, each
linked to only one “tier-1” regime. These will be referred
to as the “tiered set” of WPs. The smaller-scale tier-2
WPs capture the synoptic variability affecting the region
and the connection with tropical phenomena such as the
MJO, Boreal Summer Intraseasonal Oscillation (BSISO),
cold surges, tropical cyclones, and equatorial waves. The
second “flat” approach considered a single clustering step
on the smaller regional domain only, imposing the same
number of 51 clusters as in the tiered approach, for ease of
comparison.

2.3 Weather-pattern assignment

No new pattern definitions were implemented for the GS5
hindcasts. Instead, for each hindcast date and ensem-
ble member, an assignment of the atmospheric state to
a pattern in the flat, tier-1 and tier-2 categories is done
by finding the minimum Euclidean distance between the
850-hPa 0000 UTC zonal and meridional simulated fields
and the patterns or “centroids” obtained from the cluster-
ing analysis of ERA5 data, as calculated in H21 (Howard
et al., 2021). The full expression of the Euclidean distance
to be minimised is

ED(r) = 1
Nx × Ny

∑

x,y

[
(uf(x, y) − uc(r, x, y))2

+(vf(x, y) − vc(r, x, y))2
]
, (1)

where uf and vf represent the simulated zonal and merid-
ional wind fields, and uc(r) and vc(r) represent the zonal
and meridional components of the ERA5 pattern centroid
r. For each forecast, the pattern r is assigned as the one that
minimises ED(r). This assignment was completed for fore-
cast leads 0–35 days. It is important to point out that no
bias correction was performed on the GS5 forecasts prior
to the WP assignment.
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22 GONZALEZ et al.

2.4 Pattern-conditioned forecasts
of precipitation threshold exceedance

Based on the hypothesis that an ensemble global predic-
tion system is able to forecast the synoptic and larger-scale
circulation described by the WPs better than precipita-
tion, a skilful prediction of extreme rainfall risk might be
obtained from combining the predictions of pattern mem-
bership (in this case, from the GS5 hindcast set) with the
pattern-conditioned climatological probabilities of pre-
cipitation exceedance derived from observations (in this
case, the combination of ERA5 patterns and GPM pre-
cipitation). The diagram presented in Figure 1 describes
the methodology, which was applied to both the “tiered”
and “flat” WP sets, and to different criteria for extreme
precipitation.

Results here present an initial implementation
of the pattern-conditioned hindcasts of precipitation
exceedance. Two exceedance criteria were considered,
namely a fixed threshold on the grid-cell precipitation
(25 mm⋅day−1) and a percentile definition (90th per-
centile, P90 hereafter). The calculation of P90, which
is consistent with the one used in H21, considers a cli-
matology built using a running 60-day window around
each day of the year and for each grid cell, regardless of
whether it was rainy or not. This climatology presents a
seasonal cycle. While the conclusions we present are qual-
itatively valid for both criteria, generally we found lower
levels of skill with the 25 mm⋅day−1 threshold than using
P90. This can be explained, at least partially, by consid-
ering that, even though the comparison between the two
exceedance criteria changes with the region and season,
P90 is more frequently exceeded than 25 mm⋅day−1 over
Southeast Asia (see Figure S2 in the Supporting Informa-
tion), i.e. the 25 mm⋅day−1 threshold represents a more
extreme case than P90. In this work we mainly present

results for the 25 mm⋅day−1 threshold, while the P90
results are included in the Supplementary Information. In
the case of the model-simulated precipitation probability
of extreme rainfall, the exceedance was evaluated with
respect to both GPM precipitation and the hindcast-based
lead-dependent climatology.

3 WEATHER PATTERNS IN THE
GS5 HINDCASTS

The analysis of the WPs obtained from GS5, including
average frequencies, seasonality, and persistence, reveals
that the GS5 system has a reasonable representation of
both the tiered and flat patterns, albeit with some biases
and drifts. In terms of the typical persistence, Table 1
presents some key statistics for GS5 patterns and how they
compare with pattern occurrence in ERA5. The most sig-
nificant difference is observed in the persistence of tier-1
regimes, which tend to last longer in GS5 than in ERA5.
This is observed in spite of two facts: (1) persistence is lim-
ited by the maximum GS5 hindcast length (60 days) and (2)
regime events might have started before the beginning of
the forecast, so that shorter durations than in ERA5 would
be expected. In terms of the shorter-lived WPs, GS5 slightly
overestimates the durations of tier-2 WPs while the oppo-
site is true for the flat WPs, though these differences are not
significant. To investigate the causes of the increased dura-
tion of tier-1 events in the GS5 hindcasts, we can disag-
gregate the statistics further by the tier-1 regime (Table 2).
Quite noticeably, the overestimation seems to be explained
mainly by regime 5 (R5), the eastward extension of the
Asian summer monsoon, for which persistence is signif-
icantly overestimated. For most other regimes, however,
the hindcasts reproduce events that are on average shorter
than in ERA5, though the differences are statistically

Pa�ern-condi�oned forecasts of extreme precipita�on over SE Asia

GloSea5
hindcasts for
start s, lead l

Probability of
being in pa�ern r: 

pr(s,l,r)

ERA5 reanalysis
&

GPM precip

Probability of precipita�on 
at loca�on X exceeding 

25mm/day condi�oned by 
the occurrence of pa�ern r: 
P(prec(X)>25/day | pa�ern=r)

cond_exc(X,r)

Condi�onal forecast probability of precipita�on 
at X exceeding 25mm/day:

cond_fcst_exc(s,l,X)=Σr [pr(s,l,r)*cond_exc(X,r)]

Given a pa�ern defini�on (flat or �ered) and exceedance threshold (e.g., 25mm/day):

forecast probability of precipita�on at X 
exceeding 25mm/day:

fcst_exc(s,l,X)

F I G U R E 1 Schematic
describing the pathways to generate
a direct precipitation simulation and
pattern-conditioned forecast of
extreme precipitation risk. Boxes
indicated in blue indicate
information derived from the GS5
forecasts. Boxes in green indicate
variables derived from observations
and reanalysis. Finally, the
regime-conditioned forecasts are
described in the orange box [Colour
figure can be viewed at
wileyonlinelibrary.com]
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GONZALEZ et al. 23

T A B L E 1 Statistics for the typical duration of weather
pattern events in days. (a) ERA5 0000 UTC patterns for 1979–2016.
Values between parentheses reflect results from considering only
events shorter than 61 days. (b) GS5 hindcast patterns considering
the period 1993–2015, 7 ensemble members, and lead times up to
day 60. P90 and P99 denote the 90th and 99th percentiles. *Red and
**blue indicate hindcast values higher and lower than those in
ERA5, respectively. Bold italic values indicate that the means are
statistically different with respect to a two-tailed t-test with
p < 0.001 [Colour table can be viewed in online version at
wileyonlinelibrary.com]

*

*

** **

* * *

significant mainly for R4 and R6. Another significant dif-
ference is that tier-1 R3 and R4 are actually the ones that
tend to be more persistent in ERA5, rather than R5.

The WP frequency and seasonality need to be consid-
ered as a function of hindcast lead time. Figure 2 presents
the annual mean frequencies of the tiered (Figure 2a)
and flat patterns (Figure 2b). In each case, the values
obtained from the ERA5 pattern assignment (at 0000 UTC)
are included as the leftmost column. In both WP sets,
the proportion of days assigned to each tiered and flat
WP at early lead times matches ERA5 very closely. How-
ever, as lead time increases some model drifts become
evident. The most significant one is a drift to a higher
frequency in R5 occurrence (purple tones), which grows
mainly at the expense of R4 occurrence (red tones).
Both R4 and R5 represent the Asian summer mon-
soon flow. From results in H21, this suggests a bias of
GS5 towards intense boreal summer monsoon precipita-
tion conditions with an eastward extension of the west-
erly winds into the South China Sea. This model drift
could explain the overestimation of the tier-1 R5 per-
sistence discussed earlier. A more subtle drift is also
observed for regime R1 (blue tones), the frequency of
which increases at the expense of R2 (orange tones) and
R3 (green tones). This suggests that GS5 has a bias towards
an extension to the east of the austral monsoon pre-
cipitation over Indonesia (see H21, Figure 3). The idea
that these sets of regimes are linked in their frequencies
(R1–R2/R3 and R4–R5) is based on the statistics of regime
transitions and their strong seasonality as described
in H21.

T A B L E 2 Statistics of the average duration of tier-1 regimes
individually in days. (a) ERA5 0000 UTC regimes for 1979–2016.
Values between parentheses reflect results from considering only
events shorter than 61 days (five events). (b) UK Met Office GloSea5
hindcast regimes considering the period 1993–2015, seven
ensemble members, and lead times up to day 60. P90 and P99
denote the 90th and 99th percentiles. *Red and **blue indicate
hindcast values higher and lower than those in ERA5, respectively.
Bold italic values indicate that the means are statistically different
with respect to a two-tailed t-test with p < 0.001 [Colour table can
be viewed in online version at wileyonlinelibrary.com]

**

** *

*

****

*

** **

**

** **

**

**

**

**

** **

**

****

** **

**

** **

**

A similar behaviour is also seen in the flat WPs, as a
gradual increase in the WPs numbered around 30 and a
decrease in the ones numbered between 23 and 27. This is
consistent with the strong co-occurrence between many of
the flat and tiered WPs, as shown in H21. A trend in the
frequency of the group of flat WPs associated with the aus-
tral monsoon is not noticeable. However, an increase in the
frequency of the flat WP4 is clear. This pattern is associated
with austral summer monsoon conditions with intense
westerly winds over Indonesia (see H21, Figure S2).

H21 showed that the planetary-scale tier-1 regimes
capture the different phases of the seasonal cycle of the
region, but tier-2 WP frequencies are also seasonally con-
ditioned, as are those of the flat WPs. Figure 3 describes
the seasonality of the tiered WPs in GS5 for a set of dif-
ferent lead times and compares it with ERA5 (Figure 3a).
Since the frequencies corresponding to GS5 are more
sparse due to the system having four starts a month, they

 1477870x, 2023, 750, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4378 by T
est, W

iley O
nline L

ibrary on [09/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


24 GONZALEZ et al.

F I G U R E 2 Annual normalised frequency of tiered and flat patterns as a function of lead time. The leftmost column presents the
frequencies for ERA5 patterns (assigned using data at 0000 UTC). (a) Tiered patterns; (b) flat patterns [Colour figure can be viewed at
wileyonlinelibrary.com]

have been aggregated by month of the year for clarity.
The match between GS5 and ERA5 is very good for lead
time 0 and good for day 7 (Figure 3b,c), but from day 14
(Figure 3d) a shift in the frequencies from R4 to R5 in the
months between July and September is clear. Another ten-
dency towards more R1 and fewer R2 patterns can be seen
in March and April. These biases are consistent with the
drifts observed in the annual mean frequencies (Figure 2).
Consistently, the flat WPs show drifts in WPs 0–10 at the
beginning of the calendar year, and in WPs 20–30 from
May to September (Figure S1). This is not surprising,
given the high-degree of co-occurrence between the flat
and tiered WPs (H21). Nonetheless, this analysis shows
that it is easier to interpret the model biases in terms of
shifts in the seasonal properties of the monsoon, using the
tiered WPs.

3.1 Skill of weather-pattern assignment

To assess the skill of GS5 to predict the observed patterns,
we consider the multicategory Brier score (BS: Brier, 1950.)

and its associated skill score (BSS). These can be
defined as

BS = 1
F
∑

t

∑

k
{p(k, t) − o(k, t)}2

, (2)

BSS = 1 − BS
BSref

, (3)

where p represents the forecast probability of occurrence
of WP k at time t and o is a binary indicator of the observed
occurrence of this pattern (yes/no). To build the skill score,
the BS of a given forecast is compared with a reference fore-
cast, ref, most commonly the climatological probability of
occurrence of pattern k on that day of the year.

To address the bias induced by the limited size of the
ensemble considered here, a correction was introduced to
the BSS as suggested by Weigel et al. (2007). Since the
correction is applied to the climatological reference, the
bias-adjusted discrete BSS can be described as

DBSS = 1 − BS
DBSclim

, (4)
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GONZALEZ et al. 25

F I G U R E 3 Frequency of each tiered regime as a function of the month. Units are occurrences per year. (a) ERA-Interim 0000 UTC;
(b) Lead 0; (c) Lead 7; (d) Lead 14; (e) Lead 21; (f) Lead 28 [Colour figure can be viewed at wileyonlinelibrary.com]
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26 GONZALEZ et al.

F I G U R E 4 Discrete Brier skill score (DBSS) of the tiered and
flat pattern assignments (blue and red, respectively) and of the
method comparison (green) as a function of lead time. Vertical bars
indicate 5–95% confidence intervals obtained from a 1,500-sample
bootstrapping analysis. The stars in the green line indicate the lead
times for which the tiered BSS is significantly greater than the
flat-regime BSS. This means that it is higher than the 95th
percentile of a 1,500-sample random BSS obtained from reshuffling
of the forecast and observed probabilities [Colour figure can be
viewed at wileyonlinelibrary.com]

where the corrected climatological discrete Brier score,
DBSclim, can be expanded as

DBSclim = 1
F
∑

t

∑

k

[
{pclim(k, t) − obs(k, t)}2 + D(k, t)

]
;

D(k, t) = 1
M

pclim(k, t) {1 − pclim(k, t)} , (5)

where F represents the total number of forecasts, pclim is
the climatological probability of occurrence of pattern k
(derived from ERA5) and also depends on the day of the
year, obs(k, t) is a binary indicator of the observed occur-
rence of pattern k at date t, and M represents the size of
the hindcast ensemble. Time t refers to the valid time of
the forecast, which is determined jointly by the forecast
initial time and its lead time. The uncertainty of the BSS
values was estimated through a 1,500-sample bootstrap-
ping analysis, following the guidelines in Davidson and
MacKinnon (2000).

The results are summarised in Figure 4. The BSS val-
ues show that GS5 is significantly more skilful than the
climatology to identify WP assignment for lead times up to
day 10 in the case of the tiered patterns and day 11 in the
flat case. However, the objective comparison between the
methods, where the flat assignment was considered as a
reference for the BSS calculation (green line), reveals that
the skill levels are very similar for the assignment of both
pattern sets, with the tiered method slightly outperforming

F I G U R E 5 Discrete BSS for the assignment of individual
patterns in (a) flat and (b) tiered sets. In each panel, the x-axis
indicates the pattern and the y-axis indicates the lead time in days.
The colour scale accounts for the BSS values and the thick black
line is included to point out the sign change [Colour figure can be
viewed at wileyonlinelibrary.com]

for most lead times. This difference in skill is statistically
significant for most lead times according to a bootstrap-
ping analysis of the tiered versus flat BSS (green line).

This skill assessment can be investigated further by
analysing the performance to assign individual WPs. In
this case, a binary discrete BSS score was applied consid-
ering two categories: pattern k versus all other patterns
(Weigel et al., 2007). These results are presented in Figure 5
and show that, with the exception of a few flat and tiered
WPs, in most cases a BSS of zero is seen around lead day 10,
in agreement with the multicategory assessment. The very
negative BSS values seen in flat WPs in the 26–31 range
and tier-2 WPs corresponding to tier-1 R5 can be related
directly to the observed drift in WP modelled frequencies
(see Figure 2). Other low-skill examples such as flat WP4
(Figure 5a) and tiered WP2d (Figure 5b) can be linked to
biases in their modelled frequencies. The cases where the
BSS changed sign at longer lead times were explored fur-
ther as well, despite the fact that the skill levels remain
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GONZALEZ et al. 27

F I G U R E 6 ROC skill score of the individual tier-1 regime assignments as a function of lead time. In (a) the skill score was calculated
using a random assignment as a reference; in (b) the assignment according to the climatological probabilities of occurrence for each day of
the year was considered as a reference [Colour figure can be viewed at wileyonlinelibrary.com]

quite low. Considering the results from H21, a connection
was explored between the longer predictive skill for such
patterns and their link with large-scale variability such as
ENSO and the MJO, which might explain these particular
patterns being more persistent. However, no evident con-
nection was observed from this patternwise assessment.

We now assess the skill of GS5 to capture each of
the tier-1 regimes, given that these contain information
about large-scale quasistationary processes, which might
result in predictive skill extending beyond the synoptic
scale (H21). Figure 6 presents the relative operating char-
acteristics (ROC, Mason, 1982.) skill score. The ROC score
is derived from the area under the curve defined by the
hit rates and false alarm rates varying across the different
probabilities of occurrence of each event or, specifically in
this case, of each tier-1 regime. A typical skill reference
for the design of a ROC skill score is the use of a ran-
dom assignment to normalize the area under the curve (as
described in Wilks, (2019), section 9.4.6, equation 9.49). In
this case, this corresponds to an equal probability of occur-
rence of each regime (Figure 6a). The fact that the individ-
ual ROC curves present significant jumps with lead time is
a reflection of the limited sample size, and should therefore
be considered a qualitative assessment of the single-regime
assessment skill. These values are very high and suggest
positive skill for the whole forecast period compared with
a random assignment. This reflects the strong seasonal
dependence present in the patterns but absent from the
random pattern distribution. Therefore, a more significant
reference for the assignment is the use of the climatological
probabilities of occurrence of the patterns as a function of
the day of the year derived from ERA5, as in the BSS anal-
ysis above (Figure 6b). These values show that most tier-1

regimes cannot be predicted skilfully beyond lead day 7,
with the exception of R1, R2, and R5, which show positive
skill-score values for lead times into the second hindcast
week. Tier-1 R1 and R2 have been linked by H21 to the
activity of ENSO, and it is therefore expected that they
carry longer predictability. Tier-1 R5 has been linked to an
eastward extension of the boreal summer monsoon, and it
was shown above that the GS5 system has a drift towards
high probabilities of occurrence of this pattern (Figure 2a).
This might suggest that this extended prediction skill is
not physical and reflects the model drift.The difference
between the panels reveals that sole knowledge of the
day of the year includes significant predictive information
about the likelihood of occurrence of certain WPs.

4 PATTERN- CONDITIONED
PREDICTIONS OF HEAVY RAINFALL

The ultimate goal in the identification of WPs for South-
east Asia within this work was to demonstrate their poten-
tial use for the extended-range prediction of HIW, and
in particular extreme rainfall. H21 showed that there is
a strong connection between the tiered and flat WP sets
considered here and extreme precipitation over the region.
Furthermore, the use of a perfect WP forecast approach by
H21 suggested that pattern-conditioned extreme rainfall
predictions have the potential to outperform climatology
and also MJO-conditioned forecasts over most months.
Results presented in Section 2.3 indicate that GS5 is able to
produce skilful probabilistic predictions of pattern mem-
bership for both methods and lead times extending into
the second hindcast week. In this context, the next step
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28 GONZALEZ et al.

was to design and evaluate pattern-conditioned forecasts
of extreme rainfall exceedance based on the GS5 hindcasts.
This section presents an initial evaluation of such methods
that serves as a demonstration of their potential use for the
prediction of extreme precipitation over Southeast Asia.

4.1 Skill of the predictions

To evaluate the skill of the pattern-conditioned rainfall
exceedance hindcasts we used the BS (Brier, 1950) and its
associated skill score (BSS), which can be described as

BSR(X) =
1

Nf

∑

t
[O(X , t) − ̃PE(X , t)]2,

BSSR(X) = 1 − BSR

BSref
, (6)

where R is the regime set, ̃PE is the predicted probability of
exceedance for location X and time t, O is the binary indi-
cator of observed exceedance, and Nf is the total number of
predictions. The (∼) operator indicates that the probability
has been corrected to eliminate the specific time t from the
relevant climatologies, to result in a cross-validated BSS
that avoids skill inflation due to considering the verify-
ing events in the climatological reference (a full expression
can be found in equation 3 of H21). As in Equation 5, the
time t refers to the valid time of the forecast. The correc-
tion to the BSS to account for the limited sample size was
not implemented here, because it is unnecessary when the
forecasting systems are benchmarked against each other
rather than the climatology (Weigel et al., 2007).

As a first instance, we evaluated the skill of the hind-
casts at the daily scale and for the full domain. The dif-
ferent panels in Figure 7 present the BSS for 25 mm⋅day−1

exceedance corresponding to different hindcast lead times.
Within each panel, the top row of subpanels presents the
skill of the different methods relative to a forecast based
on the GPM climatology that is a function of the day of the
year:

(i) simulated precipitation,
(ii) flat pattern-conditioned predictions,

(iii) tiered pattern-conditioned predictions.

The bottom row of subpanels compares the skill
between methods, for

(iv) flat versus simulated precipitation,
(v) tiered versus simulated precipitation,

(vi) tiered versus flat pattern-conditioned predictions.

In all the maps, positive BSS values (blue colours)
indicate that the corresponding prediction is more skil-
ful than the GPM-based climatological reference in a
cross-validated sense. Additionally, points where this BSS
is statistically significant are identified with dots. This
means that the value is outside the 5–95% confidence
interval of a random BSS, obtained from a 1,500-sample
reshuffling of the forecast and observed probabilities. At
lead day 0 (representing precipitation accumulated over
the first 24 hours), the model-derived simulated precipi-
tation hindcasts (Figure 7a(i)) show large areas of positive
skill. Nonetheless, most areas of positive skill (blue) are
not over land, with the largest region being connected with
tropical cyclone (TC) activity to the east of the Philippines
(H21). Moving to the pattern-conditioned predictions, the
flat (Figure 7a(ii)) and tiered (Figure 7a(iii)) sets result in
very similar skill patterns, with widespread positive val-
ues, though smaller in magnitude than for the hindcast
simulated precipitation. Despite the small values, these
methods lead to significant skill over more points over land
(see Borneo, Sumatra, and the Philippines). The evolution
with lead time reveals that the simulated precipitation
exceedance hindcasts lose skill quickly, with minimal
regions of positive skill by lead 7. While the positive BSS
values observed for the pattern-conditioned hindcasts are
very small, they are still positive and statistically signifi-
cant over a significant portion of the land points at lead 7
(Figure 7b) and a reduced region at lead day 21 (Figure 7c),
showing extended skill with respect to the simulated pre-
cipitation exceedance. This advantage is made clearer
by the comparisons presented in subpanels (iv)–(vi), in
which BSS calculations for each method are benchmarked
against the others. These figures show that, at the initial
lead time, simulated precipitation exceedance outper-
forms the regime-based methods mainly over some limited
ocean areas (red colours in Figure 7a(iv) and Figure 7a(v)).
These areas, however, have mostly disappeared by lead
day 7 (Figure 7b), indicating that the pattern-conditioned
hindcasts outperform the simulated precipitation
exceedance significantly over most of the domain for lead
times equal to or longer than 7 days. It is important to note
that the fact that the BSS of this comparison is positive does
not imply that the pattern-conditioned hindcasts remain
skilful at longer lead times. The comparison between
regime-based methods (subpanel vi) shows that, for longer
lead times, the tiered pattern-conditioned hindcasts out-
perform the flat-based method over larger portions of the
domain. The BSS values are only marginally positive, but
statistically different from zero. The low BSS values are
at least partially explained by the lack of sharpness in the
pattern forecasts (extreme events are rarely forecast at
high probabilities). It is also important to remark that it
has been shown that negative BSS values that consider the
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GONZALEZ et al. 29

F I G U R E 7 Daily BSS skill assessment of
the hindcasts for 25 mm⋅day−1 exceedance. (a)
Lead 0; (b) Lead 7; (c) Lead 21. In each plot, the
first row of panels present the skill assessment of
(i) simulated precipitation, (ii) flat
pattern-conditioned precipitation, and (iii) tiered
pattern-conditioned hindcast, all against the GPM
seasonally varying reference. In the second row,
the skill of different methods is compared for (iv)
flat versus simulated precipitation, (v) tiered
versus simulated precipitation, and (vi) tiered
versus flat. The black dots indicate grid points
where the BSS is statistically higher than 0, as
described in Section 4.1 [Colour figure can be
viewed at wileyonlinelibrary.com]
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30 GONZALEZ et al.

F I G U R E 8 Summary BSS metrics for 25 mm⋅day−1 exceedance: (a) average land-only BSS over the complete SE Asia domain as a
function of lead time; (b) percentage of the grid points where BSS is statistically significant as a function of lead time. In the latter, continuous
lines correspond to all points and the dotted lines to land-only grid points. Statistical significance is assigned where the BSS is higher than 0
as described in Section 4.1, and significant lead times are indicated by a star symbol for each forecast type in (a) [Colour figure can be viewed
at wileyonlinelibrary.com]

climatology as a reference can be masking the fact that
the forecasts contain useful information (Mason, 2004).

The results for the P90 exceedance are analogous,
albeit they reveal slightly higher levels of skill in the
case of P90 exceedance than with a fixed threshold of
25 mm⋅day−1 (Figure S3).

A summary comparison between methods is pre-
sented in Figure 8, which shows the average land-only
BSS over the full Southeast Asia domain (Figure 8a) and
the percentage of grid points where the BSS is statis-
tically significant (Figure 8b) for the three sets of pre-
dictions: simulated precipitation (black), flat-conditioned
(red), and tiered-conditioned (blue). For every forecast
lead, the pattern-conditioned methods outperform the
simulated precipitation significantly, according to these
metrics. The average land-only BSS for the simulated pre-
cipitation is negative for every lead time. In the case of the
pattern-conditioned hindcasts, the average BSS remains
positive for lead days into the second and third fore-
cast weeks, depending on the case, but only the initial
lead times (3–5 days) are statistically significant. For both
exceedance cases, the tiered set shows average BSS val-
ues that are larger than in the flat case for lead times
longer than a few days. This means that the average BSS
for the tiered set shows positive skill for longer lead times
(around 15 days for 25 mm⋅day−1 and 23 days for P90 in
Figure S4), while the significant values are limited to the
first week. As discussed above, BSS can be very unstable
for the assessment of skill to predict rare events, and even
negative values can be hiding useful information in the
forecasts (Mason, 2004). Moving beyond the domain-mean
BSS, Figure 8b also presents the percentage of the domain

with statistically significant BSS. In agreement with the
findings in Figures 7 and S3, the pattern-conditioned hind-
casts show significant skill over larger regions, whether
we consider land-only points or the full domain. It is par-
ticularly noteworthy that the simulated precipitation has
significant skill over less than 50% of the full domain at
lead time 0 and decreases rapidly. For the land-only case
(dotted black lines in b), the values are even smaller at 28%.
This panel also shows that the forecasts conditioned by the
tiered patterns are statistically significant over a larger area
than the flat-conditioned case (5–10% larger).

4.2 Countrywide skill assessment

The spatial variability of skill was also explored by con-
sidering the regional average of BSS over land points in
six different boxes illustrated in Figure 9. The outer box
indicates the full domain used to define the tier-2 and flat
clusters, and the inner five boxes depict some regions of
interest. Averages of the 25 mm⋅day−1 exceedance BSS over
those six boxes are presented in Figure 10. Note that this is
a measure of average skill, and not the skill of the forecast
averaged over the regions. Simulated precipitation, how-
ever, shows little to no skill for every case. Only limited
positive BSSs are observed over the Philippines and Viet-
nam for short lead times (Figure 10d,e). These results also
show that there are significant differences between the lev-
els of skill of the different subregions. For example, the
pattern-conditioned hindcasts show positive skill over Bor-
neo until around lead day 13 (and significant until day
11), but only until around lead day 4 over Indonesia and
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GONZALEZ et al. 31

F I G U R E 9 Map indicating the grid points and boxes
considered in the regional skill assessments. Grey grid boxes
indicate the land points. Black boxes describe the areas identified as
Mal (mainly Peninsular Malaysia and part of N Sumatra), Vie
(Vietnam and surrounding areas of Cambodia, Laos, Thailand), Phi
(Philippines), Ind (Southern Indonesia), and Bor (Borneo). The
GloSea5 land–sea mask at S2S resolution of 1.5◦ was obtained from
https://apps.ecmwf.int/datasets/data/s2s [Colour figure can be
viewed at wileyonlinelibrary.com]

lead day 6 over Vietnam and only significant until day 2
(Figure 10b,c,e). In some cases, there is a slight advantage
of the tiered over the flat pattern-conditioned hindcasts
for longer lead times, which implies that the BSS becomes
negative more rapidly in the flat case. In general, the levels
of skill are very similar and statistically significant differ-
ences between the pattern-conditioned methods are seen
after lead day 5 over some of the regions (Malaysia, Borneo,
Philippines).

The equivalent results for P90 exceedance are shown in
Figure S5. A comparison between Figure 10 and Figure S5
reveals that there are slightly higher levels of skill of the
pattern-conditioned hindcasts for the P90 exceedance case
and that in general, the BSS values remain positive for
longer lead times. This is in agreement with the compari-
son between Figures 7 and S3.

4.3 Impact of spatial aggregation
on prediction skill

Considering the intrinsic limitations of extended-range
predictions (Vitart et al., 2017; White et al., 2017; Meehl
et al., 2021), in this subsection we conduct an evaluation
of the GS5 skill beyond the grid-point level, by aggregating

over a group of nearby grid points. We do this with the
aim of accounting for the potential inability of a subsea-
sonal forecast system to predict the exact location of a
HIW event. This evaluation is performed by considering
the averaged grid-point based probabilities, which result in
the expected spatial rate at which the precipitation criteria
are exceeded within an N by N grid points box. This anal-
ysis is similar to the use of the fractions skill score (FSS:
Roberts and Lean, 2008.) to evaluate the spatial scale at
which the predictions are skilful.

The effect of the spatial scale on the average land-only
BSS for 25 mm⋅day−1 exceedance is shown in Figure 11.
Given that the S2S Database 1.5◦ resolution is quite coarse,
only aggregations of up to 5 × 5 grid points were consid-
ered. The spatial aggregation results in higher BSS values
for approximately the first 18 days of hindcast for both
pattern-conditioned hindcasts (Figure 11a,b). The spatial
aggregation increases skill levels and some more lead days
become statistically significant, but it does not result in a
significant extension of the skilful prediction horizon for
the pattern-condition methods, especially in the tiered set.
This can be interpreted, for the case of a dichotomous pre-
diction, as having more hits and/or fewer misses and false
alarms for the lead times at which skill was already posi-
tive. In the case of the simulated precipitation exceedance
(Figure 11c), the increase in skill levels observed for about
12 lead days from the start of the forecast is much more sig-
nificant, going from negative skill at grid-point level to BSS
values more than double those in the pattern-conditioned
cases for larger aggregations. In this specific case, it does
result in an extension of predictability, but this is still
restricted to the first forecast week. Analogous results were
obtained for P90 exceedance S6, but with slightly longer
skill horizons, consistent with P90 being—on average—a
less extreme condition over the region.

5 CASE STUDY

To illustrate the value of the methods presented before
in the context of impact-based forecasting, we present
here a case study focused on a HIW event that affected
Jakarta and neighbouring regions at the beginning of 2020.
This event caused severe flooding and landslides affect-
ing the Greater Jakarta region, causing around 80 deaths
and prompting the evacuation of over 100,000 people
(JBA, 2020; Reliefweb, 2020). In addition to the severity of
its impacts, we selected this event for being outside the GS5
hindcast period. This case study has previously been intro-
duced by H21. The results presented here complement the
qualitative analysis of the events presented in table 3 of
H21, in which the value of a perfect pattern forecast was
tested as a constraint to the probabilities of extreme rainfall
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32 GONZALEZ et al.

F I G U R E 10 Average land-only BSS for 25 mm⋅day−1 precipitation exceedance over (a) Malaysia, (b) Borneo, (c) Indonesia, (d)
Philippines, (e) Vietnam. Significant BSS values are indicated by a star symbol for each forecast type and assessed as described in Section 4.1
[Colour figure can be viewed at wileyonlinelibrary.com]
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GONZALEZ et al. 33

F I G U R E 11 Effect of the spatial aggregation in mean land-only BSS for 25 mm⋅day−1 exceedance as a function of the grid-box size. No
aggregation corresponds to the S2S 1.5◦ resolution and increasingly large square boxes were considered, with size expressed as multiples of a
1.5◦ grid box. (a) Flat conditioned hindcasts, (b) tiered conditioned hindcasts, (c) simulated precipitation. Significant BSS values up to lead
day 20 are indicated by a star symbol for each box size and assessed as described in Section 4.1 [Colour figure can be viewed at
wileyonlinelibrary.com]

over specific dates and regions. In this case we aim to test
the full potential of the methods by including the forecast
probabilities of WP membership.

We considered GS5 forecasts with valid dates in the
period between December 30, 2019 and January 5, 2020.
Those forecasts that are part of the S2S database are
started every day and have four ensemble members (Vitart
et al., 2017). Four different start dates were chosen (Decem-
ber 9, 16, 23, and 30, 2019) which allowed the skill assess-
ment of the predictions at lead times of 0–6 days (week 0),
7–13 days (week 1), 14–20 days (week 2), and 21–27 days
(week 3). Forecast fields of 850-hPa wind vectors were used
to derive probabilistic prediction for the flat and tiered
WP memberships that were later converted into predicted
probabilities of exceedance of the 25 mm⋅day−1 threshold
(Section 2.4, Figure 1).

The precipitation features during that event as depicted
by GPM are shown in Figure 12. The left panel indicates
the grid boxes over which the threshold was exceeded
and over how many days during the target week. The
right panel presents the total precipitation accumulated
over that same period. This shows that large portions of
Indonesia, in particular West Borneo and Java, experi-
enced extreme rainfall. In some locations, the exceedance
criteria were met on three–four days over that seven-day
period.

Forecast probabilities of exceedance derived from the
flat and tiered WPs are presented in Figure 13. The prob-
abilities presented in each of the four panels account for
the expected frequency of exceedance of the threshold
over the target period. The regions over which the forecast

F I G U R E 12 GPM 25 mm⋅day−1 precipitation for the week
beginning on December 30, 2019. (a) Number of days in the week in
which the threshold was exceeded. (b) Weekly accumulated
precipitation [Colour figure can be viewed at
wileyonlinelibrary.com]

probabilities are larger than the pattern-conditioned cli-
matological exceedance are surrounded by a dashed line.
Even though the probabilities presented here are relatively
small, even for lead week 0, they are larger than the cli-
matological odds over most of the region of interest for
all the lead times considered. The flat and tiered methods
provide similar results, though the probabilities derived
from the flat patterns tend to be slightly higher. On closer
inspection, one can note that for lead week 1 (Figure 13b)
Java is not included in the areas over which the tiered
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F I G U R E 13 Weekly aggregated probabilities of exceedance of the 25 mm⋅day−1 threshold obtained from the flat and tiered
pattern-conditioned hindcasts for the week starting on December 30, 2019. Obtained from lead days: (a) 0–6 (week 0); (b) 7–13 (week 1); (c)
14–20 (week 2); (d) 21–27 (week 3). Grey lines surround regions where the forecast probabilities exceed the pattern-conditioned
climatological probabilities of exceedance [Colour figure can be viewed at wileyonlinelibrary.com]

pattern predicts above-normal probabilities. It is impor-
tant to point out that the forecasts have four ensemble
members, as opposed to seven members in the hindcasts,
resulting in higher chances of duplication in the assigned
patterns and therefore in a more limited ability to capture
smaller-scale detail in the forecast risks.

A comparison between the probabilities of exceeding
25 mm⋅day−1 as directly simulated by the GS5 model and
the GPM-derived climatological probability of exceedance
shows that GS5 predicted above-normal probabilities of
simulated precipitation exceeding 25 mm⋅day−1 in at least
one day of the week over Java, but not over the rest of
the focus region (Figure 14; note the difference in colour
scale). Furthermore, the forecast probabilities derived
from simulated precipitation decreased significantly with
increasing lead time, and by lead week 2 the system does
not provide any useful information over land. This is in
agreement with what was more generally observed in
Section 4.1 for the hindcast set.

This simple analysis illustrates how the methodolo-
gies developed in this project could have been used to
inform an early-warning system by providing a forecast
of above-normal probabilities of exceedance. It is impor-
tant to notice that this constitutes an example and that
there are specific settings of the methods presented here

that would need to be tailored to the local needs and
applications, such as the exceedance threshold or the
relevant trigger probabilities for an alert. Furthermore,
these are results from the analysis of a single case study
and provide no information about the potential level of
skills of a prototype early-warning system derived from
the methodology presented. The true value of the imple-
mentation of these methods should be addressed by a
robust verification considering a large set of forecast
events.

6 DISCUSSION
AND CONCLUSIONS

This work has evaluated the use of weather patterns
(WPs) defined through tiered and flat clustering method-
ologies to condition forecasts of extreme precipitation
over Southeast Asia. For this purpose, the skill of the
pattern-conditioned predictions derived from the UK Met
Office GloSea5 (GS5) S2S hindcast was benchmarked
against an observation-based seasonally varying climatol-
ogy and the simulated precipitations obtained from the
same prediction system. The analysis was performed for
land points over the whole of Southeast Asia and over five
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F I G U R E 14 GloSea5 probabilities
of daily simulated precipitation
exceeding 25 mm⋅day−1 for the week
beginning on December 30, 2019.
Obtained from lead days: (a) 0–6 (week
0); (b) 7–13 (week 1); (c) 14–20 (week 2);
(d) 21–27 (week 3) [Colour figure can be
viewed at wileyonlinelibrary.com]

smaller regions: Malaysia, Borneo, Indonesia, the Philip-
pines, and Vietnam.

GS5 showed skill for the assignment of both sets of
WPs extending beyond lead day 10, with statistically sig-
nificant larger skill in the case of the tiered WP set,
attributed to the influence of the longer timescales asso-
ciated with the tier-1 regimes: seasonal cycle, monsoons,
and ENSO. These WP membership predictions were then
convolved with GPM-based pattern-conditioned climato-
logical probabilities of precipitation exceedance, resulting
in the pattern-conditioned hindcasts for different extreme
rainfall criteria. The performance of such predictions
was evaluated against climatological benchmarks and the
model-derived precipitation exceedance hindcasts. It was
observed that, on average, the pattern-conditioned hind-
casts were skilful and outperformed the model-based pre-
cipitation predictions for lead days extending to days
10–20, depending on the specific criteria and region. Both
the flat and tiered pattern-conditioned hindcasts outper-
formed the model-derived precipitation exceedance pre-
dictions significantly over every region after a few initial
lead days. The tiered pattern-conditioned hindcasts were
shown to be more skilful than the flat counterpart for the
land-only average skill and three out of the five regions

analysed for lead times longer than a few days. On aver-
age, these results show that GS5 has longer skill in the
pattern-conditioned forecasts of precipitation exceedance
than in the pattern assignment. This suggests that, despite
forecasting a pattern that does not match the observed one
exactly, the system might be assigning a similar pattern
in terms of the relevant precipitation signatures. Poten-
tial improvements to the methodology presented could be
derived from exploiting this feature, in particular given
the small size of the GS5 hindcast ensemble. The com-
parison of the skill for predicting P90 and 25 mm⋅day−1

exceedance revealed higher levels of skill in the percentile
exceedance, likely related to the fact that P90 is more
frequently exceeded over the study region.

Acknowledging the limitations of extended-range
initialised predictions and of the skill assessment of
rare-event predictions, the skill evaluation was then
repeated to consider spatial aggregation, allowing the sys-
tem to have some errors in the specific location of a
heavy precipitation event. The spatial aggregation was
constructed by considering the spatial rate of heavy pre-
cipitation within boxes of increasing size. This analysis
showed skill improvements in the pattern-conditioned
hindcasts that extended up to lead day 20. In the case of
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the model-derived precipitation exceedance hindcasts, the
effect of spatial aggregation was beneficial only in the first
10 days of the hindcast, but the magnitude of the increases
in skill was very significant and resulted in the emergence
of skill over the first forecast week. The impact of the spa-
tial aggregation on the pattern-conditioned hindcasts was
an increase in skill but not a significant extension of the
useful prediction horizon.

To illustrate the implementation of the methods in
a particular situation, an out-of-sample extreme rainfall
event was presented as a use case. This extreme rainfall
event triggered flooding and landslides over Indone-
sia and caused widespread damage to property and life.
We tested the application of the pattern-conditioned
predictions of precipitation exceedance for this event
using GS5 forecasts, and compared the resulting prob-
abilities of exceedance with those derived from the
precipitation forecasts. The analysis showed that the
pattern-conditioned methods forecast above-normal prob-
abilities of exceedance over the affected area as early as
four weeks in advance, with the flat method resulting in
marginally better predictions. The simulated precipitation
forecast only resulted in above-normal probabilities for
lead week 0 and over a more restricted area, showing no
useful signal over land for longer lead times.

Overall, the results presented here demonstrate the
use of weather patterns over Southeast Asia for the devel-
opment of precipitation exceedance predictions that
outperform the simulated precipitation for lead times
extending into weeks 2 and 3, depending on the specific
criteria and region. On average, the flat and tiered pattern
definitions resulted in similar levels of skill, though there
might be added value in the use of the tiered patterns for
the evaluation of predicable circulation patterns or the
identification of “windows of opportunity” for enhanced
prediction. Furthermore, the tiered patterns enable attri-
bution of changes in forecast risk to more predictable
phenomena such as monsoonal variations, MJO, and
ENSO. Weather risk is then considered in the context
of the larger-scale environmental picture. Overall, the
results presented here and those in the companion work
of H21 suggest that the tiered methodology has the added
value of providing a “forensic” power to understand past
events and the inability of a prediction system to capture
them, as well as identifying windows of opportunity for
the prediction of HIW in the future. These features are in
line with the guidelines derived from recent review work
on the topic of S2S prediction (Moron et al., 2018; Mariotti
et al., 2020; Meehl et al., 2021).

The levels of skill obtained throughout this study are
modest. Considering the challenges of assessing skill in the
prediction of rare events (Casati et al., 2008; Mason, 2012;
Sillmann et al., 2017; Contzen et al., 2022; Ebert and

Milne, 2022), further exploration with additional metrics
might be advisable when attempting to develop a method
tailored for concrete applications. However, the results
presented here do suggest avenues for the improvements
of the methods. Considering a probabilistic WP assign-
ment that benefits from the identification of WPs that
are “close” in their structure or impacts should be fur-
ther explored. It was also noted that the GS5 S2S pre-
diction ensemble is very small, with seven members in
the hindcast set and four in the forecasts, which intro-
duces a significant limitation. Additionally, it has to be
pointed out that no form of calibration was applied to
GS5 outputs, and such post-processing methodologies can
also derive skill improvements. Even though these results
show promise, the true value of the pattern-conditioned
predictions should be evaluated in terms of the design
of regional impact-based criteria (exceedance thresholds,
spatial and temporal aggregation) tailored to a specific
use, and after a thorough verification on events out-
side the training hindcast set and with multiple skill
metrics that target different aspects of skill (resolution,
sharpness, etc.).

Even though it might be possible to achieve sim-
ilar levels of skill through model calibration or other
post-processing methodologies, and this is worth pursu-
ing, we consider that the methodology presented here has
added value. The extra steps of evaluating the dominant
weather patterns are of forensic value and allow us to iden-
tify conditions for which GS5 has more or less predictive
skill. This is of value in terms of both acting on the fore-
casts and also informing model development. This work
has presented an initial proof-of-concept for the use of
pattern-conditioned forecasts over Southeast Asia, and the
suggested refinements will be the focus of future work.
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