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Abstract

The standard full-sample time-series asset pricing test suffers from
poor statistical properties, look-ahead bias, constant-beta assumptions,
and rejects models when average factor returns deviate from risk premia.
We therefore confront prominent equity pricing models with the classical
Fama & MacBeth (1973) cross-sectional test. For all models, we uncover
three main findings: (i) the intercept coefficients are economically large
and highly statistically significant; (ii) cross-sectional factor risk premium
estimates are generally far below the average factor excess returns; and
(iii) they are usually not statistically significant. Overall, all new factor
models are inconsistent with no-arbitrage pricing and cannot accurately

explain the cross-section of stock returns.
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I Introduction

In recent years, several new equity factor models have been proposed (e.g., Fama &
French, 2015, 2018; Hou et al., 2015, 2021; Stambaugh & Yuan, 2017; Daniel et al., 2020a).
These are shown to price the cross-section of stock returns far better than the classical Fama
& French (1993) 3-factor model. Nevertheless, the authors to all these papers also have to
concede that their models fail the Gibbons et al. (1989) time-series GRS test of zero average
pricing errors and are ultimately rejected.

The time-series test, though, makes a number of implicit assumptions in its standard
setup applied in these studies (e.g., investors already know all moments of returns, betas
are constant, and factor risk premia equate the time-series averages) and has very poor
finite-sample properties (Bekaert & De Santis, 2021). In this paper, we therefore employ the
cross-sectional asset pricing test to analyze the fit of the new factor models for a large set
of test assets. Importantly, our most general setup relaxes all implicit assumptions of the
time-series test while also using real-time, time-varying betas. Our main contribution is a
thorough and comprehensive analysis of the new asset pricing models with the cross-sectional
test.

In the main part of the paper, we test the Fama & French (2015) 5-factor model. Since
it is unclear how to best perform the cross-sectional test (portfolios vs. stocks, estimation
method for the cross-sectional regression, how to estimate beta, ...), we conduct a very
thorough analysis using a variety of estimators and approaches that have been proposed in
the literature.

Our first result in a nutshell: The Fama & French (2015) 5-factor model clearly fails the
cross-sectional test. Independent of the combination of specifications we choose, we uncover
three main findings: (i) the estimated intercept is economically large, annualized generally

between 4% and 10%, and statistically clearly different from zero; (ii) the estimated factor



risk premia are far smaller than the average excess returns of the factors; while (iii) they are
often not even significantly different from zero. Our findings thus show that neither using
an alternative test with different statistical properties, nor accounting for look-ahead bias,
time-varying betas, or potential differences between factor risk premia and their average
returns reverse the model’s rejection by the time-series GRS test. Furthermore, not only is
the market beta close to useless in determining cross-sectional differences in returns, also the
SMB, HML, RMW , and CM A betas are of very limited value.

The logical next question relates to the performance of the main competitor models of
the Fama & French (2015) 5-factor model. Perhaps these models perform better in the
cross-sectional test? The brief answer is no. We find that our previous results extend well
beyond the Fama & French (2015) 5-factor model. The Stambaugh & Yuan (2017) 4-factor
model, the Fama & French (2018) 6-factor model, the Daniel et al. (2020a) 3-factor model,
the modified Fama & French (2015) 5-factor model of Daniel et al. (2020b), the Hou et al.
(2021) 5-factor model, and a model based on principal components analysis (PCA) perform
little better. For all models, we obtain the same set of three stylized findings. None of the
models appears to be consistent with no-arbitrage pricing and the arbitrage pricing theory
(APT).

To be fair, each model appears to have one or two “reasonable” factor(s) that partially
explain differences in asset returns. The Stambaugh & Yuan (2017) 4-factor model performs
comparably best in our cross-sectional test. The management factor and to some extent also
the performance factor often yield significantly positive risk premia. Further useful factors
include the cash-based operating profitability factor in the Fama & French (2018) 6-factor
model, the post-earnings-announcement-drift factor in the Daniel et al. (2020a) 3-factor
model, the expected growth factor in the Hou et al. (2021) 5-factor model, and the second
and third principal component in the PCA model. However, even for these factors the risk

premium point estimates are generally clearly smaller than the corresponding average factor



excess returns.

While the literature focuses mainly on the (full-sample) time-series test, the use of varia-
tions of the cross-sectional test by Chordia et al. (2017), Jegadeesh et al. (2019), and Raponi
et al. (2020) constitutes notable exceptions. Chordia et al. (2017) examine whether the Fama
& French (2015) 5-factor model factor loadings or the underlying characteristics explain more
of the cross-sectional variation in returns. They find that characteristics have substantially
higher explanatory power than factor loadings. Jegadeesh et al. (2019) reach the same con-
clusion using an in-sample instrumental variable approach. Raponi et al. (2020) develop
a methodology for testing factor models with the number of stocks exceeding the number
of time periods. In the empirical part of their paper, using contemporaneously estimated
(ex-post) betas, they find that the risk premia for their method are more strongly significant
than under the standard approach. Nevertheless, they also find that characteristics outper-
form factor loadings in explaining the cross-section of stock returns. It is unclear how the
results of the latter two papers generalize to an adaptive-expectations setup when avoiding
a look-ahead bias. More broadly, our contribution relative to these three papers lies in an-
swering a more basic question: Do the new factor models pass the cross-sectional test? That
is, do the factor models qualify as APT models? We thus complement the previous studies
by performing direct cross-sectional tests of a multitude of factor models (not only that of
Fama & French, 2015, on which the mentioned papers’ main focus lies). Importantly, this
paper provides a thorough and robust test of the factor models, using a variety of different
methods, all in one place.

Several recent papers analyze the performance of the Fama & French (2015) factors vis-
a-vis other alternatives (e.g., Barillas & Shanken, 2018; Kozak et al., 2018; Chib et al., 2020;
Daniel et al., 2020b; Harvey & Liu, 2021). In this paper, we account for these developments

and also consider several other empirical factor models and improvements of the original



Fama & French (2015) factors. For none of these do our conclusions differ markedly.!

Over the last couple of years, several modifications of the classical Fama & MacBeth
(1973) approach have been proposed in the literature (e.g., Burnside, 2011; Kleibergen &
Zhan, 2020; Bryzgalova et al., 2021; Giglio & Xiu, 2021; Liao & Liu, 2022). Kroencke
& Thimme (2021) analyze the size and power properties of various methodologies with
empirically relevant sample sizes. They show that the standard approach with Kan et al.
(2013) standard errors performs well in all situations. In this paper, we therefore follow their
advice and use the classical approach with Kan et al. (2013) standard errors. We also study
several adjustments to tackle a potential weak-factor problem (Bryzgalova, 2015).

A further contribution of this study is an analysis of the impact of different beta esti-
mation techniques on the empirical results. Given the apparent errors-in-variables (EIV)
problem, beta estimation deserves additional consideration. However, little is known about
the performance of different possible estimators. Surprisingly little research has been devoted
to “improving” individual beta estimates. As Levi & Welch (2017) note, the vast majority
of academic studies still broadly uses the 60-month monthly window approach of Fama &
MacBeth (1973). However, there are a number of alternative approaches that may provide
better beta estimates (e.g., Hollstein & Prokopczuk, 2016; Levi & Welch, 2017; Hollstein
et al., 2019; Welch, 2019; Hollstein, 2020).

The remainder of this paper is organized as follows. In Section II, we introduce the
data as well as the theoretical background and the methodology of the empirical analysis. In
addition, this section presents the summary statistics. We present our main empirical results
for the Fama & French (2015) 5-factor model in Section III. Section IV examines alternative

factor models. We use Section V to conclude.

IDifferent from Barillas & Shanken (2018) and Chib et al. (2020), our focus is not primarily on the relative
comparison between different asset pricing models. Instead, we subject different models to an absolute test
to examine whether, and to what extent, they are consistent with no-arbitrage pricing.



II Data and Methodology

A Data

We base our analysis on three different sets of portfolio returns as well as individual
stocks. The first set consists of portfolios retrieved from Kenneth French’s website.? We use
the 25 portfolios sorted on each size and book-to-market, size and investment, and size and
operating profitability. This results in a total of 75 portfolios. These portfolios constitute
the home playing ground for the Fama & French (2015) factors and are also those that are
most widely studied in the previous literature.

Our second set of portfolios consists of 100 double-sorted portfolios based on historical
Fama & French (2015) 5-factor betas. That is, for market betas, value betas, profitability
betas, and investment betas we conduct 5 x 5 double sorts with size betas. The portfolios
are rebalanced each month based on individual stock betas based on the data described in
the next paragraph and estimated using the past year of daily returns. As the final set of
portfolios, we use 116 anomaly long—short portfolios of Chen & Zimmermann (2020).3

We obtain daily data on stock returns, prices, and shares outstanding from the Center
for Research in Security Prices (CRSP). We use all stocks traded on the New York Stock
Exchange (NYSE), the American Stock Exchange (AMEX), and the National Association of
Securities Dealers Automated Quotations (NASDAQ) that are classified as ordinary common
shares (CRSP share codes 10 or 11). We exclude closed-end funds and REITs (SIC codes
6720-6730 and 6798). Furthermore, following Amihud (2002) and Zhang (2006), we exclude

highly illiquid stocks. We expunge firm—month observations with prices below 3 dollars (e.g.,

2The website can be reached at: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html.

3The data can be downloaded from: https://www.openassetpricing.com/data/. Of the total of 171
anomalies, we use those 116 that are available for our full sample period. To limit ourselves to these is
necessary because some approaches require a complete dataset without missing values. The results for all
other tests are qualitatively similar when using all 171 anomaly portfolios.


https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://www.openassetpricing.com/data/

Zhang, 2006). We adjust for delisting returns following Shumway (1997) and Shumway &
Warther (1999).

We start our sample period in January 1963 (when the investment and profitability factors
become available) and end it in December 2018. Data on the risk-free (1-month Treasury
Bill) rate as well the Fama & French (2015, 2018) factors come from Kenneth French’s data
library. The Stambaugh & Yuan (2017) factors come from Robert Stambaugh’s webpage.
Data on the Daniel et al. (2020a,b) factors come from Kent Daniel’s website and those on

the Hou et al. (2021) factors come from the global-q webpage.*®

B The General Setup and the APT

Ross (1976) makes two main assumptions to derive the APT: (i) No-arbitrage and (ii)
that there is a latent factor structure that describes the covariance of asset returns.® It then

follows that

E(rj —7rs) = a; + N, (1)

where r; and ry denote the return of one asset j and the risk-free rate, respectively. a; is
the intercept term. A and [3; are k x 1 vectors of factor risk premia and factor betas of asset
j toward the k factors of a model, respectively.

The APT no-arbitrage condition then states that

al+ ... +ak <8< oo, (2)

4The corresponding websites are, in order: http://finance.wharton.upenn.edu/~stambaug/, http:
//www.kentdaniel .net/data.php, and http://global-q.org/index.html.

SFor part of the factors, the daily or monthly (or both) returns are not available. In these cases, we use
data from CRSP and Compustat and follow the methodologies described in the respective studies to obtain
the missing time series.

6Further technical requirements include that (iii) the idiosyncratic part of the asset returns is mean
zero and independently and identically distributed (in particular, it is uncorrelated to the factors), (iv) the
number of factors is much smaller than that of assets, (v) capital markets are perfect, and (vi) expectations
are homogeneous.


http://finance.wharton.upenn.edu/~stambaug/
http://www.kentdaniel.net/data.php
http://www.kentdaniel.net/data.php
http://global-q.org/index.html

for some unknown constant §. Intuitively, the upper bound on asset-specific returns and
hence Sharpe ratios makes the implicit assumption that very attractive investment oppor-
tunities in terms of their risk-return profile will be used by investors, which pushes up their
prices and makes them less attractive (Cochrane & Saa-Requejo, 2000).

The empirical factor models deviate slightly from the APT by assuming that a; = 0 for

all j. Therefore, for most of this study, we test the specification

E(’I“j — ’l“f) =a+ )\lﬁj, (3)

with a common intercept a. It is included to allow all test asset returns to be mispriced by
a common amount (Parker & Julliard, 2005). That is, the common intercept captures the
amount by which the zero-beta rate of the factor model exceeds the risk-free rate: the return
that could be realized on average while hedging out all factor risk. Fama (1976) shows that
the estimated intercept coefficient corresponds with a portfolio of the left-hand-side assets,
whose weights sum to one. The portfolio has zero betas toward all factors. Clearly, under
the null hypothesis of a certain factor model a high zero-beta rate in excess of the risk-free
rate constitutes a “good deal”. Investors would be willing to make use of such good deals.
Higher demand for stocks that contribute positively to the a and lower demand for those
contributing negatively should make the prices adjust. Hence, the APT predicts that such
“good deals” do not persist in the market. Thus, if the model is a good approximation to

the true return generating process, the a should be (close to) zero.

C The Cross-Sectional Asset Pricing Test

The asset pricing hypothesis underlying the cross-sectional regression test is that of Equa-
tion (3). Empirical tests of this equation are typically performed with the two-pass procedure

of Fama & MacBeth (1973). The first pass involves the estimation of betas for all test assets.



The second pass includes a cross-sectional regression of stocks’ excess returns each period

on these beta estimates.

1 The First Pass: Beta Estimation

A very important ingredient for the two-pass cross-sectional regression procedure is an
estimate for the conditional beta (B]t) Previous studies in part use the full sample period
to estimate the conditional betas (e.g., Hu et al., 2013; Kan et al., 2013; Adrian et al., 2014;
Buraschi et al., 2014). For initial benchmark results, we also follow this procedure. However,
it creates two problems. First, the literature provides compelling evidence of time-variation
in betas (e.g., Lettau & Ludvigson, 2001; Avramov & Chordia, 2006). Thus, one may reject
a factor model simply because of the approximation of time-varying betas with a full-sample
estimate (Hansen & Richard, 1987; Jagannathan & Wang, 1996). Second, by estimating
betas over the full sample period, one relies on information investors would not have been
able to use in real time. Hence, any full-sample test essentially uses a joint hypothesis of the
asset pricing model and the assumption that investors know all (constant) moments of asset
returns at all times.

For our main specification, we thus estimate betas using a historical window. We use the
simple historical estimator. That is, we perform time-series regressions of an asset’s excess

return on a constant and the different factors of a model

Tig = Tir = Qi+ B, Fr + €, (4)

where 7; - denotes the return of asset j observed at time 7. ¢, is the corresponding risk-free
interest rate over the same interval. Depending on the data frequency, 7 can measure time
steps in days, months, or quarters (in tables, we indicate the data frequency used in the first

pass by “D” “M”, and “Q)”, respectively; the superscript denotes the historical window in



months, which is left blank for full-sample and 60-month estimators). f;; is a k x 1 vector of
conditional betas for asset j at time t. F, is a k x 1 vector of factor returns observed at time
7. For example, in the case of the Fama & French (2015) 5-factor model, F; consists of the
returns of the market factor (M KT), the size factor (SM B), the value factor (HML), the
profitability factor (RM W), and the investment factor (CM A). We use data from time ¢ —k
to t, observed at discrete intervals 7, with k being the length, in months, of the estimation

window (indicated in the superscript in the tables).”

2 The Second Pass: Cross-Sectional Regression

In a second pass, we run a cross-sectional regression at each time period of excess returns

A

on a constant and the estimated betas (/3)
rie = Tre = G+ MNP+ Vi (5)

These regressions are typically performed at the monthly frequency. That is, r;; — ¢ is the
stock excess return during month ¢ and BN is an estimate for beta obtained at the end of
the previous month. v, is the regression residual. In the empirical part of this paper, we
follow this approach.

The statistical tests are based on the time-series averages a and 5\ of the estimated
intercept and slope coefficients. In tables, we denote @ as Intercept and the elements of
A by their factor acronyms. We adjust the standard errors for errors-in-variables, model
misspecification, as well as heteroskedasticity and autocorrelation following Kan et al. (2013)
(with 5 Newey & West, 1987 lags). We choose this approach based on the results of Kroencke

& Thimme (2021), who analyze the size and power properties of different estimation and

"To estimate Equation (4), we require at least half the returns (as well as the most recent one) in the
historical window to be non-missing. Stocks and portfolios, for which this is not the case, obtain missing
beta estimates and are not considered for the second pass at that time.



standard error approaches for the cross-sectional test. They show that the standard Fama &
MacBeth (1973) approach with Kan et al. (2013) standard errors has very good properties

for empirically relevant sample sizes.

D The Cross-Sectional vs. the Time-Series Test

For traded factors, both the time-series test and the cross-sectional test can be performed.
The latter has a number of advantages. First, in the standard setup, the time-series test
suffers from a look-ahead bias caused by the use of full-sample betas. The assumption
underlying the use of just one ex-post time-series regression is that investors already know
all moments of returns (and hence the beta factors). This assumption is clearly difficult
to uphold in practice (Barahona et al., 2021). Boguth et al. (2011) show that the use of
information that is not available in real time can bias the time-series regression results.
As shown in Section II.C, the cross-sectional test easily incorporates a relaxation of this
assumption. It can be cast in an adaptive-expectations setting where all beta estimates are
obtained based on real-time information.

Second, the standard full-sample time-series test ignores time-variation in betas. That
betas are changing over time is a well-established empirical fact (e.g., Fama & French, 1997;
Lettau & Ludvigson, 2001; Avramov & Chordia, 2006; Daniel & Moskowitz, 2016). Indeed,
Morana (2007) and Becker et al. (2021) document that betas clearly have long-memory
properties in the time series, rendering a constant approximation over the entire sample
period particularly inaccurate. The cross-sectional test can easily account for changing
betas.

Third, observed alphas in the time-series test can be caused by differences between factor
risk premia and their time-series means. As shown by Cochrane (2005), time-series alphas

are functions of the differences between the factors’ unknown risk premia and their time-
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series averages. Time-series means may differ from the true factor expected returns due
to measurement errors (Roll, 1977; Shanken, 1987; Jagannathan et al., 2010). The cross-
sectional test avoids the assumption that the time-series average returns coincide with the
factor risk premia, which is imposed by the time-series test. Instead, it empirically estimates
the factor premia from cross-sectional information.

Finally, Bekaert & De Santis (2021) show with simulations that the time-series Gibbons
et al. (1989) GRS test tends to overreject the null hypothesis in finite samples.

Some, although not all, of these issues can also be addressed with a suitably adjusted
time-series test. We choose to perform a cross-sectional test because it easily accounts for

all these issues.

E Variations of the Test Design

The main plague of the two-pass cross-sectional test is the EIV problem introduced by
using estimated betas as independent variables. The first consequence of this problem is
that one has to adjust the standard errors of the risk-premium coefficients in the second
pass (which we do by using the procedure of Kan et al., 2013). The second consequence is
the attenuation bias that arises in the risk premium estimates if the independent variables
are measured with error. To alleviate the EIV problem, the literature has developed several

adjustments of the test design. We consider these below.

1 Test Portfolios

The first such adjustment is the grouping of stocks into portfolios. Building portfolios
drastically reduces the attenuation bias on the coefficients. Given that the portfolios are well
diversified, a large part of the residual variation is eliminated and the portfolio betas suffer
from meaningfully lower estimation errors (Black et al., 1972; Blume & Friend, 1973; Fama

& MacBeth, 1973). Therefore, an analysis at the portfolio level will provide the starting
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point of our empirical analysis. Several subsequent studies, however, came to criticize this
scheme based on the dependence of the results on the way the portfolios are formed (Lo &
MacKinlay, 1990; Lewellen et al., 2010) and loss of power (Grauer & Janmaat, 2010; Ang
et al., 2020).

We address the first point by considering different sets of portfolios for the empirical
tests, thereby examining the sensitivity of the results to the portfolio formation scheme. To
alleviate the loss of power and address the weak-factor problem, Grauer & Janmaat (2010)
suggest repackaging the portfolio data to increase the spread in betas. For their approach,
one has to first estimate the (market) betas of different portfolios. Subsequently, the portfolio
returns of the half of the highest-market-beta portfolios are subtracted from those of half of
the lowest-market-beta portfolios (the lowest minus the highest, the second lowest minus the
second highest, ...). These repackaged portfolios replace the original half of portfolios with

the lowest betas.

2 Estimating Beta

There are several alternatives for beta estimation. The beta estimator affects the results
through two channels: measurement errors and conditionality. Start with the former. Lower
measurement errors in beta reduce the EIV problem and the attenuation bias in the risk
premium estimates. Based on this insight, one might tend to increase the beta estimation
window as much as possible to obtain a more precise historical estimate. The problem with
this approach is that one loses conditionality. Given that betas vary over time, a more timely
sample likely provides a more precise estimate of the current conditional beta.

In our benchmark analysis, we rely on 60-month windows, as in Fama & MacBeth (1973),
with either monthly or daily data (denoted by M and D in the tables), but also on a shorter
12-month window of daily data (D'?™°"). For robustness, we also consider 6-month and

36-month windows of daily data (D" and D30™°" respectively) and a 60-month window

12



of (monthly-overlapping) quarterly return data (Q).

Additionally, the ordinary least squares (OLS) estimator of Equation (4) might not be
the best choice when aiming at a conditional estimate with as little measurement error as
possible. We alternatively consider substitutes with exponentially decaying weights and
several shrinkage estimators. Finally, small and illiquid stocks might be traded only infre-
quently (and not synchronously with other stocks). An infrequent-trading adjustment may
help reduce their measurement errors. We therefore also consider two such adjustments. We
describe all alternative estimators in detail in Appendix A.

The vast majority of previous studies use the simple historical estimator of Equation (4)
when estimating betas for multifactor models (or market betas) (e.g., Chang et al., 2013;
Kan et al., 2013; Buraschi et al., 2014; Savor & Wilson, 2014; Hollstein & Prokopczuk, 2018),
while a few use a Dimson (1979) infrequent-trading adjustment (e.g., Asness et al., 2013;

Cremers et al., 2015).

3 Choice of Estimation Method

A further alternative concerns the estimator chosen to estimate Equation (5). The stan-
dard approach is to use OLS. A viable alternative is the use of generalized least squares
(GLS). For the GLS approach, the inverse of the stock return covariance matrix serves as a
weighting matrix. Thus, stocks with more volatile returns are weighted less strongly than
those that are less volatile.® An alternative weighted least squares (WLS) weighting scheme
uses a diagonal weighting matrix containing the stocks’ current market capitalizations.

For individual stocks, i.e., in the case where the number of stocks, N, is large and the
beta-estimation horizon, T', is fixed, there is a further adjustment method. It directly tackles

the attenuation bias in the estimated factor risk premium coefficients, which is induced by

8Note that with the GLS approach, the cross-sectional test does not entirely rely on real-time information
any longer. This is because the estimation of the covariance matrix requires large amounts of data, which is
why we use the full sample to do so.

13



measurement errors in the beta estimates. Based on Shanken (1992), Chordia et al. (2017)

and Raponi et al. (2020) use the following adjustment to the OLS estimator of Equation (5)

i e -
f _ (X;Xt—ZM’zj,tM> X/R,, (6)
t J=1

where X, = [1 N Bé], with /3, being an k x N matrix of estimated betas for the N assets.

1y indicates a vector of N ones. M = |:0k ]k}, with I being a k x k diagonal matrix of
ones. ZA]N is the White (1980) covariance matrix of the time-series beta estimates for asset
j from the first pass. R; is a N x 1 vector of stock excess returns observed in month ¢. The
term Zj\zl M’ f)NM provides the EIV-bias correction.” We refer to this estimation method

as OLSBC,

F  Summary Statistics

Before starting the main empirical analysis, it is instructive to first have a look at the
summary statistics presented in Table 1. Panel A of Table 1 starts with a description of
the factor returns. We find that all the Fama & French (2015) factors yield positive average
returns. The market factor (M KT') has the highest average excess return of 6.15% per year
with a standard deviation of 15.21%. For SM B, both the average return and the standard
deviation are substantially smaller with 2.83% and 10.46% per annum. The average returns
of HML (3.90%), RMW (3.09%), and CMA (3.40%) all exceed 3% per year while their
standard deviations are even slightly smaller, all being below 10%.

The factor returns are non-normal with in part substantial excess kurtosis (in partic-

ular for RMW). The factor returns all have some very mild positive first-order monthly

9Based on the advice of Chordia et al. (2017), we use Fama & MacBeth (1973) standard errors when
applying this bias-correction. The authors find in simulations that these are well behaved. Raponi et al.
(2020) provide asymptotic standard errors for the case of betas estimated ex-post. These formulas, though,
cannot be applied in our ex-ante setting.
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autocorrelation. The correlations are mostly low, but reach 0.696 between HM L and C'M A.

In Panels B and C of Table 1, we present the summary statistics of the beta estimates
resulting from the OLS estimator of Equation (4). Panel B reports the summary statistics
for 12-month daily and 60-month monthly estimators for our (first) Fama—French portfolio
sample and Panel C those for the same estimators and our individual stock sample. The
value-weighted average betas are, as they should be, close to 1 for the market and close
to 0 for all other factors.! The average standard deviations of the factor betas are sub-
stantially higher than those of the market betas. For portfolios, the highest cross-sectional
standard deviations occur for the SM B betas. For individual stocks, the most volatile factor
sensitivities are those toward RMW.

The cross-sectional standard deviations are substantially higher for the 12-month daily
estimator than they are for the 60-month monthly estimator. It thus seems that the choice
of sampling frequency and estimation window might have important consequences for the
resulting beta estimates and their properties. Whether the increased standard deviation and
dispersion of the 12-month daily estimator reflects its economic content or rather increased
noise, though, remains to be seen. All factor betas display excess kurtosis. Interestingly, the
kurtosis is much larger for the 12-month daily estimator for individual stocks than for the
60-month monthly estimator.

Finally, the correlations between the beta estimates of different factors are generally low.
In particular, that between HM L and C'M A betas is substantially smaller in magnitude
than that between the two factor returns. Thus, the second-stage regressions of Equation
(5) are not likely to suffer from any issues due to multicollinearity. For individual stocks,
however, we detect substantial correlations exceeding 0.3 between M KT and SMB and

between HM L and RMW . This indicates that, to some extent, the factor sensitivities carry

10The figures are not exactly 1 and 0, because we exclude part of the stocks from the CRSP universe; see
Section IL.A.
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similar economic content.

IIT Main Empirical Results

In this section, we present the main empirical results of our cross-sectional test of the
Fama & French (2015) 5-factor model. We begin with an analysis of the Fama-French
portfolios, providing the results for different test specifications. Afterwards, we examine the
model with different sets of portfolios and analyze alternative beta estimators. Finally, we

repeat the analysis on the individual-stock level.

A Analysis With the Fama—French Portfolios

The first main goal of this study is to test the Fama & French (2015) 5-factor model with
the cross-sectional test. We start the analysis by examining the model’s ability to explain
the returns of its base portfolios: the 75 portfolios consisting of different sets of 25 that are
jointly sorted on size and each book-to-market, profitability, and investment.

The main results are in Table 2. For comparison, Panel A presents the time-series-test
results. That is, we test the statistical significance of the factor returns both with monthly
and daily data. We find that all average factor returns except for that of SM B are strongly
statistically significant. These average returns are important because they provide a natural
benchmark for the size of the cross-sectional risk premia which, under the assumptions of
the time-series test, should be of a similar magnitude.

Furthermore, we present the results of the standard full-sample time-series GRS test
of Gibbons et al. (1989). Its hypothesis is that the alphas of all 75 portfolios are jointly
zero. Consistent with Fama & French (2015), this test strongly rejects the model with a test
statistic of 2.48 with monthly data and a p-value below 0.001. The average absolute alpha of

the portfolios is 0.95% per month, and 31% of the portfolios have individually statistically

16



significant alphas. When using daily return data, the numbers are of similar magnitudes.
Thus, the time-series test clearly rejects the Fama & French (2015) 5-factor model, even for
its base portfolios.

It would be premature, though, to dismiss the model right away based on this result.
As discussed in Section II.D, there are various possible reasons why the time-series GRS
test may reject a well-specified model: (i) its statistical properties of the GRS test are not
optimal, (ii) the basic time-series GRS test does not allow for time-variation in factor betas,
(iii) it uses information investors could not have had in real time, which may lead to a look-
ahead bias, and (iv) the time-series alphas can be non-zero simply because the historical
average factor return differs from the unobservable factor risk premium. In order to account
for these issues, we next perform the cross-sectional test.

As a further benchmark, we perform the cross-sectional test with full-sample beta esti-
mates, either based on monthly or on daily data. Note that this approach still suffers from
time-invariant betas and a look-ahead bias. However, it allows the factor risk premia to
differ from the time-series average returns. The results are in the first two columns of Panel
B of Table 2. We detect some modest support for all factors except for the market. With
full-sample betas based on monthly data, the estimated HM L and RMW risk premia are
significantly positive at the 5% level. Those for SM B and CM A are at least significantly
positive with respect to the 10% level. However, for all factors except for SM B, the risk
premium point estimates are somewhat smaller than the average realized factor excess re-
turn. With daily return data, the support for the model is a bit more modest. Only the
HML factor yields a significant risk premium.

The common theme across both specifications is that the intercept term is very high,
with 7.67% for monthly betas and 9.37% with daily data. Thus, even for its base portfolios
(but with potentially look-ahead-biased constant beta estimates), the Fama & French (2015)

5-factor model creates a huge common mispricing component and, thus, fails the main part
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of the cross-sectional test. One might argue that the zero-beta rate could exceed the risk-free
rate, implying that the intercept does not necessarily have to be zero. However, even in such
a case one would expect the intercept to be only mildly positive and surely not exceeding
7.67% on an annualized basis.

However, as mentioned above, both the look-ahead bias and the lack of accounting for
potential time-variation in betas may have a strong impact on these full-sample results.
Thus, next we consider rolling-window beta estimates. With the classical 60-month monthly
estimator (“M”), we obtain an intercept of 10.2% per year, which is highly statistically
significant (t-stat > 4). With 60-month daily betas (“D”), for which we have roughly 21
times as many data points to obtain more precise portfolio beta estimates, the results are
overall similar. Finally, for beta estimates based on a shorter historical window of 12 months
(“D2men”) which likely yields more precise estimates in the presence of time-varying betas,
the same holds true. The intercept estimates are 10.43% and 9.66%, respectively. However,
the risk premium estimates are overall of similar magnitudes to those for the full-sample
estimates. The HM L and RMW risk premia are significantly positive for all beta estimation
specifications. The C'M A risk premium is for two and the SM B premium for one.!!

Given that the results for all specifications are qualitatively similar, we focus the remain-
der of the paper on the approach with rolling historical betas. It provides a “real-time” test
of the factor model avoiding a look-ahead bias, allows for time-varying betas, while permit-
ting the factor risk premia to differ from the average excess returns. The results of Table 2
suggest that the use of shorter beta estimation windows do not adversely affect the outcome
of the cross-sectional test.

Another commonality across all specifications examined so far is that the estimated mar-

ket risk premium is negative, between —1.21% and —3.96%, and not statistically significant.

11Tn Table Al of the Online Appendix, we further present the results for 6-month and 36-month daily as
well as 60-month quarterly estimation windows. The results are qualitatively similar to those of Table 2.
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This finding echoes, in a multifactor setup, the finding of previous studies that the market
factor performs very poorly when it comes to explaining cross-sectional differences in stock
returns (see, among many others, Fama & French, 1992; Frazzini & Pedersen, 2014). On the
other hand, it is well known that the market factor is important for explaining time-series
variation in, and hence the level of, returns (Fama & French, 1993).

We can therefore conclude thus far that the Fama & French (2015) 5-factor model, al-
though it is ultimately rejected, explains its base portfolios reasonably well. The intercept
is way too large and the market factor is clearly not helpful for explaining cross-sectional
differences in returns. However, the remaining factor betas are clearly valuable for explaining

the cross-section of the Fama—French portfolio returns.

B Alternative Estimation Schemes

It is possible that the reasons for the ultimate model rejection are of a technical na-
ture. Improved estimation schemes may mend the remaining shortcomings. Thus, we next
examine the impact of a changed test design. First, Grauer & Janmaat (2010) argue that
portfolios do not provide sufficient variation in population betas, making the cross-sectional
test less powerful to reject the null hypothesis of zero factor risk premia. To account for
this possibility, we follow the authors’ approach and repackage the portfolios to increase the
spread (see Section ILE for further details).

We present these results in Table 3 (column heading “OLS-GJ”). The main finding is
that the repackaging does not improve but does rather impair the model’s performance.
The intercept remains large and statistically significant. In most cases, the risk premium
estimates are even smaller for the repackaged data than for the original data and the market
risk premium turns out significantly negative in two out of three cases.

Next, we turn to using an alternative GLS estimator of Equation (5). Relying less strongly
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on the most noisy portfolios may improve the efficiency of the risk premium estimates.
Presenting these results in the middle columns of Table 3, though, we find that there is
only a small improvement in using GLS instead of OLS. In fact, the intercept is still large,
between 8.64% and 9.69% per year, and the risk premium estimates are generally smaller
and less statistically significant. Thus, using the GLS instead of the OLS estimator does not
salvage the ultimate rejection of the Fama & French (2015) model.

Finally, we also consider the case without intercept. This specification directly imposes
the theoretical restriction of the factor models and is recommended, e.g., by Cochrane (2005).
For perfectly specified models, it should not make a difference whether the model is estimated
with or without intercept, as it is equal to zero anyway. In this case, the risk premium
estimates would simply be more efficient. However, the previous results indicate that the
Fama & French (2015) 5-factor model is severely misspecified, leading to a large positive
common intercept coefficient. It is thus interesting to see what happens when constraining
the common intercept to zero.

We present the results in the final three columns of Table 3. We find that indeed, the
risk premium estimates are much larger without common intercept. In most cases, the
point estimates are close to and statistically indistinguishable from the average factor excess
returns (see Table 2). Even the market factor yields a significant positive risk premium
estimate. However, these significant positive risk premium estimates need not to imply a
correct model specification. Instead, the coefficient that can signal model misspecification
most clearly is simply forced to zero.

Nevertheless, it is still interesting to examine the pricing errors of the portfolios as can
be obtained from average regression residual components. In Table 3, we present the average
absolute pricing errors in the line denoted as “Intercept”. We find that these are still around
1% per annum. A y2-test strongly rejects the hypothesis that all average pricing errors are

jointly zero with p-values smaller than 0.001. Even individually, between 23% and 31% of
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the average pricing errors are statistically significant. Thus, also when forcing the common
mispricing to zero there is some support for the Fama & French (2015) 5-factor model when

tested with its base portfolios. However, this support is not exactly overwhelming.

C Alternative Test Portfolios

Another possible reason for why performance of the Fama & French (2015) 5-factor model
may not be outstanding is that its factors could be weak (Bryzgalova, 2015). That is, for
factors that have small covariances with test asset returns, inference about risk premia can
be problematic. The OLS-GJ repackaging may not be sufficient since it focuses mainly on the
market factor. To examine whether the weak-factor problem affects the model performance,
we next examine a set of factor-beta-sorted portfolios. By definition, these have large cross-
sectional dispersion in (ex-ante) factor betas.

We present the results in Panel A of Table 4. Somewhat surprisingly, we find that
the Fama & French (2015) 5-factor model performs even worse for the factor-beta-sorted
portfolios. The intercept coefficients are somewhat smaller than for the Fama—French base
portfolios examined so far, ranging between 4.64% and 6.81%. However, the risk premium
estimates are generally also smaller and less statistically significant. The reason for this is
likely that the factor betas may pick up even more unpriced factor risk in the factor-beta-
sorted portfolios (Daniel et al., 2020b). Overall, we can conclude that it is unlikely that the
weak-factor problem causes any of the failures of the Fama & French (2015) 5-factor model
in the cross-sectional asset pricing test.

Having so far examined the Fama & French (2015) 5-factor model within its home ter-
ritory of the factor base portfolios, we next examine its performance in a less friendly envi-
ronment. That is, we test the model for the set of anomaly long—short portfolios of Chen &

Zimmermann (2020). We present these results in Panel B of Table 4. For this set of portfo-
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lios, the failure of the Fama & French (2015) 5-factor model becomes much more apparent.
As is natural when moving from long-only portfolios examined thus far to the long—short
portfolios considered now, the intercept estimates are somewhat smaller. However, they are
still economically large in all cases and clearly statistically significant. Even more impor-
tantly, barely any of the risk premium estimates are significantly positive. Even when the
common intercept coefficient is forced to be zero, the average absolute pricing error is 3.52%
per annum, with 50% of the individual pricing errors being significantly different from zero.
Only 2 out of the 5 factors yield significant risk premium coefficients even without common
intercept. Thus, based on the anomaly long—short portfolios, the case against the Fama &
French (2015) 5-factor model becomes particularly strong.

Consistent with our results, Liao & Liu (2022) develop a Fama & MacBeth (1973) regres-
sion approach that treats EIV biases as return innovations and show, based on their slightly
different methodology, that the Fama & French (2015) factors cannot explain more than 50%
in a set of anomaly returns. Liao & Liu (2022), however, do not consider alternative factor
models.

Next, we examine the relation between the intercept and slope t-statistics and the number
of anomalies considered. We start with a setup with (almost) no model misspecification:
including only the factor long and short portfolios as well as the market portfolio. Then, we
gradually expand the set of anomalies by randomly adding the long-—short portfolios of Chen
& Zimmermann (2020) one by one without replacement. We create 1,000 samples/paths for
the anomaly inclusion.

We present the results in Figure 1. To establish the validity of the test procedure, we
first look at the benchmark case without any additional anomaly variables. Indeed, in this
setup the Fama & French (2015) 5-factor model passes the cross-sectional test: The intercept
is statistically insignificant while the extra-market factors on average generate statistically

significant risk premium estimates. Adding one anomaly long—short return changes little

22



in the model performance. However, already when 2 to 3 anomalies are contained in the
test set, the intercept parameters typically turn to be significantly positive and the slope
parameters on average turn statistically insignificant. The slope t-statistics converge to low
levels below one once 20-30 anomalies are included. The intercept t-statistics continue to
increase when adding more anomalies. Thus, model misspecification plays an important role

for the poor performance of the Fama & French (2015) 5-factor model.

D Beta Estimators

For the final part of our portfolio analysis, we turn to alternative beta estimators. The
penultimate remaining possibility to salvage the Fama & French (2015) 5-factor model is
that the factor betas are indeed time-varying and that this time-variation is not accurately
reflected by the simple historical estimator. Thus, we now consider several alternative beta
estimators that may yield more accurate forecasts. In particular, we use several shrink-
age estimators (HISTY, HISTX, and LW), exponential weighting approaches (EWMA and
EWMA®), two estimators correcting for asynchronous trading (Dim and SW), and a beta
forecast combination approach (COMB). We describe the details of these alternatives in
Appendix A. The results are presented in Table 5. For all estimators, we rely on 12-month
daily estimation windows and use the anomaly long—short portfolios.!?

We find that the choice of estimator has an effect on the risk premium point estimates.
In particular, applying shrinkage to the beta estimates tends to increase them. For example,
with the LW estimator, the risk premium estimates on HML (1.03% vs. 0.58%), RMW
(3.95% vs. 2.41%), and CM A (1.05% vs. 0.52%) are substantially higher. However, this

effect is largely mechanical and the standard errors rise along with the risk premium esti-

12\We also repeat the analysis for individual stocks with qualitatively similar results; see Tables A2 and
A3 of the Online Appendix.
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mates.!® Hence, there is no appreciable increase in statistical significance. The EWMA esti-
mators, as well as those that correct for infrequent trading, do not improve things markedly
either. Most importantly, for all beta estimators, the estimated intercept coefficients are be-
tween 3.36% and 3.90% per annum and highly statistically significant. Thus, independently
of how the betas are estimated, the cross-sectional test clearly rejects the Fama & French

(2015) 5-factor model.

E Analysis on the Stock Level

Based on the findings of Ang et al. (2020) that the portfolio approach is less powerful
than an analysis at the stock level, we lastly test the Fama & French (2015) 5-factor model
for individual stocks. We present these results in Table 6.4

Starting with the standard 60-month monthly OLS approach, we find that the results
are not materially different for the model than with the portfolio approach. For individual
stocks, the point estimates of both the M KT and SM B premia are negative (although the
estimates are not statistically significant). The estimated RMW and CM A risk premia
are also smaller than for the portfolio approach. Only the HM L premium is statistically
significant at 5%. The point estimate, though, is still less than half the average factor excess
return (1.83% vs. 3.90%). Most importantly, the intercept estimate of 8.53% per annum is
similar in magnitude to that of the portfolio approach.

Thus, with monthly data and individual stocks, we still clearly reject the Fama & French

(2015) 5-factor model. The same is true for 60-month and 12-month daily beta estimates.

BIntuitively, think of a 1-factor model. The return-beta line is found to be too flat. Shrinkage pushes
the most extreme estimates (both the largest and the smallest) more toward the center. With the more
concentrated data, the slope of the return—beta line will increase. A similar mechanism applies with a
multifactor model.

4Note that for this part, we have to skip the model misspecification part in the Kan et al. (2013) standard
errors. For the large cross-sections of individual stocks, the approach requires the inversion of near-singular
matrices, which occasionally leads to implausibly large standard error estimates. Additionally accounting
for this part only makes the failure of factor models in the cross-sectional test stronger.
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The intercept estimates are economically large, with ¢-statistics exceeding 4. Overall, the
model appears to work best with 12-month daily beta estimates. In this case, both the HM L
and RMW risk premium estimates are statistically significant at the 5% level (albeit with
magnitudes still less than half that of the average factor excess returns).!®

It is possible that the Fama & French (2015) 5-factor model works well for big stocks,
but fails mainly among small stocks. Larger companies are typically traded more frequently
and have more liquid stock markets. Thus, it might be easier to precisely estimate the factor
sensitivities for these than it is for smaller stocks. To account for this possibility, we estimate
Equation (5) with WLS instead of OLS, weighting the stocks each month by their lagged
market capitalizations.

Presenting these results in Table 6, we find that the results change only little when
moving from an OLS to a WLS estimation. The only major difference is that the SM B
risk premium estimates turn from negative to positive. When using daily data, these are
marginally positively significant (at the 10% level). However, the increase in the SMB
premium when estimated with WLS comes at the cost of a reduced and insignificant HM L
premium. The intercept term, for the 12-month daily approach, still amounts to 5.99% per
annum and is highly statistically significant.

Finally, we turn to the bias-corrected OLS estimation approach. The bias-correction
is designed to mend the attenuation bias that results from the use of estimated betas as
exogenous regressors in Equation (5). In the presence of measurement errors in the betas,
the OLS slope estimates are biased downward. Such downward-bias would be consistent with
our observation that the estimated factor risk premia are far lower than the corresponding
average factor excess returns.

We present the results for the bias-corrected OLS approach in the final columns of Table

15Tn Table A4 of the Online Appendix, we repeat the analysis with alternative daily estimation windows
as well as with an estimator based on quarterly data. For all specifications, the results are qualitatively
similar to those presented in Table 6.
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6. Consistent with the notion that the OLS risk-premium estimates are affected by an
attenuation bias, we find that the bias-corrected OLS risk-premium estimates are generally
larger than with the plain OLS approach. However, the magnitude of the increase is far too
low to salvage the Fama & French (2015) 5-factor model. For example, for the 12-month
daily beta estimates, the bias-corrected risk premia on HM L and RMW are still more than
one third lower than the corresponding average factor excess returns. More importantly,
none of the other factor risk premia comes even close to being significant and the intercept
estimates remain at similar magnitudes for the bias-corrected to those for the plain OLS
approach.

To some extent, our conclusions differ from those drawn in Raponi et al. (2020). The
authors use contemporaneous (ex-post) betas estimated over several time windows and find
that the risk premium estimates for all factors are significant, at least for part of the sample
period. There are two important reasons for these differences. First, we use ex-ante rather
than ex-post beta estimates. Thus, while their test is in-sample, we perform a test of the
model that relies on information available in real time only. Second, and more importantly,
Raponi et al. (2020) count both positive and negative significance. The sign-changing behav-
ior observed in their paper is consistent with insignificant unconditional factor risk premia
over the full sample that we observe. Since Fama & French (2015) construct their factors
with unconditionally positive excess returns, it is difficult to argue that a significant nega-
tive risk premium estimate provides support for the model. Chordia et al. (2017) perform a
regression similar to Equation (5) for individual stocks. However, in addition to the factor
betas they also include several characteristics. The inclusion of these characteristics seems
to affect the risk premium estimates. For example, they also obtain a statistically significant
CM A premium. However, consistent with ours, their overall conclusion is that stock char-
acteristics explain more of the variation in expected returns than the factor sensitivities do.

Ultimately, this type of test is just another way to reject the model.
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F Interpretation

Having documented the failure of the Fama & French (2015) 5-factor model in the cross-
sectional test, we next turn to the following questions: What are potential causes of this
result? How can we interpret it? Can the model still be used for asset pricing purposes?

Start with the first question: Why does the model fail the cross-sectional test? The most
obvious answer would be that the model is only an approximation of reality and simply
not perfect. Indeed, Fama & French (2015) also show (and we confirm it in Table 2) that
their model is rejected by the time-series GRS test. Our results show that this result is
not caused by the statistical properties of the time-series test. Neither does it seem to be
due to look-ahead bias, failure to account for time-variation in factor betas, or deviations of
factor risk premia from their time-series means. The model is clearly misspecified and assets
are mispriced relative to the model by a large common amount. Thus, the Fama & French
(2015) 5-factor model is clearly inconsistent with the APT.

Related to the second question, Welch (2008) delivers an interpretation for the generally
low estimates of the factor risk premia. The cross-sectional risk premium estimates are
upward-biased if the historical factor performance exceeds a factor’s true risk premium.
Similarly, the risk premium estimates are downward-biased if the factors perform worse than
expected. Thus, the low risk premium estimates we obtain would be consistent with a worse-
than-expected performance of the factor portfolios. We are skeptical about this explanation,
though, mainly because the factors were chosen based on their past performance. It is thus
more likely that the historical factor performance was better than that it was worse than
expected.

Hence, two important questions remain. First, when aiming to control for the Fama &
French (2015) factors in a cross-sectional test, which econometric design should one use? It

appears to make sense to use individual stocks and daily data along with the attenuation-
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bias-correction. Shrinkage or an exponential weighting scheme in the beta estimation also
appear to strengthen the risk premia. The bigger question, though, is: Should we use the

model at all? The answer, in part, depends on whether there are better alternatives.

IV Alternative Factor Models

In this section, we turn toward alternative factor models. First, we examine the Stam-
baugh & Yuan (2017) 4-factor model. Afterwards, we also confront the Fama & French
(2018) 6-factor model, the Daniel et al. (2020a) 3-factor model, the modified Fama & French
(2015) 5-factor model of Daniel et al. (2020b), and the Hou et al. (2021) 5-factor model
with the cross-sectional test. To keep the presentation manageable, for each model, we limit
ourselves to the anomaly portfolios and individual stocks. We first present the time-series
test results and then focus on the cross-sectional test generally based on a 12-month daily
horizon for beta estimation and present the results only for three of the alternative beta
estimation methods: (i) a shrinkage (LW), (ii) an exponential weighting (EWMA®*), and

(iii) an infrequent-trading approach (Dim).

A The Stambaugh & Yuan (2017) 4-Factor Model

The results for the Stambaugh & Yuan (2017) 4-factor model are in Table 7.1 While
the average factor excess returns are large and strongly statistically significant, the model
is clearly rejected by the time-series GRS test. More than 40% of the anomaly long-short
returns cannot be explained by the model. The results for the cross-sectional test are overall
similar to those of the Fama & French (2015) 5-factor model: (i) the intercept is economically

large and statistically highly significant, (ii) the factor risk premia are often not statistically

16The factor model contains a market factor (MKT), a size factor (SMB®Y), a management factor
(MGMT), and a performance factor (PERF'). The MGMT and PERF factors result from sorts on the
average stock ranks to various anomalies. The M KT and MGMT factors have a correlation of —0.524.
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significant, and (iii) they are usually clearly smaller than the average factor returns. We
reach this conclusion independently of whether we use portfolios or stocks as test assets,
for all estimation methods, and for all beta estimation methods. The model’s MGMT and
PERF factors, though, obtain some support. The risk premium estimates are statistically
significant for many specifications. In addition, for PERF the point estimates are quite close
to the average factor returns, at least for the anomaly portfolio set. For pricing individual

stocks, the PERF' factor works clearly less well.

B The Fama & French (2018) 6-Factor Model

We show the results for the Fama & French (2018) 6-factor model in Table 8.17 The results
are overall similar to those for the Fama & French (2015) 5-factor model. The intercept
is economically large and highly statistically significant and most factor risk premia are
indistinguishable from zero. The RMW " factor seems to be more strongly priced than
the normal RMW factor and the W M L factor is helpful in explaining the anomaly portfolio
returns (although not those of individual stocks). However, this is by far not enough to

salvage the model.

C The Daniel et al. (2020a) 3-Factor Model

The results for the Daniel et al. (2020a) 3-factor model can be found in Table 9.'% The
results are qualitatively similar to those for the other models. The intercept coefficient is

large and statistically significant. While the FIN and PEAD factors obtain some support,

1"The factor model contains a market factor (M KT), the size (SM B) and investment (CM A) factors, as
well as a monthly value factor (H M L), a cash operating profitability factor (RMW ") and a momentum
factor (WML). The monthly value factor uses the most recent market capitalization for the book-to-market
ratio (Asness & Frazzini, 2013). The RMW 5" uses a cash-based definition of operating profitability. The
correlation between HM L™ and WML is —0.647.

18The factor model contains a market factor (M KT), a financing factor (FIN) and a post-earnings-
announcement-drift factor (PEAD). The financing factor is based on two variables capturing equity issues.
The correlation between M KT and FIN is —0.50.
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it is not entirely consistent across all specifications.

D The Modified Fama & French (2015) 5-Factor Model of Daniel

et al. (2020b)

Next, we present the results for the Fama & French (2015) 5-factor model modified to
hedge out unpriced factor risk by Daniel et al. (2020b) in Table 10. The factors are the same
as for the Fama & French (2015) 5-factor model, only they are optimally combined with
so-called hedge portfolios that are long low-factor-beta portfolios and short high-factor-beta
portfolios. The results are very similar to those for the main Fama & French (2015) 5-factor
model. The intercept estimates are strongly statistically significant and the risk premium
estimates are almost all close to, and not significantly different from, zero. Thus, hedging

out unpriced factor risk also does not salvage the Fama & French (2015) 5-factor model.

E The Hou et al. (2021) 5-Factor Model

We present the results for the Hou et al. (2021) 5-factor model in Table 11.1% Overall, the
results are also similar to those for the other models. The intercept coefficients are econom-
ically large and statistically significant and the estimated factor risk premia are generally
substantially smaller than the average factor returns. The expected growth factor is the only

one that yields a quite consistently significant risk premium estimate.

F Principal Components Factor Model

Finally, we analyze a PCA factor model. We construct the PCA factors based on the

anomaly return dataset following Haddad et al. (2020). That is, we use the Chen & Zimmer-

The factor model contains a market factor (M KT), a size factor (SMBHXZ) an investment factor
(INV), a profitability factor (ROE), and an expected growth/investment factor (EG). The correlation of
0.505 between ROE and EG is noteworthy.
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mann (2020) anomaly long—short returns available over the full sample period, market-adjust
and re-scale them to have equal volatilities, and obtain the first five principal components
(PCs).2% We then use these five PCs along with the market as another possible model. The
results are in Table 12. There is no big difference to the other factor models. The intercepts
are of similar magnitudes and the majority of PC-factors generate statistically insignificant

risk premium estimates.

V Conclusion

Testing the Fama & French (2015) 5-factor model in the cross-section, we uncover three
main findings. (i) Intercept coefficients are way too large to be consistent with the APT;
(ii) the estimated risk premia of all factors are generally way below their historical average
returns; and (iii) they are often not significantly different from zero. These findings also
extend well beyond the Fama & French (2015) 5-factor model to the models of Stambaugh
& Yuan (2017), Fama & French (2018), Daniel et al. (2020a,b), Hou et al. (2021), and one

based on PCA. Thus, all factor models are inconsistent with no-arbitrage pricing.

20Note that we have to use full-sample information to obtain these PCs. This is necessary because the
economic properties of the different PCs would likely not be constant over time when using a rolling- or
expanding-window to obtain out-of-sample PCs, impairing the model performance. Thus, in a realistic
environment using real-time data only, the PCs would likely load more on anomalies that become irrelevant
later on and the PCA model would likely fare worse than shown here.
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Appendix

A Alternative Beta Estimators

e Shrinkage Beta Shrinkage beta estimators shrink each element of the historical

beta estimate vector (f;) toward one or multiple priors (b; ;)

o2
Bia+ i 7 biju
- b (A1)
L+ =

2
Sh

Shr
j?t

4,5,

Ugj,t and sii’j,t are the squared standard errors of the historical estimates and the
prior(s), respectively. Thus, the degree of shrinkage depends on the relative precision
of the historical estimates vs. those of the priors. We use two different sets of priors: (i)
the cross-sectional average beta (Vasicek, 1973) (HISTY) and (ii) the cross-sectional
average beta, the cross-sectional average beta of firms in the same Global Industry
Classification Standard (GICS) industry sector, and the cross-sectional average beta of
firms in the same size decile (Karolyi, 1992) (HIST¥). Note that we compute Equation
(A1) separately for each factor of a model.

e LW Beta Levi & Welch (2017) argue that the Vasicek (1973) approach does not
sufficiently shrink the estimates to create good forecasts for beta. They suggest further
shrinkage using

= (1= 9)B], + 5875, (A2)
where BJ‘Q is the HISTY Vasicek (1973) beta estimate for stock j at time ¢. Levi &

Welch (2017) suggest using s = 0.25 for the market factor as well as ﬁfarget to 0.5 for

the smallest market capitalization terzile, 0.7 for the middle terzile, and 0.9 for the

highest market capitalization terzile. For other factors, they suggest s = 0.30 and

B'target

; = 0. We follow these recommendations.

¢ EWMA Beta The EWMA beta estimates also use Equation (4). However, the
historical return observations receive an exponentially decaying weight. We use the

weighted least squares (WLS) estimator, placing the highest weights on the most recent

Zi(ngzltlzlilh) with h = @. . characterizes the

horizon, to which the half-life of the weights converges for large samples. Following

observations. The weights are
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Hollstein et al. (2019), we set ¢ to two-thirds of the number of observations of the initial
estimation window. We use both a specification with a rolling (EWMA) and one with
an expanding (EWMA®*) estimation window. To reduce the computational burden,

we limit the maximum historical window to 10 years when using daily data.

Dimson Beta (Dim) Dimson (1979) aims to account for non-synchronous trading
by additionally adding betas toward lagged factor returns. For this approach, we use

N = 4 lags and the regression equation
e —Tpr = g+ B Fr+ B F (A3)

N
+B;ft2) (Z FT—TL) + Ej,’r‘
n=2

The Dimson beta estimator is ™ = Zﬁg{Q’N} ﬂj(lt) , where min{-} is the minimum

operator.

Scholes—Williams Beta (SW)  We also examine the beta estimator of Scholes &
Williams (1977). That is, we estimate three separate regressions. The first regression
uses the contemporaneous factor returns, exactly as in Equation (4). The second
regression uses the lagged factor returns as explanatory variables, that is r;, — 7, =
i+ B Fr_1+ €7, and the third regression uses the leaded factor returns, i.e., rj, —
T = Qg+ ﬂj’-ngTH + ¢€;-. Note also that ;{t uses only information available at time

t. Finally, for each factor, the final estimator is:

sSWo_ /B;t+ﬁj,t+ ;,_t
» 14 2p

: (A4)

where p is the first-order autocorrelation of the respective factor returns. Note that
we use Equation (A4) separately for each factor of the model. Asymptotic standard
errors for the estimator are provided by Scholes & Williams (1977).

Combination Beta (COMB) Finally, we use a simple equally weighted average
of the betas from all approaches. That is, for each stock, we estimate the factor
sensitivities for all estimation methods. The COMB estimate for each factor beta is the
average across all estimates. Note that, lacking standard error estimates, we cannot use
the COMB beta estimate for the bias-corrected OLS regression for individual stocks.
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Figure 1: Intercept and Slopes vs. the Number of Anomalies Considered

This figure plots the average t-statistics of the intercept and the extra-market slopes depending on the
number of anomalies used. We use as base case the 8 separate long and short portfolios underlying the Fama
& French (2015) factors as well as the market portfolio (number of anomalies considered = 0). Then we
iteratively add long—short portfolios from the CZ anomaly set. That is, we randomly draw the anomalies
without replacement and run the cross-sectional test. We repeat the procedure 1,000 times. The reported
lines are the average t-statistics across the 1,000 repetitions of the intercepts (Panels A and C) and the
extra-market slope factors (Panels B and D). For the slope t-statistics, we first average over the different
factors within one sample and then over the 1,000 random samples. We present the results for betas based
on daily (blue solid line) and monthly (orange dashed line) data over the full sample (Panels A and B) and
with rolling windows (Panels C and D). The rolling-window length for daily data is 12 months and that for
monthly data is 60 months. The shaded gray areas are the 95% non-rejection regions. All ¢-statistics are

based on Kan et al. (2013) standard errors with 5 Newey—West lags.
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Table 1: Summary Statistics

This table presents summary statistics for the (monthly) returns of (Panel A) and the sensitivities to (Panels

B and C) the 5 Fama & French (2015) factors. We present summary statistics of annualized returns in

percentage points. “Mean” is the average of the factor in the time-series (in Panel A) or the time-series

average of the equally weighted cross-sectional mean of beta estimates (in Panels B and C). “SD” is the

standard deviation. “Skew”, “ Kurt”, and “ AR(1)” are the skewness, kurtosis, and first-order autocorrelation.

In Panels B and C, all reported numbers are time-series averages of the cross-sectional statistics. “Mean,.,”

is the value-weighted average. “q*'0”, “Median”, and “¢°?°” denote the 10%, 50%, and 90% quantiles of

the cross-sectional beta distributions, respectively. The correlations in Panels B and C are also time-series

averages of cross-sectional correlations.

Panel A. Factor Return Summary Statistics

Summary Statistics Correlations
Mean SD Skew Kurt AR(1) SMB HML RMW CMA
MKT 6.152 15.21 —0.545 4.980 0.071 0.276 —0.258 —0.225 —0.384
SMB 2.827 10.46 0.365 6.073 0.060 —0.070 —0.347 —0.107
HML 3.898 9.684 0.169 4.970 0.175 0.070 0.696
RMW 3.084 7.571 —0.345 15.28 0.148 —0.026
CMA 3.400 6.918 0.300 4.637 0.121
Panel B. Summary Statistics of FF Portfolio Beta Estimates
Summary Statistics Correlations
g I
g g - 3 ~ = <
3 - - S

S S g 2 - S 8 s = 5 =

= = %) 95 e = = = T ~ Q
12-Month Daily
MKT 0999 0.887 0.720 0.221 7.458 0.052 0.851 1.779 0.352 0.150 0.079 0.077
SMB —0.001 0.710 0.989 0.515 10.14 —0.350 0.611 1.939 0.115 0.212 0.045
HML -0.001 0.079 1.303 —0.270 12.90 —1.389 0.105 1.514 0.315 —0.361
RMW 0.006 —0.093 1.483 —0.435 16.67 —1.787 —0.013 1.486 0.101
CMA —0.001 0.019 1.477  0.229 19.70 —1.615 0.032 1.617
60-Month Monthly
MKT 0958 0.898 0.476 0.135 3.186 0.272 0.891 1.513 0.441 0.048 —0.032 —0.028
SMB 0.004 0.712 0.599 0.337 3.582 —0.002 0.676 1.492 0.053 0.110  0.040
HML 0.014 0.085 0.657 —0.235 6.377 —0.676 0.107 0.816 0.384 —0.254
RMW 0.022 —0.086 0.741 —0.842 7.255 —0.977 —0.007 0.693 0.123
CMA —-0.015 —0.003 0.697 —0.232 6.650 —0.805 0.024 0.760

39



Table 1: Summary Statistics (continued)

Panel C. Summary Statistics of Stock Beta Estimates

Summary Statistics Correlations
3 g
g g - S 3 =
3 ] =
S8 o £ 5 5 CR s = 5 =
= = ©n 3 e > = > a At Q
12-Month Daily
MKT 0999 0.887 0.720 0.221 7.458 0.052 0.851 1.779 0.352 0.150 0.079 0.077
SMB —-0.001 0.710 0.989 0.515 10.14 —0.350 0.611 1.939 0.115 0.212  0.045
HML -0.001 0.079 1303 —0.270 12.90 —1.389 0.105 1.514 0.315 —0.361
RMW  0.006 —0.093 1.483 —0.435 16.67 —1.787 —0.013 1.486 0.101
CMA —-0.001 0.019 1477 0.229 19.70 -1.615 0.032 1.617
60-Month Monthly
MKT 0958 0.898 0.476 0.135 3.186 0.272 0.891 1.513 0.441 0.048 —0.032 —0.028
SMB  0.004 0.712 0.599 0.337 3.582 —0.002 0.676 1.492 0.053 0.110  0.040
HML 0014 0.085 0.657 —0.235 6.377 —0.676 0.107 0.816 0.384 —0.254
RMW  0.022 —0.086 0.741 —0.842 7.255 —0.977 —0.007 0.693 0.123
CMA —-0.015 —0.003 0.697 —0.232 6.650 —0.805 0.024 0.760
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Table 2: Factor Base Portfolios

This table presents test results for the 75 Fama-French factor base portfolios. In Panel A, we present
the annualized time-series average returns of the Fama & French (2015) factors. Newey & West (1987)
standard errors with 5 lags are in parentheses. In addition, we show the full-sample average absolute alphas
of the portfolios (avg |@|), the share of individually significant portfolio alphas (at 10%) in brackets, and
the joint statistical significance of the alphas based on the GRS test (indicated by the stars). In Panel B,
we present average coefficient estimates from monthly Fama & MacBeth (1973) regressions. Each month,
we use Equation (5) to regress the annualized portfolio excess returns (in percentage points) during that
month on a constant as well as factor sensitivities (betas) to the Fama & French (2015) 5-factor model.
The betas are estimated using Equation (4) along with data from the full sample period or over previous
historical windows (“Rolling OLS”). “M” and “D” without superscript indicate that betas are estimated from
monthly and daily data, respectively. For the rolling OLS case, the betas are generally based on 60-month

«pt2mon» indicates the use of 12 months of daily data. In parentheses, we report the errors-

windows, while
in-variables, model misspecification, as well as heteroskedasticity and autocorrelation robust standard errors
of Kan et al. (2013) (with 5 Newey—West lags). *, **, and *** indicate significance at the 10%, 5%, and 1%

level, respectively.

Panel A. Time-Series Test

MKT SMB HML RMW CMA avg |a|
Monthly — 6.152** 2.827* 3.898** 3.084%** 3.400%** 0.949%**

(2.240) (1.505) (1.588) (1.169) (1.100) 30.67]
Daily 6.194*** 1.946 4,084 3.248** 3.453%** 1.099***

(2.148) (1.198) (1.217) (0.915) (0.883) [38.67]

Panel B. Cross-Sectional Test

Full Sample Rolling OLS

M D M D D12mon
Intercept 7.669** 9.373*** 10.18*** 10.43*** 9.659***
(3.253) (3.189) (2.366) (2.730) (2.560)

MKT —1.210 —2.694 —3.789 —3.963 —3.186
(3.705) (3.196) (2.716) (2.650) (2.570)

SMB 2.592* 2.483 1.640 1.460 2.682*
(1.530) (1.573) (1.501) (1.518) (1.539)

HML 3.406** 3.347** 3.608** 3.737** 3.190**
(1.626) (1.592) (1.699) (1.754) (1.508)

RMW 2.392* 2.060 2.887** 2.801** 2.940**
(1.349) (1.516) (1.243) (1.423) (1.210)

CMA 3.019** 2.172 3.013** 2.476* 1.990
(1.215) (1.445) (1.166) (1.498) (1.358)
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Table 3: Factor Base Portfolios: Different Estimation Methods

This table presents test results for the 75 Fama—French factor base portfolios. We report average coefficient
estimates from monthly Fama & MacBeth (1973) regressions. Each month, we use Equation (5) to regress the
annualized portfolio excess returns (in percentage points) during that month on a constant as well as factor
sensitivities (betas) to the Fama & French (2015) 5-factor model. We use three different methods to estimate
Equation (5): (i) “OLS-GJ” (where the test assets are repackaged to have a higher dispersion in their market
betas), (ii) “GLS” (where we use the full-sample return covariance matrix to weight the observations), and
(iil) a specification that omits the common intercept. The betas are estimated using Equation (4) along with
data over previous historical windows (rolling OLS). “M” and “ D” without superscript indicate that betas are
estimated from 60-month windows of monthly and daily data, respectively, while “D'2™°"" indicates the use
of 12 months of daily data. In parentheses, we report the errors-in-variables, model misspecification, as well
as heteroskedasticity and autocorrelation robust standard errors of Kan et al. (2013) (with 5 Newey—West
lags). For the “OLS No Intercept” specification, we report the average absolute model errors in the intercept
line. Significance is based on a joint x? test with the null hypothesis that all average errors are jointly zero.
The brackets contain the shares of single significant average pricing errors (at 10%; in percentage points).
For the “No Intercept” case, we use Shanken (1992) standard errors. *, **, and *** indicate significance at

the 10%, 5%, and 1% level, respectively.

OLS-GJ GLS OLS No Intercept
M D D12mon M D D12mon M D D12mon

Intercept T7.A85*** 7.914** 85757 8.644** 0.249** 0.686** 0.916™* 1.090*** 1.125***
(2.560)  (2.525) (2.434) (1.694) (1.826) (1.707) [22.67]  [28.00]  [30.67]

MKT —~1.085 —1.516** —1.803** —2.043 —2.705 —2.684 6.009*** 6.142*** 6.205**
(0.956)  (0.755)  (0.787)  (1.627) (1.781)  (1.881) (2.295) (2.311) (2.168)
SMB 1.673 0780  1.273 0515 0260 0448 2029 1749  2.901*
(1.172)  (1.105)  (1.106)  (0.931) (1.141) (1.163) (1.516) (1.539)  (1.556)
HML 2.316*  2.130*  2.249**  2.379**  2358*  1.800  3.984"*  4.179**  3.372**
(1.128)  (1.109)  (1.018)  (1.155) (1.254) (1.277) (1.605) (1.746) (1.518)
RMW 1775 1183  1.198  1.612*  1.701*  1.836** 2.977*** 3.461*** 3.291***
(1.004)  (1.108)  (0.975)  (0.874) (0.957) (0.899)  (1.132) (1.318)  (1.108)
CMA 1.840 1238  0.948  1.663**  1.330  1.271  2.933** 2.023***  2.068*

(0.985)  (1.175)  (0.982)  (0.770)  (0.937)  (0.966) (1.035)  (1.100)  (1.088)
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Table 4: Alternative Test Portfolios

This table presents test results for the 100 factor-beta-sorted portfolios (Panel A) and 116 anomaly long—short
portfolios of Chen & Zimmermann (2020) (Panel B). We present average coefficient estimates from monthly
Fama & MacBeth (1973) regressions. Each month, we use Equation (5) to regress the annualized portfolio
excess returns (in percentage points) during that month on a constant as well as factor sensitivities (betas)
to the Fama & French (2015) 5-factor model. The betas are estimated using Equation (4) along with data
from the full sample period (“Full”) or over previous historical windows (“Roll”). For the rolling OLS case,
the betas are generally based 12-month windows of daily data, while Roll-M uses 60 months of monthly data.
We generally use OLS but also consider three alternative methods to estimate Equation (5): (i) “OLS-GJ”
(where the test assets are repackaged to have a higher dispersion in their market betas), (i) “GLS” (where we
use the full-sample return covariance matrix to weight the observations), and (iii) a specification that omits
the common intercept. In parentheses, we report the errors-in-variables, model misspecification, as well
as heteroskedasticity and autocorrelation robust standard errors of Kan et al. (2013) (with 5 Newey—West
lags). For the “No Intercept” specification, we report the average absolute model errors in the intercept line.
Significance is based on a joint x? test with the null hypothesis that all average errors are jointly zero. The

brackets contain the shares of single significant average pricing errors (at 10%; in percentage points). For

the “No Intercept” case, we use Shanken (1992) standard errors. *, **, and *** indicate significance at the
10%, 5%, and 1% level, respectively.
Panel A. Beta-Sorted Portfolios
Full Roll-M Roll-D OLS-GJ GLS No Intercept
Intercept 6.609*** 4.798** 4.637* 6.810%** 5.152%** 0.954***
(1.754) (2.002) (1.871) (2.309) (1.444) [26.00]
MKT —0.594 1.281 1.451 0.003 2.924** 6.068**
(2.059) (2.535) (2.214) (0.616) (1.468) (2.186)
SMB 2.794* 0.980 2.497 1.312 2.129** 2.252
(1.586) (1.625) (1.578) (1.055) (0.993) (1.549)
HML 1.293 3.429** 1.858 1.218 0.326 2.044*
(1.533) (1.601) (1.403) (0.994) (0.989) (1.204)
RMW 4.095%** 1.059 1.777 1.185 1.770* 1.440
(1.413) (1.274) (1.377) (0.931) (0.916) (1.113)
CMA —0.337 2.698* 1.625 0.883 0.516 2.234**
(1.484) (1.399) (1.211) (0.836) (0.726) (1.054)
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Table 4: Alternative Test Portfolios (continued)

Panel B. CZ Anomaly Portfolios

Full Roll-M Roll-D OLS-GJ GLS No Intercept
Intercept 4.282%** 3.833*** 3.821*** 4.164*** 1.403*** 3.518***
(0.402) (0.393) (0.388) (0.448) (0.215) [50.00]
MKT 2.900 0.407 1.703 0.943 0.414 —0.469
(2.053) (2.369) (2.274) (1.460) (1.625) (1.788)
SMB —3.036 —2.968* —2.222 —2.039 0.403 —1.252
(3.594) (1.701) (2.409) (1.848) (1.331) (1.932)
HML —2.388 0.948 0.580 0.590 1.242 2.046
(1.990) (1.784) (1.854) (1.242) (0.968) (1.588)
RMW 2.287 2.361* 2.410 1.904 1.557* 3.311%**
(2.247) (1.364) (1.715) (1.221) (0.943) (1.116)
CMA 2.645* 1.795 0.523 0.763 0.418 2.142*
(1.465) (1.280) (1.475) (1.052) (0.711) (1.185)
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Table 5: CZ Anomaly Portfolios: The Role of Beta Estimators

This table presents test results for the 116 anomaly long—short portfolios of Chen & Zimmermann (2020).
We present average coefficient estimates from monthly Fama & MacBeth (1973) regressions. Each month,
we use Equation (5) to regress the annualized portfolio excess returns (in percentage points) during that
month on a constant as well as factor sensitivities (betas) to the Fama & French (2015) 5-factor model.
The betas are estimated with various beta estimation methods (which are described in detail in Appendix
A) along with data over previous historical windows. The estimators use daily data over the previous 12
months (the “EWMA®*” estimator gradually expands this window). In parentheses, we report the errors-in-
variables, model misspecification, as well as heteroskedasticity and autocorrelation robust standard errors of
Kan et al. (2013) (with 5 Newey—West lags). *, **, and *** indicate significance at the 10%, 5%, and 1%

level, respectively.

HISTY HISTX LW EWMA  EWMA®® Dim SW COMB
Intercept  3.698*** 3.581%** 3.364%** 3.767*** 3.778%** 3.901%** 3.813*** 3.691%**
(0.434) (0.495) (0.730) (0.372) (0.412) (0.341) (0.354) (0.429)
MKT 2.005 2.194 2.674 1.700 1.702 2.709 4.068 2.706
(2.629) (2.989) (4.078) (2.278) (2.351) (2.353) (2.964) (2.730)
SMB —2.209 —2.223 —3.156 —2.067 —2.259 —2.172 —3.158 —2.579
(2.770) (3.117) (4.703) (2.335) (2.629) (1.812) (1.967) (2.790)
HML 0.718 0.873 1.025 0.715 0.319 0.899 —0.433 0.209
(2.127) (2.396) (3.524) (1.800) (1.953) (1.583) (1.963) (2.190)
RMW 2.764 3.088 3.949 2.535 2.402 2.275* 2.464 2.847
(2.077) (2.449) (3.629) (1.628) (2.033) (1.284) (1.515) (2.151)
CMA 0.733 0.958 1.048 0.695 1.237 0.281 0.282 1.030
(1.804) (2.160) (2.969) (1.421) (1.473) (1.175) (1.670) (1.799)
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Table 6: Individual Stocks

This table presents average coefficient estimates from monthly Fama & MacBeth (1973) regressions for
individual stocks. Each month, we use Equation (5) to regress the annualized stock excess returns (in
percentage points) during that month on a constant as well as factor sensitivities (betas) to the Fama &
French (2015) 5-factor model. We use three different methods to estimate Equation (5): (i) “OLS”, (ii) “WLS”
(where we weight the stocks by their inverse market capitalization for each cross-sectional regression), and (iii)
“OLSBY” (where we use the bias-corrected OLS estimator of Equation (6)). The betas are estimated using
Equation (4) along with data over previous historical windows. “M” and “D” without superscript indicate
that betas are estimated from 60-month windows of monthly and daily data, respectively, while “D'2men”
indicates the use of 12 months of daily data. In parentheses, we generally report errors-in-variables as well
as heteroskedasticity and autocorrelation robust standard errors of Kan et al. (2013) (with 5 Newey—West
lags). For the “OLSBC” approach, we report Fama & MacBeth (1973) standard errors. *, **, and *** indicate

significance at the 10%, 5%, and 1% level, respectively.

OLS WLS OLSB¢

M D D12mon M D D12mon M D DlQmon

Intercept — 8.529%**  9.452***  8962***  6.420%**  7.745***  5985***  8.663***  0.282***  8.975***
(1.930)  (1.938)  (2.021)  (1.672)  (1.807)  (1.705)  (1.806)  (1.953)  (1.975)

MKT —0.524  —1540  —0.793  —0282  —1.766 0.032 —0.735  —1.315  —0.735
(1.329)  (1.623)  (1.410)  (1.724)  (2.271)  (1.874)  (1.415)  (L.654)  (1.444)
SMB —0414  —0.328  —0.517 0.951 2.097* 1.858*  —0.319  —0.371  —0.567
(0.810)  (1.208)  (0.841)  (1.052)  (1.271)  (1.069)  (0.916)  (1.418)  (1.105)
HML 1.825% 2.197 1.834%* 1.552 1.336 1.030 2.160** 2.328 2.000**
(0.788)  (1.382)  (0.826)  (1.150)  (1.426)  (1.144)  (0.872)  (1.480)  (0.906)
RMW 0.342 1.086 1.503** 0.218 1.093 1.723* 0.361 1.322 1.999**
(0.565)  (1.067)  (0.742)  (0.800)  (1.149)  (0.832)  (0.601)  (1.262)  (0.859)
CMA 0.841 1.867* 1.032 0.726 1.323 0.122 0.795 2.267" 1.161

(0.569)  (1.008)  (0.737)  (0.822)  (1.120)  (0.925)  (0.628)  (1.089)  (0.818)
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Testing Factor Models in the Cross-Section

Online Appendix

JEL classification: G12, G11, G17

Keywords: Factor models, cross-sectional tests, no-arbitrage pricing, beta estimation



Table Al: Portfolios: Further Sampling Windows and Frequencies

This table presents test results for the 75 Fama—French factor base portfolios. We present average coefficient
estimates from monthly Fama & MacBeth (1973) regressions. Each month, we use Equation (5) to regress the
annualized portfolio excess returns (in percentage points) during that month on a constant as well as factor
sensitivities (betas) to the Fama & French (2015) 5-factor model. We use three different methods to estimate
Equation (5): (i) “OLS”, (ii) “OLS-GJ” (where the test assets are repackaged to have a higher dispersion in
their market betas), and (iii) “GLS” (where we use the full-sample return covariance matrix to weight the
observations). The betas are estimated using Equation (4) along with data over previous historical windows.
“«pbmon and “D36mon” indicate that betas are estimated from 6 and 36 months of daily data, respectively,
“@” denotes a 60-month window of quarterly data. In parentheses, we report the errors-in-variables, model
misspecification, as well as heteroskedasticity and autocorrelation robust standard errors of Kan et al. (2013)

(with 5 Newey—West lags). *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

OLS OLS-GJ GLS

D6nwn D36'm,an Q Dﬁmon D36'm0n Q D6'm,an D367nnn Q

Intercept  10.917*  10.68***  10.03***  8.676*™  8.375**  7.645"*  10.57***  10.71"**  8.395***
(2.342)  (2.665)  (2.255)  (2.414)  (2477)  (2.527)  (1.691)  (1.898)  (1.640)

MKT —4.359*  —4.193  —3.653 —1.699" —1.806" —0.889  —2.878  —3.828*  —1.194
(2.507)  (2.610)  (2.466)  (0.765)  (0.810)  (0.863)  (1.847)  (1.977)  (1.367)
SMB 2.508" 2.293 1.604 1.228 1.412 1.011 —0.053 0.316 0.922
(1.498)  (1.557)  (1.458)  (1.007)  (1.124)  (L.067)  (1.089)  (1.133)  (0.918)
HML 3.151% 3577 3.662" 1571 2.062° 2417 1.247  2526*  1.872
(1.524)  (1.636)  (1.645)  (0.981)  (1.068)  (1.035)  (1.138)  (1.285)  (0.984)
RMW 2545 2.896**  2.726"*  1.665" 1.527 1.472 1.702* 1.628*  1.682**
(1.248)  (1.331)  (1.243)  (1.010)  (1.088)  (1.187)  (0.869)  (0.929)  (0.767)
CMA 1.864 2.218 2.452"* 0.776 1.247 1.315 0.799 1.572 0.896

(1.316)  (1.364)  (1.122)  (0.937)  (1.050)  (0.937)  (0.838)  (0.961)  (0.647)




Table A2: Individual Stocks: The Role of Beta Estimators (OLS?¢)

This table presents average coefficient estimates from monthly Fama & MacBeth (1973) regressions for
individual stocks. Each month, we use Equation (5) to regress the annualized stock excess returns (in
percentage points) during that month on a constant as well as factor sensitivities (betas) to the Fama
& French (2015) 5-factor model. We use the bias-corrected OLS estimator of Equation (6) to estimate
Equation (5). The betas are estimated with various beta estimation methods (which are described in detail
in Appendix A) along with data over previous historical windows. The estimators use daily data over the
previous 12 months (the “EWMA®*” estimator gradually expands this window). In parentheses, we report

Fama & MacBeth (1973) standard errors. *, **, and *** indicate significance at the 10%, 5%, and 1% level,

respectively.
HISTY HISTX LW EWMA EWMA®® Dim SW
Intercept 8.841%** 8.853%** 9.018*** 9.331%** 9.262*** 8.636*** 8.817+**
(1.888) (1.860) (2.005) (1.992) (1.906) (1.963) (1.979)
MKT —1.099 —1.426 —1.228 —0.703 —0.789 —0.361 —0.358
(1.841) (2.106) (2.224) (1.451) (1.560) (1.395) (1.282)
SMB —0.280 0.001 —0.621 —1.005 —0.810 —0.585 —0.806
(1.489) (1.859) (2.243) (1.082) (1.239) (0.817) (0.783)
HML 2.847** 3.814** 4.064** 1.868** 2.033** 2.144*** 1.677*
(1.446) (1.854) (2.037) (0.890) (1.029) (0.814) (0.743)
RMW 3.085** 4.224* 4.543* 2.132* 1.869** 0.807 1.551**
(1.407) (1.875) (2.095) (0.851) (0.943) (0.603) (0.654)
CMA 1.669 2.213 2.288 1.071 1.483* 0.832 0.860
(1.241) (1.615) (1.772) (0.809) (0.838) (0.657) (0.635)




Table A3: Individual Stocks: The Role of Beta Estimators (OLS and WLS)

This table presents average coefficient estimates from monthly Fama & MacBeth (1973) regressions for

individual stocks. Each month, we use Equation (5) to regress the annualized stock excess returns (in

percentage points) during that month on a constant as well as factor sensitivities (betas) to the Fama &

French (2015) 5-factor model. We use two different methods to estimate Equation (5): (i) “OLS” (Panel A)

and (i) “WLS” (Panel B; where we weight the stocks by their inverse market capitalization for each cross-

sectional regression). The betas are estimated with various beta estimation methods (which are described

in detail in Appendix A) along with data over previous historical windows. The estimators use daily data

over the previous 12 months (the “EWMA®*” estimator gradually expands this window). In parentheses, we

report the errors-in-variables as well as heteroskedasticity and autocorrelation robust standard errors of Kan

et al. (2013) (with 5 Newey—West lags).

*, ** and *** indicate significance at the 10%, 5%, and 1% level,

respectively.
Panel A. OLS
HISTY HISTH LW EWMA  EWMA®® Dim SW COMB
Intercept — 8.709%** 8.712%** 8.820%** 9.191%** 0.264*** 8.425%** 8.647** 0.034%**
(1.911) (1.860) (2.021) (2.031) (1.928) (2.041) (2.021) (1.913)
MKT —1.093 —1.266 —1.196 —0.774 —0.975 —0.168 —0.298 —0.897
(1.802) (2.032) (2.168) (1.422) (1.542) (1.260) (1.239) (1.781)
SMB —0.082 0.032 —0.255 —0.795 —0.605 —0.466 —0.651 —0.673
(1.286) (1.705) (2.077) (0.816) (1.047) (0.627) (0.714) (1.289)
HML 2.531* 3.262* 3.585* 1.733** 1.988** 1.758** 1.660** 2.551%*
(1.316) (1.712) (1.920) (0.814) (0.962) (0.704) (0.735) (1.231)
RMW 2.457%* 3.381** 3.503** 1.557** 1.557* 0.813 1.359%* 2.230%*
(1.048) (1.381) (1.559) (0.732) (0.842) (0.570) (0.645) (0.973)
CMA 1.451 1.818 2.038 0.993 1.337* 0.683 0.783 1.592
(1.188) (1.570) (1.704) (0.717) (0.784) (0.560) (0.631) (1.084)
Panel B. WLS
HISTY HISTH LW EWMA  EWMA®® Dim SW COMB
Intercept — 5.747** 5.705%** 5.724*** 6.003*** 6.694%** 5.626%** 5.295%%* 5.985**
(1.769) (1.928) (2.148) (1.697) (1.752) (1.590) (1.638) (1.839)
MKT 0.063 —0.017 0.087 0.035 —0.705 0.418 0.318 —0.179
(2.121) (2.474) (2.822) (1.887) (2.087) (1.626) (1.665) (2.265)
SMB 2.309* 2.903* 3.300* 1.757* 2.128* 1.025 0.603 2.358*
(1.290) (1.568) (1.877) (1.047) (1.177) (0.860) (0.929) (1.366)
HML 1.357 1.817 1.937 1.037 1.169 1.246 0.573 1.274
(1.418) (1.691) (1.990) (1.133) (1.254) (0.976) (1.012) (1.463)
RMW 2.137** 2.705** 3.055** 1.715** 1.747% 1.059 1.607** 2.204**
(1.043) (1.263) (1.430) (0.816) (0.944) (0.696) (0.762) (1.059)
CMA 0.124 0.264 0.174 0.158 0.461 0.130 —0.015 0.320
(1.188) (1.478) (1.721) (0.906) (1.039) (0.754) (0.803) (1.206)




Table A4: Individual Stocks: Further Sampling Windows and Frequencies

This table presents average coefficient estimates from monthly Fama & MacBeth (1973) regressions for

individual stocks. Each month, we use Equation (5) to regress the annualized stock excess returns (in

percentage points) during that month on a constant as well as factor sensitivities (betas) to the Fama &

French (2015) 5-factor model. We use three different methods to estimate Equation (5): (i) “OLS”, (ii) “WLS”

(where we weight the stocks by their inverse market capitalization for each cross-sectional regression), and

(iii) OLSBC (where we use the bias-corrected OLS estimator of Equation (6)). The betas are estimated using

Equation (4) along with data over previous historical windows. “D6m"” and “D36™m°n” indicate that betas

are estimated from 6 and 36 months of daily data, respectively, “Q)” denotes a 60-month window of quarterly

data. In parentheses, we generally report errors-in-variables as well as heteroskedasticity and autocorrelation

robust standard errors of Kan et al. (2013) (with 5 Newey—West lags). For the “OLSB¢” approach, we report

Fama & MacBeth (1973) standard errors. *, **, and *** indicate significance at the 10%, 5%, and 1% level,

respectively.

OLS WLS OLS5B¢
DGmon D36mon Q DGmon D36mon Q D6mon D36mon Q
Intercept  8.538*** 9.570*** 8.274*** 5.645%** 7.600*** 5.968*** 8.914*** 9.494*** 8.360***
(2157)  (1.911)  (1.968)  (1.659)  (1.771)  (1.695)  (2.081)  (1.923)  (1.847)
MKT —0.321 —1.487 —0.218 0.487 —1.370 0.295 —0.282 —1.407 —0.270
(1.291)  (1.560)  (1.105)  (1.692)  (2.101)  (1.452)  (1.376)  (1.584)  (1.169)
SMB —0.567 —0.014 —0.264 0.938 1.968 0.741 —0.891 0.040 —0.348
(0.595)  (1.225)  (0.708)  (0.857)  (1.212)  (0.925)  (0.883)  (1.379)  (0.782)
HML 1.296* 1.950 1.593** 0.497 1.356 1.462 1.590* 1.940 1.875%**
(0.708)  (1.184)  (0.641)  (0.972)  (1.332)  (0.989)  (0.823)  (1.264)  (0.672)
RMW 1.253* 1.333 0.081 1.442** 1.424 —0.032 2.276** 1.620 0.034
(0.653)  (0.962)  (0.488)  (0.710)  (1.010)  (0.692)  (0.894)  (1.110)  (0.507)
CMA 0.772 1.717* 0.645 0.129 0.745 0.383 1.007 1.885** 0.766
(0.610)  (0.902)  (0.459)  (0.815)  (1.057)  (0.686)  (0.749)  (0.951)  (0.493)
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