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ABSTRACT
Carbon storage and active carbon sequestration within peatlands 
strongly depend on water table depth and soil moisture availability. 
With increasing efforts to protect and restore peatland ecosystems, 
the assessment of their hydrological condition is highly necessary 
but remains challenging. Synthetic aperture radar (SAR) satellite 
observations likely offer an efficient way to obtain regular informa
tion with complete spatial coverage over northern peatlands. 
Studies have indicated that both radar backscatter amplitude and 
phase are sensitive to peatland condition. Very recently, Differential 
Interferometric Synthetic Aperture Radar (DInSAR) has been 
reported as being capable of monitoring ground deformation pat
terns at the millimetre scale, which are a response to peatland 
hydrological condition. To further investigate the promise of SAR 
for peatland monitoring, a laboratory-based polarimetric C-band 
SAR system was used to acquire the dynamic radar behaviour of a 4  
m (l) ×1 m (w) × 0.25 m (d) reconstructed peatland. A forced 
4-month drought was introduced with very-high-resolution ima
gery taken every 2 hours, capturing details of the vertical back
scatter patterning through the peat at the centimetric scale. The 
results showed a clear coherent response both in radar backscatter 
amplitude and phase to change in water table level and soil moist
ure. Similar responses were seen across all polarizations. Phase 
demonstrated a coherent and deterministic change across the 
experiment; the average differential phase increase across all polar
izations was 118° for 17 cm of water table drawdown. Interpreted as 
the physical movement of the surface, this corresponded to 8.3 mm 
of surface subsidence. Both phase and amplitude changes were 
near-linear with changes in the water table depth; amplitude 
showed a correspondingly strong concomitant mean decrease of 
7 dB across all polarizations during the experiment. The results 
demonstrate the close sensitivity of radar backscatter to hydrologi
cal patterns in a peatland ecosystem. The phase result, in particular, 
strongly supports the notion that differential phase from satellites 
can be utilized to measure ground deformation as a proxy for the 
hydrological state.
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1. Introduction

Peatlands are a type of wetland ecosystem, with unique acidic and waterlogged condi
tions where plant material does not fully decay, accumulates, and ultimately forms a deep 
peat layer with high carbon density (Moore 1989). Storage and sequestration of carbon by 
healthy, wet peatlands play an important role in regulating the global carbon (C) emis
sions (Bonn et al. 2016), especially as peatlands remain the largest terrestrial carbon store 
(Gorham 1991). Besides being crucial for helping to address climate change, peatlands are 
important for preserving global biodiversity, providing drinking water, and reducing flood 
risks (Emilie et al. 2013). Despite the high value of these ecosystems, human activity 
(drainage, extraction, conversion to agricultural land and afforestation) globally has led to 
a shift of peatlands functioning as a C source rather than sink (Leifeld and Menichetti  
2018). Peatlands are now annually contributing about 5% of the total anthropogenic CO2 

equivalent emissions (Gewin 2020) with the highest degradation and associated emis
sions coming from Southeast Asian and European peatlands (Urák et al. 2017). Global and 
national level conservation efforts to protect and restore peatlands have increased in the 
past years; however, a further increase of GHG emissions is predicted, due to peatland 
degradation reaching up to 8% of the global anthropogenic carbon dioxide emissions by 
the year 2050 (Urák et al. 2017; Swindles et al. 2019).

More than ever, the assessment of peatland ecosystem condition in pristine, damaged, 
or restored peatlands is necessary, but remains challenging, especially over larger areas in 
remote locations. While traditional monitoring methods by carrying out field measure
ments can give precise information about the health status of the peatland, they can be 
expensive, time-consuming, covering small areas and time periods, and often in locations 
that are not easily reachable (Lees et al. 2018). The use of satellite imagery for monitoring 
purposes has increased tremendously in the past years, as new satellite data with higher 
spatial and temporal resolutions have become publicly available (Connolly et al. 2011; 
Artz et al. 2019). Optical sensors can provide wide spectral information and can be very 
useful for peatland vegetation (Xue and Su 2017) and hydrological condition (Angela and 
Bryant 2009) monitoring. The main disadvantage of optical sensors remains the depen
dency on cloud-free conditions and although various gap-filling techniques to account for 
missing data exist (Poggio, Gimona, and Brown 2012), cloud cover over Northern peat
lands is widely present, making it challenging to achieve a regular resampling interval. 
Imagery from radar instruments, on the other hand, can be harder to interpret but provide 
more regular data that are independent of persistent cloud or smoke cover (Kasischke, 
Melack, and Craig Dobson 1997).

Monitoring peatland hydrological condition is important because water table depth 
and soil moisture are the predominant factors driving biogeochemical processes in peat
lands and can have the overriding control on greenhouse gas emissions (Hilbert, Roulet, 
and Moore 2000; Evans et al. 2021). Excessive lowering of water level (WL) in peatlands 
can lead to peat subsidence, oxidation, and large amounts of carbon being released to the 
atmosphere (Nusantara, Hazriani, and Suryadi 2018; Yehui, Jiang, and Middleton 2020). 
High water level and high soil moisture are also necessary environmental conditions for 
the regeneration of characteristic peatland vegetation in restoration projects (Alderson 
et al. 2019), as well as reducing peatland vulnerability to wildfires (Meingast et al. 2014). As 
drought periods in northern latitudes are predicted to increase both in frequency and 
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severity under climate change (Fenner and Freeman 2011; Swindles et al. 2019), a reliable 
monitoring system for peatland hydrological condition is necessary.

Radar backscatter is a measure of the energy fraction returned from a target compared 
to the energy of the incident field. Besides the radar instrument properties (frequency, 
polarization, incidence angle), the intensity of the backscatter will vary depending on the 
physical properties of the scene (Bernard et al. 1982; Widhalm, Bartsch, and Heim 2015). 
The ability of a scene feature to reflect the radar signal is dependent on the target’s 
physical properties: surface roughness and geometry of the target, and dielectric proper
ties, which are a proxy for water content (Ulaby, Batlivala, and Dobson 1978; Irena, Pottier, 
and Cloude 2003). Therefore, the largest influence on backscattering in unforested peat
land areas is soil moisture and surface roughness, vegetation obscuring the soil, soil 
texture, and, to a minor degree, soil surface temperature, and peat bulk density (Beale 
et al. 2019). Pristine peatlands, normally having very high water content and therefore 
high dielectric constant, will reflect more signal and so have a higher backscatter com
pared to targets with low dielectric constant, e.g. drained peat soils (Figure 1). Parts of 
near-natural peatlands can also be completely inundated, resulting in a specular-like 
surface where radar signal would be reflected away from the sensor resulting in very 
low backscatter values.

SAR sensitivity to water table depth and soil moisture change in peatlands has been 
reported previously using satellite data over near-natural, drained, and managed sites, re- 
wetted and restored peatlands (Kasischke et al. 2009; Torbick et al. 2012; Dabrowska- 
Zielinska et al. 2016; Kim et al. 2017; Bechtold et al. 2018; Asmuß, Bechtold, and Tiemeyer  
2019; Bechtold et al. 2020; Lees et al. 2021). Furthermore, radar has been shown to have 
the potential to monitor soil moisture along with vegetation regeneration to assess if 
peatland restoration efforts are successful and determine if additional interference is 
necessary (White et al. 2020).

The incoherent component (amplitude or power) of the radar signal has a strong 
sensitivity to dielectric constant; therefore, radar backscatter intensity has been used in 
various studies to examine radar signal sensitivity to soil moisture and water table 
depth in peatlands (Wagner et al. 2007). The coherent (phase) component difference of 
the radar signal between two or more satellite radar acquisitions has been used to infer 
surface movement and vegetation height changes using the Interferometric Synthetic 

Figure 1. Radar backscattering characteristics based on the water level position in peatlands.
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Aperture Radar (InSAR) technique (Bamler and Hartl 1998). Many factors impact both 
the backscattering intensity and the phase, therefore accounting for a single parameter 
such as soil moisture can be challenging. What makes it even more complex is the 
diverse nature of peatland landscapes, and even though a reliable monitoring system to 
follow peatland hydrological condition is highly desirable, a universal retrieval of peat
land soil moisture from SAR data is hard to develop and site-specific or peatland type- 
specific studies are more common (Meingast et al. 2014). This has encouraged efforts to 
fully understand and exploit SAR capabilities for peatland condition monitoring, includ
ing peatland water level and soil moisture monitoring. Recent efforts have highlighted 
InSAR, specifically, the APSIS (Advanced Pixel System using Intermittent Small Baseline 
Subset (SBAS)) method, formerly known as ISBAS (Bradley et al. 2022) as a potential 
satellite-based peatland condition monitoring system due to its ability to capture 
annual, seasonal, and interseasonal movement of the peat (Alshammari et al. 2018,  
2020; Tampuu et al. 2020). This method has been developed to focus on non-urban 
land areas where usage of conventional Differential InSAR (DInSAR) techniques is 
challenging due to the temporal decorrelation (Sowter et al. 2013) and has shown 
potential for peatland condition characterization (Cigna et al. 2014; Alshammari et al.  
2018, 2020). These InSAR methods have shown the ability to follow the shorter-term 
seasonal peat surface movement, often referred to as ‘bog breathing’ (Morton and 
Heinemeyer 2019) or ‘bog surface oscillation’ (Howie and Hebda 2018), which corre
sponds to dynamics of water and gasses within the peat, typically showing drawdown 
during the warmer months and recharge and uplift during the winter months 
(Alshammari et al. 2019).

Most studies utilizing radar instruments for peatland hydrological condition monitor
ing have used satellite data. This study made use of laboratory SAR measurements of 
a peatland sample. The arrangement in the laboratory permitted us to isolate the 
backscattering dependency on changes in peatland hydrological status, allowing us to 
eliminate or control perturbing factors, such as micro-topography, vegetation, and 
weather. Additionally, it removed any atmospherically induced distortions associated 
with satellite image processing, particularly regarding the differential phase (Cigna et al.  
2014; Cheng et al. 2012). Previous studies have reported various relationships, from very 
high correlations between SAR and peatland hydrological status to no obvious corre
spondence between the parameters, so here we have tested to what extent the radar 
backscatter – water table drawdown relationship could be explained if no other major 
factors were to influence the backscattering. The main aim of this study was to assess 
the SAR signal sensitivity to drought in peatlands based on an analysis of 6 months long 
TP radar series. Specific objectives were as follows: a) explore TP SAR for peatland 
hydrological condition monitoring, including usage of different polarizations, b) inves
tigate the radar backscatter dependency on different peatland hydrological regimes, c) 
analyse how the weighted mean backscatter height within a peatland changes with 
drought conditions. The findings from this study enhance the understanding of how 
radar backscatter interacts with peat and blanket bog vegetation, add useful knowledge 
to both radar backscatter and InSAR for peatland research literature, and help with 
improving methods for continuous observation of peatland condition, which are 
needed to enable appropriate peatland management and conservation decisions 
being taken (Lees et al. 2018; Alshammari et al. 2019).
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2. Materials and methods

2.1. Laboratory measurement

Longer-term peat surface movement can indicate peat accumulation (in case of a build- 
up of partially decomposed organic matter) or subsidence (due to drainage, compression, 
and decay of organic matter) (Alshammari et al. 2018). Although promising, these studies 
have highlighted the difficulty of validating the accuracy of obtained results as it often 
requires a comparison of large-scale satellite data to small-scale field observations and 
underlines the need for further research to improve quantitative validation of the InSAR 
vertical velocity (Alshammari et al. 2018). Most studies utilizing radar instruments for 
peatland hydrological condition monitoring have used current and previous radar ima
ging satellite mission data, a few have used airborne radar data (Baghdadi et al. 2001), but 
to the best of our knowledge, this is the first time high-resolution radar measurements 
have been collected in a controlled laboratory-environment setup.

2.1.1. ‘Bog in the box’ experimental setup
Blocks of vegetation-covered peat were collected from an upland blanket bog in the 
Eastern Cairngorms, Scotland (56.9 N, −3.15 E; ca 650 m). The thirty-two 30 (length) × 50 
(width) × 25 (depth) cm samples were transported in plastic boxes to the University of 
Reading by courier. Here, they were removed from their containers and reconstructed into 
a 400 (l) × 100 (w) × 25 (d) cm blanket bog section within the trough of the Reading Radar 
Facility (Figure 2) for microwave measurement. The laboratory was equipped with four full 
spectrum 80 W LED grow lights to facilitate the continued growth of the blanket bog 
vegetation.

Once in the trough, the reconstructed peatland was inundated with deionized water 
up to a water table depth of 5 cm below the trough edge. Afterwards, the peat was 
watered regularly with artificial rainwater using a manual hand-held water sprayer simu
lating local rainfall. We followed Noble et al. (2017) and used a synthetic rainwater 
concentrate (at a pH of around 5.5). The simulation of rainfall occurred 2–3 times 
a week, with 2–3 l of water added per time, keeping the water table at a steady level. 
Blanket bogs are ombrotrophic ecosystems, where water and nutrients are gained mainly 
by rainfall, mist, or snow, resulting in an acidic environment low in nutrients. Regular 
rainfall simulations were carried out for 2 months prior to the beginning of the experi
mental drought period. The drought period was simulated as a total drought with no 
rainfall simulations first until WL reached the bottom of the trough (22 cm below the edge 
of the trough) and continued until the deepest soil moisture probe reported a drop to 0.8 
volumetric water content (VWC). The experiment simulated a 117-day long drought 
period, after which the bog was re-wetted back to the original WL state of 5 cm below 
the surface by adding 280 l of deionized water over a 10-day period (7 rainfall simulations, 
40 l per time).

The bog vegetation assemblage represented a typical Eastern Cairngorms M18-type 
blanket bog (Elkington et al. 2001), dominated by Calluna vulgaris as the primary ericac
eous species, Eriophorum spp. and other sedges, and Sphagnum capillifolium as dominant 
Sphagnum species; however, other Sphagnum and other moss species were present in 
lower proportions. To assess if different vegetation had an impact on the backscattering 
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signal, three 25 cm segments with predominantly Sphagnum moss layer only (Figure 2c) 
and three 25 cm segments with heather and sedge/grass species above the moss canopy 
(Figure 2d) were identified.

A dip well (perforated PVC well pipe) and six soil volumetric water content (VWC) and 
temperature sensors (5TM, METRE) were installed across the trough at depths of 3, 5, 7, 10, 
18, and 22 cm. VWC and soil temperature (°C) data from the probes, along with a sensor 
for room air temperature (°C), were connected to a Campbell CR1000 data logger and 
logged every 30 min. Daily water table depth measurements at ± 1 were gathered manu
ally using the dip well.

Figure 2. a) Schematic of the radar measurement system and experiment setup. The bog was 
surrounded on its bottom and sides by a waterproof butyl rubber liner and sat upon a stable bed 
of dry sand (25 cm deep). b) Photograph of the ‘Bog in the box’ laboratory setup. c) Sphagnum 
segment, representing predominantly moss vegetation. d) Ericaceous (heather) segment, representing 
moss layer covered with dwarf-shrub vegetation.
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The average room temperature throughout the experiment was 17.7°C, with lower 
temperatures experienced during the night, and higher during the day and towards the 
end of the experiment (Figure 3). These conditions are similar to the July and August 
climate averages (1981–2010 period) for the Braemar climate station in the vicinity of 
Ballater (MET Office 2021).

The experimental setup allowed us to eliminate or closely control factors that can 
influence the interpretation of the radar backscattering signal in peatlands, allowing us to 
closely investigate the backscattering dependency on peatland hydrological regimes. 
First, possible changes in surface roughness and vegetation structure due to wind, 
grazing, or burning were eliminated. Second, we were in control of the hydrological 
regime of the experimental setup. By introducing acclimatization (normal amount of 
precipitation), drought (no precipitation), and re-wetting phases, we were able to directly 
inspect the radar signal response to changes in soil moisture and water level regimes. The 
experimental setup also prevented lateral water losses. As the experimental duration was 
relatively short (6 months during which environmental conditions were kept largely the 
same), vegetation growth effects are likely to have been negligible. There were no open 
water bodies, which are common in peatland environments; therefore, a specular reflec
tion of the radar signal, which can greatly impact backscattering values, has not been 
assessed in this experiment.

We acknowledge that a laboratory experimental setting will almost unavoidably 
diverge from the real-world environment, but this way we can achieve a well-controlled 
repeatable environment where the findings are descriptive of the environment at large.

2.1.2. Radar data collection
The radar measurements were carried out using the indoor component of the Reading 
Radar Facility at the University of Reading. A roof-mounted linear scanner is centrally 
located above and down the length of the plywood measurement trough. A cluster of 
four C-band antennas was centrally mounted on the scanner 1.8 m above the trough, 

Figure 3. Average, minimum, and maximum air temperatures in the laboratory during the experiment.
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pointing forward at 10° from nadir, being sufficiently close to each other to use 
a monostatic approximation. Their 3 dB across-track beamwidth maps onto the width of 
the trough. By switching in the appropriate transmit-receive antenna pair, the four scans 
sequentially captured the VV, VH, HH, HV polarimetric responses. Data collection was 
accomplished by sequentially stepping the antennas monotonically along the scanner in 
1.5 cm intervals over a 375 cm aperture. At each position, microwave data were collected 
at 1601 equally spaced points across a frequency range of 4–8 GHz. Scans were collected 
in sets of four, where each scan provided capture at a single polarization, and took 20  
minutes to complete a set. Data sets were collected at 6-hour intervals prior to the 
drought and at 2-hour intervals during the drought and rewetting phases. (Morrison 
and Wagner 2020) provide more details of the microwave RF sub-system. The system 
response was calibrated using precision radar cross-section (RCS) targets with the method 
of Kamal, Ulaby, and Ali Tassoudji (1990) just prior to the start of the experiment. System 
changes thereafter were monitored and corrected for using a reference trihedral and 
sphere. Measurement precision in signal power and phase is estimated to be 0.2 dB and 5° 
degrees, respectively.

Out of the 6012 scans, 356 were collected prior to the drought, 5060 during the 
drought and 596 during the rewetting experiment. In the analysis, we considered the 
backscattering values both in co-polarizations: VV, HH, and cross-polarization (mean of HV 
and VH).

While the full length of the trough was 4 m, a region of interest (ROI) of 255 cm was 
used in the radar imagery analysis to avoid edge effects at both ends of the trough and 
exclude the regions where the calibration target and soil moisture equipment were 
located (Figure 2).

2.1.2.1. Tomographic profiling and weighted mean height. Tomographic profiling 
(TP) is a SAR-like imaging technique designed specifically for gathering vertical back
scattering profile data through biogeophysical volumes (Morrison and Bennett 2014). 
Unlike in SAR imaging, the antennas are aligned along-track and so only collect data for 
a transect directly below the scanner. Post-measurement, the antenna beam is syntheti
cally sharpened by coherent summation across a sub-aperture of sample points. The 
aperture is moved on one point along the aperture and the process repeated, and so on. 
In this way, a series of overlapping vertical ‘sounding profiles’ are obtained, highlighting 
the radar backscatter pattern through the target of interest. By adding phase ramps across 
the sample points, the beam was configured to look forward at an incidence angle of 10°. 
TP imagery is not true tomographic imagery (Morrison and Bennett 2014) as it lacks any 
angular discrimination in the across-track (across the trough) direction. The target returns 
in this direction are considered collapsed down to a central slice down the centre of the 
trough. Previously, the TP method has been successfully used in laboratory and field 
studies to investigate the internal structure of snowpacks (Morrison et al. 2008), forest 
canopies (Morrison, Bennett, and Solberg 2013), dry soils (Morrison and Wagner 2020), 
and subsurface archaeology (Morrison 2013).

In the analysis, the differential phase is interpreted as a bulk movement of the peat 
sample. The change in the vertical displacement of the peat, D, can be written as: 
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D ¼
λΦ

cos i� 360� 2
; (1) 

where λ is the wavelength (5 cm in this study), i is the incidence angle (here, 10°), and Φ is 
the measured phase difference.

The TP scheme enables the possibility to analyse the vertical backscattering signal; we 
applied weighted mean height (WMH) to investigate the effective position of the vertical 
backscattering signal and its change over the duration of the drought. The WMH is 
calculated as: 

�x ¼
Pn

i¼1 wixi
Pn

i¼1 wi
; (2) 

in which �x is the weighted mean height, x is the height of the specific pixel, and w its 
corresponding amplitude value (Yrttimaa et al. 2020). WMH shows at what height the 
backscatter is the strongest, and the time series of radar measurements can be used to 
investigate whether this height changes over time.

2.2. Statistical modelling

Using the R programming environment (R Core Team 2021), an empirical relation 
between SAR backscatter and the measured water level was assessed. A linear regres
sion model was fitted to the water level and radar backscatter data (both backscatter 
strength and differential phase), and significance levels for each polarization were 
noted as highly significant (p < 0.001). The soil probe data and backscattering response 
were analysed using the R ‘mgcv’ package (R Core Team 2021), and a generalized 
additive model (GAM) model was fitted between probes at all depths and the back
scattering response. The significance levels between each of the polarizations and 
probes at different depths were then assessed and the GAM model was then refitted 
using data from the statistically significant probes only (p-values <0.05). The model was 
then tested for autocorrelation using Partial Autocorrelation Function (PACF), indicating 
significant correlations only at the first lag, followed by correlations that are not 
significant. The response backscattering values and values computed from the model 
matched up well indicating a good fit with no obvious outliers or deficiencies in the 
model found.

3. Results

In this section, both the cross- and co-polarized radar backscatter signal strength and 
differential phase time-series trends throughout the whole duration of the experiment are 
presented. Figure 4 shows example TP images obtained across the ROI in co-polarization (VV) 
and cross-polarization just prior to the drought period, reconstructed for an incidence angle, 
i, of 10°. The backscatter from the ROI surface obtained in co-polarizations (VV, HH) is notably 
stronger in relation to cross-polarization returns. It is understood that, in the presence of 
vegetation, a signal that has been transmitted in V (H) can bounce once or multiple times 
from randomly oriented plant structures, producing a cross-polarization return (here in H (V)) 
(Srivastava et al. 2009). The increase in the cross-polarized signal strength present after 200  
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cm in Figure 4 is associated with greater vegetation depths from the presence of dwarf 
shrubs.

The time series of the radar measurements showed a clear decrease in back
scattering strength (Figure 5a) and concomitant phase increase (Figure 5b) over the 
progression of the drought. The change of backscattering strength and phase 
varied between polarizations but showed the same characteristic patterns. After 
117 days of no precipitation, a 6.0 dB decrease and about 140° phase increase equal 
to 10 mm subsidence were observed, when using VV polarization and 10° incidence 
angle; 7.1 dB and 8 mm in HH polarization; 7.3 dB and 8 mm in cross-polarization. 
Once the rewetting took place, the backscattering increased in all polarizations, but 
only by 1 dB on average, not reaching the pre-drought values. Similarly, phase 
values decreased up to 24 degrees after rewetting, but the pre-drought level was 
not met, potentially indicating semi-permanent peat subsidence (peat compaction) 
due to the drought.

We observed that the co-polarization values on average were 10.0 dB stronger than 
cross-polarized signatures. The two co-polarizations had very similar values throughout 
the experiment, with HH backscattering values being on average 0.4 dB stronger. VV, HH 
values varied between 19.7 and 20.7 dB before the drought and 13.7 to 13.6 dB after 117  
days of drought. Cross-polarization values were 11.0 dB prior to the drought and 3.7 dB by 
the end. The mean backscatter value between all polarizations was 17.1 dB prior to the 
drought and 10.3 dB by the end of it.

Figure 4. Cross-sectional views of the backscattering values from the selected peatland ROI (255 cm 
(l) × 100 cm (w) × 50 cm (d)) before the drought, constructed using a 10° incidence angle. The position 
of the trough is shown by the horizontal white line. The red dotted oval indicates an area with heather 
cover and hence increased volume scattering in cross-polarization (calculated as mean of HV and VH) 
can be seen.
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3.1. Radar backscattering signal strength and phase response to change in water 
table depth

The radar backscatter was strongest at the beginning of the experiment when the WL was 
closest to the surface (5 cm): about 20.5 dB in co-polarized data and 11.1 dB in cross- 
polarization. After 95 days of drought, when WL had just reached the bottom of the 
trough, the backscattering had lowered by 4.8 dB (VV), 5.5 dB (HH), 5.9 dB (cross).

All polarizations demonstrated a phase increase, with VV polarizations having the 
highest phase increase during the drought. After 95 days of drought, when WL had 
reached the bottom of the trough, the differential phase had increased by 120° or 8.5  
mm (VV), 86° or 6.1 mm (HH), 84° or 5.9 mm (cross).

After fitting a linear regression model to water level and radar backscatter data, 
a strong negative correlation with R2 >0.94 was found between backscattering values 
and the water level in all polarizations (Figure 6). Similarly, the radar differential phase had 
a strong positive correlation (R2 >0.96) with the observed water level in all polarizations.

3.2. Radar backscattering signal strength response to change in soil moisture

The radar signal relationship with soil moisture varied between the depth of the probe 
placement (Figure 7). The probes closest to the surface show a clear drying curve with 
a decrease in volumetric water content of the soil and a decrease in the backscattering 
values as the drought progressed. The probe placed at 22 cm depth remained largely 

Figure 5. Time series of radar backscattering (a) and phase (b) measurements reconstructed using VV, 
HH, and cross-polarization and 10° incidence angle. Each backscatter datum is the result of an 
incoherent summation of pixels across the selected ROI (255 cm (l) × 1 m (w) × 50 cm (d)), extracted 
for each image in the time series. The red dashed lines indicate the beginning (21/01/2021) and end 
(17/05/2021) of the simulated drought period.
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saturated (80% VWC) even after 117 days of drought and had no significant relationship 
with the backscattering values in any polarization mode. The second deepest probe (18  
cm) had a notable correlation with the backscattering only once WVC dropped below 
80%, which was 90 days after the beginning of the drought.

The fitted GAM model showed a significant relationship (p-values <0.05) between the 
radar backscatter and probes at almost all depths, but the strongest relationships were 
observed with probes at 3–10 cm depth. When the GAM model was refitted using these 
probes only, the model showed a resulting R2 of 0.98, indicating an excellent fit with 
residuals being equally and randomly spaced (Figure S1 and S2 in the Supplementary 
material). The corresponding backscattering values and values computed from the model 
matched up very well indicating a good fit with no obvious outliers or deficiencies in the 
model found, clearly showing the strong linkage between volumetric water content in the 
peat and the radar backscattering response.

3.3. Weighted mean height

Using the advantage of vertical resolution from the TP scheme, an analysis of how the 
effective weighted mean height (WMH) of the vertical backscattering signal changed over 
the duration of the drought was carried out. Figure 8 shows how during the first month of 
drought the weighted mean height of backscatter from the ROI did not report 
a significant lowering in any of the polarizations, even though the WL had lowered by 
6 cm. The following 45 days showed a slow decrease in the WMH by −0.46/-0.85/-0.61 cm 
in VV/HH/cross-polarization, respectively; at this point, WL had dropped by 13.5 cm. 
Finally, the remaining period of the drought (last 45 days and 500 scans) showed 
a further decrease leading to a difference of −1.35/-1.7/-2.18 cm in VV/HH/cross- 

Figure 6. Correlation analysis between water level and radar backscatter (Figure 5a) and differential 
phase (Figure 5b) during the drought period (95 days with WL reaching 22 cm below the surface).
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Figure 7. Soil moisture and backscattering strength response to drought (117 days of drought). Drying 
curves of the 6 soil moisture probes at 3–22 cm depth.

Figure 8. ROI backscatter weighted mean height change throughout the 117-day drought period.
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polarization compared to the initial values at the beginning of the drought. The WL 
reached the bottom of the trough halfway through this interval, but the WMH values 
continued to decrease; therefore, it can be noted that the WMH is not only influenced by 
the water level in the peatland but also the continued peat compaction and soil moisture 
decrease.

Compared to the differential phase results, it can be noted that both measures indicate 
a distance increase during the drought period between the peat and the radar instru
ment, but while the differential phase showed a 0.8–1 cm subsidence between the three 
polarizations, the WMH values lowered by 1.4–2.2 cm. The highest subsidence values 
were observed in VV polarization using the differential phase, while cross-polarization 
backscatter had the biggest drawdown looking at the WMH.

4. Discussion

This study assessed the sensitivity of C-band TP radar signal backscatter and phase and 
peatland hydrological parameters (soil moisture and water table depth) over different 
hydrological regimes. This laboratory-based experiment included collecting unique high- 
resolution SAR data signatures from a 4 × 1 m reconstructed peatland for a period of 6  
months, including a simulated drought. It is the first study to utilize the TP SAR system 
over peatland and demonstration of the vertical profile of the radar backscattering signal 
through peat and typical blanket bog vegetation and its relationship with soil hydro
logical status.

The time-series analysis in this study demonstrated a close sensitivity of backscattering 
strength and radar phase to hydrological patterns in a peatland ecosystem with R2 >0.9 
when other factors influencing radar backscattering were controlled for. The strong 
correlation between radar signal and moisture status observed in this study suggests 
that it is likely the main controller of backscattering values in sparsely vegetated peat
lands when looking at short-term periods. This observation is in agreement with results 
from Asmuß, Bechtold, and Tiemeyer (2019), who found WTD to be the major factor 
controlling backscattering strength when looking at drained temperate grasslands with 
underlying peat soils. Other studies with good correlation results between backscatter 
strength and peatland soil moisture note that C-band backscatter can be a good indicator 
of moisture status, but the best results can be achieved only in non-forested sites 
(Kasischke et al. 2009; Dabrowska-Zielinska et al. 2016; Millard and Richardson 2018).

During the drought period of the experiment, the radar phase had a steady upward 
trend interpreted as arising from the increasing distance between the radar and peat 
surface, relating to water level decline and surface subsidence. Small oscillations were 
observed in the first part of the experiment, often concurrent with changes in room 
temperature, which could be explained by the peat settling in, water movement and 
distribution through the peat mass and to a lesser extent the entrapped gas dynamics in 
peatlands (Strack, Kellner, and Waddington 2006). Previous studies focussing on the 
phase component of the radar signal have investigated the peatland surface oscillations 
over different time periods. Methods using repeated InSAR measurements have been able 
to track both long-term peat subsidence or uplift and shorter-term surface movement, 
mainly connected with the dynamics of water and gasses (Alshammari et al. 2019, 2018,  
2020; Bradley et al. 2022) used APSIS to investigate seasonal amplitude of peat swelling as 
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well as multiannual surface motion. They concluded that the condition of the peatland 
determines these ecohydrological measures as there exist certain patterns, such as 
subsidence over the years, amplitude of the peat swelling and the surface motion peak 
timings between near-natural peatlands in good condition and degraded sites. These 
studies had highlighted the uncertainty in the validation of the InSAR interpretation due 
to the massive scale difference between large-scale satellite data and small-scale field 
observations. Our study used a much higher accuracy SAR instrument, reducing this gap 
and confirmed that the phase component can maintain coherence and be highly sensitive 
to the water drawdown and peat subsidence. A study by Kim et al. (2017) used field- 
collected WTD and radar satellite-derived soil moisture estimates over the Great Dismal 
Swamp (R2 = 0.76 with Radarsat-1 C-band and R2 = 0.67 with ALOS PALSAR L-band) and 
similarly to our findings noted that both the radar backscatter intensity and the InSAR 
time series can correspond well with water table depth drawdown. Our WMH analysis has 
shown how the vertical SAR backscatter through the peat corresponds well with the water 
level drawdown and peat subsidence and has a close similarity to the differential phase 
change through the drought period.

Besides the dynamics of the water level, vegetation is normally the other factor having 
the biggest influence on radar backscatter and cause of InSAR decorrelation (Lee et al.  
2020). The excellent model fit between radar backscatter and both water level and soil 
moisture achieved in this laboratory study points out how the hydrological condition 
monitoring over peatlands could be improved significantly if other elements influencing 
the radar backscatter would be accounted for. Indeed, recent studies have highlighted the 
importance of correcting dynamic vegetation effects when estimating soil moisture and 
WL in peatlands (Bechtold et al. 2018; Lees et al. 2021). In this study, we observed dwarf 
shrub and grasses-dominated segments having a different backscattering behaviour to 
Sphagnum-covered segments (Figure S3 in the Supplementary material). While both 
Sphagnum moss and heather-dominated transects resulted in reduced backscattering 
values over time during the drought, a distinction between the two groups was observed. 
At optimal conditions, Sphagnum moss can have water content as much as 20 times 
heavier than its dry weight (Pang et al. 2020). Due to the retention of water, the higher 
moisture content in the moss segments could have been preserved, resulting in higher VV 
backscatter values compared to the segments dominated by heather and grasses. As this 
experimental setup did not allow for the collection of hydrological information for each of 
the vegetation groups separately, we can only assume that different backscatter 
responses to drought were observed due to the varying water retention. A study, 
where, besides the radar scanning, the hydrological measurements could be taken for 
each of these vegetation types separately would be beneficial to gain an accurate and 
deeper understanding of how drought impacts backscatter response from different peat
land vegetation classes.

Radar signal wavelength and polarization are important aspects to consider for peat
land condition monitoring, as they determine penetration ability and the relative rough
ness of the surface being observed. The C-band system used in this study has the 
capability to penetrate through sparse canopies and into the first few cm of a blanket 
bog vegetation and underlying peat soil. However, longer wavelength and shorter revisit 
times could increase the InSAR coherence (Lee et al. 2020) and be beneficial for peatland 
surface oscillation monitoring. There is a high potential for the upcoming NISAR satellite 
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mission (to be launched in 2023), operating at the longer S-band (9 cm) and L-band (24  
cm), having a revisit time of 12 days, and following an open data policy (NISAR 2021). For 
this study, fully polarimetric SAR data were available, which is advantageous compared to 
most currently operating satellite radar missions, which would only provide either single- 
or dual-polarization data or have restricted access. Bare or sparsely vegetated areas, such 
as peatlands, usually have a weak depolarizing effect, and surfaces that are linearly 
oriented tend to reflect and preserve the same wave orientation. In these situations, 
a stronger co-polarization (VV, HH) normally would be observed, which was congruent 
with findings in this study. The relationship between peatland hydrological parameters 
and the backscatter had no major differences between cross and co-polarizations, both 
performing equally well despite cross-polarized signal being on average 10 dB weaker 
throughout the experiment. The study by Dabrowska-Zielinska et al. (2016) reported VH 
polarization to perform better for wetland soil moisture monitoring. Other studies have 
also found that a cross-polarization ratio (HH/HV) could be beneficial for hydrological 
condition monitoring as it should minimize the effect of peatland surface roughness and/ 
or present vegetation on radar backscatter as shown in the analysis carried out by Jacome 
et al. (2013). Peatland pools can create wavy and rough surfaces in windy conditions and 
VV return can be misinterpreted as a vegetated area, VH on the other hand is much less 
affected (White et al. 2020); therefore, cross-polarization should be considered when 
working with natural peatland environments.

Diverse correlation results reported in previous studies using satellite radar data and 
field measurements could be explained by varying factors such as different peatland 
types, surface topography, present vegetation and its abundance, and environmental 
conditions (frost, wind, animal grazing, burning) and chosen radar instrument (wave
length, polarization, data temporality). This study has shown that an excellent model fit 
between radar backscatter and vegetated peatland soil moisture and water table depth 
can be achieved in laboratory conditions. To further improve peatland hydrological 
condition estimates using satellite SAR data, more precise modelling of other elements 
influencing radar backscatter is necessary. We have highlighted the need to first enhance 
the efforts to account for the surface roughness, including the present vegetation of the 
area being imaged, which in return should enhance the ability to estimate peatland 
hydrological condition using SAR data.

5. Conclusion

This study has in part clarified the behaviour and characteristics of SAR C-band interaction 
with peatlands. The unique laboratory-environment research with 4 months long forced 
drought demonstrated a coherent radar signal response to the change in water table 
depth and soil moisture. While the phase component of the signal was indicative of 
a physical movement of the surface horizon, the signal strength demonstrated close 
relation to the water availability in the soil, both confirming a firm relationship existing 
between radar backscatter and peat hydrological characteristics with R2 > 0.9 when other 
factors influencing radar backscattering were controlled for.

Regarding our set objectives, we concluded that due to the SAR signal being highly 
sensitive to the dielectric properties of the soil, any significant changes in peatland soil 
hydrological conditions can be reflected in the radar measurements. The unique dataset 
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captured vertical SAR backscatter patterns through peat, improving the understanding of 
how backscattering arises in peatlands and will allow for better exploitation of radar 
imagery from existing and upcoming satellite radar missions. It highlights the potential to 
use SAR to monitor the peatland condition, especially the hydrological status, utilizing 
both the coherent and incoherent component of the signal, but points out how a better 
understanding of other factors influencing the radar backscatter is crucial to fully rely on 
satellite SAR data.
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