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Magnetic nanoparticles in suspensions provide fascinating model systems to study field-induced effects.
Their response to external fields also opens up promising new applications, e.g., in hyperthermia. Despite
significant research efforts, several basic questions regarding the influence of external fields on the magnetization
dynamics are still open. Here we revisit the classical model of a suspended magnetic nanoparticle with combined
internal and Brownian dynamics in the presence of an external field and discuss the field-dependent longitudinal
relaxation. While internal and Brownian dynamics are independent in the field-free case, the coupling of both
processes when an external field is present leads to richer and more complicated behavior. Using a highly efficient
and accurate solver to the underlying Fokker-Planck equation allows us to study a broad parameter range. We
identify different dynamical regimes and study their respective properties. In particular, we discuss corrections
to the popular rigid-dipole approximation which are captured in terms of a simplified diffusion-jump model
in the Brownian-dominated regime with rare Néel relaxation events. In addition, we discover a regime with
surprising mode-coupling effects for magnetically soft nanoparticles. We explain our findings with the help of a
perturbation theory, showing that in this regime the magnetization relaxation at late times is slaved by the slow
Brownian motion of the nanoparticle. We discuss consequences of these findings such as the discrepancy of the
longest relaxation time and the inverse frequency of the loss peak of the magnetic susceptibility.

DOI: 10.1103/PhysRevB.106.134433

I. INTRODUCTION

Magnetic nanoparticles (MNPs) are not only of great the-
oretical interest as a physical model system, they have also
found numerous practical applications in different areas, rang-
ing from engineering to biomedicine [1–4]. A particularly
interesting property of MNPs that is also relevant in many
of these applications is their magnetization dynamics which
can readily be manipulated by external fields. For MNPs that
are suspended in a viscous liquid, two main magnetization
relaxation mechanisms are known: first, rotational Brownian
motion of the particle. While this mechanism occurs for any
colloidal particle suspended in a viscous liquid, for MNPs
there is in addition also the internal magnetization dynamics
within the nanoparticle [5,6]. The two corresponding char-
acteristic relaxation times are (i) the Brownian rotational
diffusion time τB and (ii) the Néel relaxation time for inter-
nal magnetization reversals τN. Considering both processes
as independent in the absence of an external field (h = 0),
Rosensweig defined the effective relaxation time τeff from the
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sum of the corresponding rates [6]

1

τeff
= 1

τB
+ 1

τN
(h = 0). (1)

Equation (1) is of central importance, both theoretically and
for applications, as it allows to easily distinguish different
regimes where either Brownian or Néel processes dominate,
depending on which relaxation is faster. In relation to hyper-
thermia applications, for example, Eq. (1) was employed to
quantify Brownian and Néel contributions [7] and to interpret
the strong size dependence of the specific power absorption
of MNPs [8]. Several engineering applications rely on trans-
mitting torques from an external magnetic field to the liquid.
Consequently, for such applications, MNP sizes and magnetic
material are chosen such that Brownian processes are dom-
inant [4]. In other applications such as hyperthermia, MNPs
are carefully designed to maximize magnetic losses [9]. Some
recent experiments that have been performed with the aim
to distinguish Brownian and Néel contributions to the mag-
netization relaxation are therefore of great importance. Clear
differences in magnetization hysteresis and AC susceptibility
have been observed when measured in fluid and freeze-dried
states [10,11], which allows the authors to infer the im-
portance of Brownian relaxation in these cases. Similarly,
Brownian and Néel contributions were separated via different
frequencies of the oscillating field [12]. It is interesting to
note that in magnetorelaxometry, the different magnetization
relaxation mechanisms are used to detect binding kinetics due
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to which Brownian rotation of MNPs becomes suppressed and
the magnetization signal changes correspondingly [13].

However, it has been pointed out in the literature that
the simple picture underlying Eq. (1) might break down in
nonequilibrium situations [14]. Of particular relevance for this
study is the finding that the effective relaxation times are
strongly dependent on an external magnetic field [15,16]. In
particular, the Néel relaxation time can decrease dramatically
and therefore can become comparable to Brownian relaxation
even when Néel processes would be negligible in the field-free
case [17]. Therefore, it is clearly desirable to keep both Brown
and internal relaxation processes in the theoretical model-
ing when considering field-dependent phenomena. Indeed,
the corresponding model (“egg” model) is well established
[14,18,19] and describes the coupling of both processes,
contrary to recent claims [20,21]. Despite having been pro-
posed around 30 years ago, the egg model is not widely
used in applied sciences these days [14]. Some noteworthy
exceptions in the recent literature include the simulation of
hysteresis curves [22], nonlinear response to oscillating mag-
netic fields [23], frequency mixing [24], and magnetization
relaxation [25,26]. We note in particular that simulations
of the egg model show pronounced two-step relaxation in
multicore magnetic nanoparticles [25] that are confirmed in
experiments [26].

Since the egg model describes the internal magnetization
dynamics in terms of the stochastic Landau-Lifshitz-Gilbert
equation, the basic timescale of this model is often very short
compared to typical Brownian relaxation times. This differ-
ence in timescales makes the egg model impractical to be used
directly for suspended MNPs in most situations [27]. Fur-
ther comprehensive theoretical work on combined relaxation,
coupling Brownian and Néel processes, is still needed [14].
Very recently, more efficient solutions to the egg model based
on the corresponding Fokker-Planck (FP) equation have been
proposed and explored [28–30]. In addition, some heuristic
attempts have been made over the last years to eliminate the
fast internal dynamics on the microscopic timescale τD and to
model Néel relaxation as thermally activated magnetization
reversals, that can be implemented numerically very effi-
ciently via Monte Carlo methods [27,31–34]. Very recently,
we studied the combined magnetization relaxation for inter-
acting system in the absence of external magnetic fields [35].
There, we found that Brownian and Néel relaxation can be
considered as independent processes only for short enough
times, whereas coupling of these processes leads to long-time
relaxation that can not be described in the form (1), at least for
sufficiently strong dipolar interactions.

Here, we study the field-dependent longitudinal magnetiza-
tion dynamics resulting from combined Brownian and internal
relaxation processes for noninteracting MNPs. We use a
highly efficient and accurate solver for the FP equation of the
egg model to explore a wide range of parameter values. From
analyzing the spectrum of eigenvalues, which correspond
to the inverse characteristic relaxation times, and mag-
netic susceptibilities, we identify different dynamical regimes
with different characteristic behavior. For magnetically hard
nanoparticles with predominant Brownian relaxation and rare,
thermally activated internal (Néel) processes, we analyze
corrections to the rigid-dipole approximation. Since the egg

model in this experimentally relevant regime with τB, τN �
τD is very inefficient, we compare our results to a simpli-
fied diffusion-jump model, recently proposed by one of us
[34]. For magnetically soft nanoparticles with long Brown-
ian relaxation times and not too strong fields, instead, we
find mode-coupling effects leading to multistep relaxation
behavior with slow long-time relaxation. We develop an ap-
proximate theory to explain our findings, which gives rather
accurate results and demonstrates the interplay between mag-
netization and particle orientation.

The paper is organized as follows. The formulation of the
main model is given in Sec. II. In particular, the egg model
of Shliomis and Stepanov is briefly reviewed in Sec. II A.
Expressions for the resulting Néel relaxation time are given in
Sec. II B. Efficient solution of the FP equation corresponding
to the egg model is presented in Sec. III. Next, the approxi-
mate diffusion-jump model is briefly reviewed in Sec. IV. In
Sec. V, we present a reduced moment approximation that we
later use to interpret some of our findings. Solutions to the egg
model are presented in Sec. VI together with thorough dis-
cussions and analysis in terms of simplified theories. Finally,
conclusions are offered in Sec. VII.

II. MODEL FORMULATION

A. Microscopic egg model

In order to describe the coupled dynamics of internal
magnetization relaxation and particle rotation, Shliomis and
Stepanov proposed the so-called “egg” model [19] that we
briefly describe here. Let the three-dimensional unit vectors
e and n denote the orientation of the particle’s magnetic
moment and its easy axis, respectively. In the presence of
an external field H, the Zeeman energy contributes −me · H
to the potential energy, where m denotes the magnitude of
the magnetic moment of the nanoparticle. Misalignment of
the magnetization direction e from the particle’s easy axis n
increases the potential energy by the anisotropy contribution
−Kvm(e · n)2, where K denotes the anisotropy constant of the
magnetic material and vm the volume of the magnetic core of
the particle.

In the following, it will be convenient to work with di-
mensionless quantities such as the dimensionless field h =
mH/kBT , with h = |h| the Langevin parameter and the di-
mensionless anisotropy constant κ = Kvm/kBT . Thus, the
potential energy of the magnetic nanoparticle relative to the
thermal energy kBT can be expressed as

U/kBT = −he‖ − κ (e · n)2, (2)

where e‖ = e · ĥ is the component of the normalized mag-
netic moment parallel to the direction of the applied field
ĥ = h/h. Equilibrium properties of magnetic nanoparticles
can be inferred from the Boltzmann distribution Feq(e, n) ∼
exp [he‖ + κ (e · n)2] [5]. For dynamical properties we need
to consider the time-dependent joint probability density
F (e, n; t ). Combining the Landau-Lifshitz-Gilbert model for
the internal magnetization dynamics with Brownian rotation
of the particle, Shliomis and Stepanov derived the following
Fokker-Planck (FP) equation to describe the time evolution of
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F [19]:

∂F

∂t
= −Le · [ωLF ] +

(
1

2τB
L · FL + 1

2τD
Le · FLe

)

×
[

U

kBT
+ ln F

]
. (3)

The rotational operators appearing in Eq. (3) are de-
fined as Le = e × ∂/∂e, Ln = n × ∂/∂n, and L = Le +
Ln. For immobile MNPs, τB → ∞, Eq. (3) reduces to the
Landau-Lifshitz-Gilbert magnetization equation, whereas the
rigid-dipole approximation of Brownian rotational dynamics
is recovered by identifying e and n, i.e., by dropping the
internal relaxation and correspondingly neglect the magnetic
anisotropy contribution to the interaction.

The two basic timescales appearing in Eq. (3) are (i) the
Brownian relaxation time τB = 3ηvh/kBT of rotational diffu-
sion of a spherical particle with vh the hydrodynamic volume
in a liquid with viscosity η; and (ii) the internal timescale
τD = m/(2αγ kBT ) of magnetization dynamics with the di-
mensionless damping parameter α and the gyromagnetic ratio
γ . The Larmor frequency is defined by ωL = −(γ /m)∂U/∂e
and is given here by ωL = γ H + 2γ KM−1

s (e · n)n, where Ms

denotes the spontaneous magnetization of the magnetic mate-
rial Ms = m/vm. Note that for the frequently used core-shell
particles [4], the presence of a nonmagnetic stabilizing shell
implies vm < vh.

The anisotropy constant K for the frequently used mag-
netite nanoparticles is around K ≈ 104 J/m3 [36], leading
to κ ≈ 0.9 and 10.2 for magnetic core diameters of 9 and
20 nm, respectively. The internal timescale τD, sometimes
interpreted as inverse internal attempt frequency, is typi-
cally around τD ∼ 10−9 . . . 10−10 s [4,5]. Brownian relaxation
times, on the other hand, in typical solvents are several or-
ders of magnitude larger, τB ∼ 10−6 . . . 10−3 s [4,11]. While
the egg model provides a physically sound basis to describe
coupled Brownian and Néel relaxation [14], in the absence
of closed-form analytical solutions, the huge separation in
timescales τD � τB makes the model computationally very
demanding to use in many applications. Therefore, the effi-
cient numerical simulation we present in Sec. III as well as
the analytical approximations in Secs. IV and V can be very
helpful.

B. Néel relaxation time

For sufficiently large anisotropy energies κ � 1, the in-
ternal magnetization dynamics consists of fast vibrations on
the timescale τD around the particle’s easy axis n and slow
magnetization reversals once the anisotropy energy barrier is
overcome [37]. The latter is governed by the Néel relaxation
time τN, which was calculated approximately by Brown in the
absence of a magnetic field and in the limit κ � 1 as [18]

τN ≈ τD

√
πeκ

2κ3/2
(4)

increasing steeply with κ . The Arrhenius-type formula (4)
has been used and tested experimentally [37,38], including
detailed investigations on the prefactor (attempt frequency)
[39].

0 2 4 6 8 10
100

101

102

103

Eq (3)
Eq (4)
Eq (6)

FIG. 1. The Néel relaxation time τN/τD is shown as a function of
the anisotropy parameter κ according to Eqs. (4)–(6).

For weak and moderate anisotropies κ � 2, the expression

τN = τD
1 + 2S2

1 − S2
(5)

was derived in Refs. [18,40] with S2 = 〈P2(e · n)〉eq, P2(x) the
second Legendre polynomial. For the Boltzmann equilibrium,
S2 can be evaluated explicitly in terms of κ [cf. Eq. (A7) in
Appendix A 2]. In the rigid-dipole limit, limκ→∞ S2 = 1 and
thus e ‖ n. For very small κ , the first terms of the expansion of
Eq. (5) read as τN/τD ≈ 1 + (2/5)κ + (16/175)κ2 + O(κ3),
according to Eq. (A10).

A phenomenological approximation that extends Eq. (4) to
medium and lower anisotropies is [41]

τN ≈ τD
eκ − 1

κ

(
2κ3/2

√
π (κ + 1)

+ 1

2κ

)−1

, (6)

which reduces to Eq. (4) for κ � 1 and also provides a good
approximation to Eq. (5) for small κ . Strictly speaking, Eq. (6)
was derived for longitudinal relaxation when a weak external
field is switched off.

Figure 1 shows the Néel relaxation time versus the
anisotropy parameter κ on a semilogarithmic scale. As men-
tioned in Refs. [41], Brown’s expression (4) breaks down for
κ < 2, but Eq. (6) provides a good description over the whole
range of anisotropies. For anisotropies in the range κ ∼ 10,
we find from Fig. 1 that the difference between Eqs. (4) and
(6) is still noticeable, with Eq. (4) systematically underpre-
dicting τN. Therefore, we here use Eq. (6) rather than the
much more popular Eq. (4) to calculate the reference effective
relaxation time from Eq. (1) via τN for given κ .

III. SOLUTION OF FOKKER-PLANCK EQUATION

The time-dependent probability density F (e, n; t ) can be
expanded into the complete orthonormal basis set of bipolar
harmonics,

F (e, n; t ) =
∑

K

bK (t )YK (e, n), (7)
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where K = LM
l1l2

is a multi-index and bK the expansion coef-
ficients [28,30]. Admissible multi-indices are all those that
satisfy the four inequalities l1, l2 � 0, |l1 − l2| � L � l1 + l2,
and |M| � L simultaneously. The bipolar harmonics are de-
fined in terms of spherical harmonics Ylm and Clebsch-Gordan
coefficients CLM

l1m1l2m2
as

YK (e, n) =
l1∑

m1=−l1

l2∑
m2=−l2

CLM
l1m1l2m2

Yl1m1 (e)Yl2m2 (n). (8)

With the help of the expansion (7), the partial differential
equation (3) can be transformed into an infinite system of
coupled ordinary differential equations for the coefficients bK ,
which can be written in vector form as

d

dt
b = −A · b + d (9)

with a positive-definite square matrix A. The additional term
d arises due to the conservation of the normalization of F ,
which corresponds to b00

00 = 1. For details on the derivation of
Eq. (9), see Refs. [28,30]. In the latter reference, we calculate
A and d and we also provide the code for implementing
Eq. (9). Following Ref. [28], the implementation neglects the
Larmor precession term, which should be a good approxima-
tion except at very high frequencies.

With the eigenvalues 	μ of the matrix A, we can write the
solution to the linear system (9) as

bK (t ) =
∑

μ

wKμ(1 − e−	μt ), (10)

where we specified to isotropic initial condition bK (0) = 0.
The weights wKμ of the eigenvalue 	μ contributing to bK in
this case are wKμ = ∑

ν (S−1)Kμ	−1
μ Sμνdν , where S−1 con-

tains the eigenvectors of A in its columns. We are going to
reserve 	1 for the smallest eigenvalue, and use sorted eigen-
values 	 j � 	 j+1 when presenting their values. None of the
results to be presented below require the explicit calculation
of S−1, as this would be extremely time consuming. Instead,
Eq. (9) can be integrated directly using a small time step
� τD, the susceptibility requires solving a system of linear
equations (22), smallest eigenvalues are obtained using vari-
ants of the power method, and stationary solutions of Eq. (9)
can be calculated analytically.

Note that the representation (7) can be interpreted as an
expansion around the isotropic state. Therefore, in order to
accurately capture strongly oriented states which occur for
large anisotropies and/or strong magnetic fields, a truncation
of the sum at low orders O is inappropriate. The order O of
the expansion is defined as the maximum of l1 + l2 retained
in the sum l1 + l2 � O. However, the number of terms I (O)
in the expansion grows very strongly [like � ( 3

14 )O4] with
increasing order O, limiting the approach in practice to O ≈
10 . . . 20, corresponding to 104 . . . 105 terms.

Here, to study also more strongly ordered states and to be
able to cover a wide range of parameters, we use symmetry
arguments to reduce the number of expansion coefficients
in Eq. (7) considerably. First, we note that the easy axis is
described by the director n, which means that n and −n
are equivalent. Using the property of the spherical harmonics
Yl2m2 (−n) = (−1)l2Yl2m2 (n), we conclude that the physically

admissible distribution functions F correspond to represen-
tations with even l2. Although this symmetry reduces the
number of expansion coefficients by a factor 2, we need a
more substantial reduction to cover a broader parameter range.
For initial states that depend only on the difference in the
azimuthal angles ϕe − ϕn, which corresponds to M = 0 in
the bipolar series, we show in Appendix B that the property
M = 0 is preserved by the dynamics of the egg model. Given
l2 even and M = 0, we can furthermore conclude that also
L − l1 must be even for the probability density F to be a real
function. A detailed discussion of these arguments is provided
in Appendix B.

To summarize, the multi-indices in the bipolar expansion
(7) to be used here to treat the general case of nonzero exter-
nal field, and κ = 0, starting from an isotropic or stationary
situation, is

K =LM
l1l2 , even L − l1, even l2, M = 0. (11)

As a result, if we keep 104 or 105 terms in the expansion (7),
we can now reach, using (B1), O ≈ 42 and 92, respectively,
compared to O ≈ 10 without reduction.

IV. DIFFUSION-JUMP MODEL: CORRECTIONS
TO THE RIGID-DIPOLE APPROXIMATION

We here focus on the regime of slow Brownian relaxation
τB � τD and of large magnetic anisotropies κ for which τN �
τD. To address this huge timescale gap between the internal
timescale τD and Brownian and Néel relaxation, the egg model
presented in Sec. II A needs to be suitably coarse grained.

As mentioned above, for sufficiently large anisotropy en-
ergies κ , Néel relaxation can be described as rare, thermally
activated magnetization reversals with relaxation time τN ap-
proximately given by Eq. (4). Assuming that deviations of the
magnetization direction from the particle’s easy axis are neg-
ligible on timescales of τB and τN, the anisotropy contribution
to the internal energy is no longer relevant. Then, the state of
individual MNPs can be described by the probability density
of the magnetic moment alone, f (e; t ). Keeping Brownian
rotational diffusion as in the egg model (3) and modeling
Néel relaxation as thermally activated magnetization reversals
e → −e on the timescale τN, one of us proposed to model
the corresponding magnetization dynamics in terms of the
following diffusion-jump model [34]:

∂

∂t
f (e; t ) = 1

2τB
Le · f (e; t )Le(−he‖ + ln f (e; t ))

+ r(|he‖|)
2τN

[ehe‖ f (−e; t ) − e−he‖ f (e; t )], (12)

involving a yet unspecified rate function r = r(|he‖|). We
emphasize that Eq. (12) was not derived systematically from
the egg model, but only plausibility arguments are offered.
In the limit τN → ∞, Néel relaxation can be ignored and
Eq. (12) reduces to the well-known rigid-dipole model in-
troduced by Martsenyuk and coworkers [42]. For large but
finite τN, Eq. (12) extends the rigid-dipole model by including
Néel processes in an approximate manner. Assuming that Néel
relaxation can be modeled as a Poisson process and imposing
Boltzmann equilibrium feq(e) ∼ exp(he‖) as stationary state
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specifies Eq. (12) only up to the unknown rate function r(x),
with r(0) = 1 and r � 0. The condition r(0) = 1 ensures
Eq. (12) leads to the correct relaxation time, Eq. (1), in the
field-free case. In Ref. [34], some choices for this rate function
were discussed, e.g., r(x) = 1 corresponding to Arrhenius ac-
tivation and r(x) = 1 + tanh(x) leading to Glauber dynamics.

We can use the diffusion-jump model to derive approxi-
mate equations for the magnetization dynamics. First, define
the time-dependent normalized magnetization m(t ) as m =∫

e f (e; t )de = 〈e〉, where the integration is performed over
the three-dimensional unit sphere. Multiplying the kinetic
equation (12) by e and subsequent integration, we arrive at
[34]

d

dt
m = − 1

τB

[
m − 1

2
[h − 〈ee〉 · h]

]
− 1

τN
〈e r e−he‖ 〉. (13)

Equation (13) still contains averages over the unknown prob-
ability density f and therefore does not provide a closed-form
magnetization equation. However, we can solve Eq. (13) ap-
proximately for the late stages of relaxation, leading to the
relaxation times parallel and perpendicular to the applied field

1

τ‖
= 1

τB

L1(h)

hL′
1(h)

+ 1

τN

I2(h)

L′
1(h)

, (14)

1

τ⊥
= 1

τB

h − L1(h)

2L1(h)
+ 1

τN

hR2(h)

L1(h)
, (15)

where L1(h) = coth(h) − 1/h denotes the Langevin function
and L′

1 its first derivative. Details of the derivation are pro-
vided in Appendix C, where also expressions for I2, R2 are
given.

For τN → ∞, we recover from Eq. (14) the known results
for the rigid-dipole approximation of the relaxation times
within the effective field approximation [42]. For large but
finite τN, the terms proportional to τ−1

N in Eq. (14) describe
corrections to the rigid-dipole approximation. As discussed in
Appendix C, these contributions depend on the particular form
of rate function r appearing in Eq. (12).

V. REDUCED MOMENT APPROXIMATION

We here propose and analyze an approximate theory to
capture and explain unexpected mode-coupling effects in the
relaxation phenomena of magnetically soft nanoparticles. For
the relaxation processes of interest, we can limit ourselves to
small deviations � from equilibrium, F = Feq(1 + �) with
|�| � 1. Crucially, we assume that these small deviations can
be expressed as a linear combination of N given functions
Xj = Xj (e, n). Introducing the short notation δ〈Xj〉 = 〈Xj〉 −
〈Xj〉eq, we can derive closed moment equations

d

dt
〈X〉 = −M · B−1 · δ〈X〉, (16)

where the matrices B = 〈XX〉eq − 〈X〉eq〈X〉eq and M =
(2τB)−1〈(LX)T · LX〉eq + (2τD)−1〈(LeX)T · LeX〉eq are de-
rived using component notation in Appendix E, Eqs. (E3) and
(E5), respectively. Both matrices can be evaluated with the
help of the known Feq mentioned after Eq. (2).

The crucial step is to choose a suitable set of functions
X1, X2, . . . , XN . In the simplest approach, we include only the
magnetization component in the field direction, i.e., N = 1

and X1 = e‖. In this case, Eq. (16) describes a single expo-
nential relaxation with time constant τ10 = τ0hL′

1/L1, where
τ−1

0 = τ−1
B + τ−1

D . For h = 0, τ10 reduces to τ0, whereas for
negligible internal relaxation we recover the field-dependent
longitudinal relaxation in the rigid-dipole approximation [42].
It is interesting to note that in this model, considering un-
coupled magnetization relaxation implies ignoring anisotropy
effects.

To obtain a better approximation and motivated by earlier
works on the rotational viscosity by Shliomis and Stepanov
[43], we suggest to consider N = 3 with the following three
functions to describe the coupling of the magnetization to the
easy axis:

X1 = e‖, X2 = n‖(e · n), X3 = n2
‖. (17)

Note that due to the symmetry n → −n, the easy-axis ori-
entation enters only quadratically. Equation (16) represents a
closed system of N-coupled time evolution equations, where
the closure is obtained by representing � as a linear combina-
tion of Xj [see Eq. (E1)]. Compared to the infinite system of
Eq. (9) for the expansion coefficients bK of bipolar harmonics,
Eq. (16) represents a very drastic simplification. The accuracy
and limits of validity of this drastically reduced set of mo-
ments will be discussed below. Although Eq. (16) is formally
identical to Eq. (9) where M · B−1 plays the role of the matrix
A and M · B−1 · 〈X〉eq takes the role of d, it is worth noting
that the reduced moment approximation (RMA) can be seen
as a low-order perturbation around the Boltzmann equilibrium
state Feq, whereas the series of bipolar harmonics (7) is a sys-
tematic expansion around the fully isotropic state. Note that Xj

can alternatively be expressed in terms of bipolar harmonics
YK , but for convenience we will use the representation given
in Eq. (17).

Upon diagonalizing the matrix M · B−1, we can determine
the corresponding three eigenvalues. Explicit analytic expres-
sion for these eigenvalues in the limit of weak fields h and
small anisotropies κ are obtained in Appendix E using second-
order perturbation theory. In the absence of a magnetic field,
these eigenvalues reduce to

λ1 = 1

τB
+ 2 + S2

2(1 − S2)τD
(h = 0), (18)

λ2 = 1

τB
+ 1 − S2

(1 + 2S2)τD
, (19)

and

λ3 = 3/τB (h = 0). (20)

Note that for immobile particles, τB → ∞, the eigenvalue λ2

for h = 0 describes the internal relaxation time [Eq. (5)] valid
up to moderate values of κ . The eigenvalue λ3 [Eq. (20)]
instead corresponds to the relaxation time of the easy-axis
orientation in the absence of an external field, as can easily be
verified by deriving the moment equation 〈nn〉 from Eq. (3).
While we are using the convention that the eigenvalues 	 j

obtained via the FP approach are sorted, 	 j � 	 j+1, the
numbering of the eigenvalues λ j for the RMA corresponds
to the choice of moments (17) to allow for a more direct
interpretation. For τB > 2τD, λ3 is the smallest of the three
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RMA eigenvalues at zero field, and the RMA eigenvalues may
cross upon variation of h and κ , as we will find later.

For weak magnetic fields, we find that first-order contri-
butions vanish so that the eigenvalues vary quadratically with
h. For λ1 and λ2, we find a quadratic increase, corresponding
to the familiar decrease of relaxation times with increasing
field strength. This, however, is not true for λ3, which instead
decreases [Eq. (F43)], implying an increasing relaxation time
with increasing h. We discuss this surprising prediction and
its consequences in Sec. VI C.

VI. RESULTS

A. Field-free case

In the absence of an external magnetic field, internal
and Brownian relaxation decouple and the faster of the two
dominates the effective relaxation time τeff defined by the
well-established relation (1), as proposed in Refs. [6,19].

Figure 2(a) shows τeff/τD versus the anisotropy parameter
κ , where we define τeff = 	−1

1 (h = 0) with 	1(h = 0) the
smallest eigenvalue of the matrix A, evaluated for zero field
that has nonzero weight. The results shown are obtained for
order O = 40 of the bipolar expansion presented in Eq. (7),
but are indistinguishable when larger O are used. From Fig. 2
we find that Eq. (1) provides an excellent description, con-
firming the decoupling of the relaxation processes at zero
field. The same conclusions were reached in Ref. [44] with
the help of Brownian dynamics simulations of the egg model
and extracting τeff by fitting an exponential decay for the long-
time relaxation. It is reassuring to validate that the smallest
eigenvalue corresponds to the long-time relaxation observed
in these simulations.

As a side comment, we remark that the agreement of the
lowest eigenvalue with Eq. (1) is nearly perfect when the
interpolation formula (6) is used for the Néel relaxation time,
whereas some mild discrepancies at intermediate values of κ

can be seen in Fig. 2(a) for Brown’s formula (4).
In Fig. 2(b) we scale the data differently and show τeff/τB

versus the ratio of the relaxation times τN/τB, where τN is
calculated from Eq. (6). We observe an almost perfect data
collapse on a master curve, again in excellent agreement with
Eq. (1).

Therefore, relaxation in the field-free case can be consid-
ered to be well understood. As we will see in the following,
the situation is much more complicated when an external field
is present.

B. Dynamical phase diagram for field-dependent relaxation

In the presence of an external magnetic field, the dynamics
of the egg model presented in Sec. II A is determined by
the three dimensionless parameters κ, τB/τD, and h. This
parameter space is too large for a brute-force exploration.
Therefore, we start our analysis by considering some repre-
sentative choices of parameter values.

Figure 3 shows the magnetization relaxation parallel to
an applied field (i.e., longitudinal) for different values of
κ, τB/τD, and h. High-order solutions (O = 100) to Eq. (9)
are compared to results from Brownian dynamics simulations
of the egg model. The latter are described in detail, e.g., in

0 5
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10 15

100

101

102
Eq (4)

10-2 10-1 100 101 102
0

0.2

0.4

0.6

0.8

1 (b)

FIG. 2. Effective relaxation time in the field-free case. Solid line
is (a) τeff/τD with τeff = 	−1

1 (h = 0) where 	1(h = 0) is the (abso-
lutely) smallest eigenvalue of A(h = 0) and (b) τeff/τB with τeff from
Eq. (1) and τN from Eq. (6). Dashed line is same as solid but using
Eq. (4) instead of (6) for τN. Note: eigenvalues corresponding to
eigenvectors with vanishing weight wKμ in Eq. (10) are not taken into
account. This is equivalent with considering the subset |l1 − l2| = L
and L ∈ {0, 1} of (11), according to [30].

Refs. [30,34]. We solve Eq. (9) for isotropic initial condi-
tion and plot the transient magnetization 〈e‖〉(t ) in Fig. 3(a)
and 1 − 〈e‖〉(t )/meq in 3(b), where meq = L1(h) denotes the
equilibrium magnetization. Brownian dynamics simulations
are performed for the same conditions, with ensemble aver-
ages performed over 106 independent realizations. The overall
good agreement between both methods serves as a further
test for the correct implementation of the numerical schemes.
Upon closer inspection, some deviations between solutions of
the FP equation and Brownian dynamics simulations are seen
at short times. These deviations are stronger for large values
of κ and h and are likely due to the Larmor precession term
being neglected in the FP solution. Due to noise inherent in
Brownian dynamics simulations, we find that the high-order
implementation of the bipolar harmonics expansion allows
us to extend the observable range and explore much longer
timescales where the magnetization is merely a fraction 10−4

away from the stationary state.
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FIG. 3. Magnetization 〈e‖〉 relaxation as a function of t/τD on
two different semilogarithmic scales. Solutions to the FP equation via
Eq. (9) (colored) and from corresponding Brownian dynamics sim-
ulations (gray) are shown. While (a) highlights details of the
short-time behavior, and the fact, that the stationary value meq is
unaffected by κ , (b) confirms the ultimately monoexponential relax-
ation at long times, captured by τ = 	−1

1 . Parameters are chosen as
τB = 100τD, κ ∈ {1, 5}, and h ∈ {1, 5}.

In all cases, we find from Fig. 3 the approach to the equi-
librium value proceeding in multiple stages. The first stage is
always a very rapid decay on timescales shorter than τD. For
small values of the anisotropy constant κ , the initial decay
gives way to the terminal relaxation for times greater than
τD. This regime is therefore characterized by a two-step relax-
ation. For larger values of κ , the situation is more complicated,
due to the occurrence of an intermediate relaxation regime
around τD, before the late-stage relaxation set in for times
greater than 10 . . . 100τD. Therefore, strictly speaking, this
regime shows a three-step relaxation. For practical purposes,
however, the short-time relaxation is often negligible and/or
difficult to observe. Similar comments apply to the late-stage
relaxation in cases where the magnetization has relaxed al-
most fully, before entering the terminal regime. Therefore, we
next consider the susceptibility spectra to find an alternative

10-3 10-2 10-1 100 101 102
10-4

10-3

10-2

10-1

100

FIG. 4. Real and imaginary parts of the reduced magnetic sus-
ceptibility χ ′(ω)/χ ′(0) (dotted-dashed) and χ ′′(ω)/χ ′(0) (solid),
respectively, as a function of dimensionless frequency ωτD. Pa-
rameters (and colors) are chosen as in Fig. 3. The corresponding
Cole-Cole plots are shown in Fig. 5 using unchanged colors.

and possibly more practical distinction between different dy-
namical regimes.

Magnetization relaxation can conveniently be studied ex-
perimentally in terms of the AC magnetic susceptibility
spectra, spanning a broad range of frequencies [11,15,45,46].
The complex magnetic susceptibility χ∗(ω) is defined as
the response function to an oscillating external field. More
precisely, we here consider the normalized longitudinal sus-
ceptibility χ∗

‖ defined via 〈e‖〉(ω) = (3χL)−1χ∗
‖ (ω)h1(ω),

with 〈e‖〉(ω) the Fourier transform of the normalized magne-
tization and χL the Langevin susceptibility. The amplitude of
the oscillating field is weak, |h1| � 1, to ensure the system is
in the linear response regime. Note that χ∗

‖ quantifies the re-
sponse to a weak oscillating field with frequency ω in addition
to a collinear static field with magnitude h. Therefore, χ∗

‖ de-
pends not only on the frequency ω and the model parameters
κ , τB/τD, but also on h.

In terms of the bipolar harmonics expansion presented in
Sec. III, we find

χ∗
‖ (ω) =

√
3 χL

h1
δb10

10(ω), (21)

where δbK = bK − beq
K denotes the deviation from the equi-

librium value. Inserting h(t ) = h + h1eiωt into Eq. (9) and
performing a first-order expansion in terms of h1 allows us
to calculate the component δb10

10 from

δb(ω) = h1(A0 + iωI)−1 · (−A1 · A−1
0 · d0 + d1

)
, (22)

where we used A = A0 + h1A1 and d = d0 + h1d1, with the
subscript zero denoting the quantities for h1 = 0. Further de-
tails on the calculation of the complex susceptibility are given
in Ref. [30].

Figure 4 shows the real and imaginary parts of the com-
plex susceptibility, χ ′ and χ ′′, respectively, as a function
of frequency ω of the applied field. To better compare the
susceptibilities at different field strengths, we normalize χ ′
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FIG. 5. Cole-Cole plots of χ ′′ versus χ ′ in the κ-h plane, ob-
tained via the FP approach with O = 100 at τB/τD = 100. We
distinguish three qualitatively different regions, denoted by o, Oo,
and oO and marked by different colors. The regions are separated by
white interfaces at κ � κ∗ and κ � h + κ∗ with κ∗ ≈ 2. The colored
symbols correspond to those plots shown in Fig. 4 for the same
parameter values and with the same colors.

and χ ′′ with the static (zero-frequency) susceptibility χ ′(0) =
3χLL′

1(h). For small κ , we find a Debye-type behavior with
a pronounced loss peak for frequencies around τD or larger,
in agreement with earlier works [28]. Applying a magnetic
field in the range h � 5 does not change the behavior qual-
itatively. Figure 3 shows that for these parameters, the late
stage relaxation sets in only after the magnetization has al-
most reached its equilibrium value. Thus, the weight of the
longest relaxation time is small and so is its contribution to the
susceptibility, where a shoulder at lower frequencies is barely
visible. Therefore, we observe a near-Debye behavior in this
regime, despite the two-step relaxation of the magnetization.
For larger κ , however, χ ′′ shows a pronounced double-peak
structure, with the high-frequency peak indicating the short-
time relaxation on timescales τD, whereas the low-frequency
peak mirrors the long-time relaxation. In this case, the double-
peak structure mirrors the multistep relaxation behavior seen
in Fig. 3, where the long-time relaxation carries a significant
weight and sets in when the magnetization is still noticeably
different from its stationary value. As the field strength h
increases, the location of the low-frequency peak moves to
higher frequency, indicating a speeding up of the relaxation.

Before analyzing the relaxation further in more detail in
Secs. VI C and VI D, we first classify the different relaxation
behavior based on the forms of the susceptibility spectra.
More specifically, we study the corresponding Cole-Cole
plots, where χ ′′(ω) is shown parametrically versus χ ′(ω)
[15]. Depending on the values of the model parameters, we
observe three different characteristic shapes that we denote
by o, Oo, and oO. An overview of these shapes depending
on the value of the anisotropy constant κ and field strength
h is shown in Fig. 5. The plot was created for τB/τD = 100,

but looks qualitatively identical for smaller τB as long as
τB/τD � 3. Note that the colored curves in Fig. 5 correspond
to the same colored curves in Fig. 4. In the regime of weak
magnetic anisotropy, i.e., for κ < κ∗ (denoted as “o”), the
Cole-Cole plot resembles a semicircle, which is character-
istic of Debye-type relaxation. Note that around κ∗ occurs
the transition between a more diffusive relaxation [Eq. (5)]
and thermally activated Néel-type relaxation [Eq. (4)]. In the
regime of Néel relaxation, i.e., for κ > κ∗, we find significant
deviations from the semicircle shape in the Cole-Cole plots
showing two maxima. For small enough fields, h � κ − κ∗,
we find that the dominant loss peak occurs at low frequencies.
In this regime (denoted as “oO”), we expect the dominant
loss peak to coincide with the smallest eigenvalue and thus
the long-time relaxation time. Finally, for strong anisotropies
(κ > κ∗) and strong fields (h > κ − κ∗), we observe that the
shape of the Cole-Cole plots change in that the dominant loss
peak moves to high frequencies. In this regime (denoted by
“Oo”), the long-time relaxation corresponds to the more or
less pronounced secondary peak, whereas the main loss peak
is determined by the short-time relaxation. This surprising
finding is important for correctly interpreting magnetic sus-
ceptibility spectra and associating loss peaks with relaxation
times.

Figures 6(a) and 6(b) show contour plots of the smallest
eigenvalue 	1 and the ratio ω∗/	1, respectively, where ω∗
denotes the frequency of the largest loss peak. The eigenvalue
	1 is scaled with τB/3, the inverse of the zero-field eigenvalue
(20). Comparing Fig. 6(a) to Fig. 5, we find the small-κ regime
(“o”) to roughly coincide with the parameter region in which
the smallest eigenvalue 	1 ≈ 3/τB. For larger values of κ , the
regions Oo and oO identified in Fig. 5 correspond roughly
to regimes where 	1 > 3/τB and 	1 < 3/τB, respectively. In
the regime of large κ and small enough fields (oO region),
we find from Fig. 6(b) that the peak frequency ω∗ is close
to the the smallest eigenvalue 	1. When comparing Fig. 6(b)
to Fig. 5, we also note that the transition from the Oo to
oO region is mirrored by a large change in the characteristic
frequency ω∗, whereas 	1 changes only mildly. While ω∗
remains near 	1 in the oO region, ω∗ jumps to much higher
frequencies upon entering the Oo region. In the regime of
small κ , as discussed above, the smallest eigenvalue carries
only a small weight, so that the Debye-type susceptibility is
peaked at much higher frequencies. This behavior is evident
in Fig. 6(b) where we also notice a strong increase in ω∗
with increasing field strength h for κ < κ∗, while 	1 stays
approximately constant.

C. Mode-coupling effects

In this section, we aim to better understand the regime
of magnetically weak nanoparticles with moderate values of
the anisotropy constant κ . For such nanoparticles, there is no
major energy barrier for deviations of the magnetization di-
rection e from the magnetocrystalline easy axis n. Therefore,
internal relaxation is mainly diffusive and the corresponding
relaxation times in zero field [Eq. (5)] increase only mildly
with κ .

Figure 3 shows exemplary relaxation curves for this regime
with κ = 1 < κ∗. As discussed in Sec. VI B, the relaxation
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FIG. 6. Contour plots of (a) 	1τB/3 and (b) w∗/	1, both versus
κ and h, evaluated using the FP approach at τB/τD = 100. Contour
lines are labeled by the respective values at the contour line.

is characterized by a fast initial relaxation, that brings the
magnetization very close to its equilibrium value, before the
slow, long-time relaxation sets in. The inherent noise makes
this long-time relaxation difficult to study with Brownian dy-
namics simulations. However, with our high-order solution of
the FP equation, the long-time relaxation can be investigated
in great detail.

Although the ultimate relaxation is exponential and allows
to define the long-time relaxation time, it is obvious from
Fig. 3 that the fast initial relaxation is very significant in this
regime. Therefore, defining a single effective relaxation time
is of limited use here. Instead, we aim to better understand
the reason for the two-step relaxation and to predict the corre-
sponding two characteristic relaxation times using the reduced
moment approximation presented in Sec. V.

Figure 7 shows the smallest eigenvalues 	 j obtained from
high-order solutions to the FP equation. More precisely, the

eigenvalues are obtained from diagonalization of the matrix
A in Eq. (9) for order O = 50 and then sorted according to
their values. We observe that the second and third smallest
eigenvalues increase with increasing field strength h, corre-
sponding to the familiar decrease of relaxation times due
to applied magnetic field. The lowest eigenvalue, however,
remains almost unaffected by the field and tends to slightly
decrease as h increases. Furthermore, we observe that the low-
est eigenvalue is approximately independent of κ , whereas the
second and third smallest eigenvalues increase and decrease
with increasing κ , respectively. For τB = 5τD and h = 1, we
observe crossings of the smallest eigenvalues around κ = 1.5
and 2.5. Finally, for fixed κ and h, the smallest eigenvalues
decrease with increasing τB/τD indicating the slowing down
of the relaxation.

For the parameter regime investigated here, the RMA de-
spite its simplicity provides surprisingly accurate predictions
of the three lowest eigenvalues over a considerable range of
parameters. Due to the degeneracy of the smallest eigenvalues,
the analytical expressions for the RMA for weak fields and
anisotropies are not defined for the special case τB = 2τD

(see Appendix F), while the full solution of the RMA is not
effected [cf. Fig. 7(c)]. The second lowest eigenvalue corre-
sponding to the magnetization and the third lowest eigenvalue
associated with 〈X2〉 both increase with increasing h. The low-
est eigenvalue corresponds to the easy-axis orientation 〈n2

‖〉.
Contrary to the other two, this eigenvalue slightly decreases
with increasing h and is approximately independent of κ . See
also Eq. (F43) where we worked out the leading quadratic
order. Therefore, we can conclude that the two-step relaxation
found in Fig. 3 arises due to the coupling of the magnetization
dynamics to the relaxation of the easy-axis orientation. In
the regime of weak magnetic anisotropies and large enough
Brownian relaxation times, the easy-axis relaxation is the
limiting process occurring at long times. Depending on the
parameter values and sensitivity of observation, the long-
time behavior might be difficult to detect in practice in the
magnetization relaxation or magnetic susceptibility spectra.
Since the slow process is linked to the dynamics of the easy
axis, measurements detecting particle rotations, e.g., due to
attached molecules, should be able to directly observe the
slow relaxation.

In Fig. 8 we plot the smallest eigenvalues versus the ratio
τN/τB and scale the eigenvalues with the effective relaxation
time τeff in zero field [Eq. (1)]. The remaining parameters
are chosen as τB = 100τD and h = 0.1 (a) and h = 1 (b), re-
spectively. Note that τN/τB � τD/τB since τN � τD. The gray
shaded area indicates the regime λτeff < 1 or also 	τeff < 1.
For τN/τB < 1

2 , we indeed find the smallest eigenvalue 3/τB

[Eq. (20)] to be smaller than 1/τeff , meaning the longest re-
laxation time in the presence of a weak applied field exceeds
τeff . We note that this behavior is contrary to the field-induced
speeding up of magnetization relaxation typically observed
for magnetically hard nanoparticles [42]. Although the pa-
rameters chosen in Fig. 8 are outside the range of validity
of the RMA, the model provides still a good description of
the smallest eigenvalue up to τN/τB ≈ 1

2 . For τN/τB > 1
2 , the

lowest eigenvalue obtained from the FP approach is given by
field-induced corrections to 1/τeff , leading to the familiar sce-
nario of field-assisted accelerated magnetization relaxation. It
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FIG. 7. Comparison of the smallest dimensionless eigenvalues 	 jτD (green) obtained via high-order solution to the FP equation (FP),
the three dimensionless eigenvalues λ jτD (solid black) of the reduced moment approach (RMA), and the analytical expressions for RMA
(dashed red), Eq. (F2). (a)–(c) Show plots of these eigenvalues versus h, κ , and τB/τD, respectively. Green solid lines show the three smallest
FP eigenvalues, green (gray) dashed lines the fourth and fifth (sixth and seventh) smallest eigenvalues 	 jτD resulting from the FP approach
(O = 50).

is interesting to note that the crossing of the lowest eigenval-
ues for h = 0.1 is avoided for h = 1.

D. Corrections to the rigid-dipole approximation

Magnetically hard nanoparticles are characterized by
strong magnetic anisotropies κ � 1, so that the magnetic
moment can be considered to be thermally blocked near the
easy-axis direction. For not too strong fields h � κ , we en-
counter the classical Néel scenario of internal relaxations as
rare, thermally activated magnetization reversals [18] where
relaxation times increase very strongly with κ , approximately
given by Eq. (4).

Since Brownian motion of the nanoparticles is often slow
compared to the internal relaxation, this regime is char-
acterized by a strong timescale separation, τN, τB � τD.
Consequently, we expect a two-step relaxation, where a very

FIG. 8. Eigenvalues multiplied by τeff (1) versus τN/τB are
shown for τB = 100τD and (a) h = 0.1, (b) h = 1. Plotted are the
three smallest eigenvalues 	 j resulting from the FP approach (solid
green) and the three eigenvalues λ j from the RMA (dashed black).
The gray shaded area indicates the regime 	τeff < 1 or also λτeff <

1. Within the shown regime, the RMA eigenvalues, derived in Ap-
pendix F, are actually sorted as λ1 � λ2 � λ3.

short and fast initial process is followed by a pronounced
long-time relaxation with corresponding relaxation time τ‖.
Such a behavior is indeed observed in the regime oO of Fig. 5
and can exemplarily be seen in Fig. 3 for τB = 100τD, κ = 5,
h = 1. In this regime, the inverse of the smallest eigenvalue
	−1

1 agrees well with τ‖ extracted from an exponential fit to
the long-time relaxation.

Figure 9(a) shows the long-time relaxation time 	−1
1 as a

function of the applied field h for τB = 100τD and various
values of κ . As expected, we find that τ‖ increases with κ

due to the increasing Néel relaxation time. It is interesting to
note that deviations from the rigid-dipole approximations are
clearly visible even for κ = 10 where τN is significantly larger
than τB. We observe that these deviations are well described
by the diffusion-jump model of Sec. IV [Eq. (14)], down to
κ � 8 where τN ≈ τB. The good comparison seen in Fig. 9(a)
is obtained for Arrhenius rates r = 1, where the relaxation
time is given by

1

τ‖
= 1

τB

L1(h)

hL′
1(h)

+ 1

τN

h

3 sinh(h)L′
1(h)

. (23)

In Appendix D we argue that r = 1 is indeed the appropriate
choice for large magnetic anisotropies that recovers Brown’s
result for the Néel relaxation of immobile particles. In the pa-
rameter range investigated here, we find the familiar decrease
of τ‖ with increasing field strength h. In particular, Eq. (23)
predicts Brownian processes to dominate with a decrease
τ‖ ≈ τB/h for large fields, in agreement with arguments put
forward in Ref. [47]. We want to emphasize that this finding
results from the coupling of internal and Brownian relaxation
since otherwise the Néel relaxation time, Eq. (D6) or (D5),
would dominate as long as h � κ . While the agreement be-
tween lowest eigenvalues and Eq. (23) is excellent in this
regime up to moderate field strengths, noticeable differences
occur for stronger fields, where the inverse of the smallest
eigenvalue even exceeds the corresponding rigid-dipole result.
The transition to this strong-field regime occurs at higher and
higher field strengths as κ increases (see Fig. 5). For smaller
values of κ , a qualitatively different behavior occurs, where
the relaxation times first increase with h before decreasing at
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FIG. 9. Longitudinal relaxation times τ‖/τD determined from the
inverse of the lowest eigenvalue of the egg model of Sec. II A for
τB = 100τD (a) as a function of the dimensionless magnetic field h
for various κ and (b) as a function of τN/τB for various h. Dashed
lines show the prediction of the diffusion-jump model (23) and the
dotted-dashed lines correspond to the rigid-dipole approximation. In
(b) a few values for the second lowest eigenvalue have been included
within the regime τN/τB < 1 for h = 0.1 (blue open squares). Eigen-
values obtained using O = 100, i.e., I (O) = 131 376 moments (B1).

stronger field strengths, as visible in Fig. 9 for κ = 6, 7. This
behavior is far from the rigid-dipole limit and is not captured
by Eq. (23) since Néel processes dominate Brownian rotation
in this regime. We did not explore whether Eq. (14) with a
different choice of the rate function r might be able to describe
this effect.

In Fig. 9(b), we again show τ‖/τD for τB = 100τD but
versus the ratio τN/τB. For fixed value of the field strength
h, we observe an increase of τ‖ with τN/τB, slowly approach-
ing the rigid-dipole limit. Again, the prediction (23) of the
diffusion-jump model provides a very good description for
sufficiently large τN and up to moderate field strengths. For
stronger fields, Eq. (23) somewhat underestimates the relax-
ation time. An important result is the very slow approach of τ‖
to the rigid-dipole limit, where strong deviations at low field

strengths persist even for large τN. It is interesting to note that
in the regime τN < τB, for which the diffusion-jump model
was not designed originally, Eq. (23) still captures the second
lowest eigenvalue rather well.

VII. DISCUSSION

We present an efficient implementation of the classical egg
model [19], describing the coupled magnetization and particle
rotational dynamics of suspended magnetic nanoparticles. Ex-
ploiting several symmetries, we are able to retain a sufficiently
large number of terms in the bipolar harmonics expansion
(7) to study the longitudinal dynamics for a broad range of
parameters, including strongly oriented states arising for large
magnetic anisotropies κ and strong external fields h.

In the field-free case, we verify that Eq. (1) provides an
excellent description of the lowest eigenvalue of the Fokker-
Planck equation, confirming earlier results [44] for the long-
time relaxation time. From the Fokker-Planck equation (3),
one finds that internal dynamics and particle rotation decouple
for h = 0, justifying their independent contribution to Eq. (1).

Internal and Brownian relaxation are no longer indepen-
dent if an applied magnetic field is present, leading to richer
but also more complicated behavior. Studying the egg model
over a broad range of parameters, we identify three dif-
ferent dynamical regimes, which we denote as o, oO, and
Oo according to their respective Cole-Cole plots. For large
enough Brownian relaxation times, τB � 3τD, we find that
these regimes are mostly determined by the anisotropy pa-
rameter κ and the dimensionless field strength h, and do not
change significantly upon increasing τB.

The regime “o” comprises magnetically soft nanoparticles
with κ < κ∗ and κ∗ ≈ 2. Soft magnetic nanoparticles are very
promising due to their efficient energy dissipation [48,49]. In
this regime, the AC magnetic susceptibility is near Debye,
showing the characteristic semicircle in the Cole-Cole plot. In
this regime, we find surprising, field-induced mode-coupling
effects with different dependencies of the eigenvalues on the
model parameters, leading to crossings and avoided crossings
of eigenvalues as, e.g., the field strength h or the anisotropy
parameter κ is varied. We develop a simplified theory (RMA),
that allows us to understand these effects quantitatively. In
addition, RMA enables us to conclude that in this regime, the
easy-axis orientation corresponds to the smallest eigenvalue
and couples to the magnetization relaxation, leading to slow,
long-time relaxation. In practice, the slowest mode might
be difficult to detect in the magnetization dynamics due to
its small weight. Measurements involving particle rotation,
however, e.g., via markers attached to the nanoparticle sur-
face, rotational friction, or orientation effects of nonspherical
nanoparticles, should reveal the slow relaxation mode. The
effect should already be visible at low field strengths. For
interpreting AC magnetic spectra, it is important to note that
the frequency of the loss peak ω∗ is much higher than the
smallest eigenvalue 	1.

For magnetically hard particles κ > κ∗ and not too strong
fields h < κ − κ∗, we enter the regime “oO” that is char-
acterized by predominant Brownian particle rotation with
rare additional, thermally activated Néel relaxation events. In
this regime, the smallest eigenvalue closely corresponds to
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the dominant loss peak. A recently proposed diffusion-jump
model [34] predicts the corresponding longest relaxation time
rather well for κ � 8 [Eq. (23)], capturing the corrections to
the rigid-dipole approximation. It is important to stress that
corrections to the rigid-dipole limit are clearly discernible in
weak fields even for large anisotropies. These encouraging
results together with the high efficiency of the diffusion-jump
model open new possibilities for many-body Brownian dy-
namics simulations of ferrofluids, e.g., to study their structure
formation in oscillating fields, which is found to depend on
the Brownian as well as the Néel relaxation time [50]. For
intermediate values of the anisotropy constant κ∗ � κ � 7, the
diffusion-jump model breaks down and we discover an unex-
pected increase of the longest relaxation time with increasing
field strength, reaching a maximum near h ≈ 2, before de-
creasing for stronger fields.

Finally, for magnetically hard nanoparticles in strong
fields, κ > κ∗ and h > κ − κ∗, which we term the “Oo”
regime, the smallest eigenvalue no longer corresponds to the
dominant loss peak, which is now located at much higher
frequencies. While a discrepancy between the smallest eigen-
value 	1 and the peak frequency ω∗ was already found for
the special case of immobile MNPs [51,52], we here quantify
these discrepancies and provide the dynamical phase diagram
when Brownian relaxation is also present. Knowledge of these
discrepancies is also very useful for the correct interpretation
of AC spectra and designing suitable magnetic nanoparticles
for hyperthermia applications.

We emphasize that the significant reduction in the terms
retained in the bipolar harmonics expansion (7) used here (see
Appendix B) is limited to studying longitudinal relaxation.
Perpendicular magnetization components require the use of
a larger set of bipolar harmonics. For this more general case,
one can resort to our previous work [30].

We want to conclude with another potential application
of this work to the promising new technique of magnetic
particle imaging [53]. For improving the spatial resolution,
the dynamical properties of magnetic nanoparticles and Néel
relaxation at high frequencies are crucial [54]. For ultrahigh
frequencies corresponding to very short times, however, the
egg model needs to be suitably extended. One step in this
direction could be including inertia effects [26], as has already
been proposed in the original paper [19]. Note that for such
short times, details of the phenomenological Gilbert damp-
ing become important [55], highlighting the general problem
of extending coarse-grained models to shorter times, where
additional processes (such as deviations from homogeneous
internal magnetization) might come into play. This interesting
field of research is left as a future challenge.

APPENDIX A: ORDER PARAMETERS

For frequent use, we here collect a number of properties of
orientational order parameters.

1. Higher-order Langevin function

The order parameters Lj are defined by the equilibrium
averages

Lj (h) = 〈Pj (e‖)〉eq =
∫ 1
−1 Pj (z)ehz dz∫ 1

−1 ehz dz
, (A1)

with the jth-order Legendre polynomials Pj (z). They quantify
the orientational ordering of the magnetization parallel to the
direction of the applied field e‖ = e · ĥ. Note that the func-
tions Lj depend only on h and are independent of κ . From the
recursion relation of the Legendre polynomials, the jth-order
Langevin function Lj is defined recursively as [56]

Lj (h) = Lj−2(h) − (2 j − 1)Lj−1(h)

h
, (A2)

with L0 = 1 and L1(h) = coth(h) − h−1 being the classical
Langevin function. The jth-order Langevin function exhibits
the following asymptotic properties at small and large (semi-
positive) h, respectively,

Lj (h) = h j

(2 j + 1)!!
+ O(h j+2), (A3)

Lj (h) = 1 − j( j + 1)

2h
+ O(h−2), (A4)

which can be derived with [57] at hand. All Lj (h) mono-
tonically increase with increasing h for h � 0. Starting from
Lj (0) = 0, they all approach unity in the h → ∞ limit.

Expressions for, and recursive relationships between, the
derivatives of the higher-order Langevin functions and their
behavior can be derived based on Eqs. (A2)–(A4). In particu-
lar, we use the relation

L′
1(h) = L2(h) − L2

1 (h) + L1(h)

h
(A5)

and L′
j (0) = δ j,0/3, according to Eq. (A3).

2. Alignment order parameters

Order parameters S� are related to the �th Legendre
polynomials as equilibrium averages of the magnetization
component parallel to n:

S�(κ ) = 〈P�(e · n)〉eq =
∫ 1
−1 P�(z)eκz2

dz∫ 1
−1 eκz2 dz

. (A6)

Because n is a director, S� is zero for odd �. For the Boltzmann
equilibrium, S2 can be evaluated explicitly to give

S2(κ ) = 3

4
√

κ Da(
√

κ )
− 3

4κ
− 1

2
, (A7)

while S0 = 1 and where Da is the Dawson integral Da(x) =
e−x2 ∫ x

0 e−y2
dy = −(i/2)

√
πe−x2

erf(ix) [30,34]. Higher-order
parameters can be recursively obtained from S0 and S2 via
[30]

S�+2 = (2� + 1)[3 + 2κ − 4�(� + 1)]

2κ (� + 2)(2� − 1)
S�

+ (2� + 3)(� − 1)

(� + 2)(2� − 1)
S�−2. (A8)

Hence, for example,

S4(κ ) = 7 + 5S2

12
− 35S2

8κ
(A9)
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with S2 from (A7). Note that S� depend only on κ and are
independent of h. For even � the asymptotic behaviors are
given, with the help of limx→∞ 4x Da(x) = 2, by

S�(κ ) = (2κ )�/2∏�/2
l=0(1 + 2� − 2l )

+ O(κ1+�/2), (A10)

S�(κ ) = 1 − �(� + 1)

4κ
+ O(κ−2). (A11)

For � � 4 the expansion (A10) simplifies to S2 = 2κ/15 +
O(κ2) and S4 = 4κ2/315 + O(κ3), while (A11) gives S2 =
1 − 3/2κ + O(κ−2) and S4 = 1 − 5/κ + O(κ−2).

APPENDIX B: BIPOLAR HARMONICS EXPANSION

Here, we give more details on the expansion of the joint
probability density into bipolar harmonics. In Sec. III we have
already argued that we can restrict the expansion (7) to terms
with even l2 due to the n → −n symmetry.

To further reduce the number of expansion coefficients,
we make additional, more restrictive assumptions. First, we
consider the assumption proposed by Titov et al. [29] that
the joint probability density F (e, n; t ) does not depend on the
azimuthal angles ϕe and ϕn separately, but only on their differ-
ence ϕe − ϕn. In terms of the bipolar harmonic expansion (7),
since Yl1m1 (e) ∼ eim1ϕe , Yl2m2 (n) ∼ eim2ϕn , this implies a restric-
tion to terms with m2 = −m1, i.e., M = 0 only. In Ref. [29], it
is argued that this property of the interaction potential should
somehow be inherited by F , but no justification for the claim
was given. In Ref. [30], we have already shown that terms bLM

l1l2
corresponding to different values of M do not couple due to
the dynamics of the egg model. Therefore, if initial conditions
are such that moments with M = 0 are not present at time
zero, they will remain zero also for later times (see Sec. 4.2 in
[30]). This demonstrates that the assumption M = 0 is indeed
justified if the initial state also corresponds to M = 0. Such
cases include isotropic initial conditions or stationary states
(as they can be produced from isotropic initial conditions).
The number of moments with M = 0 and even l2 at given
order O is already given in Eq. (E.1) of [30].

Upon closer inspection, we find that a further reduction in
the number of relevant terms is possible by the condition that
L − l1 is even. This condition can be inferred from the symme-
try properties of the Clebsch-Gordan coefficients CLM

l1m1l2m2
=

(−1)l1+l2−LCL,−M
l1,−m1,l2,−m2

, or more specifically for our case

with M = 0 this becomes CL0
l1ml2,−m = (−1)l1+l2−LCL,0

l1,−m,l2,m
.

These symmetry properties are conveniently derived by
converting the Clebsch-Gordan coefficients to Wigner 3 j
symbols, and using basic symmetry properties of the 3 j sym-
bols [58]. Since we already concluded that l2 is even, the
condition L − l1 even ensures via Eq. (8) that F is a real func-
tion where the dependence on the azimuthal angles is given by
cos[m(ϕe − ϕn)]. With these reductions, only a limited set of
base functions needs to be considered, significantly reducing
the number of components I for a given order O.

Since moments with odd L − l1 are not excited as well, we
conclude that all stationary moments with odd L − l1, nonzero
M, and odd l2 vanish, giving rise to the set (11). The remaining

number of moments (including b00
00) is

I (O) =
O∑

l1=0
even

O∑
l2=0
even

min(O,l1+l2 )∑
L=|l1−l2|

even

1 +
O∑

l1=1
odd

O∑
l2=0
even

min(O,l1+l2 )∑
L=|l1−l2|

odd

1

= 1

8
(4 + 3O + O2)

(
O + 3 + (−1)O

2

)
. (B1)

Compared to the corresponding expression in Ref. [30],
Eq. (B1) provides a very substantial reduction for large O, as
only a fraction (3/14)O−1 of all the ∼(7/12)O4 moments have
to be included in the expansion.

Each of these moments is described by a component of
the vector b introduced in Eq. (9). The length of the vector
b is I (O) − 1 since one of the moments (the normalization) is
constant and must not be included in b. Instead, its effect is
absorbed in d. The number of nonvanishing elements of the
sparse matrix A is about one order of magnitude larger than
I (O).

APPENDIX C: RELAXATION TIMES
OF DIFFUSION-JUMP MODEL

The terminal relaxation times we are interested in govern
the late-stage approach to equilibrium. Therefore, to calculate
effective long-time relaxation times, we consider small devia-
tions from equilibrium and make the ansatz

f (e; t ) = feq(e)[1 + a(t ) · (e − 〈e〉eq )], (C1)

where a is unknown and feq = Z−1
0 exp(he‖) denotes the equi-

librium density with Z0 = 4π sinh(h)/h. We introduce the
short notation 〈A〉eq = ∫

A feqde to indicate averages over the
equilibrium density. The ansatz (C1) satisfies

∫
f (e; t )de = 1,

but is valid only for weak deviations from equilibrium, i.e.,
|a| � 1. We note that replacing Eq. (C1) by the effective field
approximation (EFA) allows to derive closed-form magneti-
zation equations also far from equilibrium [42]. We have used
EFA to derive the magnetization equation for this model in
Ref. [34] with an emphasis on the perpendicular relaxation.
However, since EFA involves stronger assumptions and re-
duces to Eq. (C1) near equilibrium, we here proceed without
using EFA.

With the ansatz (C1), all moments can be expressed in
terms of the unknown vector a,

〈A〉 = 〈A〉eq + (〈Ae〉eq − 〈A〉eq〈e〉eq ) · a. (C2)

In particular, the nonequilibrium magnetization can be ex-
pressed as

〈e〉 = L1ĥ + (
L2 − L2

1

)
a‖ĥ + L1

h
a, (C3)

where the functions Lj = Lj (h) are defined in Appendix A 1.
We have also introduced a‖ = a · ĥ as the component of a
parallel to the applied field. To find closed-form expression
for the magnetization dynamics (13), we also need to express
the second moment in terms of a,

〈ee〉 = [L2 + (L3 − L1L2)a‖]ĥĥ

+ 1

h

[
L1 + (

L2 − L2
1

)
a‖

]
I + L2

h
(ĥa + aĥ), (C4)
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as well as, for r = r(|he‖|),
〈r e e−he‖ 〉 = 〈r ee e−he‖ 〉eq · a = R1a‖ĥ + R2a, (C5)

where R1 = (3I2 − I0)/2, R2 = (I0 − I2)/2 with

In = 〈r en
‖e−he‖ 〉eq = 1

2hn sinh(h)

∫ h

−h
ynr(y)dy. (C6)

Plugging these expressions into Eq. (13) we arrive at

d

dt
m = − 1

τB

[
L1ĥ + (

L2 − L2
1

)
a‖ĥ + L1

h
a

+1

2
(−2L1ĥ + E1a‖ĥ + L2a)

]

− 1

τN
[R1a‖ĥ + R2a], (C7)

with E1 = h(L3 − L2L1) + 2L2 − L2
1 (Appendix A 1). To ar-

rive at a closed-form magnetization equation, we need to
express a in terms of m. From Eq. (C3) we find m⊥ =
(L1/h)a⊥ and m‖ = L1 + (L2 − L2

1 + L1/h)a‖. Thus, a⊥ =
(h/L1)m⊥ and a‖ = (m‖ − meq )/L′

1, where we used the iden-
tity L2 − L2

1 + L1/h = L′
1 from Appendix A 1. Inserting these

relations into Eq. (C7) we can decompose parallel and perpen-
dicular components

d

dt
m‖ = − 1

τ‖
(m‖ − meq ), (C8)

d

dt
m⊥ = − 1

τ⊥
m⊥, (C9)

with relaxation times given by Eq. (14); they depend on the
rate function r. Using Eq. (C6), we find for Arrhenius rates
(r = 1) I2 = R2 = h/[3 sinh(h)]. More generally, we use the
ansatz r(x) = cosh(αx) with parameter 0 � α � 1. For α = 0
this reduces to Arrhenius rate r(x) = 1. For general α we find

I0 = sinh(αh)

α sinh(h)
, (C10)

I2 = 2(α2h2 + 2) sinh(αh) − 4αh cosh(αh)

2α3h2 sinh(h)
, (C11)

R2 = αh cosh(αh) − sinh(αh)

α3h2 sinh(h)
. (C12)

APPENDIX D: NÉEL RELAXATION FROM
DIFFUSION-JUMP MODEL

We here focus on Néel relaxation for large magnetic
anisotropies and consider immobile MNPs, where Brownian
rotations of the particles are suppressed. Within the diffusion-
jump model (12), only magnetization reversals e ↔ −e are
possible in this case. Therefore, we use the ansatz for the
probability density

f (e; t ) = p+(t )δ(e − n) + p−(t )δ(e + n), (D1)

where n denotes direction of the particle’s easy axis. Normal-
ization of the probability density requires p+(t ) + p−(t ) =
1. Note that we here assume all MNPs are frozen with
identical easy-axis direction n. We denote with hn‖ = h · n
the projection of the dimensionless magnetic field onto the

easy-axis direction. With the probability density (D1), the
time-dependent magnetization can be expressed as

〈e〉(t ) =
∫

e f (e; t )de = [2p+(t ) − 1]n, (D2)

and therefore d
dt 〈e〉 = 2 ṗ+n. On the other hand, the Néel

contribution to the magnetization relaxation is obtained from
Eq. (12) in the general form

d

dt
〈e〉 = − 1

τN
〈r(|he‖|) e e−he‖ 〉. (D3)

Evaluating the right-hand side of (D3) with (D1), we arrive at

2 ṗ+ = − r(hn‖)

τN
[2 cosh(hn‖)p+ − ehn‖ ] (D4)

describing a single-exponential relaxation of the magnetiza-
tion with the effective relaxation time

τ eff
N (h) = τN

r(hn‖) cosh(hn‖)
(D5)

strongly decreasing with increasing magnetic field strength.
In order to compare Eq. (D5) to Brown’s classical result, we
consider all MNPs easy axes to be perfectly aligned with
the external field, n‖ = 1, so that the magnetization compo-
nent parallel to the field m‖ = 〈e‖〉 = 〈e〉 · n obeys the same
single-exponential relaxation, with τ eff

N given by Eq. (D5) with
n‖ = 1.

Let us contrast Eq. (D5) with Brown’s result, obtained for
large anisotropy barriers [18] κ � 1,

τN(h) = τNeh2/(4κ )

[1 − h2/(4κ2)]
[

cosh(h) − h
2κ

sinh(h)
] . (D6)

For sufficiently large anisotropies κ � 1 and not too large
fields h/κ � 1, Brown’s result (D6) simplifies to τN(h) ≈
τN/ cosh(h), identical to Eq. (D5) for r = 1. Therefore, we
conclude that the diffusion-jump model recovers the field
dependence of the Néel relaxation in this limit, assuming
Arrhenius activation law, which corresponds to r = 1.

APPENDIX E: REDUCED MOMENT
APPROXIMATION (RMA)

The FP equation (3) for the egg model can be written in the
generic form ∂F/∂t = M̂δS/δF with the Boltzmann-Gibbs-
Shannon entropy S[F ] = − ∫

F ln(F/Feq )de dn and Feq the
Boltzmann equilibrium distribution [59]. The operator M̂ is
identified from the first bracket in the second line of Eq (3).

For the relaxation processes of interest here, we consider
small deviations from equilibrium, F = Feq(1 + �), with
|�| � 1. From the normalization of F we require 〈�〉eq = 0,
where we have introduced the short notation for equilibrium
averages 〈•〉eq = ∫ • Feqde dn. With this ansatz, the entropy
becomes to lowest order S ≈ −(1/2)〈�2〉eq + · · · .

Next, we make the assumption that � can be represented
as a linear combination

� =
n∑

j=1

a j (Xj − 〈Xj〉eq ) (E1)

with given functions Xj = Xj (e, n) and unknown coefficients
a j (t ). By construction 〈�〉eq = 0 as required. With the ansatz
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(E1), the entropy can be expressed as a quadratic form

S = −1

2

∑
i, j

δ〈Xi〉B−1
i j δ〈Xj〉 (E2)

with δ〈Xj〉 = 〈Xj〉 − 〈Xj〉eq and the matrix Bi j defined as

Bi j = 〈XiXj〉eq − 〈Xi〉eq〈Xj〉eq. (E3)

The quadratic entropy (E2) corresponds to Einstein’s fluctu-
ation theory. With Eq. (E2) we can write the time evolution
equations for the moments 〈Xi〉 in vector notation as

d

dt
〈Xi〉 = −

∑
j,k

Mi jB
−1
jk δ〈Xk〉, (E4)

where the elements Mi j = ∫
XiM̂Xjde dn of the matrix M can

be expressed as

Mi j = 1

2τB
〈[LXi] · LXj〉eq + 1

2τD
〈[LeXi] · LeXj〉eq. (E5)

Note that Eq. (E5) is in a form familiar from irreversible
thermodynamics with the friction matrix M and the entropy
gradient B−1 · δ〈X〉 [59]. Since we consider only small de-
viations from equilibrium, we are in the regime of linear
irreversible thermodynamics where the matrix C = M · B−1

is independent of the variables 〈X〉. In the following, our aim
is to find the matrix C and its eigenvalues for the special
choice (17) of the variables X.

1. Matrix coefficients

For N = 3 and the chosen set X1 = e‖, X2 = n‖(e · n),
X3 = n2

‖, the coefficients of the matrix B in Eq. (E3) can be
evaluated as

B11 = L′
1, (E6)

B12 = L′
1

1 + 2S2

3
, (E7)

B22 = 35 + 70S2 + L2(28 + 110S2 + 72S4)

315

− L2
1 (1 + 2S2)2

9
, (E8)

B13 = 2

15
S2(2L1 + 3L3 − 5L1L2), (E9)

B23 = 1

35
[7L1(1 + 2S2) + 2(3S2 + 4S4)L3]

− L1
(1 + 2S2)(1 + 2S2L2)

9
, (E10)

B33 = 7 + 20S2L2 + 8S4L4

35
− (1 + 2S2L2)2

9
, (E11)

where Lj denotes the jth-order Langevin function (Ap-
pendix A 1), and S� the �th alignment order parameter
(Appendix A 2). Evaluating the coefficients of the matrix M
from Eq. (E5) for the current choice of Xj leads to

M11 = L1

τ0h
, (E12)

M12 = (1 + 2S2)L1

3hτB
+ (1 − S2)L1

3hτD
, (E13)

M22 = 1 + 2S2

6τB
+ 1 + 2S2L2

6τD

− 35 + 70S2 + L2(28 + 110S2 + 72S4)

630τ0
, (E14)

M13 = 2

5τB
S2(L1 − L3), (E15)

M23 = (14 + 28S2)L1 − (18S2 + 24S4)L3

105τB
, (E16)

M33 = 2

τB

14 + 10S2L2 − 24S4L4

105
. (E17)

Note that the matrix B as well as M are manifestly symmet-
ric, while C = M · B−1 is not symmetric. With B and M at
hand, C and its eigenvalues can be calculated numerically for
arbitrary values of the model parameters τB, τD, κ , and h.

APPENDIX F: RMA PERTUBATION THEORY

We want to find analytical expressions for the eigenvalues
in the case of weak fields h � 1. Therefore, we expand the
matrix C = M · B−1 around h = 0. Perturbation theory aims
at solving the corresponding eigenvalue problem

C · vk = λkvk, (F1)

considering an expansion of C, λk , and vk in terms of h.
Because we will find that first-order corrections to the eigen-
values are zero, we start with an expansion up to O(h3):

C = C(0) + hC(1) + h2C(2),

vk = v(0)
k + hv(1)

k + h2v(2)
k ,

λk = λ
(0)
k + hλ

(1)
k + h2λ

(2)
k . (F2)

Since eigenvectors are determined only up to an overall con-
stant, we choose the common normalization |vk| = 1. With
the ansatz (F2), it follows that |v(0)

k | = 1 and v(0)
k · v(1)

k = 0,
i.e., the first-order correction should be perpendicular to the
zeroth-order eigenvector. Using this ansatz in the eigenvalue
equation (F1) and insisting that each order o ∈ {0, 1, 2} must
be satisfied separately, the recursive equations determining
the contribution λ

(o)
k to the eigenvalues λk , as well as the

corresponding vectors v(o)
k read as

∀k∈{1,2,3}
o∑

j=0

(
C( j) − λ

( j)
k I

) · vo− j
k = 0. (F3)

The perturbation approach in its simplest form is only applica-
ble for nondegenerate C(0), as long as the eigenvalues of C(0)

do not cross.

1. Zeroth order

In zeroth order o = 0, Eq. (F3) reduces to the eigenvalue
problem in the absence of a magnetic field (C(0) − λ

(0)
k I) ·

v(0)
k = 0. To this end we need to determine the matrix C(0)

upon evaluating C = M · B−1 at h = 0. With B and M from
Eqs. (E6) and (E12), using basic properties of Lj (h) near
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h = 0 (see Appendix A 1), we obtain

C(0) =

⎛
⎜⎝

C(0)
11 C(0)

12 0

0 C(0)
22 0

0 0 C(0)
33

⎞
⎟⎠, (F4)

with

C(0)
11 = τ−1

0 + 3S2

2(1 − S2)τD
, (F5)

C(0)
12 = − 9S2

2
(
1 + S2 − 2S2

2

)
τD

, (F6)

C(0)
22 = τ−1

0 − 3S2

(1 + 2S2)τD
, (F7)

C(0)
33 = 3

τB
. (F8)

The eigensystem of C(0) is

λ
(0)
1 = C(0)

11 , v(0)
1 = ex, u(0)

1 = ey − ex, (F9)

λ
(0)
2 = C(0)

22 , v(0)
2 = ex + ey, u(0)

2 = ey, (F10)

λ
(0)
3 = C(0)

33 , v(0)
3 = ez, u(0)

3 = ez, (F11)

where we have mentioned the left eigenvectors u(0)
k of C(0) for

later use [60]. The decoupling of the magnetization and easy-
axis orientation in the absence of a field is evident from the
orthogonality of the eigenvectors v(0)

1 and v(0)
3 . For the present

case, Eqs. (F9)–(F11) imply

u(0)
1 · v(0)

1 = −1, u(0)
2 · v(0)

2 = u(0)
3 · v(0)

3 = 1. (F12)

Note that the h-independent eigenvalues of C(0) are degener-
ated under certain conditions

S2 = 0 ⇔ λ
(0)
1 = λ

(0)
2 , (F13)

S2 = −2(τB − 2τD)

τB + 4τD
⇔ λ

(0)
1 = λ

(0)
3 , (F14)

S2 = τB − 2τD

τB + 4τD
⇔ λ

(0)
2 = λ

(0)
3 . (F15)

In the limit of small κ � 1 (cf. Appendix A 2), the zeroth-
order eigenvalues behave as

λ
(0)
1 = τ−1

0 + κ

5τD
+ O(κ2), (F16)

λ
(0)
2 = τ−1

0 − 2κ

5τD
+ O(κ2), (F17)

while λ
(0)
3 does not depend on κ .

All three λ
(0)
k are thus identical for τB = 2τD and κ = 0

because S2 = 0 at κ = 0. Depending on the values for τB

and τD, there is in any case a κ value for which two of the
eigenvalues coincide since (τB − 2τD)/(τB + 4τD) ∈ [− 1

2 , 1]
and S2 ∈ [0, 1]. For example, if τB/τD = 3, the eigenvalues
λ

(0)
2 and λ

(0)
3 are identical at κ ≈ 1, and if τB/τD = 1

2 , the
eigenvalues λ

(0)
1 and λ

(0)
3 are identical at κ ≈ 5.

2. First order

To find the first-order effect of a magnetic field on the
eigenvalues λ

(1)
k , we multiply Eq. (F3) for o = 1 by the

left eigenvectors u(0)
k of C(0). This yields u(0)

k · (C(1) − λ
(1)
k ) ·

v(0)
k = 0 or, equivalently,

λ
(1)
k = u(0)

k · C(1) · v(0)
k

u(0)
k · v(0)

k

. (F18)

Note that Eq. (F18) is known as first-order perturbation theory
for the eigenvalues of nonsymmetric matrices [60]. While u(0)

k

and v(0)
k have already been calculated [cf. Eqs. (F9)–(F11)],

we need to derive C(1) to evaluate Eq. (F18).
To this end we expand B = B(0) + hB(1) + O(h2) and

M = M(0) + hM(1) + O(h2). The only nonzero components
of the matrix B(1) are B(1)

13 = B(1)
31 = 4S2/45 and B(1)

23 =
B(1)

32 = 4(1 + 2S2)/135. For the first-order contributions M(1)

we find M (1)
13 = M (1)

31 = 2S2/(15τB) and M (1)
23 = M (1)

32 = 2(1 +
2S2)/(45τB).

Next, we use the ansatz B−1 = B̌0 + hB̌(1) for the left
inverse of the matrix B = B(0) + hB(1) up to linear order in
h. By definition, the left inverse needs to satisfy B−1 · B = I.
To zeroth order in h we find B̌(0) · B(0) = I, i.e., in zeroth order
B̌(0) = (B(0) )−1 is the left inverse of B(0). In first order, we find
B̌(0) · B(1) + B̌(1) · B(0) = 0, so that the first-order contribution
to the inverse can be written as

B̌(1) = −(B(0) )−1 · B(1) · (B(0) )−1. (F19)

Using the explicit expression for the zeroth-order inverse,

(B(0) )−1 =

⎛
⎜⎝

9
2(1−S2 ) − 9

2(1−S2 ) 0

− 9
2(1−S2 )

27
2(1−S2 )(1+2S2 ) 0

0 0 45
4

⎞
⎟⎠, (F20)

we arrive at the simple expression

B̌(1) = 3

2

⎛
⎜⎝

0 0 1

0 0 −3

1 −3 0

⎞
⎟⎠, (F21)

independent of κ . The matrix C(1) is given by the O(h) contri-
bution in M · B−1,

C(1) = M(0) · B̌(1) + M(1) · (B(0) )−1, (F22)

which is of the form

C(1) =

⎛
⎜⎝

0 0 C(1)
13

0 0 C(1)
23

C(1)
31 C(1)

32 0

⎞
⎟⎠ (F23)

with

C(1)
13 = S2

2τ0
, (F24)

C(1)
23 = 1 + 2S2

6τB
− 1 − S2

3τD
, (F25)

C(1)
31 = 1

5τB
, (F26)

C(1)
32 = − 3

5τB
. (F27)
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Inserting these expressions into (F18), using the eigensystem
of C(0) provided by Eqs. (F9)–(F11), gives

λ
(1)
1 = λ

(1)
2 = λ

(1)
3 = 0. (F28)

Therefore, we find that there are no first-order contributions of
the magnetic field to the eigenvalues. Using this latter result,
the first-order version of Eq. (F3) simplifies to

−[
C(0) − λ

(0)
k I

] · v(1)
k = C(1) · v(0)

k . (F29)

This equation will be used to calculate v(1)
k required for the

second-order corrections to λk .
As a consistency check, we can scalar multiply Eq. (F29)

with the left eigenvectors u(0)
k to find the requirement that u(0)

k ·
C(1) · v(0)

k = 0. With u(0)
k found in Eqs. (F9)–(F11), we find

this requirement is indeed satisfied by C(1) given in Eq. (F23).

3. Second order

For the second-order contributions to the eigenvalues, we
scalar multiply the second order o = 2 version of (F3) with
u(0)

k , use u(0)
k · C(0) = λ

(0)
k C(0) as before, to find

λ
(2)
k = u(0)

k · C(1) · v(1)
k + u(0)

k · C(2) · v(0)
k

u(0)
k · v(0)

k

, (F30)

where we made use of λ
(1)
k = 0 according to Eq. (F28). Ex-

tending Eq. (F18), we can interpret Eq. (F30) as second-order
perturbation theory for the eigenvalues of nonsymmetric ma-
trices for the special case of vanishing first-order corrections.
To evaluate this expression, we need the second-order matrix
C(2). Adapting the strategy we used to obtain C(1), or by
Taylor expanding the full expression for C up to h2, it is seen
to be of the form

C(2) =

⎛
⎜⎝

C(2)
11 C(2)

12 0

C(2)
21 C(2)

22 0

0 0 C(2)
33

⎞
⎟⎠. (F31)

Making use of Eq. (F31), we can provide a more explicit
expression for the second-order correction to the eigenvalues

λ
(2)
1 = C(2)

11 − C(2)
21 + (

C(1)
13 − C(1)

23

)
v

(1)
1,z , (F32)

λ
(2)
2 = C(2)

21 + C(2)
22 + C(1)

23 v
(1)
2,z , (F33)

λ
(2)
3 = C(2)

33 + C(1)
31 v

(1)
3,x + C(1)

32 v
(1)
3,y. (F34)

The coefficients of C(2) required in λ
(2)
k are

C(2)
11 − C(2)

21 = 21 − 55S2 + 70S2
2 − 36S4

350τB(1 − S2)

+ 133 − 270S2 + 105S2
2 + 140S3

2 − 108S4

1050τD(1 − S2)2
,

C(2)
21 + C(2)

22 = −7 + 25S2 − 140S2
2 + 108S4

525τB(1 + 2S2)

+ 21 + 85S2 + 70S2
2 − 140S3

2 − 36S4

175τD(1 + 2S2)2
,

C(2)
33 = 7 + 2S2

35τB
, (F35)

where we recall that S� = S�(κ ) is the �th alignment order
parameter (Appendix A 2).

The additional contribution in Eq. (F30) involves the first-
order correction to the eigenvectors v(1)

k . They can be obtained
from Eq. (F29), where the right-hand side reads as

C(1) · v(0)
k =

⎧⎪⎨
⎪⎩

(
0, 0,C(1)

31

)
, k = 1(

0, 0,C(1)
31 + C(1)

32

)
, k = 2(

C(1)
13 ,C(1)

23 , 0
)
, k = 3.

(F36)

Requiring in addition that v(1)
k · v(0)

k = 0, there are as many
unknowns as independent equations upon inserting Eq. (F36)
into Eq. (F29). The solution reads as

v(1)
1 =

(
0, 0,− C(1)

31

λ0
3 − λ0

1

)T

, (F37)

v(1)
2 =

(
0, 0,−C(1)

31 + C(1)
32

λ0
3 − λ0

2

)T

, (F38)

v(1)
3 =

(
v

(1)
3,x,

C(1)
23

λ0
3 − λ0

2

, 0

)T

, (F39)

with v
(1)
3,x given by

v
(1)
3,x = C(0)

12 C(1)
23 − C(1)

13

(
λ

(0)
2 − λ

(0)
3

)
(
λ

(0)
1 − λ

(0)
3

)(
λ

(0)
2 − λ

(0)
3

) . (F40)

Note that all components of v(1)
k required in the expression

(F32)–(F34) for λ
(2)
k turn out to be nonzero, while all others

vanish. Note also that the second-order expansion results are
only applicable as long as the zeroth-order eigenvalues do
not cross. The crossing conditions were stated in Eqs. (F13)–
(F15).

If we now insert the v(1)
k from Eqs. (F37)–(F39) into

Eqs. (F32)–(F34), making use of the coefficients of the ma-
trices C(1) and C(2), Eqs. (F24)–(F27) and (F35), we end
up with relatively long but explicit expressions for λ

(2)
k .

The λ
(2)
k does not apply for τB = 2τD and κ = 0, and thus

cannot be Taylor expanded about κ = 0, as discussed in Ap-
pendix F 1, except if we stay away from this region. Assuming
τB � 2τD,

λ
(2)
1 = 19

150τD
− 4(τB + 43τD)κ

7875τBτD
+ O(τD/τB), (F41)

λ
(2)
2 = 3

25τD
+ 2(τB + 43τD)κ

2625τBτD
+ O(τD/τB), (F42)

λ
(2)
3 = − 3τD

10τ 2
B

− 2κ

105τB
+ O(τD/τB)2, (F43)

up to terms O(κ2). In the opposite limit of small τB � 2τD,

λ
(2)
1 = 23

300τB
− 239

15750

κ

τB
+ O(τB/τD), (F44)

λ
(2)
2 = 1

50τB
+ 16

2625

κ

τB
+ O(τB/τD), (F45)

λ
(2)
3 = 3

20τB
+ 1

1050

κ

τB
+ O(τB/τD), (F46)
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up to terms O(κ2), again with the help of Appendix A 2. These
second-order corrections to λk = λ

(0)
k + h2λ

(2)
k serve to ex-

plain the qualitative behavior of the eigenvalues with respect

to all parameters at small h and κ . All but λ
(2)
3 at τB � τD tend

to be positive, in agreement with both the numerical RMA and
the solution of the FP equation.
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