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Abstract 

Insects are integral to many ecosystem services, including pollination of crops by insect 

pollinators and control of pests by natural enemies (i.e. predators and parasites). These 

beneficial insects are suffering widespread declines, partly due to agricultural expansion and 

intensification. We must therefore change the management of agricultural landscapes to 

preserve these ecosystem services and the resilience of the systems that depend on them. To 

make such changes, we first need to understand the relationships between landscapes, 

beneficial insect communities and the delivery of the services they provide. This thesis focuses 

on analysing novel combinations of large-scale spatial datasets to explore these relationships.  

Firstly, a ten-year time-series of wheat yield data was analysed in conjunction with satellite-

derived land cover data to explore national-scale relationships between crop yield resilience 

and landscape structure. Whilst relative yield was highest in landscapes dominated by arable 

land, stability and resistance were promoted by semi-natural habitats. Secondly, data from 

biological recording schemes were used to construct potential plant-pollinator networks 

across Great Britain and explore relationships between network structure and land cover. 

Networks were most robust to simulated extinctions in highly agricultural landscapes, because 

they supported distinctive, generalist pollinator communities. Finally, data on land cover and 

cropping patterns were used to develop a range of scenarios of agricultural change. These 

were linked to beneficial insect richness and functional diversity using species distribution 

models based on biological records. Scenarios involving restoration of semi-natural grasslands 

increased the richness and functional diversity of beneficial insects, even if cropped land 

remained intensive.  

The findings presented in this thesis demonstrate the value of combining and modelling spatial 

data in exploring insect-delivered ecosystem services. Whilst there is much scope for further 

work, including integration with experimental data, spatial modelling remains key to providing 

the large-scale evidence required by policy makers and agricultural land managers. 
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Chapter 1: Introduction 

This thesis describes the novel analysis of existing datasets to explore spatial and temporal 

patterns in insect-delivered ecosystem services and the natural capital that underpins them. 

This introductory chapter outlines the importance of insect-delivered ecosystem services to 

global food production systems, explores the need for an understanding of spatial and 

temporal patterns in attempting to ensure the present and future delivery of these services, 

and summarises the value which integrating existing spatial datasets using new modelling 

approaches can bring to addressing key knowledge gaps. The chapter concludes with an 

overview of the thesis aims and a brief outline of the subsequent chapters. 

1.1 The importance of insect-delivered ecosystem services 

Ecosystem services are the benefits that humans derive from ecosystems (Mace et al. 2012). 

These are wide ranging, from the production of goods such as timber, to the provision of 

drinking water and the capture of nutrients from aquatic (e.g. sediment runoff) or atmospheric 

(e.g. CO2) systems, to the pollination of crops and natural regulation of pests and pathogens. 

Use of the ecosystem service concept in science and policy has developed over the last 50 

years (Bouwma et al. 2018), with a particular focus arising in the early 21st century from the 

Millennium Ecosystem Assessment (MA 2005). Ecosystem services are now widely used as a 

framework within which to assess likely impacts of environmental change in socioeconomic 

terms and to provide a rationale for conservation (Tallis et al. 2008, Braat and de Groot 2012, 

Bouwma et al. 2018). If ecosystem services are to be useful as a concept then it is vital to be 

able to map and model their current delivery and responses to potential environmental 

change (Malinga et al. 2015). Recent environmental policy has in many cases included 

aspirations to accurately quantify and map ecosystem services in order to improve 

environmental management, at both international (European Commission 2011, Maes et al. 

2012) and national scales (Defra 2018a). 

Whilst some ecosystem services are largely driven by hydrological or geological factors, many 

are very much linked to groups of species with a specific ecological function. As insects are the 

most speciose, diverse and abundant group of animal life on land (Grimaldi et al. 2005) it is 

unsurprising that they are integral to many of these services (Losey and Vaughan 2006).  
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Whilst there are many other ecosystem services mediated, or at least affected by, insects - 

decomposition of waste (Yang and Gratton 2014), predation of human disease vectors 

(Shaalan and Canyon 2009), contribution to human diets (Van Huis 2013), etc - the focus of 

this thesis is on two of the most widely studied and relevant to agricultural systems: 

pollination of crops by insect pollinators and natural control of agricultural pests by insect 

predators and parasitoids (collectively termed ‘natural enemies’). The stocks of natural assets 

which provide ecosystem services are often termed ‘natural capital’ (Costanza et al. 1997, 

Perrings et al. 2006, Helm 2015) and are often used as a proxy for ecosystem services 

themselves where these are difficult to quantify. In the case of this thesis, the natural capital in 

question is the biodiversity of insect pollinators and pest-controllers (collectively ‘beneficial 

insects’ from hereon). It should be noted that exactly which aspects of beneficial insect 

biodiversity are most strongly related to actual ecosystem service delivery is complex and 

context dependent (Mace et al. 2012), an issue which will be revisited in subsequent chapters 

throughout this thesis.  

In recent decades, a wide variety of studies have highlighted the importance of insect 

pollinators to crop production (Free 1993, Allen-Wardell et al. 1998, Klein et al. 2007, Winfree 

2008, Eilers et al. 2011, Garratt et al. 2014) and wild plant communities (Ollerton et al. 2011). 

Animal-mediated pollination services (dominated by insects) have been valued at US$235-577 

billion (Lautenbach et al. 2012). They are estimated to affect yield or quality for 75% of globally 

important crop types (Klein et al. 2007, Gallai et al. 2009) and are vital to crops providing key 

micronutrients (Eilers et al. 2011). Natural control of crop pests has similar global significance 

(Losey and Vaughan 2006) valued at US$400 billion (Costanza et al. 1997), with particular 

importance in specific cropping systems (e.g. Schroth and Harvey 2007, Colloff et al. 2013, 

Classen et al. 2014, Wotton et al. 2019). 

At the same time, it has become widely recognised that both of these services are under 

threat. Widespread declines are evident in many insect groups (Kluser and Peduzzi 2007, Potts 

et al. 2010, Oliver et al. 2015b, Sánchez-Bayo and Wyckhuys 2019). While debate continues 

over the global extent and severity of these declines (Cardoso and Leather 2019, Montgomery 

et al. 2019, Saunders et al. 2019), there are indications that deficits in the services provided by 

insects in specific systems are either already occurring (Garibaldi et al. 2011, Gill et al. 2016) or 

imminent (Aizen et al. 2008), and that action is required to prevent these from worsening 

(Forister et al. 2019, Saunders 2019). Given the benefits that the services of crop pollination 

and crop pest-control confer on agricultural crops, it is ironic that the expansion and 

intensification of agricultural land that has dominated global patterns of land use change over 
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the past 100 years (Goldewijk 2001, Lambin et al. 2001, Foley et al. 2005, Green et al. 2005, 

Lambin and Meyfroidt 2011) has historically been associated with largely negative effects on 

biodiversity, including insects (Allen-Wardell et al. 1998, Foley et al. 2005, Kluser and Peduzzi 

2007, Potts et al. 2010, Ollerton et al. 2014), and on the services they provide (Allen-Wardell et 

al. 1998, Kremen et al. 2002, Vanbergen et al. 2013, Oliver et al. 2015b). With human 

populations projected to continue to rise over the next few decades, concerns over food 

security mean that agricultural production must increase (Godfray et al. 2010) but without 

continued negative impact on beneficial insects. The understanding that agricultural 

production is underpinned by ecosystem services which are suboptimal in many current, 

intensive agricultural systems, coupled with observations that the ability of technological 

advances to enhance crop yields appears to have plateaued in many systems (Grassini et al. 

2013), has led to the proposal of so-called “ecological” or “sustainable” intensification. This 

involves using farming practices that promote natural capital and/or optimise ecosystem 

service delivery to enhance our ability to both provide food and reduce the environmental 

footprint of agriculture (Cassman 1999, Bommarco et al. 2013, Landis 2017, Kleijn et al. 2019). 

Although there is a growing evidence base that it is possible to both identify and successfully 

implement such practices (e.g. Pywell et al. 2015, Fusser et al. 2016, Tschumi et al. 2016b, 

Woodcock et al. 2016a, and other examples in Kleijn et al. 2019), there are several gaps in our 

understanding of the interaction between agricultural practices and landscapes, insect 

populations and ecosystem service delivery which are currently preventing widespread uptake 

of these practices in mainstream agriculture (Kleijn et al. 2019). 

1.2 Knowledge gaps in protecting insect-delivered ecosystem services 

Insect-delivered ecosystem services are hard to quantify and model because of the inherent 

complexity of ecological systems (Hortal et al. 2015) and the multiple trophic or mutualistic 

interactions on which service delivery depends. Provision of pollination and pest-control 

services are influenced by processes operating over a wide range of spatial scales and levels of 

ecological organisation, from behaviours of individual organisms, to traits of species, 

interactions within communities and large-scale trends in populations. Recent reviews 

(Vanbergen et al. 2013, Gill et al. 2016, Potts et al. 2016) have sought to identify key 

knowledge gaps which need to be addressed if we are to continue to derive our current level 

of service from beneficial insects under future environmental change or increase the uptake of 

sustainable intensification approaches (Kleijn et al. 2019). Such knowledge gaps can be broadly 

divided into three groups: i) the fundamental ecology of beneficial insects (e.g. how beneficial 

insect communities are structured in terms of the interactions between plants and pollinators 
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and crop pests and their natural enemies, and how the ecological networks formed by these 

interactions respond to environmental context and change); ii) linking the natural capital of 

beneficial insect biodiversity to provision of ecosystem services (e.g. how insect species 

richness, abundance and diversity relate to spatial and temporal variation in service delivery 

and agricultural outputs); iii) the impacts of environmental change on beneficial insects and 

thus service delivery (e.g. pressures such as climate or land use change or benefits of proposed 

management and conservation actions). Many of these knowledge gaps are symptomatic of 

wider knowledge shortfalls in ecology as identified by Hortal et al. (2015), reflecting 

deficiencies in ecological data, understanding and theory, or mismatches between the spatial 

and temporal scales at which we can undertake experimental analyses and those at which 

service delivery occurs, management practices are implemented and policies are formulated 

(Hortal et al. 2015). 

1.3 Data integration and spatial modelling  

Some of these knowledge gaps can only be fully addressed with additional data at spatial, 

temporal or taxonomic resolutions which are as yet unavailable. Whilst there are ongoing 

advances in novel approaches to obtaining these data, such as large-scale analysis of 

organismal or environmental DNA (Kress et al. 2015) and/or automated analysis from sensor 

networks (Zaks and Kucharik 2011, Bush et al. 2017), there is also a key role for maximising the 

value of existing data. Indeed, we may be unable to target new data collection campaigns 

effectively and fully realise their value if we have not first understood the patterns in our 

current datasets and the issues which constrain our interpretation of them. There are a wide 

range of existing datasets which can be used to contribute to our knowledge on insect-

delivered ecosystem services, if combined and analysed in novel ways. These datasets include 

data from citizen science programmes (Powney and Isaac 2015), earth observation platforms 

such as satellites (Rocchini et al. 2016, Pettorelli et al. 2018), large-scale surveys, precision 

agricultural data (Zhang et al. 2002, Gebbers and Adamchuk 2010, Field et al. 2016, Lindblom 

et al. 2017) and the collation of stakeholder knowledge and opinion (Raum 2018). Such 

datasets frequently have the advantage of having large spatial and temporal coverages which 

are virtually impossible to duplicate via traditional ecological survey methods and are thus 

invaluable for exploring patterns over time and space. Many of the traditional challenges of 

integrating datasets which may have originally been collected for quite different purposes (e.g. 

volume of data, processing time and differing formats) are now surmountable given advances 

in information technology and the development of a plethora of statistical and analytical 

methods and software. These ‘big data’ approaches (Hampton et al. 2013, Soranno and 
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Schimel 2014) are potentially particularly valuable in exploring insect delivered ecosystem 

services, as agricultural policy and practice are formulated and implemented over a range of 

spatial scales, from individual fields to farms, farmland landscapes and national patterns 

(Bullock et al. 2017). Agricultural systems are also highly variable and dynamic over space and 

time (exemplified in the wide range of variation in crop rotation, timing and type of 

agricultural management and landscape context found within a single, small country such as 

the UK). This has led to many experimental findings at a field- or farm-scale being non-

representative of national-scale impacts or not transferable between contexts (e.g. Tscharntke 

et al. 2016). By encompassing larger spatial and temporal extents, ‘big data’ approaches have a 

greater capacity to generate transferable and robust results or to at least to explore how 

patterns vary over space and time and thus quantify the uncertainty associated with making 

predictions on ecosystem components and processes underpinning service delivery. Of course, 

there is an inherent trade-off in such approaches between the generality of their findings (e.g. 

spatial and temporal extent of analyses) and the uncertainty associated with them (e.g. ability 

to predict ecological processes and mechanisms at a given location) (Hortal et al. 2015). 

However, they have a valuable role alongside experimental data in contributing to the 

evidence syntheses underpinning policy and management decisions (Shackelford et al. 2019) 

and our ability to design sustainable agricultural landscapes (Landis 2017).  

1.4 Thesis aims and outline 

The work described in this thesis has the overarching objective of exploring spatial and 

temporal patterns of insect-delivered ecosystem services and their relationships with 

landscape structure. The approach is to use existing spatial datasets from a wide range of 

sources and combine these through novel analyses. I use the island of Great Britain (GB, i.e. 

the UK excluding Northern Ireland) as an example system, partly because of the wealth of 

spatial datasets on GB land cover, land use and biodiversity but also because it is a useful case 

study in several ways: 1) GB has a broad range of agricultural practices and landscapes. It thus 

forms a good test case for seeking to explore how such variation affects insect-delivered 

ecosystem services; 2) Most of GB is (and has long been) under some form of agricultural 

management, be that the intensive arable farming of lowland England or the grazing of semi-

natural grasslands in the uplands of Wales; 3) GB is known to have undergone (and is probably 

still undergoing) declines in insect populations, with subsequent concerns over the 

sustainability of ecosystem service delivery (Ollerton et al. 2014, Oliver et al. 2015b, Powney et 

al. 2019); 4) GB is at a pivotal time for agriculture and its environmental impacts, with ongoing 

reforms of agricultural policy which explicitly acknowledge the role of natural capital (Defra 
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2018a). I here outline the structure of the subsequent chapters, with one review and three 

analytical chapters, each focussing on a particular knowledge gap where combining existing 

spatial datasets had the potential to shed light on aspects of insect-delivered ecosystem 

services.  

Chapter 2 reviews some of the complexities surrounding the concept of ‘resilience’ in the 

context of insect-delivered ecosystem services and their relationships with agricultural 

production. Throughout much recent literature there is a particular emphasis placed on the 

role of ecosystem services in ensuring the resilience of agriculture (GFS 2015, Bullock et al. 

2017), and a similar emphasis placed on the role of biodiversity (i.e. abundant, speciose or 

taxonomically or functionally diverse insect communities) in maintaining resilient ecosystem 

services (Oliver et al. 2015a, Oliver et al. 2015b). This chapter explores the use of resilience as 

a term in research and policy, and the considerable debate over its definition, usefulness, and 

quantifiability. I conclude with a working definition and potential ways in which to quantify 

resilience, which are then used in the subsequent analytical chapters.  

Chapter 3 explores the extent to which spatial and temporal variation in crop yields are 

mediated by the distribution of beneficial insects and the habitats which support them (Potts 

et al. 2016, Woodcock et al. 2016a). Whilst beneficial insect populations and communities 

have been demonstrated to show relationships with landscape composition and configuration 

(Chaplin-Kramer et al. 2011, Blitzer et al. 2012, Potts et al. 2016, Woodcock et al. 2016a), the 

links between landscape and actual service delivery and the resultant changes in crop yield are 

harder to observe. Where this has been achieved, results have been more variable (Holland et 

al. 2016, Holland et al. 2017, Karp et al. 2018) and tend to focus on overall yield rather than 

exploring temporal variability (Martin et al. 2016, Martin et al. 2019). I used a ten-year time 

series of spatially-explicit data from a national survey of crop yields in England (Defra 2012), in 

combination with information on landscape composition and configuration derived from 

remotely sensed habitat maps, to explore the influence that the landscape has on crop yield 

resilience (as determined by three metrics) at larger spatial scales (10 km × 10km, i.e. ‘hectad’, 

resolution). The results showed that the influence of landscape context varies based on the 

precise metric of resilience chosen, with a general trend of increasing importance of semi-

natural habitat (generally associated with increased abundance and richness of beneficial 

insects) and decreasing importance of arable land as resilience metrics were derived from 

shorter portions of the time series. 
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Chapter 4 explores national scale patterns in the structure and stability of plant-pollinator 

networks under potential environmental change (Gill et al. 2016). Whilst analysis of plant–

pollinator networks has provided many valuable insights into how the ecosystem service of 

pollination is mediated by the structure of the plant and pollinator communities and their 

interactions, studies traditionally rely on obtaining well‐characterised networks from field 

surveys, which are time consuming and costly to construct (Vázquez et al. 2009, Burkle and 

Alarcón 2011). There is thus a lack of information on ecological interactions across larger 

spatial, temporal and taxonomic scales (Hortal et al. 2015). I used citizen science data to 

construct a plant-pollinator interactions database and modelled plant and pollinator 

communities at hectad scale across GB. This enabled the construction of a potential plant–

pollinator network for each hectad, followed by calculation of a series of metrics of network 

structure and robustness to simulated plant extinctions. The results showed positive 

relationships between agricultural land cover and both pollinator generality and robustness to 

extinctions under several extinction scenarios. The results also showed that crop‐pollinator 

networks are significantly more robust to simulated extinction scenarios than overall 

networks, supporting the contention of Kleijn et al. (2015) that strategies and initiatives based 

entirely on maintaining ecosystem services to crops may provide insufficient protection for 

wild pollinator communities overall. 

Chapter 5 looks to the future, exploring the responses of beneficial insect communities to past, 

current and predicted future changes in land use (Vanbergen et al. 2013, Gill et al. 2016, Potts 

et al. 2016). I used citizen science data to build predictive species distribution models for a 

wide range of pollinator and natural enemy species, based on current spatial patterns in land 

cover, cropping patterns and climate data. I then constructed a series of spatially explicit 

future scenarios of change in land cover type and land use intensity, which could be applied 

separately or in combination, and explored their impacts on beneficial insect species richness 

and functional diversity. The results showed a wide range of possible consequences for 

beneficial insect species richness and functional diversity in the context of GB land use change. 

The results have a bearing on current conservation policy targets – for example, the models 

predicted that current policies aimed at restoring semi-natural grassland would increase 

richness and functional diversity of both pollinators and natural enemies, even if agricultural 

practices remain intensive on cropped land, whilst any expansion of arable land is likely to be 

accompanied by further declines in richness and functional diversity of beneficial insects, even 

if cropping practices become less intensive.  
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Chapter 6 discusses the implications of the results of the preceding three chapters for the 

management of landscapes for beneficial insects and insect-delivered ecosystem services, in 

the context of GB agricultural and conservation policy. I also outline some of the key benefits 

and remaining challenges of the approach to integrating spatial datasets taken by this thesis.  

 
Figure 1.1 Two beneficial insects which deliver ecosystem services in GB agricultural 

landscapes. On the left, a solitary bee (Andrena flavipes) pollinates a pear tree. On the right, a 

ladybird (Adalia decempunctata) hunts for aphids. Images credit J. Redhead. 
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Chapter 2: A review of resilience concepts and metrics in 

agriculture and ecosystem services  

When considering management or protection of ecosystem services in agricultural systems, 

the term ‘resilience’ is often encountered. This can be applied to the ecological systems of 

which beneficial insects form an integral part, the ecosystem services they provide or the 

agricultural system which these services benefit. Because the concept of resilience has evolved 

over several decades of ecological research, and remains the subject of controversy, it 

warrants further exploration to come to a working definition and some key metrics of 

resilience for use in for subsequent chapters. 

2.1. Origins of resilience in ecology 

Resilience outside of scientific usage describes the ability to recover quickly or easily from, or 

resist being affected by, a misfortune or shock (OED Online 2017). Within scientific parlance, 

resilience has long been in use in materials science to describe the energy required to deform 

a material to its elastic limit (e.g. Rankine 1876). In the early part of the 20th century, the term 

was used in psychology to describe the capacity for individuals to experience a positive 

outcome despite undergoing a negative experience, the most frequently researched example 

being childhood traumas (Rutter 1999, Tugade and Fredrickson 2004, Campbell-Sills et al. 

2006). In this context, resilience is not a single character trait, but rather an emergent property 

recognisable by its outcome (Rutter 1999). The source of what is now termed the classical 

definition of ecological resilience is usually attributed to a seminal paper by Holling (1973), in 

response to varying outcomes from mathematical models exploring the link between 

biological diversity and stability (MacArthur 1955, Elton 1958, Lewontin 1969, May 1971). 

Holling recognized that ecosystems were complex, dynamic systems which could not be 

assumed to be in equilibrium. Therefore, definitions of stability pertaining to fluctuation 

around, or return to, an equilibrium state would be insufficient to adequately describe 

ecological systems. Instead, ‘engineering resilience’, which focuses on spatially or temporally 

localised stability, should be contrasted with ‘ecological resilience’, which encompasses the 

persistence of an ecological system over time and its ability to absorb change and disturbance 

and still maintain relationships between system variables – such as the populations of species,  

ecological processes or ecosystem functions (Holling 1973, Holling 1996). As in psychological 

definitions, ecological resilience was seen as an emergent property of a system, arising via 

multiple potential mechanisms and identifiable by its result in terms of persistence of an 

ecological system. Because systems can be highly stable (show little fluctuation) but non-
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resilient (have poor prospects for long-term persistence), the traditional focus of ecosystem 

management on stability (e.g. consistent populations or yields) risked undermining resilience 

and the potential for sudden and unpredictable collapse. Such collapses could be caused by 

the system shifting from one ‘alternative stable state’ to another (Lewontin 1969). Examples 

are a lake shifting from a clear- to a turbid-water state because of long-term changes in 

nutrient balances, or of a savannah from a grass- to a shrub-dominated community as a result 

of overgrazing. In both cases, the actual trigger for change lies within the range of 

environmental stochasticity usually experienced by the system, but the sensitivity of the 

system to the disturbance and/or its ability to resist, recover or reconfigure itself (collectively, 

its resilience) has been gradually eroded, resulting in a change in state. Once a system has 

shifted state, resilience of the new state may make restoration extremely difficult (Troell et al. 

2005). These alternative stable states were originally illustrated with the system as a ball lying 

on a topographically varied surface, the ‘landscape’ of which represents the varying resilience 

of the system (Fig. 2.1), with ‘basins’ or ‘domains’ of attraction indicating the different states 

the system can occupy (Lewontin 1969). Although conceptually useful, this masks several 

important aspects of resilience including the potential for very different mechanisms 

governing the dimensions of the basins of attraction and the potential for systems to take 

different paths between change and recovery (‘hysteresis’) (Beisner et al. 2003, Standish et al. 

2014).  

 

Figure 2.1. Schematic visualising resilience as a topographic landscape, adapted from Standish 

et al. (2014). The x-axis represents variation in state space (divided by vertical dashed lines into 

desirable, degraded and collapsed based on ecosystem function). The black ball represents a 

system, whilst the blue line represents the resilience ‘landscape’, with each ‘basin’ being a state 

the system can occupy: A) a functionally desirable state which is relatively unstable but with 

high resilience; B) an alternative state with similar function but higher stability and lower 

resilience; C) has intermediate stability and resilience but reduced function; D) collapse to a 

state with low function, low stability and high (unhelpful) resilience.  
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Over the next three decades, the concept of ecological resilience gradually grew in prominence 

(Gunderson and Allen 2010), following a variety of paths (Curtin and Parker 2014). Initially, 

many studies focussed on identifying ecological systems demonstrating alternative stable 

states (see reviews in Beisner et al. (2003); Carpenter et al. (2003); Folke et al. (2004); 

Schröder et al. (2005) and collected examples in Gunderson et al. (2010)). Other foci included 

the mechanisms underpinning resilience, including the importance of cross-scale interactions 

(Peterson et al. 1998, Sendzimir et al. 2002), extending the original concepts into heuristic 

models of ecological systems (Holling 1986, 2001, Gunderson and Holling 2002, Walker et al. 

2006) and developing management and policy approaches based on ecological resilience 

concepts (e.g. Walters and Hilborn 1978).  

As a result of these different streams of research and the complexities around defining and 

quantifying ecological resilience in different situations, by the end of the 20th century, 

ecological resilience was in a contentious position. Grimm and Wissel (1997) found multiple 

definitions of ecological resilience in the literature, including many uses of the engineering 

definition (e.g. Pimm 1984). Such findings stimulated ongoing debate over how to define 

resilience, from a property that should be quantified by standardised measures to a useful 

metaphor without a precise definition (Carpenter et al. 2001, Brand and Jax 2007, Standish et 

al. 2014, Newton 2016). Although the prevalence of resilience concepts in ecological research 

has continued to grow over the first decades of the 21st century (Myers-Smith et al. 2012, 

Ingrisch and Bahn 2018, Kéfi et al. 2019), a lack of widely accepted consensus remains. Many 

papers have used the term without definition or interpreted their results in a way inconsistent 

with their chosen definition (Myers-Smith et al. 2012). As a result, whilst the general concept 

of ecological resilience has been widely accepted, its usefulness in practice has remained 

contentious, especially in terms of its transition into policy (Klein et al. 2003, Brand and Jax 

2007, Béné et al. 2012, Standish et al. 2014, Donohue et al. 2016, Newton 2016). 

2.2. Resilience in agricultural and ecological policy 

In a world which we know to be undergoing severe environmental changes it should be more 

efficient and less risky to build or preserve resilience in ecological systems rather than having 

to undo detrimental changes once they have occurred. Oliver et al. (2015a) simplify this by 

analogy into monitoring whether a bridge is still standing, as opposed to monitoring key 

parameters indicating its stability and making repairs. Of course, a bridge is an artificial 

structure for which we know exactly what parameters to monitor, how to repair damage if we 

find it and what the risks are of not doing so. None of these are necessarily true in ecological 

systems. Nevertheless, such compelling analogies are easily grasped and probably one of the 
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reasons that the concept of building resilience has been integrated into a wide range of 

national and international policies in ecological and socioecological fields (Thompson et al. 

2009, Defra 2011, European Commision 2012, IPCC 2014, CBD 2017). A further reason is the 

generally positive and pro-active vocabulary surrounding resilience (Sudmeier-Rieux 2014, 

Béné et al. 2016, Newton 2016). Agriculture in particular has seen a widespread uptake of 

resilience as a key goal of policy and research (Bennett et al. 2014, Reddy 2015, Tendall et al. 

2015, Wilson and Lovell 2016, Bullock et al. 2017). Agricultural production is easily visualised 

as being underpinned by complex processes which regulate its vulnerability to environmental 

perturbation, since it involves the management of living organisms in open systems and 

because the effects of environmental perturbations such as floods, droughts, pests and 

diseases have an immediate and easily seen impact on food production and farmer’s 

livelihoods. In an agricultural context, resilience is often paired with sustainability (e.g. Brand 

2009, Wilson and Lovell 2016) although there some overlap between the terms and, indeed, it 

is difficult to conceptualise a sustainable system that is not resilient or vice versa. Agriculture 

has also, especially in recent years, seen a focussing of resilience concepts around the concept 

of sustainable intensification, with an emphasis that enhancing biodiversity will enhance 

functional diversity and redundancy which in turn decreases the likelihood of a given 

ecosystem service suffering declines under environmental perturbation (Oliver et al. 2015a, 

Oliver et al. 2015b, Kleijn et al. 2019). Whether this is necessarily the case is the subject of 

much debate and ongoing research. 

The widespread transition of resilience from ecological to policy contexts is not without 

potential pitfalls (Klein et al. 2003, Brand and Jax 2007, Brand 2009, Béné et al. 2012, Béné et 

al. 2016, Newton 2016). Although the term has a vernacular meaning and is readily explained 

by analogy, its precise definition in ecological terms remains contentious (Myers-Smith et al. 

2012, Donohue et al. 2016). A general commitment to resilience-building, but without any 

means by which this can be measured over the large spatial and short temporal scales within 

which policies tend to be framed (Béné et al. 2016) is likely to be, at best, a waste of time. At 

worst, it may lead to the neglect of components of the system the policy is supposed to 

protect (Standish et al. 2014). Examples include the potential for failure of overly resilience-

oriented management to address the mechanisms of biodiversity loss (Newton 2016) or 

poverty (Béné et al. 2012) because the view of resilience around which the policy is built 

neglects these specific components of the system. A further issue is that policies seldom 

acknowledge that resilience is not necessarily positive. This is understandable, as the 

vernacular and psychological usages of the term focus on positive outcomes under challenging 
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circumstances. However, the potential for systems (both ecological and socioeconomic) to 

become entrenched in undesirable states despite efforts to change them (Holling 2001, Walker 

et al. 2006) is widely recognised (Béné et al. 2012, Béné et al. 2016, Redhead et al. 2018a). For 

example, the current reliance of intensive agriculture on prophylactic use of synthetic 

pesticides simultaneously damages resilience of the agricultural system as a whole (via 

detrimental impacts on beneficial insects and creating resistant pests), masks declines in 

resilience of crop production (by insulating it from environmental factors) and, as a farming 

paradigm, is proving highly resilient to change despite mounting evidence of its long-term 

unsustainability (Wilson and Tisdell 2001). 

2.3. Functional resilience and the resilience of ecosystem services  

The context of ecosystem services may help to simplify some of the complexities around 

defining and quantifying resilience in agricultural systems. The integration of the concepts of 

ecosystem services and of ecological resilience has a long history. Holling (1973) cited 

examples of timber and fisheries management, which would now be classed as ecosystem 

services, noting that the most resilient systems were not necessarily the most biodiverse nor 

those with highest levels of service delivery, whilst  Peterson et al. (1998) stated the 

importance of resilience to “the services that support humanity and other life”. 

To be meaningful, it is important that any assessment of resilience states the “resilience of 

what, to what” (Carpenter et al. 2001, Cumming et al. 2005, Hodgson et al. 2015, Quinlan et al. 

2016). In practice, this means defining the system state under examination, the disturbances 

to which resilience is being assessed and the temporal and spatial scales over which this is 

being performed. However, deciding which variables define the system state and drive its 

resilience remains challenging. Many drivers of resilience are likely to be ‘slow’ variables 

(Carpenter et al. 2001), where changes occur over long timescales and are difficult to detect. 

By the time the importance of such variables has been recognised, resilience may have been 

undermined to a degree that state change is inevitable (Carpenter et al. 2001). In many 

ecological systems, the only way to identify a threshold may be to cross it (Carpenter et al. 

2003). Because of these issues, Cumming et al. (2005) suggested a change of emphasis from 

system structures, processes and states to system identity. This could then be based on a 

relatively few key variables describing the system state, be they related to species, 

communities or ecological processes. Crucially, as resilience concepts have developed, 

ecosystem functions have become recognized as an aspect by which to define the identity of 

system for which resilience is being assessed. Ecosystem functions can often be directly linked 

to ecosystem services. This is very much the case for insect-delivered ecosystem services, as 
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pollinating and pest-controlling insects are readily identifiable as key functional groups 

involved in delivering them. In many cases, the ecosystem functions which determine system 

identify can be selected on the basis of an overarching goal of maintaining ecosystem service 

delivery. For example, the identity of resilient systems in the context of food security is 

determined by multiple ecological functions including pollination, pest-control and soil health 

(Béné et al. 2016, Bullock et al. 2017). These operate over a wide range of spatial scales and 

levels of ecological organisation (Bullock et al. 2017, Kéfi et al. 2019), from fields, to farms, 

landscapes, regions, nations and the global food system as a whole. Whether resilience is 

helpful or unhelpful and the practices we might use to promote resilience where desirable 

become much easier to define when focussing on a single scale and set of functions. This also 

helps us to be explicit about which ecosystem parameters are of interest (Cumming et al. 

2005) and aids in selecting likely indicators or surrogates of resilience. For example, we can use 

experimental evidence to infer relationships between the abundance, richness, diversity or 

traits of known functional groups and particular aspects of resilience of function (Folke et al. 

2004, Fischer et al. 2006, Van Ruijven and Berendse 2010, Allan et al. 2011, Gallagher et al. 

2013, Mouillot et al. 2013, Isbell et al. 2015, Oliver et al. 2015b). Field experiments have 

revealed losses of functional diversity in degraded systems (Standish et al. 2014) or systems 

undergoing biodiversity declines in response to anthropogenic drivers (Oliver et al. 2015b), 

supporting the suggestion that functional surrogates are responsive to the kind of 

disturbances we wish to understand. Because the delivery of many ecosystem functions 

depends on mutualistic or trophic interactions (e.g. pollination, consumption of pests), there is 

also scope to investigate the properties of ecological networks as indicators of functional 

resilience. Ecological network approaches offer a powerful way to move beyond considering 

species in isolation and bring the opportunity to examine aspects of resilience by simulating 

disturbances to networks and examining the impacts on network structure (Memmott et al. 

2004, Memmott et al. 2007, Kaiser-Bunbury et al. 2017, Vanbergen et al. 2017). 

2.4. Quantifying resilience  

Early work on resilience recognised that it was likely to be a quality which was extremely 

difficult to measure (Holling 1973). Being an emergent property, it has multiple aspects 

compounded of the absorptive (resistance), adaptive (recovery) and transformative 

(reorganisation) capacities of the system (Béné et al. 2016). One approach is to identify 

‘indicators’ (Carpenter et al. 2001) or ‘surrogates’ (Carpenter et al. 2005, Cumming et al. 2005) 

of resilience. These can be known drivers towards a more or less resilient state (e.g. slow 

variables) or likely correlates with aspects of resilience inferred from ecological theory 
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(McClanahan et al. 2012, Oliver et al. 2015a). However, in practical terms there is still potential 

for confusion over exactly which aspect of resilience any one surrogate is measuring and thus 

where to target efforts at management or conservation. Where resources are limited or trade-

offs occur, the need to prioritise different aspects of resilience (Hodgson et al. 2015) is also 

problematic. For example, Côté and Darling (2010) argued for a focus on resistance in coral 

reef systems, suggesting there is “no role for recovery”, whilst Graham et al. (2015) showed 

that reef recovery can and does occur. 

Some authors have proposed a unifying framework by which resilience is measured via 

standardised measurements of resistance, quantifiable as the amount of change a system can 

experience before changing state, and recovery, quantifiable as the time it takes the system to 

return to a pre-disturbance state (Klein et al. 2003, McClanahan et al. 2012, Hodgson et al. 

2015, Ingrisch and Bahn 2018). However, in practice there is a complex interplay between 

resistance and recovery, with sufficiently rapid recovery (Oliver et al. 2015a) or reorganisation 

(Folke 2006) appearing as resistance. The suggested methods of quantification also assume a 

stable state against which to measure change or return time. It therefore becomes much 

harder (if not impossible) to assess resilience to long-term disturbances (Pimm 1984, Myers-

Smith et al. 2012), which are of especial concern in many systems (e.g. climate change). Where 

we have knowledge of desirable or historic levels of ecosystem function these can act as 

thresholds by which to measure resistance and recovery, or the degree to which change is 

moving the system from a desirable to an undesirable state. Measuring resilience (or lack 

thereof) in terms of surpluses and deficits of an ecological function (see Fig. 2.2) is then 

feasible (Oliver et al. 2015a, Bullock et al. 2017).  

However, without a clear understanding of the mechanisms behind resilience measured in this 

way, whilst we can compare relative resilience between systems (Fig. 2.2), we cannot infer 

much about the resilience of any one system in isolation or resilience to types and levels of 

disturbances other than those the systems have already experienced. It therefore remains 

important to define the boundaries of the system under consideration (“resilience of...”) and 

the perturbation to which resilience is being assessed (“resilience to...”)  (Carpenter et al. 

2001, Cumming et al. 2005). Several studies assessing resilience by functional proxies do not 

clearly define either of these, by assuming that large-scale trends in functional groups are 

indicative of changes in general resilience to a wide variety of potential perturbations 

(Gallagher et al. 2013, Oliver et al. 2015b). This assumption may or may not be true, but it 

limits the usefulness of the findings in terms of predicting impacts under specific changes or 

developing and targeting management or policy mitigation actions.  
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Figure 2.2. Schematic of identifying varying levels of resilience from changes in ecosystem 

function, adapted from Oliver et al. (2015a). Black arrows indicate environmental 

perturbations. Horizontal dashed line indicates a threshold level of function identified by 

human values. Portions of the curves below this line (pink shading) thus indicate a deficit of 

function. The three panels represent three different systems: A) shows relatively high resistance 

and rapid recovery; B) shows lower resistance but more rapid recovery; C) shows low resistance 

and slow recovery and can be inferred to be the least resilient.  

2.5. Towards a working definition of resilience  

Given all of the complexities outlined above, the most all-encompassing definition of resilience 

in the context of ecosystem services would appear to remain closely akin to the one given by 

Holling (1973), along the lines of “the capacity of system to persist in the face of 

environmental perturbation, encompassing its ability to resist, recover from and adapt to 

change”. This definition can be applied at the multiple spatial scales and levels of ecological 

organisation involved in the agricultural system (Bullock et al. 2017) and can be equally applied 

to ecosystem functions, ecosystems services, farm systems, agro-ecosystems and the global 

food system as a whole. As Bullock et al. (2017) suggest, resilience is not necessarily required 

or desirable at all scales or in all contexts. Therefore, when analysing resilience in agricultural 

systems it is important that the study system and its boundaries should be clearly defined 

(“resilience of...” and “resilience to...”). It is acceptable to state this in very general terms (e.g. 

“Climate resilient agriculture for ensuring food security” (Reddy 2015)) if the aim is provide an 

overarching framework, but caution should then be used in speculating about what actually 

comprises a resilient system. In contrast, if the system is very specifically defined (e.g. 

Bronstein and Hossaert-McKey 1995, Gerisch et al. 2012, Lukac et al. 2012) then we should be 

equally cautious in making inferences about the implications of resilience in single system 

component for resilience at larger spatial scales or the system as a whole. 
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If attempting to measure resilience from levels of a function, several metrics of resilience 

should, ideally, be analysed in conjunction (Walker et al. 2006, Standish et al. 2014, Kéfi et al. 

2019), spread across the system’s capacity for resistance, recovery and reorganisation (Béné et 

al. 2016). Studies analysing multiple indicators of the resilience of ecosystem functions or 

services are rare at present and often focus on simple metrics relating to stability or resistance 

(Kéfi et al. 2019). However, analysing multiple aspects offers the greatest potential for insight 

into the multidimensional nature of resilience (Donohue et al. 2016) and thus how it might 

best be maintained in agricultural systems. The ability to demonstrate direct effects of 

management practices which increase or maintain biodiversity on the resilience of key 

agricultural output parameters (such as crop yield, quality, or farm profitability)  is also one of 

the most important drivers in encouraging the uptake of sustainable intensification (Kleijn et 

al. 2019) and overcoming the undesirable resilience of the current intensive agricultural 

paradigm to the increasing evidence of its damaging effects and long-term unsustainability.  
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Chapter 3: The influence of landscape composition and 

configuration on crop yield resilience1 

3.1. Abstract 

Sustainable agriculture aims to produce sufficient food whilst minimising environmental 

damage. To achieve this, we need to understand the role of agricultural landscapes in 

providing diverse ecosystem services and how these affect crop production and resilience, i.e. 

maintaining yields despite environmental perturbation.  

I used ten years of English wheat yield data to derive three metrics of resilience (relative yield 

across the time series, yield stability around a moving average and resistance to an extreme 

weather event) at 10km × 10km scale. I used remotely-sensed maps to calculate measures of 

landscape structure, including composition (proportions of different land cover types) and 

configuration (metrics of connectivity and proximity), known to affect ecosystem service 

delivery (e.g. control of pests by beneficial invertebrates). I then used an information-theoretic 

approach to identify the best-fitting combination of landscape structure predictors for each 

resilience metric, using a potential yield model to account for the effects of climate and soils.  

Relative yield showed a strongly positive relationship with area of arable land. For yield 

stability, this relationship was evident but alongside other landscape structure variables in the 

best-fitting model. No relationship with arable land was evident for resistance. Yield stability 

showed a strongly positive effect of proximity to semi-natural habitats. For resistance, the 

best-fitting model included positive relationships with the cover of semi-natural habitats and 

proximity to semi-natural grasslands. 

Our results showed a general trend of increasing importance of semi-natural habitat and 

decreasing importance of arable land as resilience metrics were derived from shorter portions 

of the time series. This likely to be driven by the complex interplay between landscape 

structure, agricultural management, and ecosystem services. The results demonstrate that 

measurements of relative levels of yield over time may be insufficient to capture the full effect 

that non-arable components of the landscape, and the ecosystem services they deliver, has on 

stability or resistance to extreme events. This suggests that there are trade-offs in the 

management of arable landscapes to maintain resilience over shorter vs. longer timescales. 

                                                      
1 Published as: Redhead, J.W., Oliver, T.H., Woodcock, B.A & Pywell R.F. (2020) The influence of 
landscape composition and configuration on crop yield resilience. Journal of Applied Ecology, Published 
online 
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3.2. Introduction 

Global food systems are under pressure to produce sufficient food for a growing human 

population (Godfray et al. 2010). Agriculture has long aimed to address this challenge by 

maximising crop yields (Curtis and Halford 2014, Mitchell and Sheehy 2018). However, 

intensive approaches to achieving this have driven severe declines in biodiversity (Green et al. 

2005, Reidsma et al. 2006, Butler et al. 2007) and other adverse environmental impacts 

(Tilman et al. 2002, Tsiafouli et al. 2015).  

Sustainable intensification aims to increase agricultural productivity, whilst also maintaining or 

bolstering biodiversity (Bommarco et al. 2013, Garnett et al. 2013, Kleijn et al. 2019). This 

approach has been driven in part by increasing awareness that biodiversity provides vital 

ecosystem services which maintain the viability of agricultural systems (Bommarco et al. 

2013), including crop pollination and natural pest control (Naylor and Ehrlich 1997, Kremen 

and Chaplin-Kramer 2007). If sustainable intensification is to succeed, we need detailed 

knowledge on how to manage agricultural landscapes to ensure optimal, long-term provision 

of these services (Gagic et al. 2017, Kleijn et al. 2019). Landscape structure has been 

repeatedly identified as a key driver of ecosystem service delivery. I here define landscape 

structure as being comprised of composition (i.e. number and proportions of different land 

cover types) and configuration (i.e. spatial arrangement of those land cover types), after 

(Fahrig et al. 2011). Whilst many studies have demonstrated relationships between landscape 

structure and service indicators such as beneficial invertebrate communities or crop pest 

populations (Bianchi et al. 2006, Chaplin-Kramer et al. 2011, Rusch et al. 2013, Haan et al. 

2019), few have directly examined effects on crop yield (Holland et al. 2016, Holland et al. 

2017, Karp et al. 2018). Those that do (e.g. Martin et al. 2016, Martin et al. 2019) mostly focus 

on average yields over time.  

However, average yields are not necessarily indicative of long-term sustainability or 

‘resilience’. Holling (1973) defined ecological resilience as a “measure of the persistence of 

systems and of their ability to absorb change and disturbance”. The guiding principle is 

therefore to consider not just the absolute quantity of a single function (e.g. crop yield) but 

also its ability to persist over time by resisting, recovering from and adapting to perturbations 

(Oliver et al. 2015a). In the case of crop yield, such perturbations include extreme weather 

events, pest outbreaks or diseases. These can have substantial impacts on livelihoods even if 

average yields are high (GFS 2015). Resilience is underpinned by complex interactions between 

environmental factors (e.g. climate, soil health, communities of beneficial organisms) so the 

landscapes which deliver high average yields under normal conditions are not necessarily 
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those which are most stable or most resistant to extreme events. The need to identify and 

develop resilient cropping systems has been embraced in research (Altieri et al. 2015, Bullock 

et al. 2017) and policy (Defra 2018a), but the question of how landscapes and the ecosystem 

services they deliver affect the resilience of agricultural systems remains a key knowledge gap 

preventing the widespread uptake of sustainable intensification (Kleijn et al. 2019).  

In this paper I explore relationships between landscape structure and crop yield resilience. I 

used a ten-year time series of wheat yields from a national survey of English farms to derive 

metrics relating to different aspects of resilience. I analysed relationships between these 

metrics and aspects of landscape structure known to affect provision of biodiversity-mediated 

ecosystem services. I hypothesised that: 

a) Area of arable land would have a positive effect on resilience, as it is indicative of the 

intensity of, and investment in, agricultural management 

b) Semi-natural habitats would also have a positive effect on resilience as they act as 

reservoirs of beneficial organisms providing ecosystem services 

c) Metrics relating to different aspects of resilience would differ in the strength of these 

relationships and the relative importance of landscape composition and configuration  

3.3. Methods 

YIELD DATA FROM A NATIONAL SURVEY 

Wheat yield data were obtained from Defra’s cereals and oilseeds production survey, part of 

an annual survey of the English agricultural industry based on a stratified random sample of 

farms. Survey methods can be found in Defra (2018b). Data were available for 10 years (2008-

2017), comprising average winter wheat yield per farm and coordinates locating each to 1km. 

Data were cleaned to remove anomalous yield values, giving around 22,000 individual samples 

(Appendix A1). 

Because a new random sample of farms is drawn each year, few had consecutive data across 

10 years. To analyse yield variation over time and account for local spatial variation in farming 

practices I therefore aggregated data to mean annual yield per 10km x 10km grid cell 

(‘hectad’). From this dataset, hectads were identified with sufficient samples per year for 

analyses of resilience (Appendix A1). I ensured that the selection of well-sampled hectads did 

not bias the dataset towards particular landscape structures (Appendix A, Fig. A2). From 315 

hectads with at least one sample per year, 137 met the criteria for sufficient sampling. All data 

handling and analysis was performed in R (v3.4, R Core Team 2017). 
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CONSTRUCTING METRICS OF RESILIENCE 

I here use a broad definition of crop yield resilience as “any quantification of the agricultural 

system’s ability to maintain consistent delivery of yields despite environmental perturbation”. 

There are many potential ways of quantifying resilience from temporal and spatial variability in 

yield. Some studies have begun to explore links between environmental drivers and aspects of 

yield resilience (Di Falco and Chavas 2008, Gaudin et al. 2015, Iizumi and Ramankutty 2016, 

Knapp and van der Heijden 2018) but these often use only a single metric. However, resilience 

is conceptually complex (Donohue et al. 2016, Ingrisch and Bahn 2018, Kéfi et al. 2019), with 

multiple facets derived from the capacity of a system to resist, recover from and adapt to 

environmental change (Béné et al. 2016, Ingrisch and Bahn 2018), so metrics vary in which 

aspects of resilience are examined and the timescales over which these are measured. Single 

metrics may therefore be insufficient to fully understand the effects of landscape structure 

(Isbell et al. 2015). For every hectad with sufficient data, I calculated three metrics capturing 

different aspects of resilience:  

i. Relative yield across the time series. Average difference between annual and national 

average annual yield (Fig. 3.1A). This combines average magnitude and variability over the 

time series, accounting for surpluses (when yield exceeds the national average) and deficits 

(vice versa), in line with the functional resilience metric proposed by Oliver et al. (2015a).  

ii. Yield stability around a moving average. Inverse of absolute percentage difference 

between yield in any one year and average yield over the years either side (Fig. 3.1B), 

averaged across the time series (Iizumi and Ramankutty 2016). This metric is sensitive to 

fluctuation of yield over shorter timescales and incorporates aspects of resistance and 

recovery.  

iii. Resistance to a specific event. Inverse proportional change in yield between 2012 and the 

pre-2012 mean (Fig. 3.1C). Exceptionally heavy spring and summer rainfall in 2012 caused 

poor wheat yields (Defra 2012, Impey 2012), with a mean 14% decrease compared to 

previous years (from survey data).  

All metrics were calculated such that larger values imply greater resilience (i.e. use of inverse 

values). I explored intercorrelations between metrics and correlations with mean yield, i.e. 

average yield per hectad across all years in the time series (Appendix A2). Although 

conceptually a measure of resilience (i.e. ability to deliver yields exceeding the national 

average despite environmental fluctuations) the metric of relative yield was in practice 

strongly correlated with mean yield (Appendix A2). 



31 

 

 

Figure 3.1. Schematic showing derivation of metrics of resilience from an example time series. 

A) Relative yield, the average difference between hectad and national average yields across the 

time series. B) Yield stability, the difference between any one year and the average over the 

two years on either side. C) Resistance, the proportional decrease in 2012 from the pre-2012 

mean. The inverse of the latter two metrics was taken such that higher values indicate higher 

resilience in all cases. 

ACCOUNTING FOR CLIMATE AND SOIL EFFECTS 

To explore relationships between metrics of yield resilience and landscape structure, I first 

controlled for the effects of meteorological and soil variables. Because the way in which these 

interact to influence crop yields is complex, I condensed them into a single metric of potential 

yield. I modelled potential yield from temperature, precipitation and solar radiation (Agri4Cast 

data, Biavetti et al. 2014) and soil water holding capacity (Bell et al. 2018), based on 

approaches in Sylvester-Bradley and Kindred (2014) and Lynch et al. (2017). The model has 

three main stages: 1) estimation of green area index from accumulated growing degree days, 

2) interception of solar radiation and water-limited conversion to biomass, 3) apportioning 

accumulated biomass to grain yield. For a full description see Appendix A3. For each resilience 

metric, the equivalent metric for potential yield was included as a covariate in statistical 

models (see below). I also accounted for any further impacts of regional variation in soils and 

climate by assigning each hectad to an environmental zone, using a pre-existing classification 

(Bunce et al. 2007), included as a random effect in statistical models (see below).  

LANDSCAPE COMPOSITION AND CONFIGURATION 

I used a satellite-derived land cover map (LCM2015, 25m raster, Rowland et al. 2017) to 

determine the composition and configuration of land cover types per hectad. I analysed three 

land cover classes: arable land, semi-natural habitats and semi-natural grasslands. Semi-

natural habitats included semi-natural grassland, broadleaf woodland, heathland and wetland 

as these are known to affect ecosystem services relevant to crop production (Tscharntke et al. 

2005, Rand et al. 2006, Blitzer et al. 2012, Rusch et al. 2013, Holland et al. 2017, Martin et al. 
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2019). I also analysed semi-natural grasslands separately as these are structurally more similar 

to arable land and may be especially important in providing ecosystem services (Duflot et al. 

2015, Bengtsson et al. 2019). 

For each land cover class, I calculated three largely independent metrics of landscape 

composition and configuration. These were: percentage area, mean edge:area index and mean 

distance to the nearest patch. These were drawn from a variety of composition and 

configuration metrics widely used in assessments of landscape impacts on ecological processes 

(Cushman et al. 2008, Chaplin-Kramer et al. 2011, Haan et al. 2019, Martin et al. 2019) 

explored in preliminary analyses (Appendix A4). Mean edge:area index and distance to the 

nearest patch were transformed to indices of ‘connectivity’ and ‘proximity’ (Appendix A4) to 

aid interpretation of regression coefficients. Structure metrics were calculated in ArcGIS 

(v10.4, ESRI, CA) and the landscapemetrics R package (Hesselbarth et al. 2019). 

STATISTICAL ANALYSIS AND MODELLING 

All statistical analyses were undertaken in R. I used an information-theoretic approach to 

identify the best-fitting combination of landscape structure predictors for each resilience 

metric (i.e. relative yield, yield stability, resistance). For each metric, I first used the nlme 

package (Pinheiro et al. 2017) to construct a global linear mixed effects model containing the 

random effect of environmental zone and all other explanatory variables as fixed effects (i.e. 

cover, connectivity and proximity of each of arable, semi-natural habitats and semi-natural 

grasslands, and potential yield). The model included a spherical spatial autocorrelation 

structure, which preliminary analyses found to increase model fit, as determined by Akaike’s 

Information Criterion adjusted for small sample sizes (AICc). I then ran all possible subsets of 

explanatory variables from the global model using the MuMIn package (Barton 2016) and 

ranked models using AICc. Models were constrained to include the random effect and 

potential yield variable and to exclude pairs of highly intercorrelated predictors (Fig. A5). 

Where ΔAICc amongst top ranked models was <2, the model with the smallest number of 

parameters was defined as the ‘best’ model. I then repeated the ranking procedure with all 

quadratic terms and pairwise interactions between variables in the ‘best’ model, defining a 

new ‘best’ model if ΔAICc >2. I confirmed the explanatory power of the ‘best’ model by 

calculating pseudo-R2 values and checked for overfitting using a 200-fold cross-validation test, 

comparing pseudo-R2 to the distribution from cross validation. Because the ‘best’ model may 

exclude potentially important predictors where several models had ΔAICc <2, I calculated 

model averaged coefficients across all possible subsets (Harrison et al. 2018) to check that 

these confirmed the ‘best’ model. I also ran individual models (with autocorrelation and 
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random effects as described above) for each variable in the ‘best’ model, to explore whether 

relationships were evident when analysed independently of other predictors. 

3.4. Results 

The ‘best’ models for all three resilience metrics contained at least one landscape structure 

variable and had ΔAICc of >2 from the null model (random factor and autocorrelation structure 

only) and from models with the potential yield variable only (Table 3.1). Cross-validation of 

pseudo-R2 did not suggest significant overfitting for any ‘best’ model. In all cases, models 

including interaction terms did not result in ΔAICc >2. 

Table 3.1 Properties of ‘best’ models as defined by minimum AICc from all possible subsets. The 

table shows the number of candidate models with ΔAICc <2, ΔAICc from a null model 

containing random effect and spatial autocorrelation structure only, and ΔAICc from a model 

including potential resilience only. Also shown are pseudo-R2 and p-value from cross-validation 

(values of p <0.05 suggest significant overfitting).  

Resilience 
metric 

N 
models 

ΔAICc from 
null model 

ΔAICc from 
potential model 

pseudo-
R2 

Cross validation 
p- value 

Relative Yield 7 -11.790 -8.565 0.182 0.458 

Yield Stability 4 -7.199 -5.837 0.155 0.163 

Resistance 5 -11.096 -8.899 0.392 0.184 

 

RELATIVE YIELD ACROSS THE TIME SERIES 

The ‘best’ model for this resilience metric included a strong positive effect of arable cover 

(Table 3.2, Fig. 3.2A). This suggests that the highest relative yields are obtained where a higher 

proportion of the landscape is farmed. Results from model averaging strongly supported this 

predominance of arable cover, with a weight of 0.7 (Table 3.3). Other landscape variables 

generally had low weights, and a mixture of positive and negative coefficients. Relative yield 

also showed a strong, positive, non-linear relationship with modelled potential yield, 

suggesting a major influence of climate and soils, up to a point when yield becomes limited by 

other factors.  

YIELD STABILITY AROUND A MOVING AVERAGE 

Yield stability showed a positive relationship with cover of arable land and proximity to semi-

natural habitats in the ‘best’-fitted model (Table 3.2, Fig. 3.2B). This suggests that yields are 

most stable in landscapes with both a high coverage of arable land and with semi-natural 

habitats evenly distributed throughout the landscape (e.g. Fig. 3.3B). The effect of proximity to 
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semi-natural habitat was only evident in the ‘best’ model containing the effect of arable land, 

not in individual models (Table 3.2). The relationship with potential yield stability was weaker 

than that between relative yield and potential yield, suggesting that areas with more variable 

climate did not necessarily experience the most variable yield, and that landscape factors 

potentially have a greater moderating effect. Results from model averaging (Table 3.3) were 

again supportive of those from the ‘best’ model, although semi-natural habitat connectivity 

showed a moderate weight (0.56). 

Table 3.2 Coefficients (±1 S.E.) of landscape structure variables in the ‘best’ (defined by 

minimum AICc) mixed models for each yield resilience metric. Models were constrained to 

include potential yield (to account for weather and soil effects). Coefficients are given as 

unstandardized and standardised for comparison, alongside unstandardized coefficients from 

individual models including only a single predictor. SNH =all semi-natural habitats, SNG =semi-

natural grassland. P-values are calculated from ratios between estimates and their standard 

errors, and the associated value from a t-distribution, as returned by summary.lme R function.  

 
‘Best’ model Individual models 

 

Unstandardized 
Coefficient  

Standardised 
Coefficient  p value Coefficient  p value 

Relative Yield 
     

Intercept 672.47 (202.55) - 0.001 - - 

Potential -10.33 (3.53) -7.44 (2.54) 0.004 -9.24 (3.56) 0.013 

Potential2 0.05 (0.02) 7.68 (2.54) 0.003 0.04 (0.02) 0.008 

Arable cover 0.06 (0.02) 0.25 (0.1) 0.012 0.06 (0.03) 0.031 

Yield Stability 
     

Intercept 54.17 (12.71) - <0.001 - - 

Potential 0.01 (<0.01) 0.12 (0.1) 0.209 0.01 (<0.01) 0.050 

Arable cover 0.04 (0.01) 0.31 (0.1) 0.004 0.03 (0.01) 0.009 

SNH Proximity 35.08 (13.23) 0.28 (0.11) 0.009 10.41 (12.12) 0.392 

Resistance 
     

Intercept -33.75 (6.77) - <0.001 - - 

Potential -0.14 (0.16) -0.07 (0.08) 0.396 0.33 (0.15) 0.042 

SNH Cover 0.58 (0.25) 0.2 (0.09) 0.023 0.77 (0.25) 0.002 

SNG Proximity 21.64 (8.98) 0.23 (0.1) 0.017 28.88 (8.28) 0.001 

 

RESISTANCE TO A SPECIFIC EVENT 

Resistance was the only metric not to show a positive relationship with area of arable land in 

the ‘best’ model (Table 3.2) and there was no support from model averaging to suggest such a 

relationship (Table 3.3). Instead, resistance showed a strong, positive relationship with cover 
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of semi-natural habitat and proximity to semi-natural grassland (Table 3.1). This suggests that 

landscapes exhibiting the highest resistance to the poor conditions of 2012 were those with 

large extents of semi-natural habitat and where arable land was generally in close proximity to 

grassland in particular (e.g. Fig. 3.3C). Although resistance showed a positive relationship with 

potential resistance in individual models (Table 3.2), suggesting that the severest decreases 

were in areas which experienced the most detrimental weather conditions, this relationship 

was not evident in the ‘best’ model, suggesting that the positive effects of semi-natural 

habitats can mitigate against climatic impacts. Support from model averaging for the 

coefficients in the ‘best’ model was high (Table 3.3).  

Table 3.3 Model averaged standardised coefficients and average Aikaike weights across 

models containing each landscape structure variable - i.e. percentage cover, connectivity index 

(Conn.) and proximity index (Prox.) for each of arable land, all semi-natural habitats and semi-

natural grassland.  

 
Arable land Semi-natural habitats Semi-natural grassland 

 
Cover  Conn. Prox. Cover Conn. Prox. Cover Conn. Prox. 

Relative Yield 

  Coefficient 0.222 -0.037 0.036 -0.074 0.105 0.051 -0.050 0.031 -0.263 

  Weight 0.696 0.268 0.256 0.240 0.382 0.098 0.209 0.162 0.425 
          

Yield Stability 

  Coefficient 0.270 0.071 -0.028 0.104 -0.165 0.261 -0.014 0.022 0.021 

  Weight 0.862 0.307 0.252 0.286 0.562 0.655 0.177 0.109 0.089 
          

Resistance 

  Coefficient -0.020 -0.001 0.097 0.212 -0.126 0.228 0.101 -0.077 0.237 

  Weight 0.254 0.242 0.417 0.727 0.423 0.227 0.109 0.203 0.648 
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Figure 3.2. Partial residual plots of landscape structure variables in the ‘best’ models for each 

resilience metric: A) relative yield, B) yield stability, C) resistance. Plots show the effect of a 

given variable after removing variance from other effects in the model. Higher values on the y-

axes indicate increased resilience and are thus considered favourable for agricultural 

productivity. SNH =semi-natural habitat, SNG =semi-natural grassland.  

3.5. Discussion  

RELATIONSHIPS WITH LANDSCAPE STRUCTURE  

All three resilience metrics showed relationships with landscape structure. In support of the 

first hypothesis, two of them showed a positive effect of higher coverage of arable land. 

Higher relative yield (i.e. relative difference between local and national yield across the time 
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series) was strongly associated with landscapes dominated by arable land. Although the metric 

of relative yield is conceptually indicative of resilience to wide range of perturbations over 

time (Oliver et al. 2015a), in practice it correlates strongly with mean yield. Mean yield is in 

turn highly likely to correlate with coverage of arable land because farming systems in England 

have long developed to exploit the most productive land (Chambers and Mingay 1966) and 

these areas typically receive the greatest investment in agricultural inputs. This may have a 

masking effect on the role of ecosystem services and the non-arable components of the 

landscape (Pywell et al. 2015, Gagic et al. 2017, Martin et al. 2019). A positive relationship 

between yield stability and cover of arable land to was also evident but resistance to the poor 

weather of 2012 showed no evidence such a relationship, exemplifying that average or relative 

yield is not necessarily indicative of the full extent to which landscape structure affects crop 

yield resilience. 

Two metrics showed a positive effect of cover or configuration of semi-natural habitats. This 

supports the second hypothesis that semi-natural habitat has a role in contributing to the 

resilience of crop yields to environmental perturbation. The most probable mechanism 

underpinning the positive effect of semi-natural habitats is that they provide reservoirs of 

organisms providing beneficial ecosystem services (Martin et al. 2019), including those 

involved in natural control of pests and pathogen vectors (‘natural enemies’). Although semi-

natural habitats may also have other characteristics that influence yield resilience (e.g. 

favourable microclimates, retention of water, reduction of soil and nutrient runoff) these are 

likely to be influential at finer spatial scales than the hectads analysed here. Many studies have 

previously demonstrated positive relationships between semi-natural habitats and the 

abundance and richness of natural enemies (Tscharntke et al. 2005, Bianchi et al. 2006, 

Chaplin-Kramer et al. 2011, Rusch et al. 2013, Holland et al. 2016, Martin et al. 2016, Holland 

et al. 2017). However, natural enemies comprise a great diversity of organisms, each with their 

own, complex relationships with landscape structure and with one another (Plantegenest et al. 

2007, Chaplin-Kramer et al. 2011, Martin et al. 2013, Martin et al. 2016, Karp et al. 2018). 

These relationships are often highly context-dependent (Haan et al. 2019). For example, 

dispersing the same amount of semi-natural habitat throughout the landscape simultaneously 

increases the potential for movement into arable land (Tscharntke et al. 2005, Rand et al. 

2006, Blitzer et al. 2012) and lessens the value of individual patches (Mitchell et al. 2015). Such 

trade-offs affect both natural enemies and the pests and pathogens which they help to control 

(Plantegenest et al. 2007, Karp et al. 2018). Effects of natural enemies can also be 

counterintuitive, for example by promoting increased movement of pathogen vectors (Clark et 
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al. 2019, Crowder et al. 2019). The complexity of these interrelationships means that positive 

effects of semi-natural habitat on natural enemy abundance and richness do not always 

translate to improved pest regulation or enhanced yields (Martin et al. 2013, Mitchell et al. 

2014, Tscharntke et al. 2016, Karp et al. 2018, Martin et al. 2019, Smith et al. 2020). By 

examining effects on yield of a single crop I focus directly on the outcome of this suite of 

complex interactions and the results show that amount and proximity of semi-natural habitats 

have an overall positive effect on yield stability and resistance. Although I do not have direct 

evidence for the mechanisms underlying these relationships, demonstrable links between 

semi-natural habitat and variations in crop yield are the most directly compelling evidence for 

farmers of the importance of semi-natural habitat for agricultural production (Holland et al. 

2017, Kleijn et al. 2019).  

 

Figure 3.3. Example hectads from a single environmental zone with the maximum and 

minimum predicted values for each resilience metric. 
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DIFFERENCES BETWEEN RESILIENCE METRICS  

Given the aforementioned complexities of the relationships between landscape structure, 

ecosystem services and yield, it is unsurprising that there were clear differences in the 

relationships between landscape structure and the different metrics of resilience (Haan et al. 

2019). As described above, the results showed a general trend of increasing importance of 

semi-natural habitat and decreasing importance of arable land as resilience metrics were 

derived from shorter portions of the time series. There are two possible explanations for this.  

Firstly, over shorter timescales, a narrower range of environmental fluctuations are likely to be 

encountered. This means that the ecosystem services with greatest impact on crop yield are 

likely to be more limited, and thus that relationships with specific landscape structure 

variables are more likely to be consistent. In a single, extreme year the mechanisms governing 

resistance, and hence relationships with landscape structure, are likely to be even more 

specific. Indeed, the resistance metric showed a positive effect of not just semi-natural 

habitats but semi-natural grassland in particular. Grasslands are more similar to arable land, 

structurally and in community composition, than other semi-natural habitats (e.g. woodland). 

This makes them particularly important as reservoirs of beneficial species (Duflot et al. 2015, 

Bengtsson et al. 2019), presumably including those conferring resistance to the specific 

perturbation explored here.  

Secondly, it is likely that many effects of the non-agricultural components of landscape 

structure are only made obvious when extreme perturbations occur. The reliance of English 

agriculture on intensive management such as the prophylactic use of agrochemicals (Hillocks 

2012) may, under normal circumstances, mask (or even suppress) potential benefits from 

ecosystem services (Gagic et al. 2017). It thus requires an extreme event where farming 

practices cannot fully compensate for environmental fluctuations for the value of ecosystem 

services to become evident.  

Of course, these two explanations are not mutually exclusive. The precise mechanisms 

controlling the relationships between resistance and semi-natural habitat vary with spatial and 

temporal context (Haan et al. 2019). So a particular extreme (e.g. high rainfall, as in 2012) 

might increase populations of specific pests beyond the capacity of agricultural management 

to control them (e.g. molluscs) making resistance highly dependent on landscape factors which 

most affect their predators (e.g. carabids). However, another extreme year with different 

conditions might promote another set of pests, which are in turn controlled by different 
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natural enemies with different responses to landscape structure (Martin et al. 2019), leading 

to a lack of clear response if the two extreme years were analysed in conjunction. 

Overall, the results clearly demonstrate that a single metric of resilience (especially one based 

on average levels of function over longer timescales) is unlikely to adequately capture the full 

effect of landscape structure or the benefits of ecosystem services to agriculture (Benton and 

Bailey 2019). The responses of resistance and shorter-term stability are indicative of where 

current farming practices cannot fully compensate for environmental fluctuations. Extreme 

weather events, as encountered in 2012, are likely to become more frequent (Rosenzweig et 

al. 2001, Trnka et al. 2014). Other changes may have similar consequences, reducing the ability 

of the agricultural system to mitigate against environmental impacts, such as the regulatory 

loss of pesticide active ingredients (Hillocks 2012). Such shifts may make farmers increasingly 

reliant on natural pest control and thus increase the importance of landscape context – it has 

been demonstrated that organic farming systems exhibit greater fluctuations in yield than 

conventional ones, and show an increased dependency on landscape-mediated ecosystem 

services (Knapp and van der Heijden 2018, Smith et al. 2020).  

CONCLUSIONS AND IMPLICATIONS FOR LANDSCAPE MANAGEMENT  

The results confirm that semi-natural habitats in arable landscapes have a role for society that 

extends beyond simply supporting agricultural biodiversity to enhancing the long-term viability 

of farming systems. At the scale I analysed, this is relevant to national or regional policy-

making, including agri-environmental funding for creating, restoring and maintaining semi-

natural habitats (Critchley et al. 2004). Although the sampled landscapes do not cover the full 

national range of possible agricultural landscape structures, they include a wide variety with 

moderate to high coverage of agricultural land such as dominate much of lowland England.  

Differences in the relative strength of the responses to arable land, semi-natural habitat and 

its configuration suggest that there are potential trade-offs to be made in managing 

landscapes for resilience over shorter vs. longer timescales. The results also have a bearing on 

the relative merits of strategies based on land-sharing vs. land-sparing. Whilst land-sparing is 

often determined to be preferable in terms of maximising average delivery of biodiversity and 

crop yield (Ekroos et al. 2016, Lamb et al. 2019), the results suggest that whilst land-sparing 

might maximise relative yields, at least some degree of land-sharing (i.e. intermixtures of semi-

natural habits and arable land within hectads) is required to maximise stability and resistance. 

Given the increased risk of extreme events under climate change and concerns over the 

current reliance on agrochemicals, the finding that landscapes which most enhance relative 
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yield are not necessarily those which confer increased stability or resistance to environmental 

perturbations is an important challenge to address in developing sustainable agricultural 

systems. 
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Chapter 4: Potential landscape-scale pollinator networks across 

GB: structure, stability and influence of agricultural land cover2 

4.1. Abstract 

Understanding spatial variation in the structure and stability of plant-pollinator networks, and 

their relationship with anthropogenic drivers, is key to maintaining pollination services and 

mitigating declines. Constructing sufficient networks to examine patterns over large spatial 

scales remains challenging. Using biological records (citizen science), I constructed potential 

plant-pollinator networks at 10km resolution across Great Britain, comprising all potential 

interactions inferred from recorded floral visitation and species co-occurrence. I calculated 

network metrics (species richness, connectance, pollinator and plant generality) and adapted 

existing methods to assess robustness to sequences of simulated plant extinctions across 

multiple networks. I found positive relationships between agricultural land cover and both 

pollinator generality and robustness to extinctions under several extinction scenarios. 

Increased robustness was attributable to changes in plant community composition (fewer 

extinction-prone species) and network structure (increased pollinator generality). Thus, traits 

enabling persistence in highly agricultural landscapes can confer robustness to potential future 

perturbations on plant-pollinator networks. 

4.2. Introduction 

Insect pollinators face many threats that may jeopardize the crucial ecosystem service they 

provide to crops and wild plants (Vanbergen et al. 2013, Gill et al. 2016, Potts et al. 2016). The 

stability of pollinator communities and the service they deliver is mediated by the structure of 

ecological networks formed by interactions between pollinator and plant species (Vázquez et 

al. 2009, Vanbergen et al. 2017). Understanding such networks is important to predict the risks 

associated with threats to pollinators (Gill et al. 2016). Analysis of plant-pollinator networks 

has provided insights into their structure and potential stability under actual or simulated 

environmental change, including extinctions (e.g. Memmott et al. 2004, Kaiser‐Bunbury et al. 

2010), climate change (e.g. Memmott et al. 2007), habitat change (e.g. Forup et al. 2008, 

Vanbergen et al. 2017) and restoration (Kaiser-Bunbury et al. 2017). 

                                                      
2 Published as: Redhead, J.W., Woodcock, B.A., Pocock, M.J.O., Pywell, R.F., Vanbergen, A.J. & Oliver, 
T.H. (2018) Potential landscape‐scale pollinator networks across Great Britain: structure, stability and 
influence of agricultural land cover. Ecology Letters, 21: 1821-1832. 
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Studies traditionally rely on obtaining well-characterised networks from field surveys, which 

are time consuming and costly to construct (Vázquez et al. 2009, Burkle and Alarcón 2011). 

Constructing networks replicated across larger spatial scales remains a daunting prospect 

(Burkle and Alarcón 2011), particularly at the regional and national scales relevant to land use 

and conservation policy-making. Although broad geographic patterns in plant-pollinator 

network properties have been identified across biomes (Olesen and Jordano 2002, Welti and 

Joern 2015) or within landscapes (Burkle and Alarcón 2011, Carstensen et al. 2014, 

Trøjelsgaard et al. 2015, Kaiser-Bunbury et al. 2017), these still rely on a comparatively limited 

number of empirical plant-pollinator networks.  

Of particular interest in understanding spatial variability in plant-pollinator networks is the 

contrast between the benefits of insect pollinators to agricultural crops (Kremen et al. 2002, 

Winfree 2008, Eilers et al. 2011) and the negative impacts of intensive agriculture on 

pollinators (Kluser and Peduzzi 2007, Potts et al. 2010, Gill et al. 2016). However, we have very 

little knowledge of how plant-pollinator networks are affected by agriculture at landscape 

scales (e.g. >1km2) or whether networks comprising species that pollinate agricultural crops 

are representative of the wider pollinator community (Kleijn et al. 2015, Gill et al. 2016). 

Lack of information on ecological interactions across larger spatial, temporal and taxonomic 

scales, termed the ‘Eltonian shortfall’, represent key gaps in the large-scale knowledge of 

biodiversity (Hortal et al. 2015). Moreover, there are limitations on the extent to which 

different data sources can be combined to analyse multiple networks because data collection 

methods can introduce potential biases (Hortal et al. 2015). Whilst there are exciting 

possibilities for molecular techniques to increase the speed and accuracy with which plant-

pollinator networks can be constructed (Keller et al. 2015, Richardson et al. 2015, Bohan et al. 

2017, Pornon et al. 2017) these are yet to be realised across larger spatial scales.  

Biological records (i.e. records submitted to voluntary recording schemes, a form of ‘citizen 

science’) provide a valuable resource for analysing large-scale patterns in time and space 

(Bishop et al. 2013, Tulloch et al. 2013, Powney and Isaac 2015). Records consist of species’ 

identification, date and location (hereafter ‘occurrence’ data) and provide large volumes of 

data over a wide spatial coverage, equivalent to innumerable hours of field survey. Methods to 

control for variation in recorder effort and to infer ecological signals from occurrence data are 

rapidly emerging (e.g. Isaac et al. 2014, Dyer et al. 2016), but hitherto their potential as a 

source of data on ecological networks is untapped (Gray et al. 2014).  



45 

 

Here, I constructed potential plant-pollinator networks for every 10km-by-10km grid square 

(‘hectad’) in Great Britain (GB) using interactions from a 30-year, long-term national dataset of 

occurrence records of pollinating insects (bees, butterflies and hoverflies). Instead of inferring 

species interactions from spatial co-occurrence (Morales-Castilla et al. 2015, Morueta-Holme 

et al. 2016) I used metadata from records that detailed flower visitation as a proxy of 

pollination (Ballantyne et al. 2015). These networks are ‘potential’ in that I acknowledge their 

limitations in terms of assumptions that constrain their biological realism. However, whilst the 

structure of each potential network may be subject to errors, I aimed to minimise bias 

affecting comparisons across replicate networks. I used these potential networks to address 

three questions. First, does network structure and stability vary spatially across GB?  Second, is 

network stability reduced by greater agricultural land cover, a major driver of plant and 

pollinator declines (Kluser and Peduzzi 2007, Potts et al. 2010, Vanbergen et al. 2013, Ollerton 

et al. 2014)? Finally, are the structure and stability of networks comprising crop-pollinator 

species consistent with those of the wider pollinator community? 

4.3. Materials and Methods 

CONSTRUCTING A PLANT-POLLINATOR INTERACTIONS DATABASE 

I constructed a national-scale (GB) plant-pollinator interaction database defining which species 

of pollinator visit which species of plant (Fig. 4.1). Data were mostly (73%) sourced from 

biological records. Specifically, these were species observations submitted to the Bees, Wasps 

and Ants Recording Society (BWARS), Butterflies for the New Millennium (BNM, Asher 1997) 

and Hoverfly Recording Scheme (HRS), with plant interactions recorded as incidental 

metadata.  

 

Figure 4.1. Schematic showing steps in construction of potential plant-pollinator networks for 

every 10 x 10km cell (‘hectad’) in Great Britain from biological records 
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Interactions were inferred by algorithmically screening metadata for valid scientific or 

vernacular plant names (or widely used synonyms or abbreviations thereof), followed by data 

cleaning (see Appendix B1). Remaining interaction data were obtained from books (e.g. Morris 

1998), papers (e.g. Carvell 2002) and unpublished experimental data. Where interactions were 

recorded only to plant genus I assumed, given the rarity of pollinators specialised to the level 

of individual plant species (Waser et al. 1996, Minckley and Roulston 2006), that these were 

indicative of interactions with all plant species within the genus that were present in the 

dataset (full details in Appendix B1). These inferred interactions comprised 6487 unique 

interactions (39%) within the full dataset. 

The final plant-pollinator interactions database contained 16,712 unique interactions, 

involving 485 pollinator species (206 bees, 56 butterflies, 223 hoverflies) and 499 plant 

species. These totals comprise approximately 76, 92, 81 and 55% of GB bee, butterfly, hoverfly 

and insect-pollinated plant species, respectively (Fitter and Peat 1994, Stubbs and Falk 2002, 

Thomas 2010, Falk 2015). I explored the completeness of the interactions database by 

calculating interaction accumulation curves across all records used to construct the database 

(i.e. pollinator occurrences where it was possible to able to identify a valid plant interaction) 

and for each plant and pollinator species separately (Appendix B2). Results suggested that the 

database captured around 60% of estimated total interactions (mean 62% for pollinators, 57% 

for plants), comparable to studies which performed high-effort, multi-temporal field sampling 

of individual networks (Chacoff et al. 2012, Falcão et al. 2016). 

MODELLING PLANT AND POLLINATOR OCCURRENCE  

For all species in the interactions database, I obtained occurrence data from BWARS, HRS, 

BNM and, for plants, the Botanical Society of Britain and Ireland (Fig. 4.1). Data records were 

restricted to 1985 onwards, covering the vast majority of records while excluding occurrences 

of species that may have been more widespread prior to major changes in GB land use 

(Robinson and Sutherland 2002, Ollerton et al. 2014). Occurrence data were modelled to 

account for spatial bias in recorder effort using the FRESCALO algorithms (Hill 2012), 

implemented in the Sparta (v0.1.30 August et al. 2015b) package of R (v3.4.0 R Core Team 

2017). FRESCALO weights by recorder effort to estimate trends and probability of occurrence 

in under-recorded areas (for validation of FRESCALO for different groups and through 

simulation see Hill 2012, Fox et al. 2014, Isaac et al. 2014, Dyer et al. 2016). I used the CEH 

Land Cover Map (LCM2007, Morton et al. 2011) as input data for FRESCALO’s calculation of 

neighbourhoods of ecologically similar hectads (see August et al. 2015b, Dyer et al. 2016). For 

each species, FRESCALO produces a probability of occurrence per hectad. To transform this to 
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presence/absence, I assigned a species as present in a hectad if its probability of occurrence 

was greater than a set threshold (see Appendix B3).  

CONSTRUCTING POTENTIAL NETWORKS 

I used lists of modelled plant and pollinator species presence per hectad to filter the 

interactions database (as derived from plant associations in biological records) and create a 

potential plant-pollinator network for each hectad (Fig. 4.1). Networks were unweighted (i.e. 

interaction matrices consisting of ones and zeros), this being the most conservative 

interpretation of the interaction data because the frequency with which an interaction was 

recorded is unlikely to provide reliable quantitative information on abundance, due to 

differences in detectability, recorder bias and data sources.  

NETWORK STRUCTURE METRICS 

From the networks constructed in each of 2823 GB hectads I used the R package bipartite 

(v2.07, Dormann et al. 2009) to calculate the following metrics (Bersier et al. 2002, Dunne et 

al. 2002, Tylianakis et al. 2007): 

i. Species richness: total number of plant and pollinator species in the network 

ii. Connectance: proportion of possible links which are realised  

iii. Pollinator generality: mean number of plants per pollinator 

iv. Plant generality: mean number of pollinators per plant  

Whilst other, more complex metrics of network structure (e.g. nestedness, modularity) have 

been implicated in stability they can be comparatively insensitive to spatial or temporal 

change (Kaartinen and Roslin 2012, Morris et al. 2014, Kemp et al. 2017). Preliminary analyses 

confirmed that nestedness and modularity showed little variation even for networks greatly 

differing in the metrics listed above.  

ROBUSTNESS TO SIMULATED EXTINCTIONS 

To derive a metric of network stability, I assessed the impact of simulated extinctions of plants. 

This was a measure similar to robustness (following Memmott et al. 2004, Burgos et al. 2007), 

but differing in that sequential simulated extinctions were ordered according to a complete 

‘global’ list of plants (i.e. across all hectads) and not just those in each ‘local’ network (i.e. 

individual hectad) (Fig. 4.2). This approach meant the same extinction scenario was universally 

applied across hectads and enables comparisons across networks with different plant 

communities. I term this approach and the resulting metric “robustness to global simulated 

extinctions” (Rg from hereon) to avoid confusion with the usual approach. For comparison, I 
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also calculated ‘local’ robustness (Rl from hereon) following Memmott et al. (2004) with 

randomised extinction of plants within each hectad. I focussed on simulating plant extinctions 

because many of the major impacts of agriculture indirectly affect pollinators via altered plant 

communities (Potts et al. 2010, Vanbergen et al. 2013, Vanbergen et al. 2017), as would 

restoration of agricultural plant-pollinator networks in practice (Kremen et al. 2002, Forup et 

al. 2008, Menz et al. 2011, Kaiser-Bunbury et al. 2017).  

 

Figure 4.2. Example extinction curves (coloured lines) for three hectads with different plant-

pollinator communities and correspondingly different robustness to global simulated 

extinctions as measured by area under extinction curve (A: Rg =0.90, B: Rg =0.82, C: Rg =0.66). 

Plant extinctions are ordered by trend (i.e. most strongly declining are eliminated first). Tick 

marks along the x-axis indicate where simulated plant extinction from the global list resulted in 

an extinction from the hectad. 

As well as randomised plant extinctions from the global list (Rg R), I conducted simulated 

extinctions by ordering the complete list of 499 plant species according potential predictors of 

future plant declines under three scenarios:  

a) historic distribution trend (1985-2015) estimated using FRESCALO (Hill 2012, Isaac et al. 

2014), extinctions occurring first for plants showing the greatest historic decline (Rg Trend);  

b) soil fertility tolerance based on Ellenberg N values (Hill et al. 2004), extinctions occurring 

first for plants preferring low soil fertility, as historically observed in GB flora (Stevens et al. 

2006, Maskell et al. 2010) (Rg N);  

c) drought tolerance based on Ellenberg F values (Hill et al. 2004), extinctions occurring first for 

plants preferring moister conditions expected to suffer under climate change (Thuiller et al. 

2005, Watts et al. 2015) (Rg F).  
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For each hectad-level network, plants were sequentially extirpated from the global list in the 

order determined by each scenario. After each plant extinction any pollinator species with no 

remaining links were removed from the network. I assessed Rg as the area under the curve 

(Burgos et al. 2007) of pollinators remaining in the local network against plants removed from 

the global sequence (Fig. 4.2). This process was repeated 100 times per scenario, with random 

ordering of plant species with tied trends or Ellenberg values (or of the entire list for 

randomised plant extinctions; Rg R).  

Following individual plant extinctions, there is potential for pollinators to switch between 

plants and rewire networks (Thomsen et al. 2017). Other authors have used regional 

information to inform the likelihood of rewiring in local networks (Kaiser‐Bunbury et al. 2010). 

However, the potential networks already implicitly incorporate some of this capacity for 

rewiring because each local network contains information from all recorded interactions 

across GB over three decades. Another approach is to create putative novel interactions from 

plant-pollinator traits but, given the assumptions and uncertainties involved, it is difficult to 

assess whether such rewiring scenarios are more ecologically meaningful than using only 

observed interactions. I conducted supplementary analyses exploring additional trait-based 

network rewiring scenarios but found that spatial patterns in robustness metrics were largely 

unaffected (Appendix B4). 

Two main sources of error in the hectad-level potential networks are the methods used to 

model occurrence and the database used to assign interactions. Consequently, I assessed the 

impact of these sources of uncertainty independently and in combination by performing, for 

each hectad, 100 randomised resamples of species according to FRESCALO probability of 

occurrence, and of interactions proportional to the number of times they were recorded (see 

Appendix B5). 

CROP-POLLINATORS 

I repeated the analyses calculating hectad-level network metrics, including Rg and Rl, for 

potential networks consisting solely of interactions involving known crop-pollinators. This 

allowed me to explore whether the structure and stability of crop-pollinator networks was 

similar to the wider plant-pollinator networks in which they were embedded. Bees are 

generally considered the most important contributors to crop pollination (Free 1993, but see 

Rader et al. 2016) and their predominance in the pollination of GB crops is well supported 

(Woodcock et al. 2013, Garratt et al. 2014). Crop-pollinators were determined from a 

published list of bee species with the highest contribution to crop production value (Kleijn et 
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al. 2015) for major GB insect-pollinated crops (oilseed rape, field bean, apple and strawberry). 

The interactions database included 23 such species from 5 genera (see Appendix B, Fig. B5 for 

full species list). I then compared metrics for crop-pollinator networks, overall plant-pollinator 

networks and bee-only networks. Because crop-pollinator networks are considerably less 

speciose, I resampled the bee-only network for each hectad 100 times, with a random 

selection of pollinators equal in number to crop-pollinator species in the hectad, and then 

calculated mean resampled network metrics for comparison. The number of plants in each 

resampled network was allowed to vary depending on interactions with the selected 

pollinators, as attempting to limit plants to the number in the crop-pollinator networks would 

severely restrict the number of resampled networks and constrain resultant network metrics. 

STATISTICAL ANALYSIS 

Network metrics were modelled independently against agricultural coverage, using linear 

mixed-effects models in the nlme R package (v3.1 Pinheiro et al. 2017). I derived coverage of 

agricultural land (arable + improved grassland) per hectad from LCM2007 and used this as a 

fixed effect explanatory variable, along with an optional quadratic term, which was retained in 

models if significant. To account for the potential influence of other environmental variables 

on network structure and response to agricultural coverage, I assigned each hectad to an 

environmental zone, using a pre-existing classification (Bunce et al. 2007). Environmental zone 

was then included as a random factor in all models, with variable slope and intercept. Some of 

the network metrics I used are sensitive to the size of the network (Jordano 1987, Olesen and 

Jordano 2002, Forup et al. 2008, Morris et al. 2014), so models were compared with and 

without total species richness as a fixed covariate. Environmental zones represented by <30 

hectads were considered to have insufficient sample size for robust analysis and were 

excluded, as were hectads with >50% coverage of sea, giving a final sample of 2290 hectads. 

All variables were standardised to mean of zero and standard deviation of one, to facilitate 

comparison of model coefficients. Each model was compared using a likelihood-ratio test 

against a model consisting only of the random effect and species richness, to determine the 

impact of incorporating agricultural coverage on model fit. I also applied randomisation tests 

(Fortin and Jacquez 2000) to account for potential complex spatial autocorrelation patterns 

arising from how FRESCALO defines neighbourhoods based on spatial proximity and biological 

similarity (see Appendix B6). 

 

 



51 

 

4.4. Results  

SPATIAL PATTERNS IN NETWORK PROPERTIES 

Variation in plant and pollinator species richness conformed to known clines across GB (i.e. 

higher richness in the south and at lower altitudes, Fig. 4.3). Spatial patterns for connectance, 

pollinator generality and plant generality showed similar latitudinal and altitudinal trends to 

species richness (Fig. 4.3), and a significant correlation with total plant-pollinator species 

richness (Pearson’s r  =-0.95; 0.82; 0.97, respectively,  n =2290, p <0.001 in all cases).  

 

Figure 4.3 Network properties per hectad across GB: A) total species richness of plants and 

pollinators combined, B) richness of pollinators and C) richness of plants, D) network 

connectance, E) pollinator generality, F) plant generality. Lighter colours indicate lower values, 

darker colours indicate higher, with linear colour stretch from maximum to minimum values.  

Robustness to global simulated extinctions (Rg) also showed spatial variation across GB, with 

more variation than would be expected under simple conformity to species richness, latitude 

or altitude (Fig. 4.4A, C, E, G and I). The different extinction sequences gave mean Rg scores 

across hectads of 0.84, 0.92, 0.85 and 0.93 for extinctions ordered by trend (Rg Trend), Ellenberg 

N (Rg N), Ellenberg F (Rg F) and randomised extinctions (Rg R), respectively (range across hectads 

0.66-0.97 across all four Rg measures), but with varying spatial patterns (Fig. 4.4). Robustness 

to randomised local extinctions (Rl) showed a very similar range of values and spatial patterns 

to Rg R (Fig. 4.4I). 
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Figure 4.4 Spatial patterns in robustness to global simulated extinctions (Rg) as measured by 

area under extinction curve. Panels A, C, E, G and I show Rg with extinctions ordered by historic 

plant occurrence trend (Rg Trend), fertility tolerance (Rg N), drought tolerance (Rg F), globally 

randomised extinctions (Rg R) and locally randomised extinctions (Rl), respectively. Panels B, D, 

F, H and J show residuals from linear mixed models of Rg Trend, Rg N, Rg F, Rg R and Rl, respectively, 

against species richness and environmental zone. Grey shaded cells indicate environmental 

zones with <30 cells excluded from mixed models. For all panels, darker colours indicate higher 

values, with a linear colour stretch between maximum and minimum values.  
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EFFECT OF AGRICULTURAL LAND COVER ON NETWORK PROPERTIES AND ROBUSTNESS  

Pollinator generality and all five measures of robustness to simulated extinctions showed 

significant positive relationships with agricultural coverage (Table 4.1). All relationships apart 

from Rg F included a significant negative quadratic term (Table 4.1) indicating a levelling off of 

the relationship as agricultural coverage approaches 100% (Fig. 4.5A, B, C, E, F). These results 

suggest that pollinator communities in more highly agricultural landscapes are more generalist 

and that, under all the extinction scenarios, hectads with a higher coverage of agricultural land 

lost pollinators less quickly than other hectads in the same environmental zone. This effect 

appeared most pronounced for Rg Trend and Rg N (Fig. 4.5B and C). Neither plant generality nor 

connectance showed any significant relationship with proportion of agricultural coverage 

(Table 4.1).  

 

Figure 4.5 Relationships with proportion of agricultural land cover for six network properties: 

A) pollinator generality B) robustness to simulated global extinctions ordered by historic plant 

trend (Rg Trend), C) robustness to simulated global extinctions ordered by Ellenberg N (Rg N), D) 

robustness to simulated global extinctions ordered by Ellenberg F (Rg F), E) robustness to 

simulated global extinctions ordered at random (Rg R), F) robustness to simulated local 

extinctions ordered at random (Rl). All relationships are statistically significant (see Table 4.1). 

Slopes were back transformed from the full model (i.e. with agricultural land cover, species 

richness and environmental zone) and show the effect of agricultural land coverage on 

response variables once effects of species richness and environmental zone are accounted for.  
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Table 4.1. Results from linear mixed models of network metrics per hectad versus proportion of agricultural land and random effect of environmental zone 

for potential networks at hectad (10 × 10 km) scale across GB. Results are standardized slope coefficients (± standard errors) for linear and quadratic terms 

(the latter only retained where significant) with level of significance (*** <0.001, ** <0.01, * <0.05) and likelihood-ratio tests against a model consisting only 

of the random effect, and p value derived from comparing model results against 1000 randomisations. Model results are shown with and without species 

richness as a covariate. 

Metrics 
Species 

Richness 
Agricultural 

cover (linear) 
Agricultural cover 

(quadratic) 
Likelihood-ratio 

test 
Randomisation 

test 

    Slope ± SE Slope ± SE Slope ± SE χ² p value p value 

Network Species richness 
Total richness   0.06 (±0.12)    2.22 0.14  0.50  

Pollinator richness   -0.08 (±0.11)    2.01 0.16  0.09  

Plant richness   0.15 (±0.12)    0.78 0.38  0.23  

Plant extinction scenario 
predictors per hectad 

Mean historic trend   0.37 (±0.07) *** -0.12 (±0.02) *** 29.33 <0.001 *** <0.001 *** 
SD historic trend   0.14 (±0.12)    1.00 0.32  0.30  

Mean Ellenberg N   1.33 (±0.53) * -0.1 (±0.02) *** 14.82 <0.001 *** 0.03 * 
SD Ellenberg N   -0.54 (±0.08) *** -0.22 (±0.04) *** 33.21 <0.001 *** <0.001 *** 
Mean Ellenberg F   -0.23 (±0.07) **   5.07 0.02 * 0.01 ** 
SD Ellenberg F     -0.05 (±0.11)       2.56 0.11   0.18   

Network metrics 

(species richness not included 
as covariate) 

Connectance   0.01 (±0.14)    2.14 0.14  0.27  

Pollinator generality   0.33 (±0.09) *** -0.18 (±0.02) *** 52.29 <0.001 *** 0.00 ** 
Plant generality   0.08 (±0.11)    2.06 0.15  0.38  

Rg Trend   0.38 (±0.06) *** -0.09 (±0.02) *** 19.89 <0.001 *** <0.001 *** 
Rg N   0.49 (±0.05) *** -0.14 (±0.02) *** 49.68 <0.001 *** <0.001 *** 
Rg F   0.36 (±0.09) ***   10.33 0.00 ** <0.001 *** 
Rg R   0.45 (±0.07) ***   18.65 <0.001 *** <0.001 *** 
Rl     0.42 (±0.07) *** -0.1 (±0.03) ** 20.58 <0.001 *** <0.001 *** 

Network metrics 

(species richness included as 
covariate) 

Connectance -1.34 (±0.02) *** 0.12 (±0.05) *   0.68 0.41  0.13  

Pollinator generality 0.53 (±0.02) *** 0.34 (±0.07) *** -0.07 (±0.02) ** 13.84 <0.001 *** <0.001 *** 
Plant generality 0.96 (±0.01) *** 0.01 (±0.03)    4.90 0.03 * 0.32  

Rg Trend 0.21 (±0.03) *** 0.38 (±0.05) *** -0.05 (±0.03) * 19.70 <0.001 *** <0.001 *** 
Rg N -0.12 (±0.03) *** 0.49 (±0.05) *** -0.16 (±0.02) *** 54.18 <0.001 *** <0.001 *** 
Rg F -0.12 (±0.03) *** 0.36 (±0.1) ***   8.62 0.00 ** <0.001 *** 
Rg R -0.68 (±0.04) *** 0.45 (±0.09) *** -0.17 (±0.03) *** 24.10 <0.001 *** <0.001 *** 
Rl -0.57 (±0.04) *** 0.42 (±0.08) *** -0.22 (±0.03) *** 42.18 <0.001 *** <0.001 *** 
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While species richness was a significant covariate in models for all network metrics, its 

inclusion did not qualitatively change the relationships with agricultural coverage. For all 

models, likelihood ratio tests and randomisation tests generally corroborated the significance 

of the individual model coefficients for agricultural coverage (Table 4.1). There was no 

significant relationship between agricultural coverage and species richness of plants, 

pollinators or both combined, once environmental zones were accounted for (Table 4.1). 

There were significant relationships between agricultural coverage and the mean values across 

the plant community per hectad of the trait and trend values used to order extinction 

sequences (Table 4.1). This indicates that agricultural coverage influences the relative position 

of the plant community in the global extinction sequences. Standard deviations in these values 

within hectads showed a significant, negative relationship only for Ellenberg N, suggesting 

hectads with higher agricultural cover not only host communities with higher average fertility 

tolerance, but show significantly less variation in fertility tolerance between plant species. 

CROP-POLLINATOR NETWORKS 

Subsets of networks consisting of only crop-pollinating bees and the plants they visit showed 

significant differences in their properties from complete hectad-level networks, or from 

randomly resampled networks of equivalent bee species richness. Crop-pollinator networks 

showed significantly higher plant species richness than the randomly resampled bee networks 

(pairwise t-test; t =133.57, p <0.001, df =2750), as well as higher connectance and pollinator 

and plant generalities (pairwise t-test; t =159.54, 155.48, 116.35 for connectance, pollinator 

generality and plant generality, respectively; df =2750 and p <0.001 in all cases). Robustness 

values for crop-pollinator networks were significantly higher than for full or resampled 

networks (Appendix B, Fig. B5), for all simulated extinction scenarios (pairwise t-test; 

t =152.22, 121.83, 132.14, 161.45, 155.72 for Rg Trend, Rg N, Rg F,  Rg R and Rl, respectively; 

df =2750 and p <0.001 in all cases). Crop-pollinator species were amongst the most widely 

occurring species in the database (median occurrence for crop-pollinators =60% of hectads, for 

all bees =30%, for all pollinators =43%). 

4.5. Discussion 

SPATIAL PATTERNS OF PLANT-POLLINATOR NETWORKS AND RELATIONSHIPS WITH AGRICULTURAL LAND 

COVER 

The results revealed that national-scale spatial patterns were clearly evident in all network 

metrics. Those for pollinator and plant generality and for connectance largely reflected well-
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known latitudinal gradients in GB plant and invertebrate species richness (e.g. Woodcock et al. 

2014). This is unsurprising as these metrics are a function of the connectedness between the 

two levels of a network and thus fundamentally affected by network species richness (Jordano 

1987, Olesen and Jordano 2002, Thébault and Fontaine 2010).  

Of greater interest in terms of implications for network stability were the more complex 

spatial patterns of the metrics of robustness to global simulated extinctions and the positive 

relationship with coverage of agricultural land evident under all the extinction scenarios. This 

positive relationship may, at first sight, seem surprising. Highly agricultural landscapes are 

often considered to have depauperate plant and pollinator communities (Kremen et al. 2002, 

Potts et al. 2010, Ollerton et al. 2014). As noted by Kleijn et al. (2015), this is often used as 

justification for pollinator conservation efforts under the assumption that continued crop 

pollination depends upon a diverse pollinator community. Whilst the results cannot directly 

shed light on the provision of pollination services, it is clear that plant-pollinator networks in 

landscapes with relatively high agricultural cover can exhibit higher robustness to extinction 

scenarios.  

EXPLAINING HIGHER ROBUSTNESS OF PLANT-POLLINATOR NETWORKS IN AGRICULTURAL LANDSCAPES 

Although it is somewhat counterintuitive that increased levels of anthropogenic disturbance 

(coverage of agriculture here) can lead to increased resilience to future perturbations (as 

estimated by the robustness metrics), similar relationships have been observed in other 

ecosystems (e.g. coral reefs, Côté and Darling 2010). This might be due to positive correlations 

between traits that confer tolerance to past and future disturbance (Vinebrooke et al. 2004). 

Exposure to previous stressors therefore acts as a filter either extirpating vulnerable species or 

favouring resistant ones to produce a community more resilient to future stress. The results 

suggest that the positive relationships between agricultural coverage and robustness may arise 

in this way from two interacting properties of the plant-pollinator networks.  

First, I showed greater robustness to extinctions with increasing agricultural coverage even 

when extinctions were at random and irrespective of the relative vulnerabilities of the plant 

community to the trait- and trend-based extinction scenarios. This may be largely driven by 

the higher generality of pollinator communities in agricultural landscapes, thus being less 

reliant on individual plant species. Highly agricultural landscapes, where resources are spatially 

and temporally clustered and where travel between patches of resource is costly, favour the 

persistence of generalist pollinators (Waser et al. 1996). Conversely, there was no significant 

effect of agricultural coverage on plant generality, so the loss of each plant is no more likely to 
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remove resources for multiple pollinators. In combination, increased pollinator generality and 

consistent plant generality insulate these networks against simulated extinctions. 

Second, in landscapes with higher coverage of agriculture, plant communities are more liable 

to have already lost their most vulnerable plant species and gained more tolerant ones 

(evidenced by significant relationships between coverage of agriculture and mean historic 

trend in plant occurrence and Ellenberg values), such that global extinctions are less likely to 

have local impacts. Many of the severest historic declines in GB plant species are associated 

with agricultural expansion and intensification (Fuller 1987, Walker and Preston 2006). 

Therefore many plants showing strong historic declines have already disappeared from highly 

agricultural areas, being replaced by species which can persist in such landscapes and with 

stable or increasing historic trends (Carvalheiro et al. 2013), contributing to higher robustness 

to extinctions ordered by plant trend. Likewise, amongst the major, lasting impacts of modern 

agriculture are increases in soil fertility, so agricultural hectads would have undergone 

replacement of those plants with low fertility tolerance (Marrs 1993, Walker and Preston 

2006, Walker et al. 2009, Redhead et al. 2014), contributing to higher robustness to extinctions 

ordered by fertility tolerance. Furthermore, plant communities in hectads with a higher 

coverage of agricultural land also showed a lower standard deviation in Ellenberg N, 

suggesting a homogenisation of fertility tolerances in agricultural landscapes.  

Under extreme circumstances, where networks have completely extinction-prone plant 

communities or completely resistant ones, differences in robustness to global simulated 

extinctions might be driven by the second effect alone, regardless of network structure. 

However, this is unlikely in the data given the significant relationship with generality and 

robustness under randomised extinctions. Also, all hectads possessed plant communities with 

varying positions in the extinction sequences. For example, Figures 4.2A and 4.2C show 

extinction curves for the two hectads which were, respectively, most and least robust to 

extinctions ordered by plant trend. From the distribution of the tick marks denoting plant 

extinctions from the hectad on the horizontal axes it is clear that, whilst these two hectads 

have plant communities consisting of species with differing positions in the extinction 

sequence, neither hectad has all its plant species at either extreme.  

Of course, the observed tendency of agricultural networks to require extreme plant extinction 

scenarios to collapse pollinator network structure does not mean that agriculture is without 

detrimental effects. Simple network metrics are insufficient to capture the myriad aspects of 

ecological stability (Grimm and Wissel 1997). Whilst the networks of agricultural landscapes 

may be more robust to the scenarios I examined, they may also have lower levels of functional 
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diversity. Potentially, they may also have lower functional resilience due to a homogenisation 

of species traits in response to the selective pressures of intensive agriculture (Woodcock et al. 

2014, Oliver et al. 2015b, Kaiser-Bunbury et al. 2017), as seen in the results for plant Ellenberg 

N.  

In reality, extinctions are unlikely to proceed in a rigid linear sequence according to a single 

predictor. Extinction cascades (Vanbergen et al. 2017), rewiring (Thierry et al. 2011, Ramos-

Jiliberto et al. 2012), climate change (Chen et al. 2011), disease (Smith et al. 2006) or invasive 

species (Bartomeus et al. 2008) can alter the stability of networks in unpredictable ways. 

However, the approach for calculating robustness to global simulated extinctions is sufficiently 

flexible that, where information on such effects exists, these could be incorporated into the 

extinction sequences.  

CROP-POLLINATOR NETWORK PROPERTIES 

The results showed that crop-pollinator networks are significantly more robust to simulated 

extinction scenarios than the overall networks of which they are a subset. This is probably due 

to the observed ubiquity and high generality of crop-pollinator species. These characteristics 

might be expected, as GB crop-pollinators are by definition those species pre-adapted to 

exploit the resource of non-native agricultural crop species growing in highly modified 

landscapes. The results support the contention of Kleijn et al. (2015) that strategies and 

initiatives based on conserving crop-pollinators will provide insufficient protection for wild 

pollinator communities overall. More generally, the results suggest caution where such 

functionally specific taxa are studied in isolation of the wider communities of which they are 

often only a small fraction. Obviously, crop-pollinators can be threatened by a wide variety of 

factors other than loss of nectar sources (Vanbergen et al. 2013, Gill et al. 2016, Potts et al. 

2016). For example, preferential loss of crop-pollinators could be triggered if association with 

crops results in detrimental exposure to pesticides (Stanley et al. 2015, Woodcock et al. 

2016b).  

LIMITATIONS OF THE POTENTIAL NETWORK APPROACH 

Constructing potential networks from biological records has a variety of limitations and 

assumptions that constrain their biological realism (hence ‘potential’ networks) and affect the 

uncertainty of results. Perhaps the most obvious limiting factor in the networks are the 

biological records from which they are constructed. In particular, the data are affected by 

shortfalls in the knowledge of species occurrence and of their interactions (Hortal et al. 2015).  
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Regarding occurrence, although FRESCALO accounts for variation in recorder effort, there are 

likely to be remaining inaccuracies for rare or under-recorded species, whilst conversion of 

FRESCALO’s probabilistic outputs to binary presence/absence values may also introduce 

errors, particularly at species’ range boundaries. Regarding interactions, I acknowledge that 

the coverage of GB plants, pollinators and the interactions between them are incomplete (see 

Appendix B2). The potential networks may exhibit either ‘missing’ or ‘forbidden’ links in some 

hectads (Olesen et al. 2010) as they do not account for variation in interactions due to flower 

phenology (Basilio et al. 2006, Rafferty and Ives 2011), pollinator life-history (Vieira and 

Almeida-Neto 2015, Vanbergen et al. 2017) or pollinator resource-switching (Thomsen et al. 

2017).  

The exploration of some of these sources of uncertainty (see Appendices B4 and B5) suggests 

that uncertainties arising from occurrence and/or interaction data affect hectad-level 

networks in ways that are relatively consistent across space. Whilst both sources of 

uncertainty affect the accuracy of individual potential networks they are far less likely to 

introduce a systemic bias which would affect the observed spatial patterns and relationships 

with agricultural land. Therefore, despite these limitations, I suggest that the potential 

networks properties and the spatial patterns I observe are broadly representative of real-

world networks (see Appendix B5).  

CONCLUSIONS  

The results demonstrate the ability of potential networks constructed from biological records 

to provide new insights into spatial patterns of ecological networks across national scales that 

would be impossible to monitor using conventional direct observation approaches. The 

positive relationship between agricultural cover and robustness to a range of extinction 

scenarios supports previous observations that anthropogenic disturbance can result in 

ecological networks which are more robust to further perturbation. Furthermore, from the 

results, crop-pollinator networks are not representative of wider plant-pollinator networks, 

such that targeting landscape management for the retention of  crop pollination may be 

entirely insufficient to conserve wider biodiversity (Kleijn et al. 2015). 

The findings suggest potentially productive fields of further investigation, including further 

investigation of the mechanisms underpinning spatial patterns in network properties, 

validation of potential networks against those constructed from large-scale molecular data and 

exploration of more complex scenarios of extinction, invasion or restoration. In the future, the 

production of potential networks from biological records is likely to become easier and more 
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accurate, as new technology and methods increase the quality and quantity of biological 

records (Tulloch et al. 2013, Gray et al. 2014, August et al. 2015a, Powney and Isaac 2015) and 

novel molecular techniques increase the potential for wide-scale validation (Keller et al. 2015, 

Richardson et al. 2015, Bohan et al. 2017, Pornon et al. 2017). 
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Chapter 5: Effects of future agricultural change scenarios on 

beneficial insects3 

5.1. Abstract 

Insects provide vital ecosystem services to agricultural systems in the form of pollination and 

natural pest control. However, there are currently widespread declines in beneficial insects 

which deliver these services (i.e. pollinators and ‘natural enemies’ such as predators and 

parasitoids). Two key drivers of these declines have been the expansion of agricultural land 

and intensification of agricultural production. With an increasing human population requiring 

additional sources of food, further changes in agricultural land use appear inevitable. 

Identifying likely trajectories of change and predicting their impacts on beneficial insects 

provides a scientific basis for making informed decisions on the policies and practices of 

sustainable agriculture.  

I created spatially explicit, exploratory scenarios of potential changes in the extent and 

intensity of agricultural land use across Great Britain (GB), at a 10km (hectad) resolution. 

Scenarios covered 52 possible combinations of change in agricultural land cover (i.e. 

agricultural expansion or grassland restoration) and intensity (i.e. crop type and diversity). I 

then used these scenarios to predict impacts on beneficial insect species richness and several 

metrics of functional diversity. Predictions were based on species distribution models derived 

from biological records, comprising data on 116 bee species (pollinators) and 81 predatory 

beetle species (natural enemies).  

I identified a wide range of possible consequences for beneficial insect species richness and 

functional diversity as result of future changes in agricultural extent and intensity. Current 

policies aimed at restoring semi-natural grassland should result in increases in the richness and 

functional diversity of both pollinators and natural enemies, even if agricultural practices 

remain intensive on cropped land (i.e. land-sparing). In contrast, any expansion of arable land 

is likely to be accompanied by widespread declines in richness of beneficial insects, even if 

cropping practices become less intensive (i.e. land-sharing), although effects of functional 

diversity are more mixed.  

 

  

                                                      
3 Published as: Redhead, J.W., Powney, G.D., Woodcock, B.A. & Pywell R.F. (2020) Effects of future 
agricultural change scenarios on beneficial insects. Journal of Environmental Management, 265: 
e110550 
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5.2. Introduction  

Beneficial insects deliver a wide variety of ecosystem services essential to human life 

(Schowalter et al. 2018). In agricultural systems, two of the most economically important 

services are pollination and natural control of crop pests (by predatory or parasitic ‘natural 

enemies’). Pollination services have been valued at US$235-577 billion (Lautenbach et al. 

2012) and affect yield or quality of most globally important crop types (Klein et al. 2007, Gallai 

et al. 2009), whilst natural control of crop pests has been valued at over US$400 billion 

(Costanza et al. 1997) and is vital to many high economic value crops (e.g. Colloff et al. 2013, 

Classen et al. 2014).  

There is increasing evidence of widespread declines in both pollinators (Kluser and Peduzzi 

2007, Potts et al. 2010, Ollerton et al. 2014, Powney et al. 2019) and natural enemies (Kotze 

and O'Hara 2003, Brooks et al. 2012, Oliver et al. 2015b). A significant contributor to these 

declines has been the expansion of agricultural land and the intensification of agricultural 

production (Robinson and Sutherland 2002, Kotze and O'Hara 2003, Kluser and Peduzzi 2007, 

Potts et al. 2010), with the accompanying prevalence of agrochemicals (Basedow 1990, 

Woodcock et al. 2016b) and simplification of landscapes (Kotze and O'Hara 2003, Bianchi et al. 

2006, Ollerton et al. 2014, Senapathi et al. 2015, Landis 2017). As insects themselves decline, 

so do the services they provide (Kremen et al. 2002, Oliver et al. 2015b) such that deficits are 

either already occurring (Garibaldi et al. 2011, Zhao et al. 2015) or predicted in the near future 

(Aizen et al. 2008).  

With an increasing human population requiring additional sources of food (Godfray et al. 

2010), further changes in agricultural land use appear inevitable. Simultaneously, international 

(CBD 2017) and national (Defra 2011, 2018a) policies incorporate significant commitments 

toward the restoration of intensively managed agricultural land. Future agricultural landscapes 

may therefore develop in many possible ways to meet these multiple goals. One of the most 

obvious distinctions is the contrast between ‘land-sharing’ and ‘land-sparing’ approaches 

(Green et al. 2005, Ekroos et al. 2016). Land-sharing integrates food production and 

biodiversity conservation on the same land, increasing the amount of farmed land but 

reducing intensity of agriculture. Land-sparing segregates food production and biodiversity 

conservation, compensating for a reduction in the farmed area by intensifying farming 

practices. Assessing the relative sustainability of these options, in terms of both food 

production and environmental impact, relies on empirical and theoretical knowledge of how 

changes in agricultural systems affect populations of beneficial insects, especially at the 

regional and national scales at which most agricultural policy is targeted and formulated. The 
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majority of studies documenting the impacts of agriculture on beneficial insects have focused 

on the past (e.g. Robinson and Sutherland 2002, Kotze and O'Hara 2003, Brooks et al. 2012, 

Comont et al. 2014, Senapathi et al. 2015). While this provides evidence that the expansion of 

intensive agricultural practices has had largely negative impacts on beneficial insects, it has 

limited value in planning future agricultural policy, with comparatively few studies exploring 

potential future impacts over larger spatial scales (Reidsma et al. 2006). Furthermore, 

individual species differ in terms of functional characteristics that affect their capacity to 

exploit their environment. These differences affect not only on their response to 

environmental change but also in their capacity to deliver ecosystem services (Greenop et al. 

2018, Woodcock et al. 2019). Exploring how changes in the occurrence of individual species 

impact on the functional diversity of the insect community thus provides additional 

information on how future agricultural changes may affect the capacity of beneficial insects to 

deliver ecosystem services (Hoehn et al. 2008, Greenop et al. 2018, Woodcock et al. 2019). 

Here I develop national-scale scenarios of future change in the extent and intensity of 

agricultural land use to understand potential impacts on beneficial insects. The aim of scenario 

approaches is not to predict the future, but to better understand the range of potential 

outcomes, uncertainties and trade-offs between different responses (Moss et al. 2010, Holway 

et al. 2012). They provide a valuable method for engaging with policy makers (Audsley et al. 

2006) and stakeholders (Tompkins et al. 2008) and a route for operationalising the ecosystem 

service concept into land use policy (Grêt-Regamey et al. 2017). Creating exploratory scenarios 

and modelling their impacts on key service indicators such as beneficial insect communities 

can thus be an important tool for designing and refining land use policy options (Holway et al. 

2012), especially if these approaches can be based on widely available data and accessible 

models. The aims of this study were therefore: 

i) To create multiple exploratory scenarios of potential future change in the extent of 

agricultural land cover and intensity of land use at national scale for Great Britain (GB) 

ii) To use biological records to model the effect of existing patterns of land cover and land 

use on the distributions of pollinators (bees) and natural enemies (predatory beetles) 

iii) To use these models to predict the impacts of all possible combinations of the scenarios 

on the species richness and functional diversity of beneficial insects  
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5.3. Methods 

CREATING SCENARIOS OF FUTURE AGRICULTURAL CHANGE  

Scenarios of agricultural land cover extent 

I created two contrasting scenarios to explore changes in the extent of agricultural land, the 

balance of arable vs. pastoral farming, and the relative amounts of improved (i.e. intensively 

managed with agrochemical inputs and sowing of productive grass species) vs. semi-natural 

(i.e. retaining a diverse plant community, with low levels of management) grasslands: 

i) Expansion of land under agricultural production. This was primarily driven by conversion 

of improved grassland to arable, with a smaller proportion from conversion of semi-

natural grasslands to improved grassland (Fig. 5.1). Such changes may occur under 

increased demand for food (Godfray et al. 2010) and profitable farming (Defra 2018a). 

ii) Restoration of grassland (i.e. retraction of agricultural land), converting improved 

grassland to semi-natural and arable to improved grassland (Fig. 5.1), in line with 

national (Defra 2018a) and international (European Commission 2011) policies  for 

restoring semi-natural grasslands. Although GB semi-natural grasslands do have an 

agricultural role (extensive grazing) they are rare in the intensive arable systems which 

dominate Western Europe (Pedro Silva et al. 2008). 

 

Figure 5.1. Plot of areas of arable land, improved grassland and semi-natural grassland under 

each land cover scenario, and associated land cover maps for the baseline and two most 

extreme scenarios. Numbers on bars are percentage of GB covered by each land cover class 

under the scenario. 
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Expansions were performed in sequential fashion, with 5% increments up to 30% change from 

the baseline (i.e. present-day land cover from the CEH Land Cover Map 2007 (LCM2007, 

Morton et al. 2011), creating scenarios with varying levels of expansion (Fig. 5.1). Because GB 

is already dominated by agricultural land (Morton et al. 2011) expansions beyond 30% are 

unlikely. For the grassland restoration scenario, expansions of up to 30% are sufficient to cover 

the ambition of 500,000 Ha of “additional wildlife-rich habitat” set out by Defra (2018a). The 

scenarios focussed on large scale changes if all other factors (e.g. climate, population growth) 

were to remain constant. 

Scenarios were modelled using the Integrated Valuation of Ecosystem Services and Trade-offs 

(InVEST) Rule Based Scenario Generator tool (v3.3.3 Sharp et al. 2017). InVEST is a free, open-

source suite of ecosystem service models (Sharp et al. 2017). The scenario generator tool (‘the 

tool’ from hereon) is a spatially explicit, multi-criteria, multi-objective evaluation tool 

(Tenerelli and Carver 2012) for generating user-defined scenarios of land cover or land use 

change. The tool determines relative suitability between grid cells for change by spatial overlay 

of multiple criteria provided by the user (Sharp et al. 2017). The parameters required by the 

tool are described in Table 5.1 for each land cover change scenario.  

Table 5.1. Parameters of the InVEST scenario generator tool and the data used for inputs 

under each of the two land cover change scenarios. 

  Input under each scenario 

Model 
parameter 

Description i. Agricultural expansion  ii. Grassland restoration 

Baseline 
land cover 

Raster map of land cover  CEH Land Cover map 2007 (LCM2007) at 1km resolution (Morton et al. 
2011), simplified to ten aggregate classes (broadleaved woodland, 
coniferous woodland, arable, improved grassland, semi-natural grassland, 
mountain/heath/bog, saltwater, freshwater, coastal, built up) 

Quantity of 
Change 

Required change in each 
land cover class 

5% increments up to 30% increase in 
area of agricultural land cover 

5% increments up to 30% increase 
in total area of grassland 

Transition 
Likelihood 

Matrix of likelihood of 
pairwise transitions 
between land covers 

Historic changes from comparison of 
land utilisation survey (Stamp 1931) 
and LCM2007 

Reverse of transitions used for 
scenario i 

Priority Relative priority of 
different land covers to 
break ties 

Arable land > improved grassland Semi-natural > improved 
grassland 

Suitability 
Factors 

Vector delineation of 
other known drivers of 
land suitability 

Agricultural land classification (ALC, Soil Survey of Scotland Staff 1981, 
MAFF 1988, Natural England 2012, Welsh Government 2017) giving 
suitability of land for agricultural uses based on soils, topography, climate 

Proximity Distance below which 
distance to existing cells 
affects suitability 

Set to 10km. This is beyond the size of most farm management units 
where proximity to existing land determines likelihood of change. 

Constraints Vector map of factors 
constraining change  

Sites of Special Scientific Interest. 
Basic unit of GB statutory land 
protection, known to prevent change 
over long timescales (Ridding et al. 
2015). 

Not used 
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Transition likelihoods for the first scenario were parameterised by extrapolation of observed 

20th century land cover changes. These were calculated by comparing the 1930s Dudley Stamp 

land utilisation map (Stamp 1931) and LCM2007, both at 1km resolution, determining the 

relative frequency of transitions between land cover classes and weighting transition 

likelihoods accordingly. The second scenario was more hypothetical, there having been no 

large scale grassland reversion in GB since the agricultural depression of the late 19th century 

(Best and Coppock 1962). Instead, the purpose of this scenario was to offer a contrast to 

agricultural expansion, assuming prioritisation of habitat restoration and biodiversity 

conservation.  

The tool combines all parameter values (Table 5.1) via a weighted sum to gain an index of 

suitability per cell for each different land cover class. Cells are then converted sequentially, 

from most to least suitable, until the required level of change is met. Where two or more cells 

are of equal suitability, the tool selects at random. To assess uncertainty introduced by this 

random element, each scenario was run 100 times. Uncertainty was then quantified as the 

percentage of runs for which each cell was equal to its modal land cover across runs (see 

Appendix C2). To explore the sensitivity of the tool to the parameters and weightings, and to 

validate its ability to recreate known land cover change, I ran the tool using the 1km version of 

the Dudley Stamp map as a baseline to examine which combination of parameters most 

closely approached the actual configuration of the LCM2007 (see Appendix C3). 

Scenarios of agricultural land use intensity  

I used crop type and rotation as a proxy for agricultural intensity per 1km cell. Cropping 

patterns drive many aspects of intensity, including presence of monocultures, levels of 

agrochemical inputs, degree of landscape simplification and available resources for 

biodiversity. Because cropping patterns are highly variable over time and influenced by 

complex drivers such as market forces, government policies and societal preferences (Li et al. 

2018) I did not use the approach of extrapolating from historic trends. Instead, I classified 

cropping patterns from an annual satellite-derived map of GB crops, CEH Land Cover® plus: 

Crops (CEH 2016). I used 3 years of data (2015-2017) to assign each 1km cell to one of three 

broad cropping classes (‘intensive’, ‘diverse’ or ‘extensive’) using a simple rule base (Appendix 

C, Table C1).  

In general, cells with a predominance of winter-sown cereals and oilseed rape were considered 

‘intensive’ because growing these crops without others in the rotation generally requires 

substantial use of synthetic pesticides and fertilisers (Sieling and Christen 2015) and is 

associated with increased mechanisation and homogeneous landscapes. These two crops have 
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dominated GB agriculture over recent decades, with detrimental effects on biodiversity 

(Robinson and Sutherland 2002).  

Cells with a large variety of crops or a predominance of root or legume crops, were considered 

‘diverse’. Such landscapes are likely to show larger numbers of crop types over time as many 

of these crops can only be grown as part of more complex rotations. I follow the general usage 

of ‘crop diversification’ as cultivation of multiple crop types in a given area (Gurr et al. 2016, 

Aizen et al. 2019) rather than necessarily indicating structural heterogeneity or diversity in its 

ecological sense.  

A prevalence of spring cereals or temporary grass leys was considered indicative of extensive 

agriculture. Spring sown cereals are generally beneficial for biodiversity in comparison to 

winter crops (Dicks et al. 2019) and often require lower inputs of pesticides (Robinson and 

Sutherland 2002), whilst the prevalence of temporary grass is likely to be indicative of farming 

systems utilising rotational pest and soil management and thus a reduced reliance on 

agrochemicals.  

I constructed three scenarios, based on expansion of one of the three cropping classes into all 

areas where the ALC indicated the land was suitable to do so. A fourth scenario kept cropping 

patterns at their present-day baseline. I also predicted cropping intensity for cells which may 

become arable under one of the land cover change scenarios by taking the modal cropping 

class for all arable cells on land of the same ALC grade within 100km. Any cell which was 

dominated by arable land under the selected land cover scenario then received the 

appropriate cropping class from the selected cropping scenario. The scenarios did not account 

for configuration of crops within the landscape. Although this is known to affect beneficial 

insect communities (e.g. Martin et al. 2016, Hass et al. 2018, Haan et al. 2019, Sirami et al. 

2019) I cannot predict the composition of a given landscape within a 1km cell using the 

scenario methods. 

MODELLING RESPONSES OF BENEFICIAL INSECTS  

To provide data on GB beneficial insect populations, I used biological records (i.e. records 

submitted to voluntary recording schemes, a form of ‘citizen science’). These provide large 

volumes of data on species’ identification, date and location (hereafter ‘occurrence’ data) and 

are a valuable resource for analysing large-scale patterns in time and space (Powney and Isaac 

2015).  

Occurrence data on bees at 1km resolution were extracted from the databases of the Bees, 

Wasps and Ants Recording Society held by the UK Biological Records Centre (BRC). The 
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predominance of bees in pollination of GB crops is well supported (Garratt et al. 2014). For 

natural enemies, I focussed on carabid and coccinellid beetles. These are well-studied in 

agricultural systems (e.g. Cole et al. 2002, Woodcock et al. 2010, Comont et al. 2014, 

Woodcock et al. 2014) and sufficiently well-recorded to have large volumes of species-level 

data (unlike other natural enemy groups, e.g. parasitoid wasps). I compiled lists of predatory 

carabids and aphidophagous coccinellids (see Appendix C, Table C7 for references used to 

identify diets) and obtained occurrence data held by BRC from the Ground Beetle Recording 

Scheme and UK Ladybird Survey, respectively. Data were cleaned to remove species and data 

that might lead to erroneous or biased results (see Appendix C4 for data cleaning steps), 

resulting in 116 bee species, 16 coccinellids and 65 carabids for analysis (full list in Appendix C, 

Tables C5 and C6). 

I used species distribution models (SDMs) to model the relationships between species 

occurrence and current patterns of land cover and agricultural intensity. SDMs are widely used 

to determine and make predictions from the relationships between occurrence and 

environmental variables (Elith and Leathwick 2009). SDMs were based on the ten LCM2007 

aggregate land cover classes, with arable land subdivided into the current three cropping 

intensity types. They also included three climatic variables to ensure that modelled 

distributions were influenced by climatic constraints. These were mean January and July 

temperatures and mean annual precipitation, averaged across 2000-2012 at 1km resolution 

(Robinson et al. 2017). A logistic regression based SDM was run for each species of beneficial 

insect, with all land cover/use and climate variables included as standardised, explanatory 

variables. The models are thus of the form: 

logit( Pr(Occ) ) = α + β1 LULC1 + β2 LULC2 + β3 LULC3 + … + β10 LULC10 + βTJan TJan + βTJul TJul + βPrec Prec 

Where Pr(Occ) is the probability of occurrence,  α is the intercept and β is the regression 

coefficient for each covariate. Preliminary analysis supported logistic regression as performing 

as well as other, more analytically complex methods (Appendix C, Table C4), as also 

demonstrated in previous studies (Bradter et al. 2018). Models were run in R (v3.4.0 R Core 

Team 2017) using Zoon (August et al. 2017, Golding et al. 2018), with 1000 random 

background pseudoabsences and 5-fold cross-validation. Because spatial variation in recorder 

effort influences the probability that lack of occurrence indicates a genuine absence (Lobo et 

al. 2010) I used a threshold of species detection (Hickling et al. 2006, Redhead et al. 2015), 

with only cells with at least one other species permitted as pseudoabsences. See Appendix C 

(Table C4 & Fig. C1) for preliminary analyses used to determine this threshold. 
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PREDICTING SCENARIO IMPACTS ON SPECIES RICHNESS AND FUNCTIONAL DIVERSITY  

Relationships with land cover and cropping intensity derived from the SDMs were then used to 

predict the occurrence of each species in each 10 x 10km grid cell (hectad) for all factorial 

combinations of land cover and cropping intensity scenarios (52 possible combinations = 2 

land cover change scenarios × 6 expansion steps × 4 cropping intensity scenarios + 3 cropping 

intensity scenarios at baseline land cover + 1 baseline land cover and current cropping 

patterns). Climate layers were held constant across scenarios. For each scenario combination, 

occurrence probabilities were summed per hectad across species, giving an index of relative 

richness (Scherrer et al. 2018).  

Functional diversity was calculated from traits compiled from sources listed in Appendix C, 

Table C5. Traits included body size (total length of thorax/elytra and intertegular distance 

(Cane 1987) for beetles and bees, respectively) because it is related to many functional roles 

including foraging range (Greenleaf et al. 2007), dispersal ability (Gutiérrez and Menéndez 

1997) and life history (Peters and Peters 1986). For natural enemies I also included wing length 

(macropterous, brachypterous or dimorphic) as this is indicative of dispersal ability (Den Boer 

1970) and thus species’ vulnerability to disturbance and ability to exploit new habitats (Kotze 

and O'Hara 2003). I also included diet breadth (oligolectic or polylectic for pollinators; 

omnivore, generalist or specialist predator for natural enemies), which indicates both 

responses (vulnerability to changes in food resource availability) and effects (likelihood of 

feeding on species relevant to agricultural systems). For pollinators, which are highly seasonal 

in their life cycles, I also included seasonality (voltinism and flight season duration). I calculated 

two metrics of functional diversity for each hectad based on the species predicted to be found 

there under each scenario. These were: 1) Rao’s quadratic entropy (RaoQ), which expresses 

the average difference in functional traits between two randomly selected individuals from a 

community, as calculated from average abundance-weighted pairwise trait differences 

between species (Botta‐Dukát 2005); 2) functional evenness (FEve), which provides a measure 

of the evenness of species functional trait distribution (Mason et al. 2005). These two metrics 

were chosen because of their relative simplicity for calculation over large numbers of hectad 

and scenario combinations, and their representation of different aspects of functional diversity 

(Mason et al. 2005, Petchey and Gaston 2006, Mouchet et al. 2010). I also calculated 

community-weighted mean body size to directly explore one of the traits driving functional 

diversity responses. Body size is typically inter-correlated with many other characteristics 

(Gaston and Blackburn 1996, Gutiérrez and Menéndez 1997, Greenleaf et al. 2007, Rusch et al. 

2015) and thus provides a core single-trait metric of community functional composition. 
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Functional diversity metrics were calculated using the FD package (Laliberté and Legendre 

2010, Laliberté et al. 2014) and used predicated probability of occurrence from SDMs to 

weight traits in lieu of data on relative abundance (Woodcock et al. 2014).  

5.4. Results  

Under the baseline land cover and cropping scenarios, I found that the response metrics of 

species richness and functional diversity were generally inter-correlated to some extent 

(correlations with species richness were -0.79, 0.46 and -0.88 for pollinators and -0.58, 0.65, -

0.71 for natural enemies, for each of RaoQ, FEve and community-weighted body size, 

respectively; Spearman’s rho, n =2659, p <0.001 in all cases). Although these correlations are 

statistically significant across the entire dataset of all GB hectads, it was clear that a wide 

variation in functional diversity metrics per hectad is possible for any given value of species 

richness (Appendix C, Fig. C3). I therefore present results for species richness and each 

functional diversity metric separately.  

IMPACTS OF LAND COVER SCENARIOS 

The expansion of agricultural land cover had almost uniformly negative impacts on species 

richness, with declines in some hectads exceeding 20% (Fig. 5.2A and 5.2B). These were 

generally proportional to the degree of expansion, although there was some indication that 

these declines levelled off at higher percentage expansions. Effects on functional diversity 

were more mixed. For pollinators, roughly equivalent numbers of hectads showed increases 

and decreases in RaoQ whilst FEve was more consistently negatively affected (Fig. 5.2A). For 

natural enemies, both metrics tended to show decreases, as for species richness. In terms of 

community-weighted body size, arable expansion tended to favour larger-bodied pollinators 

and smaller-bodied natural enemies. 

The grassland restoration scenario (Fig. 5.2C and 5.2D) was generally beneficial for species 

richness with widespread increases of up to 10% and very few decreases. The effect on all 

metrics of functional diversity was generally positive for natural enemies (Fig. 5.2D), whilst for 

pollinators 10-20% of hectads showed decreases of <1% in RaoQ (Fig. 5.2C). Community-

weighted mean body size responded in the inverse manner to agricultural expansion, with a 

trend towards smaller-bodied pollinators and larger-bodied natural enemy communities.  
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Figure 5.2. Plots showing proportions of GB hectads with different levels of percentage change 

in species richness and functional diversity metrics under three levels of the two land cover 

expansion scenarios; agricultural expansion (A, B), and grassland restoration (C, D). Results are 

shown for pollinators (A, C) and natural enemies (B, D). Results for all levels of expansion are 

presented in Appendix C, Figs. C4-C7. RaoQ =Rao’s quadratic entropy, FEve =functional 

evenness, Body size = community-weighted mean body size. 

IMPACTS OF CROPPING INTENSITY SCENARIOS 

The intensification scenario had little impact on pollinators, with roughly equal numbers of 

hectads showing increases and decreases of <1% for most metrics (Fig. 5.3A). Natural enemies 

were slightly more prone to negative impacts, especially in terms of RaoQ, although these 

changes were still small (Fig. 5.3B). The diversification scenario was similar in its impacts, with 

impacts being generally negative but slight (Fig. 5.3C and 5.3D). In contrast, the extensification 

scenario had much more pronounced effects (Fig. 5.3E and 5.3F). These included widespread 

increases of up to 10% in beneficial insect species richness and RaoQ. Functional evenness 

tended to show strong decreases under the extensification scenario for both beneficial insect 

groups. Effects of the extensification scenario on community-weighted mean body size 

differed between pollinators and natural enemies - for pollinators (Fig. 5.3E) results varied 

widely between hectads, but for natural enemies there were widespread increases in 

community-weighted mean body size by up to 10% (Fig. 5.3F). 
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Figure 5.3. Plots showing proportions of GB hectads with different levels of percentage change 

in species richness and functional diversity metrics under the three cropping intensity scenarios; 

intensification (A, B), diversification (C, D) and extensification (E, F). Results are shown for 

pollinators (A, C, E) and natural enemies (B, D, F). RaoQ =Rao’s quadratic entropy, FEve 

=functional evenness, Body size = community-weighted mean body size. 

IMPACTS OF SCENARIO COMBINATIONS 

There were 52 possible combinations of the land cover and cropping intensity scenarios. Note, 

some of these are not necessarily plausible, but are included to provide a full characterisation 

of the range of potential futures. Results are shown for all in Appendix C, Figs. C4-C8. I present 

here scenarios relating to land-sharing or -sparing practises attempting to find trade-offs 

between the extent and intensity of agricultural land.  

Extensification had some mitigating effect on the negative impacts of agricultural expansion 

under the sharing scenario (Fig. 5.4A and 5.4B). However, at higher levels of expansion this 

was insufficient to prevent widespread declines in richness in hectads converted from other 

land uses to extensive agriculture. This was true despite some increases in hectads which were 

already agricultural but became less intensive (Fig. 5.5C and 5.5G). RaoQ generally increased 
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under land-sharing, whilst FEve showed strong decreases. Community-weighted mean body size 

increased for both insect groups, contrasting with their opposite responses to agricultural 

expansion scenario. 

 

Figure 5.4. Plots showing proportions of GB hectads with different levels of percentage change 

in species richness and functional diversity metrics under land-sharing (30% expansion of 

agricultural land and extensification of cropping, A, B) and land-sparing (30% restoration of 

grassland and extensification of cropping, C, D). Results are shown for pollinators (A, C) and 

natural enemies (B, D). Results for all possible scenario combinations are presented in Appendix 

C, Figs. C4-C7. RaoQ =Rao’s quadratic entropy, FEve =functional evenness, Body size 

=community-weighted mean body size. 

The land-sparing example (Fig. 4C and 4D) showed more widespread increases in species 

richness. These were often less pronounced (<1%) than under the land-sharing scenario but 

were not countered by declines in other hectads (Fig. 5D and 5H). RaoQ showed a mixture of 

small increases and small decreases for pollinators and predominantly small increase for 

natural enemies. The effect on FEve was generally positive for both groups. Land-sparing 

retained the effect of grassland restoration on community-weighted mean body size, with 

shifts towards smaller-bodied pollinator and larger-bodied natural enemy communities.  
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Figure 5.5. Examples of percentage change in species richness for pollinators (A-D) and natural 

enemies (E-H) under different scenario combinations. Scenarios are: 30% expansion of 

agricultural land and intensification of cropping (A, E); 30% restoration of grasslands and 

extensification of cropping (B, F); 30% expansion of agricultural land and extensification of 

cropping (land-sharing, C, G); 30% restoration of grasslands and intensification of cropping 

(land-sparing, D, H).  

Individual species varied widely in their responses to each scenario (Appendix C, Fig C8), 

including species which appeared to benefit from generally detrimental scenarios such as high 

levels of agricultural expansion or intensification.  

EXPLORING MODEL UNCERTAINTY AND PERFORMANCE 

Exploring uncertainty by re-running scenarios 100 times showed a mean 76% agreement with 

the modal class across all scenarios, for cells which showed change in any scenario run 

(Appendix C, Table C1). Uncertainty was affected by spatial resolution, being relatively high in 

the assignment of some individual 1km whereas land cover patterns at coarser resolutions or 

regional scales were more conserved across scenario re-runs. SDM performance was generally 

better for pollinating bees than for natural enemies (Appendix C, Table C8). Performance for 

both groups was sufficient to imply confidence in their predicative ability under the scenarios.  
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5.5. Discussion 

IMPACTS OF THE SCENARIOS ON BENEFICIAL INSECT SPECIES RICHNESS AND FUNCTIONAL DIVERSITY 

 Scenarios of land cover change 

The results show that gains in agricultural production from increases in the area of agricultural 

land are likely to be accompanied by widespread detrimental impacts on beneficial insect 

species richness, in line with well-known detrimental impacts of conversion of semi-natural 

grasslands to agriculture on beneficial insect communities (Kremen et al. 2002, Kotze and 

O'Hara 2003, Ollerton et al. 2014, Senapathi et al. 2015). Whilst many areas of GB showed 

moderate decreases, the consequences for individual hectads may be more severe, with 

species richness losses of over 20%. Effects on functional diversity were rather more mixed, 

especially for pollinators. Where there are correlations between traits driving the response to 

land use change and those used to calculate functional diversity (Williams et al. 2010) it is 

probable that functional diversity will respond differently to species richness. In this case, 

traits such as body size, dispersal ability and diet breadth all mediate the responses of 

beneficial insects to landscape. Indeed, the results showed a shift in communities towards 

large-bodied pollinators (e.g. Bombus spp.) under agricultural expansion. This is in agreement 

with the findings of Bommarco et al. (2010) that small generalists are particularly sensitive to 

habitat loss. Larger pollinators tend to have longer foraging ranges (Greenleaf et al. 2007) and 

are thus better able to tolerate the fragmentation of resources imposed by highly agricultural 

landscapes (Woodcock et al. 2014), although they may be more susceptible to land use 

intensification in other contexts (Rader et al. 2014). There is ample evidence that certain 

pollinator communities occur preferentially in agriculturally dominated landscapes (e.g. 

Holzschuh et al. 2013, Redhead et al. 2018b, Powney et al. 2019). Expansion of these 

functionally-similar species can either increase functional diversity, when they arrive in 

landscapes where these functions were previously underrepresented, or reduce it where these 

communities replace or dominate one with greater functional diversity, hence the mixed 

results for pollinators. For natural enemies, functional diversity tended to decrease in line with 

species richness, suggesting either that natural enemies with a wider range of functions are 

reduced by agricultural expansion or that those species which do benefit from agricultural 

expansion are even more functionally homogenous than for pollinators. Compared to 

pollinators, many carabid and coccinellid natural enemies are less mobile and more closely 

linked to local habitat (Woodcock et al. 2010, Woodcock et al. 2014) so, although there are 

species which are more frequent in agricultural landscape, it is possible that the constraint of 
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ability to survive in agricultural landscapes on function is even more severe. This reduction in 

functional diversity is important as a recent meta-analysis found functional diversity in 

predator communities to be a significant predictor of their capacity to provide natural pest 

control (Greenop et al. 2018). The decrease in community-weighted natural enemy body size is 

supported by observations that larger predatory carabids (e.g. Carabus spp.) are particularly 

vulnerable to agricultural land uses (Ribera et al. 2001, Cole et al. 2002) and observed declines 

linked to their reduced dispersal and lower reproductive rates (Kotze and O'Hara 2003).  

Grassland restoration was generally beneficial for both pollinators and natural enemies. 

Expansions of 15-20%, corresponding to the targets of international (European Commission 

2011) and national (Defra 2018a) biodiversity strategies, resulted in an average increase of 

0.71-0.96% of pollinators and 0.33-0.45% natural enemies per hectad, with individual hectads 

showing up to 22% and 10% increases in pollinator and natural enemy richness, respectively. It 

is unsurprising that restoration of semi-natural grasslands has positive impacts on both groups, 

given the known importance of these habitats (Cole et al. 2002, Woodcock et al. 2014, Carrié 

et al. 2017, Holland et al. 2017). This scenario also had generally positive effects on all metrics 

of functional diversity, suggesting that grassland restoration benefits a functionally broad 

range of beneficial insects. The restoration of semi-natural grassland can be a very long-term 

process in terms of effective reconstruction of the target community (Walker et al. 2004, 

Redhead et al. 2014). That said, restored grassland can still show significant increases in 

biodiversity over much shorter timescales than those required to return to a pre-disturbance 

state (Török et al. 2010, Redhead et al. 2014) and the LCM2007 semi-natural grassland class 

does not consist solely of pristine examples. Therefore, the scenario does not assume full 

restoration, suggesting localised benefits for beneficial insect richness and functional diversity 

even at low to moderate levels of change.  

Scenarios of cropping intensity 

Scenarios of cropping intensity generally had less pronounced impacts than land cover change, 

when applied in isolation. This is as expected, given that these are effectively proxies for the 

crops and management regimes in the agricultural landscape and are therefore modifying the 

management intensity of a given land cover rather than changing it completely. The effect of 

the intensification scenario was particularly limited, perhaps because the species which have 

demonstrably survived in GB’s already highly-modified agricultural landscapes are likely to be 

able to persist even if these landscapes are managed more intensively (Redhead et al. 2018b). 

The impact of the crop diversification scenario was similarly low. However, recent studies have 

found that habitat configuration or heterogeneity may be more important than crop diversity 
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per se (Hass et al. 2018, Redlich et al. 2018) or that the effect of crop diversity has complex 

interactions with configurational diversity and the amount of semi-natural habitat in the 

landscape (Sirami et al. 2019). Because of the limited number of crops and uneven distribution 

of agricultural land quality in GB, cropping regimes identified as being ‘diverse’ under my rule 

base are mostly in parts of the country with relatively highly modified agricultural landscapes 

(e.g. root crop systems in the East of England). For many species, the association between 

occurrence and diverse cropping as modelled by the SDMs is thus likely to be biased towards 

negative.  

The extensification scenario had more pronounced effects on species richness and functional 

diversity, reflecting a more profound change from the predominant agricultural systems of GB. 

For richness and RaoQ these were positive. Extensification was the only scenario to show an 

opposite effect for FEve to RaoQ, with a large proportion of hectads showing strong decreases 

in FEve. Unlike RaoQ, functional evenness is particularly sensitive to the presence of species 

present at low levels (Mason et al. 2005) and outlying trait values, especially where these 

appear in combination (Májeková et al. 2016). Extensification may thus promote a subset of 

species with relatively extreme trait values. Examining which species show the greatest 

expansions under extensification to shows these to include small, oligolectic bees with 

localised distributions (e.g. Panurgus banksianus, Heriades truncorum) and small, predatory 

beetles (e.g. Notiophilus spp.). 

Scenario combinations 

When scenarios were applied in combination it was clear that the differing responses to land 

cover and cropping intensity resulted in a wide range of possible outcomes. In some cases, 

there was a degree of trade-off between species richness and functional diversity. Attempting 

to mitigate against the detrimental impacts of agricultural expansion by decreasing the 

intensity of agriculture (i.e. land-sharing) appeared to help maintain or even increase RaoQ, 

but strong decreases in species richness and FEve were still widely evident. This scenario also 

created a strong polarisation between existing agricultural areas which showed increases in 

richness as they became less intensively used and areas which were converted to agriculture 

and thus experienced strong decreases.  

Combining restoration of grassland with an intensification of remaining agriculture to maintain 

overall levels of food production (i.e. land-sparing) generally only slightly reduced the positive 

impacts of grassland restoration on species richness and functional diversity. Other studies 

have also found land-sparing is often determined to be preferable in terms of maximising 
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biodiversity benefits, even when considered alongside delivery of crop yield (Kamp et al. 2015, 

Ekroos et al. 2016, Lamb et al.), but few of these have examined functional diversity. It should 

also be borne in mind that the delivery of ecosystem services from both pollinators and 

natural enemies is strongly driven by landscape composition (Bianchi et al. 2006, Chaplin-

Kramer et al. 2011, Chaplin-Kramer et al. 2013, Martin et al. 2016, Holland et al. 2017), so 

landscapes which venture too far down the route of segregating habitats for biodiversity and 

crop production may end up undermining the delivery of these services to crops.  

LIMITATIONS OF THE METHODS 

The scenario approach has several limitations. The fate of individual 1km cells under any one 

scenario should be treated with caution due to the degree of uncertainty evident at this scale 

(Sharp et al. 2017), although predictions from SDMs should be less affected since these are 

made at the hectad scale. Because the scenarios explored a wide range of potential alternative 

futures, I did not include predications of climate change, which may potentially drive, 

exacerbate or mitigate against changes in land cover and land use intensity. Although the 

SDMs included climatic variables, and so could potentially take account of climate change, 

such scenarios would need to be timebound. This would require knowledge of the timescales 

over which changes in land cover and cropping systems occur. Since these can vary from 

gradual processes to step changes, as has been demonstrated by the complex history of 

agricultural land use change in GB (Best and Coppock 1962, Ridding et al. 2015), parametrising 

timebound scenarios is a complex task better suited to a narrower range of plausible futures 

driven by socioeconomic priorities (e.g. O’Neill et al. 2017). Whilst comparatively simplistic, 

the approach has the advantage of being transparent to the user. Because each individual 

scenario can be generated quickly, it becomes feasible to explore a wide range of scenarios 

focussed on plausible, near-future changes in agriculture at the national scale (Swinbank 2017, 

Defra 2018a) with multiple iterations to obtain estimates of uncertainty. The results thus are 

thus of particular relevance to policy makers in narrowing down land use policy targets and 

building stakeholder engagement and confidence (Holway et al. 2012). More complex 

approaches can then by deployed to further develop polices and determine how to incentivise 

transitions towards a desired target. 

The use of SDMs also has its limitations. Whilst model performance was generally adequate, 

performance metrics suggest many factors driving insect distributions are unaccounted for 

(e.g. landscape configuration, vegetation communities, soils, local land management). 

Predictions from SDMs also assume that relationships with current land uses classes are 

representative of future ones. For example, the areas I currently classify as ‘diverse’ may not 
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reflect the actual outcomes of future agricultural diversification, which might include crops not 

currently grown in GB or novel agricultural practices such as intercropping. Future ‘intensive’ 

agriculture might also look very different to current intensive landscapes, especially if 

‘ecological intensification’ approaches succeed in creating agricultural landscapes which both 

promote biodiversity and enhance crop yields via enhanced ecosystem service delivery 

(Bommarco et al. 2013, Pywell et al. 2015, Landis 2017, Kleijn et al. 2019). Recent research has 

also identified that the extremes of land-sharing and land-sparing are both outperformed by 

combinations of spared land, high-intensity farmland and lower-intensity farmland (Lamb et al. 

2019). Whilst such approaches cannot be explored with the current suite of scenarios, the 

methods could be adapted to simulate these and explore their effects.  

CONCLUSIONS AND IMPLICATIONS FOR LAND USE POLICY AND ECOSYSTEM SERVICE DELIVERY 

The results clearly show a range of possible consequences for beneficial insects depending on 

the future extent and intensity of agriculture. With declines in beneficial insects being and 

issue of global importance and GB at a pivotal time for determining future land use policy 

(Defra 2018a) it is particularly important to explore such potential futures explore the 

potential consequences of changes in land use and thus select and refine policy targets. 

Encouragingly, the results suggest that current policies aimed at increasing the area of semi-

natural grassland should increase average richness and functional diversity of both pollinators 

and natural enemies. These increases are likely to occur even if agricultural practices are 

intensified, for species richness at least. In contrast, any expansion of arable land is likely to 

drive further declines in beneficial insect richness and functional diversity, even if agricultural 

practices become less intensive. 

The relationships between species richness, functional diversity and ecosystem service delivery 

are complex (see overviews in Balvanera et al. 2006, Bianchi et al. 2006, Balvanera et al. 2013). 

Ecosystem service delivery at fine scales can depend more on the abundance of key species 

(Griffin et al. 2013, Kleijn et al. 2015, Winfree et al. 2015, Woodcock et al. 2019), a factor I did 

not directly consider in the current analysis (Woodcock et al. 2019) than richness or diversity. 

Despite this complexity,  richness and functional diversity of beneficial insects are increasingly 

found to be important at broader spatiotemporal scales (Hoehn et al. 2008, Greenop et al. 

2018, Dainese et al. 2019, Woodcock et al. 2019). It is thus difficult to predict exactly how the 

changes resulting from the scenarios might affect the ecosystem services delivered by 

beneficial insects across GB agricultural systems. Whilst it is hard to assess the relative merits 

of situations which show trade-offs between species richness and functional diversity, avoiding 

situations that lead to severe declines in either would seem advisable. 
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The methods used in this study demonstrate a valuable approach to the creation of scenarios 

for land use change and the exploration of their impacts on biodiversity at national scale. By 

using widely available spatial datasets (e.g. land cover maps) and occurrence data from 

biological records, modelled via open-source software (e.g. R and InVEST) the results 

demonstrate that scenario exploration can be performed in an intuitive, transparent and 

interoperable manner (Holway et al. 2012) and show the value of these data and methods for 

providing policy-relevant information.  
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Chapter 6: Discussion 

6.1 Thesis overview  

Here I briefly summarise the core aims, approaches and results contained in each chapter of 

this thesis. 

In Chapter 1, I introduced the importance of insect delivered ecosystem services to the global 

food production system. I also explored some of the key knowledge gaps in our current 

understanding of insect-delivered ecosystem services which analysis of large-scale spatial 

datasets, the focus of this thesis, might help to address. In particular, my analytical chapters 

are relevant to current knowledge gaps on: i) the link between large-scale landscape structure 

and agricultural production, as mediated by the flows of ecosystem services (Chapter 3); ii) 

how beneficial insect communities and network structure varies across space and how this 

relates to landscape structure (Chapter 4); iii) how future changes in land management may 

affect populations of beneficial insects and their capacity to deliver ecosystem services 

(Chapter 5). 

In Chapter 2, I reviewed the history of ecological resilience as a concept and explored its use in 

the context of food production systems and ecosystem services. It is clear that a identifying a 

standard definition of resilience in this context remains challenging (Béné et al. 2012, Myers-

Smith et al. 2012, Standish et al. 2014, Tendall et al. 2015, Béné et al. 2016, Newton 2016, 

Quinlan et al. 2016, Ingrisch and Bahn 2018), and that resilience of a given system is multi-

faceted and comprised of numerous sub-systems at a wide range of spatial scales and levels of 

ecological organisation (Bullock et al. 2017). Whilst working towards resilience in agricultural 

systems offers a potentially useful contrast to the technological and production-oriented 

paradigm that has led to the widespread environmental damage inflicted by agriculture over 

the twentieth century, we must be careful to acknowledge that building resilience is a means 

to an end (i.e. continued ability of GB landscapes to deliver multiple ecosystem goods and 

services, including food production). When analysing resilience of individual parts of the 

system it is important to define the limits of the system – i.e. “resilience of…” and “resilience 

to…” (Carpenter et al. 2001) - and to explore how resilience at one level is likely to affect or 

indicate resilience of the system as a whole (Bullock et al. 2017). If using metrics to quantify 

resilience, these should ideally be linked directly to system function and cover aspects of the 

resistance, recovery and response of the system (Béné et al. 2012, Béné et al. 2016, Ingrisch 

and Bahn 2018). 
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Chapter 3 applied some of these resilience concepts to temporal patterns of wheat yields and 

explored the relationship between yield resilience and landscape structure. Whilst the effect 

of landscape structure on beneficial insect communities is well-studied (Purtauf et al. 2005, 

Bianchi et al. 2006, Hendrickx et al. 2007, Chaplin-Kramer et al. 2011, Mitchell et al. 2014, 

Puech et al. 2015, Martin et al. 2016, Holland et al. 2017, Redlich et al. 2018, Sirami et al. 

2019), this is seldom followed through to actual crop yields, and almost never to examination 

of yield variation over time (Holland et al. 2016, Martin et al. 2016, Karp et al. 2018, Martin et 

al. 2019). As a result, direct evidence for the benefits of managing landscapes for beneficial 

insects on crop yield or yield resilience is scarce, which acts as a barrier to uptake of such 

management by the farming industry (Kleijn et al. 2019). In Chapter 3 I used multiple metrics 

of crop yield resilience derived from a 10-year time series, relating to overall level of yield, 

interannual stability and resistance to a specific, extreme event. The relationship of these 

metrics to landscape structure was then explored at hectad resolution across England. The 

results showed that, the sensitivity of yield resilience to landscape context varied based on the 

metric of resilience chosen. Relative yield was maximised in landscapes with a high coverage of 

arable land, whilst stability was highest in landscapes with high coverage of arable land but in 

close proximity to semi-natural habitats and resistance was highest in landscapes with high 

coverage of semi-natural habitats, independently of the amount of arable land. This means 

that the general trend was of increasing importance of semi-natural habitat and decreasing 

importance of arable land as resilience metrics were derived from shorter portions of the time 

series. These findings demonstrate the value of several recommendations made in Chapter 2. 

Firstly, the additional knowledge that can be obtained by examining resilience of a given 

function, rather than focusing on absolute levels of delivery. Secondly, the importance of 

examining several metrics which relate to different facets of resilience in conjunction 

(Carpenter et al. 2001, Cabell and Oelofse 2012, Ingrisch and Bahn 2018). Thirdly, that 

attempting to capture too many aspects of resilience within a single metric may be misleading 

– this was particularly the case for relative yield across the entire time series, which although it 

conceptually captures multiple instances of resistance and recovery (Fig. 2.2 and 3.1) ends up, 

in this particular system, being strongly correlated with simple average yield. Such metrics also 

have the issue that, although we have adequately defined “resilience of…”, our definition of 

“resilience to…” (Carpenter et al. 2001) is broadened to any and all environmental 

perturbations occurring over the course of the time series. Whilst the exact biological 

mechanisms underpinning the relationships I describe in Chapter 3 can only be inferred, there 

are vast bodies of evidence linking: a) semi-natural habitats to reservoirs of natural enemy 

diversity (Woodcock et al. 2014, Holland et al. 2016, Tschumi et al. 2016a, Holland et al. 2017, 
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Bengtsson et al. 2019); b) spillover of pest predation into crops (Tscharntke et al. 2005, Rand 

et al. 2006, Blitzer et al. 2012, Pywell et al. 2015, Woodcock et al. 2016a) and c); levels of pest 

control to richness, abundance and diversity (taxonomic and  functional) of natural enemy 

communities (Griffin et al. 2013, Dainese et al. 2017, Greenop et al. 2018, Dainese et al. 2019). 

All this evidence is strongly supportive of ecosystem services mediating the observed 

relationships between crop yield and landscape. Crucially, these relationships may be masked 

under ordinary circumstances, potentially because agricultural management practices 

(including the application of agrochemicals) and the services arising from species resident in 

arable parts of the landscape are usually sufficient to ensure high average yields (Pywell et al. 

2015, Gagic et al. 2017, Martin et al. 2019). It is only when yield resilience is examined over 

shorter timescales that we see the ability of environmental pressures to override the usual 

controls and show the benefit of semi-natural habitats. In a world where climatic extremes are 

predicted to become both more frequent and more severe (Rosenzweig et al. 2001, Rahmstorf 

and Coumou 2011, Trnka et al. 2014, GFS 2015, Iizumi and Ramankutty 2016, Harkness et al. 

2020), and the reliance of agriculture on pesticides is being called into question in favour of 

integrated management approaches (Rusch et al. 2010, Hillocks 2012, Bommarco et al. 2013, 

Potts et al. 2016, Kleijn et al. 2019), relationships with landscape structure may become even 

clearer and more important. However, whether we can adapt from current practices 

sufficiently to build agricultural systems with increased resilience to climate change (Altieri et 

al. 2015) remains to be seen, given the degree of undesirable resilience of the current 

intensive agricultural paradigm (Wilson and Tisdell 2001, Gould et al. 2018, Kleijn et al. 2019). 

Chapter 4 explored another set of relationships with landscapes, which have previously been 

difficult to quantify, those of network structure. Plant-pollinator networks offer valuable 

insights into how these ecological communities are structured and how they might respond to 

environmental change (Montoya et al. 2006, Vázquez et al. 2009, Burkle and Alarcón 2011, 

Pocock et al. 2012, Tixier et al. 2013, Gao et al. 2016, Tylianakis and Morris 2017, Bruder et al. 

2019, Morrison et al. 2020). However, because they are time-consuming to construct 

experimentally for a given location, examining patterns across space (and thus relationships 

with landscape) has generally been limited to small numbers of sites along environmental 

gradients (Olesen and Jordano 2002, Trøjelsgaard et al. 2015, Welti and Joern 2015, Tylianakis 

and Morris 2017, Morrison et al. 2020). In Chapter 4, I used biological recording data to 

construct potential plant-pollinator networks for every hectad in GB. Metrics of network 

structure were calculated for every hectad, including robustness to simulated extinctions 

ordered by plant traits known to affect vulnerability to environmental pressures. The results 
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showed a positive relationship between agricultural cover and robustness to a range of 

extinction scenarios. Increased robustness was attributable to changes in plant community 

composition (fewer extinction-prone species) and network structure (increased pollinator 

generality). This suggests an environmental filtering effect, whereby highly agricultural 

landscapes have already lost vulnerable species and retained those with traits enabling their 

survival under the pressures of intensive agriculture, such that further increases in these 

pressures have reduced effect. Crop-pollinator networks were especially robust, consisting 

almost entirely of unusually widespread, generalist species. Of course, these networks will only 

continue to be robust if ongoing pressures resemble historic ones, with different pressures 

potentially even inverting the relationship between agricultural cover and robustness 

(Morrison et al. 2020). Changes in the pressures associated with agricultural landscapes are 

highly likely, as such landscapes are prone to major upheavals over short timescales due to 

changes in cropping and management practices. For example, many pollinators which have 

shown increases over the past few decades are those associated with pollination of 

agricultural crops (Powney et al. 2019), by far the most extensive of which in GB is oilseed 

rape. In England alone this crop went from an area of 218000 Ha in 1982 to 742000 Ha in 

2012, more than tripling over three decades (Defra 2019). Whilst the balance between 

provision of a superabundant but temporally limited resource (Westphal et al. 2003, Westphal 

et al. 2009, Holzschuh et al. 2013, Kovács-Hostyánszki et al. 2013, Shaw et al. 2020) and 

exposure to pesticides (Woodcock et al. 2016b, Woodcock et al. 2017) has had complex effects 

on pollinator communities, some species appear to have benefitted overall (Powney et al. 

2019). But the moratorium on neonicotinoid seed treatments in 2013 and challenging climatic 

and market conditions have prompted reductions in the area of oilseed rape grown, to a 

recent low of 492000 Ha in 2019 (Defra 2019). Whether oilseed rape continues to decline, and 

which crops which replace it if so, is likely to have major impacts on the pollinator 

communities of intensive arable land quite independently of longer-term drivers such as 

climate change. It is also unknown whether the relatively limited communities which currently 

typify agricultural landscapes in GB can provide adequate pollination under all circumstances. 

If natural enemy communities are structured in similar ways this might also help to explain the 

findings of Chapter 3, where average levels of function may be maintained by a core 

community of species which can survive on agricultural land (with some supplementary effect 

of spillover from fragmented semi-natural habitats in the landscape) whilst under extreme 

circumstances these prove insufficient and the benefits of having other communities in the 

landscape are revealed.  
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The potential for future changes in agricultural landscapes was explored further in Chapter 5. 

Here I constructed a range of spatially explicit scenarios of change in GB land cover at 1km 

resolution (agricultural expansion vs. grassland restoration) and land use (intensification, 

extensification or diversification of cropping patterns). These scenarios used a range of historic 

and current spatial datasets to simulate where changes are likely to take place and validate the 

ability of the scenario approach to re-create historic change. Species distribution models 

(SDMs) were constructed based on biological records to determine the relationship between 

occurrence and current land cover and cropping patterns for pollinating bees and natural 

enemy beetles. These models were then used to predict occurrence under each scenario. 

Occurrence across species was then converted to indices of species richness and functional 

diversity under each scenario. The results showed a wide range of possible consequences for 

beneficial insect species richness and functional diversity in the context of GB land use change. 

Restoration of semi-natural grassland increased richness and functional diversity of both 

pollinators and natural enemies, even when agricultural practices were intensified on 

remaining cropped land. In contrast, any expansion of arable land is likely to be accompanied 

by further declines in richness and functional diversity of beneficial insects, even if cropping 

practices become less intensive in terms of cropping practices. It is clear from these results 

that large-scale improvements in beneficial insect populations require the restoration of semi-

natural grasslands. Combining this with extensification of cropping brings most benefit. Whilst 

the requirement to maintain food production limits the extent to which agricultural land is 

likely to become less intensive, the concept of sustainable intensification suggests that the 

intensive arable landscapes of the future may not resemble those of the past, with greater 

integration of semi-natural habitats, more complex crop rotations and reduced reliance on 

agrochemicals (Pywell et al. 2015, Landis 2017, Kleijn et al. 2019). 

6.2 Implications for the management of agricultural landscapes  

 At the spatial scales and resolutions analysed within this thesis (national coverage of 1-10km 

grid cells) it is clear that semi-natural habitat, and especially semi-natural grassland, plays an 

important role in both maintaining the richness and diversity of beneficial insects (Chapter 5) 

and in promoting the delivery of ecosystem services which maintain crop yields under 

environmental perturbations (Chapter 3). The importance of semi-natural grasslands as 

refuges for biodiversity are well known (Critchley et al. 2004, Öckinger and Smith 2007, Bullock 

et al. 2011, Woodcock et al. 2014, Holland et al. 2017, Bengtsson et al. 2019), as is their 

catastrophic decline in GB over the twentieth century (Fuller 1987, van Dijk 1991, Pedro Silva 

et al. 2008, Ridding et al. 2015). It also evident that the beneficial insects which thrive in these 
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habitats are vulnerable to further degradation of their habitats, as evidenced by the reduced 

robustness of pollinator communities to plant extinctions ordered by fertility tolerance 

(Chapter 4) and the severe declines in species richness observed when semi-natural grasslands 

are replaced with agriculture, even when extensive cropping practices are used (Chapter 5). All 

of these findings suggest that conservation of remaining semi-natural grasslands, and the 

restoration or recreation of degraded ones, is likely to be beneficial for both insect 

communities and agricultural production. Current targets under the 25 Year Plan (Defra 2018a) 

include restoration of losses to nature suffered over the past 50 years and restoration of 

500,000 hectares of wildlife-rich habitat (including semi-natural grassland) outside the current 

protected site network.  However, there are important considerations of spatial scale and 

context. Although semi-natural habitats are generally beneficial to natural enemy and 

pollinator communities found on adjacent agricultural land (Bianchi et al. 2006, Chaplin-

Kramer et al. 2011, Veres et al. 2013, Holland et al. 2016), this does not always translate to 

increased service delivery and ultimately, crop productivity (Veres et al. 2013, Martin et al. 

2016, Tscharntke et al. 2016, Begg et al. 2017). So whilst land-sparing type scenarios often 

result in optimal outcomes for biodiversity and food production (Egan and Mortensen 2012, 

Kamp et al. 2015, Ekroos et al. 2016, Lamb et al. 2016, Lamb et al. 2019), giving the highest 

relative yields in Chapter 3 and the best outcome for insect species richness and functional 

diversity in Chapter 5, a degree of land-sharing has to take place if ecological intensification is 

to be successful. This must provide semi-natural habitats which are, on the one hand, of 

sufficient size and quality to support diverse insect communities and, on the other, sufficiently 

close to agricultural land to promote ecosystem service delivery. A variety of recent studies 

have effectively found that, in heavily modified and multi-functional landscapes such as those 

of GB, sharing vs. sparing is somewhat of a false dichotomy (Phalan 2018, Finch et al. 2019, 

Lamb et al. 2019). Even in interpreting my results from Chapter 3 there are subtleties around 

spatial scale here and exactly how we define ‘sharing’ and ‘sparing’ - sparing land such that 

patches of existing semi-natural habitat can appear within a hectad (so that at a hectad scale 

the landscape is in fact ‘shared’) is probably beneficial, whilst sparing to the extent that 

hectads become entirely arable or semi-natural is probably detrimental. It is thus probable 

that the most constructive approaches to enhancing landscapes for delivery of services 

provided by beneficial insects are those operating over multiple spatial scales (Bianchi et al. 

2006, Begg et al. 2017, Landis 2017). These may consist of a variety of practices involving 

restoration of degraded semi-natural habitat, coupled with improvements to the general 

suitability of intensive agricultural land (supporting ecological intensification) and the 

introduction of novel agricultural practices intended to simultaneously improve or protect 
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both agricultural production and biodiversity (e.g. agro-forestry, organic farming, cover 

cropping etc). Again, current GB policy is generally supportive of this approach, especially in 

terms of “developing and implementing policies that encourage and support sustainable crop 

protection with the minimum use of pesticides… supplementing them with improved crop 

husbandry and the use of natural predators” (Defra 2018a). Although the scenarios and SDMs 

developed under Chapter 5 cannot yet simulate the impact of such practices with confidence, 

they can help to understand the relative vulnerabilities of different areas of the GB landscape 

to a range of key drivers, which in turn helps target further research and refine the range of 

plausible policy and management options. Indeed, this is exactly what GB environmental policy 

bodies such as Defra are currently using such land use scenarios (including those ones 

described in Chapter 5) to do.  

A further general conclusion from the results of this thesis is that protection of ecosystem 

services is not necessarily sufficient argument for the conservation of insect biodiversity (Kleijn 

et al. 2015). We have seen that landscapes dominated by arable land have higher average 

yields (Chapter 3) despite depauperate insect communities, that crop pollinators form 

communities which are unusually robust to plant extinctions (Chapter 4) and that functional 

diversity can increase even when species richness is reduced by agricultural expansion 

(Chapter 5). Whilst in all cases there are subtleties associated with these findings, if we focus 

solely on the transfer of ecosystem services to agricultural production, we run the risk of 

concentrating too much on a limited set of species which have already shown their ability to 

persist in agricultural landscapes despite the massive changes that these have undergone over 

the past century. The intrinsic value of insect biodiversity and its critical role in wider 

ecosystem functioning should not be forgotten (Yang and Gratton 2014, Forister et al. 2019, 

Saunders et al. 2019). A focus on agricultural resilience (Chapter 2) can help overcome this 

issue. Indeed, the direct measurements of resilience in Chapter 3 clearly help to show that a 

focus on production or assumptions about average levels of service delivery are misleading 

and potentially harmful to the livelihoods of farmers in the future. The farming industry in the 

UK is at pivotal time, with recent extreme weather events (e.g. Impey 2012, Kendon et al. 

2019), pesticide resistance (Gould et al. 2018), the withdrawal of active ingredients (Hillocks 

2012), public pressure (Myers et al. 2016) and the restructuring of agricultural subsidies 

(Rodgers 2019) all increasing the awareness that conventional approaches may be insufficient 

to maintain productive farming. But appreciation amongst farmers of the role that biodiversity 

can play in helping to buffer against these pressures is not yet widespread (Begg et al. 2017, 

Kleijn et al. 2019). Also, if increasing agricultural resilience remains a means to the sole end of 
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continued or increased food production, the role of biodiversity remains implicit, with 

potential for increases in agricultural resilience at the cost of biodiversity. Perhaps a better 

goal is for ‘resilience-enhancing landscapes’, able to reliably provide multiple functions 

including food production, biodiversity and other ecosystem services under the environmental 

changes we are likely to see over the coming decades. Ultimately, our own willingness to adapt 

and modify our land use, expectations and lifestyles is an integral part of the ability of the 

landscape, and the ecological and agricultural systems it supports, to resist, recover from and 

reorganise in response to environmental change. 

6.3 Advantages and limitations of the spatial modelling approach 

The results described in this thesis show the potential benefits of combining existing spatial 

datasets via novel analyses in the field of insect-delivered ecosystem services. The methods 

used across the various analyses might be variously described as macroecological, landscape 

ecology (Böhm and Popescu 2016), or ‘big data’ (Hampton et al. 2013, Soranno and Schimel 

2014) approaches, and combine elements from all of these fields. Essentially, they have in 

common the collation and integration of disparate datasets to form spatially explicit 

explanatory and response variables and model the statistical relationships between them.  

Using spatial datasets from remote-sensing, biological records and surveys overcomes the 

challenge of replicating experimental approaches across sufficiently large areas to examine 

trends in space and time (Hampton et al. 2013, Soranno and Schimel 2014, Powney and Isaac 

2015). Compared to experimental approaches, combining spatial datasets is relatively cheap 

and large volumes of data can be handled rapidly. However, some of the time saved in 

collecting the data is then expended in cleaning and handling it, and in designing sufficiently 

robust approaches to modelling the ecological patterns under investigation. There are, of 

course, other approaches to describing ecological patterns across larger spatial scales. Once 

such is to combine the findings of multiple experimental studies in meta-analyses (e.g. Chaplin-

Kramer et al. 2011, Griffin et al. 2013, Shackelford et al. 2013, Greenop et al. 2018, Woodcock 

et al. 2019). This approach has the advantage of exploring whether common patterns are 

found across multiple systems. However, results are frequently very mixed, because each 

study has its own unique scale and context (Spake et al. 2019). Studies also use different 

methods to quantify all components of the system, from communities of beneficial insects 

(e.g. natural enemies), the functions they perform (e.g. predation of pests), the services these 

incur (e.g. control of pest populations) and the final good these deliver (e.g. crop yield). Meta-

analytical approaches also have limited ability to detect potential trade-offs between different 

services (e.g. pollinator vs. natural pest control) or different taxonomic or functional groups of 
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beneficial insects (Shackelford et al. 2013), without direct comparisons drawn in the same 

contexts. Whilst there is a growing field of attempting to improve the ability of meta-analyses 

to explore context-specific patterns (Gurevitch et al. 2018, Shackelford et al. 2019), the use of 

large-scale spatial data helps to provide valuable evidence of consistent patterns over space 

and time.  

Some of the limitations of using spatial datasets have already been discussed in previous 

chapters. Several of these revolve around a fundamental trade-off between the generality of 

the predictions we can make, and the uncertainty associated with predictions at a given 

location (Hortal et al. 2015). In the case of Chapter 3, on the one hand, the direct linking of 

landscape and yield resilience allows predictions that are robust over relatively large spatial 

and temporal scales and avoids the complexities of meta-analyses covering the responses of 

multiple cropping systems and insect groups. One the other, we cannot predict exactly how 

yield will respond to environmental pressures at a given location. In Chapter 4 we can simulate 

the robustness of multiple networks and explore patterns over national extents, which would 

be impossible to do experimentally, but we do not know how well our networks reflect those 

of actual locations within the hectad-scale landscapes we examined. Chapter 5 explores a wide 

range of potential futures and their probable effects. However, uncertainty around future 

predictions for a given location are high, given the cumulative uncertainties from the input 

data, scenario generation and species distribution models. This latter example also highlights a 

general issue with the approach of combining existing datasets from disparate sources and 

disciplines, as is common in ecosystem service modelling (Hamel and Bryant 2017). Not only 

does each dataset have uncertainty associated with it, but every model used to process the 

dataset into a common, interoperable format will have a corresponding degree of uncertainty. 

This is even true of common geospatial operations such as reprojection between coordinate 

systems. Whilst such cumulative uncertainty does not necessarily undermine the general 

findings of large-scale spatial analyses, it should be described and quantified where possible as 

this a key part of building trust and credibility of between researchers, stakeholders and 

policymakers (Hamel and Bryant 2017). The methods used in the preceding chapters tend to 

account for the effect of uncertainty by randomised resampling or cross-validation 

approaches, but there are not necessarily transparent to those who wish to use research 

outputs in policy or to inform land management.  

Unless data are available for a very wide range of variables, spatial modelling is often limited in 

its ability to explore mechanisms. For example, in Chapter 3, data were accessible on 

landscape structure and crop yields, but not on beneficial invertebrate or pest populations. 
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Whilst it would be possible to include natural enemy species richness or functional diversity (as 

modelled in Chapter 5) as a predictor of yield resilience, variations in the number of biological 

records in a given year would make it impossible to examine variation over time, and the SDM 

methods of modelling occurrence from raw data are unlikely to capture the subtle variations in 

natural enemy communities and their movements which are driven by landscape 

configuration. Indeed, when natural enemy richness was included in models in preliminary 

analyses, it showed no significant relationship whatsoever with yield or yield resilience. A 

further limitation is that the natural enemies analysed in Chapter 5 are only a small subset of 

total natural enemies – whilst they are useful as an indicator of scenario impacts on a 

functional group they are unlikely to be representative of the entire natural enemy population 

of a given landscape. Some other natural enemy groups are both relatively well represented in 

biological recording data and well-studied in terms of their impact on crop pests and thus form 

good candidate for further exploration (e.g. Syrphid flies Wotton et al. 2019). However, many 

potentially important groups are insufficiently well-recorded to obtain robust estimates of 

occurrence (e.g. parasitoid wasps and flies, aphidophagous Neuroptera). Still others are well 

recorded, but their role in pest-control is extremely context-dependent and limited to specific 

species, as is the case for birds (Rana et al. 2016, Benayas et al. 2017, Grass et al. 2017). There 

are other data gaps too - ideally, the plant-pollinator networks in Chapter 4 would be 

complemented by equivalent pest-natural enemy networks. Whilst DNA barcoding of natural 

enemy gut content has the potential to build robust potential networks (Barnes and Turner 

2016, Bohan et al. 2017, Bush et al. 2017, Pornon et al. 2017), accurate, large-scale occurrence 

data on a suite of crops pests (e.g. aphids, slugs, Diptera) is difficult to obtain at the spatial and 

temporal resolution offered by biological recording schemes for pollinators or beetles. 

However, the potential network approach could still be applied for a limited number of well-

sampled points, such as the Rothamsted network of suction traps. 

A further fundamental trade-off which is apparent from the results in this thesis is thus that of 

spatial resolution versus spatial extent (Booth et al. 2014, Hortal et al. 2015, Di Marco et al. 

2017). The finer the resolution, the more likely that there will be gaps in our ecological 

knowledge and the greater the effort required to overcome these, limiting the area that can 

feasibly be covered. This affects information on species occurrence, abundance, traits, 

tolerances and interactions – the Wallacean, Prestonian, Raunkieran, Hutchinsonian and 

Eltonian shortfalls, respectively (sensu Hortal et al. (2015)). Hence we can, for example, either 

construct abundance-weighted, multi-trophic networks for a single farm (Pocock et al. 2012) 

or unweighted, hectad-scale, plant-pollinator networks for the whole of GB (Chapter 4). 
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Although new developments and technologies in the fields of remote sensing (Zarnetske et al. 

2019), image analysis (Zaks and Kucharik 2011), biological recording (Tulloch et al. 2013, Gray 

et al. 2014, August et al. 2015a, Powney and Isaac 2015) and molecular analyses (Kress et al. 

2015, Barnes and Turner 2016, Bohan et al. 2017, Pornon et al. 2017) are likely to help 

increase the number of ecological datasets with extensive spatial coverage at fine spatial 

resolution, there will always be an upper limit to the number of sensors that can be deployed, 

sites visited, or samples analysed. It is therefore likely that experimental, meta-analytical and 

spatial modelling approaches are likely to continue to go hand-in-hand (Hampton et al. 2013, 

Hortal et al. 2015), although there may be increasing overlap between them. Ultimately, whilst 

the results of the spatial analysis presented in this thesis are only interpretable in the context 

of detailed experimental work examining mechanisms operating at finer resolution and more 

limited extent, demonstrating that these mechanisms operate with sufficient generality to 

show patterns and make predictions at regional or national scales provides compelling 

evidence to stakeholders and policymakers of their importance.  

6.4 Future research  

The methods and findings described in thesis offer several avenues for further research. Some 

progress in connecting the analyses made in the different chapters, to follow the linkage from 

landscape structure to beneficial insect communities to predicting crop yields under future 

change could be made even without additional data. For a given landscape it would be 

possible to map landscape structure (as in Chapter 3, Fig. 3.3), and create habitat specific 

potential networks (by subdividing occurring plants and pollinators by known or modelled 

habitat preferences, for example). Cross-habitat networks could also be constructed using 

known dispersal or foraging ranges to weight cross-habitat links. It could then be investigated 

how altering the configuration of the landscape alters the links to crop components of the 

networks. However, additional data to validate potential networks would greatly add to the 

value of such approaches. Data from well-characterised study landscapes are particularly 

valuable in this respect as they can help to both validate large-scale spatial modelling 

approaches and better determine the mechanisms behind the spatial patterns they uncover. 

For example, systematic, national-scale monitoring of pollinators via citizen science 

approaches (Birkin and Goulson 2015, Roy et al. 2016) offers the potential to link the kind of 

landscape structure variables analysed in Chapter 3 directly to pollinator occurrence and 

abundance. Patterns of crop yield at fine spatial scales are also becoming more readily 

available due to the widespread uptake of precision yield monitoring technology, which takes 

simultaneous readings of harvested yield and location from high-accuracy GPS. This enables 
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estimation of yields not only at the field level, but also within the field (Muhammed et al. 

2016, Hunt et al. 2019), leading to the potential to examine patterns of yield and their relation 

to proximity to non-crop habitats (Field et al. 2016) and landscape structure.  

There is also an area for future research in constructing models for ecosystem service delivery. 

A number of models exist for predicting pollination and natural pest control from spatial data 

on land cover (e.g. Cresswell et al. 2000, Lonsdorf et al. 2009, Olsson et al. 2015, Groff et al. 

2016). However, these depend on accurate parametrisation with data on the abundance, 

foraging range, diet and habitat requirements of beneficial insects. Improving these to ensure 

they have the capacity to replicate observed links between landscape and yield (such as those 

in Chapter 3) can be achieved by refining and improving parameterisation of existing models, 

or by simulation-based methods to see if simplified communities of natural enemies and pests 

in simulated landscapes give similar patterns of yield and yield resilience.  

Our ability to determine spatial and temporal patterns in ecological data, and to offer optimal 

solutions for landscape management is often limited by the multiplicity of influences on 

ecological systems and the complexity of potential responses. This is easily seen in the 

preceding chapters, with multiple datasets and models required to construct response and 

predictor variables and control for confounding factors. Since many factors are also 

intercorrelated this makes it difficult to set up experiments to investigate the effects of 

multiple factors, since sites have to be selected to represent multiple factorial combinations of 

different environmental gradients (e.g. Staley et al. 2016). One approach to avoid having 

multiple contrasting gradients or subclasses is to employ the use of archetypes or syndromes 

(Václavík et al. 2013, Levers et al. 2018, Václavík et al. 2019, Alexandridis et al. 2020). These 

are multivariate classifications of landscapes by composition, configuration, soils, topography, 

climate and social factors which identify a limited number of characteristic landscape types. 

Archetypes can then be linked to the modelling approaches used here to make predictions or 

optimise the supply and demand of ecosystem services. Such approaches are best suited to 

large-scale exploratory work, since the assignment of a given landscape to a particular 

archetype creates its own source of uncertainty. The archetype approach is well suited to the 

development of scenarios (indeed the cropping intensity classes created for Chapter 5 are 

effectively crop-system archetypes) and can help refine the number of scenarios. Since 

archetypes have characteristic composition and configuration any modelling of scenario 

impacts can account for both.  
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6.5 Concluding remarks 

We are at a time where there is great potential for major changes in global agricultural 

systems. The approaches to increasing food production which we have relied on for the past 

few decades are not sustainable. They have driven the destruction of biodiverse habitats and 

ecological communities and have ultimately undermined the ability of agricultural landscapes 

to provide the very ecosystem services required to support crop production. If agricultural 

systems are to continue to produce sufficient, nutritious food for a growing human population, 

especially under the increasing risk of major disturbances brought about by climate change, 

there need to be radical changes in our management of agricultural land. These need to take 

place at all spatial scales, from the management of fields to the way we arrange our 

agricultural landscapes. The widespread declines in the populations of insects that provide key 

ecosystem services to crops (and maintain ecosystem function) are one obvious facet of this 

problem. There is widespread recognition that these services are form a key part of the goals 

of sustainable or ecological intensification, where an increased synergy between the objectives 

of biodiversity conservation and agricultural production bring about benefits for both. 

However, if we are to reverse declines in these beneficial insects and ensure that they 

continue to support agricultural production we need to implement these changes rapidly. We 

thus urgently need evidence on what changes to make and how to target and incentivise 

them. The research presented in this thesis demonstrates the value of exploiting the rich array 

of data sources that we already have available, giving us the ability to explore relationships 

between agricultural landscapes, beneficial insects and crop production, and to explore 

patterns in the past, present and future. Whilst these approaches need to be supplemented 

with data from experimental and meta-analytical approaches, and are likely to be improved by 

new data from a wide range of sources, they remain key to providing the kind of large-scale 

evidence which is required by policy makers and convincing to agricultural land managers. 
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Appendices 

A. Supplementary material for Chapter 3 

A1. CLEANING DATA AND SELECTING HECTADS FOR ANALYSIS 

Data were initially cleaned to remove anomalous yield values, including zero values and those 

associated with whole crop silage harvests. This gave a total of around 22,000 yield samples. 

We then averaged these to mean yield per year per hectad, giving 1214 hectads with a yield 

sample in at least one year. Of course, in most cases it would be impossible to derive a 

meaningful metric of resilience from a hectad which only had data in a few years of the time 

series, so we further restricted this dataset to the 315 hectads with at least one sample in each 

year of the time series. This dataset required further refinement for analysis. This was because 

in hectads with low numbers of samples per year, variation across the time series may arise 

from selection of farms with varying management practices or local conditions rather than the 

temporal variation driven by climate and mediated by landscapes which is the focus of our 

analysis. In the initial dataset there was significant correlation between sample size and mean 

yield, suggesting that variation in yield over time was likely to be significantly driven by 

inadequate sampling of local spatial variation. To remove this, we filtered the full dataset by 

several criteria. Firstly, all hectads were required to have at least one sample of yield data in all 

years of the time series. Secondly, we explored thresholds for the minimum permissible 

number of samples per year and the number of years permitted to have this value, to 

determine which combination retained the maximum number of samples whilst removing the 

significant correlations between sample size and mean yield and between mean sample size 

and estimated mean yield over time (Fig. A1). 

 

Figure A1. Plots of effect of sample size on mean yield in the original dataset, both from 

individual years (A) and means across the time series per hectad (B).  

A   B   
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I identified threshold values of minimum number of samples per year and maximum 

permissible number of years with low sample values which rendered these correlations 

insignificant. These analyses suggested that threshold values of no more than one year with a 

single sample and no more than two years having less than three samples were sufficient to 

ensure that the per hectad averages were accounting for local spatial variation. A total of 137 

hectads met these criteria. 

I also checked that the method for selecting hectads with sufficient samples for calculating 

metrics of yield resilience did not bias the sample towards a particular kind of agricultural 

landscape in terms of cover of arable land and semi-natural habitats and the configuration of 

these land over types (see Appendix A4 for selection of metrics of landscape composition and 

configuration). Although it was clear that high mean numbers of samples per year were only 

found in landscapes with high coverage of arable land and correspondingly low coverage of 

semi-natural habitats (Fig. A2), the sampled hectads covered a wide range (40% - 100% 

coverage of arable land, 0- 25% coverage semi-natural habitats) with comparatively few 

hectads excluded from the sample having values outside these ranges. For configuration 

metrics, the selected hectads covered almost the full range of connectivity and proximity 

indices for both arable land and semi-natural habitats evident across all hectads (Fig. A2). 

 

Figure A2. Plots comparing mean sample size across the time series per hectad against 

landscape composition and configuration, to ensure the sampling approach did not bias 

towards a particular landscape type. Blue points are those hectads meeting the threshold 

values for analysis, black points are hectads with at least one sample per year (the minimum 

required to calculate resilience metrics) but not meeting the threshold values. 



97 

 

A2. COMPARING METRICS OF RESILIENCE  

The three metrics of resilience were 1) Relative yield 2) Yield stability around a moving average 

3) Resistance to a specific extreme event. The three metrics cover different aspects of 

resilience and are calculated across different portions of the time series, but do show some 

degree of correlation with one another. Figure A3 shows the relationships between the 

metrics of resilience and with mean yield across the entire time series. Relative function 

showed a strong, positive correlation with mean yield (Pearson’s correlation, r =0.99, p <0.001, 

n =137), whereas the other two metrics did not (r =-0.14, p =0.08 for yield stability; r =0.04, p 

=0.61 for resistance, n =137 in both cases).  

 

Figure A3. Plots showing relationships between different variables quantifying wheat yield and 

its resilience (mean yield vs. relative yield, relative yield vs. yield stability, relative yield vs. 

resistance and yield stability vs. resistance). Pearson’s correlations coefficients (r) for each pair 

of variables are superimposed on the plots. 

  



98 

 

A3. CONSTRUCTING A POTENTIAL YIELD MODEL TO ACCOUNT FOR WEATHER AND SOIL EFFECTS 

The potential yield model was based approaches developed by Sylvester-Bradley and Kindred 

(2014) and Lynch et al. (2017). The model has three main stages: 1) estimation of green area 

index (GAI) over the growing season as a function of accumulated growing degree days, 2) 

estimation of intercepted solar radiation and conversion to biomass, limited by soil plant 

available water content 3) apportioning of accumulated biomass to grain yield. 

1) Estimation of green area index (GAI) 

The model assumed a sowing date of 1st of October, in line with the benchmark for winter 

wheat growth in the UK (Sylvester-Bradley et al. 2015). Following this date, the model 

accumulates GAI as a function of growing degree days above zero ˚C through the three key 

phases of wheat growth, further subdivided by growth stages (GS): foundation (Sowing-GS30 

and GS30-GS31), construction (GS31-GS61) and production (GS61-GS69, GS69-GS87, GS87-

senescense). GAI is accumulated at different rates over the different growth phases, following 

the benchmarks in Sylvester-Bradley et al. (2015). Required degree days to complete each 

growth phase and the associated progression in GAI are shown in table A1. 

Table A1. Wheat growth periods used by the model to determine rate of GAI development as a 

function of thermal time (growing degree days). 

Growth phase GAI at start GAI at end Thermal time  

Sowing-GS30 0.0 1.6 1100 

GS30-GS31 1.6 2.0 100 

GS31-GS61 2.0 6.3 900 

GS61-GS69 6.3 6.3 50 

GS69-GS87 6.3 1.3 750 

GS87-senescense 1.3 0 200 

During each growth phase, GAI is estimated as the proportion of required degree days which 

have been accumulated in order to complete the phase, multiplied by the end GAI of that 

phase. Degree days accumulate as follows: 

If 𝑇𝑚𝑖𝑛 > 0˚C: degree days = 
(𝑇𝑚𝑎𝑥+ 𝑇𝑚𝑖𝑛)

2
 

If 𝑇𝑚𝑖𝑛 < 0˚C: degree days = 
(𝑇𝑚𝑎𝑥 − 0)

2
−

(0−𝑇𝑚𝑖𝑛)

4
  

If 𝑇𝑚𝑎𝑥 < 0˚C: degree days = 0 

In order to account for vernalisation requirements, cumulative vernalisation days were also 

calculated as a function of mean daily temperature, following the equations in Spink et al. 

(2000) and Lynch et al. (2017). A crop requires 50 vernalisation days before progressing 

beyond GS31. When this does not occur, the estimated GAI remains constant until the crop is 
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adequately vernalised and degree days accumulated over this period do not contribute to the 

following growth phases (Lynch et al. 2017). The effect of day length is accounted for by 

limiting progression beyond GS31 until day length has progressed beyond 14 hours. Day length 

was calculated from latitude and date using the geosphere package (Hijmans et al. 2017). 

Where accumulated degree days are sufficient to progress beyond GS31 before day length >14 

hours, GAI remains constant until this threshold is met.  

GAI development is stalled if the temperature falls below -5 ˚C once the crop has passed GS31 

(Spink et al. 2000). Harvest was assumed to take place on the 31st of August. Where the GS87-

senescense phase was not complete before this date, it was assumed that this phase 

progressed more rapidly, with GAI of zero by harvest. 

2) Estimation of intercepted solar radiation and conversion to biomass 

Once the GAI curve was constructed from temperate and day length data, the intercepted 

radiation was then calculated. Intercepted radiation assumed that approximately 50% of total 

solar radiation is photosynthetically active and that, of this, the proportion intercepted by the 

canopy is given by Beer’s law, assuming a light extinction coefficient of 0.5 (Sylvester-Bradley 

and Kindred 2014): 

Daily light interception (MJ) = 1 − 𝑒−0.5∗𝐺𝐴𝐼 

This is then converted to biomass assuming a radiation use efficiency of 2.5 g of biomass per 

metre squared per MJ of intercepted light (Shearman et al. 2005). This is limited by the plant 

available water content (PAWC) of the soil. Rainfall from sowing to GS30 was summed to 

estimate the available water before the onset of rapid growth, with PAWC at this point being 

the lower of summed rainfall to date and estimated soil available water content (AWC) (Bell et 

al. 2018), as most soils being saturated prior to this date. After this date, daily PAWC is 

calculated following Lynch et al. (2017) as: 

𝑃𝐴𝑊𝐶𝑑 = (𝐴𝑊𝐶𝑑−1 + 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑑−1 - (𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑑−1  ×  0.2) ) × 0.65 

Where PAWC drops below the amount required for that day’s biomass accumulation, no 

further biomass is accumulated until PAWC has increased from subsequent rainfall, to account 

for the effects of drought.  

3) APPORTIONING OF ACCUMULATED BIOMASS TO GRAIN YIELD 

Yield was calculated as the sum of biomass accumulated after GS69 plus the sum of biomass 

accumulated between GS31 and GS61 multiplied by 0.3. The latter accounts for the 

redistribution of water soluble carbohydrates from the stem after flowering (Sylvester-Bradley 
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et al. 2015, Lynch et al. 2017). Yield was penalised if waterlogging occurred after the onset of 

flowering (GS61). Although the effects of water logging on yield are complex, and depend on 

growth stage and context in general, excessive rainfall at late growth stages has a detrimental 

impact (Cannell et al. 1980, Belford 2009, de San Celedonio et al. 2014, Ploschuk et al. 2018). 

Waterlogging was identified if daily rainfall exceeded residual soil AWC. If this occurred for 

over 5 days, a yield penalty of 11.77 g-1m-1d-1 was applied (Olgun et al. 2008) until such time as 

AWCd returned to below the maximum. 
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A4. SELECTING METRICS OF LANDSCAPE COMPOSITION AND CONFIGURATION  

Because there are a very large number of potential metrics for quantifying landscape 

configuration (McGarigal et al. 2012, Uuemaa et al. 2013, Gustafson 2019, Hesselbarth et al. 

2019), I performed preliminary analyses to determine which metrics of configuration were 

least strongly correlated with landscape composition at the hectad scale (i.e. areas of different 

land cover types) and with one another. I calculated a number of metrics, chosen to sample 

from a range of metrics quantifying different key landscape structure components (Cushman 

et al. 2008). I avoided metrics which require making an assumption about threshold distances 

or distance decay functions (e.g. connectance indices, proximity indices) since I do not have 

empirical ecological data across a wide range of potentially influential organisms on which to 

base these. I calculated 10 class-level metrics, for each of arable land, all semi-natural habitats 

and semi-natural grasslands only (Table S2). I also calculated land cover diversity (inverse 

Simpson’s index) across all land cover types within a hectad, and a measure of structural 

heterogeneity (inverse Simpson’s diversity of individual land cover patches). I then examined 

intercorrelations between these metrics in order to select those for further analysis (Fig. A4). 

Correlations were calculated across the 315 hectads with at least one wheat yield sample in 

each of the ten years. 

Table A2. Landscape composition and configuration metrics explored in preliminary analyses, 

as calculated from the 25m raster version of the CEH Land Cover Map 2015 (Rowland et al. 

2017). Abbreviations are used in Figure A4. 

Metric Description Abbreviation  

Total area              Total area of a given land cover T.AREA 

Mean patch area           Mean area of patches (a patch consisting of an area of adjacent cells 
of the same land cover type) 

M.AREA 

Perimeter density             Total length of patch perimeters per hectad T.PERIM 

Mean patch perimeter         Mean perimeter per patch M.PERIM 

Total edge area ratio Total perimeter per hectad divided by total area per hectad T.EA   

Mean edge area ratio Mean of perimeter divided by area per patch M.EA   

Clumpiness index              Proportional deviation of like adjacencies from that expected under a 
random distribution (McGarigal et al. 2012, Hesselbarth et al. 2019) 

CLUMP 

Shape index  Mean ratio of actual perimeter per patch to hypothetical minimum 
perimeter per patch (McGarigal et al. 2012, Hesselbarth et al. 2019) 

SHAPE  

Mean distance 
between patches       

Mean nearest-neighbour distance between all possible pairs of 
patches 

M.DIST 

Mean distance to 
patches  

Mean nearest neighbour distance from all non-patch cells to the 
nearest patch 

M.ISOL 

Landscape diversity  Inverse Simpsons index of diversity of ten aggregate land cover 
classes, Rowland et al. (2017) 

LC.DIV 

Structural 
heterogeneity                

Inverse Simpsons index of patch diversity, calculated by defining 
patches as adjacent cells of the same aggregate land cover type 

LC.HET 
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Figure A4. Pairwise Pearson’s correlation coefficients for landscape and class-level metrics of 

composition and configuration, for each of arable, all semi-natural habitats and semi-natural 

grasslands only. Cells in the correlation matrices are shaded according to absolute value of the 

correlation coefficient, from white =0 to dark grey =1. Plots created using the corrplot package 

(Wei and Simko 2017). See table 1 for full variable names and descriptions.  

From Fig. A4, it can be seen that many metrics correlate strongly with total area, for at least 

one of the three land cover groups. In many cases, this might be expected at national scale and 

hectad resolution. For example, because the total area of semi-natural habitats within hectads 

tends to be relatively small, high edge densities are only encountered in hectads with 

correspondingly large areas. The clumpiness and shape indices were relatively strongly 

correlated with area for arable and all semi-natural habitats. Landscape diversity and 

structural heterogeneity were both strongly negatively correlated with area of arable land and 

positively correlated with area of semi-natural habitats. The metrics with lowest average 

correlation with total area were mean edge area ratio (M.EA on Fig. A4) and mean distance to 

patches (M.ISOL on Fig. A4). These also showed relatively low correlations with one another 

(0.23, 0.15 and 0.39 for each land cover group). I therefore used these, along with total area, 

in further analyses.  

When hectads were restricted to the 137 meeting the thresholds identified in Appendix A1 

some correlations between landscape structure variables relating to different land cover types 

were evident (Figure A5). I therefore constrained candidate models to exclude highly 

correlated (r > 0.6) pairs of variables which are likely to contribute to were higher variance 

inflation factors were observed in the global models (Table A3). In general, high correlations 

and correspondingly high variance inflation factors arose from the fact that semi-natural 
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grasslands are a subset of semi-natural habitats and are therefore highly likely to be positively 

intercorrelated, especially in terms of total area. 

 
Figure A5. Pairwise Pearson’s correlation coefficients for predictor variables in the global 

model, for the 137 hectads meeting criteria for analysis. SNH = semi-natural habitat, SNG = 

semi-natural grassland, T.AREA = total area, M.EA = Mean edge area ratio, M.ISOL = Mean 

distance to patches). Cells in the correlation matrices are shaded according to absolute value of 

the correlation coefficient, from white =0 to dark grey =1. Plot created using the corrplot 

package (Wei and Simko 2017) 

Table A3. Variance inflation factors for all predictor variables in the global models for each 

response variable 

 Arable Semi-natural habitat Semi-natural grassland 

Response Cover Connectivity Proximity Cover Connectivity Proximity Cover Connectivity Proximity 

Relative 
yield 

1.37 1.11 1.11 3.03 1.26 1.98 2.12 1.12 1.52 

Yield 
stability 

1.50 1.13 1.12 3.21 1.26 2.34 2.30 1.14 1.96 

Resistance 1.54 1.12 1.15 3.31 1.24 2.13 2.17 1.15 1.57 

Note that for further analyses Edge area ratio was transformed to an index of land cover 

connectivity (1/M.EA, such that units are squared unit area of land cover per unit length of 

perimeter) and mean isolation was transformed to an index of proximity ((104 – M.ISOL /) 104, 

such that a value of 1 indicates all cells adjacent to the target land cover and a value of zero 

indicates that cells are on average 10km distance from the nearest patch of target land cover). 
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This was done to aid interpretation of regression coefficients, such that positive coefficients 

always indicate an increase in resilience with increasing area, connectivity or proximity to the 

land cover in question.  
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B. Supplementary material for Chapter 4 

B1. EXTRACTING AND CLEANING PLANT-POLLINATOR INTERACTIONS FROM BIOLOGICAL RECORD ANNOTATIONS 

Pollinator biological records with associated metadata were algorithmically screened for text 

matching a valid scientific or vernacular plant name (or a widely used synonym or abbreviation 

of either). In most cases, such matches record the visitation to a flower by a pollinating insect. 

However, there are other reasons for a valid match in the comments field, including 

descriptions of local habitat (e.g. “English oak woodland”), pollinator behaviour (e.g. “flying 

near blackthorn hedge”) or sampling methods (e.g. “swept from Arrhenathrum eliatus sward”). 

In order to exclude these, all plant species producing a match were screened according 

whether they produce flowers which are known to be visited by insects and whether such 

visits are likely to result in beneficial pollen transfer (i.e. the plant is primarily entomophilic). 

These criteria excluded the majority of trees and grasses, which are likely to derive from 

habitat descriptions or interactions other than flower visits (e.g. honeydew feeding). Even 

though some primarily wind-pollinated grass flowers are known to be visited by certain 

pollinators, their impact on pollen transfer is likely to be very slight in temperate climates 

(Clifford 1964, Adams et al. 1981). Some records could also be spurious if species were 

misidentified, albeit the volunteers recording interactions were mostly expert naturalists from 

specialist recording societies (see Acknowledgements in manuscript). It is recognised that, 

without manual checking of every record, some records will always remain spurious. However, 

these were likely to be only a very minor proportion of the dataset and are therefore unlikely 

to have a substantial influence on the resulting networks.  

I ignored all interactions that were not resolved to at least genus level. Some records produced 

a match to plant genus level but not to species. For genera where there were no other records 

in the dataset of species from that genus this was considered to be insufficient data to infer a 

valid interaction and ignored. For records where a single species is the only GB representative 

of the genus (e.g. Bartsia, Bellis, Calluna, Convolvulus, Daucus, Hedera, Onobrychis) I assumed 

all such genus-level records to refer to this species. I also made this assumption for the few 

other genera where occurrence in GB is dominated by one species (e,g. Pyrus, Erysimum, 

Sambucus) or where all species in the genus form an aggregate (Taraxacum). There were 79 

plant genera for which at least one unique interaction was recorded to genus level only and 

valid interactions were recorded to at least two plant species within the genus (Table B1). 

These included genera which were described by a vernacular name (e.g. Salix from willow, 

Rosa from rose) or those which contain species complexes for which the recorder is unlikely to 

be able to make a clear identification to species level (e.g. Euphrasia, Leontodon). In such 



106 

 

cases, an interaction with the genus was assumed to imply an interaction with all recorded 

species within it. Similarly, an interaction with a single species from these 79 genera was 

assumed to imply an interaction with all other species present in the interactions database 

within the genus in question. These assumptions were justified by the fact that monolectic or 

even narrowly oligolectic pollinators are comparatively rare (Waser et al. 1996, Minckley and 

Roulston 2006, Petanidou and Potts 2006), especially in the UK pollinator fauna. It is also 

highly likely that many networks based on plant observations, from single or multiple sites, 

commonly overestimate the degree of specialisation of many pollinators, partly as a result of 

limited sampling effort resulting in missed observations of existing interactions (Bosch et al. 

2009, Pornon et al. 2017). In total, extrapolating species-level interactions from genus-only 

data according to the assumptions above added 6487 unique interactions to the database 

(39% of total interactions in the database). 

I also removed species defined as “casuals” in PLANTATT (“a casual is a plant that is present 

only as populations which fail to persist in the wild for periods of more than approximately five 

years” Hill et al. 2004). This was because their range of occurrence cannot be effectively 

modelled due to a lack of reliable occurrence data and patchy distributions determined by the 

presence of gardens or agricultural cultivation. The database thus retained some crop (e.g. 

Brassica napus, Vicia faba) and garden species which have persistent naturalised populations. 

Plant status in the final database was divided between natives (67.9%), archaeophytes (12.0%), 

neophytes (17.6%) and those with uncertain native status (2.2%). It should be noted that the 

interactions in the database describe flower visitation rather than pollination in the strict 

sense, where actual pollen transfer relies on a variety of factors, including pollinator 

behaviour, physiology (Ballantyne et al. 2015) and species’ relative abundance, for which I had 

no available information. 
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Table B1. Plant genera for which interactions were assumed from genus-only records. These 

genera had at least one unique interaction recorded only to genus level as well as valid 

interactions recorded to at least two plant species within the genus. For each genus, the table 

gives the number of unique interactions recorded to genus level only (table sorted in 

descending order), the percentage that such interactions comprise of total number of unique 

interactions with plants of that genus and the number of plant species within the genus in the 

interactions database, to which interactions were assumed from genus-only records. 

Genus 

Unique interactions 
recorded to genus level 
only 

% of total unique 
interactions for plants 
in genus 

Plant species recorded 
within genus 

Salix 143 71.1% 8 

Ranunculus 63 28.6% 6 

Leontodon 61 52.1% 2 

Cirsium 58 26.9% 8 

Myosotis 41 82.0% 2 

Centaurea 37 21.9% 3 

Matricaria 33 71.7% 2 

Veronica 33 45.2% 5 

Mentha 31 33.7% 4 

Thymus 30 40.0% 3 

Acer 29 38.2% 3 

Silene 28 45.9% 3 

Rumex 25 92.6% 2 

Geranium 24 38.1% 9 

Rosa 22 51.2% 5 

Ligustrum 21 36.2% 2 

Vicia 20 33.3% 7 

Stellaria 20 25.0% 4 

Cotoneaster 19 57.6% 3 

Trifolium 19 19.6% 7 

Potentilla 19 17.0% 4 

Campanula 18 47.4% 5 

Viburnum 17 54.8% 2 

Inula 15 44.1% 3 

Crepis 15 23.8% 3 

Sorbus 14 45.2% 2 

Viola 14 36.8% 5 

Euphorbia 14 18.9% 4 

Euphrasia 13 56.5% 2 

Sonchus 13 24.1% 3 

Erica 13 22.4% 3 

Prunus 13 12.5% 7 

Senecio 13 5.9% 6 

Dipsacus 12 22.6% 2 

Malus 12 20.7% 2 

Hypericum 10 37.0% 6 
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Sinapis 10 30.3% 2 

Rubus 10 4.4% 4 

Limonium 9 50.0% 2 

Symphytum 9 36.0% 2 

Vaccinium 9 29.0% 3 

Ulex 9 18.4% 3 

Scrophularia 8 61.5% 2 

Lamium 8 18.6% 3 

Sedum 8 17.0% 4 

Solidago 8 11.1% 2 

Linaria 7 25.9% 3 

Galium 6 20.7% 6 

Epilobium 6 18.2% 4 

Arctium 6 12.0% 2 

Achillea 6 9.0% 2 

Allium 6 7.5% 4 

Leucanthemum 6 6.1% 2 

Dactylorhiza 5 38.5% 3 

Anthemis 4 26.7% 2 

Ribes 4 25.0% 3 

Melilotus 4 16.7% 3 

Persicaria 4 13.3% 5 

Medicago 4 10.3% 2 

Carduus 4 9.5% 3 

Aster 4 7.5% 3 

Brassica 4 7.1% 4 

Vinca 3 50.0% 2 

Papaver 3 30.0% 2 

Pilosella 3 17.6% 2 

Stachys 3 8.3% 4 

Oenanthe 3 4.5% 3 

Spergularia 2 50.0% 2 

Pedicularis 2 22.2% 2 

Cerastium 1 14.3% 2 

Peucedanum 1 12.5% 2 

Valeriana 1 10.0% 2 

Calystegia 1 7.1% 2 

Geum 1 5.0% 2 

Ononis 1 4.5% 2 

Primula 1 3.7% 3 

Reseda 1 2.3% 2 

Hyacinthoides 1 1.4% 2 

Heracleum 1 0.5% 2 
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B2. ASSESSING SAMPLING COMPLETENESS OF PLANT-POLLINATOR INTERACTIONS 

To assess the completeness of the plant-pollinator interactions database, I constructed 

interaction accumulation curves for all records used to construct the database (i.e. pollinator 

occurrence records from which I were able to extract a valid plant interaction and which were 

not removed by data cleaning). These included both raw species-level and genus-level records, 

but not the species-level records generated by extrapolation from genus-level data (see 

Appendix 1), which would inflate estimates of completeness. Interaction curves were created 

by sequentially selecting random records and assessing the cumulative number of unique 

interactions represented in the selection (Fig. B1). Randomisations were performed 1000 

times and the mean value used to define the accumulation curve. I then used the estimateR 

function in the vegan R package (v2.4-5, Oksanen et al. 2017) to estimate asymptotic 

interaction richness, using the bias-corrected Chao estimator (Chiu et al. 2014). The proportion 

of estimated interaction richness represented by observed interactions was then calculated. I 

also repeated this process independently for each plant and pollinator species with >10 

records to obtain an estimate of average interaction richness per plant and pollinator species.  

Results suggested that the plant-pollinator interactions database captured around 60% of 

estimated total interactions (mean 60% for pollinators, mean 57% for plants). This is 

comparable to other studies performing high-effort, multi-temporal field sampling of 

individual networks (Chacoff et al. 2012, Falcão et al. 2016). Apparent underrepresentation 

may derive from two main sources. Firstly, the data have a comparatively limited 

representation of the total species richness of insect-pollinated plants in GB (around 55%), so 

all interactions associated with these missing species will be likewise absent. In the majority of 

cases these are likely to represent rare or localised plant species which have a low probability 

of being recorded in an interaction with a pollinator via the pollinator-focussed biological 

recording schemes from which all interaction records were derived. Secondly, the data may 

miss interactions between plant and pollinator species which are present in the dataset. 

Where tested, interactions based on field observation (and the data were ultimately drawn 

from a large number of field observations) tend to underestimate total interaction richness 

(Nielsen and Bascompte 2007, Pornon et al. 2017), even where sampling effort is intensive 

(Chacoff et al. 2012) and where a large proportion of species from both levels of the network 

are sampled (Chacoff et al. 2012, Falcão et al. 2016). Whilst there are indications that poor 

sampling can bias network metrics, there is evidence that this has a low impact on emergent 

network properties, such as robustness (Falcão et al. 2016) and metrics constrained by species 

traits (Vizentin-Bugoni et al. 2016).  
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However, there is also the possibility that interaction accumulation curves overestimate the 

total number of potential interactions. Interactions may be rarely recorded because either or 

both of the plant or pollinator species involved are rare, or because they represent atypical 

interactions (e.g. occasional visits made by highly generalist pollinators). In either case, such 

interactions may inflate the estimated interaction richness but are not necessarily indicative of 

large numbers of unsampled interactions (Chacoff et al. 2012).  

 

 

Figure B1. Accumulation curve of plant-pollinator interaction richness across all records used to 

construct the database (black line = mean of 1000 randomised accumulations). Horizontal, 

dashed lines indicate estimated asymptotic interaction richness (black) ± standard error (grey). 
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B3. SETTING THRESHOLDS FOR ESTIMATING OCCURRENCE FROM FRESCALO DATA 

For each species of plant and pollinator, FRESCALO produces a probability of occurrence in 

each hectad. To transform this to presence/absence, I assigned a species as present in a 

hectad if its probability of occurrence was greater than a set threshold. To define this 

threshold, hectads with observed presence records were ranked by their modelled probability 

of occurrence and any hectad with a probability of occurrence greater than the 95th percentile 

was treated as an estimated presence. This approach performed well in terms of filling in gaps 

in species distributions due to under-recording (i.e. false negatives or ’omission errors’) 

without adding new areas to the currently-known range (i.e. presumed false positives, 

‘commission errors’). However, this threshold resulted in ‘infilling’ of peninsulas for coastal 

species (Fig. B2), so for species classified as ‘coastal’ in PLANTATT (Hill et al. 2004), the 

threshold was set at 75% probability of occurrence regardless of the values at observed 

presence records (set by visual examination of output FRESCALO probability of occurrence 

maps). Under both thresholds, all hectads with observed presence records were assumed to 

have the species present, regardless of their FRESCALO probability of occurrence. 

 

Figure B2. Examples of estimating occurrence per hectad from FRESCALO output for two 

species: A & B) a coastal species, Armeria maritima; C & D) a species with an inland, upland and 

northerly distribution and therefore likely to be under-recorded Pedicularis palustris. Black filled 

cells across all panels indicate recorded presence from raw biological records. A) Orange filled 

cells indicate that the species was not recorded but with a FRESCALO probability of occurrence 

greater than or equal to the 95th centile of values from cells with recorded presences for 

Armeria maritima. B) Orange filled cells indicate that the species was not recorded but with 

FRESCALO probability of occurrence greater than 75% for Armeria maritima. C) As A, for 

Pedicularis palustris. D) As B, for Pedicularis palustris. 
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B4. EXPLORING NETWORK REWIRING SCENARIOS  

Unlike many network studies, the networks were constructed from multi-temporal, multi-

habitat data which can be assumed to capture the majority of extant interactions in GB. 

Therefore each of the per hectad potential networks includes information on interactions 

observed anywhere in GB over the 30 year time period from which I drew biological records 

and so already implicitly includes some potential rewiring. I did not have data on other 

interactions occurring at different spatial or temporal locations by which to construct potential 

rewiring scenarios (e.g. Kaiser‐Bunbury et al. 2010). Nor did I have detailed information on 

energetics (e.g. Thierry et al. 2011) or large-scale variation in dependency on nectar feeding 

across the pollinator groups (e.g. Vanbergen et al. 2017) that could provide the basis for 

rewiring scenarios. Therefore, any potential further rewiring scenario has to contain 

assumptions regarding the likelihood of forming novel interactions inferred from existing data 

on, for example, plant and pollinator traits (Stang et al. 2006). The large number of 

assumptions involved makes it debatable whether such trait-based rewiring scenarios are 

more ecologically meaningful than only using the previously observed interactions. 

Nevertheless, to check the sensitivity of the observed spatial patterns in the plant-pollinator 

networks I assessed the probable impact of rewiring on the metric of robustness to global 

simulated extinction (Rg) by constructing trait-based rewiring scenarios. The first scenario 

assumed that, following extinction of a plant, any pollinator with no remaining resources could 

rewire to other plants of the same genus present in the hectad (in addition to the assumptions 

regarding genera already made, see Appendix 1). This scenario increased the total potential 

interactions by 36%. A second, more extreme, rewiring scenario, allowed pollinators to rewire 

to any plant species of the same family, flower morphology and flower colour and overlapping 

in flowering period (flower traits taken from Fitter and Peat (1994)). This scenario increased 

the total potential interactions by 70%.  

Under both rewiring scenarios, all measures of Rg increased slightly (Table B2), as expected 

given that networks were inevitably more generalised. The increase was relatively consistent 

across hectads, such that there were very strong correlations with Rg from networks from only 

observed interactions (Table B2). By comparing values derived from the rewiring scenarios in 

generalised linear models testing the relationship of Rg with proportion of agricultural land, it 

was clear that there was very little difference in the model coefficients or their significance 

when rewiring scenarios were applied (Table B2). This suggests that the observed spatial 

patterns in relative network robustness are robust to rewiring. 
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Table B2. The impact of two rewiring scenarios (based on plant genus or flower traits) on 

robustness to global simulated extinction (Rg) and its relationship with agricultural cover. 

Results are the mean and standard deviation of Rg across hectads, correlations with Rg derived 

from observed interactions only and the slope of the relationship with agricultural cover as 

derived from linear mixed models. 

Rg 

measure 
Rewiring 
scenario 

  Correlation with values from 
observed interactions 

Relationship with 
agricultural cover  

Mean SD Pearson’s 
R 

p value Slope p value 

Rg Trend 

Observed 0.84 0.05 
  

0.38 <0.001 

Genus 0.88 0.05 0.98 <0.001 0.41 <0.001 

Trait 0.89 0.05 0.97 <0.001 0.44 <0.001 

Rg N 

Observed 0.92 0.03 
  

0.49 <0.001 

Genus 0.94 0.03 0.97 <0.001 0.48 <0.001 

Trait 0.95 0.03 0.98 <0.001 0.47 <0.001 

Rg F 

Observed 0.85 0.04 
  

0.36 <0.001 

Genus 0.88 0.04 0.97 <0.001 0.36 <0.001 

Trait 0.89 0.03 0.95 <0.001 0.33 <0.001 

Rg R 

Observed 0.93 0.01 
  

0.45 <0.001 

Genus 0.96 0.01 0.95 <0.001 0.39 <0.001 

Trait 0.96 0.01 0.95 <0.001 0.42 <0.001 
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B5. EXPLORING THE IMPACT OF UNCERTAINTY ON NETWORK METRICS 

In order to obtain an estimate of uncertainty in the network metrics, and its probable impact 

on the results, I performed randomisations of the hectad-level potential networks. Uncertainty 

in these networks arises from two major sources: the data and methods used to model the 

occurrence of plant and pollinator species and the interactions database used to construct 

potential networks. I therefore assessed these sources of uncertainty both independently and 

in combination. 

First, for each hectad-level network, I reselected species at random as determined by their 

FRESCALO probability of occurrence. For each species, a random number was drawn from a 

uniform distribution. If this number was greater than its FRESCALO probability of occurrence, 

the species was removed from the resampled network. Thus a species with a FRESCALO 

probability of occurrence of 0.95 in a single hectad has a 95% chance of remaining in the 

hectad-level network. Once this had been done for all plant and pollinator species, I calculated 

all network metrics from these resampled networks.  

Second, from the full, hectad-level network I reselected plant-pollinator interactions based on 

a log transform of the number of times they were recorded. This was set so that interactions 

with >10 records had a probability of 1, to account for the highly skewed distribution of 

numbers of records, the scarcity of interactions with larger numbers of records, and the fact 

that levels of recording were not even across insect groups. For each interaction, a random 

number was drawn from a uniform distribution. If this number was greater than its log 

transformed number of records divided by log of 10, the interaction was removed from the 

resampled network. Once this had been done for all interactions, I calculated all network 

metrics from this resampled network.  

Third, I combined the two resampled networks, only retaining interactions present in both, 

and recalculated metrics once more. This three-stage randomisation process was repeated 100 

times for each hectad. I then calculated the mean, standard deviation and range for network 

metrics derived from networks resampled according to each source of uncertainty across 

randomisations.  

Results showed that, for all metrics, uncertainty arising from occurrence data had a greater 

impact that uncertainty from interactions (Figs B3 and B4). This is unsurprising, as adding or 

removing a species obviously affects all the interactions with which it is associated, whereas 

individual interactions may have little impact on the properties of the network as a whole. For 

connectance, resampling by occurrence tended to increase connectance (because of the 
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strong relationship between connectance and network species richness), whilst resampling 

interactions reduced it (because removing interactions without altering species richness will 

decrease connectance by definition). When sources of uncertainly were combined, these two 

effects tended to cancel one another out, such that mean resampled connectance for 

resampled networks combing both sources of uncertainty was virtually identical to 

connectance as calculated from the full network (Fig. B3A and Fig B4). Smaller networks in the 

North of GB showed slightly higher variability in connectance from resampled networks, 

suggesting a correspondingly increased impact of uncertainty on connectance in these areas 

(Fig. B4).  

For generality of both plants and pollinators, resampling by either occurrence or interactions 

reduced values in comparison to those from full networks, but in a very consistent fashion (Fig. 

B3B & C and Fig. B4), such that estimates of generality from full and resampled networks were 

all significantly intercorrelated (Pearson’s r, r >0.98, p <0.001). This was also evident in the 

limited spatial variability in uncertainty of generality scores, with standard deviations in 

generality from resampled networks showing no clear spatial pattern (Fig. B4).  

For Rg, resampling by occurrence introduced variation around the value from the full dataset, 

but did not consistently reduce or increase the value (as shown for Rg Trend in Fig. B3D). In 

contrast, resampling interactions slightly reduced Rg but very uniformly across hectads (Fig. 

B3D). When the two sources were combined, Rg Trend was thus on average slightly lower than 

that observed from full networks, but with substantial variation, especially for network with 

lower Rg Trend (Fig. B3D). Uncertainty did appear to vary spatially in its impact on Rg Trend, with 

areas of particularly high or low Rg Trend showing correspondingly higher uncertainty. In spite of 

this variation, the correlation across hectads between full and resampled Rg Trend was still high 

(r =0.92, p <0.001) and mapped Rg Trend from both full and mean resampled networks showed 

very similar spatial patterns (Fig. B4).  

When general linear mixed models were fitted using the mean values from resampled 

networks, in no case did the relationship with agricultural land change in qualitative terms (i.e. 

significance and direction of effect). This suggests that, whilst the impact of uncertainty 

around the estimates of occurrence and interactions is highly likely to affect the degree to 

which a per-hectad potential network reflects the real-world equivalent pollination network 

(along with the values of individual hectad-level metrics), they are much less likely to bias the 

observed spatial patterns across hectads and the relationships with agricultural land. 
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Figure B3. Scatterplots of network metrics from full networks versus networks resampled 

according to different sources of uncertainty. A) Total network species richness (plants + 

pollinators) B) network interaction richness C) connectance, D) pollinator generality E) plant 

generality F) robustness to global extinction ordered by plant historic distribution trend (Rg 

trend). For all panels, blue circles and lines indicate resampling of occurence data, red circles and 

lines indicate resampling of species interaction data, and purple circles resampling of both 

occurrence and interaction data. Coloured lines indicate trend from linear regression, black, 

dashed lines indicates a slope of one and intercept of zero.  
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Figure B4. Comparison of maps of hectad-level network metrics from full dataset (top row), 

mean value from 100 random resamples of occurrence and interaction data combined (centre 

row) and standard deviation of the latter (bottom row).  Four network metrics are shown (left 

to right columns: connectance, pollinator generality, plant generality and robustness to global 

extinction ordered by plant trend Rg trend). Colour stretches for each metric are consistent 

between full and resampled networks to facilitate comparison. 
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B6. ACCOUNTING FOR SPATIAL AUTOCORRELATION 

Preliminary analyses identified that an exponential spatial autocorrelation (SAC) structure gave 

significant increases in model fit over a null model (χ2 =2647.37, d.f. =1, p < 0.001). However, 

the null model also had significantly poorer model fit than the model with a random effect of 

environmental zone (χ2 =126.25, d.f. =1, p < 0.001), and there was no additional improvement 

in model fit when the random effect was modelled in combination with SAC (χ2 =0.10, d.f. =1, p 

> 0.999). This suggested that using environmental zones as a random factor was sufficient to 

account for SAC effects resulting from inherent spatial patterns of species occurrence. 

However, FRESCALO defines neighbourhoods based on both spatial proximity and biological 

similarity, so there is the potential for complex autocorrelation patterns to occur which may 

not be captured by assuming a predetermined SAC structure. I therefore used a randomisation 

approach (Fortin and Jacquez 2000) to account for SAC. Response variables were randomised 

across hectads 1000 times within environmental zones, and distribution of resultant model 

statistics compared to those from the full model. Only where the relevant statistics lay above 

or below 95% of those derived from randomisations (i.e. p < 0.05) were significant model 

results interpreted as being not attributable to autocorrelation. 
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Figure B5. Box plots comparing robustness to simulated extinction (Rg) across hectads for 

networks of all pollinators (‘All’), bee-only networks (‘Bee’), resampled networks of equivalent 

bee species richness to local crop-pollinating bee networks (’Resampled’) and crop-pollinating 

bees only (‘Crop’). The four panels A-D show extinctions ordered by trend (Rg trend), Ellenberg 

fertility (Rg N), Ellenberg moisture tolerance (Rg F) and randomised extinctions (Rg R), 

respectively.   Crop-pollinating bees were: Andrena carantonica, A. chrysosceles, A. cineraria,  

A. dorsata, A. flavipes, A. fulva, A. haemorrhoa, A. minutula,  A. nitida,  Bombus hortorum, 

B. hypnorum,  B. lapidarius, B. lucorum s.l., B. pascuorum, B. pratorum, B. terrestris, Halictus 

confusus,  H. rubicundus, Lasioglossum calceatum, L. leucozonium, L. malachurum, L. morio, O. 

bicornis.   
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C. Supplementary material for Chapter 5 

C1. CLASSIFYING BASELINE LAND USE INTENSITY FROM CROPPING PATTERNS 

Table C1. Simple rules governing classification of crop type on currently arable dominated 1km 

cells, based on average cover per cell across three years (2015-2017).  

Class Description Rules  Potential drivers of expansion scenario  

Intensive Cropping systems 
dominated by 
simple rotations of 
winter cereals and 
break crops, 
typically oilseed 
rape 

Winter cereals + 
oilseeds > all other 
crops 

Widespread uptake of genetic modification 
permitting continuous wheat cropping 

Increased concerns over food security due 
to a growing population and increased 
trade tariffs   

Land-sparing practices leading to more 
intensive use of remaining arable land 

Diverse Cropping systems 
typified by multiple 
crops, including 
horticultural crops 
and vegetables 

Average number of 

crops > 6  

OR 

Root crops + maize 
+ field beans > 
cereals + oilseeds 

Desire to decrease reliance on a few crop 
types  

Increased concerns over food security for 
non-cereal crops due to dietary health 
issues 

Extensive Cropping systems 
dominated by 
spring cereals and 
temporary grass 

Spring cereals > 
winter cereals 

OR 

Grass > any other 
crop 

 

Increased societal desire to minimise 
environmental impacts of agriculture 

Rotational control of major crop pests (e.g. 
blackgrass) 

Land-sharing practices leading to less 
intensive use of arable land 
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C2. EXPLORING SCENARIO UNCERTAINTY  

Exploring uncertainty by re-running scenarios 100 times showed a mean of 76% agreement 

with the modal class across all scenarios, for cells which showed change in any scenario run 

(see Table C1). Values across all cells were higher (>90%), because cells which did not change 

show, by definition, complete agreement across all 100 runs. Uncertainty in the results of the 

scenarios was affected by spatial resolution. Although uncertainty in the assignment of 

individual 1km cells could be relatively high, general trends in regional LULC patterns at 

coarser resolutions or at regional scales were much more conserved across scenario re-runs. 

Although it is necessary to use a spatial grid of sufficiently fine scale to incorporate processes 

such as proximity effects, the fate of individual cells under any one scenario should be treated 

with caution (Sharp et al. 2017). Results at broader scales (e.g. summaries by administrative or 

environmental units) are much more likely to be robust. In turn, the results of the pollinator 

SDMs should be less affected by uncertainties at the individual 1km cell level, since scenario 

results were transformed to percentage LULC at hectad scale.  

Table C2. Results of uncertainty analysis obtained be re-running each scenario 100 times. 

Values are mean % agreement with modal class for all 1km cells/cells which showed change 

under at least one scenario re-run.  

 Expansion step (% from baseline) 

Scenario 5 10 15 20 25 30 

i) Agricultural expansion 

(SSSIs protected) 
98/87 96/76 95/69 94/62 94/64 95/74 

ii) Agricultural expansion 

(SSSIs unprotected) 
98/88 96/76 95/68 94/61 93/63 95/76 

iii) Grassland expansion 99/90 98/82 98/81 98/81 97/82 95/83 
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C3. VALIDATING SCENARIOS OF FUTURE AGRICULTURAL LAND USE/LAND COVER 

Attempting to recreate the configuration of LCM2007 from the Dudley-Stamp map using the 

scenario generator tool gave a result which was at best 73% accurate (Kappa =0.54) in terms of 

correctly assigning 1km cells to improved grassland, arable land or semi-natural 

grassland/heathland (I disregard other LULC classes as these did not change under the 

scenarios). This was achieved using all parameters and an equal weighting between transition 

likelihoods and suitability factors (Table C2). Although this figure derived from per-1km cell 

classification suggest only moderate agreement between observed and predicted land covers, 

broader patterns in terms of dominant habitat per 10km cell (Table C2) and which regions 

showed change were generally more accurate. This suggests that the tool is fit-for-purpose in 

terms of creating plausible scenarios, especially when these are broad in scope and 

exploratory in nature.  

Table C3. Comparison of LCM2007 with results from using the scenario generator tool to 

reconstruct historic change from the Dudley-Stamp map, under different combinations and 

weightings of parameters. Accuracy refers only to LULC classes which changed under the 

scenarios. ALC refers to the use of the agricultural land classification as a suitability factor. 

Results are given for individual 1km cells (i.e. resolution of the scenario outputs) and dominant 

habitat per 10km cell (i.e. resolution of the beneficial invertebrate species distribution models). 

  1km resolution 10km resolution 

Parameters used in tool Factor 

weighting 

% 

Accuracy 

Kappa % 

Accuracy 

Kappa 

Transition matrix only - 61.0 0.34 59.1 0.30 

Transition matrix + proximity  - 61.2 0.35 59.4 0.31 

Transition matrix + proximity + ALC 0.3 69.9 0.49 72.4 0.52 

Transition matrix + proximity + ALC 0.4 70.1 0.50 72.3 0.52 

Transition matrix + proximity + ALC 0.5 72.7 0.54 77.8 0.61 

Transition matrix + proximity + ALC 0.6 70.6 0.51 73.2 0.53 

Transition matrix + proximity + ALC 0.7 69.6 0.49 70.5 0.49 
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C4. CLEANING DATA AND SELECTING SPECIES DISTRIBUTION MODELS AND PARAMETERS 

Data on were filtered to remove non-pollinating bees (e.g. “cuckoo” bees) and any species 

with taxonomic issues (e.g. species aggregations or synonyms that affect reliability of long-

term records). All data were limited to records from 2000-2012 to avoid records from prior to 

the major changes in agricultural extent and practice which occurred over the 20th century 

(Robinson and Sutherland 2002, Ollerton et al. 2014) and the lag between the current year and 

records being submitted to the recording schemes. I also removed species with less than 25 

records, as suggested by preliminary analyses which assessed the impact of number of records 

on model performance (Fig. C2). 

Table C4 Model performance metrics for different species distribution models and bias rasters 

(i.e. methods of limiting selection of pseudoabsences) for pollinator and natural enemy species. 

Metrics are given as means across all species within the group (± 1 standard error). Thresholds 

refer to limiting pseudoabsences to cells with at least a given number of other species from the 

group in question (Hickling et al. 2006, Redhead et al. 2015), effort-weighted approaches use 

modelled recorder effort estimated from the density of all records (Hill 2012).  

 
  Bias raster 

Group Metric Model None Threshold =1 Threshold =5 
Threshold 
=10 

Effort 
weighted 

Pollinating 
bees 

AUC Null Model 0.57 (0) 0.57 (<0.01) 0.57 (<0.01) 0.57 (<0.01) 0.57 (<0.01) 

 

Logistic 
Regression 

0.86 (0.01) 0.73 (0.01) 0.69 (0.01) 0.69 (0.01) 0.72 (0.01) 

 

Random 
Forest 

0.89 (0.01) 0.78 (0.01) 0.70 (0.01) 0.70 (0.01) 0.76 (0.01) 

 
MaxNet 0.87 (0.01) 0.74 (0.02) 0.70 (0.02) 0.69 (0.02) 0.73 (0.01) 

Kappa Null Model -0.01 (0) -0.01 (<0.01) -0.01 (<0.01) -0.01 (<0.01) -0.01 (<0.01) 

 

Logistic 
Regression 

0.55 (0.02) 0.34 (0.02) 0.25 (0.02) 0.25 (0.02) 0.32 (0.02) 

 

Random 
Forest 

0.59 (0.01) 0.39 (0.02) 0.28 (0.02) 0.25 (0.02) 0.37 (0.02) 

 
MaxNet 0.56 (0.02) 0.36 (0.03) 0.29 (0.03) 0.26 (0.03) 0.33 (0.02) 

 
 

      

Natural 
enemies  

AUC Null Model 0.58 (0) 0.58 (<0.01) 0.58 (<0.01) 0.58 (<0.01) 0.58 (<0.01) 

 

Logistic 
Regression 

0.8 (0.01) 0.68 (0.01) 0.66 (0.01) 0.66 (0.01) 0.67 (0.01) 

 

Random 
Forest 

0.83 (0.01) 0.69 (0.01) 0.65 (0.01) 0.64 (0.01) 0.69 (0.01) 

 
Max Net 0.81 (0.01) 0.70 (0.02) 0.67 (0.02) 0.64 (0.02) 0.67 (0.02) 

Kappa Null Model 0.00 (<0.01) 0.00 (<0.01) 0.00 (<0.01) 0.00 (<0.01) 0.00 (<0.01) 

 

Logistic 
Regression 

0.46 (0.01) 0.24 (0.02) 0.20 (0.02) 0.21 (0.02) 0.23 (0.02) 

 

Random 
Forest 

0.46 (0.02) 0.24 (0.02) 0.18 (0.02) 0.16 (0.02) 0.24 (0.02) 

 
MaxNet 0.42 (0.02) 0.28 (0.03) 0.23 (0.03) 0.19 (0.03) 0.24 (0.03) 
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Figure C1. Maps of species richness under baseline conditions modelled using logistic 

regression models and the different bias rasters (i.e. methods of limiting selection of 

pseudoabsences). Darkest shades correspond to >=100 species, lightest shades to <=20 species, 

with a linear colour stretch between these extremes. It can be seen that having no bias raster 

underestimates the number of species in the north of the country by allowing pesudoabsences 

where species occur but are under-recorded, whilst overly restrictive bias thresholds 

underestimate richness in the south, by permitting pseudoabsences only in very well recorded 

areas, and thus limiting the sampled range of habitats and climatic variables.  

 

Figure C2. Effect of number of occurrence records (i.e. unique 1km squares in which the species 

was recorded) on model performance as measured by AUC for logistic regression models. Black 

line indicates the locally smoothed trend (generated by the loess R function). AUC increases 

with number of records up to around 25 records, then decreases due to increasing 

generalisation of the species, suggesting a threshold of around 25 records for inclusion in 

scenario analysis. 
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C5. BENEFICIAL INVERTEBRATE TRAITS AND DATA SOURCES 

Trait data for 116 bee species and 81 natural enemies were obtained from the literature and 

online resources. Full lists of trait values for the species are given in Tables C5 and C6    

Table C5. Trait data for 116 bee species. Traits are intertegular distance (ITD, mm), diet 

breadth (O = oligolectic vs. P = polylectic), sociality (Sol = solitary vs. Soc = social), voltinism (U = 

univoltine, B = bivoltine, C = continuous) and flight season (number of months for which a 

species is usually found as a flying adult).  
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Andrena angustior 1.88 P Sol U 3 Bombus ruderatus 4 P Soc C 7 

Andrena apicata NA O Sol U 2 Bombus soroeensis 4.91 P Soc C 3 

Andrena argentata NA P Sol U 2 Bombus sylvarum 4.44 P Soc C 5 

Andrena barbilabris 2.1 P Sol U 2 Bombus terrestris 5.66 P Soc C 12 

Andrena bicolor 2.13 P Sol B 6 Ceratina cyanea 1.39 P Sol U 5 

Andrena bimaculata 2.72 P Sol B 6 Chelostoma campanularum 0.93 O Sol U 3 

Andrena bucephala 2.15 P Sol U 2 Chelostoma florisomne 1.79 O Sol U 5 

Andrena chrysosceles 2.14 P Sol U 4 Colletes daviesanus 2.44 O Sol U 4 

Andrena cineraria 2.83 P Sol U 2 Colletes fodiens 2.6 O Sol U 3 

Andrena clarkella 3.1 O Sol U 4 Colletes hederae 3.23 O Sol U 4 

Andrena denticulata 2.12 O Sol U 2 Colletes similis 2.5 O Sol U 3 

Andrena dorsata 2.11 P Sol B 4 Colletes succinctus 2.9 O Sol U 3 

Andrena flavipes 2.34 P Sol B 8 Dasypoda hirtipes 5.7 O Sol U 4 

Andrena florea 2.43 O Sol U 3 Eucera longicornis 3.29 O Sol U 3 

Andrena fucata 2.45 P Sol U 2 Halictus rubicundus 2.18 P Soc C 6 

Andrena fulva 2.26 P Sol U 2 Halictus tumulorum 1.49 P Soc C 6 

Andrena fulvago 2 O Sol U 3 Heriades truncorum 1.55 O Sol U 3 

Andrena fuscipes 2.02 O Sol U 5 Hoplitis claviventris 1.93 P Sol U 4 

Andrena haemorrhoa 2.65 P Sol U 5 Lasioglossum albipes 1.64 P Soc U 8 

Andrena hattorfiana 2.74 O Sol U 3 Lasioglossum calceatum 1.82 P Soc C 8 

Andrena helvola 1.89 P Sol U 2 Lasioglossum cupromicans NA P Sol U 7 

Andrena humilis 2.68 O Sol U 4 Lasioglossum fratellum 1.51 P Soc U 6 

Andrena labialis 2.7 O Sol U 3 Lasioglossum fulvicorne 1.31 P Soc C 8 

Andrena labiata 1.76 P Sol U 2 Lasioglossum laevigatum 1.84 P Sol U 6 

Andrena lapponica 2.58 O Sol U 3 Lasioglossum lativentre 1.56 P Sol U 7 

Andrena marginata 1.95 P Sol U 3 Lasioglossum leucopus 1.21 P Sol U 6 

Andrena minutula 1.43 P Sol B 6 Lasioglossum leucozonium 1.91 P Sol U 9 

Andrena minutuloides 1.39 P Sol B 3 Lasioglossum malachurum 1.79 P Soc C 7 

Andrena nigroaenea 2.84 P Sol B 4 Lasioglossum minutissimum 0.86 P Sol NA 7 

Andrena nitida 2.97 P Sol U 5 Lasioglossum morio 1.1 P Soc C 8 

Andrena ovatula 2.04 P Sol B 6 Lasioglossum parvulum 1.25 P Sol U 5 

Andrena pilipes.s.s. NA P Sol B 5 Lasioglossum pauxillum 1.24 P Soc C 17 
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Andrena praecox 2.26 O Sol U 3 Lasioglossum prasinum 1.72 P Sol U 5 

Andrena scotica 2.73 P Sol U 4 Lasioglossum punctatissimum 1.23 P Sol U 7 

Andrena semilaevis 1.47 P Sol U 3 Lasioglossum puncticolle 1.49 O Sol U 7 

Andrena similis 2.34 O Sol U 3 Lasioglossum rufitarse 1.44 P Sol U 5 

Andrena subopaca 1.49 P Sol U 3 Lasioglossum smeathmanellum NA P Sol U 7 

Andrena synadelpha NA P Sol U 3 Lasioglossum villosulum 1.33 P Soc U 8 

Andrena tarsata 1.76 O Sol U 3 Lasioglossum xanthopus 2.37 P Sol U 5 

Andrena thoracica NA P Sol B 6 Lasioglossum zonulum 1.95 P Sol U 7 

Andrena tibialis 2.85 NA Sol U 4 Macropis europaea 2.52 O Sol U 3 

Andrena trimmerana 2.25 P Sol B 7 Megachile centuncularis 2.72 P Sol U 5 

Andrena wilkella 2.32 O Sol U 3 Megachile leachella NA P Sol U 3 

Anthidium manicatum 3.59 P Sol U 4 Megachile ligniseca 3.9 P Sol U 5 

Anthophora bimaculata 5.64 P Sol U 4 Megachile maritima NA P Sol U 3 

Anthophora furcata 3.24 O Sol U 5 Megachile versicolor 3.35 P Sol U 4 

Anthophora plumipes 4.43 P Sol C 4 Megachile willughbiella 3.55 P Sol U 3 

Bombus hortorum 5.31 P Soc C 7 Melitta haemorrhoidalis 2.74 O Sol U 2 

Bombus humilis 4.77 P Soc C 4 Melitta leporina 2.39 O Sol U 3 

Bombus hypnorum 4.7 P Soc C 7 Melitta tricincta NA O Sol U 3 

Bombus jonellus 4.62 P Soc C 7 Osmia aurulenta 2.88 P Sol U 3 

Bombus lapidarius 4.9 P Soc C 7 Osmia bicolor 2.7 P Sol U 3 

Bombus lucorum.s.l. 4.49 P Soc C 7 Osmia bicornis 3.14 P Sol U 4 

Bombus magnus 5.66 P Soc C 12 Osmia caerulescens 2.35 P Sol U 5 

Bombus muscorum 3.1 P Soc C 5 Osmia leaiana 2.67 O Sol U 5 

Bombus pascuorum 4.45 P Soc C 7 Osmia spinulosa 2.03 O Sol U 5 

Bombus pratorum 4.61 P Soc C 7 Panurgus banksianus 2.2 O Sol U 3 

Bombus ruderarius 4.73 P Soc C 5 Panurgus calcaratus 1.8 O Sol U 4 
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Table C6 Trait data for 81 natural enemy species (65 carabids and 16 ladybirds). Traits are 

body size (mm), diet breadth (O = omnivore, GP = generalist predator or SP = specialist 

predator), wing length (BA = brachypterous/apterous, M = macropterous or D = dimorphic).  
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Carabids Notiophilus aquaticus 5.12 SP D 

Acupalpus meridianus 3.35 GP M Notiophilus biguttatus 5.12 SP D 

Agonum fuliginosum 6.46 SP D Notiophilus germinyi 5.00 SP D 

Agonum gracile 6.00 SP M Notiophilus palustris 5.22 SP D 

Agonum marginatum 9.47 SP M Notiophilus rufipes 5.34 SP M 

Agonum muelleri 8.11 O M Notiophilus substriatus 4.74 SP B 

Agonum viduum 8.09 SP M Olisthopus rotundatus 6.88 SP D 

Anchomenus dorsalis 6.70 GP M Paradromius linearis 5.11 GP D 

Anisodactylus binotatus 11.17 SP M Philorhizus melanocephalus 3.10 GP D 

Badister bullatus 5.56 GP M Platynus assimilis 11.50 SP M 

Bembidion aeneum 3.93 GP D Poecilus cupreus 10.82 GP M 

Bembidion biguttatum 4.02 GP M Poecilus versicolor 9.80 GP M 

Bembidion guttula 3.12 GP D Pterostichus diligens 5.69 SP D 

Bembidion lampros 3.60 GP D Pterostichus madidus 15.83 O BA 

Bembidion lunulatum 3.69 GP M Pterostichus melanarius 15.03 GP D 

Bembidion mannerheimii 3.09 SP B Pterostichus niger 17.52 GP M 

Bembidion obtusum 3.19 GP D Pterostichus strenuus 6.13 GP D 

Bembidion properans 3.77 GP D Pterostichus vernalis 6.65 GP D 

Bembidion quadrimaculatum 4.09 GP M Stomis pumicatus 7.51 GP B 

Bembidion tetracolum 5.48 GP D Syntomus foveatus 3.47 GP D 

Calathus fuscipes 11.68 GP B Syntomus obscuroguttatus 3.40 GP B 

Calathus melanocephalus 7.30 SP D Trechus obtusus 3.86 SP D 

Calathus rotundicollis 9.63 GP D Trechus quadristriatus 3.83 SP M 

Carabus granulatus 19.39 GP B Trichocellus placidus 4.66 SP M 

Carabus nemoralis 23.41 GP B Ladybirds 

Carabus problematicus 23.66 GP B Adalia bipunctata 4.50 GP M 

Carabus violaceus 25.83 GP B Adalia decempunctata 3.80 SP M 

Cicindela campestris 13.72 SP M Anatis ocellata 7.80 SP M 

Clivina fossor 5.89 GP D Anisosticta novemdecimpunctata 4.00 SP M 

Cychrus caraboides 16.33 SP B Aphidecta obliterata 4.50 GP M 

Demetrias atricapillus 5.06 GP M Chilocorus bipustulatus 3.50 SP M 

Dyschirius globosus 2.47 SP D Chilocorus renipustulatus 4.50 SP M 

Elaphrus cupreus 8.45 SP M Coccinella hieroglyphica 4.00 SP M 

Elaphrus riparius 6.87 SP M Coccinella septempunctata 6.50 GP M 

Harpalus rufipes 13.15 O M Coccinella undecimpunctata 4.50 SP M 

Leistus ferrugineus 6.87 SP D Exochomus quadripustulatus 3.80 SP M 

Leistus fulvibarbis 7.04 SP D Harmonia axyridis 7.00 GP M 

Leistus spinibarbis 8.77 SP D Harmonia quadripunctata 5.50 SP M 

Leistus terminatus 6.62 SP D Hippodamia variegata 4.50 GP M 

Loricera pilicornis 7.06 SP M Myrrha octodecimguttata 4.50 SP M 

Nebria brevicollis 11.69 GP M Myzia oblongoguttata 7.00 SP M 

Nebria salina 11.35 GP M     
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Table C7 Bibliography of trait data sources 

Reference Traits 

Bees  

Bommarco R., Biesmeijer J.C., Meyer B., Potts S.G., Pöyry J., Roberts S.P., Steffan-Dewenter I. & Öckinger E. 

(2010). Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proceedings 

of the Royal Society of London B: Biological Sciences, 277, 2075-82 

ITD, diet breadth, 

sociality 

Carrié R., Andrieu E., Cunningham S.A., Lentini P.E., Loreau M. & Ouin A. (2017). Relationships among 

ecological traits of wild bee communities along gradients of habitat amount and fragmentation. Ecography, 

40, 85-97. 

ITD, diet breadth, 

sociality, flight 

season 

Fortel L., Henry M., Guilbaud L., Guirao A.L., Kuhlmann M., Mouret H., Rollin O. & Vaissière B.E. (2014). 

Decreasing Abundance, Increasing Diversity and Changing Structure of the Wild Bee Community 

(Hymenoptera: Anthophila) along an Urbanization Gradient. PLOS ONE, 9, e104679. 

ITD, sociality 

Greenleaf S.S., Williams N.M., Winfree R. & Kremen C. (2007). Bee foraging ranges and their relationship to 

body size. Oecologia, 153, 589-596. 

ITD 

Bees, Wasps & Ants Recording Society (2018). Species Gallery & Accounts. URL: 

http://www.bwars.com/category/taxonomic-hierarchy/bee 

Diet breadth, 

sociality, flight 

season 

Carabids  

Purtauf T., Dauber J. & Wolters V. (2005). The response of carabids to landscape simplification differs 

between trophic groups. Oecologia, 142, 458-464. 

Diet breadth 

Ribera I., Foster G.N., Downie I.S., McCracken D.I. & Abernethy V.J. (1999). A comparative study of the 

morphology and life traits of Scottish ground beetles (Coleoptera, Carabidae). In: Annales Zoologici Fennici. 

JSTOR, pp. 21-37. 

Body size, diet 

breadth, wing 

length 

Kotze D.J. & O'Hara R.B. (2003). Species decline—but why? Explanations of carabid beetle (Coleoptera, 

Carabidae) declines in Europe. Oecologia, 135, 138-148. 

Body size, diet 

breadth, wing 

length 

Homburg K., Homburg N., Schäfer F., Schuldt A. & Assmann T. (2014). Carabids.org – a dynamic online 

database of ground beetle species traits (Coleoptera, Carabidae). Insect Conservation and Diversity, 7, 195-

205. 

Body size, diet 

breadth, wing 

length 

Lindroth C.H. & Bangsholt F. (1985). The Carabidae-Coleoptera-Of Fennoscandia and Denmark. Brill 

Archive. 

Body size, wing 

length 

Ladybirds  

Comont R.F., Roy H.E., Lewis O.T., Harrington R., Shortall C.R. & Purse B.V. (2012). Using biological traits to 

explain ladybird distribution patterns. Journal of Biogeography, 39, 1772-1781. 

Body size, diet 

breadth 

Comont R.F., Roy H.E., Harrington R., Shortall C.R. & Purse B.V. (2014). Ecological correlates of local 

extinction and colonisation in the British ladybird beetles (Coleoptera: Coccinellidae). Biological Invasions, 

16, 1805-1817. 

Body size, diet 

breadth 
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C6. EXPLORING SDM PERFORMANCE 

Table C8. Model performance metrics averaged across all species for each of the two functional 

groups. Values are means with standard errors in parentheses. Kappa = Cohens kappa as 

calculated from observed and expected frequencies (Cohen 1960), proportion correct = 

proportion of presences and absences correctly identified, specificity = probability of correctly 

predicting a known absence, sensitivity  = probability of correctly predicting a known presence, 

area under curve = area under the receiver operating curve (Fielding and Bell 1997). 

Group Kappa 
Proportion 
correct Specificity Sensitivity  

Area Under 
Curve 

Pollinators 0.34 (0.02) 0.79 (0.01) 0.47 (0.03) 0.84 (0.02) 0.73 (0.01) 

Natural 
enemies  

0.22 (0.02) 0.74 (0.01) 0.43 (0.03) 0.78 (0.02) 0.66 (0.01) 
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C7. RESULTS PLOTS FOR ALL SCENARIO COMBINATIONS  

 

Figure C3. Scatterplots showing pairwise relationships between species richness and functional 

diversity metrics (RaoQ, functional evenness and community-weighted mean body size) under 

the baseline scenario for pollinators (green) and natural enemies (blue) 

 

 

 

Figure C4. Plots showing proportions of GB hectads with different levels of percentage change 

in pollinator (A-H) and natural enemy (I-P) species richness under different combinations of 

land cover (rows) and cropping intensity change (columns) scenarios.  
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Figure C5. Plots showing proportions of GB hectads with different levels of percentage change 

in pollinator (A-H) and natural enemy (I-P) RaoQ under different combinations of land cover 

(rows) and cropping intensity change (columns) scenarios.  

 
Figure C6. Plots showing proportions of GB hectads with different levels of percentage change 

in pollinator (A-H) and natural enemy (I-P) functional evenness under different combinations of 

land cover (rows) and cropping intensity change (columns) scenarios.  
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Figure C7. Plots showing proportions of GB hectads with different levels of percentage change 

in pollinator (A-H) and natural enemy (I-P) community weighted mean body size under different 

combinations of land cover (rows) and cropping intensity change (columns) scenarios.  

 
Figure C8. Plots showing proportions of species with different levels of percentage change in 

total probability of occurrence (a measure of whether GB landscape suitability has increased or 

decreased for a given species),  for pollinators (A-H) and natural enemies (I-P), under different 

combinations of land cover (rows) and cropping intensity change (columns) scenarios.  
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