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Abstract. Accurate river streamflow forecasts are a vital
tool in the fields of water security, flood preparation and
agriculture, as well as in industry more generally. Tradi-
tional physics-based models used to produce streamflow
forecasts have become increasingly sophisticated, with fore-
casts improving accordingly. However, the development of
such models is often bound by two soft limits: empiricism
– many physical relationships are represented empirical for-
mulae; and data sparsity – long time series of observational
data are often required for the calibration of these models.

Artificial neural networks have previously been shown to
be highly effective at simulating non-linear systems where
knowledge of the underlying physical relationships is in-
complete. However, they also suffer from issues related to
data sparsity. Recently, hybrid forecasting systems, which
combine the traditional physics-based approach with statis-
tical forecasting techniques, have been investigated for use
in hydrological applications. In this study, we test the effi-
cacy of a type of neural network, the long short-term mem-
ory (LSTM), at predicting streamflow at 10 river gauge sta-
tions across various climatic regions of the western United
States. The LSTM is trained on the catchment-mean mete-
orological and hydrological variables from the ERA5 and
Global Flood Awareness System (GloFAS)–ERA5 reanaly-
ses as well as historical streamflow observations. The per-
formance of these hybrid forecasts is evaluated and com-
pared with the performance of both raw and bias-corrected
output from the Copernicus Emergency Management Ser-
vice (CEMS) physics-based GloFAS.

Two periods are considered, a testing phase (June 2019 to
June 2020), during which the models were fed with ERA5
data to investigate how well they simulated streamflow at the
10 stations, and an operational phase (September 2020 to Oc-
tober 2021), during which the models were fed forecast vari-
ables from the European Centre for Medium-Range Weather
Forecasts (ECMWF) Integrated Forecasting System (IFS), to
investigate how well they could predict streamflow at lead
times of up to 10 d.

Implications and potential improvements to this work are
discussed. In summary, this is the first time an LSTM has
been used in a hybrid system to create a medium-range
streamflow forecast, and in beating established physics-
based models, shows promise for the future of neural net-
works in hydrological forecasting.

1 Introduction

Accurate forecasts of river streamflow are vital across a range
of sectors, including, but not limited to, agriculture, water se-
curity, recreation, disaster management, and heavy industry.
As such, modelling streamflow as a function of observable
hydrological and meteorological variables has been the sub-
ject of focused study for nearly 200 years and has intensified
considerably over the past few decades as demands on water
resources continue to increase dramatically (Beven, 2011).

The earliest attempt (Mulvaney, 1851) comprised a sim-
ple linear relationship between streamflow and catchment
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rainfall, derived using linear regression. Key early develop-
ments then split the catchment into regions based on esti-
mated travel time to the gauge (Imbeaux, 1892; Ross, 1921)
and included more variables in the regression model (Linsley
et al., 1949). One of the first physics-based streamflow mod-
els was developed by Horton (1933), who considered the role
of excess soil filtration in runoff. Since then, physics-based
models have largely dominated, particularly with continued
improvements to process understanding (e.g. Freeze and Har-
lan, 1969), computing power (e.g. Kollet et al., 2010; Schie-
mann et al., 2018), observation systems – including discharge
data vital for model calibration (e.g. Newman et al., 2015),
and remote sensing (e.g. Huffman et al., 1995; Robock et al.,
2000).

Although physics-based models have improved substan-
tially they are still currently limited by lack of process under-
standing, lack of – particularly subsurface – data, and inade-
quate grid resolution (Wood et al., 2011). Such problems can
be overcome by the application of artificial neural networks,
which can produce highly accurate simulations of physical
systems even if the underlying physical relationships are not
known. In hydrology, a particular type of artificial neural net-
work, known as a long short-term memory network (LSTM;
Hochreiter and Schmidhuber, 1997; Gers et al., 2000), has
become increasingly popular due to its ability to process se-
quential data (Shen and Lawson, 2021).

LSTMs are a special case of so-called recurrent neural net-
works (RNNs), i.e. artificial neural networks that are capable
of processing data containing temporal sequences. The basic
feature of RNNs is a feedback loop that allows the network to
retain information over time. However, due to their relatively
simple construction, RNNs do not readily retain long-term
temporal dependencies (Hochreiter and Schmidhuber, 1997).
This is overcome in LSTMs by the addition of a special unit,
known as a memory cell or the forget gate, that can preserve
information indefinitely, allowing LSTMs to learn long-term
dependencies that other RNNs cannot. In modelling river dis-
charge over the United States, Kratzert et al. (2018) showed
that LSTMs vastly outperform conventional RNNs.

For the reasons outlined above, it is unsurprising that
LSTMs are being increasingly used to explore complicated
hydrological problems including modelling river streamflow.
In this regard, studies fall into two categories – either seek-
ing to create a model capable of replicating existing stream-
flow observations, or seeking to create a model capable of
forecasting streamflow at some future time. This distinc-
tion is minor in a machine learning context, since repli-
cation is a form of prediction; however, they have impor-
tant distinctions in their application to the hydrological com-
munity. Several highly illustrative studies approach the for-
mer topic. In particular, a series of papers published by re-
searchers at Johannes Kepler University Linz (Kratzert et al.,
2018, 2019a, b; Klotz et al., 2022; Gauch et al., 2021b)
demonstrated the remarkable ability of LSTMs to simu-
late daily streamflow in catchments across the United States

and in the quantification of streamflow uncertainty. Extend-
ing this work, Gauch et al. (2021a) showed that reanalysis-
trained LSTMs could predict streamflow at any given tem-
poral resolution, and at multiple resolutions simultaneously.
These studies demonstrated that simple LSTM architectures
(i.e. unstacked) performed as well as stacked ones in simu-
lating streamflow. They also showed that better performance
could be achieved by training a single LSTM over many
basins and including data on basin geography than by indi-
vidual LSTMs trained on a per-basin basis, even extending
to good performance in ungauged basins.

The latter topic has proven more challenging, with only a
handful of studies trying (to the authors’ knowledge) to use
LSTMs to predict streamflow (Slater et al., 2021). The most
basic of these rely on rivers where streamflow has a strong
annual cycle and large lagged autocorrelation (i.e. high per-
sistence), using only antecedent streamflow data from the
same site. Such studies have mixed, although promising re-
sults (de Melo et al., 2019; Sahoo et al., 2019; Sudriani
et al., 2019; Zhu et al., 2020). More advanced models also
incorporate upstream data, either just streamflow at differ-
ent sites (Silva et al., 2021), or additionally precipitation (Le
et al., 2019; Hu et al., 2020) with improved results. Le et al.
(2019), for a case study in Vietnam, and Silva et al. (2021),
for a case study in Brazil, achieved good results at 3 and
5 d lead times respectively. Ding et al. (2019) produced per-
haps the most sophisticated LSTM-based hydrological fore-
cast model to date. A LSTM that ingested European Centre
for Medium-Range Weather Forecasts (ECMWF) forecasts
of precipitation, soil moisture, and other variables to produce
a runoff forecast around the confluence region of the Lech
and Danube rivers. They verified forecasts up to lead times of
9 h, finding a Nash–Sutcliffe efficiency of 0.71, rising to 0.77
after the inclusion of an attention mechanism. The use of the
ECMWF forecasts (created using a physics-based numeri-
cal weather prediction system) to feed an LSTM (a machine
learning method) puts the Ding et al. (2019) study into the
realm of hybrid forecasting.

The definition of a hybrid forecasting system is broad and
currently blurry in the literature, partly due to the cross-
disciplinary nature of the topic and partly due to the wide
range of opportunities for integrating the two approaches
into a single forecasting system (see e.g. Düben et al.,
2021). Generally speaking, in hydrology, a hybrid hydrolog-
ical forecasting system is one which incorporates physically
based and statistical or machine learning methods. Combin-
ing the contrasting approaches is anticipated to provide su-
perior forecasts by compensating for the limitations of each
approach when used independently (some of which are dis-
cussed above). However, this definition is subjective and de-
pends on where you draw the boundaries around the hydro-
logical forecasting system. Is the numerical weather predic-
tion considered part of the hydrological forecasting system
or as input data (e.g. Ding et al., 2019; Liang et al., 2018)?
If the model calibration of a physical model is aided by ma-
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chine learning is this process included in the definition of a
hybrid system (e.g. Teweldebrhan et al., 2020)? Would deep-
learning-based quality control of observations be included
within a hybrid system (e.g. Sha et al., 2021)? Other poten-
tial inclusions into the class of hybrid forecasting systems
are machine-learning aided data assimilation (Boucher et al.,
2019; He et al., 2020; Liu et al., 2021), and commonly post-
processing (e.g. Liu et al., 2022; Sharma et al., 2021; Lee
and Ahn, 2021; Frame et al., 2021; Nearing et al., 2020). An-
swering these questions is beyond the scope of this study and
requires a discipline-wide collaboration to definitively define
a hydrological forecasting system. Therefore, we restrict our
discussions to the less disputed part of the hydrological fore-
casting chain: the representation of the runoff-routing pro-
cesses.

The hybridisation of hydrological models within the fore-
casting chain can be achieved in multiple ways. The simplest
approach would be to combine the output from two hydrolog-
ical models, one physically based, and one machine learning
based (Wagena et al., 2020; Booker and Woods, 2014). Alter-
natively, machine-learning-based and process-based models
can be coupled. This can either be sequentially (e.g. Noori
and Kalin, 2016) or in parallel with sub-models represent-
ing different processes (Reichstein et al., 2019; Bennett and
Nijssen, 2021; Meng et al., 2016; Okkan et al., 2021).

More recently, more integrated methods of hybridisation
have been introduced to hydrological modelling. Theory-
guided (or physics-informed) machine learning approaches
(Karpatne et al., 2017; Raissi et al., 2019) aim to overcome
the interpretability issues identified with “black-box” ma-
chine learning methods and constrain the output to theoreti-
cally plausible outputs (Xu et al., 2021; Chadalawada et al.,
2020). Hoedt et al. (2021) included mass conservation as
a constraint into an LSTM architecture and found that for
streamflow, although a decrease in the Nash–Sutcliffe effi-
ciency metric was seen, the mass-conserved LSTM better
predicted extreme flow values (e.g. flood peaks). However,
Frame et al. (2022) found that the addition of the mass con-
straint reduced the skill when predicting extreme values sug-
gesting further work is necessary. Alternatively, other studies
have used neural networks in process-based models to solve
differential equations more efficiently whilst allowing inter-
pretability of the output (Höge et al., 2022; Rackauckas et al.,
2020; Raissi et al., 2020).

In this study, we seek to expand on these previous ef-
forts and develop an LSTM capable of providing skilful river
streamflow forecasts at lead times of up to 10 d at 10 stations
across the western United States. We will train the model
mainly using meteorological variables from the ERA5 re-
analysis (Sect. 3.1) and hydrological variables from Global
Flood Awareness System (GloFAS)–ERA5 (Sect. 3.3, mean-
ing that we are not at the mercy of potentially sparse observa-
tional data but will use official gauge observations (Sect. 2)
as the target to give optimal calibration. Once trained, the
LSTM will be used to produce forecasts by replacing ERA5

inputs with forecast variables from the ECMWF Integrated
Forecast System (IFS; Sect. 3.2). Again the use of the IFS
means that the LSTM forecasts are not vulnerable to data la-
tency of observations in an operational setting. Additionally,
since the IFS is used to drive the ERA5 reanalysis, any sig-
nificant climatological biases in one are likely to be present
in the other. Since we are training the model with ERA5
data, such biases – so long as they are consistent between
the two products – will be mitigated as the LSTM either
applies an internal bias correction or gives the field a low
weighting in the input layer. We train the model on publicly
available ERA5, rather than IFS hindcasts, so that our meth-
ods can be completely reproduced by any interested reader.
The forecasts will be made under operational time and data
constraints for a 13-month period (September 2020 to Octo-
ber 2021) and the results compared with GloFAS (Sect. 3.3),
a physics-based streamflow forecast produced by ECMWF,
a new, bias-corrected version of GloFAS (Sect. 4.3), and a
simple persistence model. The core aims of this study are
to determine (a) whether such an LSTM-based hybrid sys-
tem can provide skilful streamflow forecasts, (b) whether a
hybrid system can perform better than existing state-of-the-
art physics-based systems, and (c) whether advanced bias-
correction techniques can improve the skill of physics-based
models. An important caveat here is that 7 of the 10 catch-
ments are smaller than the recommended usage threshold for
GloFAS (2000 km2), and so we would probably expect to see
improvement when adding degrees of freedom through bias
correction or hybridising with an LSTM.

The study is laid out as follows: we discuss the study re-
gion and the climatological characteristics of the 10 gauge
stations in Sect. 2. We then describe the data used in Sect. 3
and methods – including the bias-correction algorithm and
the LSTM set-up – in Sect. 4. The results section is split into
two parts, verification of a testing phase – where the models
are driven with ERA5 – in Sect. 5.1, and verification of the
operational phase – where the models are driven with IFS
output – in Sect. 5.2. Finally, we discuss potential applica-
tions and improvements to our work in Sect. 6 and conclude
with a summary in Sect. 7.

2 Study region and choice of stations

The choice of study region and stations was dictated by the
US Department of Reclamation, part of whose remit is wa-
ter security over the western half of the contiguous United
States. Between September 2020 and September 2021,
they sponsored a competition (https://www.topcoder.com/
community/streamflow, last access: 1 October 2021) to pre-
dict streamflow at 10 locations (Fig. 1 and Table 1) at lead
times of up to 10 d, into which we entered three forecasts,
raw and bias-corrected GloFAS and an LSTM, which are dis-
cussed in greater detail in Sect. 4 and which form the basis
of this study.
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Figure 1. Locations of the 10 streamflow gauges (red) and their catchment basins (dark blue). Overlaid are the climatological precipitation
(filled contours, 1981–2010, from PRISM), smoothed orography (black line contours at 500 m intervals) from ETOPO, and state boundaries
(dotted black lines).

Table 1. Summary of the locations of the 10 river streamflow gauges used in this study. See also Fig. 1.

Location USGS Description Longitude Latitude
ID station

number

BNDN5 8353000 Rio Puerco near Bernardo, NM −106.85 34.41
ARWN8 6468250 James River above Arrowwood Lake near Kensal, ND −98.80 47.40
TCCC1 11523200 Trinity River above Coffee Creek near Trinity Center, CA −122.70 41.11
CARO2 7301500 North Fork Red River near Carter, OK −99.51 35.17
ESSC2 6733000 Big Thompson River above Lake Estes, CO −105.51 40.38
NFDC1 11427000 North Fork American River at North Fork Dam, CA −121.02 38.94
LABW4 9209400 Green River near La Barge, WY −110.16 42.19
CLNK1 6847900 Prairie Dog Creek above Keith Sebilius Lake, KS −100.10 39.77
TRAC2 9107000 Taylor River above Taylor Park, CO −106.57 38.86
NFSW4 6279940 North Fork Shoshone River at Wapiti, WY −109.43 44.47

The 10 gauge locations are shown in the context of clima-
tological precipitation (from PRISM; Daly et al., 2008) and
topography (from ETOPO1 Amante and Eakins, 2009) in
Fig. 1, along with their respective catchment basins in blue.
The 10 locations represent a considerable diversity in climate
and environment: two stations (TCCC1, NFDC1) are on the
windward side of the Sierra Nevada, a region of high clima-
tological rainfall, four (NFSW4, LABW4, ESSC2, TRAC2)
are situated at high elevations along the Rockies, and four
(ARWN8, CLNK1, CARO2, BNDN5) are in the relatively
arid plains of the Midwest and south. These locations are
summarised in Table 1.

Selected hydrological statistics are shown for each gauge
in Table 2. These are computed over the entire measure-
ment record for each gauge (minimum ∼ 30 years) and re-
flect the variance in river characteristics chosen by the Bu-
reau of Reclamation. Notably, only three stations (BNDN5,
CARO2, LABW4) have a drainage basin whose area exceeds
2000 km2; this is the recommended threshold for GloFAS
analysis, as basins smaller than this are not necessarily re-

solved by the underlying model. The remaining seven sta-
tions, therefore, provide us with a forecast challenge. As Ta-
ble 2 shows, some gauges are in extremely arid locations
(e.g. BNDN5) and some have a great quantity of missing
data (e.g. ARWN8), both of which present potential difficul-
ties in the training and operational use of the LSTM. Overall
(Table 3), the basin-average meteorology varies considerably
between the gauges, reflecting their geographical diversity.

3 Data

3.1 ERA5

The Copernicus Climate Change Service (C3S) at the
ECMWF produces the five-generation ERA5 atmospheric
reanalyses of global climate covering the period since Jan-
uary 1950 (Hersbach et al., 2020). Data from ERA5 (avail-
able from https://cds.climate.copernicus.eu/#!/search?text=
ERA5&type=dataset (last access: 28 October 2022) cover
the entire globe on a 30 km grid and resolve the atmosphere

Hydrol. Earth Syst. Sci., 26, 5449–5472, 2022 https://doi.org/10.5194/hess-26-5449-2022
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Table 2. Summary of the climatological hydrological parameters of the 10 river streamflow gauges used in this study. “Missing” indicates
the fraction of measurements since 1 January 1990 recorded either as “ice” or some other non-numeric value. Data from USGS and DWR,
as outlined in Sect. 3.4.

Station Basin Elevation Discharge (m3 s−1) Missing

ID area (m) 25 % Median Mean 75 % (%)
(km2)

BNDN5 13 739 1439 0.000 0.000 0.368 0.042 23.8
ARWN8 1165 439 0.195 1.44 8.24 9.34 50.6
TCCC1 386 773 12.1 17.2 20.5 24.1 1.6
CARO2 5367 508 0.821 1.95 3.28 3.82 9.0
ESSC2 357 2290 0.680 1.76 4.47 5.30 22.2
NFDC1 885 217 24.2 37.4 49.0 53.2 4.1
LABW4 10 123 1987 18.3 21.2 26.0 28.6 37.1
CLNK1 1527 712 0.059 0.122 0.142 0.187 14.3
TRAC2 331 2847 0.963 1.05 1.19 1.39 33.3
NFSW4 1810 1700 4.76 6.17 8.55 10.1 18.5

Table 3. Summary of the climatological meteorological parameters
of the 10 river streamflow gauges used in the competition. Data
from ERA5, as outlined in Sect. 3.1.

Station ID Mean 2 m temp. (◦C) Mean precip. (mm d−1)

Annual Jan Jul Annual Jan Jul

BNDN5 10.9 −1.6 22.7 1.0 0.8 1.8
ARWN8 4.9 −12.7 20.6 2.0 0.8 3.3
TCCC1 8.0 −0.4 20.2 3.4 6.6 0.5
CARO2 15.6 3.5 27.6 1.8 0.9 1.6
ESSC2 1.9 −8.4 14.8 2.1 1.3 3.1
NFDC1 10.2 2.2 21.4 4.3 8.6 0.1
LABW4 1.6 −9.9 16.4 1.5 1.7 0.7
CLNK1 12.0 −1.0 25.8 1.9 0.6 2.8
TRAC2 −0.9 −11.4 11.7 1.7 1.7 1.7
NFSW4 0.0 −10.6 14.2 2.0 2.0 1.2

on 137 levels from the ground up to 80 km in altitude. At re-
duced spatial and temporal resolutions, ERA5 includes un-
certainty information for all variables. We use catchment-
mean ERA5 variables (near-surface, surface, and subsurface)
as training data for the LSTM.

3.2 IFS

The study uses the ECMWF IFS (version CY47R1). This IFS
was run at full complexity with the configuration used for
operational weather forecasts at ECMWF as well as for the
reanalysis (ERA5). The system is described in detail (https:
//www.ecmwf.int/en/publications/ifs-documentation, last ac-
cess: 1 August 2022) and has a turbulent diffusion and
exchange with the surface represented by the Monin–
Obukhov similarity theory in the surface layer and an eddy-
diffusivity mass-flux (EDMF) framework above the surface
layer and includes a mass-flux shallow convection, a multi-
layer, multi-tiled land-surface scheme (HTESSEL), a five-

species cloud microphysics model, and a shortwave and
longwave radiation scheme including cloud radiation in-
teractions. IFS data, up to a 10 d lead time, are used as
input to the LSTM when it is run operationally (avail-
able from https://apps.ecmwf.int/archive-catalogue/?class=
od&stream=oper&expver=1, last access: 28 October 2022).
Each morning throughout the operational period (Septem-
ber 2020 to October 2021), the control member (the member
generated with unperturbed initial conditions) of the ensem-
ble was downloaded using the Meteorological Archival and
Retrieval System (MARS) API. This comprises more than
20 variables, globally, at a 6-hourly frequency and resolution
of 0.1×0.1◦. Having to download and pre-process this large
volume of data within the time constraints allowed limited
us to using only one ensemble member. To retain more re-
alistic variability at longer lead times, we chose to use the
control member, rather than the ensemble mean. The full list
of variables used is given in Sect. 4.4.

3.3 GloFAS

The worldwide GloFAS (Harrigan et al., 2020), created col-
laboratively by the European Commission and ECMWF,
is a global hydrological forecasting and monitoring sys-
tem that is not constrained by administrative or political
boundaries. It combines cutting-edge meteorological predic-
tions with a hydrological model, and due to its continental-
scale set-up, it can deliver information on upstream river
conditions as well as continental and global overviews to
downstream nations. Since 2011, GloFAS has been pro-
ducing daily ensemble flood predictions and monthly sea-
sonal streamflow outlooks since November 2017 and is
run operationally as a component of the Copernicus Emer-
gency Management Service. For dates prior to 25 May 2021
(i.e. all of the testing period and most of the opera-
tional period), we use GloFAS version 2.1 (Zsoter et al.,

https://doi.org/10.5194/hess-26-5449-2022 Hydrol. Earth Syst. Sci., 26, 5449–5472, 2022

https://www.ecmwf.int/en/publications/ifs-documentation
https://www.ecmwf.int/en/publications/ifs-documentation
https://apps.ecmwf.int/archive-catalogue/?class=od&stream=oper&expver=1
https://apps.ecmwf.int/archive-catalogue/?class=od&stream=oper&expver=1


5454 K. M. R. Hunt et al.: LSTM-boosted streamflow forecasts over the United States

2019a); thereafter, we use GloFAS version 3.1 (Zsoter et al.,
2021). GloFAS products are freely available from its dedi-
cated Information System, open to all following registration
(https://www.globalfloods.eu/, last access: 1 August 2022)
and its hydrological data from Copernicus Climate Data
Store (https://cds.climate.copernicus.eu/#!/home, last access:
1 August 2022). More details on the GloFAS service can be
found on the dedicated wiki (https://confluence.ecmwf.int/
display/CEMS/Global+Flood+Awareness+System, last ac-
cess: 1 August 2022). Two sets of GloFAS data were used:
GloFAS-ERA5 (Zsoter et al., 2019b), a global modelled
dataset of daily river discharge created by forcing the hydro-
logical model with the ERA5 reanalysis, and GloFAS fore-
casts (Zsoter et al., 2019a, 2021), an ensemble of global daily
river discharge forecasts, forced by ensemble forecasts from
the ECMWF IFS. As with the IFS above, for forecasts we use
the control member up to a lead time of 10 d, downloaded
using the MARS API (available from https://apps.ecmwf.
int/archive-catalogue/?class=ce&stream=wfas, last access:
28 October 2022). The control member of GloFAS is the en-
semble member produced using the control member of the
IFS ensemble forecast. These data are global and have daily
frequency and a resolution of 0.1× 0.1◦.

3.4 Observational station data

Observational gauge data were downloaded from https://dwr.
state.co.us/Tools/Stations (last access: 1 December 2021)
(for ESSC2) and https://waterdata.usgs.gov/nwis (last ac-
cess: 1 December 2021) (all others). These data are avail-
able at 3-hourly resolution, published in near real time, and
mostly with coverage from about 1990 onwards. Coverage
and streamflow data are given in Table 2. These data are
used to train the LSTM and calibrate the parameters for both
stages of the bias-correction algorithm (see Sect. 4.3), and
later for forecast verification.

4 Methods

In this section we describe the verification and forecasting
method used in this study. Three forecasts are created each
day with 6-hourly timesteps out to a maximum lead time of
10 d. The overall workflow used to create these forecasts is
shown in Fig. 2. More detail is provided in the following sec-
tions.

First, we describe the different time periods used in this
study to train and validate the LSTM and bias-correction
methods.

4.1 Training, testing, and operational forecasting
periods

We define three periods which are used consistently through-
out the study.

– The training period runs from January 1990 to
June 2019. Although some stations have observational
data prior to 1990, this start date was chosen to ensure
a consistent length of training dataset across all gauges
and to reduce the effect of spurious or sparse data on the
training algorithms. The end date was chosen so that a
12-month testing period was available before the start
of the operational forecasting period. The same training
period and dataset are used for the testing period runs
from June 2019 to June 2020, fixed as a 12-month pe-
riod that ended just before the operational phase was
due to begin.

– The operational forecasting period runs for 13 months
from September 2020 to October 2021. The start and
end dates were fixed by the competition.

4.2 Verification metrics

The Kling–Gupta efficiency (KGE, Gupta et al., 2009; Kling
et al., 2012) is used to evaluate the performance of the fore-
casts. The KGE is defined as

KGE= 1−
√
(r − 1)2+ (β − 1)2+ (γ − 1)2, (1)

where r is the Pearson’s correlation coefficient, β is the bias
ratio, and γ is the variability ratio. The bias and variability
ratios are defined as

β =
µsim

µobs
(2)

and

γ =
σsim

σobs
, (3)

where µsim and σsim are the mean and standard deviation of
the forecast discharge and µobs and σobs are the equivalent
for the observed discharge. The KGE is widely used in hy-
drology as each component is a measure of a different type of
error. The correlation coefficient, r , is a measure of temporal
errors, the bias ratio, β indicates whether the discharge tends
to be overpredicted or underpredicted by the forecast, and the
variability ratio, γ measures whether the forecast captures
the variability of the discharge magnitudes (Harrigan et al.,
2020).

For a perfect forecast, each component (r , β, and γ ) has
a value of 1, giving KGE= 1. We also define two bench-
marks. We define a “skilful” forecast as one where the KGE
is higher than for a mean observed discharge benchmark,
i.e. KGE> 1−

√
2∼−0.414. However, beating the long-

term climatological mean is often easy (Pappenberger et al.,
2015) and for certain flow regimes not even a helpful metric
(Knoben et al., 2019) – although in our case, failing to sur-
pass this benchmark does clearly indicate a lack of skill. To
this end, we also arbitrarily define a “highly skilful” forecast
as one where KGE>

√
2/2∼ 0.707. This benchmark corre-

sponds to a mean relative error in the three coefficients of
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Figure 2. Schematic showing the workflow of the raw GloFAS forecasts, the bias-corrected GloFAS forecast, and the LSTM hybrid forecast.

about 17 %, or an error of about 30 % in one coefficient if the
other two have zero error.

As an additional upper benchmark, we will also use per-
sistence forecasts. Persistence forecasts can help us to deter-
mine which stations are “easy” or “hard” to forecast. For each
station, these are constructed by persisting its mean observed
discharge from the previous 48 h. For example, the 5 d persis-
tence forecast for 23 May is given by the mean flow between
16 and 18 May. Evaluated at a fixed lead time, such persis-
tence forecasts asymptotically approach the observed mean
and standard deviation of the observations over long periods,
typically giving them high KGEs.

As such, we also use the Nash–Sutcliffe efficiency Nash
and Sutcliffe (NSE; 1970), which validates forecast or sim-
ulated flow based only on covariance with the observations,
i.e.

NSE= 1−
6t (Qsim(t)−Qobs(t))

2

6t

(
Qobs(t)−Qobs(t)

)2 , (4)

where Qsim is the simulated discharge, Qobs is the observed
discharge, and the overbar denotes a long-term average.

4.3 Bias correction

When undertaking bias correction, we have a range of
choices of complexity – ranging from the very simple (addi-
tive/multiplicative) through increasingly advanced methods
(e.g. quantile mapping). Here, we have the advantage of a
long time series of training data and we want to maximise
the forecast skill under the single constraint that forecast out-
put from GloFAS is the only input. To that end, we employ
both quantile mapping and spatial fitting techniques, splitting
the bias correction into two serial algorithms, which we out-
line in the following subsections. Quantile mapping remaps

modelled values to reduce systematic bias and is a stan-
dard practice in meteorological and hydrological bias correc-
tion (Thrasher et al., 2012). The spatial optimisation method,
newly developed for this work, provides an additional layer
of bias correction, accounting for the fact that consistent spa-
tiotemporal biases in hydrometeorological fields such as pre-
cipitation (should they exist), will result in consistent up-
stream/downstream biases in modelled streamflow – infor-
mation that can be used to improve forecasts.

4.3.1 Quantile mapping

For the first stage of the bias correction we employ a basic
quantile mapping method. The training period (January 1990
to June 2019) was extracted from the observational record.
GloFAS-ERA5 streamflow was extracted for the same pe-
riod, not only for the grid point in which the gauge of inter-
est is located, but also for surrounding points in a 0.6◦×0.6◦

box centred on the gauge. This gives a total of 36 locations
(given the 0.1◦ spacing of global GloFAS output).

Iteratively, these are then quantile-mapped to the observed
streamflow, that is

mbc(i, t)= q̃obs (qraw (mraw(i, t))) , (5)

where q is a function that maps streamflow to streamflow
quantiles, q̃ is its inverse,mraw andmbc are the raw and bias-
corrected modelled streamflows respectively, and i and t are
spatiotemporal indices. The forms of qraw and qobs are both
computed using data from the training period and used un-
changed for the testing period and operational forecasts. For
example, consider a forecast streamflow value of 38.7 m3 s−1

for a grid point containing the NFSW4 gauge. This value,
were it in the GloFAS-ERA5 training period, would have
a quantile value of 0.88. The 0.88th quantile (or 88th per-
centile) for observed streamflow at NFSW4 in the training

https://doi.org/10.5194/hess-26-5449-2022 Hydrol. Earth Syst. Sci., 26, 5449–5472, 2022



5456 K. M. R. Hunt et al.: LSTM-boosted streamflow forecasts over the United States

period is 77.0 m3 s−1, and so this would be the value used
for mbc for that point at that forecast time. This makes sense,
given that raw GloFAS underestimates high flow at NFSW4
by about 50 % (cf. Fig. 5). This quantile mapping technique
is then carried out independently for each of the 36 grid
points in the neighbourhood of each gauge, in each case map-
ping the GloFAS output for the specific grid point to the
observations taken at the gauge (as opposed to observations
taken at the grid point itself).

4.3.2 Spatial optimisation

We must then convert these forecast values over the neigh-
bourhood grid points into a single forecast value. This was
achieved through a simple linear summation, i.e.

mbc(t)=6iaimbc(i, t), (6)

where the coefficients ai are to be determined.
To compute ai , Eq. (6) was treated as an optimisation

problem using the same training period as earlier (Jan-
uary 1990 to June 2019). Here, we seek to minimise

−NSE(m,o)−KGE(m,o), (7)

i.e. the negative sum of the Kling–Gupta and Nash–Sutcliffe
efficiencies over the training period. This optimisation was
carried out subject to the constraint that 0≤ ai ≤ 1, to pre-
vent unphysical behaviour, and computational noise. We
minimise this combination of NSE and KGE because us-
ing NSE alone leaves the optimisation procedure vulnera-
ble to incorrect local minima (e.g. an incorrect mean). How-
ever, we also found that using KGE alone tended to result
in a bias correction that weighted correct mean and vari-
ance too highly compared with correlation, which is not use-
ful for improving forecasts. We found that combining the
two improved the weighting more in favour of correlation,
while avoiding spurious local minima. Because the number
of training datapoints is several orders of magnitude higher
than the number of fitting parameters, and because of the
constraints we impose on ai , overfitting is very unlikely. This
is confirmed later by validation over the testing period in
Sect. 5.1.2.

A sequential quadratic programming technique was then
used to compute the optimal bias matrix, ai , due to its ability
to obey constraints through Lagrange multipliers (Nocedal
and Wright, 2006). The resulting (static) 6×6 matrices were
computed and stored for each of the 10 gauges and are then
used during each forecast to convert the quantile-mapped
nt × 6× 6 forecasts into 1D vectors of length nt .

As an example, the bias matrix for NFSW4 is


0.089 0 0 0 0.138 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0.754 0.009 0
0 0 0 0 0 0
0 0 0.001 0 0 0.023

 . (8)

It is clear that the gauge is located in the grid point asso-
ciated with ai = 0.754; however, there are some additional
contributions from nearby river points. Aside from the direct
spatial error described in the previous subsection, these un-
centred contributions (both in NFSW4 and at other stations)
largely work to correct two smaller biases. Firstly, any local
spatial bias in the ERA5 precipitation used to drive GloFAS-
ERA5 that, for example, incorrectly increases the streamflow
in a nearby channel. Secondly, a temporal bias in the stream-
flow, for example a downstream point may receive non-zero
weighting if the modelled streamflow at the gauge is occur-
ring later than in observations. This method has the addi-
tional advantage that no topological data are required.

Two final adjustments are made when the bias correc-
tion is run operationally. Firstly, the bias-corrected fore-
cast is slightly relaxed towards the raw forecast (qnew

bc =

0.25qraw+0.75qold
bc ) to account for the different climatologies

of GloFAS-ERA5 and GloFAS. GloFAS-ERA5 and GloFAS
forecasts have different climatologies because they take me-
teorological input from different sources (ERA5 and IFS
forecasts respectively). ERA5 and IFS themselves have dif-
ferent climatologies because, although they share the same
driving model, ERA5 is a reanalysis and is nudged towards
observations, whereas IFS forecasts are not. At the begin-
ning of the operational phase, we noticed that the differences
between GloFAS and GloFAS-ERA5 were leading to an ov-
erenthusiastic bias correction. The damping ratio was chosen
by testing the effect of selected values in the range 0–1. Sec-
ondly, the whole forecast is then shifted by an additive δ, the
difference between the mean observations and the mean day-
1 forecasts over the 2 days prior to the forecast being issued.

4.4 LSTM

4.4.1 Summary

For the reader’s reference, we provide a brief summary of
the LSTM and its use. The LSTM is trained separately on
each of the 10 basins in Table 1 using historical observations
of streamflow and catchment-mean hydrological and meteo-
rological variables from ERA5, giving 23 training variables
(Table 5) and 1 target variable (streamflow) in total.

For each gauge, the LSTM is trained 100 times using
random starting weights, with the mean of the five best-
performing ensemble members from the training period used
for validation during the testing period and forecasting dur-
ing the forecast period. We differ from the suggested best
practice of the JKU papers (see Introduction) of using a sin-
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Table 4. Description of the LSTM architecture used in this study.

Layer Input Activation Output

LSTM layer 1 (28, 23) ReLU (28, 50)
LSTM layer 2 (28, 50) ReLU (28, 50)
LSTM layer 3 (28, 50) tanh (1, 50)
Dense (1, 50) Linear (1)

gle LSTM trained over many basins only because the major-
ity of our code base had been written and models trained by
the time those papers were published.

During the testing period, the LSTMs are run at 6-hourly
timesteps, ingesting catchment-mean ERA5 variables from
the preceding week at a 6-hourly resolution (giving an in-
put sequence of length 28, fixed during the training process).
This process results in a single estimate of streamflow for
each timestep at each gauge. During the forecast period, we
want to provide daily streamflow forecasts out to a 10 d lead
time at 6-hourly resolution (i.e. 40 timesteps). To achieve
this, at each gauge, the LSTM is run 40 times daily and the
outputs concatenated to build the desired time series. For
each timestep, the input sequence – still of length 28 – is
constructed from catchment-mean IFS forecast variables. For
example, a day-4 forecast to be issued on 15 March, valid on
19 March, would use an input sequence comprising data from
the following IFS forecasts and lead times: 13 March day-0,
14 March day-0, 15 March day-0, 15 March day-1, 15 March
day-2, 15 March day-3 and 15 March day-4.

4.4.2 Set-up and training

A number of hyperparameters are required for an LSTM and
our selection was largely guided by previous literature (e.g.
Kratzert et al., 2018). This included using mean squared error
as our loss function, a learning rate of 0.001 with no decay,
and a dropout of 0.1. For a full inventory of hyperparame-
ters, see the code repository link at the end of the paper. We
decided to use basin-mean variables so that the LSTM archi-
tecture would be consistent for each of the 10 gauges. With
this set-up fixed, we tested stacked architectures with permu-
tations of 5, 10, 20, 50, and 100 neurons in each LSTM layer.
The best performance, judged using the testing period at each
gauge, was achieved by the 50×50×50 permutation, giving
the architecture described in Table 4.

There are three stacked LSTM layers, one input and
two hidden, each with 50 neurons, and a single neuron
dense output layer. Following Kratzert et al. (2018) and
other hydrological-LSTM papers, we use all surface or near-
surface variables available in ERA5 that are potentially rele-
vant to streamflow prediction. This gives us a total of 23 input
variables, outlined in Table 5. For each of the 10 gauges, all
variables except streamflow and the historic mean (which are
taken as point data at the gauge location) are averaged over
the catchment (see Fig. 1) at a 6-hourly frequency. We use a

7 d sequence for the input, giving the vector for each variable
a length of 28 timesteps.

The LSTM was trained separately for each gauge over
the training period (January 1990 to June 2018). For each
gauge, the LSTM was trained 100 times using random start-
ing weights over 10 epochs each. Figure 3 shows the train-
ing, validation, and testing of one ensemble member for the
NFSW4 gauge – demonstrating that both the diurnal and sea-
sonal cycles of this high-volume gauge are well simulated
by individual ensemble members. Five additional ensemble
members were also trained over 100 epochs to determine
whether extending the number of epochs provided a signifi-
cant performance gain. Fig. 4 shows the performance of each
ensemble member of the LSTM for each gauge, computed
over the testing period (June 2019 to June 2020). We see
that there is no significant advantage to extending the number
of epochs beyond 10 per member. The sensitivity of model
skill to initial weights is quite large, in agreement with ear-
lier studies (Kolen and Pollack, 1990; Graves et al., 2013),
and could be reduced in future work by using regularisation
techniques such as weight decay.

For the operational product, the mean is taken from the five
best-performing ensemble members (those with the highest
NSE in Fig. 4). For 8 out of the 10 gauges, this yields a better
KGE over the testing period than using the best-performing
single member, as we will see in Sect. 5.1. The LSTM is
trained using data from ERA5 and GloFAS-ERA5, which
we also use for the testing phase. Although this leaves the
operational LSTM vulnerable to biases in the IFS, these are
mitigated to an extent with the IFS being the driving model
for ERA5. On the positive side, this means that evaluation
of the ability of the forecasts will be conservative and thus
more informative to potential users who, in not having ac-
cess to decades of archived forecasts with a consistent model
version, must also resort to using reanalysis training data.

5 Results

5.1 Evaluation over test period: June 2019 to June 2020

5.1.1 Raw GloFAS-ERA5

Figure 5 compares raw (i.e. not bias corrected) GloFAS-
ERA5 streamflow to observations at each of the 10 stations
over the test period (June 2019 to June 2020). Note that, for
the test period, all models (including in Sect. 5.1.2 and 5.1.3),
are driven with ERA5 data and output a single streamflow
value per gauge per timestep. The product is skilful (NSE> 0
and KGE> 1−

√
2) at 6 of the 10 stations and highly skilful

(KGE>
√

2/2) at 2. The stations where raw GloFAS-ERA5
was not skilful (BNDN5, ARWN8, CARO2, and CLNK1)
are characterised by low mean flows and highly intermittent
peaks. Often, peaks appear at the wrong time – as exempli-
fied at CLNK1 during the autumn months of 2019 – or re-
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Table 5. List of the 23 input variables used during the training, testing, and operational use of the LSTM streamflow model.

Surface meteorology Surface hydrology Subsurface hydrology Other
(ERA5/IFS) (ERA5/IFS) (ERA5/IFS)

10 m u wind Precipitation rate Subsurface runoff Raw streamflow (GloFAS-ERA5/GloFAS)
10 m v wind Total runoff Soil moisture layer 1 Bias-corrected streamflow (GloFAS-ERA5/GloFAS)
2 m temperature Surface runoff Soil moisture layer 2 Mean historical streamflow for day of year (obs)
2 m dew point Skin reservoir content Soil moisture layer 3
Skin temperature Snowfall Soil moisture layer 4

Snow depth Soil temperature layer 1
Snow cover
Surface latent heat flux
Evaporation

Figure 3. Example training of a single LSTM ensemble member for the NFSW4 gauge, showing (a) the full dataset of observed streamflow,
with the testing period shaded in grey, and (b) comparison of the training and validation losses over the 10 training epochs. For a fair com-
parison, the validation loss has been multiplied by the ratio of the variances of the testing and training datasets. Also shown are comparisons
of the predicted streamflow to observations for the full (c) and start of (d) the testing period.

spond too slowly or too smoothly to short precipitation stim-
uli.

At stations where the raw GloFAS-ERA5 product is skil-
ful but not highly skilful (TCCC1, ESSC2, NFDC1, and
LABW4) are typically marked by it capturing the annual cy-
cle well, but generally missing some or most intraseasonal
variability. This is evident in ESSC2 and LABW4, where the
summer maximum and winter minimum were well captured,

but autumn and spring storms were not. Those stations where
the product is highly skilful (TRAC2 and NFSW4) also cap-
ture intraseasonal variability well – see for example April
and May 2020 at NFSW4, where the discharge associated
with two spring storms is well simulated by the model.
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Figure 4. The Nash–Sutcliffe efficiency and logarithm of the root mean square error in streamflow (m3 s−1) for each of the 100 ensemble
members of each gauge-specific LSTM, computed over the June 2019–June 2020 testing period. Each member was trained for 10 epochs,
except for five that were trained for 100 epochs. These five are marked with an additional black ring.

Figure 5. Comparison of observed streamflow (black) with raw GloFAS-ERA5 output (red) for each of the 10 gauges over the testing
period (June 2019 to June 2020). Gaps in the observational record over the winter are due to river freezing. Nash–Sutcliffe and Kling–Gupta
efficiencies over the year-long period are given for each gauge.

5.1.2 Bias-corrected GloFAS-ERA5

Bias-corrected GloFAS-ERA5 is compared with observa-
tional streamflow for each of the 10 gauges over the testing
period in Fig. 6. The results are a substantial improvement
over the raw GloFAS-ERA5 output: NSE is improved at 7 of

the 10 stations (except BNDN5, ARWN8, TCCC1) and KGE
is also improved at seven stations (except BNDN5, TCCC1,
NFDC1). Following bias correction, GloFAS-ERA5 is now
skilful at seven stations and highly skilful at four.

Failures at BNDN5 and ARWN8 are mostly due to the bias
correction algorithm being unable to calibrate low and spo-
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Figure 6. Comparison of observed streamflow (black) with bias-corrected GloFAS-ERA5 output (red) for each of the 10 gauges over the
testing period (June 2019 to June 2020). Gaps in the observational record over the winter are due to river freezing. Nash–Sutcliffe and
Kling–Gupta efficiencies over the year-long period are given for each gauge.

radic flow, although at ARWN8, the quantile mapping brings
the simulated mean and variance closer to observations as
desired, resulting in an improved KGE. Although the simu-
lated flow at CLNK1 is still not skilful, it has been improved
considerably by the bias correction, where the spatial opti-
misation routine has somewhat improved the timing of the
peaks. Both CARO2 and TRAC2 also saw large increases in
NSE and KGE due to improved representation of intrasea-
sonal variability.

5.1.3 LSTM

Figure 7 shows the performance of the LSTM model, ingest-
ing ERA5 and GloFAS-ERA5, at each gauge over the test-
ing period. It represents a step change in model efficiency
over the bias-corrected GloFAS-ERA5 output, being skilful
at nine gauges and highly skilful at six. The KGE is greater
than 0.9 at three stations and the NSE is greater than 0.9 at
four.

Despite this, the BNDN5 and CLNK1 gauges remain rela-
tive poorly modelled (although the latter does qualify as skil-
ful). In the observations, BNDN5 is characterised by long
periods of no flow, with occasional short-lived (typically less
than 2 d) peaks. The LSTM does manage to capture these
peaks, but the timing is incorrect – usually several days late

– and the magnitude is often far too small. The first of these
issues, and perhaps the second, is likely due to the LSTM in-
gesting catchment-mean variables. The catchment basin for
BNDN5 is large and arid, and therefore rain falling over it
is probably not appropriately captured using this simplifica-
tion. Future development of an LSTM model for streamflow
at BNDN5 or similarly large and arid basins should thus con-
sider an expanded input that ingests variables over all (or
representative) grid points in the basin. At most of the other
gauges, intraseasonal variability is captured very well. This is
true both for individual storms – for example, high-discharge
events at TCCC1 in early December 2019 and NFDC1 in late
January 2020 were almost perfectly simulated – and broader
flow patterns such at ESSC2 in summer 2019 and NFSW4 in
spring 2020.

5.2 Verification over operational period:
September 2020 to October 2021

Following testing, we ran all three models (raw GloFAS,
bias-corrected GloFAS, and the LSTM) operationally for
13 months between 1 September 2020 and 1 October 2021,
producing 10 d forecasts at daily frequency. As discussed in
Sect. 4, the major difference between the testing period and
the operational period is the switch from ERA5 to IFS for the
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Figure 7. Comparison of observed streamflow (black) with the LSTM ensemble output (members: grey, mean: red) for each of the 10 gauges
over the testing period (June 2019 to June 2020). Gaps in the observational record over the winter are due to river freezing. Nash–Sutcliffe
and Kling–Gupta efficiencies over the year-long period are given for each gauge.

variables ingested by the GloFAS prediction system and by
the LSTM. The effects of this switch are somewhat mitigated
by using the same underlying model (ERA5 uses the IFS),
but there will be biases in IFS forecasts that are not present
in ERA5, since the latter is nudged with simultaneous obser-
vations that are not available to the forecasts at non-zero lead
times.

Forecasts at each station are evaluated at 2, 5, and 8 d lead
times against the official observations. Results are given over
the entire operational period for the raw GloFAS forecasts in
Fig. 8, the bias-corrected GloFAS forecasts in Fig. 9, and for
the LSTM forecasts in Fig. 10. As expected, even at short
lead times, the forecasts generally perform more poorly than
their reanalysis-based counterparts. There are a handful of
notable exceptions to this, particularly for the raw GloFAS
forecasts at BNDN5, TCCC1, and CLNK1. Although the
GloFAS forecasts derive from a marginally more recent ver-
sion of the IFS than does ERA5, the gains in this context are
likely to be insignificant. At BNDN5 and CLNK1, the dif-
ference appears to be due to the hydrographs of the testing
and operational periods having different characteristics. Dur-
ing the testing period, there was no flow at BNDN5 except
for several very short (∼ daily) pulses of non-zero discharge
in autumn 2019; during the operational period, however, au-

tumn 2021 was marked by a period of low but continuous
flow. The lagged autocorrelation of the latter situation al-
most invariably makes it easier to model. At CLNK1, con-
stant very low flow is punctuated by occasional, short-lived
peaks. There was only one significant peak in the operational
period compared with four in the testing period, making it
easier to model correctly. This is arguable also the case at
TCCC1, where increased subseasonal variability in the oper-
ational period – notably two big storms in December 2019
and January 2021 – made it more challenging to simulate
than the testing period.

Evaluating overall performance by computing the KGE
of the 5 d forecasts, we find that the bias-corrected GloFAS
forecast beats the raw GloFAS forecast at six stations, the
LSTM forecast beats the bias-corrected GloFAS forecast at
all 10 stations and the raw GloFAS forecast at nine. The
raw GloFAS 5 d forecasts were skilful at seven stations and
highly skilful at one of these; the bias-corrected GloFAS 5 d
forecasts were also skilful at seven stations and highly skil-
ful at one of these – though with significant improvement
over the raw GloFAS forecasts at six of the seven showing
skill. The LSTM 5 d forecasts were skilful at nine stations
and highly skilful at five of these.
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Figure 8. Verification of the 2 d (blue), 5 d (orange) and 8 d (yellow) raw GloFAS forecasts against observations (black) over the operational
period (September 2020 to October 2021). Observations are plotted at 6-hourly resolution to match the forecasts and are not plotted when
the river is frozen. Kling–Gupta efficiencies for each lead time at each station are also given.

To complete this evaluation, we now extend our analysis
to all lead times and include a simple persistence model as
a benchmark (Sect. 4). For sufficiently long verification pe-
riods, the mean and variance of persistence forecasts by def-
inition asymptotically approaches those of the observations.
This has two key implications: firstly, since KGE is sensitive
to the errors in forecast mean and variance, the persistence
model receives a large advantage in this score compared with
the other models; secondly, following on from the first point,
KGE is no longer a fair descriptor of model performance, so
we must also consider NSE.

Figure 11 shows how the KGE and NSE vary for each
model at each station as a function of lead time. Here, we are
more interested in the higher values of these metrics (i.e. if
a model is skilful, how skilful is it?) than the orders of mag-
nitude of negative KGE and NSE values produced by use-
less forecasts, and so we truncate the plots at NSE=−1 and
KGE= 0. For each model at each station, scores are plotted
from lead times of 1 to 10 d inclusive, denoted by markers of
diminishing radius, and connected in order by thin lines of
the same colour, creating “phase space caterpillars”. Present-
ing the metrics in this way allows a quick intercomparison
between models; for example, we can see clearly where bias
correction has worked well (ESSC2, NFDC1, TRAC2) by

identifying where the bias-corrected points have moved sig-
nificantly upward and to the right compared with their raw
counterparts. With the exception of BNDN5, CLNK1 and
CARO2, we see that the LSTM forecasts tend to have com-
parable KGE to the persistence forecasts but higher NSEs.
Both the persistence and LSTM forecasts tend to outperform
the raw and bias-corrected GloFAS forecasts. We also note
that stations with a high lagged autocorrelation (i.e. those
stations where the persistence model does well) tend also
to have discharge that is well simulated by all three of the
operational models. Exemplified by LABW4 and NFSW4,
these are typically high-discharge sites with large catchment
areas and slow response times. Indeed, those stations where
the GloFAS and LSTM models struggle the most are char-
acterised by flash responses, with their dominant mode of
variability on the diurnal rather than annual or semiannual
timescale.

Next, to understand how the models perform as a func-
tion of forecast lead time, we decompose the KGE values
into their three components: correlation (Fig. 12, bias ra-
tio (Fig. 13), and variability ratio (Fig. 14). As before, we
truncate the graphs to remove poorly performing metric val-
ues where necessary. In terms of the correlation coefficient,
the LSTM performs best at 5 of the 10 stations (ARWN8,
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Figure 9. Verification of the 2 d (blue), 5 d (orange) and 8 d (yellow) bias-corrected GloFAS forecasts against observations (black) over the
operational period (September 2020 to October 2021). Observations are plotted at 6-hourly resolution to match the forecasts and are not
plotted when the river is frozen. Kling–Gupta efficiencies for each lead time at each station are also given.

TCCC1, NFDC1, TRAC2, NFSW4) and most notably is the
only forecast to have a positive correlation with the observa-
tion at ARWN8. This is mainly due to a fictional peak in the
raw GloFAS which is exacerbated by the bias correction but
which is filtered out by the LSTM. In addition to these five
stations, the LSTM also has the highest correlation at short
lead times at LABW4, but this decreases at longer lead times,
dropping below the correlation coefficient of the other two
forecasts after 4 d. The timing of the largest peak at LABW4
during the operational period is better predicted by the raw
and bias-corrected GloFAS forecasts at longer lead times,
whereas for the LSTM it is shorter lead times that accurately
predict this peak. The raw forecast has comparable correla-
tion coefficients to the bias-corrected and LSTM forecasts
at the three largest stations (BNDN5, CARO2, LABW4) but
is notably lower for smaller catchments supporting the need
for caution when using the raw GloFAS forecast for catch-
ments below the recommended 2000 km2 threshold. Since
the bias-correction method is based on quantiles it can impact
the correlation of the forecasts. The bias-corrected GloFAS
has an improved correlation compared with the raw GloFAS
forecast at 7 of the 10 stations (TCCC1, ESSC2, NFDC1,
CLNK1, TRAC2, NFSW4, ARWN8 – not shown).

Surprisingly, the bias ratio of the bias-corrected GloFAS
forecasts is worse than the raw GloFAS forecasts at 4 of

the 10 stations (BNDN5, ARWN8, TCCC1, CLNK1). These
four stations tend to have low streamflow variability ex-
cept for some short-duration large peaks. As these peaks are
largely seasonal this vulnerability in the bias correction tech-
nique is likely due to the change in discharge distribution
throughout the year, a problem that could be rectified by ap-
plying a season-based quantile mapping. The large bias ra-
tios at BNDN5 and ARWN8, and CLNK1 and CARO2 at
longer lead times, are often due to unprecedentedly large val-
ues forecast by the raw GloFAS. The quantile mapping ex-
trapolates these quantities to unphysically large values (see
e.g. 5000 m3 s−1 in September 2021 at CARO2 in Fig. 9).
The raw GloFAS forecasts underpredict the streamflow at
the small catchments at high elevations (ESSC2, TRAC2).
The bias correction does partially correct for this bias, but the
LSTM forecast still has the lowest bias at these stations. In
fact, the LSTM is the least biased forecast for 8 of the 10 sta-
tions, the exceptions being BNDN5 and CLNK1, where the
raw forecast is better. For the largest catchment, BNDN5, the
raw GloFAS forecast has a relatively small bias ratio com-
pared with the other two forecasts, mainly because it con-
sistently predicted the zero flow during the first half of the
verification period.

The raw GloFAS forecast has the best variability ratio
of all three forecasts at the two larger high-elevation catch-
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Figure 10. Verification of the 2 d (blue), 5 d (orange) and 8 d (yellow) LSTM forecasts against observations (black) over the operational
period (September 2020 to October 2021). Observations are plotted at 6-hourly resolution to match the forecasts and are not plotted when
the river is frozen. Kling–Gupta efficiencies for each lead time at each station are also given.

Figure 11. Overall performance of the three models during the operational period (September 2019 to October 2020) compared with a
persistence benchmark (grey). For each model, at each station, and for each lead time (from 1 to 10 d), the Nash–Sutcliffe and Kling–Gupta
efficiencies – compared with observations – are plotted. Lead times are connected sequentially by markers of diminishing size, with the 10 d
lead time having the smallest marker. Values of KGE below 0 or NSE below −1 are not plotted.
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Figure 12. Correlation coefficient, r , calculated over the verification period for all three forecast models at each station for each lead time
(from 1 to 10 d). Negative correlations for ARWN8 have not been plotted.

Figure 13. Bias ratio, β, calculated over the verification period for all three forecast models at each station for each lead time (from 1 to
10 d). Note the logarithmic scale of the y axis for ARWN8.

Figure 14. Variability ratio, γ , calculated over the verification period for all three forecast models at each station for each lead time (from
1 to 10 d). The y axis has been truncated to γ values= 5.2 for stations ARWN8, CARO2, and CLNK1.
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Figure 15. Example forecasts, issued on 1 May 2021, for lead times of up to 10 d. The four models (persistence: grey, raw GloFAS: red,
bias-corrected GloFAS: orange, LSTM: blue) are verified against the official observations plotted in black crosses.

ments (LABW4, NFSW4), although at both stations the
bias-corrected forecast has similar variability ratios at some
lead times. However, the bias correction only improved the
flow variability of raw GloFAS forecasts at half of the sta-
tions (BNDN5, ESSC2, NFDC1, CLNK1, TRAC2). How-
ever, these stations vary significantly in catchment charac-
teristics (catchment size, elevation, peak duration, meteoro-
logical regimes), as do the stations where the bias correc-
tion is beneficial, so there is no obviously favourable catch-
ment characteristic. The unphysical streamflow predictions
seen at BNDN5, ARWN8, CLNK1 and CARO2 also impact
their variability ratio metric. The LSTM has the best variabil-
ity ratio at 3 of the 10 stations (BNDN5, ARWN8, TRAC2)
and comparable values at a further four (CARO2, ESSC2,
LABW4, CLNK1). All forecasts have a higher variability ra-
tio at longer lead times at NFDC1, with the rate of increase
similar for all three forecasts. This suggests that the change
with lead time is due to factors impacting both, such as a bias
in the IFS forecast which is used to drive the LSTM and the
LISFLOOD hydrological model used to create the GloFAS
forecasts.

Finally, as this is a study on forecasting, we would be re-
miss not to analyse a single forecast. Figure 15 shows the
forecasts issued for the 10 stations on 1 May 2021, along with
the persistence forecast, verified against observations. We see
more easily here how the bias correction often – but not al-
ways – nudges the raw GloFAS forecast in the right direc-
tion, with particularly successful results at ARWN8 for this
forecast. Of particular interest during this period was a pair
of rain-on-snow events that impacted stations in the Rock-
ies (NFSW4, LABW4, ESSC2, and TRAC2). These resulted

in large spikes in the streamflow, visible in the observations,
centred on 3 and 9 May. Neither the raw nor bias-corrected
GloFAS forecasts captured this, nor did a number of other
operational forecasts (Kenneth Nowack; personal communi-
cation). While the LSTM mostly underestimated the magni-
tude of these events, it did predict them. This highlights the
ability of LSTMs in general to learn complex non-linear re-
lationships that may be altogether absent from physics-based
models.

6 Discussion

6.1 Potential improvements

As with any newly developed forecast models or techniques,
we encountered scope for improvement during the opera-
tional phase and post-operational analysis. There are two
potential improvements to the bias correction, in its current
form. The first is to further granularise the process, comput-
ing a new quantile mapping and bias-correction matrix for
(e.g.) each season. This would have the advantage of further
reducing the relative bias caused by seasonally varying envi-
ronmental factors (e.g. snow on ground in winter or intense
storms in the summer saturating the soil). Such work must be
careful to avoid overfitting the matrices given the increased
degrees of freedom.

The bias correction would also benefit from a dependence
on forecast lead time. Since biases invariably grow as a func-
tion of lead time, the correction required for a 10 d forecast
is likely to be larger than the correction required for a 2 d
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forecast. In using GloFAS-ERA5 to compute our bias cor-
rection terms in Sect. 4.3, we effectively limited ourselves to
a 0 d lead time correction. The hindcasts that would be re-
quired for this now exist from 1997 onwards, and work at
ECMWF has used them for bias correction of flood thresh-
old forecasts through cumulative distribution function (CDF)
mapping (Zsoter et al., 2020).

Similarly, the LSTM was trained on ERA5 data but then
ingested IFS output when run operationally. Although the
two products will share some biases, they will inevitably
be larger in IFS (the forecast) than ERA5 (the reanalysis),
resulting in errors that propagate non-linearly through the
LSTM. Originally, we chose to train the model on ERA5 so
that our methods were reproducible, but there is no reason
other forecasters should be bound by this desire. The opti-
mal strategy is to train the LSTM on IFS hindcasts – though
this would require careful adjustment of the architecture to
account for different lead times. Similarly, such an approach
must be careful of changing hindcast model versions.

In our model, the LSTM is trained on, and subsequently
ingests, catchment-mean variables (with the exception of
streamflow, which is taken at the point of interest). How-
ever, as we know, rain falling far away from the station
takes longer to reach it than rain falling nearby – a rela-
tionship lost when this approximation is made. By replac-
ing the catchment-mean pre-processing step with a convo-
lutional layer in the LSTM, the LSTM would be able to
learn such spatiotemporal relationships and likely produce
improved forecasts as a result. As we saw in the introduc-
tion, work by Le et al. (2019) showed that even a relatively
simple LSTM that ingested data from different points up-
stream could produce excellent results. Despite the potential
advantages, there are some caveats to adding a convolutional
layer. Firstly, training convolutional LSTMs is computation-
ally very expensive. Secondly, different basins have differ-
ent areas and therefore have to ingest a different number
of vectors. This either requires a new architecture for each
basin (essentially unfeasible) or intelligent pre-processing,
e.g. grouping the data by distance to the station. Thirdly,
related to the second point, it does not allow transferability
between products of different spatial resolutions without ad-
ditional pre-processing. One option may be dimensionality
reduction of the 2D catchment into a generalised 1D repre-
sentation. Another, recently explored by Feng et al. (2021),
is to use graph convolutional networks.

Could the LSTM be replaced with a simpler statistical or
machine learning model which is easier to train, such as a
multiple linear regression, random forest, or XGBoost? Al-
though this may be tempting, recent research suggests that
LSTMs comfortably outperform both random forest models
(Adnan et al., 2021) and XGBoost (Gauch et al., 2021b) on
streamflow prediction problems, particularly with increasing
sample size. LSTMs are now well established as a power-
ful tool for modelling complex and non-linear hydrological
systems (Gauch et al., 2021a). However, their limitations –

such as lack of parallelisation and long-range dependencies –
mean that they are being increasingly overlooked in sequen-
tial data problems in favour of gated recurrent units (GRUs)
and attention-based models (Vaswani et al., 2017). Little re-
search has yet been done into whether such models are more
useful than LSTMs in hydrological contexts. It is likely, how-
ever, that switching to the method proposed in Kratzert et al.
(2019b) – that is, using a single LSTM trained across mul-
tiple basins – would improve the forecasts. This approach
would also allow the LSTM to be applied in ungauged catch-
ments.

Generalisation when provided with out-of-distribution
data and lack of interpretability are often cited as limitations
of machine learning, particularly in the environmental sci-
ences. However, as shown in Kratzert et al. (2019a), LSTMs
trained across multiple basins actually perform well on pre-
viously unseen (even ungauged) basins that might typically
be considered out of distribution. Similarly, such LSTMs
can capture extreme values of streamflow driven by out-of-
distribution extreme precipitation events (Frame et al., 2022).
Taken together, these results suggest that such LSTMs are ca-
pable of capturing the underlying hydrological relationships
that connect precipitation, runoff, and streamflow. Since cli-
mate change does not affect the underlying physical rela-
tionships, well-constructed LSTMs – and other ML mod-
els in general – should be largely immune. However, there
are other types of changes, e.g. increasing urbanisation, that
will affect the underlying relationships and would then de-
grade the skill of the LSTM – although this would happen
in any other kind of hydrological model if not appropriately
updated. Although recent work has shown potential for inter-
pretability in streamflow LSTMs (e.g. using attention theory;
Li et al., 2021), this is still generally a weakness compared
with physics-based models. However, in not having to rely
on prescribed relationships, machine learning products can
potentially learn new ones.

The LSTM as set-up in this paper still requires a hydrolog-
ical model, LISFLOOD, to be calibrated in an offline proce-
dure and then run daily in the operational period to create the
forecasts. Therefore, whilst the LSTM ingests both meteoro-
logical and hydrological variables and therefore likely rep-
resents some of the hydrological processes itself, it could be
seen as a post-processing method for the GloFAS forecasts.
It would be interesting to see how the difference in perspec-
tive impacts users’ trust in the forecasts. Additionally, the
need to run the hydrological model limits some of the bene-
fits available via the LSTM such as computational efficiency.
Future work should look at the contribution made by the LIS-
FLOOD streamflow input data to the final LSTM forecasts
and whether the impact is significant enough to warrant the
additional resources. Alternatively, future research could in-
vestigate incorporating machine learning techniques directly
into LISFLOOD either to speed up calculations (Höge et al.,
2022; Rackauckas et al., 2020; Raissi et al., 2020) or to repli-
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cate processes that are not currently modelled in LISFLOOD
within GloFAS such as the impact of reservoir management.

Finally, due to data pipeline constraints, we used only the
control member of the IFS and GloFAS throughout our op-
erational deployment. Two open research questions remain:
what is the best way to combine ensemble members as inputs
to an LSTM, and how can ensemble members be leveraged
to provide accurate uncertainty estimates in the forecasts?

6.2 Potential applications

We have demonstrated, as have other authors, that LSTMs
show a great deal of promise for river streamflow modelling
and forecasting. Given this, there are other potential applica-
tions that are not immediately obvious from this work.

Perhaps the most exciting is the idea propounded by
Kratzert et al. (2018), that LSTMs such as the one in this
study are not black boxes, rather they are often “grey” boxes,
often containing many neurons whose output can be phys-
ically interpreted. In some cases – Kratzert et al. (2018)
highlighted a neuron responsible for calculating snowmelt –
representing relationships already captured by physics-based
models; in others – e.g. if the rain-on-snow phenomenon de-
scribed earlier is produced by a single neuron – representing
relationships not necessarily captured by existing physics-
based models. There is, then, the potential for new hydro-
logical relationships to be discovered through careful inves-
tigation of a well-trained LSTM.

Another potential application is to use an LSTM model
– in a basin where it has a high KGE and NSE – to infill
missing data in the observational record or to extend it fur-
ther back in time where reanalysis coverage permits. Con-
tinuous long-term streamflow records are useful for both cli-
mate and hydrology research, as well as the insurance indus-
try. Similarly, because the LSTM is extremely cheap to run
once trained, it could readily be applied to climate model out-
put (either following bias correction of that data, or by using
transfer learning to adjust the internal weights of the LSTM)
to produce projections of streamflow over selected basins in
future climate scenarios.

7 Conclusions

In this study, we explored the efficacy of three models at sim-
ulating, and then forecasting up to a 10 d lead time, stream-
flow at 10 different sites across the western United States.
The forecasts were then verified against official observa-
tions and compared with a benchmark persistence model.
The three models were the following.

1. The control member of the Global Flood Awareness
System (GloFAS) ensemble, a physics-based model de-
veloped by ECMWF and the Joint Research Centre of
the European Commission that provides global fore-
casts at a resolution of 0.1◦× 0.1◦.

2. A bias-corrected version of the raw GloFAS forecast
above. The bias correction technique was newly de-
veloped for this study: firstly, each pixel is corrected
using a simple quantile-mapping technique, where the
mapping is computed using historical observations and
the reanalysis version of GloFAS, GloFAS-ERA5. Sec-
ondly, the final streamflow is estimated using an opti-
mised linear combination of streamflow from surround-
ing pixels. The matrix of coefficients for this linear com-
bination is computed by maximising the sum of the
Kling–Gupta and Nash–Sutcliffe efficiencies of the out-
put.

3. A type of recurrent neural network, known as a long
short-term memory network (LSTM), the development
of which was a key focus of this study. The LSTM
was trained to ingest catchment-mean meteorological
and hydrological variables and output streamflow at 6-
hourly intervals. Trained using historical ERA5 reanaly-
ses and observations, when run operationally, the LSTM
ingested forecasts from the ECMWF IFS.

Each of the three models were run for a 12-month testing pe-
riod (June 2019 to June 2020), for which they used ERA5
as input, to test how well they could simulate streamflow at
the 10 stations. Defining skilful as having a KGE greater
than −0.414 and highly skilful as having a KGE greater
than 0.707, the LSTM performed best (skilful at nine sta-
tions, highly skilful at six of these, and with a KGE exceed-
ing 0.9 at three of those), followed by the bias-corrected Glo-
FAS (skilful at seven, highly skilful at four), followed by the
raw GloFAS (skilful at six, highly skilful at two). The bias
correction improved the KGE of simulated streamflow at 7
of the 10 stations, implying that it is better at improving the
skill of already skilful simulations than adding skill to un-
skilful ones.

The three models were then run operationally for a 13-
month period (September 2020 to October 2021), using fore-
cast output from the control member of the IFS as input.
Forecast efficiencies were calculated for 2, 5, and 8 d lead
times. Again, the LSTM performed best, with 5 d forecasts
being skilful at nine stations, of which five were highly skil-
ful, followed by the bias-corrected GloFAS, with 5 d fore-
casts being skilful at seven stations, of which one was highly
skilful, and then raw GloFAS, which also had skilful 5 d
forecasts at seven stations, one of which was highly skil-
ful, but had lower KGE at six of the seven stations show-
ing skill. An important caveat is that 7 of the 10 stations (all
except BNDN5, CARO2, and LABW4) had catchment ar-
eas smaller than 2000 km2, the recommended lower bound
for using GloFAS forecasts. However, of these seven, the
raw and bias-corrected 5 d GloFAS forecasts were skilful
at six (highly skilful at one). The 5 d LSTM forecasts per-
formed better than the raw and bias-corrected GloFAS fore-
casts at two of the three largest catchments not BNDN5),
where the comparison is most fair. The results for all sta-
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Table 6. Summary of results by station, showing the mean discharge and fraction of missing observations during the training period, the KGE
for each of the three models over the testing period, and the KGE for 5 d forecasts from each of the three models over the operational period.
Values of KGE greater than 0.707 (i.e. “highly skilful”) are marked in bold. Stations are ordered according to mean model skill during the
testing period, with better-performing gauges towards the right.

Station BNDN5 CLNK1 ARWN8 CARO2 TCCC1 NFDC1 LABW4 ESSC2 TRAC2 NFSW4

Mean discharge (m3 s−1) 0.368 0.142 8.24 3.28 20.5 49.0 26.0 4.47 1.19 8.55
Missing obs (%) 24 14 51 9.0 1.6 4.1 37 22 33 19
Raw KGE (testing) −0.517 −0.164 −0.241 0.064 0.452 0.480 0.666 0.646 0.716 0.822
BC KGE (testing) <−1 −0.045 −0.098 0.406 0.414 0.413 0.741 0.768 0.914 0.860
LSTM KGE (testing) −0.185 0.182 0.635 0.704 0.843 0.897 0.922 0.939 0.897 0.943
Raw KGE (5 d fc) 0.186 −0.287 <−1 <−1 0.463 0.067 0.605 0.105 0.417 0.812
BC KGE (5 d fc) <−1 0.361 <−1 <−1 0.155 0.521 0.675 0.618 0.577 0.863
LSTM KGE (5 d fc) <−1 0.367 0.025 0.285 0.808 0.876 0.685 0.837 0.876 0.838

tions and models are summarised in Table 6. There is no sig-
nificant relationship between model performance and either
catchment size or altitude, despite the fact that seven gauges
have catchments smaller than the recommended minimum
for using GloFAS. Instead, model performance generally im-
proves with larger mean discharge, a more pronounced sea-
sonal cycle, and more complete historical observations.

Finally, the three models were compared at all lead times
and at all stations against a benchmark persistence model.
The LSTM had a higher mean NSE than the persistence
model at 6 of the 10 stations – NSE is the preferred evalu-
ation metric here given the dependence of KGE on errors in
flow mean and variance, which are zero by definition for a
long period of persistence forecasts. Overall, stations with a
clearly defined annual cycle and low variance about that cy-
cle were the easiest to predict for all models, whereas stations
whose variance was dominated by single storms provided the
greatest challenge. The results show a promising future for
LSTMs in river streamflow forecasting.
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