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Abstract—Software engineering of network-centric Artificial
Intelligence (AI) and Internet of Things (IoT) enabled Cyber-
Physical Systems (CPS) and services, involves complex design and
validation challenges. In this paper, we propose a novel approach,
based on the model-driven software engineering paradigm, in
particular the domain-specific modeling methodology. We focus
on a sub-discipline of AI, namely Machine Learning (ML)
and propose the delegation of data analytics and ML to the
IoT edge. This way, we may increase the service quality of
ML, for example, its availability and performance, regardless
of the network conditions, as well as maintaining the privacy,
security and sustainability. We let practitioners assign ML
tasks to heterogeneous edge devices, including highly resource-
constrained embedded microcontrollers with main memories in
the order of Kilobytes, and energy consumption in the order
of milliwatts. This is known as TinyML. Furthermore, we show
how software models with different levels of abstraction, namely
platform-independent and platform-specific models can be used
in the software development process. Finally, we validate the
proposed approach using a case study addressing the predictive
maintenance of a hydraulics system with various networked
sensors and actuators.

Index Terms—model-driven software engineering, domain-
specific modeling, machine learning, tinyml, edge analytics,
internet of things

I. INTRODUCTION

Finding IT professionals, e.g., software developers and sys-
tem engineers who are familiar with the diverse hardware and
software platforms, programming languages, communication
protocols and APIs that are involved in the Internet of Things
(IoT) applications is very difficult. The technologies are di-
verse and the platforms have a broad spectrum, ranging from
tiny sensors and microcontrollers with a few Kilobytes (KB) of
main memory and very constrained power and processing re-
sources to capable cloud servers with multiple GPUs and large
in-memory databases. Consequently, their operating systems
(if any), programming languages and communication protocols
are also very different. For instance, a single IoT project might
require familiarity with various operating systems, such as
Linux, TinyOS, ContikiOS, ROS, Android, iOS as well as
machine codes (machine languages) or assembly languages of
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multiple microcontrollers and computers with various archi-
tectures. Moreover, different programming languages will be
used for different parts of the software systems that need to be
deployed on distributed platforms. C, Java (J2SE and J2EE),
Python, PHP, Go and Javascript are only a few examples of
the common choices. In addition, communication protocols are
diverse on different layers of the network stack. For example,
on the application layer, CoAP (Constrained Application Pro-
tocol) and MQTT (Message Queuing Telemetry Transport) are
more suitable protocols than HTTP (Hypertext Transfer Pro-
tocol) for resource-constrained devices. The former (CoAP)
is suitable for one-to-one communications, whereas the lat-
ter (MQTT) is designed for many-to-many communications
following the publish-subscribe pattern. Therefore, no matter
how professional and skilled a software developer or system
engineer is, they can neither master the entire technology
spectrum and cross-domain functions of a complex IoT system
nor can they efficiently communicate and collaborate with
other experts working on the same project.

The Model-Driven Software Engineering (MDSE)
paradigm, also known as Model-Based Software Engineering
(MBSE), specifically the Domain-Specific Modeling (DSM)
methodology with full code generation [1] offers abstraction
and automation to deal with the above-mentioned complexity.
Over the past decade, its applications have been expanded
from the niche domains, such as embedded systems for
safety critical applications, e.g., in the automotive industry,
to the more complex domains, such as the Internet of Things
(IoT) [2] with highly heterogeneous, distributed systems
of systems, called Cyber-Physical Systems (CPS) [3], [4].
Examples of tools offering solutions for domain-specific
MDSE of embedded systems comprise MATLAB Simulink
[5] and AutoFOCUS [6]. Moreover, ThingML [2], [7]-[9],
HEADS [10], [11] and p-Kevoree [12] supported domain-
specific MDSE for the IoT. These solutions enabled full
source code generation in an automated manner.

However, today’s software systems that support [oT services
require more smart capabilities, as well as more dynamicity



at runtime. There is a trend towards data-driven software and
systems design and modeling. This handles uncertainty at the
software design-time. In other words, the modeler or designer
of an IoT service that requires Al, or more specifically ML,
may postpone certain design-time decisions and leave them
to the predictions, recommendations or outputs of trained ML
models at the runtime. Previous work exists in the literature,
e.g., ML-Quadrat [13], [14] that introduced this. Nevertheless,
their major drawback was that they did not support deploying
ML models on the IoT edge devices. In contrast, for many
IoT use cases today, the deployment of compact ML mod-
els that can function self-sufficiently on resource-constrained
microcontrollers is necessary.

For instance, a modern smartphone that runs an iOS or
Android operating system has a Digital Signal Processor
(DSP) chip with power consumption in the order of only a
few milliwatts (mW). This microprocessor chip has the task
of continuously listening to the surrounding environment for a
predefined statement in the form of a speech command, i.e., a
so-called wake word, such as ‘Hey Siri’ or ‘OK Google’. Note
that this always-on DSP must be separated and independent
of the main CPU so that the smartphone can save the battery
by letting its main CPU that consumes considerably more
energy stand by in an inactive mode as long as possible. The
trained Artificial Neural Network (ANN) ML model that can
efficiently perform the mentioned task on such a DSP has
a size of about 14 KB. There are many further scenarios
beyond the above-mentioned example. For instance, Park et
al. [15] proposed an ANN model with the size of around 15
MB for enhanced, real-time, automatic speech recognition on
smartphones and embedded devices. In contrast to the previous
case, where speech recognition was only needed for a simple
wake word, this model is much more capable in terms of
speech recognition. However, the advanced capability of this
model comes at a cost: Its size is more than one thousand
times larger than the aforementioned wake word recognizer
ANN model. Thus, it cannot fit into the memory of typical
TinyML devices.

Furthermore, in other IoT use cases, such as predictive
maintenance, the so-called peel-and-stick sensors, which re-
quire no battery change over their lifetime, or the Everactive
wireless sensors, which are exclusively powered by low levels
of harvested energy from the surrounding environment are
increasingly becoming prevalent. These tiny IoT sensors are
either already Al-enabled or are expected to become so in the
future [16].

In this paper, we propose a novel approach to domain-
specific MDSE of smart services that will run on heteroge-
neous and distributed IoT devices. In particular, we advocate
edge computing (fog computing), specifically edge analytics
and TinyML. As mentioned, the latter involves delegating
ML tasks to highly resource-constrained microcontrollers with
ultra-low energy consumption levels. This lets the data remain
at the edge of the network (i.e., on the users’ side) and
be processed there instead of being transferred to the other
nodes of the distributed system, e.g., to the cloud. One of

the main drivers for this paradigm shift at the present time is
of privacy concerns and the need to ensure legal compliance
assurance by design, e.g., concerning the General Data Pro-
tection Regulation (GDPR) in the European Union (EU) and
the California Consumer Privacy Act (CCPA) in the United
States (US) [17]. In addition, the device energy efficiency, the
network throughput optimization and the availability of the
service or certain functionalities irrespective of the network
conditions will be other benefits of the said transition regarding
the execution of data analytics and ML on the edge devices.

Our main Research Questions (RQ) are the following: RQ1.
Can we enable automated full code generation out of the
software models of smart IoT services that will deploy trained
ML models on highly resource-constrained IoT edge platforms
(i.e., realizing TinyML)? RQ2. Can we have a higher level of
abstraction for the Platform-Independent Models (PIM) that
will abstract from the details and constraints of the underlying
IoT platforms, and simultaneously a lower level of abstraction
for the Platform-Specific Models (PSM) out of which the full
implementation must be generated? Note that PIM and PSM
here refer to the software and system models, not the data
analytics and ML models. Hence, the contribution of this paper
is two-fold: (i) It assesses RQ1 and enables TinyML in the
domain-specific MDSE of smart IoT services. (ii) It assesses
RQ2 and provides the PIM and the PSM layers for the software
models of smart IoT services.

The rest of this paper is structured as follows: Section II
offers some background information. Then, we review the state
of the art briefly in Section III. We propose our novel approach
in Section IV. Further, Section V implements and validates the
proposed approach. Finally, we conclude and suggest future
work in Section VI

II. BACKGROUND

In this section, we provide some required background
information on MDSE and TinyML.

A. MDSE

There exist different approaches to the MDSE paradigm.
The Model-Driven Architecture (MDA) standard of the Ob-
ject Management Group (OMG) [18], which was initially
issued in 2001 and then updated in 2014, serves as a
key reference for MDSE. According to MDA, three de-
fault architecture viewpoints are defined for every system:
computation-independent, platform-independent and platform-
specific. Computation-Independent Models (CIM) are business
or problem-domain models. They use the vocabulary that
is familiar to the subject matter experts in the respective
domains. However, Platform-Independent Models (PIM) are
solution-domain models, namely models that are related to
the computational concepts. Nevertheless, they abstract from
the details of any specific platform. Further, Platform-Specific
Models (PSM) augment PIMs with the details that are specific
to particular platforms. In MDA, the requirements specified in
a CIM must be traceable to the constructs in the PIM and the
PSMs that implement them (and vice-versa) [19].



However, efficient full code generation that does not require
any further manual development is often not feasible with
MDA. MDA is rather generic and broad. Moreover, the round-
tripping processes (i.e., the model transformations from the
CIM to the PIM and then the PSMs and vice-versa) result
in many model artifacts that need to be managed and might
not be consistent over the time. In contrast, the Domain-
Specific Modeling (DSM) methodology [1] that is adopted
and adapted in this work promotes narrowing the domain of
interest down and also avoiding round-tripping. Models are
very specific to a particular use case and the full implemen-
tation of the solution is generated out of the models, namely
PSMs in the MDA terminology. In this paper, we use both PIM
and PSM, but avoid round-tripping. A PSM in our software
development methodology is simply an extension of a PIM
with the platform-specific annotations and configurations that
are necessary for the code generation for a certain target IoT
platform out of the PSM. By a particular platform, we mean
the combination of the hardware architecture, the operating
system if applicable, the programming language, the libraries
and APIs, as well as the communication protocols.

B. TinyML

Running Machine Learning (ML) tasks, such as making
predictions using ML models on embedded devices is a young
field. In the context of the IoT, i.e., for the networked embed-
ded devices, this is inline with the trend towards assigning
more computational tasks to the edge of the network as
opposed to the cloud. The trend is known as edge computing
or fog computing. The IoT edge devices reside on the users’
side and can range from desktop PCs, laptops, tablets and
smartphones to embedded single-board computers, such as
Raspberry Pi and embedded microcontrollers. In the case of
deploying pre-trained ML models on the resource-constrained
microcontrollers with ultra-low power consumption in the
range of 1 mW, we are dealing with TinyML. These mi-
crocontrollers possess main memories (RAM) in the order
of tens to hundreds of kilobytes. In addition, their persistent
flash memories can be in the order of kilobytes to megabytes.
Moreover, their CPU clock speeds might be as low as just tens
of MHz. Hence, they are small and highly energy efficient.
Last but not least, they are relatively inexpensive and can be
ordered in large quantities.

In this work, we use an Arduino Nano 33 BLE Sense
microcontroller board [20] with an ARM® Cortex®-M4 32-
bit processor with a clock speed of 64 MHz, 256 KB RAM, 1
MB flash memory and various on-board sensors, e.g., for the
temperature, humidity, pressure, brightness, vibration, etc. for
the TinyML platform. In contrast, another target platform for
code generation will be an embedded single-board computer,
namely a Raspberry Pi 3 B+ board [21] with an ARM®
Cortex-A53 (ARMvS8) 64-bit SoC (System on Chip) that has
a clock speed of 1.4 GHZ, as well as 1 GB of main memory.
Although this does not fall under the category of the TinyML
platforms, it will be used to demonstrate the heterogeneity of

the target platforms for the fully-automated code generation
out of the software models.

III. STATE OF THE ART

As set out in Section I, ThingML [2], [7]-[9] and HEADS
[10], [11] supported the MDSE paradigm, specifically the
DSM methodology [1] for full code generation in the IoT/CPS
domain. They were based on the Eclipse Modeling Frame-
work (EMF) [22] and the Xtext framework [23]. While
they mainly focused on the design-time of software systems,
other approaches, such as u-Kevoree [12] concentrated on
Models @Runtime, thus conflating the two distinct phases of
design (modeling) and execution of IoT services. The major
shortcoming of all the said approaches was the lack of DAML
support at the modeling level. In other words, the users of
those DSMLs might not deploy the APIs of DAML libraries
and frameworks in their software models. Hence, there was
no seamless integration between the software models and the
DAML models.

GreyCat [24] by Hartmann et al. [25]-[27] and ML-
Quadrat [14] by Moin et. al [13], [28], [29] filled this gap
in. However, they fell short of supporting edge analytics
and TinyML on resource-constrained IoT devices. The for-
mer, which was based on the Kevoree Modeling Framework
(KMF) [30], [31] and p-Kevoree [12] could generate Java and
Javascript/Typescript code. This was not sufficient for many
IoT use case scenarios that involved resource-constrained
devices that were incapable of executing the Java Virtual
Machine (JVM) for the backend. Finally, the latter offered
code generation for a range of platforms, including C code
generation for various resource-constrained microcontrollers.
However, the analytics and ML part had to run in the cloud
or any node in the distributed system that was not resource-
constrained. Table I shows a comparison of the proposed
approach with the related work in the literature.

TABLE 1
RELATING THE PROPOSED APPROACH TO THE PREVIOUS WORK

Approach Basis ML- Resource- TinyML
enabled | constrained
edge

ThingML [9] / | EMF [22] | - v
HEADS [11] &  Xtext

(23]
pu-Kevoree [12] | KMF [31] - v
GreyCat [24] p-Kevoree v -

[12]
ML-Quadrat ThingML v v
[14] (9]
The proposed | ML- v v v
approach Quadrat

[14]

Finally, the proprietary software tooling provided by
MathWorks® Inc., which comprises MATLAB®, Simulink®,
ThingSpeak™ and other MATLAB® add-ons, is widely used
in the industry. However, the technology stack is based on the
MATLAB® ecosystem with full code generation in several



programming languages, such as C/C++, HDL, .NET and
Java, and with integrated APIs for relational and non-relational
databases, as well as several communication protocols, e.g.,
REST, MQTT and OPC Unified Architecture (OPC UA)
for both offline data (i.e., batch processing) and online data
(i.e., stream processing). Note that the proprietary solution is
expensive, thus a potential barrier for open innovations. In
contrast, the solutions listed in Table I are open source with
permissive licenses that enable their cost-effective deployment
and possible future extensions. For instance, u-Kevoree [12]
was the basis for GreyCat [24], ThingML [9] and HEADS
[11] were the basis of ML-Quadrat [14], and the present work
builds on top of ML-Quadrat [14]. It is clear from the table that
none of the prior work has addressed the TinyML platforms
in its target IoT platforms for code generation.

IV. PROPOSED APPROACH

We propose a novel approach to software and Al engi-
neering for smart IoT services that enable their data analytics
and ML parts to run in part or completely on the IoT edge
devices that might be highly constrained in terms of their
power and computational resources. The proposed approach is
based on the DSM methodology [1] of the MDSE paradigm for
software development. In particular, it builds on the prior work
ML-Quadrat [13], [14], thus integrates model-driven software
and Al (specifically ML) engineering. As shown in Figure
1, we generate code for heterogeneous IoT platforms out of
the Platform-Specific Models (PSMs). However, we also offer
generic models that are similar to the PIM viewpoint models in
MDA [18], [19]. A PIM here can be considered as the common
denominator of the PSMs for a particular IoT service that must
run on several heterogeneous IoT platforms. PIMs are at a
higher level of abstraction than PSMs and specify the business
logic of the IoT services regardless of the platform-specific
details. Hence, the practitioner may concentrate on the overall,
platform-independent structural and behavioral design of the
software system architecture without any concerns about the
possible lack of knowledge and skills in the diverse hardware,
software, network and Al technologies that are used in the
heterogeneous IoT edge devices and in the cloud.

Formally, we define a platform-independent software model
for a smart IoT service as follows (see Equation 1):

PIM = (¥, My, B) (1)

In Equation 1, ¥ represents the structural elements of the
software architecture model. Thus, it can be denoted, for
example, by a component diagram. Figure 2 illustrates a
sample UML component diagram for a predictive maintenance
service. In addition, M1, is the ML model that brings Al to
the IoT service. For instance, it can be an Artificial Neural
Network (ANN), a Support Vector Machine (SVM) or a
random forest ML model. Also, B represents the behavioral
elements of the software model'. Hence, it can be denoted, for
example, by a state machine diagram. Figure 3 demonstrates a

INote that My, might affect B.

PSM for
Java &
Python on a
Raspberry

PSM for C on
an Arduino
Nano 33 BLE
Sense

Java &
Python on
an Intel
PC/Laptop
with Linux

Fig. 1. From PIM to PSMs and full code generation. The images of Arduino
and Raspberry Pi are from [20] and [21], respectively.

sample state machine or statechart for the behavioral model of
an [oT sensor that can also conduct anomaly detection via ML
as its TinyML service, in addition to its measurement service.

Furthermore, we define a platform-specific software model
for a smart IoT service as in Equation 2 below:

PSM = (PIM, 4, C) 2)

Here, A and C stand for the platform-specific annotations
and configurations, respectively. Annotations can be attached
to various elements of model instances to add platform-
specific details. For instance, they may help model-to-code
transformations (code generators) in mapping the data types to
the right ones in the target platforms. This means, they can, for
example, specify whether an Integer data type in the software
model instance must be mapped to the int, short or long type
in the generated Java code. Furthermore, configurations are
required in order to make model instances ready for code
generation out of them. Configurations must include object
instances of the thing classes and specify their interconnections
for message-passing. In addition, they may include annotations
that specify the target platform for code generation. In order
to create a PSM out of a PIM, one must insert annotations
and append configurations to the PIM for the respective target
platform for code generation. We show this in Section V. Note
that currently both PIM and PSM instances conform to the
same meta-model that is adopted from ML-Quadrat [13], [14].
Figure 4 illustrates part of this meta-model.

Moreover, we provide model-to-code transformations (i.e.,
code generators) that can produce the entire software solution
for the desired smart IoT services (see the orange, purple
and green arrows in Figure 1). In the present work, we



implement the code generator for the TinyML part that can
generate the APIs of TensorFlow Lite [32] and TensorFlow
Lite for Microcontrollers [33]. For the validation case study
in Section V, we deploy the former on a Raspberry Pi 3
B+ [21] and the latter on an Arduino Nano 33 BLE Sense
microcontroller [20]. In addition, other code generators from
prior work, e.g., ML-Quadrat [13], [14] can be used to generate
code for a Linux PC/laptop with an Intel x86 CPU. In this case,
the Keras [34] API for TensorFlow [35] will be generated and
used for the ML part.

[

IPressureSensorService

ITemperatureSensorService

IDatabaseAccess @
Temperature
Pressure Sensor
Sensor ]

ITinyML

Service \CO

Predictive N @ End-User Mobile
Maintenance Server Vibration Device
Sensor

IVibrationSensorService

IPredictive-
Maintenance f
Service

ITinyMLService

J

Fig. 2. The UML component diagram illustrating the structural architecture
model of a sample IoT service for predictive maintenance.

timer_timeout

Fig. 3. The state machine diagram illustrating the behavioral architecture
model of the sensors in the sample IoT service of Figure 2.

The proposed approach enables deploying pre-trained ML
models on various distributed edge devices without sharing

E Type
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Fig. 4. Part of the meta-model that is adopted from ML-Quadrat [13].

data. This means, ML models, such as ANNs can be created
and trained with existing data on a server, e.g., on-premises
or in the cloud. Then, depending on the size of the trained
ML models, the requirements and the capabilities of the IoT
devices, some of the ML models may be deployed on TinyML
platforms, and some other ML models may be deployed
on other edge devices, such as smartphones, smart home
appliances and gateways, or in the cloud. One key benefit
of bringing the data analytics and ML models to the edge of
the network is the ability to respect the possible privacy and
security concerns or regulations. Instead of asking the users
to upload their new data to the cloud and making predictions
there, we let the users keep their new data on their side and
enable predictions there.

In the context of the predictive maintenance use case that
is illustrated in Figure 2 and Figure 3, one might think of
m + 1 ML models to be deployed on m sensors and on one
server or controller. The latter will be more capable in terms
of the computational power, thus can run a more advanced ML
model and take more data into account, whereas the former
will be restricted ML models for carrying out simpler tasks on
a local level. In other words, each sensor might, for example,
process the data that come from its own measurements and
possibly its neighbors in the sensor network, whereas the
server or controller node that must be more capable conducts
a more extensive condition-based monitoring of the entire
system. This means, the predictive maintenance operations
can be executed on the local, i.e., sensor and global levels.
These are shown via the green and the red lines in Figure 2,




respectively. This federated design? is expected to increase the
availability of the services, e.g., condition-based monitoring,
and contribute to the fault tolerance and the overall resilience
of the system since multiple nodes will perform the ML task
independently and with different qualities according to their
resources. If a network or power outage occurs in one part of
the system, other nodes can still deliver some level of service.

In addition, the network throughput might be reduced
by letting individual sensors perform some basic analytics
tasks locally, thus reducing the frequency and the amount
of the data that needs to be sent to the database and/or the
server/controller. Further, in certain applications, the TinyML
operations on the resource-constrained nodes might suffice,
thus resulting in a much lower level of energy consumption
for the data analytics and ML tasks. This should lead to
environmental care and sustainability in the long term. Finally,
by deploying ML models on the TinyML devices with ultra-
low power consumption, AI/ML can become more affordable,
and can also be brought to the situations where Internet
connectivity is not possible and/or to the extreme conditions
where sensors that will be mounted somewhere, e.g., under
the ground, in the oceans or on very large structures must run
on their limited battery powers for a relatively long time and
are not physically accessible in a cost-effective manner after
their initial installation.

V. IMPLEMENTATION & VALIDATION

We implement the proposed approach by extending the ML-
Quadrat [14] project. First, we adopt the Xtext-based meta-
model (grammar) of ML-Quadrat [14]. Second, to support
the new target platforms, namely Raspberry Pi 3 B+ [21]
and Arduino Nano 33 BLE Sense [20], we introduce new
annotation types for configurations that enable practitioners
to choose the said platforms as target platforms for code
generation. We extend the model-to-code transformations, i.e.,
the code generators of ML-Quadrat [14] to support full code
generation for the said platforms. To this aim, we deploy
the APIs of the TensorFlow Lite [32] and TensorFlow Lite
for microcontrollers [33] libraries. In the former case, the
generated code is in Python, whereas in the latter case it
is C code for Arduino. The code generation process also
includes the conversion of ML models to the proper formats
that are acceptable by the mentioned libraries. In the latter
case, namely the microcontroller, this format is a hexadecimal
dump of a C array that is stored in a C source file. Further,
the code generators themselves are implemented in Java.

In the following, we validate the proposed approach through
a case study. There exists a hydraulic test rig that is deployed
in Saarbriicken, Germany [36]. A test rig or test station is
used to test and assess the capability and performance of
components for industrial use [37]. The hydraulic test rig is
equipped with multiple sensors and the sensor data, as well
as the data about the working conditions and status of the

2Here, federated should not be confused with the notion of federated
learning [17] in which an ML model is built collaboratively in a distributed
system without sharing data among the participants.

system is provided by the ZeMA gGmbH research center for
Mechatronics and automation technologies as open data [38].
We use the data from the following 3 sensors in order to
predict any possible internal leakage of the main pump: (i)
The vibration sensor (VS1) of the main pump. Its readings
are recorded in the mm/s unit and at the frequency of 1
Hz (i.e., once a second). (ii) The Electrical Power Sensor
(EPS1) of the main pump. Its readings are recorded in Watts
and at the frequency of 100 Hz. (iii) The System Efficiency
(SE) factor that is not a real (i.e., physical) sensor, but a
virtual sensor. Its values are determined by combining different
directly measured values [36]. Moreover, it is a percentage and
has the frequency or sampling rate of 1 Hz. Since the hydraulic
test rig repeats periodic constant load cycles of 60 seconds,
we require the sensor data for one cycle in order to predict
whether the main pump is prone to any internal leakage or not.
We let an Artificial Neural Network (ANN) model perform
this prediction. The ML features that are used to train this
model are the above-mentioned sensor values, namely VSI,
EPS1 and SE. As the sampling rates or frequencies are not
identical, one could, for example, down-sample EPS1 that has
a frequency of 100 Hz to 1 Hz. However, for the current use
case, we keep it as it is. Therefore, there exist 60 features
for VS1, 6,000 features for EPS1 and another 60 features
for SE per system cycle. We assign one Boolean/Binary class
label to each cycle that is either True (i.e., leakage positive) or
False (i.e., leakage negative). The dataset contains 2,205 data
instances, i.e., system cycles. Out of these 2,205 instances,
1,221 instances/cycles (55%) correspond to no leakage and
the rest corresponds to leakage.

Since we are dealing with time series data in which the
order of the data instances matters, we avoid shuffling the
data samples/instances. We separate the dataset into two parts.
We dedicate 80% of the available data to the training and
validation dataset and the rest to the test dataset for the
evaluation. The latter must remain unseen by the ML model to
make a fair evaluation possible. The choice of 80% vs. 20%
is a common practice in ML and also aligns with the Pareto
principle that is widely used in science and engineering.

We standardize the numeric training data using Z-Scores
and train an Artificial Neural Network (ANN) model using
the data. It transpires that a Multi-Layer Perceptron (MLP)
with three layers (input, hidden and output) accomplishes
the prediction task with high accuracy, precision and recall.
The hidden layer is a Dense layer with 32 units in the first
experiment and 8 units in the second experiment below, as well
as the Relu activation function. Further, the output layer has 2
units and the Sigmoid activation function. Moreover, we use
the Adam optimizer, the Binary Crossentropy loss function, a
learning-rate of /e-5, a batch size of 100, 200 training epochs,
as well as early-stopping with a patience level of 3. Figure
5 depicts the changes of the loss function and the binary
accuracy during the training of the ML model.

We could deploy more complex and advanced ANN ar-
chitectures, e.g., Recurrent Neural Networks (RNN), such as
Long-Short Term Memory (LSTM) layers. However, since the
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Fig. 5. The values of the loss function and the binary accuracy during the
training of the ML model.

mentioned architecture already performs well and we prefer a
more compact ML model, we leave it like this. According to
the experimental results on the test dataset that are illustrated
in Table II, the accuracy, precision and recall were 97%,
97% and 97%, respectively, for the first experiment (i.e.,
with 32 units in the hidden layer of the above-mentioned
ML model), and 80%, 86% and 80%, respectively, for the
second experiment (i.e., with 8 units in the hidden layer of the
above-mentioned ML model) on an Intel x86 platform with the
Linux Operating System (OS) and Python code that deploys
the TensorFlow [35] library. This Linux server has 45GB of
main memory (RAM) and 10 Intel Xeon 2.3 GHz Processors.
The respective rows in Table II are colored in gray. As shown,
the more compact ML model (namely the latter experiment)
performs faster. Thus, it requires only 86 milliseconds for
the entire test dataset instead of 119 milliseconds in the first
experiment (i.e., 38% time reduction). However, the accuracy
and recall have been reduced by 17.5% each, and the precision
has fallen by 11.3% in the second experiment with the more
compact ML model that is 74.5% smaller in size.

Further, the second and the sixth rows in Table II demon-
strate the experimental results for the first and the second
experiment on a Raspberry Pi (RPI) platform, respectively. As
mentioned, this is a Raspberry Pi 3 B+ [21] board with the
Raspberry Pi OS (formerly known as Raspbian) and Python
code that deploys the TensorFlow Lite [32] library. This library
provides an API for an ML model converter that enables
generating an optimized ML model in the FlatBuffers [39]
serialization format and the .tflite file extension [32]. As we
can see in the table, this conversion results in 67% and 68%
ML model size reduction in the first and the second exper-
iments, respectively, without compromising the ML model
performance in terms of its accuracy, precision and recall.
Nevertheless, it is clear that predictions on the RPI platform
need more time, due to the limitations of the computational
resources, compared to the said Linux server. The increases in
the prediction time for the entire test dataset are 1,100% and

694% for the first and the second experiments, respectively.

In addition, we apply a technique, called post-training
quantization [32] in both experiments and illustrate the results
in the third and the seventh rows in Table II. Hence, with a
negligible compromise in the ML model performance in terms
of accuracy, precision and recall, we reduce the ML model size
considerably and speed up its predictions too. For instance,
in the case of our first experiment on the RPI platform,
we do not face any reduction in the accuracy, precision or
recall. Also, in the second experiment, the accuracy and recall
remain the same, while the precision is reduced by only 1%.
However, the quantization technique results in an ML model
size reduction of 75% and 74% in the first and the second
experiments, respectively. Note that this quantized ML model
makes predictions 60% and 29% faster in the first and the
second experiments, respectively. In this case, quantization
leads to converting all of the float32 weights of the ML model
to int8 values.

While both the non-quantized and the quantized variants of
the above-mentioned ML model fit into the main memory of
the RPI board, for the TinyML platform, namely the Arduino
Nano 33 BLE Sense microcontroller [20], the situation is
different. To deploy the ML model on this platform, we use
the xxd Unix/Linux command to generate a hexadecimal dump
of the mentioned FlatBuffers model as a C Byte Array. We
store the resulting ML model in a C++ source file with the
.cc extension. This can be used via the TensorFlow Lite for
microcontrollers [33] library on the Arduino microcontroller.
However, the main issue is that the hexadecimal dump re-
quires more space on the disk than the efficient FlatBuffers
serialization. Note that in the case of the first experiment, the
C Byte Array has a size of 198 KB (i.e., with 198 thousands
elements). However, its hexadecimal dump requires 1.2 MB
disk space. This is 506% larger. Since the main memory
of the microcontroller has only 1 MB, which is even large
compared to many TinyML platforms, we cannot deploy this
ML model on the Arduino platform. In fact, this is the reason
that we conduct the second experiment with a more compact
ML model. Here, we have a C Byte Array of 51 KB (.e.,
with 51 thousands elements). Again, the hexadecimal dump
requires more space. In this case, it takes 316 KB on the disk.
Therefore, it can fit into the main memory of the TinyML
platform. The results of both experiments on Arduino are
shown on the fourth and the eights rows of Table II.

Recall from Section I that we have 2 Research Questions
(RQ): RQ1. Can we enable automated full code generation
out of the software models of smart IoT services that will
deploy trained ML models on highly resource-constrained IoT
edge platforms (i.e., realizing TinyML)? RQ2. Can we have a
higher level of abstraction for the Platform-Independent Mod-
els (PIM) that will abstract from the details and constraints
of the underlying IoT platforms, and simultaneously a lower
level of abstraction for the Platform-Specific Models (PSM)
out of which the full implementation must be generated?

To assess and validate the research questions, we realize the
above-mentioned use case with our textual Domain-Specific



Modeling Language (DSML) that is based on ML-Quadrat
[14] and let the full source code become generated automat-
ically out of the software model instances. The generated
code can create, train and deploy the said ML models. To
this aim, we implement both PIMs and PSMs. In fact, we
need two PIMs and two PSMs for training the ML model on
the x86 Linux machine. The two PIMs are responsible for
creating and training the ML models of the two experiments,
respectively (namely, rows 1-4 and rows 5-8 in Table II).
Here, we illustrate the PIM for the first experiment. Figure
6 and Figure 8 show part of the platform-independent and
platform-specific software model instances for the training
on the x86 Linux server. If we wanted to train the ML
model on another platform, such as a Raspberry Pi, we
would take the same PIM and import it in another PSM that
would have been specific to that platform. The choice of the
target platform for code generation is specified through the
@compiler annotation of the configurations (see Figure 8).
For instance, @compiler python_java generates Python and
Java code for the default platform, namely an X86 Linux
machine. The other PIM is also similar. However, the value
of the parameter hidden_layer_sizes is 8 rather than 32.

In addition, we require two PIMs for making predictions
using the ML models. Again, the two PIMs correspond to
the two experiments (namely, rows 1-4 and rows 5-8 in
Table II). These two PIMs for prediction are imported in
the PSMs for prediction. In principle, we need one PSM
for each of the target platforms. Since we have three target
platforms (x86, RPI and Arduino) and two experiments, we
have in total 6 PSMs for prediction. We depict part of one
of the PSMs for prediction on the x86 platform in Figure
11. The other ones are also similar to this one. However,
their @compiler annotations in their configurations have
the values rpi_3b+_python, rpi_3b+_python_quantized and
arduino_nano_33_ble_sense_cpp for each of the respective
target platforms. The code generators not only produce the
source code that has the APIs of these platforms, but also
automatically converts the ML model to the right format for
each of the specific platforms.

To make it more comprehensible, we show the behavioral
part of the model instances of Figure 6 and Figure 9 in
the graphical form in Figure 7 and 10, respectively. The
implementation of the state machines is carried out through
the statechart section of the textual model instances (see the
last lines in Figure 6 and Figure 9).

For more information about the syntax of ML-Quadrat,
please refer to its documentation [14] and prior work [13].

VI. CONCLUSION & FUTURE WORK

In this paper, we proposed a novel approach to model-driven
development of smart IoT services that can be deployed on
a wide variety of distributed platforms, including the highly
resource-constrained, ultra low-power microcontrollers. We
enabled TinyML, thus supported the deployment of compact
ML models on the said microcontrollers. To this aim, we used

thing Predictive Maintenance Training Server includes Hydraulic_Rig Msgs {
provided port training_service {
s training_done
ceives training_request
}
property vsl value: Double
y epsl value: Double
property se_value: Double
property leakage: Boolean
data_analytics predictive maintenance {
labels ON
features vsl value, epsl value, se value, leakage
prediction_results leakage
dataset “data/hydraulic rig.csv
sequential TRUE
timestamps ON
model_algorithm nn_multilayer_perceptron my nn_mlp
(hidden_layer_sizes (32), activation relu, batch_size 100,
[Learning_rate_init “le-5", epochs 200

proper

training_results "data/training predictive maintenance.txt

}
statechart Predictive Maintenance Training Server Behavior init Preprocess {

Fig. 6. Part of the PIM for training the ML model.
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Fig. 7. The behavioral model of the PIM for training the ML model.

import "Hydraulic Rig Training PIM.thingml"

configuration Hydraulic Rig Training Cfg @compiler “python java" {
instance dB_Server : DB Server
instance vS1 : VS1
instance ePS1 : EPS1
instance st : SE
instance predictive Maintenance Training Server :
Predictive Maintenance Training Server

connector dB Server.sensor service => vSl.sensor_service
connector dB Server.sensor_service => ePSl.sensor_service
connector dB_Server.sensor_service => sE.sensor_service
connector dB_Server.predictive maintenance service =>
predictive Maintenance Training Server.training service

Fig. 8. Part of the PSM for training the ML model on an x86 Linux platform.
The PIM of Figure 6 is imported here.

TABLE 11
EXPERIMENTAL RESULTS

Experi- Predic-| Accu- | Prec- Rec- ML

ment & | tion racy ision all Model

Platform time size

(s)

1| 1, x86 Linux | 0.119 | 97% 97% 97% 2.4 MB
2 | 1,RPI 1.43 97% 97% 97% 785 KB
31 1, RPL Q. 0.572 | 97% 97% 97% 198 KB
4 1 1, Ard., Q. n/a n/a n/a n/a
5| 2, x86 Linux | 0.086 | 80% 86% 80% 613 KB
6 | 2, RPI 0.683 | 80% 86% 80% 197 KB
7 1 2,RPL Q. 0.482 | 80% 85% 830% 51 KB
8 | 2, Ard, Q. 218 80% 85% 80% 316 KB




Predictive Maintenance Prediction Server Lu
" ( rt prediction service {
s prediction_done
prediction_request

Hydraulic Rig Msgs {

}
o rty vsl value: Double
o epsl value: Double
o rty se value: Double
T rty leakage: Boolean
data_analytics predictive maintenance {
labels ON
features vsl value, epsl value, se value, leakage
prediction_results leakage
dataset “data/hydraulic rig.csv
sequential TRUE
timestamps ON
model_algorithm nn_multilayer_perceptron my nn mlp
(hidden_layer_sizes (32), activation relu, batch_size 100,
learning_rate_init "le-5", epochs 200
)
training_results “data/training predictive maintenance.txt

statechart Predictive Maintenance Prediction Server Behavior init Ready {

Fig. 9. Part of the PIM for predictions using the ML model.

request

Ready

Prediction

“-‘--ffiii_-—““'

Fig. 10. The behavioral model of the PIM for predictions using the ML
model.

import "Hydraulic Rig Prediction_ PIM.thingml

configuration Hydraulic_Rig Prediction Cfg @compiler “python java" {
instance dB Server : DB Server
instance vS1 : VS1
instance ePS1 : EPS1
instance s : SE
instance predictive Maintenance Prediction_Server :
Predictive Maintenance_Prediction_Server

connector dB Server.sensor service => vSl.sensor service
connector dB_Server.sensor_service => ePSl.sensor_service
connector dB_Server.sensor_service => sE.sensor_service
connector dB Server.predictive maintenance service =>
predictive Maintenance Prediction Server.prediction| service

Fig. 11. Part of the PSM for predictions using the ML model on an x86
Linux platform. The PIM of Figure 9 is imported here.

the APIs of the TensorFlow Lite [32] and the TensorFlow Lite
for microcontrollers [33] libraries.

First, we validated RQ1 by showing the feasibility of full
source code generation in an automated manner. In addition
to generating the source code for the different target plat-
forms, we also automatically converted the ML models to
the right formats for each of them. Second, we validated
RQ2 concerning the different levels of abstraction on the
modeling layer: PIMs vs. PSMs. We support importing a PIM
that abstrcats from the underlying platform-specific details in
multiple PSMs, such that the PSMs can add the APIs of the
target platforms and enable full code generation out of them.

The validation was performed through a case study. While
this is a common empirical research method, we acknowledge

that this single case study and use case scenario might not be
representative enough for the entire IoT domain. Therefore,
future research work is required to assess and validate the
proposed approach for multiple other scenarios and cases. In
addition, we used the open data of a hydraulic test rig for
the validation. Concerning the reported evaluation results, we
must note that any dataset typically contains a certain degree
of noise and often has multiple missing values. In this work,
we did not handle any imputation of missing values since the
provided dataset did not contain any. We assume that the data
have already been cleaned before being released publicly.

Furthermore, future work can extend the proposed ap-
proach to enable federated learning by embedded platforms
and TinyML devices such that an ML model can be built
collaboratively without sharing raw data between the devices.
In contrast, in the present work, we trained the ML model on
one platform (x86 Linux) and deployed it on three different
platforms, including a TinyML platform.

APPENDIX

In the following, we briefly explain some of the keywords
of the textual concrete syntax of the DSML of ML-Quadrat
[14] that is adopted in this work:

Labels: This is a binary parameter that can have the values
ON, OFF or SEMI for supervised, unsupervised and semi-
supervised ML, respectively.

Features: This is a list of the properties (i.e., local vari-
ables) of the thing that must be considered as ML features
(attributes). The local variables might include the messages or
parameters of the messages.

Prediction_results: This parameter determines the property
of the thing in which the prediction result of the ML model
must be stored.

Sequential: A Boolean parameter that indicates whether the
input data are sequential, e.g., time series, where the order
of data instances matters. In this case, shuffling and cross-
validation should be avoided.

Timestamps: A binary parameter that states if the data
instances have timestamps.

Model_algorithm: Here, one can specify the particular ML
model architecture that must be deployed, e.g., the Multi-Layer
Perceptron (MLP) Neural Networks (NN). Additionally, the
hyperparameters, e.g., the choice of the error/loss function, the
learning/optimization algorithm, the learning rate, etc. might
be given in the parenthesis. Each family of ML models may
have a different set of possible hyperparameters.

Training_results: This is the path of the text file in which
the log of training must be stored.
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