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ABSTRACT: Decision-makers in climate risk management often face problems of how to reconcile diverse and conflict-
ing sources of information about weather and its impact on human activity, such as when they are determining a quantita-
tive threshold for when to act on satellite data. For this class of problems, it is important to quantitatively assess how
severe a year was relative to other years, accounting for both the level of uncertainty among weather indicators and those
indicators’ relationship to humanitarian consequences. We frame this assessment as the task of constructing a probability
distribution for the relative severity of each year, incorporating both observational data}such as satellite measurements}and
prior information on human impact}such as farmers’ reports}the latter of which may be incompletely measured or partially
ordered. We present a simple, extensible statistical method to fit a probability distribution of relative severity to any ordinal
data, using the principle of maximum entropy. We demonstrate the utility of the method through application to a weather index
insurance project in Malawi, in which the model allows us to quantify the likelihood that satellites would correctly identify dam-
aging drought events as reported by farmers, while accounting for uncertainty both within a set of commonly used satellite indi-
cators and between those indicators and farmers’ ranking of the worst drought years. This approach has immediate utility in the
design of weather-index insurance schemes and forecast-based action programs, such as assessing their degree of basis risk or
determining the probable needs for postseason food assistance.

SIGNIFICANCE STATEMENT: We present a novel statistical method for synthesizing many indicators of drought
into a probability distribution of how bad an agricultural season was likely to have been. This is important because cli-
mate risk analysts face problems of how to reconcile diverse and conflicting sources of information about
drought}such as determining a quantitative threshold for when to act on satellite data, having only limited, ordinal
information on past droughts to validate it. Our new method allows us to construct a probability distribution for the
relative severity of a year, incorporating both kinds of data. This allows us to quantify the likelihood that satellites
would have missed major humanitarian droughts due to, for example, mistimed observations or unobserved hetero-
geneity in impacts.

KEYWORDS: Bayesian methods; Decision support; Indigenous knowledge; Ranking methods; Risk assessment;
Societal impacts

1. Motivation and literature review

A common class of problems in climate risk management
concerns how to effectively summarize a number of imperfect
indicators of damaging weather for the purpose of making a
policy decision. For instance, in determining a quantitative
threshold to distinguish “drought” from “nondrought” years
for the purposes of farmer assistance, researchers often consider

many data sources, including both instrumental observations
of environmental conditions}such as rainfall and vegetation
indices}as well as information on droughts’ human impact,
such as nutrition indicators, yields and farmers’ own reports
(Benami et al. 2021). The latter type of information is vital
for decision-makers, as the relationship between measured
weather and its humanitarian consequences is a function of
farmers’ practices, their social vulnerability, and other factors
that are not easily measured (Enenkel et al. 2020). However,
such impact data are often measured infrequently or selec-
tively and may not be available for every year or location un-
der study. Thus, in determining a decision rule for taking
action against drought, policy makers face both uncertainty
within many possible instrumental measurements of weather
and uncertainty between those measurements and the human
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impacts of concern}the latter of which may only be partially
known.

Examples of policies that face this type of problem include
parametric weather insurance (Hochrainer et al. 2009; Maganga
et al. 2021) and forecast-based early action protocols (Coughlan
de Perez et al. 2015). Both types of program tend to rely on ret-
rospective evaluation to assess their efficacy, as damaging
weather events are infrequent and counterfactual data is by na-
ture limited (Bucheli et al. 2021; Lobell et al. 2020; Osgood and
Shirley 2012). Commonly, such evaluations compare the esti-
mated historical payouts of the program under study with the
economic value of participants’ losses from adverse weather,
as captured by loss of agricultural yields, damage to property,
and so on (Meuwissen et al. 2019; Ortiz-Bobea et al. 2018;
Schlenker and Roberts 2009). From such data, standard eco-
nomic estimates of program value such as expected utility can
be constructed (Benami et al. 2021).

However, in many of the countries where parametric insur-
ance and forecast-based action are being practiced, impact
data such as local historical yields are frequently incomplete,
unreliable, or unavailable, for the very reasons that motivate
parametric insurance}the prohibitive cost of and lack of in-
frastructure for routine individual assessments of loss (Enenkel
et al. 2020). Consequently, there has been much work in the
field on how to conduct constructive evaluations of such pro-
grams under conditions of limited information (Brahm et al.
2019; Osgood et al. 2018; Osgood and Shirley 2012). One way
forward is to focus on the ordinal comparison of years}since
financial constraints naturally put a limit on the number of
years in which a program can pay out, the problem can be
posed as one of assessing the similarity between the worst years
in the observational data and the worst years in terms of farmer
impact. This offers a way to assess program reliability even
where “benchmark” data are limited (Enenkel et al. 2019).

The challenge, then, is to conduct such ordinal comparison
in a rigorous way, accounting for a variety of potential
weather measurements as well as their relationship to farmer
impact, which may only be partially known. We frame this
problem as one of constructing a probability distribution for
the relative severity of each year in the record. This probabil-
ity distribution should give decision-makers a concise histori-
cal summary of where there is a convergence of evidence for
or against a given catastrophic event (such as drought), as
well as where the record is conflicted, which may indicate a
probable basis risk event. Such a probability distribution should
satisfy the following practical and theoretical considerations:

• First, it ought to have a minimal number of distributional
assumptions}that is, it should not be constrained to fit a
certain parametric family such as a Gaussian distribution,
as the distribution of risk exposure data is often irregular,
multimodal, and nonnormal (Svensson et al. 2017).

• Second, it ought to allow the user to incorporate a semistruc-
tured source of prior information on human impact}for
instance, farmers’ reported bad harvest years, experts’
knowledge, or food security measurements}all of which
could act as a check on the range of plausible distribu-
tional outcomes [see also Camenisch et al. (2022) and

Nicholson (2001) for similarly motivated approaches to
estimating historical climate impact].

• Third, it ought to be robust to small N and partially missing
data}this is a common occurrence for climate and social
data in developing countries, and many expectation maxi-
mization (EM)-based methods, such as mixture models,
struggle to fit such data (Golan 2017).

In this paper, we present a computationally simple, extensi-
ble statistical method for estimating the probability distribu-
tion of relative weather severity that satisfies all three of these
requirements and can be applied to a wide class of important
problems in climate risk analysis. We refer to this method,
which is based on the principle of maximum entropy (Golan
2017), as the “MaxEnt” probability model.

We can think of the MaxEnt method as modeling the most
parsimonious data-generating process that is consistent with
users’ prior information on which historical events were
impactful. Such a model blurs the distinction between
“exploratory” and “confirmatory” data analysis; as Hullman
and Gelman (2021) observe, much exploratory analysis is in
fact a process of reconciling discrepancies between observa-
tions and the user’s mental model of the world}that is,
their Bayesian priors (see also Karduni et al. 2021; Kim
et al. 2019; Wickham et al. 2010).

We begin with the basic framework of the MaxEnt model
(following Faynzilberg 1996b,a), gradually introduce refine-
ments, then present a case study of the model’s application. In
the case study, we use actual satellite and farmer survey data
from an index insurance project in Malawi to accomplish two
tasks: Summarizing the historical record of drought indicators
and identifying potential “basis risk” years in which an indica-
tor failed to capture a probable drought event. This case study
builds on several of the authors’ prior involvement in evaluat-
ing the Africa Risk Capacity (ARC) sovereign insurance facil-
ity in Malawi. In the conclusions section, we discuss future
extensions to the MaxEnt model and possible policy applica-
tions beyond drought insurance.

2. Methodology

a. Problem statement

We have an n 3 k matrix X that consists of k different
observational series of weather indicators measured over n
years, all of which measure a particular hazard, such as
drought. (Note that we will use years as the unit of aggrega-
tion in this example, but this method could be applied to other
temporal or spatial units.) Each observation is expressed
in terms of its position in the historical ranking for that indica-
tor, ranging from 1 (the worst year on record) to 0 (the least
bad). We can also think of this value as the reciprocal of
the return period. For instance, in a dataset of 20 years of
drought measurements, a value of 0.2 would correspond to
the 16th driest year on record, that is, a return period of 1/5.
(Continuous data must first be normalized, i.e., expressed in
ordinal terms, in order to fit this format.)

We also have an n 3 1 matrix Y, which represents the
aggregate outcome for each year. In its simplest form, Y is
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calculated as E[X(n),]}that is, the mean for that year as cal-
culated over every observational indicator}but it could also
incorporate higher-order moments, like the standard devia-
tion (Golan 2017; Harte 2011).

We aim to construct a generative probability model (Läderach
et al. 2017)}for each year, given some observed hazard indica-
tors X and some aggregate constraints y, we wish to estimate the
probability distribution for its likeliest position in the historical
ranking (aka its return period)}that is, P(X|Y5 y). This is in
contrast to discriminative methods like logistic regression, which
estimate P(Y|X5 x). The goal of our model is not to classify
observations according to their severity, as in a discriminative
model, but to reconstruct the most plausible probability distribu-
tion that could have generated our observations, subject to some
constraints.

Our goal, then, is to find the most plausible probability dis-
tribution for the relative severity of each year that could have
generated the observed average outcome y, given the data x.
To find this, we need to fix two more concepts: The outcome
space of the model, and the objective function for determin-
ing which distribution is the most “plausible.”

The distribution-generating model S(l) is very simple: it
breaks the outcome space (0, l) into l discrete chunks. For in-
stance, S(5) can take on the values (0, 0.25, 0.5, 0.75, 1). Each
state in S is assigned a probability p. To be consistent with the
aggregate outcomes, our model must satisfy the constraint

Sp 5 E(x) 5 y: (1)

There are many distributions P over S(l) that could generate
a given y, so we must establish an objective function for select-
ing the most plausible one. A natural choice is the Shannon en-
tropy, a metric that summarizes the amount of information
present in a probability distribution (Shannon 1948). Shannon
entropy defines information as “distinctiveness” or “surprise”}
observing a likely event carries little information about the shape
of a distribution but observing an unlikely event does. Over the
discrete probability space S(l), entropy is calculated as

2 +
p2S(l)

p log( p): (2)

Absent any constraints, entropy is maximized over a space by
the uniform distribution, in which no realized state provides
any information about the probability of other states in the
space. The principle of maximum entropy for model selection
states that given some constraints, the most plausible (in the
sense of being the most epistemically conservative) probabil-
ity distribution is the one that maximizes entropy. Here, we

apply the principle of maximum entropy to a generative prob-
lem, following other applications in climate and social scien-
ces such as Harte (2011) and Läderach et al. (2017).

The fundamental form of our model is therefore

max 2 +
p2S(l)

p log( p) s:t: +
p2S(l)

p 5 1 and S(l)P 5 y: (3)

To illustrate the output of this model, we show its results
when applied to some simulated example data (Table 1). In
these data, a larger number means a drier year according to
that source (units here are arbitrary). Table 2 shows what the
data look like after being normalized, that is, expressed in or-
dinal terms, as well as the average outcome for each year.
Figure 1 shows the resulting MaxEnt probability distribution
for each year.

Using the year 2004 as an example, our model takes as in-
put the average severity from our three data sources (0.86,
shown as the green tick in the margins) and calculates that
there is a 55% percent chance that 2004 was the driest year on
record (the rightmost red bar), a 25% chance it was the sec-
ond driest year on record (the second to rightmost red bar),
and so on.

For reference, the graph shows the uniform distribution in
gray. This represents what the principle of maximum entropy
would yield if there were no observational data}that is, a be-
lief that all outcomes for a given year would be equally likely.
The difference between the estimated and the uniform distri-
bution tells us how much information we have about the
probable outcome in that year, relative to a state of total
uncertainty.

Next, we show how this basic model can be extended to ad-
dress the practical decision-making needs discussed in the
introduction.

b. Extensions to model

1) MAXIMUM LIKELIHOOD CONSTRAINT

The basic model presented above yields estimated distribu-
tions that are consistent with the mean outcome for each
year. However, we also want to represent heterogeneity be-
tween the individual predictors, especially if the distribution
of predictors is multimodal. To capture this, we can introduce
an additional constraint to Eq. (1):

+
q2S(l)

(Nq/N) log[(Nq/N)/p] , (1/N) log(1/a), (4)

where Nq/N is the number of predictors in state q divided by
the total number of predictors and a (or alpha) is some

TABLE 1. Simulated example data, raw.

Year Source 1 Source 2 Source 3 Prior

2000 1 1 1 1
2001 2 2 2 Missing
2002 0 0 1 5
2003 5 5 0 2
2004 4 3 4 4

TABLE 2. Simulated example data, ranked and averaged.

Year Source 1 Source 2 Source 3 E(X) Prior

2000 0.4 0.4 0.6 0.47 0.4
2001 0.6 0.6 0.8 0.67 Missing
2002 0.2 0.2 0.6 0.33 1
2003 1 1 0.2 0.73 0.6
2004 0.8 0.8 1 0.87 0.8
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arbitrary constant. This constraint states that the Kulback–
Leibler divergence (i.e., the differential entropy) between the
empirical frequency of each state and its estimated probability
cannot be larger than some constant. As a or N " infinity the
estimated distribution essentially becomes a histogram.

2) PRIOR

An additional refinement to the basic model is to add a
source of prior knowledge that acts as a check on the range of
possible distributions. Specifically, suppose we have a prior
distribution Q of the same dimension as P. We do not want
our estimated distribution to be “too different” than the prior.
We can operationalize this through the inclusion of a cross-
entropy term in the objective function:

max 2 +
p2S(l)

p log( p) 1 +
q, p2S(l)

p log(q): (5)

A uniformly distributedQ is equivalent to having no prior at all.
We can extend this farther by putting a user-defined scalar,

beta, on the cross-entropy term. Beta . 1 means a greater
weight on the prior than the default. Beta , 1 means a lower
weight. This parameter can be adjusted as the use case
demands.

The prior represents our information on the actual
humanitarian impact in our sector of concern. In a drought
estimation problem, it might come from survey data on
farmers’ reported worst harvest years, or yield data. The
prior can be considered to be a “benchmark”}it repre-
sents our best ex ante knowledge about the possible states
of the world. If we do not observe the humanitarian impact
in a given year, we can treat the prior as uniform, that is,
providing no additional information about the probable
outcome in that year. Note that if the prior data source
takes the form of a single point per year, it may be desir-
able to first transform it into a probability distribution via
the iterative application of the maximum entropy method,
as described above.

To illustrate the effect of a prior, consider what happens if
we introduce a prior in our previous example, Fig. 1. The dis-
tribution with prior is shown in Fig. 2. In 2000, 2004, and 2003,
the prior data do not differ significantly from the observa-
tional data, so the shape of the estimated distribution does
not change. Likewise, in 2001, there is no prior, so the distri-
bution is not affected. However, in 2002, there is a strong
prior (at a severity of 1), diverging from the observational
data, that pulls the distribution away from a right-tailed shape
and closer to a uniform distribution.

FIG. 1. Basic model results with example data. The x axis depicts the return period or relative severity, where 0 is the best/wettest year on
record and 1 is the worst/driest year on record. The y axis depicts the likelihood of each return period/severity state.
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3) ERROR TERM

Last, we may want to introduce an error term into our
model. There are two reasons that this might be useful. First,
in a complex model with all the extensions described above,
some problems may not always be tractable. Second, even if
we know a feasible solution to the problem exists, we may
have conceptual reasons for allowing for imperfect measure-
ment of the aggregate outcome Y. In both cases, an error
term is useful, and the maximum entropy framework gives us
an easy way to integrate one.

We define the error term analogously to the main out-
come model: it can take one of f discrete states in the inter-
val (21, 1). Each of those states has a probability e and an
optional prior of its own, y. Then, the moment-consistency
condition becomes

S(l)P 1 error( f )e 5 y, (6)

and the objective function becomes

max 2 +
p2S(l)

p log( p) 1 +
q,p2S(l)

p log(q) 1 +
e2S( f )

e log(e)

1 +
e, y2S( f )

e log(y ): (7)

Under this new model, if the solver struggles to fit the moment-
consistency constraint, it can place some uncertainty into the
error term. We can refine this by putting a scalar weight gamma
on the error component of the objective function, analogous to
the beta weight on the prior}as gamma increases, the solver
“cost” of putting uncertainty into the error term increases. We

can use this parameter to adjust the model’s accuracy versus
precision trade-off.

We might also want to include a prior on the error term, be-
cause it is reasonable to assume that not all error sizes are
equally likely ex ante}we expect larger error values to be less
likely than small values. A reasonable choice of the prior is the
(discrete approximation of) the normal distribution ;N(0, 1).
We can obtain this for a given error space by maximizing its en-
tropy subject to the constraints E(y)5 0 and E(y)2 5 1.

We can also visualize the distribution of the error term it-
self for each year (Fig. 3) to see where the model struggled
most to fit the data. In this case, 2002 has the sharpest dis-
agreement between the various components of the objective
function and thus the largest error term.

c. Diagnostic metrics

One advantage of the maximum entropy framework is that
it lends itself naturally to useful model diagnostics. The first is
relative entropy, also known as efficiency, which tells us how
much overall information content our recovered distribution
has, relative to a reference distribution over the same space:

efficiency 5 1 2 entr( p)/entr(uniform), (8)

where “entr” is the entropy function as defined in Eq. (2).
The most natural choice for the reference distribution is the
uniform distribution, which has the highest possible entropy
over a given space. It is equivalent to saying all outcomes are
equally likely. No matter the choice of reference, efficiency
tells us about the relative information content in our esti-
mated distribution.

FIG. 2. Example results with prior added.
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The second useful diagnostic is cross entropy (CE) between the
estimated distribution and the prior. For ease of interpretation,
we can normalize cross entropy, in a way comparable to
efficiency:

NCE 5 CE( p,q)/entr(q): (9)

If normalized cross entropy (NCE) is equal to or close to 1, it
means the prior is uninformative about the state of the world.
If NCE is , 1, it means that the prior and posterior distribu-
tions are in agreement (lower 5 more agreement). Conversely,
if NCE is .1, it means the prior and posterior distributions are
in conflict (higher 5 less agreement). We can use NCE to as-
sess the convergence of evidence.

3. Case study

a. Overview

We present a case study of how this method can be applied
in a humanitarian setting to facilitate practical decision-
making. This case comes from the Satellites for Weather
Index Insurance–Agricultural Early Warning System (SatWIN-
ALERT) project, which aims to characterize basis risk (where
compensation does not match farmers’ observed losses) in
index insurance, using drought insurance in Malawi as a case
study. Basis risk in satellite-based drought insurance can arise
for a variety of reasons, such as error or imprecision in satel-
lite measures of rainfall, the disjuncture between meteorolo-
gical drought (rainfall deficit) and agricultural drought (soil
moisture deficit) or crop failure, and unobserved differences
in farming practices, to name a few commonly cited reasons
(Benami et al. 2021). These issues are relevant in Malawi,
where programs like the ARC intergovernmental weather in-
surance facility have suffered from basis risk in the past (African
Risk Capacity 2016).

To unpack these differences, the SatWIN-ALERT project
examined a number of different satellite rainfall sources, along
with remote sensing-based vegetation indices and models of
soil moisture and water stress. To understand the human side
of basis risk, the project also conducted focus groups with
farmers on their worst harvest years due to drought in memory.
While farmers are useful ground information sources}they have
intimate knowledge of the local landscape/weather/agricultural
system}farmer focus groups may suffer from their own biases,
such as imperfect recall, motivated reporting, or exclusion of
marginalized groups from participation.

Thus, the SatWIN-ALERT project required a statistical
method that could summarize these various sources of histori-
cal risk information}satellites, models, farmers}holistically,
with the goal of generating a catalog of years when biophysical
measurements diverged from farmers’ perceptions (and why).
We demonstrate how the MaxEnt method can be applied to
this task to generate new insights, allowing a nontechnical user
to visualize at a glance where there is a convergence or diver-
gence of evidence between the many sources of data, and to
diagnose what may have happened during probable basis risk
events.

b. Data sources

Two types of data were combined: Biophysical indicators of
drought and farmer surveys.

The spatial unit of analysis for all types of data is the exten-
sion planning area (EPA), an administrative unit defining the
territory of agricultural extension officers in Malawi (Fig. 5).
Of the 187 EPAs, 18 were selected for this study}shown in
Fig. 4}based on the criteria of being persistently food inse-
cure and prone to drought (see appendix A for full details).

The biophysical indicators include three satellite-based rain-
fall estimation datasets: African Rainfall Climatology (ARC),
Climate Hazards Group Infrared Precipitation with Stations

FIG. 3. Error term for example results.
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(CHIRPS), and Tropical Applications of Meteorology Using
Satellite and Ground Based Observations (TAMSAT); a
satellite-derived measure of vegetation productivity: nor-
malized vegetation difference index (NDVI); and two esti-
mates of water availability: TAMSAT–Agricultural Early
Warning System (ALERT) soil moisture and water stress
requirement index (WRSI). These data sources were chosen
to be representative of the types of data that are commonly
used for drought insurance in the region. It is important to rec-
ognize that the choice of sources is subjective and will affect
the resulting distribution}for example, NDVI measures vege-
tation cover, a quantity that may be only partially related to
the other sources considered here, which are derived from
rainfall. As such, appendix D presents robustness checks that
omit NDVI from the analysis.

ARC, version 2 (ARC2), combines satellite infrared data
from the European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT) and gauge observa-
tions from the Global Telecommunication System to provide
daily rainfall accumulations over Africa at 0.18 resolution
(Novella and Thiaw 2013).

The CHIRPS dataset is a quasi-global rainfall dataset incor-
porating the CHPclim climatology, high-resolution satellite
imagery and in situ station data to create a daily 0.058 gridded
rainfall time series from 1981 to the present (Funk et al.
2015).

The TAMSAT rainfall dataset is based on high-resolution
Meteosat thermal-infrared observations for all of Africa,
available from 1983 to the present and updated in near–real
time, providing daily rainfall estimates for all of Africa at a
4-km resolution (0.03758) (Maidment et al. 2017).

Historic measures of NDVI, which measures vegetation
greenness, were obtained from the Global Inventory Monitoring
and Modeling System (GIMMS) project’s NDVI. Specifically,
we used the NDVI3g.v1 dataset, which extends from July 1981
to December 2015 and provides the bimonthly NDVI measures
at an 8-km resolution, globally (Pinzon and Tucker 2014).

With regard to soil moisture and WRSI, TAMSAT-ALERT
uses historical meteorological variables (e.g., TAMSAT rain-
fall and NCEP wind, temperature, and relative humidity) to
drive a land surface model to estimate soil moisture and
WRSI. Both of these variables are derived from an agroeco-
nomic model that relates meteorological measurements to
the growing conditions of a crop}in this case, maize. These
models may capture conditions in a way that cumulative rain-
fall alone does not, hence their inclusion. The historic dataset
spans all of Africa from 1983 to the present and provides
daily estimates at a 0.258 resolution (Asfaw et al. 2018; Boult
et al. 2020).

All biophysical indicators were spatially averaged over the
EPA and temporally summed over the tasseling period (from
December through January of the following year) to generate
one measurement per year and EPA. The tasseling period was
chosen because it is one of the times during which variation in
weather can have the greatest impact on crop performance
and is typical of the cover period for index insurance; however,
unpacking the implications of this choice on potential basis
risk is one of the goals of this analysis.

The farmer survey data come from community focus-group
discussions, one per EPA. Participants were asked to rank the
top 8 worst drought years of the last 35 years (1984–2017),
identifying whether each was an early, mid-, or late-season
drought event (not mutually exclusive). See appendix B for
full details on the focus-group methodology. This survey
methodology has been developed by authors Osgood and
Diro (among others) as a way to reliably elicit accurate recall
of historical crop failures from farmers; for more details, see
Brahm et al. (2019) and Osgood et al. (2018).

c. Model specification

To incorporate these data into the MaxEnt framework, we
first transformed each data source into an ordinal ranking
(1 being the worst, and 0 being the best). For the purposes of
this step of the calculation, years with missing data}that is,
those not mentioned by farmers in their top 8 drought
years}were treated as missing values; that is, a uniform prior
for that year and location.

The biophysical indicators were used as the observational
data for this model, and the farmer surveys were used as the
prior data. Values chosen for alpha, beta, and gamma were
10–5, 20, and 2, respectively. These values were chosen on the
basis of providing a balance between goodness of fit and
model solvability when tested on simulated data from a

FIG. 4. Map of EPAs selected for this study (red).
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known data-generating process (taken from Faynzilberg 1996b).
Appendix D presents robustness checks to other choices of these
values, as well as to omission of NDVI or WRSI from the
distribution.

The biophysical indicators exhibited relatively little spatial
variation between EPAs in comparative historical severity
(see appendix C for details), and thus were averaged over all
EPAs before calculation of the MaxEnt distribution. How-
ever, the farmer surveys had a large degree of variation be-
tween EPAs, which may be due to differences in farmers’
cropping practices, their social vulnerability, and other impor-
tant factors that may affect the relationship between biophysi-
cal conditions and the human impacts of drought. To preserve
this heterogeneity in the final results, separate prior distribu-
tions were first estimated for each EPA separately and then
averaged together.

Years that were not mentioned in the farmer focus groups
were treated as uniformly distributed for the purposes of cal-
culating the prior}in other words, the prior is completely un-
informative for those years.

The MaxEnt results shown in the following sections came
from the full specification [Eqs. (6) and (7)]}including the
ML, prior, and error term components.

d. Results

1) OVERALL DISTRIBUTION

Figure 5 shows the resulting probability distribution for the
comparative severity of selected harvest years (e.g., the
2016/17 season is shown in the graph for “2017”). A graph of
the full data from 1984 to 2017 is available in appendix D.

We can see that some years appear as significantly below av-
erage in most or all datasets, including both the biophysical
data (black ticks in the margins of the graphs) and farmer data
(blue ticks)}for instance, 2017, 2015, and 1991. Those years
have an NCE of,1, indicating a convergence of evidence.

Other years, such as 2009, are identified as moderate
droughts in the biophysical data but were not mentioned by
farmers. These years have an NCE of ;1, indicating that the
prior contributed no evidence on such cases.

A third category of years, such as 2016, 2000, and 1989, ex-
hibited a divergence between the biophysical and farmer
data, with the former identifying them as good to average
years and the latter identifying them as droughts. These years
have an NCE of .1, indicating a disagreement between the
biophysical data and the prior information on drought impact
coming from farmers.

FIG. 5. MaxEnt results for Malawi SatWIN-ALERT data, for select years. (The uniform distribution is shown in gray as reference.)
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2) CATALOG OF DIVERGENT YEARS

Drawing from the results above, we can create a catalog of
years for which farmers’ consensus pointed toward a drought
while the biophysical indicators did not. We define these so-
called divergent years as years in which the normalized cross
entropy is . 1.1 (i.e., where the biophysical observations and
the prior information from farmers actively disagree). This
cutoff is arbitrary, and we chose it simply to highlight some of
the most important years in this case study}more generally,
the MaxEnt method allows for a continuous measurement of
degree of agreement via the cross-entropy value.

In these years, we observe a bimodal distribution in the
MaxEnt results (Fig. 5), with the observations pointing in one
direction and the priors in another. These years would be
probable basis risk events in an index insurance application
based on the chosen datasets. Table 3 summarizes those find-
ings, with the divergent years highlighted in boldface type.

Note that we find the rank order of years and the identified
divergent years to be robust to different model parameter
choices as well as the omission of NDVI or WRSI}see
appendix D for full robustness checks.

There is a meaningful policy distinction between years
where satellite and farmer data strongly disagree, and years
where the information from either source is inconclusive. The
MaxEnt method allows us to distinguish between these two
types of years}divergent years and inconclusive years}in
terms of their information content, without the need to rely
on a binary threshold to define “drought.” In our MaxEnt re-
sults, the former type tend to look like bimodal distributions
with an NCE of .1, and the latter look more like uniform or
close to uniform distributions with an NCE of ;1. We only
include the former type of years in the following discussion.

In Malawi, divergent years include 1985, 1989, 1998, 2000,
2014, and 2016. For each of these years, we can draw on ex-
pert discussion, secondary data sources, and temporal break-
downs of the sensor data to assess what might have gone
wrong. Divergent years could either be basis risk events}that
is, farmers experienced losses from drought, but the biophysi-
cal indicators registered the year as good or average, perhaps
due to mistimed or inaccurate observations}or a year that
farmers mistakenly identified as drought due to errors in re-
call, such as misidentifying years in the distant past or recall-
ing losses due to events other than drought. To unpack what
happened during these years, we can draw on more detailed
data on seasonal progression, as well as news reports and local
expertise. The following are some examples:

The year of 2016 was known as a year for which some risk
models failed to capture the extent of El Niño–induced
drought in southern Malawi}particularly those that made
strong assumptions about seasonal timing, like ARC (African
Risk Capacity 2016). While the biophysical data used for this
analysis, as well as the water stress models commonly used by
humanitarian agencies in Malawi, focused on the tasseling pe-
riod (December–January), the 2016 drought did not occur un-
til February}this can be observed in below-average February
rainfall and February–March vegetation cover but not in the
model of soil moisture (Fig. 6).

Similarly, 2014 was a year in which both tasseling period flood-
ing and sowing period drought affected crops during the same sea-
son (United Nations 2015), meaning that the December–January
rainfall signal did not clearly show the effect of drought, although
the vegetation index did (Fig. 7).

In 2000/01, a major nondrought disruption to agricultural
production occurred: the government of Malawi halted its in-
put subsidy program, following a production surplus in the
preceding year. This led many farmers to experience the sub-
sequent drop in yields as a significant harm to their livelihoods
(Denning et al. 2009).

The year of 1989 was a year that some remote sensing data
sources}namely, NDVI and soil moisture}identified as a
drought year while WRSI, ARC2, and CHIRPS did not. Simi-
lar to 2014, this may have been due to the earlier than usual
onset of drought in this year, which showed up in December–
January vegetation indices but not in rainfall over the same
period (Fig. 8).

TABLE 3. Summary of findings, including identification of
divergent years, indicated with boldface type. Years are referred
to by the calendar year of harvest, e.g., “1984” is the 1983/84
agricultural season.

Year

Expected return period
(full distribution);
1 5 driest year

Expected return period
(farmers only);
1 5 driest year

Cross
entropy

1984 0.22 0.54 1.03
1985 0.14 0.59 1.11
1986 0.55 0.57 1
1987 0.73 0.50 1
1988 0.69 0.51 0.99
1989 0.36 0.64 1.12
1990 0.65 0.59 0.96
1991 0.90 0.60 0.83
1992 0.34 0.53 1.02
1993 0.87 0.62 0.84
1994 0.76 0.55 0.95
1995 0.43 0.53 1.01
1996 0.24 0.53 1.03
1997 0.29 0.54 1.03
1998 0.27 0.62 1.13
1999 0.78 0.65 0.87
2000 0.57 0.78 1.19
2001 0.51 0.56 1
2002 0.54 0.55 1
2003 0.69 0.59 0.96
2004 0.46 0.55 1.01
2005 0.35 0.53 1.02
2006 0.25 0.53 1.03
2007 0.26 0.51 1.01
2008 0.34 0.58 1.06
2009 0.78 0.50 1
2010 0.43 0.56 1.02
2011 0.52 0.57 1.01
2012 0.52 0.51 1
2013 0.58 0.66 1.03
2014 0.37 0.68 1.19
2015 0.88 0.64 0.83
2016 0.52 0.69 1.1
2017 0.93 0.79 0.75
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Last, the divergence observed in 1985 may be a recall issue,
as the previous year was known as a major drought year
(Masih et al. 2014), and farmers may be misidentifying it as
1985 because of its distance in the past.

This method builds on previous evaluations of satellite
drought product reliability such as Brahm et al. (2019) that
rely on a binary definition of drought versus not-drought
years and the comparison of one pair of data sources at a

FIG. 6. Comparison of 2015/16 CHIRPS rainfall
progression, TAMSAT modeled soil moisture, and
NDVI vegetation greenness with climatology. Day
of the year is shown in format MM-DD, where MM
is the two-digit month and DD is the two-digit day.

FIG. 7. As in Fig. 6, but for 2013/14.
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time. Our method extends those discrete comparisons into a
continuous distribution, freeing us from the need to define an
arbitrary threshold for drought and allowing us to compare
the joint information from many indicators at once. This al-
lows us to easily identify divergent patterns in the data that
may not be apparent from individual comparisons, using a
combination of simple metrics (such as cross entropy) and
visual intuition (such as where the distribution appears
bimodal). Looking forward, this probability distribution could
be used to evaluate policy questions like how reliable a given
satellite would be as a trigger for early action, and at which
threshold is early action most reliable.

4. Conclusions

This paper offers a simple statistical method for synthesiz-
ing many indicators of historical weather hazard and relating
them to human impact, addressing a commonly expressed
need from climate risk management practitioners. Among
practitioners, this kind of analysis has conventionally taken
the form of “counting on one’s fingers,” given the limited
availability of benchmark data}for instance, if rain gauges,
satellite precipitation estimates and yield data all suggest that
a year is a 1-in-5-yr drought or worse, a humanitarian analyst
might feel confident in deeming the year bad. The MaxEnt
method moves from those discrete comparisons for a fixed re-
turn period to a continuous probability measure over many
return periods, maintaining the intuitive interpretation of de-
scribing “consensus” among disparate data sources but allow-
ing for much more sophisticated and flexible analysis. While

the case study presented here focuses on drought insurance,
the method could be applied to any use case for which a pol-
icy maker must determine a quantitative threshold for action
on the basis of uncertain historical information about weather
hazard and impact.

The MaxEnt method is better suited to such inductive rea-
soning than conventional statistical methods, which tend to
require strong parametric observations and/or a large number
of observations for consistent estimation and cannot easily ac-
commodate partial or missing data (Golan 2017). Likewise,
the MaxEnt method is richer than purely descriptive methods
of data presentation like histograms or kernel density estima-
tors, allowing for the incorporation of prior knowledge and
the quantitative analysis of information content (Hullman
and Gelman 2021).

The major limitation of this method is that it only accounts
for ordinal differences between years, throwing out informa-
tion on, for example, the absolute difference in mm of rainfall
between years. However, in doing so, it allows both structured
(like annual biophysical measurements) and semistructured
(like farmers’ partial ranking of the worst harvest years) data
to be made commensurate. Moreover, most humanitarian
programs are concerned primarily with the ordinal compari-
son of years and not their absolute differences, as triggers for
humanitarian action are typically defined in reference to some
frequency of action (like triggering during a 1-in-5-yr drought
or worse) (Enenkel et al. 2020). That said, it is important to
stress that a focus on ordinal comparison necessarily limits
the strength of the claims we can make from the method, par-
ticularly when the historical record is short.

FIG. 8. As in Fig. 6, but for 1988/89.
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The SatWIN-ALERT case study presents one of many
potential applications of the method: the descriptive analy-
sis of years to identify likely basis risk events. Another
promising application of the MaxEnt method is to use the
probability distribution as a benchmark for evaluating the
reliability of a decision rule for humanitarian action. Differ-
ent trigger data sources and/or different thresholds for

action could be compared in terms of how likely they are
to coincide with the consensus from many data sources
(i.e., the MaxEnt distribution). For example, practitioners
could use this method to learn which period of the season
would provide the most reliable trigger for drought moni-
toring, how severe a drought must be in order to be consis-
tently identifiable via satellite observation, or how likely
ex gratia payments to compensate for basis risk are ex-
pected to be necessary, by expressing these questions in a
form that considers both intersensor consistency and those
sensors’ relationship to human impact.

Besides observational data, another potential application of
the method is to forecast-based early action. Forecast users
often face the problem of how to summarize the predictions
of an ensemble of forecasts (or a number of different forecast
products) in a way that is concise and easily interpretable
(Vigaud et al. 2018; Wilks and Hamill 2007). The members of
an ensemble, and/or the results of multiple forecast products,
could be treated like any other data source, using the MaxEnt
method to summarize consensus among indicators in each
year, including the future. This addresses an expressed need
from practitioners for more flexible, transparent probabilistic
forecasts (Coughlan de Perez et al. 2015).

In sum, this paper presents a simple, extensible method for
summarizing historical risk data with a minimum of assumptions

FIG. B1. Example of focus-group flip-chart output.

FIG. C1. Summary of spatial variation in biophysical variables by year, measured in standard deviations.
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about distribution and data completeness, and its results have a
number of intuitive applications in climate risk analysis.
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APPENDIX A

Focus-Group Sampling Procedures

Step 1: Ranking districts for selection
We list down the districts based on their drought risk pro-

file and number of food insecure households according to
the Malawi Vulnerability Assessment Committee (MVAC).

Step 2: Drop districts with low level of food security
We drop all districts with that experienced food insecu-

rity 1–3 times during the 10 years analyzed. These are
Chitipa, Kasungu, Mchinji, and Nkhotakota.

Step 3: Ranking the remaining districts according to their
severity of drought
We rank the remaining districts according to the drought

return period criterion. Districts with 7–10 years of drought
return period are classified as high frequency, and districts
with drought return periods of 4–6 years are classified as me-
dium frequency.

Step 4: Selection of districts
In this stage, first we rank the high frequency and me-

dium frequency districts based on the cumulative number
of food insecure households over the 10-year period. Then,
the top six droughtprone districts from high frequency and
medium frequency district are selected.

Step 5: Village selection
In each district, we will purposely choose two EPAs based

on their remoteness and other criteria such as direction and
number of food insecure households. From each EPA, we
will randomly choose three sections. In each section, three
villages will be randomly selected for household surveys. In
total, there will be 18 villages for household surveys.

Step 6: Focus-group discussions (FGDs)
In each section, we will randomly select one village (ex-

cluding the three household survey villages) and conduct
a focus-group discussion. Thus, a total of 6 FGDs will be
conducted per district bringing the overall total of FGDs
to 72. For each FGD, 10–15 villagers will be involved, en-
suring that there is representation for youths, by gender,
and, most important, to include some elderly people of
50 years and above who have stayed in the areas for longer
periods to facilitate recall of drought events that happened
in the area in the past 35 years.

FIG. D1. MaxEnt estimated distribution for each harvest year in Malawi, 1984–2017.
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APPENDIX B

Focus-Group Methodology

For this exercise farmers will identify the worst drought
years and they will discuss the reasons why they were the
worst. During this exercise, farmers will name the worst
8 years (that they can remember) in the past 31 years for
their main crop. Facilitators should conduct the exercise as
follows and THEN record the results from the exercise into
the Kobo form.

1) Supplies needed

• Chalkboard/dry-erase board/flip chart
• Markers/chalk to write on the board
• Several different types/colors of Post-its
• Paper and pen for the facilitators to record the results
of the exercise

Note: if the facilitators cannot use the suggested supplies
in the field, some of these items can be replaced by
more basic objects. As an example, the years might be
represented by 15 boxes placed on the ground and the Post-
its can be replaced by beans or leaves of different colors.

2) Focus-group instructions

• Assign participants in groups of 4–5 people. At least one
person in each group should be able to read/write (can be
a farmer or an assistant). Provide each group with several
Post-its of the same color (or other objects suitable to use
in the field). Each group should have 3–6 Post-its.

• Ask each group to select a representative who would be
responsible to place the Post-its in the appropriate place
on the board once the group reaches consensus on the
worst 8 years.

• Discuss with the farmers and the participants to identify
which part of the season caused the loss in production:
early, late, or both. It is important to know which
months the farmers consider part of the “early” season
and which months correspond to the “late” season.

• Explain to each group that this is an interactive exercise
in which participants in each group must discuss which
years were the worst, based on their experience and
memory. Ask each group to discuss and identify the
8 worst years. The eight worst years will be represented
by the Post-its each group receives (or other objects that
groups receive). The groups should rank the worst years

TABLE D1. Relative severity of years under different parameter assumptions.

Year Baseline Alpha 5 1023 Alpha 5 1027 Beta 5 10 Beta 5 40 Gamma 5 1 Gamma 5 4 NDVI omitted WRSI omitted

1984 0.22 0.22 0.22 0.24 0.21 0.22 0.23 0.23 0.25
1985 0.15 0.15 0.15 0.17 0.13 0.15 0.15 0.12 0.15
1986 0.56 0.56 0.56 0.56 0.56 0.56 0.57 0.65 0.55
1987 0.73 0.73 0.73 0.72 0.74 0.73 0.73 0.79 0.70
1988 0.69 0.69 0.69 0.68 0.70 0.69 0.69 0.73 0.68
1989 0.36 0.36 0.36 0.38 0.35 0.36 0.37 0.32 0.38
1990 0.65 0.65 0.65 0.66 0.65 0.65 0.67 0.72 0.64
1991 0.90 0.90 0.90 0.89 0.91 0.90 0.92 0.90 0.92
1992 0.35 0.35 0.35 0.36 0.34 0.35 0.35 0.30 0.32
1993 0.87 0.87 0.87 0.86 0.88 0.86 0.89 0.88 0.87
1994 0.76 0.76 0.76 0.76 0.77 0.76 0.77 0.74 0.74
1995 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.39 0.45
1996 0.24 0.24 0.24 0.26 0.23 0.24 0.24 0.15 0.26
1997 0.30 0.30 0.30 0.31 0.29 0.30 0.30 0.33 0.32
1998 0.27 0.27 0.27 0.29 0.26 0.27 0.28 0.26 0.28
1999 0.78 0.78 0.78 0.78 0.78 0.77 0.80 0.80 0.80
2000 0.57 0.57 0.57 0.59 0.56 0.56 0.60 0.51 0.67
2001 0.52 0.52 0.52 0.52 0.52 0.51 0.52 0.52 0.47
2002 0.55 0.55 0.55 0.55 0.55 0.55 0.56 0.57 0.56
2003 0.69 0.69 0.69 0.69 0.69 0.69 0.70 0.64 0.74
2004 0.46 0.46 0.46 0.47 0.46 0.46 0.47 0.39 0.49
2005 0.36 0.36 0.36 0.37 0.35 0.36 0.36 0.36 0.31
2006 0.25 0.25 0.25 0.27 0.25 0.25 0.26 0.29 0.26
2007 0.26 0.26 0.26 0.28 0.26 0.26 0.27 0.27 0.24
2008 0.35 0.35 0.35 0.36 0.34 0.34 0.35 0.33 0.37
2009 0.78 0.78 0.78 0.77 0.79 0.78 0.78 0.83 0.78
2010 0.44 0.44 0.44 0.44 0.43 0.43 0.44 0.51 0.44
2011 0.53 0.53 0.53 0.53 0.53 0.52 0.54 0.60 0.49
2012 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.47 0.52
2013 0.59 0.59 0.59 0.60 0.58 0.58 0.60 0.57 0.59
2014 0.37 0.37 0.37 0.39 0.36 0.36 0.39 0.25 0.38
2015 0.89 0.89 0.89 0.88 0.89 0.88 0.91 0.89 0.87
2016 0.52 0.52 0.52 0.54 0.52 0.51 0.54 0.52 0.49
2017 0.93 0.93 0.93 0.93 0.94 0.92 0.96 0.93 0.92
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(with the worst year being 1). Remember to designate the
elected group representative to lead the discussion.

• Give the groups 30 min to decide on the worst 8 years.
• Now, ask the group representative to walk to the chart
and place the Post-its next to the worst years decided
by his/her group (Fig. B1).

• After all groups have placed all their Post-its on the
flipchart, compare the years reported by the different
groups. If there are differences, give the participants
a chance to discuss in one big group until they reach
agreement on 8 common worst years going back to
1983.

• Groups will also have to specify whether the rainfall
was particularly low at the start or at the end of the sea-
son. The facilitator can give an example like, “If you
had the worst year for your main crop because of a
drought, was the precipitation lower than usual in the
early or the late part of the rainy season?”

• From all of the years that the farmers listed, select the
years for which there was strong disagreement between
the farmer groups, and discuss the effects of the worst
years until consensus is reached.

APPENDIX C

Spatial Variation in Biophysical Measures

In this appendix, a summary of spatial variation in bio-
physical variables by year is presented (Fig. C1). The figure
shows that biophysical indicators exhibited relatively little
spatial variation between EPAs in comparative historical
severity. This result was used to justify averaging of these
variables over all EPAs before subsequent calculation of
the MaxEnt distribution.

APPENDIX D

Full Results and Robustness Checks

Figure D1 shows the MaxEnt estimated distribution for
all harvest years from 1984 to –2017, expanding the results
shown in section 3d(1). Note that the choice of data sources
is subjective and will affect the resulting distribution. This
appendix reports the results of a few sensitivity analyses in
which datasets and observations were removed to examine
the effect on the results. One robustness check is to remove

TABLE D2. Cross entropy of years under different parameter assumptions.

Year Baseline Alpha 5 1023 Alpha 5 1027 Beta 5 10 Beta 5 40 Gamma 5 1 Gamma 5 4 NDVI omitted WRSI omitted

1984 1.03 1.03 1.03 1.03 1.04 1.03 1.03 1.03 1.03
1985 1.11 1.11 1.11 1.1 1.12 1.11 1.1 1.11 1.11
1986 1 1 1 1 1 1 0.98 0.97 1
1987 1 1 1 1 1 1 1 1 1
1988 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
1989 1.12 1.12 1.12 1.11 1.13 1.14 1.09 1.14 1.12
1990 0.96 0.96 0.96 0.97 0.96 0.98 0.93 0.94 0.97
1991 0.83 0.83 0.83 0.85 0.8 0.84 0.79 0.83 0.82
1992 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02
1993 0.84 0.84 0.84 0.86 0.83 0.86 0.81 0.84 0.85
1994 0.95 0.95 0.95 0.95 0.94 0.95 0.94 0.95 0.95
1995 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
1996 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.04 1.03
1997 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03
1998 1.13 1.13 1.13 1.12 1.14 1.14 1.11 1.14 1.13
1999 0.87 0.87 0.87 0.89 0.86 0.92 0.81 0.86 0.86
2000 1.19 1.19 1.19 1.15 1.22 1.3 1.05 1.26 1.06
2001 1 1 1 1 1 1.01 0.98 1 1.01
2002 1 1 1 1 1 1 0.98 0.99 0.99
2003 0.96 0.96 0.96 0.96 0.96 0.97 0.94 0.98 0.94
2004 1.01 1.01 1.01 1.01 1.01 1.02 1 1.03 1.01
2005 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03
2006 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03
2007 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
2008 1.06 1.06 1.06 1.06 1.07 1.07 1.05 1.06 1.06
2009 1 1 1 1 1 1 1 1 1
2010 1.02 1.02 1.02 1.02 1.03 1.03 1.02 1.01 1.02
2011 1.01 1.01 1.01 1.01 1.01 1.01 1 0.99 1.02
2012 1 1 1 1 1 1 1 1 1
2013 1.03 1.03 1.03 1.02 1.03 1.06 0.98 1.04 1.03
2014 1.19 1.19 1.19 1.16 1.21 1.22 1.14 1.26 1.19
2015 0.83 0.83 0.83 0.85 0.82 0.84 0.8 0.83 0.84
2016 1.09 1.09 1.09 1.08 1.1 1.13 1.03 1.09 1.12
2017 0.75 0.75 0.75 0.77 0.74 0.79 0.68 0.75 0.77
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NDI from the analysis, and another is to remove WRSI from
the distribution. Other robustness checks looked at the effects
of choosing values of alpha, beta, and gamma that differ from
the those ultimately selected for final use. Under these differ-
ent parameter assumptions, we examined the relative severity
(Table D1) and cross entropy (Table D2) for each year from
1984 to 2017.
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