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Workplace Productivity*
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Abstract

The COVID-19 pandemic has triggered economic shock waves across the globe.

Exploiting a natural experiment, this paper estimates how being infected with

the virus shapes individual-level productivity after having recovered. Studying

the performance of professional athletes in Germany and Italy and applying a

staggered difference-in-differences design, we find that individual performance drops

by around 6 percent after a previously infected athlete returns to the pitch. This

striking deterioration remains persistent over time – amounting to 5 percent eight

months after the infection. The effect increases with age and infection severity, and

is spread disproportionally over the course of a match. We detect no productivity

effects for other respiratory infections. We take these findings as first evidence that

the pandemic might cause long-lasting effects on worker productivity and economic

growth.
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1 Introduction

To counteract the spread of COVID-19, governments have introduced a wide range of

non-pharmaceutical interventions (NPI), such as distancing rules or work-from-home di-

rectives. Though indispensable from an epidemiologist’s perspective, measures such as

the closing of schools and universities and the general reduction in economic activity has

come with high direct and indirect costs for society as early economic evaluations empha-

size (see, for example, the review articles by Brodeur et al., 2021; Padhan and Prabheesh,

2021) To date, most of this research has primarily considered the costs of NPIs. Besides

the obvious effect of fewer infections and deaths in total, research quantifying the in-

dividual and economic benefits of infection prevention is hitherto missing. This paper

addresses this gap in the literature by documenting the significant and persistent effect

of a COVID-19 infection on individual labor productivity.

We contribute these novel findings by studying the performance of professional soccer

players after a COVID-19 infection – a setting unrivaled in data quality: We use a highly

granular nested panel data set that encompasses a sub-panel for every single match for

nearly two years in the top-tier male soccer leagues of Germany and Italy. Thereby we

take advantage of an institutional setting that is unique across occupations not only in

terms of data availability. First, professional soccer is an industry that quickly resumed

business, mostly unaffected by NPIs, after only a short interruption in spring 2020 –

differently from many other industries. Second, the top European leagues implemented

a uniquely rigorous testing procedure: Every player was PCR-tested at least once per

week and often several times.

Our findings hardly suffer from measurement errors caused by unknown positives.

Thus, we circumvent the issue of true case numbers being much higher than reported

ones – a problem most occupations face (Hortaçsu et al., 2021; Manski and Molinari,

2021). Hence, we are actually able to estimate a population effect and not only the

impact of COVID-19 of those showing up in a hospital. Given the popularity of the

sport, we can exploit extremely detailed records of all players in every match. This

allows us to disentangle individual and team productivity and to detect short- and long-
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run effects which would remain unobserved outside this industry. Eventually, medical

studies on ‘long COVID’ are subject to methodological problems due to a reliance on

patients’ self-reported health or subsamples with strong symptoms (Yelin et al., 2020;

Maxwell, 2021). By solely considering observational data, we avoid this issue.

To estimate the effects of a COVID-19 infection, we apply a staggered difference-in-

differences framework. We compare infected with non-infected players before and after

the infection and exploit the arguably idiosyncratic timing of infections with the virus for

identification. In the context of our analysis, we consider productivity as a function of

various individual health aspects, such as acceleration, condition, and endurance, but also

cognitive capability. Our empirical analysis addresses two questions: Does a COVID-19

infection affect the probability of a player participating in a match and the length of time

he stays on the pitch? This extensive margin captures general absence effects related to

the infection but also takes up the non-consideration of post-infected players by the team

managers. Second, is the performance of previously infected players lower once they play

again? Here, our interest lies in productivity across matches as well as within a match –

the intensive margin effects.

At the extensive margin, we find that once players are cleared to play by a team’s

medical staff, their time on the pitch decreases by more than 5 percent. At the intensive

margin, we are able to identify a significant deterioration in infected players’ productivity

of 5–7 percent after an infection. This effect becomes visible right after a player’s return

to the pitch but remains persistent for more than eight months – a notable difference

from what we find for common respiratory infections.

Exploiting the very rich nature of our data, we further assess players’ performance

throughout every single match. We identify a disproportional decrease in productivity

toward the end of a game. This pattern might even be underestimated as the weakest

players are likely to be substituted off. Our analysis reveals notable heterogeneity across

age groups. Players above the age of 30 are twice as severely hit as players aged 26 to

30. For younger players up to 25 years of age there exists no significant effect at all.

Our paper also contributes to the strand of research which addresses differences be-
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tween COVID-19 infections and other respiratory infections. For example, Briggs and

Vassall (2021) approximate the costs of continuing health deterioration to amount up to

30 percent of the overall costs caused by the disease including fatalities. In our setting,

we highlight that an infection with COVID-19 is indeed different from other respira-

tory infections, because a productivity deterioration of around 5.1 percent persists over

the course of more than eight months. In contrast, we do not find productivity effects

originating from colds and similar illnesses.

As in many industries, soccer is a team production. Therefore, we investigate how

the individual performance deterioration affects the overall group outcome. A priori, it

is unclear whether non-infected players might overcompensate the weakness of their col-

leagues or suffer from lower performance as well. Our findings support the latter. Players’

joint performance tends to be even lower than the accumulated individual deterioration

of infected team members.

Of particular interest for this paper is research on productivity effects during the

pandemic. For example, Bloom et al. (2020) investigate firm-level productivity using

a large panel from the UK and identify a decline in total factor productivity of 3–5%.

Morikawa (2021) has shown that low-productivity firms in particular have drawn from

public subsidy schemes. Regarding working from home, the findings for productivity are

mixed. While Barrero et al. (2021) find an overall positive effect on worker productivity in

the UK, Etheridge et al. (2020) do not find significant differences for the UK, Morikawa

(2022) identifies a decline for the Japanese economy. Using chess tournaments, Künn

et al. (2022) identify a deterioration for cognitively demanding tasks.

Altindag et al. (2021) find that online learners during COVID-19 shutdowns have

significantly worse outcomes compared to fellow students in classrooms. Particularly

among academics, Deryugina et al. (2021) find that womens’ productivity was much

more affected through the channel of lockdowns and the related burdens of childcare. In

a broader sense, Adams-Prassl et al. (2020, 2022) show that workers have been unequally

affected by the COVID-19 pandemic due to different possibilities to move their work to

their homes. In contrast to those and many other economic papers, our primary focus
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lies on the direct effect of an infection itself on individual productivity and not indirect

channels such as NPIs, which are exploited above.

By analyzing soccer players, we also contribute to a large body of economic research,

which has frequently applied sports data to uncover otherwise hidden economic mech-

anisms (Bar-Eli et al., 2020). Among others, this concerns the testing of theoretical

hypotheses from game theory (e.g., Bhaskar, 2008; Chiappori et al., 2002; Kassis et al.,

2021), identifying psychological drivers of cognitive performance (e.g., Apesteguia and

Palacios-Huerta, 2010; González-Dı́az and Palacios-Huerta, 2016), or deriving conclu-

sions for public and labor economics (e.g., Caselli et al., 2022; Kahn and Sherer, 1988;

Kleven et al., 2013; Lichter et al., 2017; Parsons et al., 2011; Principe and van Ours,

2022).

The remainder of this paper proceeds as follows. In Section 2, we provide background

information on the setting of this natural experiment and explain the data used. In

Section 3, we outline our empirical analysis. Section 4 presents and discusses our results

at the individual and the team level. Section 5 concludes with a summary, discusses

limitations, and provides an outlook for future research.

2 Institutional Setting and Data

Germany’s governmental agency for infectious diseases, the ‘Robert-Koch-Institut’ (RKI),

registered about 26.3 million cases and more than 137,000 deaths related to a COVID-19

infection (up to June 2, 2022, within an overall population of 83 million).1 A similar but

worse pattern can be found in Italy. The governmental health agency ‘Istituto Superiore

di Sanità’ reported (up to July 28, 2021) 17.5 million cases and some 164,000 casualties

(within an overall population of 60 million).2

1Source for data on case numbers: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Cor

onavirus/Daten/Altersverteilung.html (incl. individuals with multiple infections). Source for data
on casualties: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/
COVID-19_Todesfaelle.html, last update June 2, 2022.

2Source for data on cases and casualties: Report Esteso ISS – COVID-19: Sorveglianza, impatto
delle infeziomi ed efficacia vaccinale (national update): https://www.epicentro.iss.it/coronavir

us/bollettino/Bollettino-sorveglianza-integrata-COVID-19_31-maggio-2022.pdf, published
June 3, 2022, data up to May 31, 2022 (incl. individuals with multiple infections).

4

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Altersverteilung.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Altersverteilung.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/COVID-19_Todesfaelle.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/COVID-19_Todesfaelle.html
https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_31-maggio-2022.pdf
https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_31-maggio-2022.pdf


Only the registered cases in both countries make up for more than 25 percent of the

overall population. As COVID-19 affects people of all age groups, millions of those with a

cured infection are part of the labor force, which might potentially affect their productiv-

ity at work. Moreover, the discussed countries are just two examples and many countries

face similar magnitudes of cases among their citizens. The problem of potentially persis-

tent negative effects of an infection on subsequent productivity may be sizable given the

large numbers of infected and recovered individuals.

We construct a novel dataset consisting of data on player and match statistics, as well

as data on COVID-19 infections of players in Germany’s Bundesliga and Italy’s Serie A.

Both leagues are their country’s highest division in men’s soccer and among the most

successful five leagues worldwide.3 The two leagues have characteristics that make them

particularly appropriate to study. The Bundesliga was the first major soccer league to

resume its season in 2020 after the suspension of almost all leagues in spring.4 Italy was

hit severely by the virus in Spring 2020 (as shown by the 7-day incidence rates of Italy

on the LHS of Figure 1), but continued its season in June, too.5 Hence, for both leagues

we have players that have been infected in early stages of the pandemic. This allows us

to estimate persistent and long-run effects among the infected individuals as we cover

a time span of more than 12 months after the outbreak of COVID-19 in Germany and

Italy.

We have granular data at the match and at the minute level, allowing for overall but

also match phase-specific analyses. We amend this data with information on the injuries

and sicknesses that forced players to miss matches. In addition, we include information

on player nominations for the national teams during this period of time.6 We collect data

on all COVID-19 infections in both leagues since the outbreak of the pandemic. While

every infection has to be communicated to the local authorities by the club carrying

3In the European Football Association’s five-year ranking, the Serie A is ranked #3 and the Bun-
desliga #4, see https://www.uefa.com/memberassociations/uefarankings/country/#/yr/2021.

4https://www.theguardian.com/football/2020/may/06/bundesliga-set-for-go-ahead-to-r

esume-season-in-second-half-of-may, published 07.05.20.
5https://football-italia.net/official-quarantine-rule-softened/, published 18.06.20.
6Injury and national team data is obtained from transfermarkt, the largest database on soccer players

globally.
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out the testing, clubs may prefer to keep an infection anonymous, only announcing the

number of cases. We identified the large majority of all infected players via a meticulous

review of newspapers, reliable websites, and statements from the clubs, players, and

soccer associations.

There had been 81 true-positive tests among players in Germany and 176 in Italy

by mid-July 2021. We can identify 76 players in Germany and 157 in Italy.7 Hence, we

build our analysis upon the 233 identified players from a sample of 257 positive cases in

total. This results in a coverage of over 90 percent. The higher case rates in Italy are

likely to be driven by more registered cases in the overall population, and because Italy’s

Serie A includes more teams (20 compared to 18 in Germany). The high coverage of

identified cases should comfortably exceed the knowledge on infections in most industries

and allows us to consider our results to be representative of the dataset at hand. We also

conduct our analysis for a subsample of the data, in which we drop the observations of

teams with anonymous cases. By doing that, we obtain a dataset of perfectly identified

players. Our results are highly similar in this case. To further illustrate the case numbers

among footballers relative to the overall population, Figure 1 provides information on

player infections and 7-day incidences over time – i.e., the number of newly infected

persons per 100,000 inhabitants. Infections evolve similarly over time. Figure 1 also

highlights incidences close to zero in the summer break between the two seasons. This

probably would have been the only period in which clubs could have kept an infection

secret without the media recognizing the absence of a player. As the overall incidences

were very low during this time, we suspect the number of non-identified but infected

players to be, if anything, very low.

The 257 infections among 1,406 players imply that by mid-July 2021, 18 percent of

all players had been infected. This exceeds the general incidence of cases in the age

group of young adults in both countries. It is likely a consequence of persistent testing

and extensive traveling. Additionally, both leagues implemented rigid rules for club and

player behavior. The Bundesliga set in place compulsory testing once or twice a week

7A full list of all positively tested and known players is available on request.
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The plots show the seven-day incidence for Italy (LHS) and Germany (RHS) over time (left y-axis).
The seven-day incidence counts all cases over the last seven days and scales them on 100,000. Also,
cases among players are given (right y-axis). Source country incidences: (Ritchie et al., 2021, data
downloaded: 16.07.2021).

Figure 1: General Incidences and Player Infections

and before a match.8 The Serie A required a PCR test before a match.9 Hence, we are

confident that we have a true picture of the overall infections.

For player and match statistics, we apply data from Opta Sports. The company is

one of the leading firms for statistics in sports and has an official partnership with the

Bundesliga and the Serie A.10 The company tracks every player and all of his actions

during a match using software that analyzes video records. Every action on the pitch

is recorded and registered with the coordinates showing where it happened. We were

able to gather information on which players participated in each match of the 2019/2020

and the 2020/2021 seasons, and how these players performed in a match. Hence, we are

confident that we have the best data available to track the productivity of all the players.

Our dataset consists of 72,938 records from 1,406 players ranging over both seasons

and leagues. These data encompass all players who played on at least one matchday of a

season. Among these observations, 40,607 records track players who played in a certain

match, i.e., we can construct within-match work performance for them. The remainder

8https://www.dfb.de/fileadmin/_dfbdam/226090-Task_Force_Sportmedizin_Sonderspiel

betrieb_Version_3.0.pdf – one or two PCR tests per week depends on the severity of the infection
process. One PCR test per week was only allowed in case the region or district of a club had a 7-day
incidence < 5 per 100,000 people, which was hardly ever the case during the seasons. PCR testing is the
most accurate form of testing for a virus with almost 100 percent sensitivity (Guglielmi, 2020).

9https://www.figc.it/media/123076/circolare-quarantena-calcio-def-2.pdf
10https://www.statsperform.com/team-performance/leagues-federations/. There also exists

some literature that validates the quality of the data from Opta, see Liu et al. (2013).
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covers players who were not nominated or substituted on the pitch at a particular match.

Their observations will be included in the analysis at the extensive margin, i.e., whether

a player plays. Table A1 in the appendix provides descriptive statistics.

We further extend this already rich dataset with information on wages for Italy. Here,

we build upon data collected by the ‘La Gazzetta dello Sport,’ the largest Italian daily

newspaper. It provides data on the seasons 2019/2020 and 2020/2021 for all teams in the

Serie A. For the earlier season, we fill missing information on teams with the salary reports

for the season 2018/2019. In total, we are able to cover 78 percent of the player×season

observations with salary data. We are not the first to use this source, Principe and

van Ours (2022) have used ‘Gazzetta’ salary data as well. This source tends to truncate

weaker players, but we still consider the data as valid and highly valuable for our analysis.

With an increasing likelihood of soccer players being or getting vaccinated in the

season 2021/22, our analysis of the previous two seasons brings two advantages: First, we

can track the unbiased effect of infections without the ‘distortion’ due to vaccinations, as

the Serie A and the Bundesliga started vaccinations only after the end of the 2020/2021

season.11 Second, vaccinations are likely to increase the degree of self-selection into

treatment if some players prefer to remain non-vaccinated. Moreover, our still relatively

short treatment period of 15 months (since the beginning of the pandemic) enables us

to disregard sample selection issues, for example, that severely hit players may drop out

of the top leagues. Contract rigidity in elite soccer ensures that most players remained

with their clubs for the whole period.12

The comparison between infected – treatment group – and non-infected players –

control group – is relevant in our setting. We match both groups and their characteristics

with each other in Table 1. While the infection timing is arguably random for each

player, there might be some selection into who gets infected or not. Indeed, we find

some disparities in the performance measures. Players from Italian clubs are slightly

over-represented in the sample of infected players. This might be due to the overall

11See for the Serie A (19.07.21): https://football-italia.net/figc-wants-serie-a-and-ser

ie-b-players-to-get-vaccinated/ and the Bundesliga (in German, 18.05.21): https://www.kick

er.de/dfl-empfiehlt-impfung-der-profis-fan-rueckkehr-realistisch-806070/artikel.
12Older work by Frick (2007) reports an average contract length of 3 years in the Bundesliga.
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The maps give the clubs’ location (left: Italy, right: Germany). The maps capture clubs being part of
the respective league in one or both seasons. Underlying maps by www.openstreetmap.org.

Figure 2: Location of the Leagues’ Clubs in the Dataset

incidences, which have been much higher in Italy compared to Germany (as shown in

Figure 1). Case numbers were particularly high in Northern Italy, where most of the clubs

in the Serie A are located (see Figure 2). Furthermore, infected players seem to have

played more often and longer prior to the treatment. They also performed better in terms

of passes and touches per minute. There are no significant differences in age or other

demographics, which might be important for the severity of the symptoms. Concerning

positions, it seems that midfielders are over-represented.

We address the differences between the treatment and control groups by controlling

for the player- and position-specific effects later on. We then also restrict samples to

similar levels of quality to avoid weaker players in the control group biasing our findings

and we find our results to be robust for using solely the subsample of treated individuals.

Eventually, we perform propensity score matching to create a comparison group that

is statistically indifferent to the group of infected players based on observables. All

approaches lead to comparable results, so we are confident that sample selection does not

drive our findings.

9
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Statistic Units Non-Infected Infected ∆
(Pre-Infection) (p-value)

Match Involvement/Performance
Played at all yes/no 0.539 0.659 0.000∗∗∗

if played...
Minutes Played min 66.340 71.509 0.000∗∗∗

Played Full-time yes/no 0.484 0.564 0.001∗∗∗

Passes/min #/min 0.511 0.546 0.023∗∗

Ball Recoveries/min #/min 0.057 0.057 0.778
Touches/min #/min 0.681 0.713 0.042∗∗

Possession/min #/min 0.491 0.526 0.017∗∗

Dribbles/min #/min 0.019 0.019 0.402
Aerials/min #/min 0.038 0.033 0.021∗∗

Shots/min #/min 0.015 0.017 0.103

Demographics
Age years 26.550 26.886 0.351
Height cm 183.350 184.268 0.049∗∗

Weight kg 77.273 77.754 0.339
Body Mass Index (BMI) kg/m2 22.966 22.879 0.376

Others
Italian League yes/no 0.541 0.636 0.013∗∗

Goalkeeper yes/no 0.043 0.052 0.567
Defender yes/no 0.223 0.251 0.281
Midfielder yes/no 0.150 0.225 0.001∗∗∗

Striker yes/no 0.077 0.087 0.519
Substitute yes/no 0.506 0.384 0.000∗∗∗

Columns (1) and (2) show the means of the respective variable for all observations of
non-infected players and infected players (pre-infection). Column (3) reports the p-value
of a two-sided t-test. Significant differences are indicated by stars as follows: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01. The significance of differences between infected and non-infected
players is obtained from simple regressions of each outcome on an intercept and a dummy
for infected players pre-infection. Standard errors of these regressions are clustered on
the player level. Variables which give performance per minute omit observations with
zero minutes on the field which make up 232 out of 36,671 observations (approximately
0.6%).

Table 1: Descriptive Statistics for Non-Infected and Infected Players
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3 Empirical Strategy

Infections can be modeled as a staggered treatment across players. To disentangle the

effect of the infection from other shocks that may limit work performance, we compare

infected players’ performance before and after their positive test results with the evolution

of outcomes of non-infected players. Hence, we apply a difference-in-differences estimation

that controls for variation over time and across individuals.13

For this setting to be valid, several assumptions need to hold. Within our simple

difference-in-differences setting, we need parallel trends of the treatment and control

group in the absence of the infection. We have no reason to question this because there

is no conceivable cause for the diverging evolution of productivity without COVID-19.

Within the dynamic event study setting outlined later on, this corresponds to the re-

quirement that treatment cannot predict outcomes before treatment. As our event study

plots will show flat pre-trends, we consider the parallel trends assumption as not violated.

There may exist endogenous drivers of the individual infection risk, for example

matches of the national teams that require more and particularly international trav-

eling. The same holds for continental tournaments such as the UEFA Champions League

or the UEFA Europa League. In both cases, for obvious reasons, stronger players are

more affected than weaker ones. Furthermore, there might be higher exposure to infected

people depending on the individual’s social predilection for attending parties or public

events. Hence, the risk of infection might not be completely idiosyncratic. However, ran-

dom selection into infection is not necessary for identification, as identification is drawn

from the timing of the infection. This should be exogenous for all types of players and

unanticipated in the short run. Potential differences between treated and non-treated

players will nevertheless be addressed in our robustness checks.

For reliable estimations in the simple difference-in-differences setting, we need no

13For this methodology a rapidly developing literature has emerged, which mainly addresses the dis-
tortions arising from staggered treatments in plain two-way fixed effects settings (see, e.g., the recent
survey by de Chaisemartin and D’Haultfoeuille (2022) on this literature). The main critique is that
treatment effects at a certain relative point of time to the treatment event might change with hetero-
geneity in real time. Related to the critique we later show that there is no significant change in the
treatment effect between early and recent infections.
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variation in the effect size of the treatment over time. This would not be true if, for

example, a new medication had been developed that would have changed the impact of

an infection. In general, there is no reason to believe that the work performance effects of

an infection are constant over time, so we will analyze dynamic patterns in event studies.

Eventually, a difference-in-differences estimator requires that the treatment only causes

partial equilibrium effects, or else we need the stable unit treatment variable assumption

(SUTVA) to be fulfilled. As we find spillover effects within a team, there might be some

confounding, which collides with the SUTVA. This does not invalidate but strength-

ens our empirical findings. In theory, it is a priori unclear whether a deterioration in a

player’s performance either causes an overall lower performance of the team or leads to an

(over-)compensation of this deterioration. Indeed, we find strong evidence of the former.

An increasing number of recovered players on the pitch decreases their team’s perfor-

mance disproportionately. This implies a negative effect on the control group. Hence,

our estimates underestimate the true effect in absolute terms.

As we consider the identifying assumptions as fulfilled and the spillovers as innocuous,

our model allows us to extract the treatment effect. We implement the regression setup

Performancepm = β Post-Infectionpm +X ′
pmγ + Z ′ζ + ϵpm . (1)

Performancepm on the LHS refers to a set of performance or involvement measures of

player p in match m. In our setting, this is, for example, a dummy capturing whether a

player played at all, or the exact number of passes (in logs).

We use the number of passes as the main productivity measure for the intensive

margin estimations. Individual performance in soccer depends on various physical health

measures such as acceleration, condition, and endurance, but also the cognitive capability

to position oneself optimally on the pitch. The number of passes is related to all of these

measures and thereby suitably proxy the involvement of players in a match. Former

papers on work performance in sports have also exploited the number of passes as a

measure of interest (for example Carmichael et al., 2001; Lichter et al., 2017; Oberstone,

2009). Descriptive statistics on this measure can be found in Figure A1 in the appendix.
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Results on other measures (e.g., touches and possession) – which also account for slightly

different behavior – are provided later on as a robustness check. Hence, cross-validation

with different measures should give a thorough picture of player performance.14

Post-Infectionpm is the treatment dummy that takes the value 1 for all observations

of a player after he has tested positive. Hence, β is our coefficient of interest. To

account for variation in the cross-section and over time, we control for a large set of

covariates Xpm and fixed effects (FE) Z. The vector Xpm contains a player’s age, the

plain and squared number of minutes played to capture non-linearities in time on the

pitch, a dummy variable for a home match and one that distinguishes matches before

and after the interruption of the leagues in Spring 2020. The vector Z includes player

fixed effects, team-season, and opponent-season fixed effects as well as matchday fixed

effects and an FE capturing variation before and after the interruption in Spring 2020.

Doing this, we control for a general underlying performance effect during the COVID-19

pandemic for all players, as Santana et al. (2021) find a worse running performance after

the restart in 2020 but an improved passing accuracy. Also, the exclusion of fans might

have impacted player behavior during this period (Bryson et al., 2021). All of these FEs

shall capture performance differences unrelated to an infection.15 ϵpm is the idiosyncratic

error term. We use heteroskedasticity-robust standard errors clustered on the player (i.e.,

the treatment) level to account for correlated residuals across a player’s observations. To

test the identifying assumption of parallel trends absent a treatment and to understand

the dynamic nature of effects, we also apply an event study setting as a dynamic model:

Performancepm =
k̄∑

τ=k,τ ̸=0

βτ Post-Infectionpm,τ +X ′
pmγ + Z ′ζ + ϵpm . (2)

This leads to several βτ coefficients of interest. Subscript τ is the running index of leads

14Running performance would be another natural measure to study as COVID-19 is a respiratory
infection. However, Lichter et al. (2017) find running and pass performance to be highly correlated. We
obtain player-match level running data for the Bundesliga and measure a correlation of 0.64. Later on,
we use a variable similar to running performance that shows a significant drop after an infection as well.

15We experimented with several reasonable FE combinations. All results go in the same direction.
A battery of FE combinations is discussed later on in the paragraph on robustness checks. Plots are
provided in Fig. A10 in the appendix.
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and lags. We bin these one-day binary variables to group dummies of 75 days. Endpoints

are binned and hence include all observations which lie beyond the second-last bins on

either side (Schmidheiny and Siegloch, 2020). Our results are robust to different specifi-

cations of the effect window size. We mainly plot bins up to 225 days before and after

infections and bin all observations beyond these thresholds in the outer bins to have suffi-

ciently many observations in each bin. As infections are hardly anticipated and voluntary

precautions are only possible with limitations in the world of professional soccer, we do

not struggle with a number of identification challenges that have been addressed in the

context of COVID-19 studies, such as voluntary precautions, anticipation, and variation

in policy timing (see, e.g., Goodman-Bacon and Marcus, 2020).

4 Results

Our analysis takes two steps. First, we investigate whether a COVID-19 infection has

a short- or long-term impact on the participation of players. Subsequently, we look at

within-match performance after an infection. The intensive margin could underestimate

the persistent effects of a COVID-19 infection as players hit the most might not play

at all. Hence, analyzing both effects is indispensable and might offer some intuition on

performance-related mechanisms. While the main measure of interest is within-match

work performance, the effect at the extensive margin helps to understand the severeness

of the post-infection work performance drops.

Extensive Margin: First, we analyze the effect of a COVID-19 infection on the prob-

ability of playing and the number of minutes played. Figure 3 reports the corresponding

estimates. From the simple effect, in the upper right of the plot, we infer that players

have a 5.7 percentage-point lower probability of playing. However, effects appear to be

mechanical, mainly driven by the initial weeks after an infection, when quarantine breaks

do not allow a player to participate in a match. The observed drop in playing frequency

becomes quickly insignificant again, but does not fully return to its former level. These
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results indicate that players marginally experience persistent effects on their likelihood

to play. A flat pre-trend validates our finding.

Figure 4 shows the corresponding effect on minutes played by players who play. Im-

mediately after the infection and his return on the pitch, a player spends an average of

six minutes less on the field than before – this corresponds to a decrease of almost ten

percent. It indicates that several players might have been used only as substitutes leaving

the pitch earlier or entering it later. This might point to a general fitness problem of the

players and make it more likely that work performance effects at the intensive margin

might be underestimated as the player might be substituted off before the severest effects

kick in. The effect is visible right after an infection but is quite long-lasting. Only after

approximately 150 days or five months of play does fitness return to a level that does not

significantly differ from pre-infection match times.

Our findings at the extensive margin are confirmed by an increasing likelihood of

being substituted on and off the pitch after an infection. On average, players play for

a shorter time which may signal insufficient fitness to participate for 90 minutes. The

respective event studies can be found in Figure A2 in the appendix. In general, our

This figure plots the OLS (LPM) estimated coefficients βτ of the event study regression following
Equation (2). The reference time period is one to 75 days before treatment. An equivalent plot with a
30-day bin size (for a better description of short-run effects) can be found in Figure A3 in the appendix.
Standard errors are heteroskedasticity-robust and clustered at the player level. 90 and 95% confidence
intervals are given by the red-shaded areas. The dependent variable is a dummy indicating whether a
player played or not.

Figure 3: Dynamic Effect on Likelihood to Play
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This figure plots the OLS estimated coefficients βτ of the event study regression following Equation (2).
The reference time period is one to 75 days before treatment. An equivalent plot with a 30-day bin size
(for a better description of short-run effects) can be found in Figure A3 in the appendix. Standard errors
are heteroskedasticity-robust and clustered at the player level. The 90 and 95% confidence intervals are
given by the two red-shaded areas. The dependent variable is ln(minutes played) conditional on having
played.

Figure 4: Dynamic Effect on Minutes Played

results on the effects at the extensive margin indicate a return to initial levels of infected

players over time. Either the players return to the former work performance levels or

badly performing players re-enter the subsample of players on the pitch. This would shift

the treatment effect from the extensive to the intensive margin, such that worse work

performance effects should be observed over time in within-match data.
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These figures plot the OLS coefficients βτ of the event study regression following Equation (2). The
reference time period is one to 75 days before treatment. Standard errors are heteroskedasticity-robust
and clustered at the player level. The 90 and 95% confidence intervals are given by the two red-shaded
areas. The dependent variable is ln(passes). Additional work performance measures can be found in
figures A5 and A6 in the appendix.

Figure 5: Dynamic Effect on Within-Match Work Performance

Intensive Margin: We next take a nuanced look at a player’s performance conditional

on being on the pitch. As previously outlined, the main building block of our productivity

analysis is the number of passes, as shown in Figure 5. Besides that, we provide results on

two related performance measures, possession and touches in Figure A4 in the appendix.

Figure 5 presents the corresponding event study providing the dynamic estimates of a

COVID-19 infection on within-match performance. This plot, as well as the additional

measures in the appendix, show rather flat pre-trends. We find a highly significant

simple difference-in-differences effect of -5.1 percent. Thus, we can precisely identify

deterioration in productivity following a cured COVID-19 infection. This effect is not

transient but remains notably negative over the course of time. We consider this as causal

evidence of COVID-19 infections causing long-lasting productivity drops for infected

individuals.

This finding is surprisingly coherent with medical research from Switzerland that

finds ‘long COVID’ symptoms to be persistent over seven to nine months for a third

of all infected persons in the analyzed sample population (Nehme et al., 2021). As an

alternative outcome measure, Figure 6 presents the effect over a COVID-19 infection

on an observation’s rank in the pass distribution. It is apparent that the persistent
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deterioration combined with flat and insignificant pre-trends remains in place. A player

slides down in the relative productivity ranking by 1.6 percentiles.

These figures plot the OLS coefficients βτ of the event study regression following Equation (2). The
reference time period is one to 75 days before treatment. Standard errors are heteroskedasticity-robust
and clustered at the player level. The 90 and 95% confidence intervals are given by the two red-shaded
areas. Instead of ln(passes), this regression uses the ln(rank) of the amount of passes played by a player
during a match.

Figure 6: Dynamic Effect on the Ranking of Infected Players

Interestingly, we also see work performance partly fall over time, while the effect sta-

bilizes after some months post-infection. This gives rise to two remarks: First, players do

not return to their former level within the period of observation. Second, the reduction

over time also captures the return of infected players to the pitch as there is more in-

volvement at the extensive margin after several months. It may be possible that players

who still suffer from weakened performance, eventually return to the pitch and negatively

affect the treatment effect over time.

Furthermore, Table 1 provides some evidence on differences between infected and

non-infected players. To ensure that the intensive margin effect is not driven by this, we

address the potential issue of sample selection with a propensity score matching proce-

dure. We do this by nearest neighbor matching without replacement. The matching takes

place within matchday and position, i.e., for a midfielder infected right before matchday

16 in season 20/21, we look for a midfielder equivalent on matchday 15 of this season.

We include team×season, matchday×season and position FEs in the matching probit re-

gression. We do not allow a matching of infected players with those players who become
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infected at a different point in time or with players who have not played a single minute

up to the respective matchday.

Table A2 in the appendix shows that the generated control group does not differ in

any observable dimension from the treatment group. Re-estimating our main regression

for the intensive and the extensive margin using the fully balanced sample, we get results

that are very similar to our baseline results (as shown in Figure A16 in the appendix).16

Effect Heterogeneity: We do not only find a significant and persistent deterioration

in work performance but also heterogeneity in several dimensions. While an infection’s

effect on the underlying health status should be quite homogeneous in the homogeneous

group of players, the consequences of changes in health might impact player performance

differently. First, throughout the COVID-19 pandemic, age has been one of the main

determinants of how likely an infected person is to develop symptoms or to even die

(e.g., Gallo Marin et al. 2021). It seems natural to investigate whether older players

also suffer more from an infection. Even though professional athletes in their thirties

cannot be compared to the overall elderly population, their recovery may take longer

and symptoms may be more persistent. Figure 7 provides some intuition that especially

players aged 30 and over face the strongest performance drops of over 10 percent. In

comparison, younger players up to 25 years of age are only affected marginally. Both

effects are statistically significantly different from each other as the Wald test provided

in Figure 7 highlights.

Second, COVID-19 infections are often associated with additional fatigue. Therefore,

we investigate whether players need more time to recover from a match post-infection.

Put differently, it may be that post-infected players perform worse if the rest break

between two matches they played in is insufficient. We compare the treatment effect

for different lengths of rest breaks. In Figure 8, we show that the treatment effect is

especially strong for short breaks of up to three days. The shortest breaks are in terms

of the productivity effect statistically significantly worse than longer gaps from four days

16Figure A16 also provides the extensive margin effect on the likelihood to play.
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The plot displays OLS interaction effects between the post-infection dummy and age groups included
in equation (1). Dependent variable: ln(Passes). SEs: Heteroskedasticity-robust and clustered at player
level. The 95% confidence bands are given. p-values: Wald tests for difference between the respective
estimates.

Figure 7: Effect Heterogeneity: Age Effects

onward. Our results indicate that post-infected players perform better - though not as

well as before the infection - if there is enough regeneration time.

We also analyze heterogeneity with regard to positions, team and player strength,

and infection timing. Results are intuitive as we find stronger effects for more enduring

positions or weaker players.17 Also, there seems to be no difference between effects from

early or late COVID infections, i.e., there tends to be no treatment effect heterogeneity

in real time. All plots can be found in Figure A8 in the appendix. There, we also provide

equivalent heterogeneity analyses for the extensive margin (Fig. A9). The results are

very similar.

Lastly, we study the impact of the severity of symptoms on the subsequent perfor-

mance. As we cannot measure or observe the exact symptoms infected players suffered

from when being isolated at home, we use the length of the break between a player’s

infection and his return to the squad as an approximation. This is because the return

to the squad (without necessarily having played) implies that the player is able to play

again, i.e., free of symptoms.18 Moreover, there is less of a quality-based selection issue

17The heterogeneity analyses on positions also show that the treatment effect is not driven purely by
substituted players but also by starters.

18A squad typically consists of 20-22 players (depending on the league) and, hence, encompasses more
players than actually play (typically the starting line-up (eleven players) plus 0-5 substitutes).
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The plot displays OLS interaction effects between the post-infection dummy and different recovery breaks
included in equation (1). The length of a break is calculated on the player level, i.e., the number of days
between two matches the player has played in. Dependent variable: ln(Passes). SEs: Heteroskedasticity-
robust and clustered at the player level. The 95% confidence bands are given. The first observation of
every player is dropped as no recovery break to previous matches can be calculated. p-values: Wald
tests for difference between the respective estimates.

Figure 8: Effect Heterogeneity: Recovery Break Effects

into the squad than into the players on the pitch. We also restrict the sample to those

players who could actually play a match soon after the official end of quarantine. In

addition, we drop players who suffered a different injury right after their infection.

Finally, we drop the ‘worst’ 10 percent of the remaining, infected players with re-

gard to playing time as for them selection into the squad might have been an issue. We

conducted several tests to ensure that there is no strong linkage between player quality

and return velocity in the remaining squad. As one would expect, the point estimate

for players with a longer break is higher in absolute terms than for shorter absences, as

Figure 9 shows.19

Comparison to Other Injuries: It may be that players and teams treat COVID-19 just

like any other injury – a player rests for a while and returns to team practice afterward.

If COVID-19 infections have performance effects beyond typical injuries and illnesses,

19Though, the point estimates are not significantly different from each other in this reduced sample
(Wald test: p = 0.345). Also note that the effect of the pooled sample differs from the effect shown in
Fig. 5 as we exclude those players who suffered an injury directly after the infection, never played again
after being infected or got infected directly before the long interruption in Spring 2020, a summer or a
winter break as this would distort the approximation. Hence, we only consider players who actually had
the chance to play in a match in the two weeks after the end of quarantining.
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The plot displays the intensive margin effect of an infection depending on the severity of an infection,
approximated by the length of the interval between infection and return to the squad. Sample split at
the median. N = 140 infected players. The last two bins [150, 225) and [225,∞) are pooled to a joint
endpoint due to the otherwise very small number of observations. Dependent variable: ln(Passes). SEs:
Heteroskedasticity-robust and clustered at the player level. The 90 and (darker) 95% confidence bands
are given.

Figure 9: Effect Heterogeneity: Severity of an Infection

this would emphasize the relevance and uniqueness of this particular virus infection. We

investigate this by analyzing the work performance effects of all other injuries which

happened during our sample period. They range from muscle and ligament injuries to

simple colds. In Figure 10, we distinguish the effects of a COVID-19 infection from

both short and long injury breaks. We split the data at the median injury duration (2

matchdays) to investigate heterogeneity in injury length. Unlike for COVID-19, we find

no comparable work performance effects for other injuries – neither after short nor long

ones.

Moreover, we are able to exploit information on the exact type of injury in our sample.

We specifically identify absences that are related to similar diseases and infections like

COVID-19, such as colds, influenza, and respiratory ailments.20 This gives us some

100 occasions where players are absent owing to such reasons. The right plot of Figure

10 provides the comparison between the COVID-19 repercussions and the respective

effect of other respiratory infections over the course of time. Again, it is evident that

the COVID-19 infection causes more severe productivity effects than sicknesses affecting

20Note that COVID-19 infections are sometimes free of any symptoms, while the other respiratory
infections are likely to be symptomatic as there has not been any testing.

22



The plots give the time-specific COVID-19 or injury effects on the number of passes on the player and
match level estimated by OLS. SEs: Heteroskedasticity-robust and clustered at the player level. We
take the first match missed by an injured player as the starting date of the injury. The regression set-up
follows equation (2). Under ‘respiratory injuries’ we subsume colds, influenza infections, pneumonia, and
bronchitis (data from www.transfermarkt.de). We report 95% confidence bands in both plots.

Figure 10: Time-Specific COVID-19 and other Injuries’ Effects on Performance

similar parts of the organism.21 This corresponds to earlier research of Keech et al. (1998),

who find a work performance deterioration for influenza-like sicknesses after returning to

the workplace only over 3.5 days on average.

Eventually, our findings also support the external validity of our setting. There are

no effects among professional soccer players subsequent to an ‘ordinary’ respiratory infec-

tion and hardly any among the general labor force. Hence, the singularity of professional

athletes does not immediately imply differences in productivity outcomes. In turn, the

significant deterioration following a COVID-19 infection may not reflect an overstate-

ment of the effect in the general population due to players’ stronger dependence on their

respiratory system.

21To test for such differences for the long-run effect, we conduct Wald tests on the pooled last two
bins in each event study regression. As there can be multiple injuries per players, so that the treatment
is non-absorbing, we cannot compare simple difference-in-differences coefficients. For the differences
between a COVID-19 infection and short and long injuries (as shown on the LHS of Fig. 10), the pooled
estimates of the last two bins differ signficantly from each other for COVID-19 infections in comparison
to short injuries (p = 0.031) and to long injuries (p = 0.039). On the RHS of Fig. 10, the long-term
difference between the effect of COVID-19 and other respiratory infections is significant with p = 0.075.
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Within-Match Mechanism: We can identify substantial and persistent effects of a

COVID-19 infection on player performance. Our granular data allow us to study not

only outcomes by matchday but also performance within a match. As COVID-19 is a

respiratory infection and soccer requires endurance in physical activity, it may be likely

that players perform worse in the later stages of a match. We investigate this in Figure

11, in which we plot time-specific COVID-19 effects by decomposing the match of a player

into a maximum of six parts of 15 minutes in length each.

The results show decreased physical work performance from the first minute on the

pitch onward in cases in which a player has recovered from an infection. Furthermore,

performance declines throughout a match. While the effect seems to be stable at around

-3 percent in the first 30 minutes, post-infected players face a deterioration of some ad-

ditional 3 percentage points in later phases. This deterioration is statistically significant

on the 1% level for the second 30 minutes relative to the first 30 minutes played and

significant on the 10% level for the last 30 minutes relative to the first thirty minutes

played by an individual previously infected. Such a downward trend would be in line

with COVID-19 affecting the player’s endurance. Note that Figure 11 shows relative

time. Hence, especially the first two bins capturing match time up to 30 minutes also

encompass players that have been substituted on the pitch in the second half of a game.

Even though they play for a shorter length of time and know this in advance, i.e., they do

not need to manage their physical energy to last the full 90 minutes, their performance

is lower compared to their non-infected peers.

Again, this emphasizes that we are likely to estimate a lower threshold of the treatment

effect in absolute terms and that a COVID-19 infection causes a non-negligible deterio-

ration in performance. Additionally, it addresses the external validity of this study, as

fewer minutes played might better correspond to ‘real world’ occupations. Also, players

who perform worse during later parts of a match might be substituted off earlier, so that

their negative contribution at the end of matches might not be observable. Hence, the ex-

tensive margin effects might hide an even steeper downward trend throughout the match.
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The plots show the time-specific COVID-19 effects on ln(passes). The x-axis shows the number of
minutes a player has already been on the field. The y-axis documents the effect on the outcome variable.
Standard errors are heteroskedasticity-robust and clustered at the player level. The 95% confidence bands
are given. The regression setup is very similar to (1) estimated via OLS except for additional interactions
of the COVID-19 term with the 15-minute time slots, which also results in up to six observations per
player and match (for each time category if on the field) instead of one aggregate observation. p-values:
Wald tests for difference between the respective estimates. The upper p-value compares the first 30
minutes (bins 1 and 2) with the second thirty minutes (bins 3 and 4). The lower p-values compares the
first 30 minutes with the last 30 minutes (bins 5 and 6).

Figure 11: Time-Specific COVID-19 Effects on Within-Match Performance

Spillovers on Team Performance: Essential in team collaborations is the aggregate

outcome of all individuals while the aggregate performance may differ from the sum of its

components. A crucial question is whether the deteriorated productivity of post-infected

players creates spillover effects on other players on the pitch. Hence, is a player’s perfor-

mance also affected by others’ health shocks? We noted that treated players make fewer

passes. Hence, teammates might be less involved in the match as well. Alternatively,

they could compensate for the decreased performance of infected fellow players by taking

more responsibility and being more involved in the match.

Stepping back, this issue directly corresponds to economic research on team produc-

tion or else how a worker’s effort affects her coworkers. To only name a few papers, Ichino

and Falk (2005) find positive spillovers in a lab experiment, Mas and Moretti (2009) con-

firm the magnitude of this effect in a quasi-experimental setting with field data. They

particularly investigate the arrival of highly productive coworkers. In contrast, Azoulay

et al. (2010) as well as Waldinger (2011) study negative productivity spillovers. The

former analyze the sudden deaths of academic ‘superstars,’ the latter investigates the
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forced expulsion of Jewish researchers in Nazi Germany. While Azoulay et al. (2010) find

a significant negative effect in quality-adjusted publication rates, Waldinger (2011) does

not. In the field of sports, Guryan et al. (2009) investigate the impact of a golf player’s

performance on the partner he plays with but do not find a sufficient impact. However,

this is no team but rather rival performance. Our paper adds to this literature a large-

scale natural experiment for workers that need to collaborate strongly in a high-stakes

environment with large group sizes.

Technically, we address the spillover issue by analyzing a team’s performance de-

pending on its exposure to COVID-19 infections. More specifically, we proxy a team’s

exposure to COVID-19 by the number of players recovered from an infection as a share

of the overall team size (at any point in time before a match) at the match level. We

construct the variable ‘COVID-19 Exposure’ as:

CEtm =

∑
p∈t Post-Infectionpm

#Playerstm
. (3)

The numerator is the number of infected players of team t on matchday m. The denom-

inator is the overall number of players of team t at match m, i.e., the squad size. Figure

A13 in the appendix displays the distribution of the positive values of this variable. In

almost half of the team-match observations, recovered players were involved.

Figure 12 displays the simple reduced-form effect of CE on the logarithmic cumulative

pass performance of a team (red). We separate CE into four equal quartiles for CE > 0.

The decline in performance is increasing but is only significant for the last quartile –

CE ∈ [0.241, 1], which encompasses an exposure of, on average, 35.2 percent recovered

players (out of an average team size of 26.58 players). Hence, one additional infection does

not have a constant marginal effect. This could be relevant for other industries relying

on collaboration in team tasks, too. Research on the direct health effects of COVID-19

typically does not consider such indirect mechanisms. Observable deterioration in team

performance in the largest quartile corresponds to the finding that performance losses

due to sickness absenteeism of employees exceed their wages (Pauly et al., 2002; Zhang

et al., 2017).
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The plot shows the effect of CE on team performance measured in ln(passes) estimated by OLS. We
compare teams with CE = 0 to an exposure in four quartiles, which have the intervals (0, 0.077),
[0.077, 0.130), [0.130, 0.241), and [0.241, 0.500] empirically or else [0.241, 1] theoretically. The means
are CE(0,0.077] = 0.050, CE(0.077,0.130] = 0.096, CE(0.130,0.241] = 0.191, and CE(0.241,1] = 0.352. The
red bars capture the baseline CE effect on team performance, the green bars additionally control for
#players currently in quarantine, the blue bars control for #players not being part of the squad following
a COVID-19 infection. All regressions includes controls for home/away matches, ghost matches, the
opponent’s COVID exposure (transformed by the inverse hyperbolic sine transformation) and team-
season FE, opponent-season FE and matchday FE.

Figure 12: Effects of COVID-19 Exposure (CE) on Team Performance

Other than in that research, our treated individuals are not necessarily absent but are

often on the pitch. In the blue and green case, we also control for different measures of

how many players missed a match due to quarantining. This should isolate the spillover

effects of infected players on the pitch from pure composition effects due to missing

quarantining players. If anything, the green and blue-colored estimates in Figure 12

highlight that the negative team spillovers are most likely related to productivity decline,

when infected players are on the pitch, and are not caused by a composition effect.

The latter captures a potential decline caused by the pure absence of players and their

replacement with weaker substitutes. As we control for the number of players currently

in quarantine (green) and not being part of the squad following a COVID-19 infection,

one can see that the estimates hardly change. Overall, it might be the case that a

team can compensate for small declines in their team members’ contributions but not

for larger ones. The deterioration in performance for a CE ∈ [0.241, 1] amounts to 7.08
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percent, while the mean exposure in this interval is only roughly one-third. This is strong

suggestive evidence of spillover effects well beyond the individual effect.

Our variable definition allows us to capture the direct effect of weaker performance

on the pitch as well as performance deterioration due to missing players because they

have been hit severely by the infection. Hence, CE captures both extensive and in-

tensive effects. As we argue that non-infected players perform worse due to their under-

performing teammates, we have an affected control group, which confounds the estimates

of a difference-in-differences setup. However, this only implies that our results on indi-

vidual effects should be interpreted as lower bounds as there might be performance drops

related to the treatment in the control group as well. Interestingly, previous research on

performance deterioration on the soccer pitch due to external influences did not find such

spillover effects (Lichter et al., 2017). These effects might be unique to COVID-19.

Figure 13 reports the elasticity of an increase of the own team’s COVID exposure to

own player and opponent player performance. Individual-level productivity is negatively

affected by the own team’s exposure while opponents’ performance is not significantly

changed. An increase of about 4 percent COVID exposure (corresponds roughly to one

additional infection in an average squad) again reduces player performance by about 0.8

percent. The individual-level COVID effects of infected players remain unaffected by the

inclusion of the exposure measures in the individual-level data.

The results over the course of a match for individual players displayed beforehand in

Figure 11 hold for the aggregate team performance as well. Figure A14 in the appendix

provides estimates of the time-specific effect of higher exposure to COVID-19 infections

within a team on pass performance. We again find that the effect of more post-infected

players on the field especially arises in later stages of the game, even though the simple

semi-elasticity for the own team is only significant at the 10% level. The marginal effect

of −0.199 describes a hypothetical change of ∆CE = 1 and corresponds to the basic effect

in Figure 13. Overall, Figure A14 also provides no evidence of relevant spillover effects

on the performance of the opponent team. Jointly with the basic difference-in-differences

results that confirms spillover effects to only occur within a team. As we find a negative
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effect of COVID-19 across teams, this is additional evidence of the individual-level find-

ings since the SUTVA applies at the team level.

These figures plot the OLS coefficients βτ of the simple difference-in-differences regression following
Equation (1). The 95% confidence intervals are given. The dependent variables are ln(passes). The
logarithmic specification excludes observations with zero passes. The independent variables added to the
standard model used above is the hyperbolic sine transformation of the players’ team COVID exposure.

Figure 13: Basic Effect on Team-Level Performance

Relevance of Productivity Measures: While our performance measures such as the

time on the pitch and the number of passes are highly relevant for soccer players, it is

less clear to which extent a change in these measures corresponds to more general labor

market outcomes. The most prominent criterion is wages. On the one hand, they reflect

worker productivity. On the other hand, they essentially determine living standards. We

subsequently provide evidence that the number of passes (intensive margin), as well as

the likelihood to play (extensive margin), correlate with players’ wages.

To do this, we use wage data of Serie A players at the player-season level from the

‘La Gazzetta dello Sport’, Italy’s most prominent sports newspaper. We assemble annual

wages for 78% of all player-season observations in the Italian league. The relationship

between wages and passes per minute or the likelihood to play is positive and statistically

significant conditional on player demographics, player-specific measures such as his posi-

tion, or the share of matches a player was part of the starting line-up. Figure A11 in the
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appendix visualizes these correlations.22 A 5.1% decrease in the pass performance (as in

our baseline results) translates into around a 10% decrease in wages across teams and a

2% decrease in wages within a team (including team fixed effects). To address potential

non-linearities in the wages of soccer players, we show that the conditional correlations

also hold for a nonlinear specification.

The plot shows the logarithmic weekly wages of players per season in the Italian Serie A as reported by
the La Gazzetta dello Sport up to the 99% percentile.

Figure 14: Weekly Wages of Serie A Soccer Players

Given the correlation between our main productivity measures and players’ wages,

we investigate how the decline in performance would translate into monetary terms. As

wages are typically rigid, this is a rather hypothetical exercise, but it helps to quantify

the effect accordingly. Figure 14 shows the distribution of weekly wages for the Italian

Serie A. The median weekly wage is EUR 15,384.60 but wages are widely dispersed –

the 25th and 75th percentiles are EUR 7,692.30 and EUR 28,846.20, respectively. At

the median, a downgrading of 1.6 percentiles in the productivity ranking as in Figure 6

approximately corresponds to a 6.25 percent decrease in the actual wage. This is in the

range of our estimates from the partial correlation analysis above and would relate to a

weekly loss of EUR 961.54 or EUR 50,000 per annum.

22We can additionally show that the conditional correlation remains significant after including team
fixed effects (as shown in Fig. A12). Thus, passes per minute continue to be a significant predictor of
wages even within a team.
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Generalization of Results: A concern regarding our novel findings is that elite soccer

players may differ from the general population. They are younger and fitter than the

average worker, however, they work in a physically demanding occupation. While the

former might imply more severe productivity effects of an infection for the average – less

fit – individual, the latter might imply a milder effect. Therefore, assessing whether our

findings constitute a lower or an upper bound for the population effect seems inaccurate.

Yet, we carefully lay out why the existing differences may not have a sizable impact on

observed workplace productivity.

Our paper studies long-run effects of COVID-19 infections after recovery. The preva-

lence of post-acute COVID-19 symptoms, as well as their development over time across

age groups and fitness, thus, might be more relevant than differences between athletes and

average workers during the actual infection. We focus on research that is not purely based

on hospitalized patients, since these patients are a very selective sample of mostly elderly

people who had left the workforce (Halpin et al., 2021; Huang et al., 2021; Nalbandian

et al., 2021; Group, 2022). Research particularly conducted among athletes reveals that

such well-trained individuals can also suffer from post-acute, persistent, non-cognitive

symptoms (Brito et al., 2021; Hull et al., 2022; Ribeiro Lemes et al., 2022). More general

studies on the long-run impact on non-hospitalized patients cannot identify a monotone

relation between age and the prevalence of symptoms in a sample of symptomatic and

asymptomatic cases (Whitaker et al., 2022). Similarly, Bliddal et al. (2021) and Tran

et al. (2022) do not find a difference in the level and process of symptoms over time

between individuals below and above 40 years. Blomberg et al. (2021) and Moreno-Pérez

et al. (2021) do not find a robust relation between age, fitness, and persistent symp-

toms either. Thus, the evidence on non-hospitalized patients does not support that the

prevalence of ‘long COVID’ robustly differs with age and fitness.

While not every job is as physically demanding as the occupation of soccer, there still

exists a wide range of industries that rely on physical work as well. The construction

sector alone employs millions of workers, 1.8 million in Germany, 1.3 million in Italy.

The physically demanding sector of health and social work encompasses 4.9 million or
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15 percent of all German jobs.23 Despite technological advances, these sectors continue

to be vastly fueled by the physical labor input of their employees that cannot be easily

substituted by machines.

We carefully conclude that professional soccer players are not as different from the

average population regarding COVID-19 infections and their consequences as one might

expect. If anything, the consequences of a COVID-19 infection may be similar – in qual-

itative terms – for soccer players and the average worker. One should keep in mind that

our sample differs from most medical papers as we observe all asymptomatic infections.

Given that the level of acute infections impacts post-acute symptoms (Peter et al., 2022;

Whitaker et al., 2022), we estimate a real population effect for our sample which differs

from results based on samples with unobserved infections or selection on symptoms.

Robustness Checks: We find similar results for several other performance measures at

both the extensive and intensive margin. Figure 15 reports significant performance drops

also for measures like running distance or the number of interceptions and reveals that

performance effects are neither purely driven by short or long passes. Moreover, clear

effects on the likelihood to play full-time or be part of the starting line-up are evident.

Moreover, even though passes appear to be a reasonable and strong measure for

productivity, one might wonder about the effect of COVID-19 on goals as this is the

ultimate purpose of all match effort. However, the average amount of goals scored per

team and match in our dataset is x̄tm = 1.54. This value is not only low, other than in

most industries, a larger supply of input factors or higher productivity does not necessarily

translate directly into higher output, i.e., into scoring more goals. A more appropriate

measure is the number of shots. Figure A15 in the appendix shows for the individual

level that an infection leads to fewer shots for strikers and a higher COVID exposure

leads to a significant decrease in shots at least for high values of CE. Insignificant effects

for defenders and midfielders are not an objection to our results. If anything, these two

types of players mainly try to serve the strikers with good passes to enable them to make

23See Statistisches Bundesamt (Destatis) 2021, GENESIS database #13111-0003; Italian National
Institute of Statistics/Istituto Nazionale di Statistica (Istat) 2021.
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shots from a promising position. Again, the number of passes is the ultimate driver of

productivity and outcomes.

The plot shows the OLS estimates of the post-infection dummy included in the baseline regression (1)
for different performance measures. Dep. variable: given on the x-axis of the plot (always in hyperbolic
sine transformation form – partly due to a high number of zero observations - except for the dichotomous
variables ‘full-time’ and ‘starting eleven’). SEs: Heteroskedasticity-robust and clustered at player level.
Confidence bands of 95% are shown.

Figure 15: Robustness Check: Other Performance Measures

Our dependent variable is the logarithm of passes such that observations with zero

passes etc. are dropped. This relates to players who participated for just a few minutes

of the match and hence make up around 0.5 percent of the observations. To demonstrate

that our results do not depend on the functional form, in the appendix we provide

results for a specification in levels (Figure A5) and for using the inverse hyperbolic sine

transformation for the dependent variable (Figure A6).24 Our results do not change.

Also, note that our results are not driven by one specific league. Figure A7 presents

extensive and intensive margin effects for both leagues separately. Next, we test whether

performance changes are induced by adapted coaching and changing tactics by inserting

detailed information about the main team formation at the match level. Formation in

this context means how the squad on the pitch is ‘arranged’, i.e., how many players act as

defenders, how many as midfielders and so on. In our data, we observe nineteen different

formations. By replacing the team FE with an interacted team × formation FE, we take

24The hyperbolic sine transformation of x is sinh(x) = ln(x+
√
x2 + 1) and approximates a logarithmic

transformation of the variable in a way that zero values do not get lost.
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formation-specific performance patterns into account. As one can see in Figure A10, the

static semi-elasticity is again slightly lower but remains significantly negative. The event

study pattern remains the same.

As additional robustness checks, we vary the vector of fixed effects (Z). First, we

replace the matchday fixed effect with an augmented matchday×season fixed effect. The

static semi-elasticity is slightly lower (-4.4% instead of -5.1%) but remains highly signif-

icant. Second, we replace the player fixed effect with an interacted player × position

fixed effect, which also captures the respective position of a player (goalkeeper, defender,

midfielder, striker). Again, the static semi-elasticity is slightly lower (-4.5% instead of

-5.1%) as the augmented fixed effect captures a bit more variation but is still highly sig-

nificant. However, the event study estimates are highly similar to those from the baseline

regression in Figure 5 as one can see in the plots provided in Figure A10 in the appendix.

5 Conclusion

This paper analyzes the causal effect of a COVID-19 infection on the productivity of high-

performance workers, utilizing a uniquely granular panel data set of elite soccer players.

We are the first to quantify COVID-19-related productivity effects at the individual level

and find a persistent deterioration of about 5 percent. This does not diminish swiftly but

remains prevalent over months. As hundreds of millions were infected around the globe,

this is not a problem for a handful of people but is likely to accumulate to an effect

size that could be felt by the economy in total. Additionally, we find some mutually

reinforcing effects among groups.

This is a novel and thought-provoking result as our findings correspond directly to

recent policy debates. A ‘zero COVID’ strategy that aims for complete elimination of

the virus in a country or region has been suggested, for example, by Aghion et al. (2021).

Bianchi et al. (2020) and Helliwell et al. (2021) highlight the indirect long-run effects of

lockdowns on unemployment and health outcomes. Particularly, the latter group finds

that rigid NPI strategies leading to zero transmission rates have had superior outcomes
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in more dimensions than just case rates and mortality. We relate our research to this

debate with direct effects.

We are confident that our findings are fairly robust and generalizable. Still, we are

aware that our analysis has limitations. That professional soccer players are only a

subsample of society has already been discussed. Even though it is ambiguous whether

the effects for the ‘average’ individual might be even worse, it would be helpful if our

analyses were more diverse. Future research should, therefore, address gender, a broader

age range, and various job profiles. Also, we are not capable of distinguishing the different

variants of the virus or the severity of symptoms, since we are fully reliant on test results,

which is a dichotomous outcome. Additionally, our results are based on non-vaccinated

people. Even though our event study methodology encompasses a fairly long time horizon,

for obvious reasons we cannot account for the effects over several years. It would be

interesting to re-examine this setting in a few years.

Eventually, our back-of-the-envelope computations for wages of the median worker in

Western countries suggest that there may be non-negligible long run costs for individuals

infected with COVID-19. Even though these are preliminary considerations, COVID-19

may become not only endemic in a epidemiological sense but also in economic terms.
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Jiménez, J., Asensio, S., Sanchez, R., Ruiz-Torregrosa, P., Galan, I., Scholz, A., Amo,
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Appendix

Table A1: Descriptive Statistics on Players and Matches

N Mean St. Dev. Min Max

Treatment Indication
Infected Player 72,938 0.195 0.396 0 1
Post-Infection 72,938 0.086 0.280 0 1
Player Characteristics
Height (in cm) 72,938 183.502 6.139 163 202
Weight (in kg) 72,938 77.322 6.460 58 101
Age 72,938 26.596 4.683 15 43
COVID Game (Yes/No) 72,938 0.659 0.474 0 1
Matchday 72,938 18.592 10.515 1 38
Home (Yes/No) 72,938 0.500 0.500 0 1

Extensive Margin: Player Involvement
Played (Yes/No) 72,938 0.557 0.497 0 1
Injured (Yes/No) 68,577 0.126 0.332 0 1
Suspended (Yes/No) 68,577 0.024 0.154 0 1
Substituted Off (Yes/No) 40,607 0.257 0.437 0 1
Substituted On (Yes/No) 40,607 0.257 0.437 0 1
Played Full-time (Yes/No) 40,607 0.488 0.500 0 1
Starting Eleven (Yes/No) 40,607 0.743 0.437 0 1
Minutes on Field 40,607 66.741 30.122 0 90

Intensive Margin: Player Performance
1. General Measures

Passes 40,607 33.884 22.946 0 167
Passes (Successful) 40,607 26.976 20.313 0 165
Short Passes 40,607 24.212 18.532 0 158
Short Passes (Successful) 40,607 19.624 16.629 0 157
Long Passes 40,607 9.672 6.867 0 50
Long Passes (Successful) 40,607 7.351 5.617 0 41
Distance Covered 40,607 1,175.5 642.9 0 3,878.6
Possession 40,607 32.541 22.152 0 167
Touches 40,607 43.916 26.027 0 177
Aerials 40,607 2.124 2.495 0 28
Aerials (Successful) 40,607 0.022 0.155 0 3

2. Defensive Measures
Ball Recoveries 40,607 3.581 2.915 0 23
Defensive Aerials 40,607 1.063 1.543 0 17

3. Offensive Measures
Shots 40,607 0.888 1.290 0 14
Shots (on Target) 40,607 0.311 0.654 0 7
Offensive Aerials 40,607 1.062 1.735 0 26
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Figure A1: Distribution of #passes per match

This figure plots the absolute frequency of passes played by a player during his individual time on the
pitch in a particular match. Mean = 33.88, median = 31, first quartile = 16, 3rd quartile = 48,
minimum = 0, maximum = 167.

Figure A2: Dynamic Effect on On and Off Substitutions

These figures plot the OLS (linear probability model) estimated coefficients βτ of the event study re-
gressions following Equation (2). The reference time period is one to 75 days before treatment. Standard
errors are heteroskedasticity-robust and clustered at the player level. The 90 and 95% confidence inter-
vals are given by the two red-shaded areas. The dependent variables is a binary variable indicating to
be substituted on (LHS) or off the field (RHS).
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Figure A3: Dynamic Effect on the Likelihood to Play and Minutes Played: Smaller Bin
Size

This figure plots the OLS estimated coefficients βτ of the event study regression following Equation
(2). The bin size is now 30 days, i.e. one month. The reference time period is one to 30 days before
treatment. Standard errors are heteroskedasticity-robust and clustered at the player level. The 90 and
95% confidence intervals are given by the red-shaded areas. As the bin size is much smaller compared
to the baseline setting in figures 3 and 4, this affects the confidence bands. Due to much fewer obser-
vations within one bin, we severely lose statistical power, which leads to mostly insignificant results at
a 5% significance level. Dependent variable LHS: A dummy indicating whether a player played or not.
Dependent variable RHS: ln(minutes played) conditional on having played.

Figure A4: Dynamic Effect on Within-Match Performance: Additional Work Perfor-
mance Measures

These figures plot the OLS coefficients βτ of the event study regression following Equation (2). The
reference time period is one to 75 days before treatment. Standard errors are heteroskedasticity-robust
and clustered at the player level. The 90 and 95% confidence intervals are given by the two red-shaded
areas. The dependent variables are ln(touches) as ln(possession) as additional work performance mea-
sures. The logarithmic specification excludes observations with zero touches or possessions. Robustness
checks in figures A5 and A6 show that these results also hold for settings taking zero values into account.
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Figure A5: Event Studies for Different Outcome Specifications: Levels

These figures plot the OLS estimated coefficients βτ of the event study regression following Equation (2).
The reference time period is one to 75 days before treatment. Standard errors are heteroskedasticity-
robust and clustered at the player level. Outcomes winsorized at the 5 and 95% level. The 90 and 95%
confidence intervals are given by the two red-shaded areas. The dependent variables are passes, touches
and possession in their level specification.
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Figure A6: Event Studies for Different Outcome Specifications: Inverse Hyperbolic Sine
Transformation

These figures plot the OLS estimated coefficients βτ of the event study regression following Equation (2).
The reference time period is one to 75 days before treatment. Standard errors are heteroskedasticity-
robust and clustered at the player level. The 90 and 95% confidence intervals are given by the two
red-shaded areas. The dependent variables are the variables passes, touches and possessions transformed
via the inverse hyperbolic sine transformation to account for zero-values in the dependent variables. See
for a critical assessment of this technique, e.g., Bellemare and Wichman (2020).
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Figure A7: League-Specific Effects

The plot shows the effects of the post-infection dummy included in the baseline equation (1) for the
extensive and intensive margin estimated by OLS. The x-axis gives more precise information on the choice
of the control group. Dep. variable: ln(passes) and a dummy which takes the value 1 if a player has
played. SEs: Heteroskedasticity-robust and clustered at the player level. The 95% confidence intervals
given.
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Figure A8: Additional Heterogeneity Analyses for Intensive Margin Effects: Position on
the Pitch, Playing Frequency, Team Strength, and Infection Timing

These figures plot the OLS estimated heterogeneous semi-elasticity of a COVID-19 infection on pass
performance. Standard errors are heteroskedasticity-robust and clustered at the player level. The 95%
confidence bands are displayed.

� Position addresses the effects on different types of positions a player might have on the pitch.
‘Substitutes’ captures all players that did not play from the beginning but have been substituted
on the pitch during a match.

� Playing Frequency addresses differences in a player’s quality and significance for his team. To
capture this, we calculate the share of available matches a player played in before his infection
took place and construct three groups for different terciles (from weak to strong) of this match-
share distribution.

� Team Strength is the equivalent calculation at the team level. Better teams might have better
medical support available while also allowing recovering players to not take on full responsibility
immediately. Contrary, above-average teams might perform on a level which is harder to come
back to again. We test this relationship by looking at heterogeneous treatment effects for teams
which earned a different number of points up to a certain match in a season. Teams can earn
zero (defeat), one (draw), or three points (victory) per match, so we group them into clusters of
low-performing (average points < 1), medium (average points 1 − 2) and well-performing teams
(average points > 2).

� Infection Timing tests whether early infected players show different work performance effects
than players who got infected later during the pandemic. The plot at hand shows two groups of
infected players which have been divided at the median infection date. One can see that the work
performance effect is significant for both groups and not statistically different from each other.
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Figure A9: Heterogeneity Analysis for Extensive Margin Effects

These figures plot the OLS (partly linear probability model) estimated heterogeneous semi-elasticity of
a COVID-19 infection on pass performance. Standard errors are heteroskedasticity-robust and clustered
at the player level.The 95% confidence bands are displayed.
Heterogeneity in Age and Rest Breaks correspond to the intensive margin effects shown in figures 7
and 8. Position Heterogeneity, Playing Frequency, Team Strength and Infection Timing correspond to
the intensive margin effects shown in Figure A8 above. The difference in Infection Timing is driven by
technical reasons as for late infections there exists much fewer observations after the infection happened
compared to early infections, such that missed matches have a higher weight causing a significant esti-
mate.
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Figure A10: Dynamic Effect on Within-Match Work Performance using different sets of
fixed effects.

These figures plot the OLS coefficients βτ of the event study regression following Equation (2). The
reference time period is one to 75 days before treatment. Standard errors are heteroskedasticity-robust
and clustered at the player level. The 90 and 95% confidence intervals are given by the two red-shaded
areas. The dependent variable is ln(passes).
The plot on the upper LHS shows the event study results using a matchday × season FE instead of the
matchday FE used in the baseline regression (shown in Fig. 5). The plot on the upper RHS shows an
event study specification that uses a player × position FE instead of the player FE used in the baseline
regression.
Both lower plots show a variation in the team FE. The plot on the lower LHS shows event study results
using a team × formation FE instead of the plain team FE. The lower RHS shows results using not only
the team × formation FE applied on the LHS, but also an opponent × formation FE.
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Figure A11: Partial Correlation Analysis

The left column plots the correlation between wages and the share of matches played, the right column
plots the correlation between wages and passes/min. Top row: Pure correlation, middle row: correlation
controlled for age, weight, and height. Bottom row: additional controls for position, share of starting
eleven, share of fulltime matches. The variable passes/min is winsorized at 2.5 and 97.5% to correct
for outliers. Standard errors are heteroskedasticity-robust and clustered at the team level. Data from
the La Gazzetta dello Sport. We report a linear regression fit (red) and a fit from a local polynomial
estimator (blue). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Figure A12: Partial Correlation Analysis Including Team Fixed Effects

The left column plots the correlation between wages and the share of matches played, the right column
plots the correlation between wages and passes/min. Different to Fig. A11, we additionally include team
fixed effects. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Figure A13: Distribution of COVID-19 Exposure (CE) for CE > 0

This figure plots the absolute frequency of COVID-19 Exposure (CE) realizations for CE > 0 – as
defined in eq. (3) – observed in the team data.
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Figure A14: Effects on Within-Match Team Performance (Own vs. Opponent Team)

The plots show the time-specific COVID-19 effects on ln(Passes) on team and match level of CE on own
(LHS) and opponent team (RHS) performance estimated by OLS. SEs: Heteroskedasticity-robust and
clustered at the team level. The 95% confidence bands are given. The regression set-up is equivalent to
(1) except for additional interactions of the COVID-19 term with 15-minute time slots, which results in
up to six observations per player and match. In contrast to Fig. 11, the time slots capture overall match
time and not the minutes a player has been on the field. The regression includes controls for home/away
matches, ghost matches and team-season FE, opponent-season FE and matchday FE, and time category
FEs.

Figure A15: Effect of COVID-19 on Shots (Individual and Team Level)

The plots show the effect of a COVID-19 infection on goals on the individual (LHS) and the team level
(RHS).
The plot on the left displays OLS interaction effects between the post-infection dummy and age groups
included in equation (1). Dependent variable: shots, transformed via the inverse hyperbolic sine trans-
formation to account for zero-values. SEs: Heteroskedasticity-robust and clustered at player level. Goal-
keepers are omitted due to the position-specific importance of shots.
The plot on the right shows the effect of CE on team performance measured in the logarithm of shots
estimated by OLS. We use the hyperbolic sine transformation due to zero shots observations at the
team level. We compare teams with CE = 0 to an exposure in four quartiles, which have the intervals
(0, 0.077), [0.077, 0.130), [0.130, 0.241), and [0.241, 0.500] empirically or else [0.241, 1] theoretically. The
means are CE(0,0.077] = 0.050, CE(0.077,0.130] = 0.096, CE(0.130,0.241] = 0.191, and CE(0.241,1] = 0.352.
The regression includes controls for home/away matches, ghost matches, the opponent’s COVID exposure
(transformed by the inverse hyperbolic sine transformation) and team-season FE, opponent-season FE
and matchday FE. In both plots, 95% confidence bands are given.
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Table A2: Test of Balancing Condition

Before Matching After Matching
Treated Non-Treated p-value Treated Non-Treated p-value

Propensity Score 0.034 0.003 0.000∗∗∗ 0.034 0.032 0.534
Recent Match
Involvement
Played 0.702 0.612 0.005∗∗∗ 0.702 0.746 0.321
Played×Fulltime 0.351 0.296 0.102 0.351 0.405 0.264
Played×Starting Squad 0.546 0.452 0.007∗∗∗ 0.546 0.590 0.371
Past Match
Involvement
Played 0.664 0.598 0.000∗∗∗ 0.664 0.643 0.444
Minutes if Played 67.073 61.798 0.000∗∗∗ 67.073 65.191 0.357
Fulltime if Played 0.514 0.450 0.005∗∗∗ 0.514 0.480 0.287
Distance/min 19.038 18.724 0.643 19.038 18.616 0.586
Passes/min 0.516 0.492 0.098∗ 0.516 0.513 0.884
Ballrecovery/min 0.052 0.056 0.030∗∗ 0.052 0.054 0.347
Possession/min 0.497 0.472 0.077∗ 0.497 0.494 0.879
Touches/min 0.676 0.657 0.182 0.676 0.680 0.857
Shots/min 0.015 0.014 0.556 0.015 0.013 0.309
Aerials/min 0.035 0.037 0.828 0.035 0.034 0.780
Demographics
log(Height) 5.214 5.210 0.102 5.214 5.211 0.322
log(Weight) 4.344 4.344 0.955 4.344 4.334 0.259
log(Age) 3.273 3.284 0.359 3.273 3.253 0.214
Others
1[NT COV19] 0.483 0.322 0.000∗∗∗ 0.483 0.463 0.693
1[NT COV19] 0.782 0.500 0.000∗∗∗ 0.782 0.776 0.947
×ln(# Matches)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. p-value report coefficients from two-sided t-tests.
1[NT COV19] = part of the national team during COVID-19. The matching regression also includes
team×season, matchday×season and position FE. The matching is conducted within position-matchday
cells. We do not match infected players who ever got infected after our sample period or for who we do
not observe the last match before the infection. We also drop these players from the final estimation
sample. ’Before Matching’ compares those observations which are treated in the probit regression,
with all other included observations of non-infected players. ’After Matching’ compares the matched
observation-couples. All variables in the subgroup ’Past Match Involvement’ give cumulative averages
up to the matchday of the observation for a respective player.
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Figure A16: Dynamic Effects Using a Fully Balanced Control Group

These figures plot the OLS coefficients βτ of the event study regression following Equation (2). The
reference time period is one to 75 days before treatment. Standard errors are heteroskedasticity-robust
and clustered at the player level. The 90 and 95% confidence intervals are given by the two red-shaded
areas. The dependent variables are the logarithm of the likelihood to play (LHS) and the logged number
of passes (RHS). These regressions use a fully balanced sample based on propensity score matching as
described in Table A2. N = 205 infected-counterfactual pairs.
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