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Continual learning-based probabilistic slow feature
analysis for monitoring multimode nonstationary

processes
Jingxin Zhang, Donghua Zhou, Fellow, IEEE, Maoyin Chen, Member, IEEE, and Xia Hong, Senior

Member, IEEE

Abstract—A novel continual learning-based probabilistic s-
low feature analysis algorithm is introduced for monitoring
multimode nonstationary processes. Multimode slow features
are extracted and an elastic weight consolidation (EWC) is
adopted for sequential modes. EWC was originally introduced
in the setting of machine learning of sequential multi-tasks
with the aim of avoiding catastrophic forgetting issue, which
equally poses as a major challenge in multimode nonstationary
process monitoring. When a new mode arrives, a small set
of data are collected for continual learning by the proposed
algorithm. A regularization term is introduced to prevent new
data from significantly interfering with the learned knowledge,
where the parameter importance measures are estimated. The
proposed method is referred to as PSFA–EWC, which is updated
continually and is capable of achieving excellent performance.
PSFA–EWC furnishes backward and forward transfer ability
by a single model. The significant features of previous modes
are retained while consolidating new information, which may
contribute to learning new relevant modes. The effectiveness of
the proposed method is demonstrated via a continuous stirred
tank heater and a practical coal pulverizing system.

Note to Practitioners—Since industrial systems operate in
varying modes and data are nonstationary within each mod-
e, multimode nonstationary process monitoring is increasingly
important. Traditional multimode monitoring methods generally
need complete data from all possible modes and may need to
be retrained from scratch when a new mode arrives, which
require expensive computation and storage resources. Besides,
it is difficult to distinguish real faults from normal variations
in multimode nonstationary processes. This paper proposes a
novel continual learning-based probabilistic slow feature analysis,
where elastic weight consolidation is employed to consolidate
the previously learned knowledge while extracting multimode
slow features. The monitoring model is updated sequentially and
provides backward as well as forward transfer learning ability
for successive modes. It is able to separate real faults from normal
dynamics, which is beneficial to identifying a new mode for
multimode nonstationary processes. In addition, the proposed
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approach delivers excellent model interpretability and deals with
missing data as well as uncertainty. In industrial applications,
such as power plants and intelligent manufacturing processes, the
proposed method can provide excellent monitoring performance.

Index Terms—Multimode nonstationary processes, probabilis-
tic slow feature analysis (PSFA), elastic weight consolidation
(EWC), continual learning ability

I. INTRODUCTION

Data-driven process monitoring is vitally important for
ensuring safety and reliability of modern industrial process-
es [1]–[4]. Nonstationary process monitoring methods have
been extensively studied [5]–[8]. Slow feature analysis (SFA),
which is effective in extracting invariant slow features from
fast changing sensing data [9], has been widely extended to
process monitoring. SFA could establish a comprehensive op-
erating status, where the nominal operating deviations and real
faults may be distinguished in the closed-loop systems [10]–
[13]. Recursive SFA (RSFA) [11] and recursive exponential
SFA [12] were developed, and the associated parameters were
updated for adaptive monitoring. Sufficient samples had been
required to establish the initial model when a new mode was
identified. Probabilistic SFA (PSFA) was proposed as a prob-
abilistic framework with the advantage of effectively handling
process noise and uncertainties, where measurement noise was
modeled and missing data could be settled conveniently [13].

Most industrial systems operate in multiple conditions due
to equipment maintenance, market demands, changing of raw
materials, etc. Multimode nonstationary process monitoring
methods have been investigated, which could be sorted into
two categories [14], namely, single-model and multiple-model
methods. Single-model methods transform the multimode data
to unimodal distribution [15] or establish adaptive models [11],
[16]. Local neighborhood standardization can normalize data
into a single distribution and popular methods for one mode
could be applied [15]. However, the effectiveness may be
influenced by the matching degree of training and testing data.
Although prior knowledge is not required, these algorithms are
effective for slow changing features and may fail to track the
dramatic variations on the entire dataset [11], [15], [16].

The mainstream approaches of multimode monitoring are
based on multiple-model schemes, where the modes are iden-
tified and local models are built within each mode [17]–[19].
Mixture of canonical variate analysis (MCVA) was explored
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for multimode nonstationary processes [18]. Besides, autore-
gressive dynamic latent variable was extended to multimode
dynamic processes through a switching technique [20], where
autocorrelations and cross-correlations were extracted based
on a high-order Bayesian network model. In [21], a novel
nonstationary discrete convolution kernel was proposed to deal
with multimodality and nonlinear behavior, which aimed to
overcome the limitation of radial basis function in multimode
processes. Improved mixture of probabilistic principal com-
ponent analysis (IMPPCA) could be utilized for multimode
processes [19], where the model parameters and the mode
identification were jointly optimized. However, the number of
modes is a priori and data from all possible modes are required
before learning, which is infeasible and time-consuming [14].
When novel modes appear, sufficient data should be collected
and new local models are relearned correspondingly. The
model is only effective for the learned modes, but may be
difficult to deliver excellent performance for similar modes
[18], [19]. Besides, multiple-model schemes may be redundant
and difficult to identify modes accurately [22]. The model’s
capacity and storage costs increase significantly with the
emergence of modes.

Recently, the emergent research area of continual learning
has received much attention [23]–[28]. One long-standing
challenge to be addressed is catastrophic forgetting issue,
namely, learning a model with new information would influ-
ence the previously learned knowledge [23]. Continual learn-
ing is concerned with continual adaptation of the model to the
changing tasks by acquiring new information while preserving
the learned knowledge. While there are diverse techniques on
continual learning ranging from regularization [23] to dynamic
architectures [26] to manipulating data memory replay [24],
the majority benchmarking applications in the literatures ap-
pear to focus on the image processing and generally require
the class labels [23]–[27], [29]. Nevertheless, the concept of
continual learning extends to lifelong machine learning [30]
as well as poses open problems to related areas of machine
learning such as transfer learning [31], etc (The readers are
referred to [27] and references within). Of particular interest
here is its integration with domain-specific learning such as
autonomous agents [27] and conditioning monitoring [32].
One of the continual learning paradigms is called elastic
weight consolidation (EWC) [23], in which it is analyzed that
when a full data set of multiple tasks are decomposed based
on a sequence of incoming tasks, the model parameters can be
adjusted accordingly based on data from a new task, without
sacrificing performance for any previously learned tasks. EWC
was interpreted from Bayesian theory, thus providing excellent
model interpretability [23].

Similarly, in the context of multimode process monitoring,
new modes would often appear continuously and different
modes may share similar significant features [22]. In practical
applications, it is often intractable to collect data from all
modes. Zhang et al. applied continual learning into multimode
process monitoring [32], where EWC was employed to settle
the catastrophic forgetting of principal component analysis
(PCA), referred to as PCA–EWC. However, data are assumed
to be stationary in each mode and a mode is identified by

statistical characteristics of data, which makes it ineffective
for multimode nonstationary processes, as well as difficult to
distinguish the operating deviations and dynamic anomalies.
Furthermore, a modified dynamic PCA with continual learning
ability was presented for multimode dynamic processes and
the mode identification was a priori [28], where modified
synaptic intelligence was proposed and the parameter impor-
tance was measured by the sensitivity of each parameter to
the loss. This method is free from the constraint that data
should obey Gaussian distribution, but the importance may
be influenced by the initial setting of the optimization issue.
Sometimes, it may be intractable to accurately identify the
mode switching only by prior knowledge.

Against this background, this paper considers a novel PSFA
approach with continual learning ability, which is regard-
ed as underlying multimode nonstationary processes for the
observed sequential data. Moreover, the proposed algorithm
would be best to distinguish real faults and normal operating
derivations. When a new mode is identified by PSFA and
limited prior knowledge, a small set of data are collected
before learning. A quadratic penalty term is introduced to
avoid the dramatic changes of mode-relevant parameters when
a new mode is trained, where EWC is adopted to estimate the
PSFA model parameter importance. PSFA assumes that the
noise follows multivariate Gaussian distribution in each mode,
which makes it possible to estimate parameter importance
by EWC. The proposed method is referred to as PSFA–
EWC. Since EWC can be interpreted from the perspective
of Bayesian theory, the proposed method furnishes excellent
model interpretability and solid theoretical foundation.

The contributions are summarized as follows:

a) PSFA with continual learning ability is firstly investigated
for nonstationary processes, where data from multiple
modes are collected in a sequential manner. The mode is
identified by the statistics and limited prior knowledge,
and the model is updated based on limited new data
when a new mode arrives. PSFA–EWC provides excellent
interpretability, and deals with missing data, measurement
noise and uncertainty.

b) Compared with traditional multimode process monitoring
methods, PSFA–EWC extracts new information and con-
solidates the previously learned knowledge simultaneously,
which may aid the learning of future relevant modes and
also be beneficial to monitoring the previously learned
modes. Thus, PSFA–EWC furnishes the forward and back-
ward transfer ability.

c) Compared with PCA–EWC [32], dynamic and static fea-
tures are extracted and three monitoring statistics are de-
signed, which can distinguish partial normal variations and
real faults. Besides, the importance is calculated by the
covariance of the gradient of the model’s log likelihood
function with respect to the local optimum, instead of
the expectation of second-order derivative, which is more
suitable for large-scale industrial systems.

The rest of this paper is organized below. Section II reviews
PSFA succinctly and outlines the basic idea of our proposed
approach. The technical core of PSFA–EWC is detailed in
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Section III. The monitoring procedure and comparative ex-
periments are designed in Section IV. The effectiveness of
PSFA–EWC is illustrated by a continuous stirred tank heater
(CSTH) and a practical coal pulverizing system in Section V.
The conclusion is given in Section VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

For ease of exposition, we start with introducing the PSFA
for a single mode, since it serves as basic ingredient of our
proposed multimode PSFA. Then the basic idea of EWC as
well as how to extend EWC to multimode PSFA is outlined.

A. PSFA for a single mode

PSFA aims to identify the slowest varying latent features
from a sequence of time-varying observations xt ∈ Rm, t =
1, 2, . . . , T , which can be represented/generated via a state-
space model with a first-order Markov chain architecture [33].

xt =V yt + et, et ∼ N (0,Σx)

yt =Λyt−1 +wt, wt ∼ N (0,Σ)

y1 =u, u ∼ N (0,Σ1)

(1)

where the low dimensional latent variable yt ∈ Rp, p < m.
Λ = diag (λ1, . . . , λp), with the constraint Λ2 + Σ = I
to ensure the covariance matrix be the unit matrix I . The
emission matrix is V ∈ Rm×q and measurement noise
variance is Σx = diag

(
σ2

1 , · · · , σ2
m

)
.

For a single mode, the observed data and latent slow features
sequences are denoted as Xs = {xt} ∈ Rm×T and Y s =
{yt} ∈ Rp×T , respectively. T is the number of samples and
the estimation of p has been discussed in [13].

The joint distribution is given as [34]

P (Xs|Y s) = P (y1)

T∏
t=2

P
(
yt|yt−1

) T∏
t=1

P (xt|yt) (2)

Let θx = {V ,Σx}, θy = {Σ1,Λ}. The objective of PSFA
is to estimate parameters θ = {θx, θy} by maximizing the
complete log likelihood function:

log P (Xs,Y s|θ) =

T∑
t=1

log P (xt|yt, θx) + log P (y1|Σ1)

+

T∑
t=2

log P
(
yt|yt−1,Λ

)
(3)

The optimal parameter θ is optimized by maximizing (3) using
expectation maximization (EM) algorithm [35].

B. Problem statement

The problem is interpreted for multimode nonstationary
processes and then the key objective is summarized. Consider
also based on PSFA model (1), in the multimode scenario
where data stream are generated as incoming new modes
MK , K = 1, 2, . . . one at time. For each mode MK ,
normal data XK ∈ Rm×TK are collected, where TK is
the number of samples. Correspondingly it is assumed that
Y K ∈ Rp×TK need to be extracted from the Kth mode.

X1

Y1

X2

Y2

1
X

X3

Y3

1 2
,X X

1 2 3
, ,X X X

1 32

Fig. 1. An illustration of the proposed PSFA–EWC with continual learning
ability for three consecutive modes M1, M2, M3.

Denote the total observed data and its latent slow features
as X = {X1,X2, . . . }, Y = {Y 1,Y 2, . . . }.

EWC initially considers Bayesian rule for the sequential
learning process in which the most probable parameters should
be found by maximizing the conditional probability [23]

log P (θ|X,Y ) = log P (X,Y |θ)+log P (θ)−log P (X,Y )
(4)

where P (θ) is prior probability and P (X,Y |θ) is the data
probability. For illustration only the first two successive inde-
pendent modes M1 and M2 are initially considered. Then,
(4) can be reformulated as [23]:

log P (θ|X,Y ) = log P (X2,Y 2|θ) + log P (θ|X1,Y 1)

+ don′t care terms (5)

where P (θ|X,Y ) is the posterior probability of the parameter
given the entire dataset. P (X2,Y 2|θ) represents the loss
function for mode M2. Posterior distribution P (θ|X1,Y 1)
can reflect all information of mode M1 [23]. This equation
reflects the key idea of EWC in continual learning framework
of updating system parameters based on a composite cost
function that is dependent on current parameters learned from
previous data and new incoming data by using posterior
distribution P (θ|X1,Y 1) which acts as a constraint in future
objective, so that the learned knowledge will not be forgotten.

This is the first time that continual learning-based PSFA is
proposed for monitoring where new optimization procedures
of PSFA–EWC will be introduced in Section III, as depicted
in Fig. 1 for three modes. The multimode slow features for
each mode are extracted, while the parameter θ is continually
updated using only data of a new mode, while maintaining
performance of all old modes. Black, blue and red circles
represent the optimal parameter regions that the log likelihoods
for modesM1,M2 andM3 are maximized, respectively. This
process can be generalized to K > 3 modes, with

log P (θ|X,Y ) = log P (XK ,Y K |θ) + log P
(
θ|MK−1

i=1

)
+ don′t care terms (6)

where P
(
θ|MK−1

i=1

)
, P (θ|X1, ...,XK−1,Y 1, ...,Y K−1).

The first term in (6) is complete likelihood for Kth mode.
The second term in (6) is parameter estimate that reflects
information from all previous modes, thus can be interpreted
as log prior probability of parameter for Kth mode. Since
it is assumed that data from all previous modes will not
be accessible to obtain P

(
θ|MK−1

i=1

)
exactly, it is found by

recursive approximation as detailed in Section III-A.



4

III. THE PROPOSED PSFA–EWC ALGORITHM

A. Recursive Laplace approximation of P
(
θ|MK−1

i=1

)
Consider the multimode PSFA process where data are

collected sequentially with mode index K = 1, 2, 3, .... For
the sake of notational simplicity, it is assumed in the sequel
that the data xt and corresponding slow features yt start
from t = 1 at the beginning and end at t = TK of the
Kth mode. The proposed PSFA–EWC algorithm starts with
solving an initial single mode model as K = 1. An optimal
parameter, denoted as θ∗M1

, has been obtained from the first
mode M1 based on solving (3). For later modes (K ≥ 2),
the monitoring model is updated recursively based on the data
from Kth mode and the current monitoring model before K,
where EM is employed [35] to solve the optimization problem
of maximizing J(θ) in Section III-B.

Consider initially two modes K = 2, logP (θ|M1) in (6)
is approximated by the Laplace approximation [23] as

logP (θ|M1) ≈− 1

2
(θ − θ∗M1

)T
(
T1F (θ∗M1

) + λpriorI
)

· (θ − θ∗M1
) + constant

where F (θ∗M1
) is Fisher information matrix (FIM) and com-

puted by (27) in Appendix A. λpriorI is the Gaussian prior
precision matrix for modeM1. The sample size T1 may have
non-negligible influence on the approximation, which would
be replaced by a mode-specific hyperparameter η1 > 0 to
enhance the approximation quality [36], namely,

logP (θ|M1) = −1

2
(θ − θ∗M1

)TΩM1
(θ − θ∗M1

) + constant

where ΩM1 = η1F (θ∗M1
) + λpriorI .

When the Kth modeMK arrives (K ≥ 3), we approximate
logP

(
θ|MK−1

i=1

)
by recursive Laplace approximation as

logP (θ|MK−1
i=1 ) ≈− 1

2
(θ − θ∗MK−1

)TΩMK−1
(θ − θ∗MK−1

)

+ constant

where

ΩMK−1
= ΩMK−2

+ ηK−1FMK−1
, K ≥ 3 (7)

FMK−1
is FIM of mode MK−1 and ηK−1 is a hyperpa-

rameter. log P
(
θ|MK−1

i=1

)
is approximated by a quadratic

term centered at current optimum, with ΩMK−1
acting as an

importance measure regulating data from K − 1 modes.

B. PSFA–EWC algorithm

Consider the objective of PSFA–EWC of maximizing

J (θ) = log P (XK ,Y K |θ) + logP
(
θ|MK−1

i=1

)
(8)

subject to PSFA model (1). Recall (3), the log-likelihood
function for the current mode MK is represented by

log P (XK ,Y K |θ) =

TK∑
t=1

log P (xt|yt, θx) + log P (y1|Σ1)

+

TK∑
t=2

log P
(
yt|yt−1,Λ

)
(9)

The regularization term is designed as

logP
(
θ|MK−1

i=1

)
≈− γ1,K

∥∥V − VMK−1

∥∥2

ΩV
MK−1

− γ2,K

p∑
i=1

ΩλMK−1,i

(
λi − λMK−1,i

)2
(10)

where ΩV
MK−1

and ΩλMK−1,i
measure the importance of

VMK−1
and λMK−1,i, i = 1, · · · , p. λMK−1,i and ΩλMK−1,i

are the ith elements of diagonal matrices ΛMK
and ΩΛ

MK−1
,

which are the optimal parameters of mode MK−1. γ1,K and
γ2,K are user-defined hyperparameters. The setting γ1,K and
γ2,K makes it flexible to adjust the weights of previous modes.

For the proposed PSFA–EWC, the total objective function
of K modes can be formally described by

J (θ) =

TK∑
t=1

log P (xt|yt, θx) +

TK∑
t=2

log P
(
yt|yt−1,Λ

)
+ log P (y1|Σ1)− γ1,K

∥∥V − VMK−1

∥∥2

ΩV
MK−1

− γ2,K

p∑
i=1

ΩλMK−1,i

(
λi − λMK−1,i

)2
(11)

subject to the PSFA model (1). Note that for K > 2, since
the quadratic penalty is added, it slows down the changes
to parameters with respect to the previous optimum values
that are obtained in learned modes [24], [27]. In other word-
s, the parameters that result in significant deterioration in
performance of previous modes will be penalized, avoiding
catastrophic forgetting problem.

When K = 1, ΩV
MK−1

= 0, ΩΛ
MK−1

= 0. There is
no need to provide VMK−1

and ΛMK−1
, this means that

the proposed PSFA–EWC algorithm has a unified formulation
as a sequential single mode based on Kth mode data only,
with current parameters used as quadratic penalty, which are
updated via recursive Laplace approximation between each
mode in Section III-A. The EM [35] is employed to optimize
the parameter θ = {V ,Λ,Σx,Σ1} by solving (11).

1) E-step: Assume that θ is available, the E-step estimates
three sufficient statistics, namely,

E [yt|XK ] = µ̂t (12)

E
[
yty

T
t−1|XK

]
= J t−1Û t + µ̂tµ̂

T
t−1 (13)

E
[
yty

T
t |XK

]
= Û t + µ̂tµ̂

T
t (14)

Detailed information has been summarized in Appendix B.

2) M-step: Assume that three sufficient statistics are fixed,
the parameters are updated alternately.

Since V and Σx are contained in P (xt,yt|θx) and the
regularization term γ1,K

∥∥V − VMK−1

∥∥2

ΩV
MK−1

, then

{V new,Σnew
x } = arg max

V ,Σx

J (V ,Σx) (15)

where
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J (V ,Σx)

=

TK∑
t=1

log P (xt,yt|θx)− γ1,K

∥∥V − VMK−1

∥∥2

ΩV
MK−1

=− TK
2

log |Σx| −
1

2

TK∑
t=1

(
tr
(
E
[
yty

T
t |XK

])
V TΣ−1

x V

+tr
(
xtx

T
t Σ−1

x

)
− 2tr

(
xTt Σ−1

x V E [yt|XK ]
))

− γ1,Ktr
(

(V − VMK−1
)TΩV

MK−1
(V − VMK−1

)
)

Let the derivative with respect to V be zero, then
TK∑
t=1

xtE
[
yTt |XK

]
+ γ1,KΣxΩ

V
MK−1

VMK−1

= V

TK∑
t=1

E
[
yty

T
t |XK

]
+ γ1,KΣxΩ

V
MK−1

V

(16)

This problem is actually the Sylvester equation and the solu-
tion is denoted as V new.

Taking the derivative about σ2
i and let it be zero, then

(
σ2
i

)new
=

1

TK

TK∑
t=1

{
E
[
x2
t,i

]
− 2
(
vT·i
)newE [yt|XK ]xt,i

+
(
vT·i
)newE [ytyTt |XK

]
(v·i)

new
}

(17)

where
(
vT·i
)new

is the ith row of matrix V new, 1 ≤ i ≤ m,
and Σnew

x = diag
((
σ2

1

)new
, · · · ,

(
σ2
m

)new)
.

With regard to Σ1, it is only contained in P (y1), thus

Σnew
1 = arg max

Σ1

E [logP (y1|Σ1)]

=E
[
y1y

T
1 |XK

] (18)

For Λ = diag (λ1, · · · , λp), Σ = I − Λ2. λi is contained
in ΩλMK−1,i

(
λi − λMK−1,i

)2
and P

(
yt|yt−1,Λ

)
, thus

Λnew = arg max
Λ

J (Λ)

where

J (Λ)

=

TK∑
t=2

log P
(
yt|yt−1,Λ

)
− γ2,K

p∑
i=1

ΩλMK−1,i

(
λi − λMK−1,i

)2
=− 1

2

TK∑
t=2

p∑
i=1

[
log
(
1− λ2

i

)
+

1

1− λ2
i

(
E
[
y2
t,i|XK

]
−2λiE [yt,iyt−1,i|XK ] + λ2

iE
[
y2
t−1,i|XK

])]
− γ2,K

p∑
i=1

ΩλMK−1,i

(
λi − λMK−1,i

)2
Let the derivative with respect λi be zero, then

ai5λ
5
i + ai4λ

4
i + ai3λ

3
i + ai2λ

2
i + ai1λi + ai0 = 0 (19)

where the coefficients of (19) are derived as

ai5 =2γ2,KΩλMK−1,i,

ai4 =− 2γ2,KΩλMK−1,iλMK−1,i,

ai3 =TK − 1− 4γ2,KΩλMK−1,i,

ai2 =4γ2,KΩλMK−1,iλMK−1,i −
TK∑
t=2

E [yt,iyt−1,i|XK ],

ai1 =2γ2,KΩλMK−1,i +

TK∑
t=2

(
E
[
y2
t−1,i|XK

]
+ E

[
y2
t,i|XK

]
− 1
)
,

ai0 =− 2γ2,KΩλMK−1,iλMK−1,i −
TK∑
t=2

E [yt,iyt−1,i|XK ]

Thus, the updated λnewi could be calculated numerically
as the root of (19) within the range [0, 1), and Λnew =
diag

(
λnew1 , · · · , λnewp

)
.

The learning procedure of PSFA–EWC is summarized in
Algorithm 1. The transformation and emission matrices are
denoted as ΛMK

and VMK
, respectively. Since noise infor-

mation about Σ1 and Σx is only effective for the current mode,
the subscript MK is neglected.

After the mode MK has been learned, the importance
measures specific to PSFA are updated and ready as (K+1)th
mode.

ΩV
MK

= ΩV
MK−1

+ ηVKF
V
MK

(20)

ΩΛ
MK

= ΩΛ
MK−1

+ ηΛ
KF

Λ
MK

(21)

where F VMK
and FΛ

MK
are calculated by (29) and (31).

ηVK and ηΛ
K are mode-specific hyperparamaters, which are

optimized by hyperparameter search [23] and fine-tuned by
prior knowledge, and may play an important role in accu-
rate estimate of probability with sequential modes. Then we
illustrate the difference γ1,K and γ2,K to ηΛ

K−1 and ηVK−1.
Combined with the importance of current mode MK , the
setting γ1,K and γ2,K is beneficial to assigning the importance
of all previous K − 1 modes again. ηΛ

K−1 and ηVK−1 focus
on the importance of the mode MK−1, which allow users to
obtain models with more focus on a particular mode.

IV. MONITORING PROCEDURE AND EXPERIMENT DESIGN

Analogous to traditional PSFA [13], three monitoring s-
tatistics are designed to provide a comprehensive operating
status. Then, several representative methods are adopted as
comparisons to illustrate the superiorities of PSFA–EWC
algorithm.

A. Monitoring procedure
In this paper, the Hotelling’s T 2 and SPE statistics are

used to reflect the steady variations, and S2 is calculated to
evaluate the temporal dynamics [13].

According to Kalman filter equation,

yt = ΛMK
yt−1 +K

[
xt − VMK

ΛMK
yt−1

]
(22)

After the training phase,Kt would converge to a steady matrix
K. Then, T 2 statistic is defined as

T 2 = yTt yt (23)
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To design SPE, the bias between the true value and one-
step prediction is calculated at t instant. At (t−1) instant, the
inferred slow features follow Gaussian distribution, namely,

P
(
yt−1|x1, · · · ,xt−1

)
∼ N

(
µt−1,P t−1

)
Then, the conditional distribution of yt is described as

P (yt|x1, · · · ,xt−1) ∼ N
(
ΛMK

µt−1,ΛMK
P t−1Λ

T
MK

+ Σ
)

Similarly,

P (xt|x1, · · · ,xt−1) ∼ N
(
VMK

ΛMK
µt−1,Φt

)
where Φt = VMK

ΛMK
P t−1Λ

T
MK

V T
MK

+VMK
ΣV T

MK
+

Σx. The prediction error follows Gaussian distribution, namely

εt = xt − VMK
ΛMK

µt−1 ∼ N (0,Φt) (24)

After the training phase, Φt converges to Φ. The SPE statistic
is calculated by

SPE = εTt Φ−1εt (25)

S2 statistic is designed to reflect the temporal dynamics,
which is beneficial to distinguishing the normal operating
variations and dynamics anomalies [10], [13].

S2 = ẏTt Ξ−1ẏt (26)

where ẏt = yt − yt−1, Ξ = E
{
ẏtẏ

T
t

}
is the covariance

matrix and analytically calculated as Ξ = 2 (Ip −ΛMK
) [13].

The thresholds of three statistics are calculated by kernel
density estimation (KDE) [19], and denoted as Jth,T 2 , Jth,SPE
and Jth,S2 . The monitoring rule is summarized below:

1) All statistics are within thresholds, the process is normal;
2) If T 2 or SPE is over its threshold, while S2 is below its

threshold, the dynamic law remains unchanged and the
static variations occur. This may be caused by step faults

Algorithm 1 Off-line training procedure of PSFA–EWC

Input: X̃K , VMK−1
, ΛMK−1

, ΩV
MK−1

, ΩΛ
MK−1

Output: µK , ΣK , VMK
, ΛMK

, ΩV
MK

, ΩΛ
MK

, K, Φ, Ξ,
Jth,T 2 , Jth,SPE and Jth,S2

1: For the modeMK , collect normal data X̃K , calculate the
mean µK and standard variance ΣK . Normalize data and
the scaled data are denoted as XK ;

2: Initialize parameters V , Λ, Σ1, Σx, Σ;
3: While the issue (11) is not converged do

a) Calculate three sufficient statistics by (12)–(14);
b) Update the parameters by (16)–(19);

4: The optimal emission and transition matrices are denoted
as VMK

and ΛMK
, respectively;

5: Calculate the FIMs F VMK
by (29) and FΛ

MK
by (31).

Then, update the importance measures ΩV
MK

and ΩΛ
MK

by (20)–(21);
6: The final Kalman matrix is denoted as K, calculate Φ

and Ξ;
7: Calculate three monitoring statistics by (23), (25), (26);
8: Calculate thresholds by KDE, labeled as Jth,T 2 , Jth,SPE

and Jth,S2 .

Algorithm 2 Online monitoring procedure of PSFA–EWC
1: Collect the test data x, preprocess x by µK and ΣK ;
2: Calculate the latent variable by (22) and prediction error

by (24);
3: Calculate three monitoring statistics by (23), (25), (26);
4: Judge the operating condition:

a) Normal, return to step 1;
b) A new mode appears, let K = K + 1, return to

Algorithm 1 to update the monitoring model;
c) A fault occurs and the alarm is triggered.

or normal drifts [10], [12], which has been explained in
the supplementary material. Besides, this situation should
be confirmed and distinguished further based on data and
limited prior knowledge. When a new mode occurs, a
small set of new data are collected to update the PSFA–
EWC model. The process is monitored by S2 statistic
before the updating procedure;

3) If S2 is over threshold, the dynamic behaviors are unusual
and the system is out of control. A fault occurs and the
alarm would be triggered.

The off-line training and online monitoring procedures have
been summarized in Algorithm 1 and Algorithm 2, respective-
ly. Fault detection rates (FDRs) and false alarm rates (FARs)
are adopted to evaluate the performance.

B. Comparative design

RSFA [11], PCA–EWC [32], IMPPCA [19] and MCVA
[18] are selected as the comparative methods in Table I.
For PSFA–EWC, PSFA and RSFA, three monitoring statistics
are calculated, where S2 statistic is beneficial to distinguish-
ing real faults and normal dynamic behaviors in multimode
nonstationary processes. The remaining methods calculate
two statistics and cannot separate real faults from normal
variations. Assume that data from each mode are collected
sequentially, the performance is evaluated by monitoring the
current and the previously learned modes.

PSFA–EWC, RSFA and PCA–EWC can be regarded as
adaptive methods, which avoid storing data and alleviating
storage requirement. For Situations 1–11, PSFA and PSFA–
EWC are compared to illustrate the catastrophic forgetting
issue of PSFA and the continual learning ability of PSFA–
EWC for successive nonstationary modes. When a new mode
is identified by S2 statistic and limited prior knowledge, a
small set of normal data are collected and the model is updated
off-line by extracting new information while consolidating
the learned knowledge. PSFA–EWC furnishes the backward
and forward transfer ability, namely, the updated PSFA–EWC
model is able to monitor the previous modes and the learned
knowledge is valuable to learn future new relevant modes.
Equivalently, the simulation results of Situations 2, 3, 6–8
should be excellent. Conversely, the results of Situations 5, 10
and 11 are expected to be poor. The RSFA model is updated
in real time and desired to track the system adaptively, as
Situations 12–14 illustrated. For Situations 15–20, the design
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TABLE I
COMPARATIVE SCHEMES

Methods Training sources
(Model + Data)

Model
label

Testing
sources

Situation 1 PSFA M1 A M1

Situation 2 PSFA–EWC A + M2 B M2

Situation 3 PSFA–EWC - B M1

Situation 4 PSFA M2 C M2

Situation 5 PSFA - C M1

Situation 6 PSFA–EWC B + M3 D M3

Situation 7 PSFA–EWC - D M1

Situation 8 PSFA–EWC - D M2

Situation 9 PSFA M3 E M3

Situation 10 PSFA - E M1

Situation 11 PSFA - E M2

Situation 12 RSFA M1 F M1

Situation 13 RSFA F + M2 G M2

Situation 14 RSFA G + M3 H M3

Situation 15 PCA M1 I M1

Situation 16 PCA–EWC I + M2 J M2

Situation 17 PCA–EWC - J M1

Situation 18 PCA–EWC J + M3 L M3

Situation 19 PCA–EWC - L M1

Situation 20 PCA–EWC - L M2

Situation 21 IMPPCA M1, M2 M M1

Situation 22 IMPPCA - M M2

Situation 23 IMPPCA M1, M2, M3 N M1

Situation 24 IMPPCA - N M2

Situation 25 IMPPCA - N M3

Situation 26 MCVA M1, M2 O M1

Situation 27 MCVA - O M2

Situation 28 MCVA M1, M2, M3 P M1

Situation 29 MCVA - P M2

Situation 30 MCVA - P M3

process of PCA–EWC is similar to that of PSFA–EWC. PCA–
EWC is desired to provide the continual learning ability
comparable to PSFA–EWC.

IMPPCA and MCVA are multiple-model methods, where
the mode is identified and local models are built within
each mode. Data from all possible modes are required before
learning. When a novel mode arrives, sufficient samples should
be collected and the model needs to be retrained on the
entire dataset. IMPPCA and MCVA should provide excellent
performance for Situations 21–30. However, it is intractable
and time-consuming to collect complete data in practical
systems [14]. The computational resources would increase for
each retraining with the increasing number of modes.

V. CASE STUDIES

A. CSTH case

The CSTH process is a nonlinear nonstationary process
and widely utilized as a benchmark for multimode process
monitoring [14], [22]. Thornhill et al. built the CSTH model
and the detail information was described in [37]. CSTH
aims to mix the hot and cold water with desirable settings.
Level, temperature and flow are manipulated by PI controllers.
Six critical variables are selected for monitoring and three
successive modes are considered in Table II. The numbers of
training and testing samples are denoted as NoTrS and NoTeS,
respectively. A random fault occurs in the level from the 501th
sample and the fault amplitude is 0.15.

The monitoring results are summarized in Tables III and
IV. Partial monitoring charts are depicted in Fig. 2 owing
to paper length. Generally, PSFA–EWC provides excellent
performance for sequential modes, where the real fault and
normal variations can be distinguished by S2 statistic. When
a new mode is identified, 300 normal samples are collected and
the PSFA–EWC model is updated based on these limited data,
which could provide excellent performance for the current
mode. For instance, the performance of Situations 2 and 6 is
excellent and the FDRs of S2 statistic are not less than 98%,
which indicates that the fault is detected accurately by PSFA–
EWC and reflects the forward transfer learning ability. Mean-
while, the previously learned knowledge is still consolidated
while extracting new features, which is sufficient to monitor
the past modes. Specifically, with regard to S2 statistic, the
FDRs of Situations 3, 7 and 8 are higher than 98%, which
can illustrate the backward transfer learning ability of the
proposed method. The FDRs of T 2 or SPE are similar for
Situations 1–11. However, the FARs of Situation 11 are higher
than 70%, which indicates that the significant knowledge of
previous mode M2 is forgotten catastrophically. Succinctly,
PSFA–EWC can transfer knowledge between modes, while
it is difficult to establish an accurate PSFA model based on
limited data.

For Situations 12–14, RSFA fails to monitor successive
modes based on an adaptive model, where the FDRs of S2

are less than 60%. RSFA is difficult to track the dramatic
variations on the entire dataset. Analogous to PSFA–EWC,
PCA–EWC is expected to offer prominent performance for
sequential modes. However, the FDRs of Situations 16–20
cannot compare to the corresponding situations of PSFA–
EWC. Although both methods utilize EWC to preserve the
previously learned knowledge, PSFA can deal with dynamic
slow features and S2 is designed to reflect the unusual dynamic
behaviors, while PCA is suitable to stationary data in each
mode. IMPPCA and MCVA build the local models in each
mode and the model needs to be retrained on the entire dataset
when a new mode arrives. They deliver outstanding monitoring
consequences for the learned modes, expect for Situation 30.

Generally, PSFA–EWC outperforms others for sequential
modes, where the number of modes and samples per mode
are not required in advance. When a new mode is identified,
a few data are collected and the model is rapidly updated by
assimilating new information while consolidating the learned
knowledge. The RSFA model is updated when a new normal
sample arrives, but fails to distinguish the normal changes and
real faults in multimode nonstationary processes. Compared
with PSFA–EWC, PCA–EWC is effective to detect the abnor-

TABLE II
NORMAL OPERATING MODES AND DATA INFORMATION OF CSTH

Normal operating setting Data information
Mode

number
Level

SP
Temperature

SP
Hot water

valve NoTrS NoTeS

M1 9 10.5 4.5 1000 1000
M2 12 8 4 300 1000
M3 12 10.5 5.5 300 1000
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Fig. 2. Monitoring charts of the CSTH case
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TABLE III
FDRS (%) AND FARS (%) FOR PSFA, PSFA–EWC AND RSFA

Method
CSTH Pulverizing system

T 2 SPE S2 T 2 SPE S2

FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR
Situation 1 PSFA 43.6 7.4 95.0 1.4 77.0 0.2 99.92 2.15 99.92 0 20.05 0.86
Situation 2 PSFA–EWC 91.2 0 89.6 0 98.0 0.2 100 9.74 100 4.07 94.71 3.59
Situation 3 PSFA–EWC 92.0 0 92.4 0 99.2 9.8 99.92 1.29 99.92 1.29 94.01 14.04
Situation 4 PSFA 1.2 0 93.4 0.6 0.2 0.2 100 48.80 100 5.91 93.25 0.40
Situation 5 PSFA 4.2 6.2 95.0 0.8 20.0 21.8 100 15.19 99.92 0 93.13 14.04
Situation 6 PSFA–EWC 88.6 0 89.4 1.2 98.4 1.6 100 3.65 100 0.20 94.73 3.55
Situation 7 PSFA–EWC 90.6 0 93.4 0.8 99.0 0.8 99.92 1.00 99.92 0 88.10 10.89
Situation 8 PSFA–EWC 89.8 92.0 5.8 98.2 0.2 100 7.91 99.45 0.24 95.26 0.88
Situation 9 PSFA 68.8 23.2 94.4 8.0 78.8 0.2 100 1.32 100 0.20 53.63 2.13
Situation 10 PSFA 54.0 3.6 95.4 5.6 83.4 0.4 99.92 66.05 99.92 0.29 83.95 9.60
Situation 11 PSFA 100 100 96.4 74.4 83.2 2.4 100 79.63 99.45 0 91.79 0.24
Situation 12 RSFA 0 0 0 0 42.0 0.6 60.30 0 0 0 43.13 1.86
Situation 13 RSFA 0 0 0 0 59.2 1.0 84.49 0 0 0 37.59 1.68
Situation 14 RSFA 0 0 0 0 28.8 0.2 0 0 1.98 0 6.59 1.02

mality from static features but difficult to identify a new mode.
PSFA–EWC, RSFA and PCA–EWC have the basically fixed
model capacity, where a single model is updated continually.
For IMPPCA and MCVA, the model is rebuilt based on the
entire dataset when a new mode arrives and the model com-
plexity would increase with the emergence of novel modes.

B. The pulverizing system

We focus on the coal pulverizing system of the 1030–
MW ultra-supercritical thermal power plant in China [32].
The structure is depicted in Fig. 3, which is composed of
coal feeder, coal mill, rotary separator, raw coal hopper and
stone coal scuttle. The coal pulverizing system grinds the raw
coal into pulverized coal with desired fineness and optimal
temperature. According to the historical recording, the fault
in outlet temperature occurs frequently and it is essential to
investigate this sort of fault. Data from three successive modes
are selected to illustrate the effectiveness, as listed in Table
V. When a new mode arrives, only 540 normal samples are
collected to update the model. The variables are selected by
expert experience and prior knowledge.

Fig. 3. Schematic diagram of coal pulverizing system

TABLE V
EXPERIMENTAL DATA OF THE PRACTICAL COAL PULVERIZING SYSTEM

Mode
number NoTrS NoTeS Fault

location Fault cause

M1 2520 1440 699 Pulverizer deflagration
M2 540 1800 1253 Hot primary air electric damper failure
M3 540 1440 986 Air leakage at primary air interface

The simulation results of 30 situations are summarized in
Table III and Table IV. Partial monitoring charts are described
in Fig. 4. With regard to S2 statistic, the FDRs of Situations
6 and 9 are 94.73% and 53.63%, which indicates that the
perviously learned knowledge from modes M1 and M2 is
conducive to monitor modeM3. This phenomenon can reflect
the forward transfer learning ability of PSFA–EWC. For T 2

statistic, the FARs of Situations 4, 10 and 11 are higher than
48%, while the FARs of PSFA–EWC are lower than 10%.
PSFA suffers from catastrophic forgetting issue, where the
model for one mode may not provide excellent performance
for another mode. RSFA cannot monitor the multiple modes
accurately and the FDRs of S2 are lower than 44%. Only
the FDR of T 2 is 84.49% for Situation 13. PCA–EWC
can detect the faults in successive modes timely and the
FDRs approach 100%. IMPPCA and MCVA offer favorable
monitoring performance and the FDRs are convincing, except
for Situation 25.

In conclusion, PSFA–EWC is capable of monitoring se-
quential modes accurately and the fault is confirmed by S2

statistic. The model is updated continually by extracting new
information while preserving the learned knowledge, thus
avoiding performance degradation for similar modes as before.
RSFA is effective to deal with slowly time-varying data and
thus fails to track the dramatic changes on the entire dataset.
Similar to PSFA–EWC, PCA–EWC enables to monitor the
multiple modes based on an updated model for this case.
IMPPCA and MCVA are able to monitor the learned modes.
In terms of detection accuracy, the model complexity and
applications, PSFA–EWC is the most desirable among five
typical methods.
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Fig. 4. Monitoring charts of the pulverizing system
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TABLE IV
FDRS (%) AND FARS (%) FOR PCA–EWC, IMPPCA AND MCVA

Methods
CSTH Pulverizing system

T 2 SPE T 2 SPE

FDR FAR FDR FAR FDR FAR FDR FAR
Situation 15 PCA 83.0 4.4 94.2 0.8 99.92 1.00 99.92 1.00
Situation 16 PCA–EWC 9.2 0.6 90.8 0 100 0 100 0.16
Situation 17 PCA–EWC 8.2 0.8 91.6 0 99.92 0.14 99.92 0
Situation 18 PCA–EWC 13.0 0.8 90.6 0 100 2.44 100 0.20
Situation 19 PCA–EWC 12.2 1.4 92.4 0 99.92 0.14 99.92 0
Situation 20 PCA–EWC 12.6 1.2 91.8 0 99.45 0 99.45 0
Situation 21 IMPPCA 24.4 0.8 94.8 0.4 99.92 0 99.84 0.29
Situation 22 IMPPCA 0.8 0.2 91.0 0 99.45 0.48 99.45 4.23
Situation 23 IMPPCA 20.8 0.8 94.8 0.4 99.92 0.29 99.92 0
Situation 24 IMPPCA 8.4 0.2 89.0 0 99.45 0 99.45 0
Situation 25 IMPPCA 43.0 5.2 91.0 4.2 100 63.96 95.16 47.72
Situation 26 MCVA 100 3.0 77.71 0.2 100 0.14 0 0
Situation 27 MCVA 99.8 1.6 39.56 0.2 49.27 0 97.50 0
Situation 28 MCVA 100 3.0 80.92 0.6 100 0.14 96.07 0
Situation 29 MCVA 99.8 1.2 49.20 1.0 100 6.07 99.63 0
Situation 30 MCVA 100 16.8 87.75 0.2 100 1.62 97.34 0

VI. CONCLUSION

This paper has introduced a multimode PSFA algorithm
with continual learning ability for multimode nonstationary
process monitoring. The proposed PSFA–EWC method has
powerful probabilistic interpretability and ability to deal with
the measurement noise. When a new mode arrives, assume that
a small set of data are collected, the single model is updated
by consolidating new information while preserving the learned
features. The previously learned knowledge is retained and
may be beneficial to establishing an accurate model for future
relevant modes, thus delivering backward and forward transfer
learning ability. The PSFA features are extracted to form
meaningful statistics for fault detection covering multimodes
with only using recent mode data, with low storage and
computational costs. Compared with several state-of-the-art
methods, the effectiveness of PSFA–EWC is illustrated by a
CSTH case and a practical coal pulverizing system.

The proposed PSFA–EWC algorithm requires that data from
multiple modes have a certain degree of similarity, where
the previously learned knowledge may be efficient for future
modes. In future work, we would investigate the multimode
nonstationary modes with applications to chemical systems,
industrial manufacturing systems, etc. Besides, replay con-
tinual learning would be investigated for multimode process
monitoring, where the modes are allowed to be diverse and
the long-term continual learning ability is desired.

APPENDIX

A. Estimation of Fisher information matrix with PSFA

In order to approximate the posterior probability
P
(
θ|MK−1

i=1

)
, sequentially with incoming modes K = 2, . . . ,

Laplace approximation [38], [39] is employed, i.e., local
Gaussian probability density is used for its approximation
centered at maximum posterior probability θ∗MK−1

, with
covariance of the gradient of the model’s log likelihood
function with respect to θ∗MK−1

. The Fisher information

matrix is the covariance of the gradient of the model’s
log likelihood function with respect to the local optimum,
namely,

F = EPx,y

[
∇ log P (x,y|θ)∇ log P (x,y|θ)T

]
=

1

T

∑
t

[
∇ log P (xt,yt|θ)∇ log P (xt,yt|θ)

T
] (27)

where θ = θ∗MK−1
after the mode MK−1 has been learned.

The conditional probability is calculated by

P (xt,yt|θ) = P (xt|yt, θx)P (yt|θy)

Within the context of our PSFA model (1), parameters V
and Λ are considered to calculate the corresponding Fisher
information matrices, since the Laplacian is based on well-
behaved function approximation which may not be applicable
to noise. Besides, it is reasonable to assume that noise from
multiple modes is independent and variance of unknown noise
is constant in our problem. The gradient with regard to V is

∇V log P (xt,yt|θ) =
∂ log P (xt|yt, θx)

∂V
= Σ−1

x (V yt − xt)yTt
(28)

When the modeMK has been learned, the Fisher information
matrix about V is computed by

F VMK

=
1

TK

∑
t

Σ−1
x (VMK

yt − xt)yTt yt (VMK
yt − xt)

T
Σ−1
x

(29)
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Since Σ = I − Λ2, yt ∼ N
(
Λyt−1,Σ

)
, and Λ =

diag (λ1, . . . , λp), the gradient with respect to λi is

∇λi
log P (xt,yt|θ)

=
∂ log P (yt|θy)

∂λi

=
−λ3

i + yt,iyt−1,iλ
2
i +

(
1− y2

t,i − y2
t−1,i

)
λi + yt,iyt−1,i

(1− λ2
i )

2

,g (yt,i, yt−1,i, λi)
(30)

For mode MK , the Fisher information matrix about λi is

Fλi
=

1

TK

∑
t

g (yt,i, yt−1,i, λMK ,i)
2
, i = 1, · · · , p (31)

where λMK ,i is the ith element of diagonal matrix ΛMK
,

FΛ
MK

= diag
(
Fλ1

, · · · , Fλp

)
.

B. Estimation of sufficient statistics

Similar to [34], Kalman filter and Tanch-Tung-Striebel
(RTS) smoother [40] are adopted, which contains the forward
and backward recursion steps.

First, the forward recursions are adopted to estimate the pos-
terior distribution P

(
yt|x1,x2, · · · ,xt, θold

)
∼ N (µt,U t)

sequentially. The posterior marginal is calculated by∫
N
(
yt−1|µt−1,U t−1

)
N
(
yt|Λyt−1,Σ

)
dyt−1

= N
(
yt|Λyt−1,P t−1

)
where P t−1 is the variance.

Then, parameters of the posterior distribution
P
(
Y K |XK , θ

old
)

are acquired by backward recursion
steps. The procedure is summarized in Algorithm 3.

Algorithm 3 E-step in PSFA-EWC
Input: Σ1, Σx, Λ, V , XK

Output: E [yt|XK ], E
[
yty

T
t−1|XK

]
, E

[
yty

T
t |XK

]
% Forward steps by Kalman filter:

1: Initialize K1 = Σ1V
T
(
V Σ1V

T +Σx

)−1
, µ1 = K1x1,

U1 = (I −K1V )Σ1

2: for t = 1 : TK do
3: P t−1 = Λ (U t−1 − I)ΛT + I

4: Kt = P t−1V
T
(
V P t−1V

T +Σx

)−1

5: µt = Λµt−1 +Kt

(
xt − V Λµt−1

)
6: U t = (I −KtV )P t−1

7: end for
% Backward steps by RTS smoother

8: Initialize µ̂TK
= µTK

, ÛTK = UTK

9: for t = TK : 2 do
10: J t−1 = U t−1Λ

TP−1
t−1

11: µ̂t−1 = µt−1 + J t−1

(
µ̂t −Λµt−1

)
12: Û t−1 = U t−1 + J t−1

(
Û t − P t−1

)
JT

t−1

13: end for
% Calculate the sufficient statistics

14: for t = 1 : TK do
15: E [yt|XK ] = µ̂t

16: E
[
yty

T
t−1|XK

]
= J t−1Û t + µ̂tµ̂

T
t−1

17: E
[
yty

T
t |XK

]
= Û t + µ̂tµ̂

T
t

18: end for
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