
University of Reading

PhD in Computer Science

Meteorological Data Reduction
for Tropical Cyclones using Deep

Learning Techniques

Author:
Daniel Galea

Supervisors:
Prof. Bryan Lawrence

Dr. Julian Kunkel

Department of Computer Science

August 2022

Abstract

Tropical cyclones (TCs) are severe weather events which have large human and
economic effects, so it is important to be able to understand how their loca-
tion, frequency and structure might change in future climate. Analysing future
changes in TC frequency and location requires the analysis of high-frequency
data from simulations of the future. If this is done by saving simulation data to
disk for post-processing, it can be very expensive, so finding methods to avoid
writing such data is important. This thesis presents a proof-of-concept study
showing that deep-learning can be used during model execution to identify TC
episodes and only write the data associated with those episodes, leading to re-
duced data output. (In practice high frequency data might be saved for multiple
reasons, but an eventual goal could be to use deep learning and other in-situ
analyses to identify all phenomena of interest and hence minimise data output.)

A crucial problem in developing any TC detection method is establishing
ground-truth, that is labelling the input data with the presence or absence of
TCs. The volume of data is such that it is simply impractical to manually
label data from simulations, and so the method used here is to initially build
a deep learning network using actual TC observations as labels for reanalysis
data (which are simulations which attempt to recreate the past) – and train
on that reanalysis data. There is an unavoidable problem which arises which
is that the reanalysis data itself cannot fully represent reality, and so some
of any discrepancy between the deep-learning labels and the ground-truth can
arise from the reanalysis process and not a failure of the deep learning. In
addition, this method cannot work for the potential future climates where we
need ground truth labels to evaluate the deep learning techniques as well, and
so another objective technique (TRACK, Hodges et al) is used to provide labels
for such data. The influence of errors in labelling which can arise from using
TRACK can be evaluated by using TRACK on the same re-analysis data used
for establishing the initial deep learning network.

As a consequence, the proof of concept study requires three steps: building
and evaluating the deep learning network using observations; comparing and
contrasting the results with TRACK operating on the same observations; and
then introducing the network into a climate model and evaluating the usage of
the deep learning across a range of simulations from different climates.

The initial deep learning model, named TCDetect, obtained a recall rate of
92% with a precision rate of 33% when developed using ERA Interim reanalyses.
This means it was detecting, in ERA Interim data, the vast majority of tropical
cyclones present in the original observations. The relatively low precision rate,
reflected an emphasis on prioritising detection over rejection, but would still
represent a significant data reduction.

iii

The comparison with TRACK applied to the same re-analysis showed that
both methods detected the strongest well-defined cyclones, those with a clear
centre of circulation and the least amount of noise (other weather). However,
many weaker cyclones are only detected by one of TCDetect/TRACK, or by
neither. While TCDetect was only trained for labelling, an attempt to un-
derstand the discrepancy was made which utilised location information; this
analysis showed that some of the discrepancies (and in particular some of the
false positives) were associated with TCDetect erroneously utilising information
from outside the tropics and/or in the wrong place.

When integrated into the UKMet Office Unified Model (UM), TCDetect was
evaluated using current and future simulated climates at two different horizontal
resolutions. For this evaluation, TRACK was used for labelling, and it was
found that the version of TCDetect trained on ERA-Interim was not as good as
a version trained on the UM output itself with recall values ranging from 41% to
62% for the former and values ranging from 71% to 78% for the latter (although
the version trained on the UM data performed adequately on the ERA-interim
data). It was also found that the version trained on low resolution can be used
on higher-resolution data (recall rate of 78% on low resolution data vs 71% on
high resolution data). Importantly, it was found that the version trained on
current climate performed well on future climates.

This could have been helped by the fact that the input variables are climate-
invariant. The effect of a change of labelling source was also discussed. The
reduction in the volume of analysis data saved to disk achieved was shown to be
around 73% of the original data volume. Finally, the method was shown to slow
down a coarse resolution (N96) simulation by around 25% and a finer resolution
(N512) simulation by around 5%, while noting than many optimisations could
be achieved.

Declaration: I confirm that this is my own work and the use of all material
from other sources has been properly and fully acknowledged.

Contents

Abstract iii

1 Introduction 1

2 Deep Learning 5
2.1 Artificial Neural Networks . 5

2.1.1 Loss Functions . 8
2.1.2 Optimisers . 11
2.1.3 Learning Rate . 13
2.1.4 Activation Functions . 14
2.1.5 Weight Initialisation Methods 16
2.1.6 Dropout Regularisation 16
2.1.7 L2 Regularisation . 17
2.1.8 Dataset Balancing . 18

2.2 Convolutional Neural Networks 19
2.3 Deep Learning in Climate Science 20

2.3.1 Fortran-Python Coupling 24

3 Tropical Cyclones 26
3.1 Tropical Cyclone Characteristics 26
3.2 Previous TC detection systems 29

3.2.1 Classical algorithms . 29
3.2.2 Algorithms utilising Deep Learning 32

3.3 TC Detection Methods used in this study 34
3.3.1 IBTrACS . 34
3.3.2 TRACK . 35
3.3.3 Performance Metrics . 37

4 Detecting the Presence of Tropical Cyclones in Climate Model
Data 39
4.1 Deep Learning Network . 40

4.1.1 Data . 40
4.1.2 Network Architecture . 43
4.1.3 Hyperparameter Tuning 45

4.2 Network Understanding and Justifications 50
4.2.1 Network Statistics . 50
4.2.2 Comparison with Standard Networks 51
4.2.3 Network Explainability 53

4.3 Chapter Summary . 60

vi

5 Investigating differences between Tropical Cyclone detection
systems and observations 61
5.1 Data and Methods . 62

5.1.1 IBTrACS . 63
5.1.2 The TCDetect Deep Learning Network 63
5.1.3 TRACK . 64

5.2 Results . 65
5.2.1 Detection . 65
5.2.2 Location . 70
5.2.3 Effects of TC Structure on Detection Skill 73
5.2.4 Deep Learning Retraining 77

5.3 Chapter Summary . 78

6 Implementing Tropical Cyclone detection using deep learning
in the UK Met Office Unified Model 80
6.1 Using TCDetect in the Met Office Unified Model 81
6.2 Scientific Validation . 84

6.2.1 Method Adaptability . 86
6.2.2 The Effect of Different Labelling 89

6.3 Computational Performance . 95
6.3.1 Data Reduction . 96
6.3.2 Method Timing . 99

6.4 Chapter Summary . 102

7 Conclusions 104

A The frugally-deep package 120

vii

List of Figures

1.1 Progress of climate modelling. 2

2.1 Artificial Intelligence and its subfields with examples of algo-
rithms used in each field. 6

2.2 Perceptron. 7

2.3 Fully-connected deep learning neural network. 8

2.4 Example of a CNN, showing a convolutional base added to a
classifier. Blue areas are convolutional windows and red areas
are pooling operations. 20

3.1 Pressure fields (black lines) and wind flows (arrows) for a cold
core system (a) and a warm core system (b). Red arrows and
lines represent warm moist air, green arrows and lines represent
cold air and blue arrows and lines represent colder air. 27

4.1 Each timestep in the ERA-Interim dataset was split into 8 equal
parts to create the training dataset for the deep learning network. 40

4.2 An example of the data that was used to train the TCDetect. Left
column shows data from ERA-Interim and right column show
how this data is transformed after preprocessing. The fields of
MSLP (first row), 10-metre wind speed (second row), vorticity at
850hPa (third row), vorticity at 700hPa (fourth row) and vortic-
ity at 600hPa (fifth row) from the timestep of the 28th of August
2005 at 18Z, i.e. the timestep when Hurricane Katrina obtained
its maximum strength. 42

4.3 Visual representation of the architecture of TCDetect. 43

4.4 Training and Validation Loss and AUC-PR when training TCDe-
tect prior to Early Stopping being used. 48

4.5 Precision-Recall curve for TCDetect when trained and tested on
data from all regions. Values seen in plot indicate the value taken
as a boundary to distinguish between a positive or a negative
inference. 51

4.6 Test AUC-PR (bars) and test loss (points) for standard convolu-
tional bases attached to the fully-connected classifier developed
in the presented network. The whole network classifier was re-
trained for each convolutional base with data from all regions. . 52

4.7 Feature Importance using the Breiman (left) and Lakshamanan
(right) methods for network trained and tested on data from all
regions. 54

viii

4.8 Mean Case for data originating only from the Western Atlantic
and Western Pacific regions (top row) and for data originating
from all regions (bottom row). Columns show MSLP (1st col-
umn), 10-metre wind speed (2nd column), vorticity at 850hPa
(3rd column), vorticity at 700hPa (4th column) and vorticity at
600hPa (5th column). 56

4.9 Test AUC-PR and Loss for network trained and tested on data
from regions around the world. 59

5.1 Events reported by observations (IBTrACS) and detected by T-
TRACK and TCDetect applied to ERA-Interim data for (a) the
whole globe, (b) the Northern Hemisphere and (c) the Southern
Hemisphere. 66

5.2 Tracks reported by observations (IBTrACS) and detected by TRACK
or T-TRACK and TCDetect applied to ERA-Interim data. Over-
laps occur when they share a detection event at some point along
the track in the same region at the same timestep. Tracks are
matched for (a) only TCs (hurricane-strength, hence T-TRACK
is used) and (b) all depressions (i.e. a superset of a, hence
TRACK is used). 68

5.3 Events detected by T-TRACK, TCDetect and reported by IB-
TrACS. All meteorological systems are included from IBTrACS
and TRACK, not just category 1 and higher systems. Events
present in IBTrACS (blue area) were split into TCs of hurricane
status (non-bracketed; defined as true positives for TCDetect)
and other depressions (bracketed values; defined as false posi-
tives for TCDetect and TRACK). 69

5.4 Events detected by T-TRACK, TCDetect and/or reported by
IBTrACS which fall on matching tracks, defined by applying con-
straints similar to those of Hodges, Cobb, and Vidale (2017). . . 70

5.5 Position of each Tropical Cyclone event center as given by IB-
TrACS (top-left); T-TRACK (top-right) and the deep learning
network (bottom). 71

5.6 TC frequency, i.e. number of TC tracks present in a month,
as given by IBTrACS, T-TRACK and TCDetect for each of the
regions used by TCDetect as shown in Figure 4.1. 72

5.7 Spatial correlation of the overlapping regions shown in Figure
5.4, i.e. for matches with constraints applied. Top row pairwise
matches showing pairwise correlation. Bottom row, matches in
all three methods, but still pairwise correlations. 73

5.8 Kernel density estimate plots of TC centre latitude as given by
IBTrACS (blue), T-TRACK (black) and the deep learning based
algorithm (red). 73

ix

5.9 Composite view of Northern Hemisphere events by detection al-
gorithm or observations which pick up the TC. Total number of
cases used to produce each composite can be obtained from 5.1.
Columns correspond to the variables used: MSLP (first column),
10-metre wind speed (second column), vorticity at 850hPa (third
column), vorticity at 700hPa (fourth column) and vorticity at
600hPa (fifth column). 75

5.10 Composite view of the Southern Hemisphere cases (rows and
columns as described in Figure 5.9) - but the sign of vorticity
has been reversed for ease of comparison). 76

6.1 The original workflow of the UK Met Office Unified Model to
carry out a full climate simulation. Objects in white are data
writing steps in the UM. Data writing does not occur in each
timestep. It only occurs during timesteps which correspond to
the output frequency selected by the user. 82

6.2 The UM workflow for a full climate simulation when using the
deep learning network inference to decide whether to write out
data to disk during timesteps which correspond to the output
frequency selected by the user. Red objects show process present
in the original workflow shown in Figure 6.1. White objects are
data saving routines. Green objects show the extra processes
needed to use the deep learning network in the UM. 83

6.3 Monthly recall rate from all variants of TCDetect across the UM
N96 testing dataset. 89

6.4 Monthly number of regions, split by regions (colours), having a
TC detected by T-TRACK across the UM N96 testing dataset. . 89

6.5 Events reported by observations (IBTrACS) and detected by T-
TRACK and (i) TCDetect and (ii) TCDetect-TRACK, applied
to ERA-Interim data for (a) the whole globe, (b) the Northern
Hemisphere and (c) the Southern Hemisphere. 91

6.6 Composite view of Northern Hemisphere events by detection al-
gorithm or observations which pick up the TC. Total number
of cases used to produce each composite can be obtained from
Figure 6.5ii. Columns correspond to the variables used: MSLP
(first column), 10-metre wind speed (second column), vorticity
at 850hPa (third column), vorticity at 700hPa (fourth column)
and vorticity at 600hPa (fifth column). 92

6.7 Composite view of the Southern Hemisphere cases (rows and
columns as described in Figure 6.6) - but the sign of vorticity
has been reversed for ease of comparison). 93

6.8 Position of each Tropical Cyclone event center as given by IB-
TrACS (top-left); T-TRACK (top-right) and the TCDetect-TRACK
(bottom). 94

x

6.9 Example of region having a multiple tropical systems present,
only one of which is a hurricane-strength TC (top row). Grad-
CAM outputs (bottom row) for the example from TCDetect
(left panel), TCDetect-TRACK (middle panel) and TCDetect-
TRACK with top half of the example taken out (right panel).
TC positions as given by Grad-CAM shown by red dots. 95

6.10 Events detected by T-TRACK, (i) TCDetect and (ii) TCDetect-
TRACK and/or reported by IBTrACS using ERA-Interim data
which fall on matching tracks, defined by applying constraints
similar to those of Hodges, Cobb, and Vidale (2017). 96

6.11 Data preparation workflow for producing training data for a deep
learning network from UK Met Office Unified Model outputs. . . 97

xi

List of Tables

2.1 Summary of hyperparameters used or tested while developing the
deep learning neural network used in this study. 9

3.1 Overview of thresholds applied to meteorological variables for
detecting and tracking Tropical Cyclones with the conventional
techniques given. 30

3.2 Previous Deep Learning networks that detect and track Tropical
Cyclones. 33

4.1 Dataset Splits. 43

4.2 The architecture of the TCDetect. 44

4.3 Parameter Search Space for Hyperparameter Tuning. 46

4.4 K-Fold Cross Validation Results for Sequential Hyperparameter
Tuning. 47

4.5 Confusion matrix for TCDetect when trained and tested on data
from all regions. 51

4.6 Comparison of total parameters used and performance metrics
for TCDetect and similar networks using more standard convo-
lutional bases. 53

4.7 AUC-PR when using validation data. 55

4.8 AUC-PR for TCDetect with different training and testing regions. 55

4.9 Evolution of accuracy during network development by basin for
basins in the northern hemisphere (see text for explanation of
rows). 56

4.10 Evolution of accuracy during network development by basin for
basins in the northern hemisphere (see text for explanation of
rows). 57

4.11 Recall based on TC category when using validation data. 57

5.1 Percentage of IBTrACS TC events detected by T-TRACK and
TCDetect applied to ERA-Interim data for all regions (global),
the Northern Hemisphere (NH) and Southern Hemisphere (SH). 67

5.2 Split of cases by storm type (rows) as given by IBTrACS given a
positive inference (second column) or a negative inference (third
column) by TCDetect. For example, of the 19759 cases which
had no meteorological system, TCDetect classified 506 as having
a TC present (i.e. false positives) and of the 484 cases in which
a Category 1 TC was the strongest system present, 426 were
classified as having a TC (i.e. true positives). 78

xii

6.1 Datasets used for exploring the adaptability of the method when
using inputs originating from different datasets. 85

6.2 Recall rates when each variant of TCDetect was tested on com-
binations of different data and labelling sources. 87

6.3 Monthly mean and standard deviation recall rates when each
variant of TCDetect was tested on each different data source. . . 87

6.4 Split of cases by storm type (rows) as given by IBTrACS given a
positive inference (second column) or a negative inference (third
column) by TCDetect-TRACK. 88

6.5 Percentage of timesteps in which IBTrACS or T-TRACK detect
a TC for each dataset. 97

6.6 Number of instances per region having a TC according to IB-
TrACS (first column), T-TRACK (second column) and TCDe-
tect (third column) for ERA-Interim data from the 1st July 2017
to 31st August 2019. Each region has a total of 3044 timesteps
and the percentage in brackets shows the percentage of the total
number of timesteps which have a TC present. 98

6.7 Number of instances per region having a TC according to T-
TRACK (first column) and TCDetect (second column) for three
simulated years of test data from the N96 simulation of the UM.
There is a total of 4320 timesteps per region. The numbers in
brackets give the percentage fraction on which a TC is present
for a region. 98

6.8 Number of instances per region having a TC according to T-
TRACK (first column) and TCDetect (second column) for the
simulated year of test data from the N512 simulation of the UM.
There is a total of 1435 timesteps per region. The numbers in
brackets give the percentage fraction on which a TC is present
for a region. 99

6.9 Timings for UM runs including the data reduction method at
horizontal resolutions of N96 and N512. 100

xiii

Acronyms

ACE accumulated cyclone energy. 31

AdaGrad Adaptive Gradient Algorithm. 9, 11, 12, 46, 49

Adam Adaptive Movement Estimation. 9, 11–13, 46, 49

AdaMax AdaMax Optimisation Algorithm. 9, 11, 12, 46, 49

AI Artificial Intelligence. viii, 5, 6

AMIP Atmosperic Model Intercomparison Project. 2

ANN Artificial Neural Network. 5

AOGCM Atmosphere-Ocean Global Circulation Model. 1, 2, 81, 85

AUC-PR Area Under Curve for the Precision/Recall. viii, ix, xii, 39, 45,
47–55, 59, 60

BCE Binary Cross-Entropy. 9, 10, 46

BGD Batch Gradient Descent. 7

CCM Community Climate Model. 2

CMCC-INGV Centro Euro-Mediterraneo per i Cambiamenti Climatici-Istituto
Nazionale di Geofisica e Vulcanologia. 31

CMIP Climate Model Intercomparison Project. 2, 84–86

CNN convolutional neural network. 5, 19

CPU central processing unit. 84, 99–101

CSIRO Commonwealth Scientific and Industrial Research Organisation. 29,
31

DL Deep Learning. 5

ECMWF European Centre for Medium-Range Weather Forecasts. 21, 23, 62

ELU Exponential Linear Unit. 9, 14, 15

GAN Generative Adversarial Network. 21

xiv

GCM Global Circulation Model. 1–4, 22, 24, 61, 79, 81, 84, 85, 105, 106, 108

GD Gradient Descent. 7

GFS Global Forecast System. 31, 33

GISS Goddard Institute for Space Studies. 31

GPU graphical processing unit. 21, 43

Grad-CAM Gradient Class Activation Map. xi, 63, 64, 94, 95, 105, 108

HighResMIP High Resolution Model Intercomparison Project. 86

HPC high performance computing. 21

IBTrACS International Best Track Archive for Climate Stewardship. ix–xiii,
34, 35, 37, 38, 40, 57, 61–63, 65–74, 77–79, 84–91, 94–98, 102, 104–106

IFS Integrated Forecasting System. 62

IOU Intersection of Union. 24, 33, 34

ITCZ Intertropical Convergence Zone. 26, 27

IWV integrated water vapour. 33

JMA Japanese Meteorological Agency. 31

JSON JavaScript Object Notation. 84

LLNL Lawrence Livermore National Laboratory. 2

LSTM Long Short-Term Memory. 21

M-BGD Mini-Batch Gradient Descent. 7

MAE Mean Absolute Error. 9, 10, 46

MEPS MetCoOp Ensemble Prediction System. 23

ML machine learning. 5, 107

MRI Meteorological Research Institute. 31

MSE Mean Squared Error. 9, 10, 46

MSLP mean sea level pressure. viii–x, 27, 29–31, 34, 40–42, 46, 47, 52, 54, 56,
62, 63, 74, 75, 77, 90, 92, 94, 96, 100

Nadam Adaptive Movement Estimation with Nesterov momentum. 9, 11, 13,
46, 49

NAG Nesterov accelerated gradient. 13

xv

NASA National Aeronautic and Space Administration. 1, 31

NCAR National Centre for Atmospheric Research. 2

NCEP National Center for Environmental Prediction. 31, 33

NERC Natural Environment Research Council. 85

NH Northern Hemisphere. xii, 32, 67

NHC National Hurricane Centre. 26

NN neural network. 5

NOAA National Oceanic and Atmospheric Administration. 26, 34, 62

NWP numerical weather prediction. 21, 61

RCM Regional Circulation Model. 3

RCP Representative Concentration Pathway. 85

ReLU Rectified Linear Unit. 9, 14, 16, 43–45

RMSProp Root Mean Squared Propagation. 9, 11–13, 46, 49

RSMC Regional Specialized Meteorological Center. 35, 62

S2S subseasonal-to-seasonal. 21

SGD Stochastic Gradient Descent. 7, 9, 11, 13, 14, 43, 45, 46, 49

SH Southern Hemisphere. xii, 32, 67

SSHWS Saffir–Simpson hurricane wind scale. 28

SVM support vector machine. 5

Tanh Hyperbolic Tangent. 9, 14, 15

TC Tropical Cyclone. ix–xiii, 1, 3, 4, 26–29, 31–35, 37–41, 43, 45, 50, 54, 57,
58, 60–65, 67–75, 77–79, 81, 84, 86, 88–90, 92, 94–99, 101, 102, 104–109

TECA Toolkit for Extreme Climate Analysis. 33

UM UK Met Office Unified Model. x, xi, xiii, 37, 80–88, 96–102, 105, 106

USA United States of America. 26

WAWP Western Atlantic and Western Pacific. 48, 55–57

WMO World Meteorological Organisation. 35, 62

xvi

Chapter 1

Introduction

Tropical Cyclones (TCs) are meteorological systems that leave a large impact
in their wake. Predicting the onset of these systems is important so that any
people in their path can be warned. Also, with a changing climate, further
studying how these systems will change is important. A key method that helps
us do this is the modelling of the atmospheric system.

Over the years, a large amount of knowledge on how the atmospheric system
functions has been built up. This knowledge is usually consolidated in the
form of mathematical equations. Richardson (1922) imagined a group of 64,000
people using these equations to predict the weather manually. This attempt
failed as it was taking at least as long to produce the forecasts as for the weather
to occur.

This changed when computers came into the picture. In 1950, John von
Neumann and his group at Princeton University managed to use computers to
produce forecasts up to 24 hours ahead, but took 24 hours to produce and were
not very accurate. Despite this, they showed that it could be possible to model
the Earth’s atmosphere.

This progress in modelling continued when Phillips (1956) published a paper
describing the first Global Circulation Model (GCM). This was the first model
that was capable of simulating the state of the atmosphere for the whole globe.

However, this model became unstable after a simulation of a few days. Later,
Arakawa (1966) helped develop the Mintz-Arakawa model, which aimed to solve
this issue. The following year, Bryan and Cox (1967) developed the first com-
putational 3D model of the oceans.

At the same time, Manabe and Wetherald (1967) produced the first projec-
tion of climate change using a 1D radiative-convective model. This was a major
milestone as various concepts still used in climate change studies today were
defined then.

In April 1969, NASA launched its Nimbus III satellite. While a major
component fails after just three months, it marks the point when scientists
could start validating their models against observations.

Later that year, Manabe and Bryan (1969) produce the first coupled GCM,
i.e. a model with multiple components, in this case the atmosphere, oceans and
ice, to get an Atmosphere-Ocean Global Circulation Model (AOGCM). While
the components were simple models, mostly due to the computational time
taken to compute, the first multi-component coupled GCM was developed.

1

1922
Richardson uses
64000 humans to

manually make the first
forecast

1950
von Neumann uses
computers to model

the Earth's atmosphere
and make a weather

forecast

1956
Phillips produces the

first GCM

1966-67
Mintz and Arakawa try

to solve the stability
issues of the Phillips
GCM. Bryan and Cox
developed the first 3D
model of the oceans.

1969
Manabe and Bryan

produce the first
AOGCM

1972
UK Met Office publish
a paper detailing their

first GCM

1993
The Community

Climate Model (CCM)
is produced by NCAR

2000
Cox et al. produce the
first fully coupled 3D
carbon-climate model

Now
Continuous

improvements in the
physics of GCM and

AOGCMs

Figure 1.1: Progress of climate modelling.

Over the next decade, the UK Met Office published a paper detailing their
first GCM, which had been in development for 9 years. Also, a special volume
on the “General Circulation Models of the Atmosphere” was produced by the
journal Methods in Computational Physics: Advances in Research and Appli-
cations. This served as a great summary of models thus far and helped inform
the next few years of development.

In the 1980s, the Community Climate Model (CCM) was produced by the
US National Centre for Atmospheric Research (NCAR). This model was aimed
at the wider climate research community, hence, all the code needed was released
and given freely. It marked the first such occurrence of a widely available climate
model. Later, in 1989, atmospheric models were compared to each other for the
first time as part of the Atmosperic Model Intercomparison Project (AMIP)
hosted at the Lawrence Livermore National Laboratory (LLNL). In 1995, a
similar effort was started to compare AOGCMs This is called the Climate Model
Intercomparison Project (CMIP). This is currently in its sixth iteration and is
the foundation of the climate science used when policy around climate change
is made.

At the turn of the century, Cox et al. (2000) released a paper showing the
results from the first “fully coupled three-dimensional carbon-climate model”.
In this model, the authors coupled a hydrological model, named TRIFFID, with
an AOGCM and an ocean carbon-cycle model. The addition of TRIFFID was
the first time that soil carbon and the five functional types of plant – broadleaf
tree, needleleaf tree, C3 grass, C4 grass and shrub – are included in climate
models.

As can be noted and seen in Figure 1.1, GCMs have become very complex
and include components other than the state of the atmosphere, for example
the states of the sea and ice, the chemistry of different components of the
atmosphere and many other interactions. These are the main tool for studying
how the world’s climate might change in the future.

While these models are useful to understand how the climate and Earth
system will change with a warmer climate, they are usually run at coarse hori-
zontal resolutions. For a better representation of how climate change will effect

2

a certain area, much higher horizontal resolutions are needed. For this, Re-
gional Circulation Models (RCMs) are employed. These are higher resolution
models which simulate the Earth system for a region of the Earth. However,
they require boundary conditions which need to be obtained from the GCM.

Data outputted to disk from a GCM is processed to create the boundary
conditions required for RCMs. Currently, all the data from a GCM is being
written out to disk. However, boundary conditions for an RCM are only needed
when a meteorological system of note, a TC in this study, is present in the region
being investigated. This is what we are attempting to tackle in this study.

The proof-of-concept method developed in this study has been focused on
inferring the presence of TCs in meteorological data. With this inference, a
determination of when these boundary conditions are to be written out to disk
from the GCM is made, thus reducing the amount of unneeded data.

The aim of this study is to show that deep learning can be used in online
post-processing workflows. The key goal was to show that the workflow is easily
adaptable to changing the deep learning network used and that the method can
be easily adopted for multiple phenomena. Hence the objectives for this study
are to create a deep learning network that is able to detect the presence of TCs
in meteorological data, compare the developed network against another method
to detect TCs and show that a workflow can be easily implemented in a climate
model so that the deep learning network can be used in an online fashion.

A few research questions that are to be answered in this study are laid out
as follows:

• Can a deep learning neural network detect the presence of TCs with min-
imal loss of recall while achieving a high enough precision such that effec-
tive data reduction can be performed?

• Can the same deep learning neural network retain its performance for
input data of varying horizontal resolutions, i.e. can the data reduction
technique be resolution-independent?

• Can the same deep learning neural network be used for inputs originating
from different data sources, e.g. reanalysis vs model-produced data, i.e.
can the data reduction technique be data-independent?

• Can a deep learning neural network be easily included in Fortran-based
climate model codes?

• What are the gains made from using the data reduction method? How
does it compare to other TC detection algorithms?

3

To answer these questions, the study is structured as follows:

• Chapter 2 provides background information on the deep learning tech-
niques and methods used in the study. Some existing applications of these
methods in the field of weather and climate are summarised. A review of
the existing methods to couple Python and Fortran is also given.

• Chapter 3 describes the characteristics of TCs. Some of the existing tech-
niques, with and without machine learning, that have been used to detect
and track TCs are described. The ground truth dataset and detection
algorithm used in the study are also detailed and their weak points are
discussed.

• Chapter 4 presents the deep learning neural network built to detect the
presence of TCs in meteorological data, the steps undergone to build it,
the performance obtained on a test set and some attempts to explain how
inferences from the neural network are produced.

• Chapter 5 compares the deep learning network to a state-of-the-art non-
machine learning TC tracking algorithm and an observational dataset.
The positions of TC centres produced by the two algorithms and present
in the observational dataset are compared as well as the ability of the two
algorithms to detect the presence of a TC present in the observational
dataset. The structure of the TCs detect by these algorithms and present
in the observational dataset is also investigated.

• Chapter 6 describes how data can be reduced using an embedded inference
engine using a deep learning neural network and how it was incorporated
into a climate model. It also attempts to answer the research questions
around the adaptability of the method to data having different horizon-
tal resolutions and data originating from different simulated climates, as
well as giving an idea of the computational cost incurred by running the
method in a GCM run.

• Chapter 7 summarises the advancements achieved during this study. It
summarises the details on how a deep learning neural network was devel-
oped to detect the presence of Tropical Cyclones in meteorological data
and how it compared to a state-of-the-art detection and tracking algo-
rithm as well as an observational dataset. It also summarises the method
created to use this network online in a GCM simulation. The limitations
of the method are also discussed, as well as some changes which could
have made the final method better. Finally, some avenues of future work
were outlined.

4

Chapter 2

Deep Learning

Artificial Intelligence (AI) was first defined by John McCarthy at a conference
in 1956 (McCorduck, 2004) as “the science and engineering of making intelligent
machines”.

The field of AI, which is itself a subfield of computer science, contains a
variety of methods and techniques, which include simple rule-based algorithms
and other more complex ones. Such methods have been in use for a long time
while others are relatively new. These newer methods are either previously
known methods, for example feed-forward neural networks, which have become
usable mostly because of the recent improvements in computer performance or
are an evolution of these previously known methods, for example convolutional
neural networks.

Some of the older methods include simple linear regression (Legendre, 1805;
Gauss, 1809) which first introduced in the early 1800s, support vector machine
(SVMs), which were first implemented in 1996 (Boser, Guyon, and Vapnik,
1996), and shallow feed-forward neural networks (NNs), which were first im-
plemented in 1943 (McCulloch and Pitts, 1943). These methods are usually
included in the subfield of AI known as machine learning (ML).

A further subfield of ML is Deep Learning (DL). This is a relatively new
subfield and has come about largely due to improvements in computer per-
formance, which allowed for the execution time of large computations to be
reduced considerably, and improvements in the mathematics behind some of
the methods. Deep artificial neural networks, convolutional neural network and
recurrent neural networks fall into this category.

This chapter provides background information on deep learning and how it
has been previously used in climate science. Section 2.1 has an explanation of
specific methods used in building the deep learning networks used in this study.
Section 2.2 details convolutional neural networks (CNNs), which underpin the
data reduction technique being presented. Finally, Section 2.3 gives an overview
on how deep learning has been applied to problems in climate science.

2.1 Artificial Neural Networks

The initial neural networks developed were Artificial Neural Networks (ANNs).
These are built on building blocks named perceptrons.

5

Deep
Learning

Machine
Learning

Artificial
Intelligence

Case-based reasoning
Rules-based algorithms

Genetic algorithms

Regression, Random Forests,
K-Means Clustering,

Desicion Trees,
Shallow Neural Networks,
Support Vector Machines

Convolutional Neural Networks,
Deep Feedforward Neural Networks,

Recurrent Neural Networks,
Generative Adversarial Networks

Figure 2.1: Artificial Intelligence and its subfields with examples of algorithms
used in each field.

A perceptron, a diagram of which is shown in Figure 2.2, is made up of a
few components: inputs, weights, a bias, an activation function, a loss function
and its outputs.

The inputs to a perceptron are usually floating point numbers which are
normalised in some way to be in the range [0, 1] or [−1, 1]. While normalisation
is not necessary, it is strongly recommended. This process helps to keep the
input distributions as in the original data but effectively resize their axes in
relation to one another to stop the perceptron from over or under-utilising one
part of the data.

These inputs are each assigned a weight, θ, and a weighted sum is calculated.
The initial weights can be assigned in various ways, from random initialisation
to more sophisticated methods which will be described at a later stage. A bias
node is also usually included in the weighted sum. This is an input with a value
of 1 and an associated weight and has the same effect as the intercept in linear
regression.

Once the weighted sum is calculated, it is used with an activation function,
which maps the weighted sum to the returned output. This signifies the end of
what is termed the forward-pass, which is the process by which a neural network
calculates its outputs. There are various activation functions one can use, with
specific ones being more applicable to certain applications. Again, these will be
discussed at a later stage.

In a supervised learning setting as used in this study, a deep learning neural
network attempts to map the inputs given to a predetermined value, usually
termed a label for classification problems. To train the neural network, the
backpropagation algorithm is employed where a forward-pass is performed and
the output obtained is then compared to the given label. The difference between
the two is calculated via a loss (or cost) function, of which there are many. Once
the difference is known, the weights of the perceptron are updated, with the
intention of getting an output that is closer to the given label.

The chain rule is used to calculate how much each individual weight is

6

? ?

Sum Activation Function

b

Output

Input 1

Input 2

Input 3

Input 4

.

.

.

1

Figure 2.2: Perceptron.

responsible for the error between the given output and label. In mathematical
terms, this is given as the partial derivative of the difference between the output
and the label and is obtained by:

∇θiJ(θ) =
∂ diff

∂θi
=

∂ diff

∂ out
× ∂ out

∂ sum
× ∂ sum

∂θi
(2.1)

where “diff” is the difference between the output and the label as given by the
loss function, “out” is the output generated by the forward-pass, “sum” is the
weighted sum and θi is the weight for which an update is being calculated.

The previous result is then used to update the weight in question:

θi = θi − η · ∇θiJ(θ) (2.2)

where η is the learning rate and takes values between 0 and 1 and ∇θiJ(θ)
is the gradient of the difference between the generated output and the given
label for the given weights θ. The subscripts i can be removed to refer to
updates of vectors of these weights. The learning rate controls how quickly
weights are adapted to the problem. If this is too big, weights can fail to
converge whereas if it is too small, it would take too long for weights to converge
to an acceptable solution. While various algorithms exist for calculating and
updating the neural network weights, most build on an early process named
Gradient Descent (GD). In this, the gradient of the difference between the
output and the label with respect to each individual weight is being used to
descend to the optimal weight. This was initially used in early deep learning
by applying it to each case in the available training data serially in a process
known as Stochastic Gradient Descent (SGD). A variant of SGD is Batch

Gradient Descent. This is where all the possible input cases are used to get
the updated weights, but they are averaged before the weight update actually
takes place. Most commonly, Mini-Batch Gradient Descent (M-BGD), where

7

Inputs Intermediate Layers Outputs

Figure 2.3: Fully-connected deep learning neural network.

only a section of n inputs is used at a time, is utilised (Ruder, 2016). This helps
to reduce the variation of updates produced by singular updates thus helping
the neural network to converge more quickly, but still efficiently utilising the
computational power available.

Deep learning neural networks utilise these perceptrons by stacking them in
layers to increase the complexity of the neural network, as shown in Figure 2.3.

These layers are intended to learn progressively more complex patterns
which are composed from lower-level features that have been learnt in previous
layers (Conneau et al., 2016).

There are various architecture options, called hyperparameters, which were
tested during this study. These include different loss functions, activation func-
tions, dropout, and weight initialisation methods. A summary of these is tab-
ulated in Table 2.1 and will be discussed below.

2.1.1 Loss Functions

A loss function is one that calculates the difference between the output produced
by the deep learning neural network and the label given to the input data. The
loss function is important as its output is to be minimized during the training
of the neural network, so it is crucial to the performance of the final network.
There is an endless number of possible loss functions as these can be built
around the intended use of the neural network, but their only requirement is to
be differentiable. As will be seen further on, the output of loss function is used
to calculate the weight updates during the training of a neural network, which
involves getting the gradient of the loss function with respect to each weight,

8

Type Name Expression

Loss Functions

Mean Absolute Error (MAE) MAE =
∑n

i=1
abs(yi−ŷ)

n

Mean Squared Error (MSE) MSE =
∑n

i=1
(yi−ŷ)2

n

Binary Cross-Entropy (BCE) BCE = 1
n

∑n
i=1 yi × log(p(yi)) + (1− yi)× log(1− p(yi))

Optimisers

Stochastic Gradient Descent (SGD) θ = θ − η · ∇θJ(θ, x
i, yi)

SGD with Momentum vt = γvt−1 + η · ∇θJ(θ); θ = θ − vt

Root Mean Squared Propagation

(RMSProp)
E[g2]t = 0.9E[g2]t−1 + 0.1g2t ; θt+1 = θt − η

E[g2]t+ϵ

Adaptive Movement Estimation

(Adam)

mt = β1mt−1 + (1− β1)gt; vt = β2vt−1 + (1− β2)g
2
t ;

m̂t =
mt

1−βt
1
; v̂t =

vt
1−βt

2
; θt+1 = θt − η√

v̂+ϵ
m̂

Adaptive Gradient Algorithm

(AdaGrad)
θi+1 = θt − η√

Gt+ϵ
· ∇θJ(θ)

AdaMax Optimisation Algorithm

(AdaMax)

vt = βp
2vt−1 + (1− βp

2)|gt|p;ut = max(β2 · vt−1, |gt|);
θt+1 = θt − η

ut
m̂t

Adaptive Movement Estimation with

Nesterov momentum (Nadam)
θt+1 = θt − η√

v̂t+ϵ
(β1m̂t +

(1−β1)gt
1−βt

1
))

Learning Rate

Rectified Linear Unit (ReLU) f(x) =

 xi if xi ≥ 0

0 if xi < 0

Leaky ReLU f(x) =

 xi if xi ≥ 0

αxi if xi < 0

Exponential Linear Unit (ELU) f(x) =

 xi if xi ≥ 0

α expxi − 1 if xi < 0

Hyperbolic Tangent (Tanh) f(xi) =
exi−e−xi

exi+e−xi

Softmax f(xi) =
exp(xi)∑
j
exp(xj)

Weight Initialisation

He x = 0;σ = ±
√
6√

ni+ni+1

Lecun x = 0;σ =
√
6/ni

Glorot x = 0;σ =
√
1/ni

Variance Scaling x = 0;σ =
√
a/ni

Normalisation
Dropout

L2 α
2

∑
i

∑
j w

2
ij

Weight Initialisation

Oversampling minor class

Undersampling major class

without replacement

Undersampling major class

with replacement

Weighting Classes

Adding Bias

Weighting Classes and Adding Bias

Feature Scaling

Normalisation in [0, 1] X−Xmin

Xmax−Xmin

Normalisation in [-1, 1] (X−Xmin

Xmax−Xmin
× 2)− 1

Standardisation X−µ
σ

Table 2.1: Summary of hyperparameters used or tested while developing the
deep learning neural network used in this study.

9

hence the need for the loss function to be differentiable. Three of the standard
loss functions have been used in this study and therefore will be explained below.
These are the Mean Absolute Error (MAE), Mean Squared Error (MSE), and
Binary Cross-Entropy (BCE).

Mean Absolute Error (MAE) calculates the average of the magnitude of
the error between the given prediction and label for all of the batch inputs.
This is translated into the following mathematical equation:

MAE =

n∑
i=1

|yi − ŷ|

n
(2.3)

where yi is the prediction given by the neural network, ŷ is the label for the
associated input and n is the number of cases in the batch considered. This loss
function is usually used in regression problems as it works best for continuous
values of yi and ŷ. Also, this is usually the loss function of choice if outliers
are deemed to not be important as they are treated as non-outlier data. A
neural network using this loss function is more likely to do well in the region of
non-outliers and less well for outliers.

Mean Squared Error (MSE) is very similar to the previous loss function.
It calculates the average of the squared difference between the given prediction
and associated label for all of the batch inputs. This is translated into the
following mathematical equation:

MSE =

n∑
i=1

(yi − ŷ)2

n
(2.4)

where yi is the prediction given by the neural network, ŷ is the label for the
associated input and n is the number of cases in the batch considered. This
loss function is also usually used in regression problems as it works best for
continuous values of yi and ŷ. Contrary to MAE, MSE is useful when the neural
network is required to do well on outlier data. This is due to the nature of the
function, where large errors are made even larger by taking their square. This
would result in a neural network which is more adept at handling outlier data
but that may have larger errors in non-outlier data.

The final loss function considered is Binary Cross-Entropy (BCE). As the
name suggests, it is used in neural networks that attempt to classify an input
case into one of two possible classes. In such situations, cases are labeled either
0 or 1 corresponding to each class and the neural network outputs a single value
that ranges in value between 0 and 1. This is interpreted as the probability of
the case being in the class given the label of 1. Inversely, the probability of the
input being classified as being in the class labelled by 0 is 1 minus the prediction
given by the neural network.

This behaviour is used in the BCE loss function, sometimes referred to as
the log loss function, to produce a loss function based on the logarithm of
the probability given by the neural network. The mathematical equation is as
follows:

BCE =
1

n

n∑
i=1

yi × log(p(yi)) + (1− yi)× log(1− p(yi)) (2.5)

10

where n is the number of cases in the batch used, yi is the label given to an
input case and p(yi) is the probability of the input being in the class denoted
by the label 1 as given by the neural network.

This uses the negative log value of the difference between the probability of
an input case of being in a certain class and the actual label class as a penal-
ising factor. This is desired as this factor increases exponentially with larger
differences, so small differences are penalised lightly, while larger differences are
penalised much more harshly.

2.1.2 Optimisers

An optimiser is an algorithm that is employed to update a network’s weights to
converge to a viable solution. The various variants of Stochastic Gradient

Descent (SGD) already described are some examples. However, as Ruder (2016)
discusses, SGD has various problems namely:

• choosing an appropriate learning rate can be difficult,

• not being able to update only certain weights in case of sparse data or
inputs of different frequencies

• it can be slow to converge to a viable solution

To help alleviate some of these problems, various algorithms have been de-
veloped. Some of those tested in this study, and thus described below, are SGD
with momentum (Qian, 1999); RMSProp1, Adam (Kingma and Ba, 2014); AdaGrad
(Duchi, Hazan, and Singer, 2011); AdaMax (Kingma and Ba, 2014) and Nadam

(Dozat, 2016).
SGD is known to suffer from being slow to converge in places in the optimi-

sation space where the slope in one dimension is much larger than the others
(Sutton, 1986), which usually happens near local optima. Momentum (Qian,
1999) helps to accelerate SGD in the direction of the optimum. This is done by
adding a fraction of the previous weight update to the current weight update, as
shown in equation 2.6, where γ controls the magnitude of the previous weight
update on the next update. This effectively amplifies updates in the direction
of the optimum and dampens those in other directions.

v0 = ∇θJ(θ)0

vt = γvt−1 + η · ∇θJ(θ)

θ = θ − vt

(2.6)

To help address the issue of regulating the size of the updates of different
weights, AdaGrad (Duchi, Hazan, and Singer, 2011) was developed. This algo-
rithm changes the learning rate, i.e. the size of the weights’ update, for each
of the weights θi and so performs larger updates for those weights that are
rarely changed and smaller updates for those that are changed more frequently.
This algorithm achieves this goal by keeping a separate learning rate for each
weight. These learning rates are calculated by considering the squared gradient

1presented in http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_

lec6.pdf

11

of the loss function with respect to the individual weight for all the previous
updates. The actual weight update, shown in equation 2.10, is performed by
using a fraction of the global learning rate, the magnitude of which is controlled
by the individual weight’s learning rate, Gt, which is the sum of the squares of
gradients with respect to each individual weight.

θt+1 = θt −
η√

Gt + ϵ
· ∇θJ(θt) (2.7)

One drawback of AdaGrad is that the size of the weight updates is monoton-
ically decreasing over time, thus still taking longer than optimal to converge to
a solution. RMSProp aims to fix this by giving the latest updates more impor-
tance when calculating the individual weights’ learning rate. This is done by
only using the last updates for the calculation, as well as using a time-dependent
exponentially-decaying average of these updates, hence the latest update has
more importance. Equation 2.8 shows the weight update, with E[g2]t being the
exponentially decaying average for the sum of squares of gradients with respect
to θi up to the current weight update.

gt = ∇θJ(θ)

E[g2]t = 0.9E[g2]t−1 + 0.1g2t

θt+1 = θt −
η

E[g2]t + ϵ

(2.8)

Adam (Kingma and Ba, 2014) is another adaptive learning rate algorithm.
Similar to RMSProp, it keeps a time-dependent exponentially-decaying average of
the past updates, mt, but it also keeps a time-dependent exponentially-decaying
average of the past updates’ gradients vt, similar to what is done in momentum.
Both of these are included as factors when calculating the individual weight’s
next update, shown in equation 2.9, where β1 and β2 are user-defined constants.
As a consequence of this, Adam can be seen as a combination of RMSProp and
momentum.

gt = ∇θJ(θ)

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

θt+1 = θt −
η√
v̂ + ϵ

m̂

(2.9)

Kingma and Ba (2014) realised that the gradients used by Adam for its weight
updates are inversely proportional to the l2 norm of the gradients of the previous
update and the gradients at the current update. However, they show that the
p = l∞ norm converges to a more stable value so they proposed AdaMax (Kingma
and Ba, 2014) which is the same as Adam with the only difference being that
the l∞ norm is used instead of the l2 norm during its calculations. The AdaMax
weight update is shown in equation 2.10, with p = 2 to obtain Adam and p = ∞
to obtain AdaMax.

12

vt = βp
2vt−1 + (1− βp

2)|gt|p

ut = max(β2 · vt−1, |gt|)

θt+1 = θt −
η

ut

m̂t

(2.10)

Similar to Adam being considered a combination of RMSProp and momentum,
Nadam (Dozat, 2016) is considered as a combination of Adam and Nesterov

accelerated gradient (NAG; Nesterov, 1983).
NAG is similar to momentum as it also aims to speed up SGD by directing the

algorithm to the right point in the optimisation space. However, momentum can
overshoot the optimal point if too much momentum is applied. Therefore, NAG
tries to taper its momentum as the algorithm approaches the optimal point. It
does this by calculating the gradient at the approximate next weight update
before making the said weight update. The approximate point of the next
weight update is obtained by using the difference between the past and present
weights and extrapolating to obtain an approximate next point, as shown in
equation 2.11.

vt = γvt−1 + η∇θJ(θ − γvt−1)

θ = θ − vt
(2.11)

Therefore, Nadam uses the Adam algorithm, but the gradients used in the
factor when calculating the individual weight’s update are changed to those
computed on an approximate future weight, as computed by NAG. The resulting
weight update is given in equation 2.12.

gt = ∇θJ(θ − γvt−1)

mt = β1mt−1 + (1− β1)gt

m̂t =
mt

1− βt
1

vt = β2vt−1 + (1− β2)g
2
t

v̂t =
vt

1− βt
2

θt+1 = θt −
η√

v̂t + ϵ
(β1m̂t +

(1− β1)gt
1− βt

1

)

(2.12)

2.1.3 Learning Rate

The learning rate controls the size of the weight update made when an optimiser
is used during the training of a neural network. With SGD, this hyperparameter
is very important to the final neural network’s performance. Picking too small
a learning rate would mean that training would struggle to obtain the optimal
solution for the network’s weights, and by extension the network’s performance.
This could be due to the optimiser getting stuck in a suboptimal local optimum
or just taking too long to converge, thus making it unfeasible to wait the required
amount of time for the optimiser to converge. On the other hand, too large a
learning rate would mean that the optimiser skips over the optimal solution and
leads to unrealistic weight values. As can be inferred, the right value for the

13

learning rate when using SGD as an optimiser heavily depends on the underlying
optimisation space as given by the loss function utilised.

This hyperparameter has become less important to tune since the advances
in optimisers used, namely those using adaptable learning rates. However, the
initial global learning rate might still make some difference in the performance
of the trained neural network.

2.1.4 Activation Functions

Activation functions are used to insert non-linearity into a deep learning net-
work. As shown in Figure 2.2, an activation function maps the weighted sum
of the inputs onto a single value. Therefore, an activation function converts
the learned mappings to a single value via a non-linear mapping. If an activa-
tion function is not used in a perceptron, the building block of a deep learning
network, then it would produce the same behaviour as simple linear regres-
sion. Stacking such perceptrons and including activation functions gives a deep
learning network the ability to produce a regression of higher orders.

The activation function can be a factor in a specific problem that deep learn-
ing networks can suffer from – exploding or vanishing gradients – so careful
consideration to which one is chosen can determine the network’s final perfor-
mance. This problem occurs when the gradients calculated during the training
of a neural network are far away from the value of 1 and there are many layers in
the network. Many successive multiplications of small gradients would produce
very small weight updates, leading to the vanishing gradient problem, while
multiple multiplications of large gradients would produce very large weight up-
dates, leading to the exploding gradients problem. An activation function can
help alleviating these problems by mapping their inputs to a value close to 1.

There are various standard activation functions but those used during this
study are described below: the Rectified Linear Unit (ReLU, Nair and Hin-
ton, 2010); leaky ReLU; the Exponential Linear Unit (ELU); the Hyperb-
olic Tangent (Tanh); and the softmax function.

ReLU (Nair and Hinton, 2010), the rectified linear unit, is one of the most
commonly used activation functions. It maps its each of the inputs xi to them-
selves if their value is greater than 0 and to 0 if their value is less than 0. In
mathematical terms, it performs the following mapping:

f(x) =

{
xi if xi ≥ 0
0 if xi < 0

(2.13)

This activation function is useful as it can be computed very quickly. Since
the gradient of ReLU can either be 0 or 1, it manages to evade the vanishing
gradients problem as the activation function is implicitly used in the ∂ out term
in Equation 2.1. This action of omitting values less than 0 can lead to a desirable
side-effect where not all weights are updated in each training step as some will
have a gradient of 0, but this behaviour can lead to neurons that do not update
ever if their gradients stay at 0. Also, due to using a linear function for values
larger than 0, it can be prone for any network that utilises it to overfit to the
data if the data is composed mostly of values above 0.

To rectify this problem, leaky ReLU (Maas, Hannun, and Ng, 2013) was
proposed to solve the issues described in ReLU. Instead of setting any negative

14

values to 0, it suppresses them to a fraction of their original magnitude. In
mathematical terms, it performs the following calculation:

f(x) =

{
xi if xi ≥ 0
αxi if xi < 0

(2.14)

where α takes a value less than 1, usually around 0.01. This solves the problem
of non-updating neurons.

The Exponential Linear Unit (ELU) developed by Clevert, Unterthiner,
and Hochreiter (2016), tries to solve the same problems in a slightly different
way. In leaky ReLU, any negative values are treated linearly, albeit with an
associated factor. This means that in theory, there is no lower limit for any
negative value. In ELU, the exponential of any negative value is used and the
value of 1 is then subtracted. In mathematical terms, it follows the following
computation:

f(x) =

{
xi if xi ≥ 0

α exp (xi)− 1 if xi < 0
(2.15)

The value of 1 is usually used for α so this effectively implies a lower limit of
-1 for any output. This helps the deep learning network avoid any biases by
pushing the mean activation value throughout the network to be closer to zero
than any other other activation function examined so far, and thus helps the
network converge to a suitable solution during training quicker than it would
otherwise.

A zero-centered mean activation value is able to be produced by the Hyperb-
olic Tangent Tanh activation function. It does this via the calculation of

f(xi) =
exi − e−xi

exi + e−xi
(2.16)

This is a zero-centered function, which is why a zero-centered mean activation
function can be obtained, which can help the training of a deep learning network
converge to an optimal solution rather quickly. However, it cannot handle the
vanishing gradient problem.

While the previous functions are usually used in the hidden layers of a
deep learning network, the softmax (Goodfellow, Bengio, and Courville, 2016)
activation function is usually used in the output layer when the problem to
be solved is one of classification. The softmax function takes its inputs and
outputs a classification probability according to:

f(xi) =
exp(xi)∑
j exp(xj)

(2.17)

It produces an output with values between 0 and 1 with it corresponding
to a probability of the input being in a certain class. In a binary classification
problem, it corresponds to the probability of the inputs being in the class la-
belled by the value of 1 with the probability of being in the class labelled by 0
being 1 minus the value given. In multi-classification problems, the activation
function is used on each of the output nodes and each output corresponds to
the probability of the inputs being in a certain class, with all the probabilities
summing up to 1.

15

2.1.5 Weight Initialisation Methods

An important factor when training a deep learning network is how to set the
starting weights when starting the network’s training. The effectiveness of these
methods are linked to the activation functions used in the network. In this
study, the following weight initialisation methods were tested: He (He et al.,
2015), Lecun (LeCun et al., 2012; Klambauer et al., 2017), Glorot (Glorot and
Bengio, 2010) from a uniform distribution and VarianceScaling.

At the start of deep learning, biases were set to 0 and the weights were
initialised to random values. While this worked for the initial networks, this
was far from optimal as training took a longer time to converge to an acceptable
solution. Also, due to large weights possible, the exploding gradients problem
was common.

The Glorot weight initialisation method (Glorot and Bengio, 2010) was
devised to solve these problems. At the time, the most common activation
functions were those that were centered about a midpoint and travelled a certain
distance away from this midpoint. An example of such activation functions
is the Tanh function seen previously. The authors then used a method that
produced weights that were also centered around zero and bounded by a certain
distance from zero. They did this by using the number of inputs and outputs
that the weight’s layer is connected to. Specifically, a layer’s weights were
initialised to be in the uniform distribution bounded by:

±
√
6

√
ni + ni+1

(2.18)

where ni is the number of input nodes to and ni+1 is the number of output
nodes for the layer for which the weights are being calculated and

√
6 is the

variance of a uniform random variable.
He (He et al., 2015) weight initialisation is usually used with the ReLU acti-

vation function. This also sets the weights of a certain layer using values from
a normal distribution of mean equal to zero but with a standard deviation of√
6/ni, using only the number of inputs as a variable.

Lecun (LeCun et al., 2012; Klambauer et al., 2017) weight initialisation
continues with this trend of using the number of inputs to define a normal
distribution for setting a layer’s weights. This uses a distribution of mean

0 and a standard deviation of
√
1/ni. VarianceScaling is very similar but

uses a standard deviation defined by
√
a/ni where a is a value selected by the

user. During testing, the default value of a = 1 was used, which made the
VarianceScaling and Lecun weight initialisation methods the same.

2.1.6 Dropout Regularisation

One issue with deep learning networks, especially those with a large number of
intermediate layers or those trained on a small dataset, is that of overfitting.
This is when the neural network learns to replicate the examples given in the
training dataset exactly but is not able to generalise to other examples from
the same distribution, so the performance of the neural network on never seen
before examples is much less than on the training set. The issue arises because

16

the large amount of tunable parameters will be able to produce a network
which approximates the exact dataset that the network is trained on. Dropout
(Srivastava et al., 2014) aims to remedy this issue.

In a world with unlimited computational power and time, the way to solve
this issue is to train an ensemble of networks, made up of all the possible com-
binations of network architectures, and then using an average of the inferences
given by all of the networks in the ensemble. In reality, this is not possible so
dropout aims to approximate this by making different random nodes inactive
across different stages of training by setting their weights and gradients to zero.
This means that any connections made to the node are also made inactive. This
behaviour means that effectively different architectures are being trained on the
dataset during the network’s training. It should be noted that no nodes, and
by extension any of their connections, are inactive during inference outside of
the training steps, which is why a deep learning network utilising dropout is
able to approximate an ensemble of networks.

Added benefits from the use of dropout include that the network does not
rely on certain nodes to produce the right inference, hence making the net-
work more robust. At the same time, it helps the network produce a sparse
representation of the inputs. One negative side-effect is that dropout effec-
tively thins out the network during training, so an extra amount of nodes have
to be included for the network to not become too small to learn an accurate
representation of the inputs.

2.1.7 L2 Regularisation

Another way of avoiding overfitting is the use of L2 regularisation. This
method involves adding a term to the loss function that penalises any weights
in the network that are too large or too small. The penalising term is calculated
using

α

2

∑
i

∑
j

w2
ij (2.19)

where wij is weight j of layer i, and α is called the regularisation rate, which
controls the magnitude and hence the effect of the regularisation.

The loss function used then becomes

L̂ = L+
α

2

∑
i

∑
j

w2
ij (2.20)

with L being the original loss function and L̂ the amended loss function.
Then, the weight update with this updated loss function becomes

wnew
i = wi − η × (αwi +

∂diff

∂wi

) (2.21)

The effect that this type of regularisation has on the network is that weights
are encouraged to be close to 0, and thus reducing the importance of the hidden
layers. This reduces the opportunity to overfit during training. The variable α
is a hyperparameter that needs to be tuned but too large a value for α would
mean that too simple a network is being trained, thus producing an underfitted
network and too large a value would produce too complex a network, producing
an overfitted network.

17

2.1.8 Dataset Balancing

A common issue in classification problems is that of a highly skewed dataset, i.e.
where one of the classes in the dataset dominates the dataset. This is a problem
as the network would tend to produce an inference that favours that class. For
example, a neural network trained on a dataset that is skewed 1000:1 towards
class 1 of 2, will almost always predict that an input belongs to class 1 if the
training dataset is not balanced. Such a network would produce an accuracy
of 99.99% but it would be unusable in practice, as it would have no ability to
classify inputs between the two classes present. This becomes very costly when
picking the minor class with a good ability is important, for example in fraud
detection applications.

To remedy this issue, a few techniques have been used in this study, and
thus are described below. These are

• Naive Oversampling

• Weighting the cases

• Adding Bias

• Weighting the Cases and Adding Bias

• Undersampling without Replacement

• Undersampling with Replacement

The obvious method to use is to oversample the minority class(es). This
means that cases of any minority class are copied multiple times to make the
number of examples of the class in the training set approximately equal to the
number of cases in the majority class (Li et al., 2013). This has two drawbacks.
The first is that the training set is expanded - by a considerable factor if the
training dataset is highly skewed - putting more pressure on the computational
and time resources. Also, the effect of copying cases means that the network
is exposed to training on a small number of examples, thus making it easier to
overfit onto these examples. This can be offset somewhat by the use of data
augmentation, where the examples are modified slightly so that they are not
exactly the same, but the risk of overfitting will still remain.

Another way to produce a better performing network would be to make it
learn more from the cases in the under-represented class/es. This is done using
cost-sensitive learning (Domingos, 1999; Thai-Nghe, Gantner, and Schmidt-
Thieme, 2010) by assigning a weight to each class and use these weights in
the loss function during training. Therefore, any loss for the under-represented
class(es) is amplified while any loss of the over-represented class(es) is damp-
ened, resulting in a network that learns from each class approximately equally.
One issue of this method is that it is still prone to overfitting.

It is also possible to add bias to the network to reflect the skewness in
the dataset. This is calculated as loge(pos/neg), where pos is the number of
positive cases and neg is the number of negative cases, and is added to all the
nodes in the network. This pre-conditions the network to start training from a
better initial point in the optimisation space, hence speeding up the training.

18

A combination of weighting the cases and adding bias was also trialled during
the development of our network.

The final two methods trialled to help with the skewness of the dataset are
those of undersampling the majority class (Kotsiantis and Pintelas, 2004) with
and without replacement. Undersampling the majority class has the advantage
of making the dataset somewhat smaller, thus making training times quicker,
while making the training dataset more equal in distribution. Undersampling
without replacement means that only a section of the cases of the majority class
is used for training. The disadvantage of doing this is that perfectly usable data
is not used for training. Also, if the initial dataset is highly skewed, the end
training dataset would become very small, so the final network is likely to be
overfit and/or be applicable to fewer situations.

A better way would be to undersample the majority class with replacement,
i.e. different parts of the majority cases are used at different steps during
training, effectively having different training datasets over the training process.
This method utilises all of the available data while presenting a balanced dataset
to the network during training. The network is still prone to overfitting on the
minority class/es cases but this risk can be somewhat mitigated by the use of
data augmentation.

2.2 Convolutional Neural Networks

All of the previous explanations are based on the basic feedforward network but
apply to any type of deep learning network. Multiple types of deep learning
networks exist and are used according to the problem that is being addressed
and the type of data used. In this study, the deep learning network developed is
aimed at trying to classify meteorological data into one of two classes. For this
intended use, a type of network called a convolutional neural network (CNN),
an example of which is shown in Figure 2.4, is used. This type of network is
adept at learning and extracting patterns that have a spatial dependency, hence
it is useful on the meteorological data used in this study.

A CNN is preferred to a feedforward network due to the much smaller num-
ber of parameters used while still managing to learn the spatial relationships
that make up the patterns to be learnt.

There are two important operations present in a CNN that makes it dif-
ferent and have fewer parameters than a feedforward network. The first is
the convolution operation. In this operation, the inputs, usually an image of
multiple channels, is traversed using a set of weights called a convolutional win-
dow, which acts as a learnable filter. This set of weights is used to compute a
dot product of all the input’s values inside the window with all the window’s
weights. This produces a single value. When the window traverses the whole
image, the values produced are collated back into an image, which is the output
of a convolutional layer. The number of filters learned are a hyperparameter of
a CNN. The space left between windows when traversing the inputs, called the
stride length, is also a hyperparameter. This final parameter is used to control
the amount of downsampling of the inputs between convolutional layers.

The effect of downsampling is to compress the inputs to a high fidelity
representation inside the network by optimising the filters during training. This

19

Convolutional Base Classifier

Figure 2.4: Example of a CNN, showing a convolutional base added to a classi-
fier. Blue areas are convolutional windows and red areas are pooling operations.

is desired as smaller intermediate images used require less weights to process
and to be learnt, and hence make the trained network less prone to overfitting.
It also helps to place less pressure on any computational resources in use.

The second important operation is that of pooling. This operation is also
meant to downsample the inputs or any outputs produced by any convolutional
layers. There are various ways to downsample any inputs but there are two
methods which are commonly used. These are called MaxPooling and Average-
Pooling. In both of these methods, a window is used to traverse any inputs.
The maximum or average of any values inside this window is then calculated.
These are then collected in a similar way to that done in a convolutional layer
to produce a downsampled version of the inputs. Similar to the convolution
operation, the window size and the stride length used betwen movements of the
pooling window are hyperparameters to be tuned.

After stacking these convolutional and pooling layers, the final outputs are
a dense representation of the initial inputs. These inputs are reshaped into a
1D array and then passed to a traditional feedforward network for the final
inference. Therefore, the stack of convolutional and pooling layers are termed
the convolutional base and the feedforward network is termed the classifier (or
a regressor if a regression problem is being solved).

2.3 Deep Learning in Climate Science

Deep learning has been used in multiple settings in climate science and the
field of meteorology. Previous contributions could be split up into forecasting
how the atmosphere will change in the future either in the short range, termed
nowcasting, and in the medium range; parametrisations, where a neural network
attempts to approximate physical processes which happen at a scale less than
that of the resolution used in a climate model; downscaling, i.e. using coarse
spatial resolution data to produce data of higher spatial resolution; and post-
processing, where outputs of a climate model are handled to be made better or
more effective to analyse.

Multiple applications of forecasting have been presented. The applications

20

to forecasting of precipitation, usually using radar or satellite-based inputs and
making predictions for a few hours in the future, are popular. Sønderby et al.
(2020) use self-attention to generate a large-scale context of the weather and use
that with a combination of radar images generated at the time of prediction and
satellite images for the previous 90 minutes to generate a probabilistic forecast.
This method was found to outperform forecasts from high-resolution numerical
weather prediction (NWP) models for up to 8 hours in the future. Espeholt et al.
(2021) improved on this method by using a larger spatial extent for generating
context of the weather as well as a different neural network methodology to
generate forecasts for up to 12 hours in the future. In variants of this method,
outputs from NWP models are used as inputs to the deep learning network,
which produced improved results over those produced by the original network.
Trebing, Stanczyk, and Mehrkanoon (2021) use a mixture of a convolution layers
and convolution block attention modules in the framework of a U-Net to produce
rain intensity maps. Inputs used are outputs from rainfall radar systems for
the past hour in 5 minute intervals and the output is a rain intensity map
for 30 minutes after the last input time. Ravuri et al. (2021) use a Generative
Adversarial Network (GAN) framework to produce high-resolution probabilistic
nowcasts of precipitation from crops of radar images from the previous 110
minutes, with very promising results.

Medium range forecasting, where any outlook provided is for a subseasonal
(less than three months) timescale, has also been tackled using deep learning.
Weyn et al. (2021) produce an ensemble of deep learning networks using a U-
Net architecture which produce a 320-member ensemble forecast. They show
that while their forecast is not as skillful as the ECMWF operational ensemble
in the short term, it is only modestly inferior to the operational subseasonal-
to-seasonal (S2S) forecast over land for 4-6 weeks in the future. One important
contribution, though, is that the 320-member ensemble produced only takes 3
minutes to calculate on a single GPU, while the operational forecast takes up
much more computational power and time using a complex high performance
computing (HPC) system. He et al. (2021) also show that a deep learning
network, this time based on an Long Short-Term Memory (LSTM) architecture,
can outperform climatology and two baseline models for forecasts 3-4 weeks in
the future.

Deep learning can also be applied to forecasting events rather than a meteo-
rological data field. For example, Chattopadhyay, Nabizadeh, and Hassanzadeh
(2020) developed a neural network that attempts to predict whether an extreme
event will happen 3 days in the future, and if so what type and where, based
on the 500hPa geopotential height field at the time of the forecast. The novelty
in this is that clustering is performed on input data and the network attempts
to map the inputs into one of the clusters.

Another use of deep learning is for parametrisation or emulation of physical
processes. Climate models need to split the atmosphere into chunks termed grid-
boxes and each box has a size of tens or hundreds of kilometers. When climate
models solve the numerical equations they are built on, they can only represent
physical processes that occur at least at the same order of the size of the grid-
boxes employed. Therefore, any processes which occur at a smaller scale than
the size of a grid-box are missed. These are usually approximated by solving

21

more equations in processes termed parametrisation, but some of these can be
costly to compute. Deep learning networks have been used to approximate these
processes and parametrisations so that they are still included in the simulation
while reducing the computational cost required to compute them.

One of the earliest works in this space was conducted by Chevallier et al.
(1998). The authors presented a system of fully-connected neural networks,
termed NeuroFlux, to approximate long-wave radiation. To perform this, two
neural networks for each cloud layer present in the model are used to calcu-
late the incoming and outgoing long-wave radiation fluxes. This sped up the
model by up to 8 times and the system has been used operationally since 2003.
Krasnopolsky, Fox-Rabinovitz, and Chalikov (2005) also developed a radiation
parametrisation using a fully-connected neural network. It uses vertical profiles
for 10 meteorological variables for inputs and outputs the vertical profiles for
radiation and heat fluxes. In recent times, applications of the same framework
around using neural networks for parametrisations have become abundant.

A slight difference to normal parametrisation is using a neural network to
emulate a superparametrisarion. In this instance, a GCM is created such that
smaller models are embedded into each grid-box. Each of these smaller models
would have much higher spatial resolutions so that a larger array of physical
processes could be explicitly simulated. After the smaller model has finished its
simulation, it treats the values it generated so that they are at the same resolu-
tion of the main model, making its modelling closer to what actually happened.
Unfortunately, running these smaller models is computationally costly. Hence,
some work has been done to emulate these smaller models to reduce the cost
associated with running them. An example is presented by Rasp, Pritchard,
and Gentine (2018), where a superparmetrised GCM is used to train a neural
network to replace the radiation parametrisation and the cloud-resolving part
of the GCM. This produces a model which is much faster to run, and which
retains much of the meteorological properties required for a GCM, for exam-
ple energy conservation, while producing encouraging results. Gentine et al.
(2018) continue to build on this by producing another fully-connected neural
network to emulate a superparamtrisation of convection for representing clouds
in a GCM. Inputs to this network are fields of temperature and humidity and
their tendencies at various levels in the simulated atmosphere, as well as the
incoming solar radiation field, heat fluxes and surface pressure. Outputs of
this network are the long-wave heating, short-wave heating, temperature and
humidity tendencies.

One other application of deep learning in climate science is for downscaling
of meteorological variables. In this, variables having a coarse spatial resolution
are downscaled to a much finer resolution. This downscaled data is then more
adept at helping stakeholders interested in examining weather and climate phe-
nomena for a specific area of the globe. There is also an advantage when using
this technique as the GCM model can be run at a coarse resolution and so lessen
the computational cost required to produce data. While non-machine learning
techniques have been used to perform downscaling, deep learning neural net-
works have been shown to be capable of doing this.

Wang et al. (2021) produce a neural network using residual blocks and con-
volutional blocks to downscale fields of temperature and precipitation from a

22

spatial resolution of 100km, 50km and 25km to a resolution of 4km. While the
network produced good results, the worst performing were those that down-
scaled data with a resolution of 100km while the best were those that downscaled
data with a resolution of 25km. Similarly, Sha et al. (2020) use a U-Net-based
neural network to downscale 2-metre temperature fields from the western con-
tinental US from a resolution of 25km down to 4km. Also, Serifi, Günther,
and Ban (2021) use an encoder-decoder based neural network to downsample
model data. Inputs are coarsened meteorological fields, coarsened using trilinear
interpolation and the labelled data is the original full resolution data.

A final application of deep learning in climate science is for post-processing
of simulation data. After a simulation is finished running, the data outputted
is saved onto disk, but various operations need to be performed for it to be
useful to any stakeholders. There are various algorithms that already perform
operations ranging from bias correction to uncertainty quantification and event
detection. Deep learning has been shown to be skillful at performing these
tasks.

One of these is bias correction. This is the process of correcting systematic
biases that are present in the modelling process. All models have some biases,
for example some areas of the earth are always modelled to be too cold or too
warm when compared to observations. The process of bias correction changes
the values outputted from the simulation based on historical data for the final
product to be closer to reality.

Rasp and Lerch (2018) use the mean and standard deviations of various
meteorological variables from ECMWF’s 50-member ensemble and weather sta-
tion characteristics to predict the 2-metre air temperature for various weather
stations in Germany, hence correcting the value given by ensemble. This neu-
ral network achieved results that were 3% better than the best previous post-
processing system and 29% better than the original ensemble. Araujo and An-
drade (2022) attempt something similar by using two different neural networks
using the unprocessed and post-processed outputs of the MetCoOp Ensemble
Prediction System (MEPS) to correct the air temperature field for areas in Nor-
way. They show that an improvement over the post-processing system currently
in use is achieved with both types of networks, with 74% of major errors, de-
fined operationally as an error between the forecast and observation of greater
than 3 Kelvin, being lessened using the neural networks. Grönquist et al. (2021)
also attempt to tackle this problem. They produce a neural network that re-
turns a bias-corrected version of the temperature at 850hPa obtained from the
ECMWF ensemble at a lead time of 48 hours. It was trained using the mean
of the ensemble and its target was made to be outputs from ECMWF’s ERA5
dataset.

Grönquist et al. (2021) also present a neural network that performs uncer-
tainty quantification. In this application, a neural network built using Inception-
style modules in a ResNet architecture takes in a subset of ECMWF’s ensemble
to produce the full ensemble spread. Therefore, less ensemble members need to
be produced, saving computational cost. The neural network always produces
an ensemble spread close to that obtained from the full ensemble, but the im-
provement in the difference is less as more members are added to the network’s
inputs.

23

One final type of post-processing discussed will be that of feature detection.
This processes the outputs of a GCM to detect any important meteorological
features, thus making it more efficient to analyse and produce statistics about
the feature detected. Prabhat et al. (2021) produce a pixel-wise labelled dataset
for the detection of tropical cyclones and atmospheric rivers. They also produce
a deep learning network that uses this dataset to produce pixel-wise masks for
the presence of tropical cyclones and atmospheric rivers. When tested, this
network produced a mean Intersection of Union (IOU) of 0.5247, i.e. the areas
of the regions obtained from the network and the labelled regions overlapped
52.47% of the time. Other examples discussed in Section 3.2.2 perform feature
detection for tropical cyclones.

2.3.1 Fortran-Python Coupling

Most of the above examples of deep learning in climate science have the same
problem: how should a trained neural network, usually developed in Python,
be included in a GCM, which is usually based in Fortran?

This could be done in two ways. The first, which would be very time-
consuming, would involve either re-coding the Python libraries used or re-coding
the trained neural network in Fortran. This was done by Brenowitz and Brether-
ton (2018) and Rasp, Pritchard, and Gentine (2018) but is time-consuming and
has the possibility of introducing errors into the codebase.

Another way to do this is to use packages available for Fortran-Python
coupling. While not many available, five different options were found. Peterson
(2009) create an interface generator, named F2PY, that wraps Fortran libraries
in Python. This is a Python function that turns its arguments to objects which
can be passed as procedure arguments for Fortran routines, makes the call to
the Fortran routine via a C interface and then returns the results as workable
Python objects. The author provides the LAPACK Fortran-Python bindings as
an example for time saved by a programmer when using F2PY. It took around
10 minutes for F2PY to compile all the required source files on a 2007 standard
laptop, but it would have taken around six years to manually translate the
290,000 lines of source code making up the LAPACK bindings manually.

McGibbon et al. (2021) use the same premise and apply it to an atmospheric
model. Each major routine can be called from Python with the main time-
stepping loop found in the simulation being done in Python.

The advantage of these types of packages make the inclusion of any deep
learning neural networks easier to non-experts but still does not give the granu-
larity required for some applications, as any network can only be used in between
the major routines. For finer granularity, i.e. using deep learning networks dur-
ing the execution of any of the major routines of an atmospheric model, a
different approach is needed where a package developed for deep learning in
Fortran needs to be used.

Curcic (2019) developed a proof-of-concept package, named neural-fortran,
that is able to perform neural network training and utilisation for a small se-
lection of the architectures and optimisation algorithms available in the more
popular Python packages. This also uses the inherit parallelism found in For-
tran to be able to train neural networks in parallel in a data-parallel manner.

24

This allows a Fortran-trained neural network to be used in a larger simulation.
Given that the package is still in its early stages and that most deep learning
development is performed in Python, it is more suitable than Python-Fortran
wrappers but still has some significant disadvantages.

Ott et al. (2020) attempt to solve this by using an adapted version of the
neural-fortran library. Firstly, the library was changed such that a custom
layer could be created. This makes more architecture types possible than in the
original package. The authors also create a layer of code, termed the Fortran-
Keras-Bridge, which is able to translate between Keras-built and Fortran-built
neural networks. Therefore, any Keras-built neural network could be loaded and
used in Fortran and vice-versa. This marked an improvement in the flexibility
of Fortran-Python coupling.

Finally, frugally-deep (Hermann, 2020) is a package that performs the Python-
to-Fortran side of the Fortran-Keras-Bridge. This is a C++ header-only package
which can load deep learning networks trained in Python and produce an in-
ference in Fortran. It also has the advantage of having most of the popular
architectures natively available so less customisation is needed from the user.
This package is what was used in subsequent work in this study and a more
detailed explanation can be found in the Appendix.

25

Chapter 3

Tropical Cyclones

Tropical Cyclones (TCs) are extreme weather events that can leave devastat-
ing effects on human populations; for example Hurricane Irma impacted the
Caribbean Islands and the Southeast USA in September 2017 causing 47 di-
rect deaths, 82 indirect deaths, hundreds of injuries and an estimated monetary
damage to the USA of around 50 billion USD (Cangialosi, Latto, and Berg,
2018). This chapter provides a concise summary of the characteristics of a TC
and discusses algorithms created for detecting and tracking TCs in meteoro-
logical data. Section 3.1 summarises TC characteristics and Section 3.2 gives
a review of the existing systems and methods, including those using machine
learning and deep learning, to detect and track TCs. Finally, the TC detection
methods used in this study are detailed and compared in Section 3.3.

3.1 Tropical Cyclone Characteristics

The National Oceanic and Atmospheric Administration (NOAA) National Hur-
ricane Centre (NHC) define a TC as “a warm-core non-frontal synoptic-scale
cyclone, originating over tropical or subtropical waters, with organized deep
convection and a closed surface wind circulation about a well-defined center”.

A cold core system, for example an extratropical cyclone, has cold air at the
centre of the system. Figure 3.1a, an idealised diagram of a cold core frontal
system, shows that three types of air are present - warm air (red), cold air
(cyan), and colder air (blue). Fronts are used to help distinguish between the
three. In this type of system, the warm air is forced to rise due to the colder
air undercutting it. Hence, while there is warm air aloft, colder air is present
at and near the surface. Also, due to the temperature gradients present, the
isobars (black curves, curves of constant pressure) are not concentric around
the pressure low.

A warm core system, on the other hand, is termed as such due to a conver-
gence of warm air at the centre of the system. This is shown in Figure 3.1b via
the red arrows. This convergence of air usually occurs due to latent heat release
from evaporation of warm ocean water causing the warm air to rise, creating a
low pressure centre. Hence, the isobars are expected to be concentric around
the pressure low.

TCs originate in an area called the Intertropical Convergence Zone (ITCZ).
This area is characterised as a broad area of low pressure around the location

26

(a) Cold Core system (b) Warm Core system

Figure 3.1: Pressure fields (black lines) and wind flows (arrows) for a cold core
system (a) and a warm core system (b). Red arrows and lines represent warm
moist air, green arrows and lines represent cold air and blue arrows and lines
represent colder air.

of maximum solar radiation. The ITCZ fluctuates about the equator as the
seasons change, so is located in the Northern Hemisphere during its summer,
and in the Southern Hemisphere during its summer.

Air in this area is usually heated by the warm oceans, which are being
warmed by the strong sun, forcing the air to rise. This air condenses as it rises,
producing thunderstorms. This rising column of air produces an area of low
pressure and can be seen as such in the mean sea level pressure (MSLP) field.
These thunderstorms can combine to make up a cluster of thunderstorms, which
helps sustain them due to stronger rising columns of air, called updraughts.
This cluster then starts to rotate as it interacts with the spin of the Earth and
becomes a TC.

Some meteorological conditions are also needed for the cluster of thunder-
storms to be able to turn into a TC, namely:

• a source of warm moist air, usually provided by a warm ocean of temper-
atures of at least 27 oC, heating a layer of air above it

• winds blowing towards the same point from different directions, termed
convergence, thus forcing the air to rise

• low wind shear, i.e. similar wind speeds and directions throughout all
levels of the atmosphere, to allow the column of rising air to extend into
the atmosphere as much as possible

• enough distance from the equator for the Coriolis effect to impart spin on
the cluster of thunderstorms

As the cluster of thunderstorms matures into a TC, a column of descending
air also becomes present. This can become so strong that it prevents any con-
densation within it. This is what forms the eye of a TC, usually clearly seen in
mature TCs.

27

As the TC gets stronger, the strength of the updraughts increase, thus deep-
ening the low pressure centre of the TC. This increases the gradient of air
pressure thus increasing the strength of the wind speeds at the centre of the cir-
culation, with the strongest winds usually found at the centre of the circulation
just outside the eye, in a region called the eyewall. These strong horizontal wind
speeds occurring in a concentric fashion around the eye makes such mature TCs
relatively clear to detect in meteorological data by a trained individual.

The maximum sustained wind speed of a TC, usually measured as the av-
erage wind speed per minute, is used to classify the strength of a TC. The
Saffir–Simpson hurricane wind scale (SSHWS) is the standard way to classify
TCs in the Northern Pacific ocean and the Atlantic ocean. It classifies a TC into
one of five categories based on the maximum one-minute average wind speed at
10 metres, as below:

• Category 1: Wind speed between 33 m s−1 and 42 m s−1

• Category 2: Wind speed between 43 m s−1 and 49 m s−1

• Category 3: Wind speed between 50 m s−1 and 58 m s−1

• Category 4: Wind speed between 58 m s−1 and 70 m s−1

• Category 5: Wind speed greater than 33 m s−1

Two additional classifications exist whereby any TC with a maximum wind
speed between 17.5 m s−1 and 33 m s−1 is termed a Tropical Storm and any TC
with a maximum wind speed less than 17.5 m s−1 is termed a Tropical Depres-
sion. TCs in other parts of the world use slightly different systems depending
on the meteorological agency issuing the classifications, but most do not differ
by much from the ones outlined above. Also, the size of a TC can range from
a few hundred to around a thousand kilometers.

A TC comes to the end of its lifespan when one or more of the conditions
listed above are not met. This usually happens due to interaction with land,
as it can cut off the source of warm air flowing over the ocean and/or produce
higher wind shear further aloft in the atmosphere, or the TC moving north
where colder waters are encountered.

One important meteorological variable associated with TCs and used in the
neural network being presented in this study and other techniques is relative
vorticity. This is a measure of the spin given to an air parcel due to its flow. The
flow of air is shaped by areas of high or low pressure or the land surface. Air
moving in a straight line has zero vorticity. However, air in and around a high
pressure system rotates clockwise (in the Northern Hemisphere, anti-clockwise
in the Southern Hemisphere) around the center of the system and gets negative
vorticity. On the other hand, air moving in and around an area of low pressure
moves in an anti-clockwise direction (in the Northern Hemisphere, clockwise in
the Southern Hemisphere) around the center of the system and gets positive
vorticity. The speed of the flow is also important, as the higher the speed, the
higher the relative vorticity. Hence, areas of very high relative vorticity are
found at the centre of TCs.

28

3.2 Previous TC detection systems

There have been many algorithms designed to detect and track TCs. Most of
these are classical threshold-based algorithms, but deep learning has also been
used in a few of the newer algorithms. An overview of both the former and the
latter will be described.

3.2.1 Classical algorithms

There is extensive previous literature detailing different automatic TC detection
algorithms that do not utilise any type of machine learning.

Conventional techniques identify TC centres by applying various thresholds
to the available data. TC tracks are then created by arranging the identified TC
centres according to some mathematically-based method. The following shows
a few examples of such methods, with a tabular summary in Table 3.1.

Kleppek et al. (2008) use multiple thresholds to identify TC centers. The
first is that a local minimum of mean sea level pressure (MSLP) needs to ob-
served within a neighbourhood of eight grid points. This is assigned as a storm
centre. For it to be designated a TC centre, there needs to be a maximum
relative vorticity at 850hPa greater than 5× 10−5 s-1 at the storm centre. The
presence of vertical wind shear between 850hPa and 200hPa of at least 10 ms-1

is also required, as well as an event lifetime of 36 or more hours. Finally, if the
storm centre is over land, the relative vorticity condition has to be fulfilled or
the wind speed maximum at 850hPa needs to be inside 250km from the TC
centre.

Similarly, Vitart, Anderson, and Stern (1997) used the closest minimum of
mean sea level pressure (MSLP) to a local maximum of relative vorticity at
850hPa over 3.5 × 10−5 s-1 as a storm centre. A warm-core check, similar to
Roberts et al. (2015), is performed to classify the storm centre as a TC. This
requires that the closest local maximum of the average temperature between
550hPa and 200hPa must be within 2o of the storm centre and the temperature
decreases by at least 0.5oC for at least 8o latitude in all directions. Also, the
closest maximum thickness between 1000hPa and 200hPa must be within 2o of
the storm centre and the thickness must decrease at least 50 metres for at least
8o latitude in all directions.

Camargo and Zebiak (2002) introduce a detection method that uses vorticity
at 850hPa, surface wind speed and a vertically integrated temperature anomaly
as variables on which to impose basin-dependent thresholds.

A final example is Roberts et al. (2015) who use the method explained by
Hodges (1995), Hodges (1996), Hodges (1999) and Bengtsson, Hodges, and Esch
(2007), where a TC is identified as the maximum of the 850hPa relative vorticity
in data which has been spectrally filtered using a T42 filter (i.e. keeps features
greater than 250km in scale) and which passes a warm-core check on a T63 grid
(to keep features larger than 180km) using the 850hPa, 500hPa, 300hPa and
200hPa levels.

There is also literature comparing such algorithms: Horn et al. (2014) com-
pare four different detection algorithms on data from different climate mod-
els. They use multiple algorithms, namely a modified version of the Com-

29

Author/s Variable Threshold

Kleppek et al. (2008)

Mean Sea Level Pressure (MSLP)
Local minimum in a neighbourhood

of eight grid points

Relative Vorticity at 850hPa > 5× 10−5 s-1 and positioned at MSLP minimum

Vertical Wind Shear

between 850hPa and 200hPa
> 10 ms-1

Event time > 36 hours

MSLP Minimum Position

If over land, relative vorticity at 850hPa

> 5× 10−5 s-1 and positioned at MSLP minimum;

Otherwise, wind speed maximum at 850hPa

needs to be inside 250km from the TC centre

Vitart, Anderson, and Stern (1997)

Relative Vorticity at 850hPa Local maximum > 3.5× 10−5 s-1

Mean Sea Level Pressure (MSLP)
Minimum closest to relative vorticity local maximum

– taken as storm centre

Average Temperature

between 550hPa and 200hPa

Closest maximum within 2o of the storm centre and

the temperature decreases by at least 0.5oC

for at least 8o latitude in all directions

Maximum Thickness

between 1000hPa and 200hPa

Closest maximum within 2o of the storm centre and

the thickness must decrease at least 50 metres

for at least 8o latitude in all directions

Camargo and Zebiak (2002)

Relative Vorticity at 850hPa > twice the vorticity standard deviation in each basin

Surface Wind Speed

> the sum of wind speed standard deviation

in each basin and the global average oceanic wind

speed in a 7x7 box centered around the relative

vorticity maximum

Mean Sea Level Pressure (MSLP)
A local minimum is present in a 7x7 box

centered around the relative vorticity maximum

Temperature Anomaly

Anomaly averaged over a 7x7 box centered around the

relative vorticity minimum and over the 300, 500, 700 hPa

pressure levels > the basin standard deviation

Anomaly averaged over a 7x7 box centered around the

relative vorticity minimum is positive in all three of

300hPa, 500hPa, and 700hPa pressure levels

Anomaly averaged over a 7x7 box centered around

the relative vorticity minimum

is greater at 300hPa than at 850hPa

Wind Speed

Wind speed averaged over a 7x7 box

centered around the relative vorticity minimum

is greater at 850hPa than at 300hPa

Distance Travelled

Storm centre – defined as the relative vorticity

minimum – must not have travelled a distance greater than

5.6o if 6-hourly output or 8.5o if daily output

Event Time At least 1.5 days if 6-hourly output or 2 days if daily output

Roberts et al. (2015)

Relative Vorticity

> 6× 10−5 s-1 at 850 hPa

Reduction of at least 6× 10−5 s-1 in vorticity

between 850 and 250 hPa at a T63 resolution

Positive vorticity centre at all available

levels between 850 and 250 hPa

Wind Speed

Wind speed averaged over a 7x7 box

centered around the relative vorticity minimum is greater

at 850hPa than at 300hPa

Event Time At least 1.5 days

Table 3.1: Overview of thresholds applied to meteorological variables for de-
tecting and tracking Tropical Cyclones with the conventional techniques given.

30

monwealth Scientific and Industrial Research Organisation (CSIRO) tracking
scheme (Walsh et al., 2007; Horn, Walsh, and Ballinger, 2013), the Zhao track-
ing scheme (Zhao et al., 2009), and those developed by the modelling groups
whose data was involved, i.e. the groups from the Meteorological Research Insti-
tute (MRI), the National Aeronautic and Space Administration (NASA) God-
dard Institute for Space Studies (GISS) and the Centro Euro-Mediterraneo per i
Cambiamenti Climatici-Istituto Nazionale di Geofisica e Vulcanologia (CMCC-
INGV). For those algorithms provided by the modelling groups, the algorithm
was tuned on their own modelling data to obtain the best performance on their
own data. The models used were the CMCC-INGV ECHAM5 model which has
∼90-km grid spacing at equator (Roeckner et al., 2003), the NASA-GISS model
which has ∼110-km grid spacing at the equator (Schmidt, 2014), the National
Center for Environmental Prediction (NCEP) Global Forecast System (GFS)
which has ∼110-km grid spacing at equator (Saha, 2014), and version 3.2 of
the Meteorological Research Institute Atmospheric General Circulation Model
(MRI AGCM3.2) which has ∼60-km grid spacing at equator (Mizuta et al.,
2012).

They showed that the method supplied by the organisation which provided
the underlying data was at worst equal-best when comparing TC counts to
observations and usually outperformed the others. This is due to the group
having tuned their method’s thresholds to obtain close to the number of TCs
observed. They also show that detection methods which were not optimised
on the data being tested do not work as well as if they had been optimised.
Similarly, Onogi et al. (2007) also found that a detection algorithm developed
for the Japanese Meteorological Agency (JMA) obtained 80% of TCs in their
JRA-25 reanalysis but less than 60% of TCs in the ERA-40 reanalysis (Uppala
et al., 2005).

Given that the requirement for these automatic tracking algorithms is to
detect TCs in a particular set of data which correspond to those that occurred
in real-life, it is only natural that the threshold values are tuned to obtain the
same number of TCs as seen in an observational dataset.

Zarzycki and Ullrich (2017) conducted sensitivity analysis on the thresholds
used for one tracking algorithm, TempestExtremes (Ullrich and Zarzycki, 2017)
applied to four different reanalysis datasets. They found that the most sensitive
thresholds were those defining the TC vortex strength, for example for the depth
of the minimum of mean sea level pressure (MSLP) or warm core strength.
They reported a larger difference when comparing storm count rather than
integrated or weighted metrics such as the number of days with a TC present
or accumulated cyclone energy (ACE). Another threshold was how long a system
needed to be detected for until it could be classified as a TC. In most algorithms,
this is set as 2 days but Zhao et al. (2009) found that this threshold was sensitive
to the choice made. Also, while previous literature also seems to agree that even
though some differences might be observed between detection methods, there
are little disagreements on strong TCs, i.e. those that are at least of category
1 on the Saffir-Simpson scale.

It was also noted in some of this work that the intensity of TCs, whether
surface winds or the depth of the minimum mean sea level pressure (MSLP), is
underestimated in all of the reanalyses datasets. Strachan et al. (2013) noted

31

that resolution alone does not explain this observation due to more feedback
processes present in the model. Despite this, they still noted that any wind
speed threshold should vary linearly with resolution and any deviations from
this relationship are due to model biases and errors.

Schenkel and Hart (2012) also noted that the choice of data assimilation
method is important to get realistic surface wind speeds. For this reason, the
JRA25 and JRA55 reanalyses are most realistic, due to an improved data as-
similation method which locates vortices more accurately.

Despite all these considerations when it comes to the resolution of different
reanalyses, Strachan et al. (2013) show that those datasets with a resolution
higher than 60km are capable of showing the correct inter-annual variability
but even a resolution of 20km is not capable of producing the right intensities.

TRACK (Hodges, 1995; Hodges, 1996; Hodges, 1999) is an algorithm that
detects and tracks various types of meteorological phenomena, and is used fur-
ther in this study. Hodges, Cobb, and Vidale (2017) investigated how TRACK
applied to TCs performed using six different reanalysis datasets. It was found
to work well (97% in NH; 92% in SH) at tracking TCs across all basins, but that
it had a high false detection rate, especially in the Southern Hemisphere. Most
of these false positives had their genesis at a latitude greater than 20oS, leading
to the conclusion that these may have been hybrid TCs, i.e. TCs undergoing
an extra-tropical transition, of some sort. An additional conclusion was that
the observations may have missed recording some storms as there were around
20% more advisories issued than storms present in the data. Hodges, Cobb,
and Vidale (2017) discussed that such storms may have been omitted due to
the lack of human impact and/or accurate measurements.

3.2.2 Algorithms utilising Deep Learning

A newer crop of algorithms have been developed to detect and track TCs using
deep learning methods. These are summarized in Table 3.2.

Racah et al. (2017) created a method where a deep learning network takes
in a snapshot of the world as given by a CAM5 climate model with 16 differ-
ent meteorological variables and creates bounding boxes around the detected
TCs. The variables used were: total precipitation rate, surface pressure, sea
level pressure, reference height humidity, temperature at 200 millibar and 500
millibar, total vertically integrated precipitable water, reference height temper-
ature, radiative surface temperature, meridional and zonal wind speed at 850
millibar and at the lowest available model level, geopotential at 100 millibar
and 200 millibar and the lowest model level height, usually 1000 millibar unless
topography constrains this to a higher value. The architecture used was that
of an auto-encoder with three smaller networks using the bottleneck layer to
draw a box around a suspected TC. Given the size of the inputs and number of
kernels used in the convolution layers, the model presented was expected to be
time consuming to train. It certainly required supercomputing: an adaptation
of this deep learning network was trained using 9622 nodes of 68 cores each with
a peak throughput of 15.04PF/s and reached a sustained throughput of 13.27
PF/s, although the total time to train was not reported (Kurth et al., 2017).
The accuracy for this model was specified as the percentage of overlap between

32

Authors Data Used Ground Truth Architectures Results

Racah et al. (2017)

CAM5 Climate Model
1979-2005 3-hourly
25km resolution

Image size of 768 x 1158 pixels
16 channels

Training Set:
Timesteps during 1979

Testing Set:
Timesteps during 1984

TECA

Encoder:
Conv: 8(layers) x 384(height) x

576(width) @ 64(kernels)
Conv: 8 x 192 x 288 @ 128
Conv: 8 x 96 x 144 @ 256
Conv: 8 x 48 x 72 @ 384
Conv: 8 x 24 x 36 @ 512
Conv: 8 x 12 x 18 @ 640

Decoder:
Conv: 8 x 12 x 18 @ 640
Conv: 8 x 24 x 36 @ 512
Conv: 8 x 48 x 72 @ 384
Conv: 8 x 96 x 144 @ 256
Conv: 8 x 192 x 288 @ 128
Conv: 8 x 384 x 576 @ 64

Box Locator:
Conv: 4 x 12 x 18 @ 4

Class Probabilities:
Conv: 4 x 12 x 18 @ 4

Objectiveness Probabilities:
Conv: 4 x 12 x 18 @ 2

IOU = 0.1: 24.74%
IOU = 0.5: 15.53%

Liu et al. (2016)

CAM5.1 Climate Model
1979-2005 3-hourly
0.23o x 0.31o res.

ERA-Interim Climate Model
1979-2011 3-hourly
0.25o x 0.25o res.

20th Century Reanalyses
1908-1948 daily
1o x 1o res.

NCEP-NCAR Reanalyses
1949-2009 daily
1o x 1o res.

Images cropped to 32 x 32 pixels

TECA
Manual expert labelling

Conv: 5 x 5 @ 8
Pool: 2 x 2

Conv: 5 x 5 @ 16
Pool: 2 x 2
Dense: 50
Dense: 2

99%

Kumler-Bonfanti et al. (2020)
GFS NWP model
720 x 361 pixels

0.5o res.
IBTrACS U-net of 6 layers IOU = 100%: 75%

Mudigonda et al. (2017)
CAM5 Climate Model

1996-2015
Images cropped to 96 x 144 pixels

TECA
Otsu’s method

Adaptation of Tiramisu Model 92%

Table 3.2: Previous Deep Learning networks that detect and track Tropical
Cyclones.

the predicted box and the box given as the ground truth — an Intersection of
Union (IOU). The model had 24.74% of the predicted boxes having at least an
overlap of 10% with the ground truth, while 15.53% of the predicted boxes had
at least an overlap of 50% with the ground truth.

Mudigonda et al. (2017) created a deep learning network which used inte-
grated water vapour (IWV) snapshots and image segmentation techniques to
classify whether each pixel in an image was a part of a TC or not. It used an
adaptation of the Tiramisu model, which applies the DenseNet architecture, a
type of fully connected network, to semantic segmentation. The labels were
created using a threshold-based algorithm named TECA (Prabhat et al., 2012;
Prabhat et al., 2015). It was trained and tested on images which had at least
10% of the pixels which were not background pixels. An accuracy of 92% was
obtained but it was noted that had the model predicted all the pixels as being
all background pixels, the accuracy would have been of 98%.

Similarly, Kumler-Bonfanti et al. (2020) use a U-net network to perform
image segmentation for TCs using the total precipitable water field from the
GFS output as an input, where the Global Forecast System (GFS) is a National
Center for Environmental Prediction (NCEP) weather forecast model. A U-net

33

network is very similar to an auto-encoder network, with the difference that
connections between the two branches of the network are used to convey any
information missed while creating the dense representation of the inputs at
the end of the encoder branch of the network. The inputs used also take in
a measure of time as two snapshots are given to the deep learning network,
one approximating the state of the atmosphere at the time the inference was
initiated and another having the forecasted state of the atmosphere at the next
forecast step available, usually three hours after. Labels of areas belonging to
a TC were generated by creating a 25x25 pixel box, approximating 300km2,
around a latitude and longitude pair obtained from International Best Track
Archive for Climate Stewardship (IBTrACS, Knapp et al., 2010; Knapp et al.,
2018) dataset. This model managed to obtain an IOU of 75% but it should be
noted that the labelling boxes were of the same size, so the value for the IOU
is possibly inflated.

Finally, Liu et al. (2016) used an image cropped in such a way that if a TC
was present, it was centred in the image. They used 8 different meteorological
variables: MSLP, meridional and zonal wind speed at 850 millibar and at the
lowest available model level, temperature at 200 millibar and 500 millibar and
total vertically integrated precipitable water. They then predicted whether the
image was one of a TC or not. The model obtained a 99% accuracy with a rel-
atively simple model, but the pre-processing cropping step involved significant
noise reduction, which would have helped obtain good performance.

As can be seen, various deep learning network architectures have been ap-
plied to the problem of detecting TCs. However, it could be noted that perfor-
mance for some of these methods are not very high. Another implication for
our study is that inputs are usually storm-centered, meaning that if a system
is present, its centre is put in the center of the input field. This introduces an
extra preprocessing step, which would not make our method very useful if the
same step was to be used. It also should make the task easier, as obvious spatial
differences would be seen between cases with and without a TC.

3.3 TC Detection Methods used in this study

During this study, the developed deep learning neural network is compared to
another algorithm, termed TRACK, and an observational dataset, the Inter-
national Best Track Archive for Climate Stewardship (IBTrACS, Knapp et al.,
2010; Knapp et al., 2018) dataset.

3.3.1 IBTrACS

The IBTrACS dataset has information about reported storms, such as the storm
centre in latitude and longitude, maximum surface wind speed, minimum sea
level pressure and category. In the real world, IBTrACS provides the best
source of ground truth. The ERA-Interim dataset attempts to recreate the
truth and IBTrACS labels what actually happened, so it is the best possible
ground truth. Initially developed by the National Oceanic and Atmospheric
Administration (NOAA), it combines all the best-track data forTCs from all

34

the official Tropical Cyclone Warning Centers, the WMO Regional Specialized
Meteorological Centers (RSMCs), and other sources.

While IBTrACS is the best available observational dataset, it does have some
drawbacks. Some inhomogeneity exists between each source as the contributing
centres have differing observing systems and parametric approaches. An exam-
ple of this is the calculation of the maximum sustained wind speeds. The WMO
defines this as the maximum 10 minutes average wind speed at 10 metres above
level ground. However, various centres use different time-averaging methods,
making comparison hard. These values have been converted to the WMO def-
inition in IBTrACS via a mathematical conversion, but this introduces some
uncertainty to the values. Given that these are used to define the strength
(in category terms) of a system, some hurricane strength TCs could have been
misclassified and so left out of any subsequent analysis. As an example of these
mismatches, Knapp et al. (2010) show that the maximum strength of Typhoon
Yvette in 1992, which was tracked by four different centres, could have been as
high as 136 knots, or Category 5 on the Saffir-Simpson wind scale, or as low as
90 knots, or Category 3 on the Saffir-Simpson wind scale.

Also, observing systems can be limited in time and space, leading to the
omission of systems not detected or having an incomplete record of their evo-
lution, particularly if they had limited or no human impact, or they were out
of range of detection systems such as airborne missions. As such is there a lack
of TCs reported in the Southern Hemisphere, especially off the eastern coast of
South America.

Finally, hybrid TCs, i.e. TCs undergoing a transition from a tropical system
to an extra-topical system, are also present.

3.3.2 TRACK

TRACK is a state-of-the-art automatic detection and tracking system for differ-
ent types of atmospheric disturbances with considerable use since inception in
Hodges (1995), Hodges (1996) and Hodges (1999). In this study, the TC track-
ing component is used as a comparator against which to compare the results
from the deep learning network.

TRACK has four different stages: data preparation; segmentation; feature
point detection and tracking.

In the first step, TRACK treats the data so that features of interest are
easier to detect. This is done with the help of spectral filtering to only keep
features which have spatial scales in the range of the features of interest. With
regards to tropical cyclones, the features present in wavenumbers 5 to 63 are
kept in the vertical average of vorticity between the heights of 850hPa and
600hPa.

In spectral filtering, as described by Krishnamurti, Bedi, and Hardiker
(1998), data located on a latitude-longitude grid is transformed to a spectral
grid. The data at any latitude can be represented as a combination of sine and
cosine waves. This can be written as a finite discrete Fourier series as:

Ti = A0 +
n∑

k=1

Ak cos
ikπ

n
+

n−1∑
k=1

Bk sin
ikπ

n
(3.1)

35

where Ti is the value of data on a latitude-longitude grid, n is the total number
of wave components used to describe the field and k is the zonal wavenumber,
which is the number of waves used at a single latitude to represent the required
data, and also implies a wavelength which is used to select the wavenumbers
required to represent certain phenomena. Ak and Bk are obtained via the
discrete Fourier transform as:

Ak =
1

n

2n−1∑
i=0

Ti cos
ikπ

n
(3.2)

Bk =
1

n

2n−1∑
i=0

Ti sin
ikπ

n
(3.3)

The above equations are then used as the basis functions for spherical har-
monics which represent the zonal structure using sine and cosine functions and
the meridional structure using associated Legendre functions.

Therefore, a variable A can be written as

A(λ, ϕ) =
j∑

m=−j

j+|m|∑
n=|m|

Am
n e

imλPm
n (sinϕ) (3.4)

wherem is the zonal wavenumber, n is the two-dimensional (total) wavenumber,
j is the truncation wavenumber, i.e. the maximum wavenumber kept after
filtration, λ is the longitude, ϕ is the latitude, Am

n is the spectral coefficient.
Pm
n is an associated Legendre coefficent of the first kind and can be given as:

Pn(µ) =
1

2nn!

dn

dµn
(µ2 − 1)n (3.5)

where µ = sinϕ.
The filtered data can then be returned to a latitude-longitude grid by us-

ing the inverse Fourier transforms of equations 3.2 and 3.3. Therefore, as an
example, to obtain a filtered field keeping wavenumbers 5 to 106, two fields on
a latitude-longitude grid are obtained by setting j = 5 and j = 106 in equa-
tion 3.4 respectively and then the field containing data up to wavenumber 5 is
subtracted from that having data up to wavenumber 106.

During the segmentation stage, each point in each timestep of any data used
is classified as a background or an object point, depending on whether the value
for the vertical average of vorticity at 850hPa, 700hPa and 600hPa is above or
below the threshold of 5 × 10−6 s-1. The object points are then collected into
objects.

Feature point detection then allocates a feature point to each object, repre-
senting its centre. This feature point could be selected as the centroid of the
object, a local extrema or using some other technique, depending on the type
of data used.

Finally, the tracking stage uses the feature points generated to minimise a
constrained cost function to get the smoothest possible tracks.

The complete TRACK algorithm finds a range of cyclones, some of which
may be TCs. The tracks produced can be processed to identify only TC tracks.
Bengtsson, Hodges, and Esch (2007) summarise the necessary processing crite-
ria:

36

• a lifetime of at least 2 days

• the initial point in the track must be in between the latitudes of 20oS and
20oN if over land or 30oS and 30oN if over an ocean

• a maximum T63 vertically-averaged relative vorticity intensity at 850hPa
over 5× 10−6 s-1

• a warm core check: a T63 vorticity maxima for each atmosphere level up
to 250hPa and that the difference between the maxima at 850hPa and
250hPa is above a 5× 10−6 s-1

• the last two conditions holding for the last n timesteps, where n is a
user-defined value

We refer to the set of tracks which conform to these criteria as the ”truncated-
TRACK” dataset or T-TRACK.

3.3.3 Performance Metrics

In this study, various performance metrics and comparators are used. Unfortu-
nately, this makes comparing the methods used not trivial.

Firstly, the developed neural network used IBTrACS as the ground truth
dataset, and is trained using labels generated using IBTrACS. However, as
discussed previously, this dataset has some drawbacks, which means some TCs
are missed, especially in the Southern Hemisphere, and the classification of TCs
can be wrong. This means that the labelling system was probably not sufficient
to produce the optimal neural network.

Furthermore, metrics such as recall and precision were calculated using data
from IBTrACS. Therefore, when calculating these metrics, they might show bet-
ter performance if compared to the actual truth, i.e. a perfect historical record.
Something close to this might have been obtained had manual identification of
TCs been carried out, but classification of the strength of any TCs identified
would have still posed an unsolvable problem, as the only way to perform this
would be to have direct measurements of 10m wind speed, which is unrealistic
to expect for each TC event.

In chapter 4, TRACK and T-TRACK are also compared to two versions of
IBTrACS, the former having all tropical systems present while the latter having
hurricane-strength TCs only. TRACK also tracks all tropical systems, but T-
TRACK attempts to remove those which do not reach hurricane status from
initial part of TC tracks. In the comparison of IBTrACS containing all TCs
irrespective of strength with TRACK (and by extension any neural network
trained with labels derived from TRACK), the only issue would be any missed
cases in either of the two datasets. However, when T-TRACK is compared
to IBTrACS having only TCs of hurricane strength present, both datasets are
likely to still have TCs of non-hurricane strength present, either as they are not
removed from the latter parts of TC tracks in T-TRACK, or are misclassified
TCs in IBTrACS.

Finally, in chapter 6, the performance of the developed neural network when
using data from various simulations of the UK Met Office Unified Model (UM)

37

is compared. IBTrACS data is not available for such free-running simulations
so only data from TRACK and T-TRACK can be used. As such, the trained
neural network was re-trained using labels derived from T-TRACK so that any
difference in performance seen during the comparison could be attributed to
the change of underlying data, rather than due to a change of labelling system.
Given that the neural network was not developed for this exact labelling system,
the performance of the network is not expected to be optimised. However, the
network was still being trained to detect TCs and the labelling system is at
worst a superset of the original labelling system, so the performance was not
expected to be largely different. Also, the analysis done did not require a
perfectly optimised neural network to be able to perform the comparison, only
a suitably trained one, hence why the change of labelling system is not thought
to be of any significance for the particular analysis performed.

38

Chapter 4

Detecting the Presence of
Tropical Cyclones in Climate
Model Data

Tropical cyclones are severe weather events which have large human and
economic effects, so it is important to be able to understand how their lo-
cation, frequency and structure might change in a future climate. Here,
a lightweight deep learning neural network, named TCDetect, is pre-
sented which is intended for detecting the presence of tropical cyclones
in running numerical simulations. This has been developed to investi-
gate the avoidance of saving vast amounts of data for analysis by only
saving relevant data during simulations. Subsequent analysis workflow
can target that data, avoiding the need to save all simulation outputs
for cyclone analysis. TCDetect was trained on ERA-Interim reanalysis
data from 1979 to 2017 and the training concentrated on delivering the
highest possible recall rate (successful detection of cyclones) while reject-
ing enough data to make a difference in output data reduction. Given
our application requires the combination of highest recall and precision
and that a highly skewed dataset is used, the Area Under Curve for the
Precision/Recall (AUC-PR) is used as the performance metric of choice.
When tested using data from the two subsequent years, the recall rate
was 92% and the precision rate was 36%. However, if relevant meteoro-
logical events are considered to be positive cases, the effective precision
was 85%. The recall rate compares favourably with other more standard
deep learning networks having similar AUC-PR while using the smallest
number of parameters for both training and inference.

Tropical cyclones are meteorological phenomena which have large effects on
any landscape or human population affected. These are studied by the use
of numerical simulations. Hence, there have been a few deep learning-based
methods to detect and track TCs, as described in Section 3.2.2, but they either
require significant preprocessing of the data to work, use a large amount of
inputs or use a complicated network to produce their inferences. If one of these
options are used in a method to detect or track TCs during a running simulation
of the climate, significant computational resources would need to be dedicated

This chapter has been prepared for publication and a preprint version is available at
https://www.essoar.org/doi/10.1002/essoar.10508127.1; contributions - Daniel Galea: cod-
ing, data collection, writing, editing; Bryan Lawrence: writing, editing, direction; Julian
Kunkel: setting up initial data and direction

39

to this task. Here, a new deep learning network that aims to detect the presence
of TCs using quick data processing techniques and a relatively simple network
is presented.

4.1 Deep Learning Network

4.1.1 Data

Our deep learning neural network, named TCDetect, is trained and tested on a
dataset extracted from the ERA-Interim reanalysis (Dee et al., 2011) with labels
derived from an observation dataset, the International Best Track Archive for
Climate Stewardship (IBTrACS, Knapp et al., 2010; Knapp et al., 2018) dataset.
IBTrACS is taken as the ground truth in the rest of the study.

Five six-hourly fields were used: mean sea level pressure (MSLP), 10-metre
wind speed and relative vorticity at 850hPa, 700hPa and 600hPa, each at a
spatial resolution of ≈ 0.7ox0.7o from the 1st of January 1979 until the 31st of
July 2017. These fields were chosen because they had been used in previous
TC detection algorithms and produced the best-performing deep learning net-
work during hyperparameter tuning, as shown in the Section 4.1.3. Spherical
harmonic filtering was performed on each field to reduce some of the smaller
scale features. For the MSLP and 10-metre wind speed fields, spherical har-
monic filtering is performed to keep wave numbers between 5 and 106. The
vorticity fields were spherical harmonic filtered between wave numbers 1 and
63. These choices for wave numbers were made for them to be the same as
TRACK, described in Section 3.3.2.

Each field was further split into eight regions as shown in Figure 4.1. These
regions are loosely based on those used by the IBTrACS dataset. Thus, the
whole dataset had 450,944 cases, each with dimensions of 86 rows, 114 columns
and 5 channels.

North
Indian

Western
Pacfic

Eastern
Pacific

Western
Atlantic

South
Indian

South Western
Pacific

South Eastern
Pacific

South
Atlantic

180

180

120

120

60

60

0

0

60

60

120

120

180

180

45 45

30 30

15 15

0 0

15 15

30 30

45 45

Figure 4.1: Each timestep in the ERA-Interim dataset was split into 8 equal
parts to create the training dataset for the deep learning network.

Each region was preprocessed to reduce resolution to a sixteenth of the
original ERA-Interim resolution by taking the mean value of all data points
inside a 4x4 box, thus reducing the dimensionality of each input case to 22
rows, 29 columns and 5 channels. This reduction of resolution was arrived to
during hyperparameter tuning. Then, standardisation for each of the fields used

40

as the input variable for each channel was performed according to

field =
field− µfield

σfield

(4.1)

where µfield is the mean of the values in the field and σfield is the standard
deviation of the values in the field, to standardize each value around 0 with a
standard deviation of 1.

Figure 4.2 shows an example of the data used, before and after preprocess-
ing, from the time when Hurricane Katrina obtained its maximum strength, the
28th of August 2005 at 18Z. The left column shows data from ERA-Interim and
right column show how this data is transformed after preprocessing. Rows cor-
respond to the mean sea level pressure (MSLP), 10-metre wind speed, vorticity
at 850hPa, 700hPa and 600hPa. It can be seen that the coarsening of the data
reduces the amount of noise in the region, while possibly removing some of the
finer details. Also, given that TCs are extreme events, high values are seen in
areas corresponding to the TC. This is due to the standardisation method used
during preprocessing.

Labels for these cases were derived from the IBTrACS dataset, which con-
tains temporal information, including category, latitude and longitude of the
storm centre, on all major storms across the globe. The labels were set up in
such a way that each region was labelled according to the presence or absence
of a TC in that case in IBTrACS. At the end of the labelling process, 22,826
(5.06%) positive labels were generated as well as 428,118 (94.94%) negative
labels.

Manual labelling could not have been a possibility due to the time needed to
perform this process. Given 450,944 cases were used for training of TCDetect,
and assuming that 10 seconds are required to manually label all TCs in each
case, 31 working weeks would have been required to perform this task. Other
datasets are used in Chapter 6, which would have required many years to man-
ually label. Also, a high degree of subjectivity would be required to determine
whether any identified TC has a strength of a hurricane, hence this method of
labelling was not deemed to be fit for our requirements.

This dataset was used for training and validation; it was split by taking
data from 1979, 1986, 1991, 1996, 2001, 2006, 2011 and 2016 to make up the
validation set and the rest of the data to make up the training set. This method
of splitting the available data was chosen so that the possible effects of a chang-
ing climate were taken into consideration, so that any hyperparameter tuning
performed would not be skewed.

After splitting the available data, the training set had a total of 357,408
cases, with 339,546 (95%) not having a TC and 17,862 (5%) having a TC. The
validation set had a total of 93,504 cases, with 88,651 (94.81%) not having a
TC and 4,853 (5.19%) having a TC.

Data from the 1st of August 2017 until the 31st of August 2019 was used as
a testing set. This had a total of 24,352 cases, with 23,010 (94.49%) not having
a TC and 1,342 (5.51%) having a TC present. Table 4.1 shows how the splits
are made and that the split between positive and negative cases is mostly kept.

41

Mean Sea Level Pressure

Original Data Preprocessed Data

Wind Speed

Vorticity at 850hPa

Vorticity at 700hPa

Vorticity at 600hPa

97800
98400
99000
99600
100200
100800
101400
102000
102600
103200

0

4

8

12

16

20

24

28

32

0.00008

0.00000

0.00008

0.00016

0.00024

0.00032

0.00040

0.00048

0.00056

0.00016
0.00008

0.00000
0.00008
0.00016
0.00024
0.00032
0.00040
0.00048
0.00056

0.00016

0.00008

0.00000

0.00008

0.00016

0.00024

0.00032

0.00040

0.00048

7.5

6.0

4.5

3.0

1.5

0.0

1.5

3.0

3.0

1.5

0.0

1.5

3.0

4.5

6.0

7.5

4

2

0

2

4

6

8

10

12

4

2

0

2

4

6

8

10

12

4

2

0

2

4

6

8

10

Figure 4.2: An example of the data that was used to train the TCDetect. Left
column shows data from ERA-Interim and right column show how this data
is transformed after preprocessing. The fields of MSLP (first row), 10-metre
wind speed (second row), vorticity at 850hPa (third row), vorticity at 700hPa
(fourth row) and vorticity at 600hPa (fifth row) from the timestep of the 28th

of August 2005 at 18Z, i.e. the timestep when Hurricane Katrina obtained its
maximum strength.

42

Partition Years Included Positive Cases Negative Cases

Training
1980 - 1981, 1982 - 1985, 1987 - 1990
1992 - 1995, 1997 - 2000, 2002 - 2005

2007 - 2010, 2012 - 2015, 2017
17862 (5.00%) 339546 (95.00%)

Validation
1979, 1986, 1991, 1996
2001, 2006, 2011, 2016

4853 (5.19%) 88651 (94.81%)

Testing 2017 - 2019 1342 (5.51%) 23010 (94.49%)

Table 4.1: Dataset Splits.

4.1.2 Network Architecture

TCDetect uses a convolutional base attached to a fully-connected classifier
which outputs a value between 0 and 1, with any values larger than 0.5 sig-
nifying that a TC is detected and any values smaller or equal to 0.5 meaning
that a TC is not detected.

To arrive to the architecture of TCDetect, step-wise manual hyperparameter
tuning was used to determine which changes to the architecture performed well,
as explained in Section 4.1.3.

In the final architecture, an input of dimensions 22 rows by 29 columns by 5
fields is fed through five convolutional blocks, each made up of a convolutional
layer of 8, 16, 32, 64 and 128 kernels respectively, with weights initialized using
the Glorot Uniform method (Glorot and Bengio, 2010) with ReLU (Nair and
Hinton, 2010) activation functions, each with strides of 1 and a kernel size of
2x2; a dropout layer (Srivastava et al., 2014) with a dropout rate of 10%; and a
maximum pooling layer with strides equal to 1. The resulting kernels are flat-
tened and passed through three fully-connected blocks, each made up of a dense
layer of 128, 64 and 32 hidden nodes respectively, with L2 regularisation with a
normalisation factor of 0.005, weights initialized by the Glorot Uniform method
and a dropout layer with a dropout rate of 10%. The last layer of TCDetect
is another fully-connected layer of one node, this time using the sigmoid acti-
vation function with weights initialized by the Glorot Uniform method, as well
as L2 regularisation with a factor of 0.005 which outputs a prediction. The
optimizer used was the Stochastic Gradient Descent (SGD) optimizer with a
learning rate of 0.01 and momentum of 0.8 with the loss function being that of
binary cross-entropy. A graphical view of this architecture is shown in Figure
4.3 and is detailed in Table 4.2.

Inputs

Convolution
and MaxPool Convolution

and MaxPool Convolution
and MaxPool Convolution

and MaxPool Convolution
and MaxPool

Flatten and
FullyConnected FullyConnected

FullyConnected
FullyConnected

5
8

16
32

64

128

22

20
18

16
14

12

29
27

25
23

21

19

128
64

32
1

1
1

1

1 Output

Figure 4.3: Visual representation of the architecture of TCDetect.

The training of TCDetect was done using a NVIDIA Volta 100 GPU on a
node having 32GB of RAM and 32 CPU cores. Some initial tests were performed
on a cloud instance provided by Oracle, while the main development described
in the following section was performed on the JASMIN platform (Lawrence

43

Layer (type) Layer (specification) Output Shape Number of parameters

Input 22, 29, 5

Conv2D

Glorot Uniform Weight Initialisation;

ReLU Activation Function

8 Kernels; Size = 2x2; Strides - (1, 1)

21, 28, 8 168

Dropout Dropout Rate - 0.1 21, 28, 8

MaxPooling2D Strides - (1, 1) 20, 27, 8

Conv2D

Glorot Uniform Weight Initialisation;

ReLU Activation Function

16 Kernels; Size = 2x2; Strides - (1, 1)

19, 26, 16 528

Dropout Dropout Rate - 0.1 19, 26, 16

MaxPooling2D Strides - (1, 1) 18, 25, 16

Conv2D

Glorot Uniform Weight Initialisation;

ReLU Activation Function

32 Kernels; Size = 2x2; Strides - (1, 1)

17, 24, 32 2080

Dropout Dropout Rate - 0.1 17, 24, 32

MaxPooling2D Strides - (1, 1) 16, 23, 32

Conv2D

Glorot Uniform Weight Initialisation;

ReLU Activation Function

64 Kernels; Size = 2x2; Strides - (1, 1)

15, 22, 64 8256

Dropout Dropout Rate - 0.1 15, 22, 64

MaxPooling2D Strides - (1, 1) 14, 21, 64

Conv2D

Glorot Uniform Weight Initialisation;

ReLU Activation Function

128 Kernels; Size = 2x2; Strides - (1, 1)

13, 20, 128 32896

Dropout Dropout Rate - 0.1 13, 20, 128

MaxPooling2D Strides - (1, 1) 12, 19, 28

Flatten 29184

Dense

Glorot Uniform Weight Initialisation;

ReLU Activation Function

128 nodes; L2 Norm; Factor = 0.005

128 3735680

Dropout Dropout Rate - 0.1 128

Dense

Glorot Uniform Weight Initialisation;

ReLU Activation Function

64 nodes; L2 Norm; Factor = 0.005

64 8256

Dropout Dropout Rate - 0.1 64

Dense

Glorot Uniform Weight Initialisation;

ReLU Activation Function

32 nodes; L2 Norm; Factor = 0.005

32 2080

Dropout Dropout Rate - 0.1 32

Dense

Glorot Uniform Weight Initialisation;

Sigmoid Activation Function

1 node; L2 Norm; Factor = 0.005

1 33

Table 4.2: The architecture of the TCDetect.

44

et al., 2012). The software packages used were Python 3.6.8 and TensorFlow
v2.20 (Abadi et al., 2015). Training took 21 epochs to finish with a total time
to train of 12 minutes. Despite the relatively short time taken to train the
final version of TCDetect, it took a much longer time to progress through the
various optimisations detailed in the appendix, mainly due to the use of 10-fold
cross-validation.

4.1.3 Hyperparameter Tuning

Hyperparameter tuning was undertaken to develop the best-performing neural
network possible to detect the presence of a TC. Due to time and computational
constraints, this was done in a manual sequential fashion, whereby the search
space for each hyperparameter was tested one hyperparameter after another.
While this probably does not obtain the optimal network, employing grid search
for hyperparameter tuning would have not been time-effective, while other forms
of hyperparameter tuning, e.g. Bayesian search would have needed significant
expertise which was not available at the time.

The full deep learning network was developed on data from the Western
Atlantic and Western Pacific regions. The training set, as described in Section
4.1.1, was used to perform 10-fold cross-validation. Each fold was then evaluated
using the validation set. The evaluation produced a set of metrics which offered
an insight into the effectiveness of any given configuration of deep learning
network choices.

The metric used to assess whether a change improved the performance of the
network was the Area Under Curve for the Precision/Recall (AUC-PR). Given
the major class imbalance in the dataset used and that the network is intended
to be used as a data reduction technique, this metric is used due to it weighting
both precision and recall equally. Also, this network was being developed to
identify data for further post-processing so false negatives are a bigger problem
than false positives. Thus, improvements in recall were favoured over those in
precision if AUC-PR varied only marginally as a change was implemented.

Development and optimisation using this AUC-PR proceeded as described
below, with the final network being described and evaluated using the testing
dataset in Section 4.1.2 and Section 4.2 respectively. Table 4.4 shows a summary
of the steps taken during hyperparameter tuning.

The initial architecture that was used as the starting point for developing
TCDetect consisted of an input of dimensions 84 rows by 110 columns by 2
channels which passed through five convolutional blocks, each made up of a
convolutional layer of 8, 16, 32, 64 and 128 kernels respectively, with weights
initialized using the Glorot Uniform method with ReLU activation functions,
each with strides of 1 and a kernel size of 2x2; and a MaxPooling2D layer with
strides equal to 1. The resulting kernels are flattened and passed through three
fully-connected blocks, each made up of a dense layer of 128, 64 and 32 hidden
nodes respectively, with weights initialized by the Glorot Uniform method. The
network ends with another fully-connected layer of one node, this time using
the sigmoid activation function, with weights initialized by the Glorot Uniform
method. This final layer outputs the final prediction. The optimizer used was
the Stochastic Gradient Descent (SGD) optimizer with the default learning rate

45

Step Search Space

Choice of Data

3 Unfiltered Fields,
5 Unfiltered Fields,
3 Filtered Fields,
5 Filtered Fields

Early Stopping 2, 5, 10, 20

Feature Scaling
Standardisation, Normalisation,
Resizing values in [0, 1],
Resizing values in [-1, 1]

Horizontal Resolution Full, Fourth, Ninth, Sixteenth, Twenty-fifth

Dataset Balancing
Oversampling, Undersampling with/out replacement,
weighting classes, correcting bias,
weighting cases and correcting bias

Loss and Optimiser
All combinations using one of the BCE, MAE and MSE
as loss function and one of SGD, Momentum, Adam, Nadam,
AdaMax, AdaGrad and RMSProp as an optimiser

Learning rate
and momentum

Learning rate from 0.00001, 0.00005, 0.0001, 0.0005,
0.001, 0.005, 0.01, 0.05, 0.1, 0.5
Momentum rate from 0.1 to 1 in steps of 0.1

Data Augmentation
Methods

Random roll in x, y or both directions,
Rotation by an angle chosen at random,
Adding noise from a normal distribution to inputs,
Flip inputs left-to-right and up-to-down,
Applying thresholds to inputs,
Randomly cropping inputs

Data Augmentation
Rate (for training)

From 0.1 to 1 in steps of 0.1

Dropout Layer
Position

In classifier only, in convolutional base only, or both

Dropout Rate From 0.1 to 1 in steps of 0.1
L2 Regularisation
Layer Position

In classifier only, in convolutional base only, or both

Batch Size 8, 16, 32, 64, 128, 256, 512, 1024, 2048

Architecture

Doubling or trebling number of kernels in convolutional base,
Halving or using a third of kernels in convolutional base,
Doubling or trebling number of nodes in classifier,
Halving or using a third of nodes in classifier,
Adding or removing 1 or 2 layers in the convolutional base,
classifier or both

Table 4.3: Parameter Search Space for Hyperparameter Tuning.

of 0.01 with the loss function being binary cross-entropy. Finally, a batch size
of 32 cases was initially used.

Choice of Data

The first optimisation made was to choose the number and type of meteorolog-
ical fields to supply to the network for it to make its predictions. Four possible
configurations were tested:

• MSLP and 10-metre wind speed

• MSLP, 10-metre wind speed and vorticity at 850hPa, 700hPa and 600hPa

46

Step Choice
K-fold CV Score

Mean AUC-PR

K-fold CV Score

Mean Recall

K-fold CV Score

Mean Precision

Choice of Data
Filtered Data

5 Fields
0.5390 51.32% 67.31%

Early Stopping Patience = 10 0.6788 52.18% 69.90%

Normalisation Standardisation 0.7404 56.02% 75.07%

Resolution Sixteenth 0.7842 64.94% 74.27%

Dataset Balancing
Undersampling with

Replacement
0.7839 90.79% 52.14%

Loss and Optimiser
Binary Cross-Entropy

Momentum
0.7890 91.51% 53.00%

Learning Rate

Momentum

LR = 0.01

Momentum = 0.8
0.7891 90.85% 53.01%

Data Augmentation

Roll in x direction

Rotation by random angle

Flip Left-Right

0.7988 94.36% 48.77%

Data Augmentation

Rate (for training)
0.6 0.8018 93.09% 51.63%

Dropout Position

Dropout Rate

Conv Base & Classifier

Rate = 0.1
0.8104 89.83% 57.45%

L2 Norm Position

L2 Norm Rate

Classifier

Rate = 0.005
0.8128 89.95% 57.16%

Batch Size 8 0.8135 88.14% 59.61%

Table 4.4: K-Fold Cross Validation Results for Sequential Hyperparameter Tun-
ing.

• MSLP and 10-metre wind speed with spherical harmonic filtering between
wave numbers 5 and 106

• MSLP, 10-metre wind speed with spherical harmonic filtering between
wave numbers 5 and 106 and vorticity at 850hPa, 700hPa and 600hPa
with spherical harmonic filtering between wave numbers 1 and 63

The last option provided the best mean AUC-PR, that of 0.5390. In contrast,
the mean AUC-PR for the case with unfiltered data with 5 fields was 0.5335.

Early Stopping

Next, it was noted that the network was overfitting as Figure 4.4a shows that
except for the first two epochs, the training loss gets smaller while the validation
loss gets larger with an increasing number of epochs. Figure 4.4b shows similar
behaviour with AUC-PR.

To overcome this issue, training was stopped earlier by stopping training
when the training and validation AUC-PR start to diverge. A number of epochs
of patience, i.e. the number of epochs to wait until stopping to make sure
that training was not stopped too early, were trialled to get the best possible
performance. Patience values trailled were of 2, 5, 10 and 20 epochs. That of
10 epochs obtained the best mean AUC-PR of 0.6788.

47

(a) Loss for network trained and tested
on data from the Western Atlantic and
Western Pacific regions.

(b) AUC-PR network trained and tested
on data from the Western Atlantic and
Western Pacific regions.

Figure 4.4: Training and Validation Loss and AUC-PR when training TCDetect
prior to Early Stopping being used.

Feature Scaling

A few methods for feature scaling were trialled, namely of normalising values
to lie in the range of 0 to 1 or -1 to 1, standardising values to have a mean
of 0 and a standard deviation of 1 and a combination of normalisation and
standardisation. The method of standardisation produced the best network
performance with a mean AUC-PR of 0.7404.

Resolution

Resolution of the data used was checked next. The resolution used up to the
current stage was that of the original ERA-Interim dataset, but resolutions
of 1.4ox1.4o, 2.1ox2.1o, 2.8ox2.8o and 3.5ox3.5o were tested. The resolution of
2.8ox2.8o, which was obtained by taking every fourth pixel of the image in both
the x and y directions, produced the best mean AUC-PR of 0.7842.

Dataset Balancing

One problem that was known when starting hyper-parameter optimisation was
that the dataset was heavily dominated by negatively labelled cases. In fact,
the training dataset having data from the WAWP regions had 89.46% of the
cases negatively labelled, while that having data from all regions had 95% of
cases negatively labelled. This split of data would inhibit the network learning
the right pattern to maximise its performance. Therefore, six ways of balancing
the dataset were investigated.

• Naive Oversampling - Making copies of the positively labelled cases until
the dataset is balanced.

48

• Undersampling without Replacement - Undersample the negatively la-
belled cases prior to training. Therefore, some data is not used.

• Undersampling with Replacement - Undersample the negatively labelled
cases during training such that they change from epoch to epoch. Possible
overfitting on positively labelled cases.

• Weighting the Cases - Weighting the cases so that the negatively labelled
cases have less influence on the learning process.

• Adding Bias - Add a bias to the output layer to prevent the network from
learning the bias.

• Weighting the Cases and Adding Bias - A combination of the previous
two options.

The option that produced the best performance of a mean AUC-PR of 0.7839
was that of undersampling with replacement. It can be noted that the network’s
performance decreased marginally from the previous step, but this was still
selected as recall became much favoured by the network, which is important for
the use case in mind.

Loss and Optimiser

The network so far used the binary cross-entropy loss function with the Stochas-
tic Gradient Descent (SGD) optimizer. All possible combinations of the mean
absolute error, mean standard error and binary cross-entropy loss functions and
SGD, RMSProp, SGD with Momentum using a momentum parameter of 0.9,
Adam, AdaGrad, AdaMax and Nadam optimizers were examined.

The combination which obtained the best mean AUC-PR of 0.7890 was
binary cross-entropy loss with the SGD optimiser with Momentum using a mo-
mentum parameter of 0.9.

Learning Rate and Momentum

A grid search for the best learning rate and momentum parameters was per-
formed. The values for the learning rate included were those of 0.0001, 0.0005,
0.001, 0.005, 0.01 and 0.05 while those used for the momentum parameter were
in the range of 0.1 to 1 with a step of 0.1. The combination which produced
the best performing network was that having a learning rate of 0.01 and a
momentum of 0.8.

Data Augmentation Methods

Several techniques including random rolls, rotations, adding random noise, flip-
ping the input data along either the x or y directions and random cropping
were evaluated. The augmentation rate was set to 50%. The options which
obtained a comparative or better mean AUC-PR were rolling the picture along
the x-direction, flipping the picture left to right and rotating the image by a
random amount. These were all included in the network’s training process and
the combined methods produced a mean AUC-PR of 0.7988.

49

Data Augmentation Rate

The best data augmentation rate was also varied from 0.1 to 1 in steps of 0.1 to
find the best possible rate. The best performing network with a mean AUC-PR
of 0.8018 was that with an augmentation rate of 60%.

Dropout Position and Rate

Dropout was investigated next. It was trialled in three places, namely the
convolutional base only, the fully-connected classifier only and throughout the
network with dropout rates varying from 10% to 100% in steps of 10%. The
network with the best AUC-PR, that of 0.8104, was that employing dropout
with a rate of 10% throughout the network.

L2 Regularisation Position and Factor

L2 regularisation was also investigated. As with the previous optimisation, it
was trialled in the same three places. The regularisation factors checked were
0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5. The option
that produced the best performance with a mean AUC-PR of 0.8128 was that
of a regularisation factor of 0.005 when L2 regularisation was used only in the
classifier.

Batch Size

This final optimisation tested was of varying the batch size. Batch sizes of 8,
16, 64, 128, 256, 512, 1024 and 2048 were tested with the first option producing
the best performing network with a mean AUC-PR of 0.8135.

Others

Other optimisations tested which did not produce a network with an improved
performance included batch normalisation, varying the number of hidden layers
and nodes by a factor of 2 and 3 and using different weight initialisation methods
and activation functions.

4.2 Network Understanding and Justifications

TCDetect was evaluated against the test set described in Section 4.1.1. It was
also investigated to understand how it generates its predictions. We present
these results in this section.

4.2.1 Network Statistics

TCDetect, after training, correctly classified 1231 (91.73%) of the 1342 cases
having a TC and 20844 (90.59%) of the 23010 cases not having a TC. It mis-
classified 111 (8.27%) cases in which a TC was present and 2166 (9.41%) cases
in which a TC was not present. These are summarised in the confusion matrix
in Table 4.5.

50

Predicted
Yes No

Labelled
Yes 1231 111
No 2166 20844

Table 4.5: Confusion matrix for TCDetect when trained and tested on data
from all regions.

Figure 4.5: Precision-Recall curve for TCDetect when trained and tested on
data from all regions. Values seen in plot indicate the value taken as a boundary
to distinguish between a positive or a negative inference.

The above values lead to an accuracy of 90.65%, a recall rate of 91.73%
and a precision rate of 36.24%. The use of AUC-PR as a metric to maximise
when performing hyperparameter tuning resulted in a high recall rate and a
sufficiently high precision rate for this network to be used as a data reduction
technique.

These values could be further varied by changing the value which is the
boundary between a positive and a negative prediction, currently 0.5. Figure
4.5 shows the AUC-PR curve for the network with the values at each point
signifying the boundary at which the corresponding recall and precision rates
are obtained.

4.2.2 Comparison with Standard Networks

There are many existing standard deep learning architectures, so it is reasonable
to ask “Would any of those do better than the architecture developed here?”.

To test this, convolutional bases from a variety of standard network ar-
chitectures were compared. These include DenseNet121, DenseNet169 and
DenseNet201 (Huang et al., 2016); InceptionResNetV2 (Szegedy et al., 2017),
InceptionV3 (Szegedy et al., 2016), MobileNet (Howard et al., 2017), ResNet101,
ResNet101V2, ResNet152, ResNet50 and ResNet50V2 (He et al., 2016a; He et
al., 2016b); VGG16 and VGG19 (Simonyan and Zisserman, 2014) and Xception
(Chollet, 2017). These convolutional bases were added to the fully-connected
classifier developed in this paper. The weights of the whole network were than

51

Xc
ep

tio
n

De
ns

eN
et

16
9

Re
sN

et
15

2

De
ns

eN
et

20
1

TC
De

te
ct

In
ce

pt
io

nR
es

Ne
tV

2

M
ob

ile
Ne

t

Re
sN

et
50

V2

VG
G1

6

Re
sN

et
10

1

Re
sN

et
10

1V
2

Re
sN

et
50

VG
G1

9

In
ce

pt
io

nV
3

De
ns

eN
et

12
1

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

AU
C-

PR

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Lo
ss

Figure 4.6: Test AUC-PR (bars) and test loss (points) for standard convolu-
tional bases attached to the fully-connected classifier developed in the presented
network. The whole network classifier was re-trained for each convolutional base
with data from all regions.

trained on data from all regions with the presented network’s learning rate, mo-
mentum value and L2 regularisation factor, while the convolutional base was
kept frozen.

Given that these convolutional bases required inputs of at least 75 pixels by
75 pixels with 3 channels, some changes to the inputs were required. Firstly,
as an input with only 3 channels is required for the most of the above architec-
tures, the fields retained were those of vorticity at 850hPa, vorticity at 600hPa
and MSLP. This choice was made as these three fields were deemed the most
important for the network being presented by tests detailed in Section 4.2.3.
Secondly, the input size was extended five fold from 22x29 pixels to 110x145
pixels by interpolating any intermediate values.

Of the standard architectures tested (see figure 4.6 for all results), only three
managed to obtain a better AUC-PR value on the test set. Table 4.6 compares
the complexity of some of these more standard networks and their performance
metrics to the network being presented here. All of the more standard networks
had far higher complexity in terms of the number of parameters used than
TCDetect, while having similar or worse performance than TCDetect. While
recall for TCDetect is not outperforming all of the other networks, the best
performing has a recall only 1% higher.

Further testing was carried out to ensure that suboptimal hyperparame-
ters were not hindering the performance of these standard architectures. To
test this, a full hyperparametrisation optimisation run consisting of the same
steps used when developing TCDetect was used for the standard architec-

52

Convolutional Base Total Parameters AUC-PR Recall Precision Loss
TCDetect 3,789,977 0.7173 92% 36% 0.2650

DenseNet121 8,620,865 0.6626 93% 38% 0.2924
DenseNet169 15,209,281 0.7249 93% 35% 0.2426
DenseNet201 21,821,601 0.7204 91% 36% 0.2171

InceptionResNet v2 55,526,881 0.7170 92% 41% 0.2390
Inception v3 23,386,145 0.6735 93% 43% 0.2305
MobileNet 4,812,225 0.7121 91% 39% 0.2347
ResNet101 47,911,553 0.7030 91% 38% 0.2073

ResNet101 v2 47,879,937 0.6988 93% 42% 0.2085
ResNet152 63,624,321 0.7220 90% 36% 0.2365
ResNet50 28,841,089 0.6927 93% 44% 0.2014

ResNet50 v2 28,818,177 0.7072 89% 33% 0.2695
VGG16 15,511,617 0.7067 92% 39% 0.1999
VGG19 20,821,313 0.6912 91% 37% 0.2049
Xception 26,060,329 0.7306 90% 35% 0.2513

Table 4.6: Comparison of total parameters used and performance metrics for
TCDetect and similar networks using more standard convolutional bases.

tures of DenseNet121 and MobileNet. After this optimisation, the optimised
DenseNet121 architecture obtained an AUC-PR of 0.6946, a recall rate of 92%,
a precision rate of 34% and a loss value of 0.2816. Similarly, the optimised Mo-
bileNet121 architecture obtained an AUC-PR of 0.6835, a recall rate of 87%, a
precision rate of 46% and a loss value of 0.1651. These show that optimisation
changed the performance values only slightly and hence optimisation would not
have made a large contribution to the values in Table 4.6.

4.2.3 Network Explainability

This section will go through some techniques used to make the network more ex-
plainable, with the aim of having more trust in its inferences. Some techniques
used are feature importance, to determine which inputs influence the inferences
most; checking whether the size of the dataset used affects the network’s per-
formance; and checking how the network performs over different regions of the
globe.

Feature Importance

One important aspect when building the network was to quantify each field’s
importance to the network’s prediction. Two methods are employed for this: the
Breimann method (Breiman, 2001) and the Lakshmanan method (Lakshmanan
et al., 2015).

The method introduced by Breiman (2001) involves permuting the data
from one field across all the test cases and then re-testing the network with this
modified dataset, with a decrease in the network’s performance expected. When
performing this for each of the fields and sorting by the AUC-PR achieved, a
hierarchy is obtained. The most important field would then be the one with
the largest decrease in performance, i.e. the worst overall performance.

The method detailed by Lakshmanan et al. (2015) involves several steps:
First, the dataset is permuted as in the previous method for each field separately.

53

0.0 0.5

Original
10m Wind Speed

Vorticity at 700hPa
Vorticity at 600hPa

MSLP
Vorticity at 850hPa

0.0 0.5

Vorticity at 700hPa
MSLP

10m Wind Speed
Vorticity at 600hPa
Vorticity at 850hPa

Original

Figure 4.7: Feature Importance using the Breiman (left) and Lakshamanan
(right) methods for network trained and tested on data from all regions.

The field with the most importance, i.e. the field which produces the largest
decline in performance, is then found and is kept permuted, while the other fields
are reset to their original state. The next most important field is now found by
repeating the algorithm on the remaining fields. This process is repeated until
all the fields are permuted. The above methods were performed 30 times each
and an average was taken to make sure of consistent and robust results.

Results of the Breiman and Lakshmanan methods for the trained network
are shown in Figure 4.7. The most important field was found to be that of rela-
tive vorticity at 850hPa with the Breiman method showing a decrease in AUC-
PR from 0.7173 to 0.0936. Then, the Breiman method shows that rest of the
ranking for the most important field is as follows: MSLP, vorticity at 600hPa,
vorticity at 700hPa and 10-metre wind speed. The Lakshmanan method shows
a slightly different ranking, with MSLP demoted from being the second-most
important field to the fourth most-important field. As before, not much should
be read into this slight change as the difference in AUC-PR values is minimal.

Therefore, it can be concluded that the most important field is that of
vorticity at 850hPa and the second-most is that of vorticity at 600hPa. Vorticity
is a measure of spin in the flow of air. A high value for vorticity at multiple
levels in the atmosphere shows that the same large-scale meteorological system
is imparting spin on the atmosphere. Hence, it is possible that the network
is using matching areas of high vorticity at 850hPa and 600hPa to detect this
system and interpret it as a TC.

To show that vorticity at 850hPa is the most important field for TCDetect
to make its inference, TCDetect was retrained to use only this field as its input.
This version of TCDetect obtained an AUC-PR rate of 0.6739, a recall rate of
89%, a precision rate of 37% and a loss value of 0.2602. This shows a small
decrease in performance when compared to the original TCDetect, an expected
result given that feature importance showed that the inferences of TCDetect
were based mostly on the vorticity at 850hPa field.

54

The importance of locality

Having seen which fields influence the network’s inferences most, we checked
how TCDetect performs across different regions of the globe.

As TCDetect was developed, a number of optimisations were carried out (see
Section 4.1.3). Due to time and computational constraints, the hyperparameter
tuning process was performed on data from the Western Atlantic and Western
Pacific (WAWP) regions. When doing this, two assumptions were made: that
any change made to the architecture which caused an improvement in the net-
work’s performance resulted a similar improvement when the architecture was
trained and tested on data from all regions; and that a network trained on data
from the WAWP regions would generalise well when tested on data from all
regions of the world.

The first and third columns of Table 4.7 show that the first assumption holds,
although it can be seen that the magnitude of the improvements between the
two networks can vary. Also, as shown in Table 4.8, the architecture has similar
performance when trained and tested only on data from the WAWP regions
and when trained and tested on data from all regions.

Step
Network trained and
tested on WAWP

Network trained on WAWP
tested on Whole World

Whole World Network

Choice of Data 0.5830 0.0660 0.4928
Early Stopping 0.7111 0.0815 0.5915
Normalisation 0.7469 0.1772 0.6790
Resolution 0.7908 0.3690 0.6794

Dataset Balancing 0.7721 0.2905 0.6856
Loss and Optimiser 0.7849 0.3946 0.6733

Learning Rate
Momentum

0.7980 0.6149 0.6646

Data Augmentation 0.8038 0.4457 0.6901
Data Augmentation

Rate
0.8035 0.6377 0.6759

Dropout Position
Dropout Rate

0.8091 0.6076 0.6832

L2 Norm Position
L2 Norm Rate

0.8128 0.5331 0.6955

Batch Size 0.8176 0.6315 0.6756

Table 4.7: AUC-PR when using validation data.

Network Training Region Evaluation Region AUC-PR
WAWP WAWP WAWP 0.7884
WAWP WAWP Global 0.6491
Global Global Global 0.7173

Table 4.8: AUC-PR for TCDetect with different training and testing regions.

However, the second assumption was found to not hold. The first and second
columns of Table 4.7 show that a network trained on data from the WAWP
regions decreased in performance considerably when tested on data from all
regions. This is mirrored when using the final networks, as shown in Table 4.8.

A reason for this is that the data from the WAWP regions differs from that
of the whole world. Figure 4.8 shows the mean case for data originating only

55

from the WAWP regions on the top row and the mean case for data originating
from all regions on the bottom row, with each column corresponding to each
variable used, i.e. MSLP, 10-metre wind speed, vorticity at 850hPa, vorticity
at 700hPa and vorticity at 600hPa. As can be seen, the two types of data
differ, hence the network trained only on WAWP data might be trying to find
a different pattern than that trained on data from all regions.

Mean MSLP Mean 10m Wind Speed Mean 850 hPa Vorticity Mean 700 hPa Vorticity Mean 600 hPa Vorticity

Figure 4.8: Mean Case for data originating only from the Western Atlantic
and Western Pacific regions (top row) and for data originating from all regions
(bottom row). Columns show MSLP (1st column), 10-metre wind speed (2nd
column), vorticity at 850hPa (3rd column), vorticity at 700hPa (4th column)
and vorticity at 600hPa (5th column).

To further understand how the network trained on WAWP data differs from
that trained on data from all regions, the results have been split by basin as
shown in Table 4.9 and Table 4.10 to quantify any differences.

Basin
North Indian

Ocean
NW Pacific NE Pacific West Atlantic

Number of positive cases 72 400 267 250

Recall obtained by network

trained on WAWP data
56.94% 90.75% 80.15% 90.80%

Number of Positively Labelled

cases correctly classified

by network trained on WAWP data

41 363 214 227

Recall obtained by

network trained on whole world data
88.89% 93.00% 99.25% 96.80%

Number of Positively Labelled

cases correctly classified

by network trained on whole world data

64 372 265 242

Table 4.9: Evolution of accuracy during network development by basin for
basins in the northern hemisphere (see text for explanation of rows).

As expected, the network trained onWAWP data performs best on the West-
ern Atlantic and Western Pacific regions, with a recall of 90.80% and 90.75%

56

Basin
South Indian

Ocean
SW Pacific SE Pacific Southern Atlantic

Number of positive cases 115 113 26 0

Recall obtained by network

trained on WAWP data
53.74% 58.41% 30.77% N/A

Number of Positively Labelled

cases correctly classified

by network trained on WAWP data

115 66 8 N/A

Recall obtained by

network trained on whole world data
80.37% 92.92% 42.31% N/A

Number of Positively Labelled

cases correctly classified

by network trained on whole world data

172 105 11 N/A

Table 4.10: Evolution of accuracy during network development by basin for
basins in the northern hemisphere (see text for explanation of rows).

respectively. It also performs well in the Eastern Pacific region with a recall of
80.15%. However, all other regions do not surpass the recall rate of 60%.

However, when the network trained on data from all regions is used, all
recall rates improve, some significantly, versus those obtained by the network
trained on WAWP data. The Western Atlantic and Western Pacific regions
improve their recall rates by 2.25% and 6% to 93% and 96.80% respectively.
The most improved region is that which includes the SW Pacific, with its recall
rate increasing by more than half from 58.41% to 92.92%. All but one region
obtained a recall rate of at least 80%, with many surpassing a recall rate of 90%.
The region that did not do well was that bounded by that which includes the
SE Pacific, which obtained a recall rate of 42.31%. A possible reason for this to
not perform as well as the other regions is that a smaller number of cases with
TCs are available for this region, with only 26 in the test set.

Performance by Strength of Tropical Cyclone

A manual exploration of instances incorrectly classified by TCDetect indicated
that stronger tropical cyclones are picked up better. To prove this quanti-
tatively, we analyze the results for the different cyclone categories. A good
measure for this ability is the recall rate, as it shows the proportion of posi-
tively labelled cases, split by TC category, being correctly classified. Table 4.11
shows very high recall for all categories, as defined in the Saffir-Simpsom scale
and noted in the IBTrACS database, of TCs. The network has a recall rate of
88% for TCs of Category 1 (the weakest classified TCs) and a perfect recall rate
for Category 5 (the strongest) TCs. As expected, an increasing trend of recall
against category can be seen as higher category cyclones are easier to detect.

Category 1 2 3 4 5
Recall 88% 92% 94% 95% 100%

Table 4.11: Recall based on TC category when using validation data.

Furthermore, the TC strength of the cases predicted as having a TC present
was investigated. As discussed earlier, the use case of this network is intended to

57

be that of a data reduction method for TCs in meteorological data. Therefore,
the standard definition of a TC, that of having sustained winds of 33 m s−1,
was used to differentiate between a non-TC depression and a TC.

This choice of boundary can still affect its use case. While the deep learn-
ing network will be looking for TCs, it is very difficult even for observers and
scientists to discern between a TC and a storm slightly weaker than a TC,
such as a storm still strengthening into a TC, based on the inputs given to the
network. Only direct measurements of the sustained maximum 10 metre wind
speed can give an accurate label. This therefore can put some ambiguity in
the use of recall for the network and how it is used. Realistically, if some of
the not-quite-TCs are predicted as TCs, it is not a bad thing, as the point of
a data reduction method is to reduce the amount of data which is not of any
interest – any data without any meteorological system in this case. Hence, the
boundary of un/needed data shifts between the deep learning point of view and
the application point of view.

It was found that only 506 out of the 3397 cases that obtained a positive in-
ference from the network were cases that had no meteorological system present.
The following shows the breakdown of the cases as labelled by IBTrACS:

• No meteorological system: 506

• Unknown: 2

• Post-tropical systems: 18

• Disturbances: 165

• Subtropical systems: 32

• Tropical Depressions: 348

• Tropical Storms: 1095

• Category 1 TCs: 426

• Category 2 TCs: 281

• Category 3 TCs: 243

• Category 4 TCs: 212

• Category 5 TCs: 69

This suggests that TCDetect is picking up the required pattern needed,
due to the high recall values for TCs of strength at least Category 1, but is
mislabelling weaker features as TCs. As discussed earlier, while affecting the
network’s performance from a deep learning point of view, from an application
point of view, the inclusion of such storms is not a problem.

Another possible reason for this mislabelling of weaker TCs is that TCDetect
used data at a sixteenth of ERA-Interim’s original resolution. This means that
the network was using data with a resolution of around 2.8 degrees, or around
280km. This was chosen during the manual hyperparameter search, as detailed

58

in Section 4.1.1, due to the network’s metrics improving most at this resolution.
The hypothesis as to why this occurred was that the coarsening of the data
filtered out some of the noise present in the data while still preserving the
structure of any system present. That being said, this might have had a larger
impact on distorting the structure of lower-strength storms, which is possibly
why the network struggles more with such storms.

Also, ERA-Interim was used for obtaining the training data as it was the
most accessible and recent reanalysis data at the time that the study was
started. We are aware of the more recent ERA5 dataset, which might produce
better results due to the better data assimilation techniques used to produce
the dataset, which might lead to a system’s structure to be better defined.

Size of Dataset

The size of the dataset used was checked to see whether the dataset has been
exploited to its fullest.

This was done by training the final architecture using varying amounts of
data from the whole dataset. Data amounts used for training varied in steps of
10% from 10% to 100% of the training set.

Figure 4.9 shows the result when using data from regions across the world.
The testing AUC-PR is increasing while the testing loss is mostly flat as more
data is added. This shows that more data would probably improve the network’s
performance.

0.22

0.24

0.26

0.28

0.30

0.32

Te
st

 L
os

s

20 40 60 80 100
Percentage of Data Used / %

0.685

0.690

0.695

0.700

0.705

0.710

0.715

Te
st

 A
UC

-P
R

/ %

AUC-PR
Loss

Figure 4.9: Test AUC-PR and Loss for network trained and tested on data from
regions around the world.

59

4.3 Chapter Summary

A deep learning network named TCDetect, developed to identify the presence or
absence of Tropical Cyclones in simulation data, is presented. Trained on ERA-
Interim data, TCDetect obtained an Area Under Curve for the Precision/Recall
(AUC-PR) of 0.7173 with an accuracy of 91% on a test set which was made up
of 24352 cases.

The network did not generalize well when training only on cases from the
Western Pacific and Western Atlantic basins and testing on cases from the whole
domain, however TCDetect trained on data from all regions did generalise well.

As well as presenting the specific optimisations made to obtain the network
(including dropout, early stopping, dataset balancing and different inputs), a
selection of standard deep learning networks are described and shown not to
be able to outperform the network presented in this paper, while being more
complex.

The possibility of obtaining a better network had more data been available
was investigated, with some indications that more data would have helped.

While the training data was obtained from ERA-Interim, the ground truth
used was IBTrACS, which introduces an element of uncertainty in interpreting
the results - is an incorrect label (presence/absence) a consequence of the pres-
ence or absence of the TC in the ERA-Interim data? It is known that reanalysis
data cannot resolve the full strength of storms, and so will likely undercount
TCs, and hence depress the possible accuracy rates.

The impact of such issues on detectability is consistent with the result that
this network is better at detecting stronger TCs then weaker TCs (weaker TCs
will be more poorly represented in reanalysis data).

Future work includes attempting to improve TCDetect to better handle TCs
of a low category potentially via ideas imported from other standard techniques
or using different meteorological fields, as well as implementing a version of the
network for use in a full General Circulation Model to perform data reduction
to evaluate the pros and cons of avoiding data output.

60

Chapter 5

Investigating differences between
Tropical Cyclone detection
systems and observations

Tropical cyclones are large meteorological events that can leave devas-
tating impacts and are identified in simulations by the application of
detection algorithms. Where the simulations are a re-analysis, detection
algorithms can be compared with observations recorded using the Inter-
national Best Track Archive for Climate Stewardship (IBTrACS). In this
work, a new detection algorithm based on deep learning is compared with
a state of the art tracking system and observations to evaluate their skills
at detecting TCs with a view to using such an algorithm for analysing
climate simulations. The comparison utilises ERA-Interim data and fo-
cuses on whether the tropical cyclone events are detected and whether
the structure of the TCs detected or observed play a part in their relative
performance. Hence, the location of the detected TCs was also investi-
gated. A key part of the comparison is the recognition that ERA-Interim
itself does not fully reflect the observations, and so no detection algorithm
operating on ERA-Interim will fully recover the IBTrACS observations.
However, for strong well-defined cyclone events, the two detection algo-
rithms operating on reanalysis data agree well with observations, with
comparable performance across all areas of the globe. Where events are
detected by only one algorithm (or only in observations) they are the
weakest events with around half the maximum vorticity seen in events
detected by both algorithms and the observations. Furthermore, the
events detected by both algorithms and the observations have the least
amount of noise in their fields and have a clear centre of circulation.

Tropical Cyclones (TCs) are extreme weather events that can have a large
effect on any environment. Such TCs can be and are detected and tracked
in satellite data, numerical weather prediction (NWP) simulations, and longer
simulations with global circulation models (GCMs) via automatic means.

Previous studies (see Section 3.2) have shown that the performance of vari-
ous detection algorithms is comparable when addressing strong TCs, i.e. those
that have obtained hurricane status according to the Saffir-Simpson scale. Some

This chapter is being prepared for publication; contributions - Daniel Galea: coding, data
collection, writing, editing; Bryan Lawrence: writing, editing, direction

61

show that the detection algorithms did not perform well when used on datasets
other than that on which the algorithm was first devised.

In the previous chapter, we introduced a deep learning technique for de-
tecting the presence or absence of a TC in a field of simulation data. Here
we compare that technique with a version of TRACK (Hodges, 1995; Hodges,
1996; Hodges, 1999) applied to re-analysis data and with a labelled historical
record in the form of the International Best Track Archive for Climate Steward-
ship (IBTrACS, Knapp et al., 2010; Knapp et al., 2018) archive to understand
some the limitations of the application of our technique for TC identification in
simulation data.

5.1 Data and Methods

The goal of this chapter is to understand the characteristics and applicability of
our deep learning cyclone detection method, TCDetect, when applied to sim-
ulations of the real world. Doing this requires going beyond the normal deep
learning metrics, as there are additional complications for real world applica-
tions: both the observations (the ground truth) and the simulation data used
as input to the deep-learning introduce detection biases.

In the real world IBTrACS provides the best source of ground truth. Initially
developed by the National Oceanic and Atmospheric Administration (NOAA),
it combines all the best-track data for TCs from all the official Tropical Cy-
clone Warning Centers, the WMO Regional Specialized Meteorological Centers
(RSMCs), and other sources.

TRACK is a state-of-the-art automatic detection and tracking system for
different types of atmospheric disturbances with considerable use since inception
in Hodges (1995), Hodges (1996) and Hodges (1999). Here the TC tracking
component is used as a comparator against which to compare the results from
the deep learning network.

We use TCDetect and TRACK applied to re-analysis data and compare
them to each other and the IBTrACS dataset. Re-analysis data provides the
best possible synthesized observations of meteorological variables; we choose
to use the ERA-Interim product (Dee et al., 2011). ERA-Interim utilises ver-
sion CY31r2 of the European Centre for Medium-Range Weather Forecasts
(ECMWF) numerical weather prediction system, the Integrated Forecasting
System (IFS), together with assimilation of observations from 1979 through to
2019. The comparison is limited to the 25 months between the 1st of August
2017 until the end of August 2019 as earlier data is used in training the deep
learning algorithm.

ERA-Interim data is produced at a spatial resolution of 79km, a temporal
resolution of 6 hours and has 60 vertical levels up to 0.1hPa. Of the many
parameters produced, only the mean sea level pressure (MSLP), 10-metre wind
speed and relative vorticity at 850hPa, 700hPa and 600hPa are used in this
study. ERA-Interim has also been discussed in Section 4.1.1.

62

5.1.1 IBTrACS

The IBTrACS dataset has information about reported storms, such as the storm
centre in latitude and longitude, maximum surface wind speed, minimum sea
level pressure and category.

While IBTrACS is the best available observational dataset, as discussed
more in depth in Section 3.3.1, some inhomogeneity exists between each source
as the contributing centres have differing observing systems and parametric
approaches. Such observing systems can be limited in time and space, leading to
the omission of systems not detected or an incomplete record of their evolution,
particularly if they had limited or no human impact, or they were out of range
of detection systems such as airborne missions.

5.1.2 The TCDetect Deep Learning Network

The TCDetect deep learning TC detection scheme was described in the pre-
vious chapter. It uses a deep learning scheme trained on ERA-Interim data
which utilises mean sea level pressure (MSLP), 10-metre wind speed, and rel-
ative vorticity at 850hPa, 700hPa and 600hPa; all coarsened to a sixteenth
of ERA-Interim’s native spatial resolution, resulting in an input resolution of
approximately 320km.

These data were passed through a convolutional base connected to a fully-
connected dense classifier trained to detect TCs labelled using IBTrACS. The
system outputted a classifier value ranging between 0 and 1; a tropical cyclone
is inferred to be present if the value is greater than 0.5, and absent if less than
or equal to 0.5.

For the identification of tropical cyclones and using 0.5 as the boundary,
when trained on ERA-Interim using labels from IBTrACS, the TCDetect algo-
rithm obtained a recall rate of 92% with a precision rate of 36%. In practice,
this means that the while most of the actual TCs were detected, many of the
TCs identified were technically false positives (i.e. not storms of strength 1
or greater on the Saffir-Simpson scale). However, as discussed in the previous
chapter and further discussed below, most of these were actually meteorologi-
cally significant.

The recall rate and precision were calculated in terms of the application
of the technique to ERA-Interim data, but the labels came from IBTrACS.
It is reasonable then to ask “to what extent does the ability of ERA-Interim
to reproduce the original storm strength and timing impact on these results”?
We address this question by applying both T-TRACK and TCDetect to ERA-
Interim, and comparing the results with the IBTrACS “ground truth-labels”.

The TC centre is not given by TCDetect, so a way to extract it was needed.
For this, the Gradient Class Activation Map technique (Grad-CAM, Selvaraju
et al., 2017) was used: for a given input, the output of the deep learning network
is passed back through the network and together with gradient maximisation,
produces a heatmap of the input areas used in a selected layer en route to the
output. For TC location, we selected the first convolutional layer, and assumed
that the TC central position in latitude and longitude is co-located with the
maximum activation.

63

Because the heatmaps used for Grad-CAM were generated from the coars-
ened (320km resolution) data, the resulting TC centres were coarsely quantized
and only poor quality comparisons were possible. To mitigate this effect, the
Grad-CAM centres (”interim centres”) were then passed through an additional
refinement step to generate more accurate locations. A box with sides of 10
degrees in latitude and longitude was centred on the interim centres, and the
original full resolution ERA-interim vorticity values at 850hPa, 700hPa and
600hPa were obtained and vertically averaged. The TC centre was assumed to
be located at the position of the maximum in the absolute value of the averaged
vorticity.

These TC centres were then used to make up TC tracks. Given that only one
TC centre could be produced per region at any one timestep, a track was first
defined as having TC centres which were present in consecutive timesteps in the
same region. However, this produced many short (< 2 days) tracks. To try and
fix this, tracks for a single region which had at most 2 days (8 timesteps) of no
TC being detected and a separation distance of 20 degrees (geodesic) between
the final TC centre from one track and the initial TC centre of the next track
were joined to make up one track. This process was carried out until no more
tracks could be joined. The separation distance criterion might intuitively seem
to be too wide, but as will be shown below, TCDetect had some trouble with
locating TC centres, so some buffer was built into this criterion.

5.1.3 TRACK

TRACK is a state-of-the-art algorithm used for the detection and tracking of
TCs as well as many other meteorological phenomena. As discussed in Section
3.3.2, TRACK has four different stages: data preparation; segmentation; feature
point detection and tracking.

In the first step, TRACK treats the data so that features of interest are
easier to detect. This is done with the help of spectral filtering to only keep
features which have spatial scales in the range of the features of interest. With
regards to tropical cyclones, the features present in wavenumbers 5 to 63 are
kept in the vertical average of vorticity between the heights of 850hPa and
600hPa.

During the segmentation stage, each point in each timestep of any data used
is classified as a background or an object point, depending on whether the value
for the vertical average of vorticity at 850hPa, 700hPa and 600hPa is above or
below the threshold of 5 × 10−6 s-1. The object points are then collected into
objects.

Feature point detection then allocates a feature point to each object, repre-
senting its centre. This feature point could be selected as the centroid of the
object, a local extrema or using some other technique, depending on the type
of data used.

Finally, the tracking stage uses the feature points generated to minimise a
constrained cost function to get the smoothest possible tracks.

The complete TRACK algorithm finds a range of cyclones, some of which
may be TCs. The tracks produced can be processed to identify only TC tracks.

64

Bengtsson, Hodges, and Esch (2007) summarise the necessary processing
criteria:

• a lifetime of at least 2 days

• the initial point in the track must be in between the latitudes of 20oS and
20oN if over land or 30oS and 30oN if over an ocean

• a maximum T63 vertically-averaged relative vorticity intensity at 850hPa
over 5× 10−6 s-1

• a warm core check: a T63 vorticity maxima for each atmosphere level up
to 250hPa and that the difference between the maxima at 850hPa and
250hPa is above a 5× 10−6 s-1

• the last two conditions holding for the last n timesteps, where n is a
user-defined value

We refer to the set of tracks which conform to these criteria as the “truncated-
TRACK” dataset or T-TRACK.

5.2 Results

The first question to consider is “To what extent do the two detection algorithms
recover the TC events seen in the observations?”. We can then ask “How well
do the two algorithms (combined with ERA-Interim data) position the TCs in
space?”. Finally, we ask “To what extent does the detection success depend on
the TC structure?”

5.2.1 Detection

Figure 5.1 shows the relationship between detections and observations for all the
events during the period of interest. For these purposes, an event was counted
when a TC (Cat-1 or greater on the Saffir-Simpson scale) was observed and/or
detected in any timestep. TCs in different regions during the same timestep
would give an event for each region in which a TC is seen. However, if multiple
TCs are in the same region in the same timestep, this is considered to be one
event.

In total there were 1342 such events in the IBTrACS data, and 4741 and 3397
detected by T-TRACK and TCDetect respectively (Figure 5.1a). The majority
of the observed events were found by both detection algorithms, with TCDetect
finding slightly more than T-TRACK, even though T-TRACK detects more
events overall. Relatively few (50) IBTrACS events were not found by either
detection method, consistent with the expected high recall rates. However,
more events were detected by one or both of T-TRACK and TCDetect than
were present in the observations, which suggests many non-TC meteorological
events were being incorrectly classified as TCs. This finding is discussed further
below.

With an a priori expectation that IBTrACS may be undersampling TC
events in the Southern Hemisphere, the data was also split into hemispheres

65

2082

50 681

61 1485

118

1113

T-TRACK IBTrACS TCDetect

a) Global

989

24 567

22 1034

74

869

b) Northern Hemisphere

1093

26 114

39 451

44

244

c) Southern Hemisphere

Figure 5.1: Events reported by observations (IBTrACS) and detected by T-
TRACK and TCDetect applied to ERA-Interim data for (a) the whole globe,
(b) the Northern Hemisphere and (c) the Southern Hemisphere.

66

to investigate (Figure 5.1b/c). In terms of recall, that is the ability for IB-
TrACS TCs to be detected in ERA-Interim, it can be seen (Table 5.1) that
TCDetect is doing slightly better than T-TRACK in both hemispheres, and
slightly more so in the Northern Hemisphere.

Method Global NH SH
T-TRACK 87% 90% 80%

Deep Learning 92% 95% 82%

Table 5.1: Percentage of IBTrACS TC events detected by T-TRACK and
TCDetect applied to ERA-Interim data for all regions (global), the Northern
Hemisphere (NH) and Southern Hemisphere (SH).

It is worth noting that the criteria used to supposedly screen TRACK to
identify TCs are responsible for some of the “missing” detections. If TRACK
alone is used, then the recall rate is much higher, reaching 96% globally, with
97/92% in the Northern/Southern Hemispheres respectively, albeit with many
more false positives.

Of the 3397 cases in which TCDetect detects a TC, 681 cases, or around
20% are not observed or detected by T-TRACK, and similarly, of the 4741
cases in which T-TRACK detected the presence of a TC, 2082 cases, or around
44%, are not observed or detected by TCDetect. These “extra” events found by
the detection algorithms require more investigation. Formally, they represent
poor precision in the detection (a high proportion of false positives), but the
significant overlap using two different techniques is interesting, and suggests
the techniques are identifying phenomena that are nearly TCs (just outside the
tropics, or nearly TC-like in structure and strength, consistent with the results
reported previously).

Thus far the analysis has considered timestep “events” since the algorithms
(TRACK and TCDetect) are applied to one timestep after another - but in
reality these steps form part of the life-cycle of a meteorological phenomenon,
and it is that thinking that informs the criteria which distinguish T-TRACK
from TRACK. These phenomena move along tracks and so we can consider
track detection independently of event detection.

In terms of tracks, Figure 5.2a shows how many TC tracks match, whereby
two tracks are matched across datasets if they share one or more detection
events — in the same region at the same timestep. (Note that this means that
a single track from one dataset can be matched to multiple tracks from another
dataset if multiple TCs are detected in the second dataset.) Similarly, Figure
5.2b shows matching tracks where depression events were also considered.

The majority (96%) of IBTrACS tracks, whether depressions or hurricanes,
match tracks identified by at least one of the two detection algorithms. Similar
to the events, TCDetect matched to more IBTrACS tracks than T-TRACK, but
a majority (88% of hurricanes) of the matched IBTrACS tracks were with both
detection algorithms. Also, there were many hurricane tracks that matched be-
tween T-TRACK and TCDetect, but not with IBTrACS. This could be evidence
of TC-like structures being picked up by the detection algorithms which either
had not strengthened to hurricane strength or were non-tropical systems - an
argument supported by the increased number of three-way matches seen when

67

80

4 209

1 117

12

93

62

16 182

5 51

47

158

TRACK IBTrACS TCDetect

a) Hurricane Strength b) All Depressions

T-TRACK IBTrACS TCDetect

Figure 5.2: Tracks reported by observations (IBTrACS) and detected by
TRACK or T-TRACK and TCDetect applied to ERA-Interim data. Over-
laps occur when they share a detection event at some point along the track in
the same region at the same timestep. Tracks are matched for (a) only TCs
(hurricane-strength, hence T-TRACK is used) and (b) all depressions (i.e. a
superset of a, hence TRACK is used).

including all depression tracks (Figure 5.2b), and our earlier analysis for TCDe-
tect and IBTrACS alone. The most unmatched tracks come from TCDetect,
again consistent with results from the previous chapter, and were due to many
non-meteorological false positives. However, it is encouraging that most of the
tracks either produced by TRACK or given in IBTrACS are being matched by
tracks produced by TCDetect.

With this life-cycle matching in mind, we revisit event matches (Figure 5.1a)
by allowing matches between any class of depression (Figure 5.3). After doing
this, it can be seen that only 17 hurricane-strength events were left unmatched.
Also, 80 of the events that were detected by TCDetect and present in IBTrACS
are now detected by TRACK as well. Similarly, a large number of those events
detected by both TCDetect and T-TRACK (1485 to 330) have now migrated
into the region where they are detected by both algorithms and are present in
IBTrACS, albeit as depressions and not hurricane-strength TCs. This value
(1494) also shows that TCDetect is able to detect a large number of other
depressions, other than just hurricane-strength TCs.

To further understand the differences between the two methods and the
observations, the tracks from both detection algorithms and the observations
for hurricane-strength TCs were matched using the following criteria. These
were similar to those used by Hodges, Cobb, and Vidale (2017):

• the mean separation distance between all overlapping points between
tracks is less than 5o (geodesic)

• the tracks need to overlap for at least 10% of the base track’s lifetime

68

3562

172

(1149)

38

1193

(1494)

330

(170)
(476)

TRACK IBTrACS TCDetect

17

94

Figure 5.3: Events detected by T-TRACK, TCDetect and reported by IB-
TrACS. All meteorological systems are included from IBTrACS and TRACK,
not just category 1 and higher systems. Events present in IBTrACS (blue area)
were split into TCs of hurricane status (non-bracketed; defined as true positives
for TCDetect) and other depressions (bracketed values; defined as false posi-
tives for TCDetect and TRACK).

• the track with the least mean separation distance is chosen if multiple
matching tracks exist

These constraints remove any of the unmatched TC tracks, but events can still
not match, since they may fall on part of a track where those events were not
detected or observed by another method.

After these criteria were applied, the TC events from the remaining tracks
were again split by which method detected these events. The matches between
detection and observations now includes fewer TC events (compare Figure 5.4
and Figure 5.1a). The number of cases with the presence of a TC as given by
IBTrACS decreases from 1342 to 1327. The same occurs for those given by
T-TRACK (4741 to 3357) and TCDetect (3397 to 1067).

As expected, there is only a small change in the total number of IBTrACS
events, as the vast majority of TC tracks from IBTrACS were picked up by
at least one of the detection methods. Cases from the deep learning network
suffered the greatest decrease due to the TC centres generated by the deep learn-
ing network not being quite in the right place, thus exceeding the 5o (geodesic)
criterion.

69

1894

89 572

993 250

25

220

T-TRACK IBTrACS TCDetect

Figure 5.4: Events detected by T-TRACK, TCDetect and/or reported by IB-
TrACS which fall on matching tracks, defined by applying constraints similar
to those of Hodges, Cobb, and Vidale (2017).

5.2.2 Location

The question as to how well TCDetect locates TC centres given the matching
technique is now addressed in more detail. Figure 5.5 shows the location of the
events reported using each technique following the matching technique discussed
above.

The IBTrACS data is here considered to be the ground truth. It shows that
most TCs are found in a few well-defined regions:

• close to the eastern shores of the North American continent and further
out to the middle of the Atlantic

• to the west of the North American continent and in the middle of the
Pacific Ocean

• to the east of Asia, over the Western Pacific Ocean

• over the middle of the Indian ocean and to the north of Australia

In comparison, T-TRACK shows a larger number of events and longer tracks,
some extending well into the sub-tropics, suggesting that the constraints applied
to TRACK to remove non-TC storms are not optimal. There are also more TC
centres present in the Southern Hemisphere than in IBTrACS, especially the
Central Southern Pacific Ocean. The locations off the eastern coast of the
South American continent, which are non-existent in IBTrACS, could point to

70

Figure 5.5: Position of each Tropical Cyclone event center as given by IBTrACS
(top-left); T-TRACK (top-right) and the deep learning network (bottom).

the use of re-analysis data and tracking algorithms providing better ground
truth in observation poor regions of the globe.

The locations reported by TCDetect are positioned mostly in the right re-
gions, but some centres are located well inland or well into the subtropics, where
TCs are not expected. Also, the centres over the Indian Ocean are more spread
out than those found in IBTrACS or T-TRACK. It is clear that the geolocation
part of the algorithm is not working as well as the detection algorithm — con-
sistent with the way the deep learning network was developed (it was trained
for detection, not location).

This is further confirmed when looking at the TC frequencies generated
by each of the detection algorithms and the observational dataset, as shown
in Figure 5.6. This shows that while T-TRACK and TCDetect detect more
TC tracks, they still follow the same intra-annual variability as given by the
observations in IBTrACS. This is especially seen in the panels showing each
region separately. Regions in the Northern Hemisphere show an uptick in TC
frequencies in the months between July and October, while TC frequencies
increase in the months between December and June for regions in the Southern
Hemisphere.

We can address this more quantitatively with spatial correlation (Figure
5.7). These show all the matched TC events within 10o between TC centres
as given by the different sources. The correlations between TC centres given
by IBTrACS and T-TRACK (both for a two-way and a three-way match) show
a tight grouping and a good correlation, but more scatter is seen in the two-
way matches involving TCDetect. This could point to the fact that TCDetect
may be producing TC centres in the wrong place but at the right time, as well
as possibly a suboptimal method used to extract TC centres from TCDetect
inferences.

There were some matches which had a difference between TC centres greater
than 10o (not shown) and were considered not well located. The worst case was

71

Whole World

South Indian Ocean

SW Pacific

SE Pacific

Southern Atlantic

IBTrACS
T-TRACK
TCDetect

North Indian Ocean

NW Pacific

NE Pacific

0 5 10 15 20 25
Months since 01-08-2017

North Atlantic

Figure 5.6: TC frequency, i.e. number of TC tracks present in a month, as
given by IBTrACS, T-TRACK and TCDetect for each of the regions used by
TCDetect as shown in Figure 4.1.

for matches between T-TRACK and TCDetect where 57 out of 250 were not
well co-located (the other mismatches occurred in 11/220 for the three-way
match, with only 2/25 mismatches for IBTrACS and TCDetect). This points
to TCDetect not locating TC centres well, but it can also point to an error in
the way tracks for TCDetect were created, possibly due to erroneously joining
two tracks together, which were in fact two separate TCs.

Figure 5.8 shows the distribution of all TC cases by latitude as generated
from both detection algorithms and the observational dataset. While the peak
of the distributions for both detection algorithms in both hemispheres is biased
equatorwards (with respect to IBTrACS observations) the two detection algo-
rithms broadly agree. However, the distribution for the deep learning based
algorithm shows two peaks in the Southern Hemisphere: one at around 10oS
and a peak at around 40oS. The first peak matches up well with that from
T-TRACK. The second is consistent with the southern bias in positions seen in
the Indian Ocean and the excess of detections in and around the Tasman Sea.

72

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Diff in Longitude

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Di
ff

in
 L

at
itu

de

T-TRACK vs IBTrACS

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Diff in Longitude

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Di
ff

in
 L

at
itu

de

T-TRACK vs DL Model

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Diff in Longitude

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Di
ff

in
 L

at
itu

de

IBTrACS vs DL Model

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Diff in Longitude

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Di
ff

in
 L

at
itu

de

All Methods - T-TRACK vs IBTrACS

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Diff in Longitude

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Di
ff

in
 L

at
itu

de

All Methods - T-TRACK vs DL Model

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Diff in Longitude

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Di
ff

in
 L

at
itu

de

All Methods - IBTrACS vs DL Model

Figure 5.7: Spatial correlation of the overlapping regions shown in Figure 5.4,
i.e. for matches with constraints applied. Top row pairwise matches showing
pairwise correlation. Bottom row, matches in all three methods, but still pair-
wise correlations.

75 50 25 0 25 50 75
Latitude (deg)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

De
ns

ity

IBTrACS
T-TRACK
DL Method

Figure 5.8: Kernel density estimate plots of TC centre latitude as given by
IBTrACS (blue), T-TRACK (black) and the deep learning based algorithm
(red).

5.2.3 Effects of TC Structure on Detection Skill

It is possible that the physical structure of cyclones in terms of their represen-
tation in ERA-Interim might affect the results presented here. To investigate
this we created composites of the events presented in Figure 5.1 using the ERA-

73

Interim data. For each method the composites were created by averaging boxes
with sides 30o, centered on the reported TC centre. For cases in which the
TC was detected by T-TRACK, the TC centre used was that as given by T-
TRACK. Of the remaining cases, if the TC was present in IBTrACS, the centre
used was that as given by IBTrACS, and for those TCs that were only detected
by the deep learning network, the TC centre used was that as derived from the
deep learning network, with the help of the Grad-CAM technique.

The data fields examined were those used as input to the deep learning algo-
rithm: mean sea level pressure (MSLP), 10-m wind speed, and the magnitude
of vorticity at 850, 700 and 600hPa.

The composite case for TCs detected by all three methods shows a fairly
symmetric low pressure area with a minimum of around 998hPa. It also shows
a wind field with the maximum wind speed of around 13.5 m s-1 in the top-
right quadrant of the TC and a clear eye. Finally, vorticity is very concentric
with very little noise with highs of 0.00024 s-1, 0.00021 s-1 and 0.000175 s-1

at the 850hPa, 700hPa and 600hPa levels respectively. All the features and
magnitudes are similar for composites in both hemispheres.

The picture is similar with some subtle differences for the composite cases
of TCs detected by two of the three detection methods. MSLP fields for these
cases have slightly wider low centres and all have a weaker low with a central
pressure no lower than 1000hPa. The wind speed field is similar. All cases show
more noise in the composite, especially in the composite case derived from TCs
detected by T-TRACK and IBTrACS but not the deep learning network but this
is somewhat expected as relatively few TCs are present only in IBTrACS when
compared to the other composites. Also, maximum wind speeds are weaker
and do not exceed 10.4 m s-1. The vorticity fields show a similar situation
where all vorticity centres are wider and those at 850hPa and 700hPa have
their maximum magnitude between a third and a half that of the composite
case of TCs detected by all detection methods.

When examining these composites when split up by hemisphere, Figure 5.9
for Northern Hemisphere cases and Figure 5.10 for cases from the Southern
Hemisphere, one thing of note emerges. It is seen that both MSLP and wind
speed fields have a tighter center of circulation for the composite case coming
from cases from the Northern Hemisphere than from those originating in the
Southern Hemisphere.

Finally, the composites for TCs detected by only one of the detection meth-
ods show some differences from the composite for the TCs detected by all three
methods.

As a general note, it is noticeable that wind speed values in the Northern
Hemisphere in cases detected by only one of the two methods or present only
in the observational data are weaker than those in the Southern Hemisphere.

The composite for TCs present only in IBTrACS shows a low pressure with a
considerably higher minimum pressure of 1008hPa. The maximum wind speed
is also down to 8.4 m s-1, and does not show a clear eye at the centre of the
composite. This could be due to the small number of cases being composited,
hence any noise present is not cancelled out effectively. The vorticity fields show
wider but much shallower centres, with the maximum vorticity around half an
order of magnitude than that of the composite for TCs detected by all three

74

T-
TR

AC
K

MSLP 10m wind speed Vorticity at 850hPa Vorticity at 700hPa Vorticity at 600hPa

IB
Tr

AC
S

De
ep

 L
ea

rn
in

g
M

od
el

T-
TR

AC
K

an
d

IB
Tr

AC
S

T-
TR

AC
K

an
d

DL
 M

od
el

IB
Tr

AC
S

an
d

DL
 M

od
el

Al
l M

et
ho

ds

100013

100227

100441

100656

100870

101084

101299

101513

101728

101942

2.70

3.87

5.04

6.21

7.38

8.56

9.73

10.90

12.07

13.24

0.0000211

0.0000057

0.0000326

0.0000594

0.0000862

0.0001131

0.0001399

0.0001668

0.0001936

0.0002205

0.0000212

0.0000027

0.0000267

0.0000506

0.0000745

0.0000985

0.0001224

0.0001464

0.0001703

0.0001942

0.0000238

0.0000018

0.0000202

0.0000422

0.0000642

0.0000861

0.0001081

0.0001301

0.0001521

0.0001740

100013

100227

100441

100656

100870

101084

101299

101513

101728

101942

2.70

3.87

5.04

6.21

7.38

8.56

9.73

10.90

12.07

13.24

0.0000211

0.0000057

0.0000326

0.0000594

0.0000862

0.0001131

0.0001399

0.0001668

0.0001936

0.0002205

0.0000212

0.0000027

0.0000267

0.0000506

0.0000745

0.0000985

0.0001224

0.0001464

0.0001703

0.0001942

0.0000238

0.0000018

0.0000202

0.0000422

0.0000642

0.0000861

0.0001081

0.0001301

0.0001521

0.0001740

100013

100227

100441

100656

100870

101084

101299

101513

101728

101942

2.70

3.87

5.04

6.21

7.38

8.56

9.73

10.90

12.07

13.24

0.0000211

0.0000057

0.0000326

0.0000594

0.0000862

0.0001131

0.0001399

0.0001668

0.0001936

0.0002205

0.0000212

0.0000027

0.0000267

0.0000506

0.0000745

0.0000985

0.0001224

0.0001464

0.0001703

0.0001942

0.0000238

0.0000018

0.0000202

0.0000422

0.0000642

0.0000861

0.0001081

0.0001301

0.0001521

0.0001740

100013

100227

100441

100656

100870

101084

101299

101513

101728

101942

2.70

3.87

5.04

6.21

7.38

8.56

9.73

10.90

12.07

13.24

0.0000211

0.0000057

0.0000326

0.0000594

0.0000862

0.0001131

0.0001399

0.0001668

0.0001936

0.0002205

0.0000212

0.0000027

0.0000267

0.0000506

0.0000745

0.0000985

0.0001224

0.0001464

0.0001703

0.0001942

0.0000238

0.0000018

0.0000202

0.0000422

0.0000642

0.0000861

0.0001081

0.0001301

0.0001521

0.0001740

100013

100227

100441

100656

100870

101084

101299

101513

101728

101942

2.70

3.87

5.04

6.21

7.38

8.56

9.73

10.90

12.07

13.24

0.0000211

0.0000057

0.0000326

0.0000594

0.0000862

0.0001131

0.0001399

0.0001668

0.0001936

0.0002205

0.0000212

0.0000027

0.0000267

0.0000506

0.0000745

0.0000985

0.0001224

0.0001464

0.0001703

0.0001942

0.0000238

0.0000018

0.0000202

0.0000422

0.0000642

0.0000861

0.0001081

0.0001301

0.0001521

0.0001740

100013

100227

100441

100656

100870

101084

101299

101513

101728

101942

2.70

3.87

5.04

6.21

7.38

8.56

9.73

10.90

12.07

13.24

0.0000211

0.0000057

0.0000326

0.0000594

0.0000862

0.0001131

0.0001399

0.0001668

0.0001936

0.0002205

0.0000212

0.0000027

0.0000267

0.0000506

0.0000745

0.0000985

0.0001224

0.0001464

0.0001703

0.0001942

0.0000238

0.0000018

0.0000202

0.0000422

0.0000642

0.0000861

0.0001081

0.0001301

0.0001521

0.0001740

100013

100227

100441

100656

100870

101084

101299

101513

101728

101942

2.70

3.87

5.04

6.21

7.38

8.56

9.73

10.90

12.07

13.24

0.0000211

0.0000057

0.0000326

0.0000594

0.0000862

0.0001131

0.0001399

0.0001668

0.0001936

0.0002205

0.0000212

0.0000027

0.0000267

0.0000506

0.0000745

0.0000985

0.0001224

0.0001464

0.0001703

0.0001942

0.0000238

0.0000018

0.0000202

0.0000422

0.0000642

0.0000861

0.0001081

0.0001301

0.0001521

0.0001740

Figure 5.9: Composite view of Northern Hemisphere events by detection algo-
rithm or observations which pick up the TC. Total number of cases used to
produce each composite can be obtained from 5.1. Columns correspond to the
variables used: MSLP (first column), 10-metre wind speed (second column),
vorticity at 850hPa (third column), vorticity at 700hPa (fourth column) and
vorticity at 600hPa (fifth column).

75

T-
TR

AC
K

MSLP 10m wind speed Vorticity at 850hPa Vorticity at 700hPa Vorticity at 600hPa

IB
Tr

AC
S

De
ep

 L
ea

rn
in

g
M

od
el

T-
TR

AC
K

an
d

IB
Tr

AC
S

T-
TR

AC
K

an
d

DL
 M

od
el

IB
Tr

AC
S

an
d

DL
 M

od
el

Al
l M

et
ho

ds

99912

100143

100375

100607

100838

101070

101302

101534

101765

101997

2.22

3.36

4.50

5.63

6.77

7.90

9.04

10.17

11.31

12.44

0.0000187

0.0000070

0.0000328

0.0000585

0.0000842

0.0001100

0.0001357

0.0001615

0.0001872

0.0002129

0.0000198

0.0000026

0.0000250

0.0000474

0.0000698

0.0000922

0.0001146

0.0001370

0.0001594

0.0001818

0.0000224

0.0000019

0.0000186

0.0000392

0.0000597

0.0000802

0.0001007

0.0001212

0.0001418

0.0001623

99912

100143

100375

100607

100838

101070

101302

101534

101765

101997

2.22

3.36

4.50

5.63

6.77

7.90

9.04

10.17

11.31

12.44

0.0000187

0.0000070

0.0000328

0.0000585

0.0000842

0.0001100

0.0001357

0.0001615

0.0001872

0.0002129

0.0000198

0.0000026

0.0000250

0.0000474

0.0000698

0.0000922

0.0001146

0.0001370

0.0001594

0.0001818

0.0000224

0.0000019

0.0000186

0.0000392

0.0000597

0.0000802

0.0001007

0.0001212

0.0001418

0.0001623

99912

100143

100375

100607

100838

101070

101302

101534

101765

101997

2.22

3.36

4.50

5.63

6.77

7.90

9.04

10.17

11.31

12.44

0.0000187

0.0000070

0.0000328

0.0000585

0.0000842

0.0001100

0.0001357

0.0001615

0.0001872

0.0002129

0.0000198

0.0000026

0.0000250

0.0000474

0.0000698

0.0000922

0.0001146

0.0001370

0.0001594

0.0001818

0.0000224

0.0000019

0.0000186

0.0000392

0.0000597

0.0000802

0.0001007

0.0001212

0.0001418

0.0001623

99912

100143

100375

100607

100838

101070

101302

101534

101765

101997

2.22

3.36

4.50

5.63

6.77

7.90

9.04

10.17

11.31

12.44

0.0000187

0.0000070

0.0000328

0.0000585

0.0000842

0.0001100

0.0001357

0.0001615

0.0001872

0.0002129

0.0000198

0.0000026

0.0000250

0.0000474

0.0000698

0.0000922

0.0001146

0.0001370

0.0001594

0.0001818

0.0000224

0.0000019

0.0000186

0.0000392

0.0000597

0.0000802

0.0001007

0.0001212

0.0001418

0.0001623

99912

100143

100375

100607

100838

101070

101302

101534

101765

101997

2.22

3.36

4.50

5.63

6.77

7.90

9.04

10.17

11.31

12.44

0.0000187

0.0000070

0.0000328

0.0000585

0.0000842

0.0001100

0.0001357

0.0001615

0.0001872

0.0002129

0.0000198

0.0000026

0.0000250

0.0000474

0.0000698

0.0000922

0.0001146

0.0001370

0.0001594

0.0001818

0.0000224

0.0000019

0.0000186

0.0000392

0.0000597

0.0000802

0.0001007

0.0001212

0.0001418

0.0001623

99912

100143

100375

100607

100838

101070

101302

101534

101765

101997

2.22

3.36

4.50

5.63

6.77

7.90

9.04

10.17

11.31

12.44

0.0000187

0.0000070

0.0000328

0.0000585

0.0000842

0.0001100

0.0001357

0.0001615

0.0001872

0.0002129

0.0000198

0.0000026

0.0000250

0.0000474

0.0000698

0.0000922

0.0001146

0.0001370

0.0001594

0.0001818

0.0000224

0.0000019

0.0000186

0.0000392

0.0000597

0.0000802

0.0001007

0.0001212

0.0001418

0.0001623

99912

100143

100375

100607

100838

101070

101302

101534

101765

101997

2.22

3.36

4.50

5.63

6.77

7.90

9.04

10.17

11.31

12.44

0.0000187

0.0000070

0.0000328

0.0000585

0.0000842

0.0001100

0.0001357

0.0001615

0.0001872

0.0002129

0.0000198

0.0000026

0.0000250

0.0000474

0.0000698

0.0000922

0.0001146

0.0001370

0.0001594

0.0001818

0.0000224

0.0000019

0.0000186

0.0000392

0.0000597

0.0000802

0.0001007

0.0001212

0.0001418

0.0001623

Figure 5.10: Composite view of the Southern Hemisphere cases (rows and
columns as described in Figure 5.9) - but the sign of vorticity has been re-
versed for ease of comparison).

76

methods. Considerable noise is also present outside the vorticity centres, but
this is somewhat expected as relatively few TCs are detected by IBTrACS only
when compared to the other composites.

When split up by hemisphere, these composite cases show some differences.
First, the MSLP field in the composite for the Northern Hemisphere cases shows
a wave structure rather than a well-defined low. The wind speed field also
shows a lack of a centre. The vorticity fields do show clear centres but have
considerable noise present.

The composite for cases originating in the Southern Hemisphere shows a
much more organised situation. A clear, but wide, low pressure centre is noted,
as well as a centre in the wind speed field. The vorticity fields also have well-
defined but not concentric centres but there is also a considerable amount of
noise present on the outskirts of the centres.

When examining the composite case for TCs detected by the deep learning
network only, a concentric centre is observed in the MSLP field with a minimum
MSLP of around 1009hPa. A clear centre is also seen in the wind speed and
vorticity fields as well. The maximum wind speed is around 7.2 m s-1 and the
magnitude of the vorticity fields is around half that of the composite case for
TCs detected by all three methods.

The one difference across hemispheres that can be seen is that the composite
for the Southern Hemisphere shows a relatively shallow area of low pressure in
the MSLP field when compared to the composite for TCs detected by all three
methods.

Finally, the composite for TCs detected only by T-TRACK is very similar
to that of TCs detected by all three detection methods. The only differences
are that the magnitudes for relative vorticity in the former are about half that
of the latter. This does not change when the TCs are split by hemisphere.

From the above analysis, it could be concluded that the TCs detected by all
three detection methods are the strongest and most well-defined in the data.
Furthermore, those detected by two of the methods are weaker, usually with
a lack of a clear area of maximum wind speed and somewhat less organised.
Finally, those TCs detected by only one detection method are even weaker,
with the most noticeable decrease in strength in the vorticity fields.

5.2.4 Deep Learning Retraining

From the composite cases, it was seen that three-way matches were the strongest
TCs, while the weakest TCs were picked up by only one of the detection methods
or were present in the observations. The lead us to check how the network
performed on cases with TCs of differing strengths and whether is was struggling
with differentiating between TCs and meteorological systems of lesser strength.
Table 5.2 shows how cases split by the prediction from the deep learning network
are split by storm type as given by IBTrACS.

First, the cases predicted as having a TC present were examined. It was
found that only 506 out of 3397 cases were cases that had no meteorological
system present.

This suggests that the deep learning network is picking up the required pat-
tern needed, due to the high recall values for TCs of strength at least Category 1,

77

Class Positive Inference Negative Inference
No meteorological system 506 19253

Unknown 2 30
Post-tropical systems 18 47

Disturbances 165 337
Subtropical systems 32 51
Tropical Depressions 348 625

Tropical Storms 1095 501
Category 1 TCs 426 58
Category 2 TCs 281 26
Category 3 TCs 243 15
Category 4 TCs 212 12
Category 5 TCs 69 0

Table 5.2: Split of cases by storm type (rows) as given by IBTrACS given
a positive inference (second column) or a negative inference (third column) by
TCDetect. For example, of the 19759 cases which had no meteorological system,
TCDetect classified 506 as having a TC present (i.e. false positives) and of the
484 cases in which a Category 1 TC was the strongest system present, 426 were
classified as having a TC (i.e. true positives).

but is struggling to distinguish between such TCs and weaker systems. This
is not unexpected, as even humans can struggle to get the system’s strength
right, as it usually depends on wind speeds inside the system and such direct
observations are usually hard to obtain.

This is further confirmed when checking the cases in which the deep learning
network did not detect a TC presence.

This shows that the vast majority of cases with no TCs are being classified
as such, i.e. true negatives. Some cases with TCs present are being misclas-
sified (false negatives) with a greater portion of lower category TCs are being
misclassified than higher category TCs.

5.3 Chapter Summary

In this study, two automatic detection methods for TCs, namely T-TRACK and
a deep learning based algorithm were compared to an observational dataset for
TCs, the International Best Track Archive for Climate Stewardship (IBTrACS)
database, to discern how they compared when detecting TCs.

A priori we might have expected that the events recorded by IBTrACS
would be stronger in the observations than in the reanalysis (Strachan et al.,
2013; Hodges, Cobb, and Vidale, 2017), and that some events in the southern
hemisphere would be omitted by the observations (Hodges, Cobb, and Vidale,
2017). T-TRACK and the deep learning algorithm found more events overall,
with both finding more in the Indian Ocean, while the deep learning based algo-
rithm found more over land. It should also be noted that T-TRACK detected
more events than TCDetect.

The positions of detected cyclones differ from the observations. The T-

78

TRACK algorithm finds a distribution skewed to higher latitudes, but with the
peak at a lower latitude. These differences can be explained by noting that when
matching detected cyclones with observed cyclones little difference is observed,
and that T-TRACK is finding more cyclones than were observed.

While both the deep learning algorithm and T-TRACK found more (pre-
sumably real) cyclones in the Southern Hemisphere, for the deep learning the
matching of detected and observed cyclones was not as good as for T-TRACK.
The latitudinal distribution of cyclones found by deep learning also shows a
considerable number of cases at around 30oS. These were mostly over the In-
dian Ocean and, although poorly located, were still present in the observations.
However, the deep learning network was not trained to find TC centres - rather
only to find fields with TCs present - so this represents a failure of (or biases
in) the assumption that the centre of the TC is co-located with the centre of
the activation points reported by the deep learning.

Those TCs found by both detection methods and observed in IBTrACS were
the strongest and most well-defined. Those detected by any two of T-TRACK,
IBTrACS and the deep learning were weaker and had more disorganised fields,
and those detected by only one of the methods were the weakest storms present
and had considerable noise in their fields.

Finally, it was found that most of the false positives generated by the deep
learning based algorithm had a TC which did not have hurricane status, there-
fore it was concluded that the network was picking up the right pattern but
was possibly struggling to define the cut-off point between a lower-end TC and
a Tropical Storm.

In the next chapter, it is shown how the developed deep learning network
was integrated into a GCM model for it to make inferences during a simulation
and questions relating to model and resolution compatibility are investigated.

79

Chapter 6

Implementing Tropical Cyclone
detection using deep learning in
the UK Met Office Unified
Model

Machine learning, especially deep learning, has been experiencing a pe-
riod of increased interest as of late and has also become popular in the
meteorological community. However, integrating a deep learning network
into a climate model is not trivial. Here, we detail how a deep learning
network which is intended to identify the presence of tropical cyclones
was integrated into the UK Met Office Unified Model. We address how
adaptable the method is to data from different simulations and horizon-
tal resolutions. We show that the method can be used “as is” for data
coming from different simulated climates. For data originating from dif-
ferent simulations and reanalyses, retraining of the deep learning network
is needed if going from higher to lower resolution data. The main goal
of implementing the method was as a proof of concept for utilising the
inference generated from the network to decide whether high-resolution
data should be written to disk for further analysis during the presence of
tropical cyclones. One important requirement for this method was that
it should not slow down the simulation significantly. Encouragingly, the
method only slowed down a simulation performed at a horizontal reso-
lution of 25km (N512) by 5% and various additional improvements are
described.

A deep learning network, TCDetect, has been created to detect the presence
of tropical cyclones in reanalysis data. Its performance has been verified obser-
vations, and compared to a state-of-the-art detection and tracking algorithm.
The objective of this chapter is to include and use that network in the UK
Met Office Unified Model (UM) and evaluate the resulting computational and
scientific performance in the context of potential use in reducing high-frequency
data output.

The first step was to implement TCDetect in the UM itself, in order to be
sure that it could be done and to generate some initial data (Section 6.1). This

This chapter is being prepared for publication; contributions - Daniel Galea: coding, data
collection, writing, editing; Bryan Lawrence: writing, editing, direction; Jeff Cole: direction
with UM coding; Simon Wilson: help with setting up UM simulations

80

was followed by an analysis of the scientific utility of doing so (Section 6.2), and
then by an analysis of the computational impact of using this scheme and the
outcome in terms of data reduction (Section 6.3.2).

6.1 Using TCDetect in the Met Office Unified

Model

The Met Office Unified Model (Brown et al., 2012) can be configured as an at-
mosphere only general circulation model (GCM) or a coupled-ocean atmosphere
general circulation model (AOGCM). TCDetect has been inserted into version
11 of the UM Atmosphere with the GA7.0 scientific configuration (GA7.0 UM11,
Walters et al., 2019).

The original workflow internal to the UM is shown in Figure 6.1. It starts by
initialising various variables and the arrays which are required to store prognos-
tic and diagnostic variables in memory. It then loads the starting conditions. A
timestep is computed by executing various physics schemes with potential data
writing interspersed between different schemes. Data writing of variables only
occurs during timesteps which correspond to the output frequency selected by
the user. The number of timesteps required is calculated and a loop is used
to process the required timesteps. After all of the timesteps required are com-
puted, the UM finishes the simulation by performing some cleanup routines
before exiting.

Neglecting checkpoint data (used for starting and restarting simulations),
the main output consists of both diagnostic and prognostic variables written
at intervals under the control of the user. Any given variable may be written
at several frequencies (e.g. monthly, daily, hourly) and either instantaneous or
mean values can be written, but obviously the amount of data written is higher
for high frequency data. In the context of climate futures, high frequency
data (anything written at intervals less than a month) is generally used for
investigating extremes in weather such as those caused by TCs. However, there
is little utility in writing such data when there are no weather events of interest
present. Hence the objective of inserting TCDetect is to add a control step
which only writes out high frequency data when (and potentially where) TCs are
present. (Of course TCs may not be the only weather event of interest, but the
purpose here is to show that this sort of data reduction can be carried out using
deep learning; once one can do it for TCs, the technique can be supplemented
by other gatekeeping methods.) Figure 6.2 shows the amended workflow that
uses the inference produced by TCDetect to control high-frequency input with
any new processes given in green.

A C++ header-only package, frugally-deep (Hermann, 2020), is utilised
as an intermediate layer to be able to use the deep learning network, trained in
Python, as an inference engine in the FORTRAN-based UM. An explanation
on how this package works is contained in Appendix A. A FORTRAN module
utilising this C++ package was written in which subroutines to load and use
the deep learning network as well as perform any data manipulation needed
were created. The SPHEREPACK package (Adams and Swarztrauber, 1999)
was also used to perform the calculations needed for spherical filtering of data.

81

Start

Initialise timstep
variables;

Run physics
schemes

Output variables
to disk

Run physics scheme Output variables
to disk

Run diffusion scheme Output variables
to disk

More
timesteps to
compute?

Exit

Yes

Perform cleanup

Initialise global
variables

Finish dynamics
solver run

Output variables
to disk

Run aerosol
modelling scheme

Output variables
to disk

Perform incremental
analysis unit;

Calculate diagnostics
at end of timestep

Output variables
to disk

No

Figure 6.1: The original workflow of the UK Met Office Unified Model to carry
out a full climate simulation. Objects in white are data writing steps in the UM.
Data writing does not occur in each timestep. It only occurs during timesteps
which correspond to the output frequency selected by the user.

82

Start

Initialise timstep
variables;

Run physics
schemes

Output variables
to disk

Run physics scheme Output variables
to disk

Run diffusion scheme Output variables
to disk

More
timesteps to
compute?

Exit

Yes

Perform cleanup

Initialise global
variables

Finish dynamics
solver run

Output variables
to disk

Run aerosol
modelling scheme

Output variables
to disk

Perform incremental
analysis unit;

Calculate diagnostics
at end of timestep

Output variables
to disk

No

Load Deep Learning model
Calculate spherical coefficients for filtering

Set each region's TC presence flag to
false

Collect fields on
control processing

element and get onto
same grid

Perform spherical
filtering; reduce

resolution; split into
regions

Obtain inference for
each region

Update each region's
TC flag

Is TC
presence flag

true?

Yes

No

Is TC
presence flag

true?

Is TC
presence flag

true?

Yes

No

Is TC
presence flag

true?

Is TC
presence flag

true?

Is TC
presence flag

true?

Yes

No

Yes

Yes

No

Yes

No

No

Figure 6.2: The UM workflow for a full climate simulation when using the deep
learning network inference to decide whether to write out data to disk during
timesteps which correspond to the output frequency selected by the user. Red
objects show process present in the original workflow shown in Figure 6.1. White
objects are data saving routines. Green objects show the extra processes needed
to use the deep learning network in the UM.

83

The deep learning network, stored in a JSON file when saved in Python,
is loaded by the process controlling the simulation before any timesteps are
processed. The spherical coefficients needed for spherical filtering (as described
in Section 3.3.2) are calculated once at the initialisation stage and are used in
execution of the data reduction method to calculate the spherical harmonics of
the data.

The first set of simulated timesteps before that which is meant to write out
analysis data is then calculated. At this point, the deep learning network is
utilised to check whether it detects a tropical cyclone in any of the regions in
the timestep just calculated.

The required data - the 10-metre wind speed, MSLP and vorticity at 850hPa,
700hPa and 600hPa fields - are gathered from their host processing elements
onto that controlling the simulation. All other processes then wait on the fol-
lowing process.

Spherical filtering is applied to the collected data such that wavenumbers 5
to 106 are kept for the MSLP and 10-metre wind fields and wavenumbers 1 to
63 are kept for all vorticity fields. At this point, the global image is split up into
the eight regions of Figure 4.1 and passed onto the deep learning network for
inference making. The regions are passed to the deep learning network serially
and the inferences are collected. If TCDetect infers the presence of a TC in any
of the regions, the required flags for data-writing are set to true so that data
from any of the required regions in the next timestep is written out to disk. At
this point, all CPUs are released to calculate the next timestep. This sequence
continues until all timesteps are calculated and the climate model exits.

6.2 Scientific Validation

The computational resources available limited the validation approach to util-
ising the scheme in two atmosphere-only runs at different resolutions, supple-
mented by analysis of what would have happened if the analysis were applied to
extracts of coupled atmosphere-ocean simulations for current and future climate
from the CMIP6 archive. Together the set of runs allowed an exploration of
using TCDetect across resolutions and in current and future climates. For the
scientific validation, the GCM runs using TCDetect in-situ in the UM wrote all
the necessary data regardless of whether or not a TC was present.

The implementation of TCDetect in the UM (or applied to UM data in
post-processing) is predicated on using a deep learning architecture which has
been trained on specific data, a process which depends on the accuracy of the
labelling, and the data itself. The primary TCDetect development was carried
out using re-analysis data which correspond to real events for which a labelled
dataset is available (IBTrACS), but to evaluate the use of this technique in free-
running simulations we need a method of labelling the simulation data itself.

The volume of data involved is large (and effectively infinite, given all possi-
ble resolutions and durations), and so an automatic labelling technique is nec-
essary; to that end, we use TRACK (Hodges, 1995, Hodges, 1996 and Hodges,
1999) as previously described. We can then investigate the impact of using a
pre-trained network on data from simulations which are at different resolutions

84

or for a different (previously unseen) climate. Hence all the simulation vali-
dation datasets are data from the UM (in AOGCM or GCM mode) labelled
with TRACK. However, the original version of TCDetect was developed on
ERA-Interim data labelled with IBTrACS observations, so we also include two
further datasets in our analysis: a subset of ERA-Interim as originally labelled
with IBTrACS and the same data labelled with TRACK so we can investigate
the consequences of using TRACK labelling.

The full set of six datasets used in this analysis are summarised in Table 6.1:
the original data from ERA-Interim with labels obtained from IBTrACS; the
same data but with labels obtained from T-TRACK and data from simulations
using the UM having a horizontal resolution of 135km (N96) and 25km (N512).
The final two datasets used were obtained from the CMIP6 project (Eyring
et al., 2016). The first, termed Hist1950, uses the model output from ensemble
member r1i1p1f1 of a run of NERC HadGEM3-GC31-HH model from the hist-
1950 set of simulations (Met Office Hadley Centre, 2020). This is a coupled
atmosphere-ocean model using historical temperature conditions. The second,
termed Future, uses the model output from ensemble member r1i1p1f1 of a run
of the same model from the highres-future set of experiments (Met Office Hadley
Centre, 2020), where the modelled climate is forced using the CMIP5 RCP8.5
scenario. These ensemble members are the control unperturbed members of the
contributions made to the CMIP6 project.

Dataset
Labelling
Method

Horizontal
Resolution

Train Years Test Years

ERA-Interim IBTrACS ∼79 km 1979-2017 2017-2019
ERA-Interim T-TRACK ∼79 km 1979-2017 2017-2019
UM N96 T-TRACK ∼135 km 1990-2004 2005-2007
UM N512 T-TRACK ∼25 km 1989-1990 1991
Hist1950 T-TRACK ∼25 km 1950-2001 2002-2014
Future T-TRACK ∼25 km 2015-2043 2044-2050

Table 6.1: Datasets used for exploring the adaptability of the method when
using inputs originating from different datasets.

Due to time constraints, the UM N96 and N512 simulations were 20.5 and
3 years long. Also, the Hist1950 simulation was 64 years long while the Future
simulation was 35 years long. Hence, our testing sets have different temporal
lengths. The testing period is 36 months and 12 months long respectively for
the UM N96 and N512 simulations. Similarly, the Hist1950 dataset is 13 years
long and the Future dataset is 6 years long. These represent around 20% of the
available data, the other 80% of which was used to train the different variants
of TCDetect. The testing set for ERA-Interim dataset is only 25 months long
to ensure that data which TCDetect has not yet processed is being used. Table
6.1 summarises the different datasets used in this section and includes their
horizontal resolutions and length in simulated years.

As TCDetect underpins the whole method, we will be discussing perfor-
mance of the method in terms of the deep learning network’s recall rate.

We should note that TCDetect and the method as a whole will not obtain a
perfect recall rate. As discussed before, no detection algorithm can detect all of

85

the TCs present. For example, TRACK detects 97% of observed TCs. From the
Venn diagram of Figure 5.1a, T-TRACK correctly classified 87% of the regions
shown in Figure 4.1 in which IBTrACS observed a TC. Also, the other detection
methods discussed in Section 3.2 were shown to need to have their thresholds
tuned to the datasets used, inferring that even they cannot detect all the TCs
present. IBTrACS itself is not perfect as discussed in Section 5.1.1. With this
in mind, the performance of our method is discussed below.

6.2.1 Method Adaptability

An important aspect of the method being presented is the adaptability and
reliability of the method when used with different data sources. The following
attempts to understand this.

TCDetect, as a deep learning network, is made up of two parts - its ar-
chitecture, i.e. how each layer is arranged to make up the final network; and
its weights, which are the values used to make an inference. To quantify the
ability of the network to be applied across different data sources, we keep the
same underlying architecture as TCDetect but retrain the network on each
data source to come up with different sets of weights to make up new variants
of TCDetect. TCDetect is the original network as trained on ERA-Interim data
with labels obtained from IBTrACS. TCDetect-TRACK is the network when
trained on the same data but using labels derived from T-TRACK. TCDetect-
N96 and TCDetect-N512 refer to networks trained on N96 and N512 UM data
respectively, with labels acquired from T-TRACK. Finally, TCDetect-CC and
TCDetect-FC are networks trained on the Hist1950 and Future datasets from
the CMIP6 HighResMIP experiment, with labels derived from T-TRACK. All
datasets coming from UM simulations are interpolated to the same resolution
as that of ERA-Interim.

The recall rate for each of these networks for each of the datasets available
is tabulated in Table 6.2. Table 6.3 shows the mean and standard deviation of
the monthly recall rate for each network as tested on each dataset.

TCDetect obtained a recall rate of 92% on the ERA-Interim dataset which
was labelled using IBTrACS. However, in the following work, we will be util-
ising data from simulations using the UM. For this, IBTrACS is not available.
Therefore, the first step was to retrain the network using T-TRACK labels.

The version of TCDetect trained with labelling obtained from T-TRACK is
now termed TCDetect-TRACK. As seen from Table 6.2, this obtained a recall
rate of 85% when it is tested on data with IBTrACS labels, compared to the
87% obtained from T-TRACK, and 59% when tested on data with T-TRACK
labels. T-TRACK is known to contain some systems which are not TCs, so it
is not surprising that the performance of the network decreased. This could be
due to the different types of systems present in the labelling system that may
be forcing the deep learning network to try to learn two different patterns. We
attempt to see if this is the case by splitting the cases in the test dataset by the
highest category of any TCs present as given by IBTrACS, with results shown
in Table 6.4. When compared to TCDetect’s results in Table 5.2, TCDetect-
TRACK produces more than double the true false positives (positive inference;
no meteorological system) than TCDetect, while its recall of category-strength

86

Detection Method

Data Source Label Source TCDetect
TCDetect
-TRACK

TCDetect
-N96

TCDetect
-N512

TCDetect
-CC

TCDetect
-FC

ERA-Interim IBTrACS 92% 85% 97% 91% 93% 89%
ERA-Interim T-TRACK 59% 62% 76% 70% 73% 62%
UM N96 T-TRACK 34% 41% 78% 50% 62% 44%
UM N512 T-TRACK 58% 58% 71% 72% 77% 60%
Hist1950 T-TRACK 60% 58% 73% 73% 77% 64%
Future T-TRACK 62% 62% 74% 74% 79% 66%

Table 6.2: Recall rates when each variant of TCDetect was tested on combina-
tions of different data and labelling sources.

Detection Method

Data Source Label Source TCDetect
TCDetect
-TRACK

TCDetect
-N96

TCDetect
-N512

TCDetect
-CC

TCDetect
-FC

ERA-Interim IBTrACS
x̄ : 88%
σ : 13%

x̄ : 84%
σ : 17%

x̄ : 95%
σ : 9%

x̄ : 87%
σ : 19%

x̄ : 92%
σ : 18%

x̄ : 87%
σ : 16%

ERA-Interim T-TRACK
x̄ : 51%
σ : 24%

x̄ : 59%
σ : 16%

x̄ : 71%
σ : 17%

x̄ : 64%
σ : 19%

x̄ : 69%
σ : 16%

x̄ : 56%
σ : 20%

UM N96 T-TRACK
x̄ : 33%
σ : 16%

x̄ : 38%
σ : 15%

x̄ : 76%
σ : 13%

x̄ : 49%
σ : 14%

x̄ : 59%
σ : 15%

x̄ : 42%
σ : 15%

UM N512 T-TRACK
x̄ : 58%
σ : 14%

x̄ : 59%
σ : 13%

x̄ : 71%
σ : 13%

x̄ : 72%
σ : 11%

x̄ : 77%
σ : 9%

x̄ : 60%
σ : 13%

Hist1950 T-TRACK
x̄ : 57%
σ : 13%

x̄ : 72%
σ : 11%

x̄ : 72%
σ : 13%

x̄ : 77%
σ : 10%

x̄ : 63%
σ : 14%

x̄ : 60%
σ : 17%

Future T-TRACK
x̄ : 60%
σ : 17%

x̄ : 60%
σ : 15%

x̄ : 73%
σ : 14%

x̄ : 73%
σ : 14%

x̄ : 78%
σ : 12%

x̄ : 65%
σ : 16%

Table 6.3: Monthly mean and standard deviation recall rates when each variant
of TCDetect was tested on each different data source.

storms decreases.
Now that we have a network trained with T-TRACK labelling, we can use

it to determine how adaptable the method is to data from different sources.
Starting with the original ERA-Interim data, the original network, TCDe-

tect, obtained a recall rate of 92% while TCDetect-TRACK obtained a recall
rate of 85%. On the other hand, most of those networks trained on UM data ob-
tained recall rates close to or better than TCDetect, with the notable exception
being TCDetect-FC, the network trained on a future climate. These numbers
start to indicate that differences are to be expected in the network’s performance
when applying it to data from different sources and different climates.

When considering ERA-Interim data with T-TRACK labels, a clear stratifi-
cation can be noted. Those networks trained on UM data, with the same excep-
tion as before in TCDetect-FC, obtain a higher recall rate than those trained
on ERA-Interim data, although all recall rates are more than 20% lower in each
case. This is in fact seen when testing with the rest of the available datasets.
This points to the possibility that networks trained on UM data continue to
perform well when used on ERA-Interim data, but not vice-versa.

These values are reflected in the mean and standard deviation of the monthly
recall rate. The standard deviations reported when the networks are tested on
UM data are smaller than when tested on ERA-Interim data. This could point
that the networks perform more consistently across all timesteps, although some
caution needs to be taken due to the smaller testing dataset in the latter case. It
should also be noted that the standard deviation values are still large, showing
that the differences in the mean monthly recall may not be representative,

87

Class Positive Inference Negative Inference
No meteorological system 1393 18366

Unknown 5 27
Post-tropical systems 20 45

Disturbances 111 391
Subtropical systems 40 43
Tropical Depressions 320 653

Tropical Storms 1049 547
Category 1 TCs 395 89
Category 2 TCs 252 55
Category 3 TCs 224 34
Category 4 TCs 208 16
Category 5 TCs 68 1

Table 6.4: Split of cases by storm type (rows) as given by IBTrACS given a
positive inference (second column) or a negative inference (third column) by
TCDetect-TRACK.

however Figure 6.3 shows that these differences are representative.
Furthermore, the network trained on the dataset considered obtains the best

or second best recall rate. This is expected as from the previous discussion in
Chapter 3.2, classical algorithms performed best when they were tuned to the
dataset being considered. There is no reason to expect a deep learning algorithm
to differ from this behaviour. Once again, these findings are consistent with the
numbers reported for the mean daily recall.

It was also noted that all networks except one, TCDetect-N96, performed
better on UM N512 data than UM N96 data. For TCDetect-N96, performance
on N512 data was worse. These findings could point to the network being
applicable to higher resolutions, albeit with a slight drop in performance.

The different variants of TCDetect were tested on the two datasets intended
to infer the adaptability of the method to different climates, Hist1950 and Fu-
ture. The recall rates across the two datasets as well as the mean monthly recall
rates and their standard deviations were very close. This shows that the method
is found to work in future climates if an acceptable recall rate is obtained on
data from the current climate, at least for detecting TCs.

Finally, we touch on the reliability of the method, i.e. the ability of the
method to produce similar performance across the temporal dimension of a
dataset. When applying the TCDetect, TCDetect-TRACK, TCDetect-N96 and
TCDetect-N512 networks to the UM N96 testing dataset (Figure 6.3), we show
that a high variability in monthly recall rate is present, with one clear drop in
performance across all networks around May 2006. This occurs when there are
the fewest TCs, and most of which come from the South Atlantic and South
Eastern Pacific regions (Figure 6.4). These are the two regions with which
TCDetect struggles the most due to a lack of observed TCs from IBTrACS in
the region. From Table 6.3, this variability is highest when testing on data
from ERA-Interim with labels from IBTrACS. This decreases slightly when us-
ing T-TRACK labels and decreases further when using UM data. All of this
implies a temporally consistent performance from the deep learning network

88

which is important given it underpins the data reduction method, as incon-
sistent performance would mean that the method could not be used with any
confidence.

20
05

-0
1

20
05

-0
2

20
05

-0
3

20
05

-0
4

20
05

-0
5

20
05

-0
6

20
05

-0
7

20
05

-0
8

20
05

-0
9

20
05

-1
0

20
05

-1
1

20
05

-1
2

20
06

-0
1

20
06

-0
2

20
06

-0
3

20
06

-0
4

20
06

-0
5

20
06

-0
6

20
06

-0
7

20
06

-0
8

20
06

-0
9

20
06

-1
0

20
06

-1
1

20
06

-1
2

20
07

-0
1

20
07

-0
2

20
07

-0
3

20
07

-0
4

20
07

-0
5

20
07

-0
6

20
07

-0
7

20
07

-0
8

20
07

-0
9

20
07

-1
0

20
07

-1
1

20
07

-1
2

Month

0

20

40

60

80

100

M
on

th
ly

 R
ec

al
l %

TCDetect
TCDetect-TRACK
TCDetect-N96
TCDetect-N512
TCDetect-CC
TCDetect-FC

Figure 6.3: Monthly recall rate from all variants of TCDetect across the UM
N96 testing dataset.

01
-2

00
5

02
-2

00
5

03
-2

00
5

04
-2

00
5

05
-2

00
5

06
-2

00
5

07
-2

00
5

08
-2

00
5

09
-2

00
5

10
-2

00
5

11
-2

00
5

12
-2

00
5

01
-2

00
6

02
-2

00
6

03
-2

00
6

04
-2

00
6

05
-2

00
6

06
-2

00
6

07
-2

00
6

08
-2

00
6

09
-2

00
6

10
-2

00
6

11
-2

00
6

12
-2

00
6

01
-2

00
7

02
-2

00
7

03
-2

00
7

04
-2

00
7

05
-2

00
7

06
-2

00
7

07
-2

00
7

08
-2

00
7

09
-2

00
7

10
-2

00
7

11
-2

00
7

12
-2

00
7

Date

0

50

100

150

200

250

300

Nu
m

be
r o

f R
eg

io
ns

 in
 w

hi
ch

 T
-T

RA
CK

 d
et

ec
ts

 a
 T

C

South Indian Ocean
SE Pacific
SW Pacific
South Atlantic
North Indian Ocean
NE Pacific
NW Pacific
North Atlantic

Figure 6.4: Monthly number of regions, split by regions (colours), having a TC
detected by T-TRACK across the UM N96 testing dataset.

6.2.2 The Effect of Different Labelling

One aspect which might be important to understand is that of the effect of
changing the source of labelling. In the previous section, we noted that IB-
TrACS, the labelling source of TCDetect, is not available for UM simulations.
Therefore, T-TRACK was used as the labelling source for UM simulation data.

89

While the change was done due to necessity, it is important to investigate how
that effected the performance of the deep learning network with the analysis of
Chapter 4 being repeated using TCDetect-TRACK.

Firstly, Figure 6.5 shows how these two networks compare to each other in
terms of the regions in which a TC was detected by the deep learning networks,
T-TRACK and observed in IBTrACS. Figure 6.5i repeats Figure 5.1 for ease of
comparison.

It could be noted that TCDetect-TRACK detects the presence of a TC in
more regions than TCDetect. This is expected as T-TRACK detects more TCs
than IBTrACS, so the network trained with T-TRACK labels is expected to
mirror the labelling more closely. However, the proportion of the regions in
which a TC has only been detected by the deep learning network grows (20%
by TCDetect vs 28% by TCDetect-TRACK). This increase points to a larger
number of false positives produced, as shown in Table 6.4.

Despite the increase in the total number of regions in which TCDetect-
TRACK detected a TC, the number in the Northern Hemisphere decrease
slightly while the number in the Southern Hemisphere increase considerably.
The latter aligns to the knowledge that IBTrACS underestimates the TC count
in the Southern Hemisphere. This is mirrored in the number of matches between
the deep learning network and T-TRACK in both hemispheres.

TCDetect-TRACK detected more of the TCs also detected by T-TRACK
than TCDetect did (intersection of yellow and green areas). This is expected
due to the labelling used when training TCDetect-TRACK as this network is
expected to perform closer to the new labelling. However, fewer regions in which
IBTrACS observed a TC were detected by TCDetect-TRACK (intersection of
blue and green regions). This, and the knowledge that T-TRACK produces
tracks which are too long, i.e. containing systems which are not hurricane-
strength TCs, could be pointing to a possibility that the labelling is making the
network learn different patterns for a positive inference during training.

This is more evident in Figure 6.6 and Figure 6.7, which show the composite
TCs of all cases by Venn diagram region (Figure 6.5ii) when using TCDetect-
TRACK. When compared to the similar plots when using TCDetect in Figure
5.9 and Figure 5.10, it is seen that only the row showing the composite TC
of the cases detected only by TCDetect-TRACK changes considerably. This
composite is now much more similar to the expected structure of a TC, albeit
one which is not at hurricane-strength due to the width of the MSLP field and
lack of a clear center in the wind speed field. This points to TCDetect-TRACK
detecting systems which are valid meteorological systems but that do not have
the strength of a TC.

Given that T-TRACK produces overly long tracks, we would expect TC
centres generated by TCDetect-TRACK to be at seemingly wrong positions as
more TC centres reach the extra-tropics. Figure 6.8 shows just this. There
are more TC centres in the wrong place, i.e. over land, and more points at
the extra-tropics, especially in the Northern Hemisphere. Also, more TC cen-
tres are generated over the Southern Hemisphere, as expected from the increase
in regions in which TCDetect-TRACK detected a TC in the Southern Hemi-
sphere. The latter behaviour also mirrors the T-TRACK labelling more closely
- expected due to the change in labelling.

90

1093

26 114

39 451

44

244

989

24 567

22 1034

74

869

c) Southern Hemisphere

b) Northern Hemisphere

T-TRACK IBTrACS TCDetect

2082

50 681

61 1485

118

1113

a) Global

(i) TCDetect

788

38 759

66 756

32

217

1017

49 382

46 1006

49

845

c) Southern Hemisphere

b) Northern Hemisphere

T-TRACK IBTrACS TCDetect-TRACK

1805

87 1141

112 1762

81

1062

a) Global

(ii) TCDetect-TRACK

Figure 6.5: Events reported by observations (IBTrACS) and detected by T-
TRACK and (i) TCDetect and (ii) TCDetect-TRACK, applied to ERA-Interim
data for (a) the whole globe, (b) the Northern Hemisphere and (c) the Southern
Hemisphere.

91

T-
TR

AC
K

MSLP 10m wind speed Vorticity at 850hPa Vorticity at 700hPa Vorticity at 600hPa

IB
Tr

AC
S

De
ep

 L
ea

rn
in

g
M

od
el

T-
TR

AC
K

an
d

IB
Tr

AC
S

T-
TR

AC
K

an
d

DL
 M

od
el

IB
Tr

AC
S

an
d

DL
 M

od
el

Al
l M

et
ho

ds

100003

100211

100419

100626

100834

101042

101249

101457

101665

101873

3.599

4.680

5.760

6.841

7.922

9.002

10.083

11.164

12.244

13.325

0.0000176

0.0000091

0.0000357

0.0000624

0.0000890

0.0001157

0.0001423

0.0001690

0.0001956

0.0002223

0.0000223

0.0000019

0.0000261

0.0000503

0.0000745

0.0000987

0.0001229

0.0001471

0.0001713

0.0001955

0.0000257

0.0000034

0.0000189

0.0000412

0.0000635

0.0000858

0.0001081

0.0001305

0.0001528

0.0001751

100003

100211

100419

100626

100834

101042

101249

101457

101665

101873

3.599

4.680

5.760

6.841

7.922

9.002

10.083

11.164

12.244

13.325

0.0000176

0.0000091

0.0000357

0.0000624

0.0000890

0.0001157

0.0001423

0.0001690

0.0001956

0.0002223

0.0000223

0.0000019

0.0000261

0.0000503

0.0000745

0.0000987

0.0001229

0.0001471

0.0001713

0.0001955

0.0000257

0.0000034

0.0000189

0.0000412

0.0000635

0.0000858

0.0001081

0.0001305

0.0001528

0.0001751

100003

100211

100419

100626

100834

101042

101249

101457

101665

101873

3.599

4.680

5.760

6.841

7.922

9.002

10.083

11.164

12.244

13.325

0.0000176

0.0000091

0.0000357

0.0000624

0.0000890

0.0001157

0.0001423

0.0001690

0.0001956

0.0002223

0.0000223

0.0000019

0.0000261

0.0000503

0.0000745

0.0000987

0.0001229

0.0001471

0.0001713

0.0001955

0.0000257

0.0000034

0.0000189

0.0000412

0.0000635

0.0000858

0.0001081

0.0001305

0.0001528

0.0001751

100003

100211

100419

100626

100834

101042

101249

101457

101665

101873

3.599

4.680

5.760

6.841

7.922

9.002

10.083

11.164

12.244

13.325

0.0000176

0.0000091

0.0000357

0.0000624

0.0000890

0.0001157

0.0001423

0.0001690

0.0001956

0.0002223

0.0000223

0.0000019

0.0000261

0.0000503

0.0000745

0.0000987

0.0001229

0.0001471

0.0001713

0.0001955

0.0000257

0.0000034

0.0000189

0.0000412

0.0000635

0.0000858

0.0001081

0.0001305

0.0001528

0.0001751

100003

100211

100419

100626

100834

101042

101249

101457

101665

101873

3.599

4.680

5.760

6.841

7.922

9.002

10.083

11.164

12.244

13.325

0.0000176

0.0000091

0.0000357

0.0000624

0.0000890

0.0001157

0.0001423

0.0001690

0.0001956

0.0002223

0.0000223

0.0000019

0.0000261

0.0000503

0.0000745

0.0000987

0.0001229

0.0001471

0.0001713

0.0001955

0.0000257

0.0000034

0.0000189

0.0000412

0.0000635

0.0000858

0.0001081

0.0001305

0.0001528

0.0001751

100003

100211

100419

100626

100834

101042

101249

101457

101665

101873

3.599

4.680

5.760

6.841

7.922

9.002

10.083

11.164

12.244

13.325

0.0000176

0.0000091

0.0000357

0.0000624

0.0000890

0.0001157

0.0001423

0.0001690

0.0001956

0.0002223

0.0000223

0.0000019

0.0000261

0.0000503

0.0000745

0.0000987

0.0001229

0.0001471

0.0001713

0.0001955

0.0000257

0.0000034

0.0000189

0.0000412

0.0000635

0.0000858

0.0001081

0.0001305

0.0001528

0.0001751

100003

100211

100419

100626

100834

101042

101249

101457

101665

101873

3.599

4.680

5.760

6.841

7.922

9.002

10.083

11.164

12.244

13.325

0.0000176

0.0000091

0.0000357

0.0000624

0.0000890

0.0001157

0.0001423

0.0001690

0.0001956

0.0002223

0.0000223

0.0000019

0.0000261

0.0000503

0.0000745

0.0000987

0.0001229

0.0001471

0.0001713

0.0001955

0.0000257

0.0000034

0.0000189

0.0000412

0.0000635

0.0000858

0.0001081

0.0001305

0.0001528

0.0001751

Figure 6.6: Composite view of Northern Hemisphere events by detection al-
gorithm or observations which pick up the TC. Total number of cases used to
produce each composite can be obtained from Figure 6.5ii. Columns correspond
to the variables used: MSLP (first column), 10-metre wind speed (second col-
umn), vorticity at 850hPa (third column), vorticity at 700hPa (fourth column)
and vorticity at 600hPa (fifth column).

92

T-
TR

AC
K

MSLP 10m wind speed Vorticity at 850hPa Vorticity at 700hPa Vorticity at 600hPa

IB
Tr

AC
S

De
ep

 L
ea

rn
in

g
M

od
el

T-
TR

AC
K

an
d

IB
Tr

AC
S

T-
TR

AC
K

an
d

DL
 M

od
el

IB
Tr

AC
S

an
d

DL
 M

od
el

Al
l M

et
ho

ds

99840

100102

100363

100624

100886

101147

101408

101669

101931

102192

2.76

3.88

4.99

6.11

7.23

8.34

9.46

10.58

11.69

12.81

0.0000176

0.0000093

0.0000362

0.0000630

0.0000899

0.0001168

0.0001437

0.0001706

0.0001975

0.0002244

0.0000217

0.0000016

0.0000250

0.0000483

0.0000716

0.0000950

0.0001183

0.0001417

0.0001650

0.0001883

0.0000260

0.0000044

0.0000172

0.0000387

0.0000603

0.0000819

0.0001034

0.0001250

0.0001466

0.0001681

99840

100102

100363

100624

100886

101147

101408

101669

101931

102192

2.76

3.88

4.99

6.11

7.23

8.34

9.46

10.58

11.69

12.81

0.0000176

0.0000093

0.0000362

0.0000630

0.0000899

0.0001168

0.0001437

0.0001706

0.0001975

0.0002244

0.0000217

0.0000016

0.0000250

0.0000483

0.0000716

0.0000950

0.0001183

0.0001417

0.0001650

0.0001883

0.0000260

0.0000044

0.0000172

0.0000387

0.0000603

0.0000819

0.0001034

0.0001250

0.0001466

0.0001681

99840

100102

100363

100624

100886

101147

101408

101669

101931

102192

2.76

3.88

4.99

6.11

7.23

8.34

9.46

10.58

11.69

12.81

0.0000176

0.0000093

0.0000362

0.0000630

0.0000899

0.0001168

0.0001437

0.0001706

0.0001975

0.0002244

0.0000217

0.0000016

0.0000250

0.0000483

0.0000716

0.0000950

0.0001183

0.0001417

0.0001650

0.0001883

0.0000260

0.0000044

0.0000172

0.0000387

0.0000603

0.0000819

0.0001034

0.0001250

0.0001466

0.0001681

99840

100102

100363

100624

100886

101147

101408

101669

101931

102192

2.76

3.88

4.99

6.11

7.23

8.34

9.46

10.58

11.69

12.81

0.0000176

0.0000093

0.0000362

0.0000630

0.0000899

0.0001168

0.0001437

0.0001706

0.0001975

0.0002244

0.0000217

0.0000016

0.0000250

0.0000483

0.0000716

0.0000950

0.0001183

0.0001417

0.0001650

0.0001883

0.0000260

0.0000044

0.0000172

0.0000387

0.0000603

0.0000819

0.0001034

0.0001250

0.0001466

0.0001681

99840

100102

100363

100624

100886

101147

101408

101669

101931

102192

2.76

3.88

4.99

6.11

7.23

8.34

9.46

10.58

11.69

12.81

0.0000176

0.0000093

0.0000362

0.0000630

0.0000899

0.0001168

0.0001437

0.0001706

0.0001975

0.0002244

0.0000217

0.0000016

0.0000250

0.0000483

0.0000716

0.0000950

0.0001183

0.0001417

0.0001650

0.0001883

0.0000260

0.0000044

0.0000172

0.0000387

0.0000603

0.0000819

0.0001034

0.0001250

0.0001466

0.0001681

99840

100102

100363

100624

100886

101147

101408

101669

101931

102192

2.76

3.88

4.99

6.11

7.23

8.34

9.46

10.58

11.69

12.81

0.0000176

0.0000093

0.0000362

0.0000630

0.0000899

0.0001168

0.0001437

0.0001706

0.0001975

0.0002244

0.0000217

0.0000016

0.0000250

0.0000483

0.0000716

0.0000950

0.0001183

0.0001417

0.0001650

0.0001883

0.0000260

0.0000044

0.0000172

0.0000387

0.0000603

0.0000819

0.0001034

0.0001250

0.0001466

0.0001681

99840

100102

100363

100624

100886

101147

101408

101669

101931

102192

2.76

3.88

4.99

6.11

7.23

8.34

9.46

10.58

11.69

12.81

0.0000176

0.0000093

0.0000362

0.0000630

0.0000899

0.0001168

0.0001437

0.0001706

0.0001975

0.0002244

0.0000217

0.0000016

0.0000250

0.0000483

0.0000716

0.0000950

0.0001183

0.0001417

0.0001650

0.0001883

0.0000260

0.0000044

0.0000172

0.0000387

0.0000603

0.0000819

0.0001034

0.0001250

0.0001466

0.0001681

Figure 6.7: Composite view of the Southern Hemisphere cases (rows and
columns as described in Figure 6.6) - but the sign of vorticity has been re-
versed for ease of comparison).

93

Figure 6.8: Position of each Tropical Cyclone event center as given by IBTrACS
(top-left); T-TRACK (top-right) and the TCDetect-TRACK (bottom).

One complicating point is that only one TC centre can be produced in each
region in which the deep learning network detects the presence of a TC. This
is due to how the Grad-CAM technique (Selvaraju et al., 2017) was used in
this study. It was assumed that the the activation point which produced the
highest value from Grad-CAM was to be assigned as a TC centre. This was as
having Grad-CAM produce multiple TC centres would need a threshold above
which any points would be a TC and thus this would introduce subjectivity.
However, with the change of labelling, TCDetect-TRACK effectively changes its
detection criteria to detect most tropical systems. This change would make the
assumption to not necessarily hold as many cases exist where multiple tropical
systems are present in the region, with Grad-CAM possibly assigning the highest
activation to a region which is still a tropical system, but not a hurricane-
strength TC.

This could be seen in the specific example shown in Figure 6.9. This shows
a region in which two tropical systems can easily be identified in the region’s
data (top row) as areas of low values in the MSLP field and matching areas
of high values in the other fields in the middle of the region. The area in the
top half of the region is a tropical storm and the one in the bottom half is
a Category 5 TC, however, both are present in the T-TRACK dataset. The
first panel on the bottom row shows the output of Grad-CAM when applying
TCDetect to this region. The area of the highest activation (yellow area), and
the TC position given by Grad-CAM (red dot) are loosely near the Category 5
TC. However, when doing this with TCDetect-TRACK in the second panel, the
area of highest activation and the TC position given by Grad-CAM is nearer the
top of the region, much closer to the tropical storm. Thus, a TC centre which
is too northerly is produced. To make sure that TCDetect-TRACK could still
detect the Category 5 TC, the top half of the region was set to the mean of
the field, effectively blanking out that part of the field, and Grad-CAM now
puts the area of highest activation closer and the TC position generated close
to the Category 5 TC as expected, shown the the third panel. This shows

94

that TCDetect-TRACK is performing as expected, but the use of Grad-CAM
is problematic.

Mean Sea Level Pressure 10m Wind Speed Vorticity at 850hPa Vorticity at 700hPa Vorticity at 600hPa

6

5

4

3

2

1

0

1

2

3

2

1

0

1

2

3

4

5

6

3.0

1.5

0.0

1.5

3.0

4.5

6.0

7.5

9.0

3.0

1.5

0.0

1.5

3.0

4.5

6.0

7.5

9.0

3.0

1.5

0.0

1.5

3.0

4.5

6.0

7.5

9.0

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

Figure 6.9: Example of region having a multiple tropical systems present, only
one of which is a hurricane-strength TC (top row). Grad-CAM outputs (bottom
row) for the example from TCDetect (left panel), TCDetect-TRACK (middle
panel) and TCDetect-TRACK with top half of the example taken out (right
panel). TC positions as given by Grad-CAM shown by red dots.

These sub-optimal TC positions from TCDetect-TRACK should mean that
while it may be detecting a tropical system in a region, matching it with TCs
from the other two sources using the constraints in Section 5.2.1 becomes harder,
mostly due to the constraint requiring the mean separation distance between
the overlapping parts of two tracks to be within 5 degrees (geodesic).

Figure 6.10ii shows the Venn diagrams of matching TCs after the constraints
detailed in Section 5.2.1 are applied. This shows a large reduction in the number
of regions detected by TCDetect-TRACK which were matched to a TC from
either T-TRACK or IBTrACS or both when compared to what was reported
using TCDetect. This reduction is mostly down to the TC centres produced by
Grad-CAM being in the wrong place. Despite this, unsurprisingly the largest
number of matches is between TCDetect-TRACK and T-TRACK.

The analysis above shows that the effect of changing labels from those de-
rived from IBTrACS to those derived from T-TRACK is significant, with recall
rates dropping from 92% to 85%. Hence, TCDetect-TRACK is not expected to
perform as well as TCDetect, as the architecture was developed with IBTrACS
labelling. Despite this, it is still skillful at detecting hurricane strength TCs, as
they are a subset of tropical cyclones.

6.3 Computational Performance

The data reduction method has been detailed in Section 6.1 and the scientific
validation of the method has been discussed in Section 6.2. The following section

95

1894

89 572

993 250

25

220

T-TRACK IBTrACS TCDetect

(i) TCDetect

2084

87 91

1183 156

6

22

T-TRACK IBTrACS TCDetect-TRACK

(ii) TCDetect-TRACK

Figure 6.10: Events detected by T-TRACK, (i) TCDetect and (ii) TCDetect-
TRACK and/or reported by IBTrACS using ERA-Interim data which fall on
matching tracks, defined by applying constraints similar to those of Hodges,
Cobb, and Vidale (2017).

discusses the amount of data reduction achieved by the method and the amount
of time taken for the method to execute.

6.3.1 Data Reduction

The method presented above was initially designed to act as a data reduction
mechanism to be used during a climate model simulation. As such, it is impor-
tant to quantify the amount of data reduction achieved.

For this and the following sections, data from the simulations using the UM
was processed to get it in a form that can be used to obtain the deep learning
network’s inference, with the process shown in Figure 6.11.

Data output from UM runs is formatted as .pp files with timesteps grouped
monthly. These are then converted to netCDF files and the required fields -
MSLP, 10-metre wind speed, and vorticity at 850hPA, 700hPa and 600hPa -
are collected into their own netCDF files. TRACK and T-TRACK are run using
these and output detected TCs along with a timestamp in a text file.

The netCDF files are also processed for use by the deep learning network.
The outputs are first resized to the resolution used by ERA-Interim (≈79km)
using bilinear interpolation. After, any spherical filtering is performed and each
timestep’s data is split into the eight regions shown in Figure 4.1. The data from
each region is saved to disk as a .npz file, with the presence of a TC according
to T-TRACK included in the file’s path. The presence of a TC in the region
is obtained by processing the TC centres obtained by T-TRACK and checking
whether a TC was reported in the timestamp and region being processed.

The method was initially intended to be used to save data from whole
timesteps based on whether a TC was detected by TCDetect. However, it was
found that a TC was detected in the majority of the timesteps. This would have
made the method less useful as the data reduction would have been minimal. T-
TRACK also showed this, as seen in Table 6.5, especially for non-ERA-Interim

96

Perfrom
Unified Model

Run

Model outputs
as pp files

Model outputs
as netCDF files

Convert
outputs to

netCDF files

Collect
required

fields

Required fields
in netCDF files

Run TRACK TRACK outputs

Perform spherical filtering; Resize field data;
Parse TRACK outputs to obtain label for
each region in each timestep; Save each

region with label in save path

Individual cases
in DL-ready

format

Figure 6.11: Data preparation workflow for producing training data for a deep
learning network from UK Met Office Unified Model outputs.

data. As such, the method was changed to only output data from regions in
which a TC was detected, so that regional climate modelling could use this data
as boundary conditions for further analysis.

As shown in Figure 5.6 and discussed in Section 5.2.2, TCDetect overesti-
mates the number of TCs but is able to capture intra-annual variability when
detecting TCs. We aim to use this behaviour to formulate the data reduction
method to only save high resolution data from regions which have a TC present.

IBTrACS T-TRACK
ERA-Interim 36% 70%

UM N96 N/A 84%
UM N512 N/A 99%
Hist1950 N/A 97%
Future N/A 98%

Table 6.5: Percentage of timesteps in which IBTrACS or T-TRACK detect a
TC for each dataset.

Table 6.6 shows the number of instances of regions having a TC according
to IBTrACS, T-TRACK and TCDetect for ERA-Interim data from the 1st July

97

IBTrACS T-TRACK TCDetect
North Indian Ocean 72 (2%) 277 (9%) 239 (8%)
North Western Pacific 400 (13%) 1222 (40%) 933 (31%)
North Eastern Pacific 267 (9%) 712 (23%) 875 (29%)
North Atlantic 250 (8%) 703 (23%) 497 (16%)
South Indian Ocean 214 (7%) 646 (21%) 406 (13%)
South Western Pacific 113 (4%) 740 (24%) 399 (13%)
South Eastern Pacific 26 (1%) 322 (11%) 35 (1%)
South Atlantic 0 (0%) 119 (4%) 13 (0%)

Table 6.6: Number of instances per region having a TC according to IBTrACS
(first column), T-TRACK (second column) and TCDetect (third column) for
ERA-Interim data from the 1st July 2017 to 31st August 2019. Each region has
a total of 3044 timesteps and the percentage in brackets shows the percentage
of the total number of timesteps which have a TC present.

2017 to 31st August 2019. As expected, both T-TRACK and TCDetect over-
estimate these instances with respect to IBTrACS. Given that there are 3044
timesteps for each of the regions considered, so 24352 regions in total, IBTrACS
noted a TC in 6% of these, while T-TRACK and TCDetect detected a TC in
19% and 14% of such regions. This means that if the data reduction method
was used there would be a reduction of 86% of the original data size.

A similar exercise was performed on data from the N96 simulation run of
the UM, with results shown in Table 6.7. As IBTrACS data is not available for
this dataset, it was not included. Also, to remove the effect of the deep learning
network being tested on data which has a different horizontal resolution than
that it is being tested on, the architecture of TCDetect was retrained on UM
N96 data to obtain TCDetect-N96. When testing with this network, the results
show that T-TRACK detected a TC in 5799 (17%) of 34560 regions, while
TCDetect-N96 detected a TC in 9749 (28%) of the regions. The latter would
represent a 72% reduction in the data saved to disk.

T-TRACK TCDetect-N96
North Indian Ocean 74 (2%) 105 (2%)
North Western Pacific 1674 (39%) 2617 (61%)
North Eastern Pacific 442 (11%) 689 (16%)
North Atlantic 559 (13%) 999 (23%)
South Indian Ocean 913 (21%) 1596 (37%)
South Western Pacific 874 (20%) 1436 (33%)
South Eastern Pacific 1096 (25%) 1945 (45%)
South Atlantic 167 (4%) 362 (8%)

Table 6.7: Number of instances per region having a TC according to T-TRACK
(first column) and TCDetect (second column) for three simulated years of test
data from the N96 simulation of the UM. There is a total of 4320 timesteps per
region. The numbers in brackets give the percentage fraction on which a TC is
present for a region.

98

T-TRACK TCDetect-N512
North Indian Ocean 157 (11%) 197 (14%)
North Western Pacific 956 (67%) 920 (64%)
North Eastern Pacific 524 (37%) 714 (50%)
North Atlantic 431 (30%) 683 (48%)
South Indian Ocean 234 (16%) 552 (38%)
South Western Pacific 154 (11%) 374 (26%)
South Eastern Pacific 149 (10%) 370 (26%)
South Atlantic 28 (2%) 97 (7%)

Table 6.8: Number of instances per region having a TC according to T-TRACK
(first column) and TCDetect (second column) for the simulated year of test
data from the N512 simulation of the UM. There is a total of 1435 timesteps
per region. The numbers in brackets give the percentage fraction on which a
TC is present for a region.

Finally, the exercise was repeated on data from the N512 simulation run
of the UM. The original TCDetect architecture was retrained on this data to
obtain TCDetect-N512. Results of the number of regions in which a TC was
detected by both T-TRACK and TCDetect-N512 are shown in Table 6.8. The
results show that T-TRACK detected a TC in 2633 (23%) of 11480 regions,
while TCDetect detected a TC in 3097 (27%) of the regions. Hence, the data
reduction method using TCDetect would obtain a 73% reduction in the data
saved to disk.

Therefore, the method presented here would help to not write out the ma-
jority of data when only TCs are required. For high resolution (N512) data,
this is a 73% reduction. For such high resolution data, where data volumes are
large, this represents a significant reduction in data volume.

6.3.2 Method Timing

One important aspect of the method presented is that should be as lightweight
as possible, i.e. it should not slow down the execution of the simulation exces-
sively. Two seven-simulated-days runs at both N96 and N512 resolutions were
carried out where the mean CPU time of the method as a whole and various
parts of the method were timed, with results tabulated in Table 6.9. The model
used a timestep length of 20 simulated minutes for the run at a resolution of
N96, giving a total of 504 timesteps. The model run at a resolution of N512
used a timestep length of 10 simulated minutes, giving a total of 1008 timesteps.

It is shown that the method presented would not be computationally viable
if applied for every timestep as it would triple the time required to perform the
simulation. However, it might be more acceptable at even higher resolutions
than currently tested. The cost of the method has been shown to decrease from
80% of the total timestep execution time at N96 resolution (4.96 seconds out of
6.15 seconds) to 65% at N512 (10.22 seconds out of 15.64 seconds). Hence, we
would expect this to decrease further, mainly due to a timestep taking longer
to compute at higher resolutions. Also, the importance of the method would
increase with a higher resolution simulation as more data would be produced.

99

Mean CPU time (seconds)

Function
Times
Applied

N96 N512

Collect data on central processor 1 4.64× 10−4 2.99× 10−3

Interplate MSLP field to B-grid 1 3.15× 10−4 0.35
Resizing field to ERA-Interim resolution 5 9.1× 10−3 3.67× 10−2

Calculate vorticity 3 1.16× 10−3 2.28× 10−3

Perform spherical filtering on a field 5 0.68 1.36
Perform standardisation on a field 5 4.13× 10−5 6.64× 10−5

Prepare a region’s data in DL format 8 1.63× 10−5 3.66× 10−5

Obtain DL inference for a region 8 0.19* 0.37*
Full data reduction method 4.96 10.22
Full Timestep 6.15 15.64
N.B. The apparent factor of two in timing arises from an OpenMP threading issue which has not
yet been fully diagnosed, it is not inherent to the difference between N96 and N512. In fact,
when the issue is fixed these times would be expected to be the same, and potentially half the
value of the N96 timing here. (This conjecture has been explored by changing the threading
in an N96 run, which can be made to have similar times as the N512 for this step.)

Table 6.9: Timings for UM runs including the data reduction method at hori-
zontal resolutions of N96 and N512.

Conversely, if it is run only when analysis data is required to be outputted,
usually every 6 simulated hours, the method is less computationally expensive
and be more viable to run as the simulation would only need around 25% more
time for a N96 simulation to be finished.

In the N96 simulation, the simulation of a whole timestep took, on average,
6.15 seconds to compute, with 4.96 seconds used for the data reduction method.
This shows that around 80% of the total timestep duration is taken up by the
data reduction method being presented. Similarly, in the N512 simulation, a
whole timestep simulation takes, on average, 15.64 seconds, with 10.22 seconds,
or around 65%, dedicated to the data reduction method. In both cases, the
data reduction method is slowing down the simulation considerably.

Table 6.9 also shows a breakdown of execution times of various sections of
the method. Only one section of the code, that interpolating the MSLP field
from an Arakawa C-grid to an Arakawa B-grid, is majorly affected by the change
in resolution. In the N96 resolution simulation, this took 3.15 × 10−4 seconds
to complete, while it took 0.35 seconds to complete, an increase of more than
1000%, in the N512 resolution simulation. This is due to the larger amount of
points that need to be interpolated.

Two sections of code, that which performs spherical filtering of a field and
that which obtains the inference from the deep learning network, take up the
majority of the time in both simulations. The former takes 0.68 seconds and
1.36 seconds in the N96 and N512 resolution simulations respectively. The latter
takes 0.19 seconds and 0.37 seconds in the N96 and N512 resolution simulations
respectively.

The code that performs the spherical filtering is called on each of the five
fields while that which obtains the inference from the deep learning network is
called on each of the eight regions shown in Figure 4.1. Currently, these are done
serially, hence a large chunk of the time required for the whole timestep, is taken
up by these two computationally expensive sections of code. On the other hand,
had these been done in parallel and assuming ideal speedup, the data reduction

100

method would take 0.91 seconds for the N96 resolution simulation and 2.19
seconds for the N512 resolution simulation. These represent a reduction of
around 80% for the time required to execute the data reduction method. Also,
had the method been executed in such a way that an inference from each method
is obtained at the same time, i.e. utilising many CPUs to run in parallel, it
would take around 43% of a timestep’s execution time (neglecting any time
needed to scatter the data to each required CPU, but this should be at the
same order of collecting the data on the central CPU, which is insignificant) in
the N96 resolution simulation and around 29% of a timestep’s execution in the
N512 resolution simulation, resulting in a much more lightweight data reduction
method.

However, when applying this method to analysis data which is only out-
putted every certain amount of timesteps, the computation cost decreases. As-
suming that our method is to be applied every six simulated hours and in the
N96 simulation, the timestep used by the model is that of 20 simulated min-
utes, our method would be used every 18 timesteps, so it would add 4.96 seconds
of computational time for every 21.42 seconds of runtime, representing a 23%
slowdown in computation. The N512 simulation uses a timestep of 10 simulated
minutes, so our method would add 10.22 seconds per 195 seconds of runtime,
slowing down the computation by around 5%.

These show that the method if applied in this way does not slow down the
computation of the simulation significantly, especially for those simulations run
at higher resolution with many optimisations possible to further improve this
aspect of the data reduction method.

These timings were then compared to those that would have been obtained
from TRACK had it been used instead of TCDetect. TRACK was run on the
JASMIN (Lawrence et al., 2012) platform and only the part that performed
thresholding of data to produce feature points, i.e. storm centres, was timed.
It was not necessary to time any of the data pre-processing as both TCDetect
and TRACK perform the same pre-processing.

When timing the detection part of TRACK, storm centres are obtained in
0.0064 seconds for both N96 and N512 data. This is much quicker than the
timings for TCDetect. However, this should still be kept in perspective of the
whole method. Given that preprocessing takes 3.44 seconds and assuming that
an optimised version of the method is used, i.e. one using parallelisation to
process multiple regions at a time, the whole method would take 3.63 seconds
to execute if using TCDetect or 3.45 seconds if using TRACK. Hence, while the
inference part of the method would be much quicker if TRACK is used instead
of TCDetect, the difference in the whole method would be small.

Also, it will be disingenuous to say that TRACK should be used instead of
TCDetect based only on the timings produced. TCDetect was created so that
subjective thresholding is removed from the detection and tracking of a TC, but
using TRACK would bring that back. Furthermore, there are many phenomena
where a tracking system is not available. This would be where a deep learning
network like TCDetect would excel.

Building a tracking system for each phenomena is intractable, and even if
it was done, integrating each algorithm into the UM would not be very time-
efficient. On the other hand, building deep learning networks for the detection

101

of meteorological phenomena can be relatively quick compared to building whole
detection algorithms and utilising the method presented would make integrating
each network into the UM fairly trivial.

6.4 Chapter Summary

TCDetect, a deep learning network developed to detect the presence of Tropical
Cyclones in meteorological data, was incorporated into a fully-fledged method
that could be used by the UK Met Office Unified Model (UM) to decide whether
to save analysis data to disk depending on the inferred presence of a TC in a
certain region.

The amended UM algorithm to include this method was detailed and shown
to require minimal changes to the original UM. This included how a C++
intermediate layer was used to load the deep learning network trained in Python
to be used by the FORTRAN-based UM.

It was shown that both TCDetect and T-TRACK, a state of the art detection
and tracking algorithm, detected a TC in most analysis timesteps. This would
have made the reduction in data negligible. Hence, the method was changed to
only save data from a certain region of the globe when a TC was detected in that
region. This data would serve as the boundary conditions for regional climate
modelling which is performed to study the adaptation of the Earth system to
a changing climate. The method as now formulated reduces the data saved to
disk considerably.

The adaptability of the method to operate on data with different sources
was also discussed. Multiple sources of data were used for this but IBTrACS la-
belling was only available for one. To perform the subsequent analysis, a change
of labelling system from IBTrACS to T-TRACK was required. However, this
change of labelling was shown to have a significant effect on the performance
of the neural network. Given that T-TRACK still contains various types of
tropical systems, not just hurricane-force systems, the performance of a vari-
ant of TCDetect trained with this labelling was shown to be less than that of
TCDetect, very likely due to the change of labelling effectively changing what
the deep learning network is being asked to detect. Despite this, it was shown
that a deep learning network trained on UM data could be applied on ERA-
Interim data, but not vice-versa. It was also shown that a network trained on
the data that reflected the testing data performed best or second best. It was
also found that a network can be applied to data of a higher resolution, having
been interpolated to the same resolution as ERA-Interim, albeit with a slight
drop in performance. It was finally shown that a network trained on data from
the current climate can be applied to data from a future climate, at least when
TCs are considered.

Finally, the computational expense of the method was discussed. It was
shown that the method applied to the output of analysis data, which only
happens after every period of simulated time, slows down the computation of
the simulation by 23% in a N96 simulation using the UM, and only by 5%
in a N512 simulation. Given that this method is more likely to be applied to
higher resolution data, i.e. to the N512 simulation, the computational cost of
the method is sufficient for it to be considered a lightweight method. However,

102

multiple points of optimisation have been discussed: spherical filtering to obtain
data at the required resolution directly, using parallelisation to obtain inferences
from all regions in the timestep, and optimising the number of OpenMP threads
used. It was also shown that had TRACK been used instead of TCDetect,
the method would have been much quicker. However this should not detract
from using deep learning networks and the method being presented as not all
meteorological phenomena have detection algorithms and deep learning can be
a useful tool to produce such algorithms in a timely fashion.

103

Chapter 7

Conclusions

It is known that current climate models produce large amounts of data. As
higher resolutions are used, the volume of this data starts to increase greatly.
Such volumes of data are difficult to store and even more difficult to analyse,
especially if focusing on only one or a few phenomena.

Hence, a data reduction method to remove any unwanted data was created
and is presented in this proof-of-concept study, with hurricane-strength Tropical
Cyclones (TCs) being targeted to investigate the feasibility of this method. One
novel aspect that we wanted this method to have is that it could be used during
a climate simulation to decide at the time of writing out data whether to write it
out, rather than the current method of writing out all of the data and removing
any unnecessary data afterwards.

For this method, some way of detecting the presence of TCs in the data
needed to be found. There are multiple algorithms already developed that
do this, but most operate by using a subjective threshold which informs the
decision.

Hence, a deep learning network was trained to detect the presence of a
TC in model data. This had the advantage of doing away with a subjective
threshold, while potentially arriving to a decision in a quick manner. The latter
was important as the main simulation cannot be slowed down if the method is
to be used further in the future. The network developed was termed TCDetect.

The first result chapter (Chapter 4) goes into how TCDetect was created
and evaluated. ERA-Interim data and IBTrACS-derived labels were used to
train and evaluate the deep learning network. It obtained a recall rate, i.e. its
ability of detecting TCs, of 92% and a precision rate, i.e. its ability to not
create false positives, of 36%. This shows that it has a high skill in detecting
the presence of TCs but could do better in identifying data in which no TC is
present.

Various aspects of TCDetect were also investigated to understand the infer-
ences it was making. First, the most important feature for the network to arrive
to its inferences was found to be relative vorticity at 850hPa. This was expected
as all TCs manually checked had a clear signal in that field. Also, many of the
classical algorithms use that field for their purpose. Next, it was shown that
TCDetect worked similarly in all regions of the globe, which is important if it
was to be used in a method covering the globe. It was also shown that TCDetect
picked out all Category 5 TCs in the test dataset with somewhat worse perfor-

104

mance for weaker TCs. This was expected as Category 5 TCs are the most well
formed and easily recognisable systems. It was also shown that most of the false
positives given by TCDetect had meteorological systems present, showing that
it might have had some problem in distinguishing hurricane-strength TCs from
non-hurricane ones. However, it was shown that the locations of the TCs given
by TCDetect, via the Grad-CAM technique, were not very accurate. This was
expected as TCDetect was not trained for this function. Finally, TCDetect was
compared to other more standard deep learning networks to show that it per-
formed better than them and that it was worthwhile developing a new network
for the specific task at hand.

The study continued by comparing TCDetect to a state-of-the-art TC de-
tection and tracking algorithm, T-TRACK, and an observational dataset, IB-
TrACS. It was shown that TCDetect picks up most of the TCs also observed by
IBTrACS and detected by T-TRACK. Also, T-TRACK and TCDetect agreed
on a considerable amount of others, and together with the understanding that
IBTrACS is not a perfect observational dataset, it was concluded that these
were possible TCs that were missed by IBTrACS. The tracks of the TCs de-
tected by both algorithms and seen in the observations were compared and it
was shown that TCDetect matched the majority of these tracks.

Composite TCs were created for all types of matches between the two algo-
rithms and IBTrACS. It was shown that the strongest TCs, in terms of max-
imum wind speeds, minimum mean sea level pressures or maximum vorticity,
were found by all of IBTrACS, T-TRACK and TCDetect. Slightly weaker ones
generated matches by two of the two methods or IBTrACS, while the weakest
TCs were only found by one of the methods or the observational dataset.

The positions of the TC centres as given by both algorithms and IBTrACS
were also investigated and it was shown that TCDetect mostly produced TC
centres in the expected areas of the globe. The relative positions of TC cen-
tres were also compared and most TC centres given by TCDetect were within
2.5 degrees (geodesic) of their respective one as given by T-TRACK and/or
IBTrACS.

The final part of the study put together the final data reduction method
and showed how it could be used in a running simulation by the UK Met Office
Unified Model (UM). The original high-level algorithm currently used by the
UM and how it was changed to include the method being presented was detailed.
This included how TCDetect, trained in Python, was used in the FORTRAN
codebase using a C++ layer. The amount of data reduction was calculated for
multiple scenarios.

The adaptability of the method to operate on data with different sources was
also discussed. It was shown that a deep learning network trained on UM data
could be applied on ERA-Interim data, but not vice-versa. It was also shown
that a network trained on the data that reflected the testing data performed
best or second best. It was also found that a network can be applied to data
of a higher resolution, albeit with a slight drop in performance. It was finally
shown that a network trained on data from the current climate can be applied
to data from a future climate, at least when TCs are considered.

The study details a method which uses a deep learning network to detect the
presence of TCs in meteorological data, and integrates the method in a GCM.

105

While some encouraging results are reported, some limitations are also present.
One limitation is that at present, TCDetect trained on ERA-Interim data

would need adapting to be used during a UM simulation. The first problem is
that TCDetect is not applicable to data from a UM simulation. During this
study, a full retraining of the network was shown to be needed to make TCDetect
applicable to data from the UM. However, creating a transfer modelling system,
where TCDetect can be used as a starting point for any refinement required,
should be looked into. This would help speed up the process of training and
should do away with the need to fully redevelop the network for any new data
sources.

This retraining poses a problem when considering the time taken to perform
this task. Previously run simulation data would also be needed as well as a
labelling system for the phenomena being detected. While detection algorithms
are abundant for TCs, this might not be so for other phenomena. This could
be mitigated if training data from both the reanalysis and the GCM simulation
are used, but a common labelling system would be needed.

A related limitation is that when new versions of the GCM become available,
the underlying data distribution may be changed due to any improvements made
in any physical schemes present. This shifted distribution might make a deep
learning network less effective at its task. While this might not be a problem for
TCs due to their obvious shape, especially at higher strengths, other phenomena
might change appreciably. Hence, a deep learning network might need to be
retrained or redeveloped on simulation data originating from newer versions of
the GCM.

Another limiting factor in this study is the use of various labelling systems.
Section 3.3.3 details the performance metrics used and their limitations but
making comparisons between these systems confuses performance metrics some-
what. One way to create a common labelling system would be to manually label
each region in our dataset. Given that there are 450,000 regions in the ERA-
Interim dataset, this would be intractable and would likely take years. Also,
the main problem of a lack of accurate wind speed measurements would not be
solved, hence there would still be the likelihood of missed TCs. In absence of
this, the ground truth in this study is taken as the IBTrACS database when con-
sidering ERA-Interim data and T-TRACK when considering UM data. While
they do have differences, our analysis and that carried out by Hodges, Cobb,
and Vidale (2017) show that the differences are not very large when considering
the whole lifecycle of a TC. To make our analysis clearer, TCDetect could have
been developed when using T-TRACK labelling when training on ERA-Interim
data but that would mean that it would be trying to recreate labelling coming
from an algorithm that uses a subjective threshold, thus implicitly including it
in the network. Given that one of the strengths of the network is that any sub-
jectivity is removed, training the network on T-TRACK labelling would have
defeated one of the important points why the network was created.

Another related question arises – “Could have T-TRACK been used instead
of TCDetect in the method to detect TCs?”. If only TCs and the time taken to
come to an inference are considered, then yes, T-TRACK could have been used
instead of TCDetect to detect the presence of TCs. This would, however, use
a subjective threshold to make inferences. Also, using T-TRACK would mean

106

that the method could not be easily reproduced for other phenomena, as any
new detection algorithm has to be independently developed. There is also the
case where the phenomena does not have any available methods for detection,
so a deep learning network offers a way to perform this.

One final limitation of the study is that “lightweight” has not been defined.
This was as the intention was to present a method that effected the simulation’s
runtime as little as possible. Had a definition been implemented, a better
quantification of the method’s computational cost could have been made and a
better idea on the usability of the method could have been arrived to.

Despite the limitations of the study already described, some improvements
that could have been made which would have improved the final results. A
non-exhaustive list includes:

• Use different data: The input data used was obtained from ERA-Interim.
ERA5, which represents TCs better, would have possibly been a better
choice, but it was only available after the start of the study and it would
have been too time-consuming to re-run all of the hyperparameter tuning
on the new dataset. Also, only five fields were used in creating the deep
learning network. While an informed decision was made on this choice
from those fields used for the classical TC detection and tracking algo-
rithms, other different fields might have improved the deep learning net-
work’s performance. One such field is temperature. This was used in most
non-ML TC tracking algorithms as it helps out filter out extra-tropical
cyclones due to a difference in temperature in the centres of TCs and
extra-tropical systems. Another possibly useful input variable could be a
measure of where in its lifecycle any TC detected in the previous timestep
is. Given that TCs do not occur randomly, if a TC is present in the previ-
ously timestep, it is more than likely that the current timestep would have
a TC present as well. This behaviour could have helped the network im-
prove its performance. Finally, seasonally anomalising the dataset might
have produced better performance.

• Automatic Hyperparameter Tuning: Manual step-wise hyperparameter
tuning was utilised in this study, mainly due to the time and computa-
tional needs for developing the expertise needed for this, but it would have
almost certainly produced a better performing deep learning network.

• Using a different deep learning architecture: The one presented was cre-
ated in early stages of the study when deep learning expertise was still
being developed. A better architecture would have possibly been to utilise
a U-Net, where the input data is attempted to be compressed and re-
stored, and then use the bottleneck layer of the architecture to produce
an inference on the presence of a TC.

• Specify the problem differently: Again, due to a lack of deep learning
expertise at the start of the study, the problem was specified as detecting
the presence of a TC in a region of the globe. A better problem specifi-
cation would have been to locate all TCs in a whole timestep, similar to
other previously done work. This would have made the method even more
lightweight and the method could have also generated some TC statistics,

107

e.g. TC count, which are usually generated after a climate simulation has
been completed. Meteorological verification of the network would also
have been easier to achieve as Grad-CAM would not have been needed.
Another avenue to explore would be to change the network to detect all
tropical systems. This would have made the network easier to compare
to TRACK and T-TRACK.

• Optimise the data reduction method: The presented method is executed
wholly in series. However, it was shown that some parts, namely those
obtaining the inference from the deep learning network, could be executed
in parallel to lessen the time needed for the method to execute. Also, the
current method first interpolates the data from the original network’s
resolution to that of ERA-Interim before performing spherical filtering.
This was done to test that the FORTRAN code was obtaining the right
data manipulations, but the interpolation step is redundant if the spherical
filtering is performed on the initial data. This will also have the effect of
lessening the method’s execution time. Finally, the number of OpenMP
threads used and how this effects the CPU time of the data reduction
method could lead to a more efficient data reduction method.

Some unanswered questions also remain. Some of these include:

• Would the method have performed better if a version of TCDetect was
trained for each of the regions used?

• How does TCDetect compare to other algorithms besides T-TRACK? Can
any differences be explained to inform a better choice of inputs fields?

• Can the performance of the method be improved by using a multi-step
process? Given that most Tropical Cyclones start their lifetime in the
tropics, could a two-step process be used where any detection is performed
on the tropics only and some time restrictions are then applied to any
other TCs detected in the extra-tropics. This should reduce the number
of false positives generated.

• Can a better indication of the performance of the method for different
climates be obtained? Currently, only one ensemble member is used to
come to the conclusions made, but using more ensemble members would
increase the size of the testing dataset, making any conclusions more sig-
nificant.

Future avenues of work are plentiful. These include improving on the limita-
tions already laid out. One important improvement would be to further study
how TCDetect can be made applicable for data originating from various sources.
If TCDetect is made to be applicable to data from different sources, the usabil-
ity of the method will be improved as it would become easier to package the
method to the main code of a GCM.

Another avenue of research would be to redevelop a deep learning network
that uses T-TRACK as a labelling system and compare the performance ob-
tained to TCDetect-TRACK. If a large difference is seen, it would mean that

108

the choice of labelling system is significant even for clear phenomena as TCs, so
careful consideration would need to be given to the choice of labelling system.

An additional research direction would be to clearly define what an accept-
able amount of delay to the simulation by the method is for climate modellers.
This would help quantify the usefulness of the method to such modellers.

Finally, it would be useful to confirm that the method can be used to detect
different types of phenomena and check whether similar performance can be
obtained. This would add credence to the method being present and show that
it is not only applicable to TCs.

109

Bibliography

[1] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from tensorflow.org. 2015. url:
http://tensorflow.org/.

[2] John C. Adams and Paul N. Swarztrauber. “SPHEREPACK 3.0: A
Model Development Facility”. In:Monthly Weather Review 127.8 (1999),
pp. 1872 –1878. doi: 10.1175/1520-0493(1999)127<1872:SAMDF>2.
0.CO;2.

[3] Akio Arakawa. “Computational design for long-term numerical integra-
tion of the equations of fluid motion: Two-dimensional incompressible
flow. Part I”. In: Journal of Computational Physics 1.1 (1966), pp. 119–
143. issn: 0021-9991. doi: https://doi.org/10.1016/0021-9991(66)
90015-5.

[4] Gustavo Araujo and Fabio A. A. Andrade. “Post-Processing Air Temper-
ature Weather Forecast Using Artificial Neural Networks with Measure-
ments from Meteorological Stations”. In: Applied Sciences 12.14 (2022).
issn: 2076-3417. doi: 10.3390/app12147131.

[5] L. Bengtsson, K. I. Hodges, and M. Esch. “Tropical cyclones in a T159
resolution global climate model: comparison with observations and re-
analyses”. In: Tellus A: Dynamic Meteorology and Oceanography 59.4
(2007), pp. 396–416. doi: 10.1111/j.1600-0870.2007.00236.x.

[6] Bernhard Boser, Isabelle Guyon, and Vladimir Vapnik. “A Training Al-
gorithm for Optimal Margin Classifier”. In: Proceedings of the Fifth An-
nual ACM Workshop on Computational Learning Theory 5 (Aug. 1996).
doi: 10.1145/130385.130401.

[7] Leo Breiman. “Random forests”. In: Mach. Learn. 45.1 (2001), pp. 5–32.
issn: 08856125. doi: 10.1023/A:1010933404324.

[8] N. D. Brenowitz and C. S. Bretherton. “Prognostic Validation of a Neural
Network Unified Physics Parameterization”. In: Geophysical Research
Letters 45.12 (2018), pp. 6289–6298. doi: https://doi.org/10.1029/
2018GL078510.

[9] Andrew Brown et al. “Unified Modeling and Prediction of Weather and
Climate: A 25-Year Journey”. In: Bulletin of the American Meteorological
Society 93.12 (2012), pp. 1865 –1877. doi: 10.1175/BAMS-D-12-00018.
1.

110

http://tensorflow.org/
https://doi.org/10.1175/1520-0493(1999)127<1872:SAMDF>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<1872:SAMDF>2.0.CO;2
https://doi.org/https://doi.org/10.1016/0021-9991(66)90015-5
https://doi.org/https://doi.org/10.1016/0021-9991(66)90015-5
https://doi.org/10.3390/app12147131
https://doi.org/10.1111/j.1600-0870.2007.00236.x
https://doi.org/10.1145/130385.130401
https://doi.org/10.1023/A:1010933404324
https://doi.org/https://doi.org/10.1029/2018GL078510
https://doi.org/https://doi.org/10.1029/2018GL078510
https://doi.org/10.1175/BAMS-D-12-00018.1
https://doi.org/10.1175/BAMS-D-12-00018.1

[10] Kirk Bryan and Michael D. Cox. “A numerical investigation of the
oceanic general circulation”. In: Tellus 19.1 (1967), pp. 54–80. doi:
https://doi.org/10.1111/j.2153-3490.1967.tb01459.x.

[11] Suzana J. Camargo and Stephen E. Zebiak. “Improving the detection and
tracking of tropical cyclones in atmospheric general circulation models”.
In: Weather Forecast. 17.6 (2002), pp. 1152–1162. issn: 08828156. doi:
10.1175/1520-0434(2002)017<1152:ITDATO>2.0.CO;2.

[12] John P. Cangialosi, Andrew S. Latto, and Robbie Berg. Hurricane Irma
(AL112017). Tech. rep. URL: http://www.nhc.noaa.gov/data/tcr/
AL112017_Irma.pdf, as accessed on 23/03/2021. National Oceanic and
Atmospheric Administration (NOAA), 2018, p. 111.

[13] Ashesh Chattopadhyay, Ebrahim Nabizadeh, and Pedram Hassanzadeh.
“Analog Forecasting of Extreme-Causing Weather Patterns Using Deep
Learning”. In: Journal of Advances in Modeling Earth Systems 12.2
(2020), e2019MS001958. doi: https://doi.org/10.1029/2019MS001958.

[14] F. Chevallier et al. “A Neural Network Approach for a Fast and Ac-
curate Computation of a Longwave Radiative Budget”. In: Journal of
Applied Meteorology 37.11 (1998), pp. 1385 –1397. doi: 10.1175/1520-
0450(1998)037<1385:ANNAFA>2.0.CO;2.

[15] François Chollet. “Xception: Deep learning with depthwise separable
convolutions”. In: Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recog-
nition, CVPR 2017. Vol. 2017-January. Institute of Electrical and Elec-
tronics Engineers Inc., 2017, pp. 1800–1807. isbn: 9781538604571. doi:
10.1109/CVPR.2017.195. arXiv: 1610.02357.

[16] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and
Accurate Deep Network Learning by Exponential Linear Units (ELUs).
2016. arXiv: 1511.07289 [cs.LG].

[17] Alexis Conneau et al. “Very deep convolutional networks for text classi-
fication”. In: arXiv preprint arXiv:1606.01781 (2016).

[18] Peter M. Cox et al. “Acceleration of global warming due to carbon-
cycle feedbacks in a coupled climate model”. In: Nature 408.6809 (2000),
pp. 184–187. issn: 1476-4687. doi: 10.1038/35041539.

[19] Milan Curcic. “A Parallel Fortran Framework for Neural Networks and
Deep Learning”. In: SIGPLAN Fortran Forum 38.1 (Mar. 2019), 4–21.
issn: 1061-7264. doi: 10.1145/3323057.3323059.

[20] D. P. Dee et al. “The ERA-Interim reanalysis: configuration and per-
formance of the data assimilation system”. In: Q. J. R. Meteorol. Soc.
137.656 (2011), pp. 553–597. issn: 00359009. doi: 10.1002/qj.828.

[21] Pedro Domingos. “MetaCost: A General Method for Making Classifiers
Cost-Sensitive”. In: Proceedings of the Fifth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. Associa-
tion for Computing Machinery, 1999, 155–164. isbn: 1581131437. doi:
10.1145/312129.312220.

[22] Timothy Dozat. “Incorporating Nesterov Momentum into Adam”. In:
2016.

111

https://doi.org/https://doi.org/10.1111/j.2153-3490.1967.tb01459.x
https://doi.org/10.1175/1520-0434(2002)017<1152:ITDATO>2.0.CO;2
http://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf
http://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf
https://doi.org/https://doi.org/10.1029/2019MS001958
https://doi.org/10.1175/1520-0450(1998)037<1385:ANNAFA>2.0.CO;2
https://doi.org/10.1175/1520-0450(1998)037<1385:ANNAFA>2.0.CO;2
https://doi.org/10.1109/CVPR.2017.195
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1511.07289
https://doi.org/10.1038/35041539
https://doi.org/10.1145/3323057.3323059
https://doi.org/10.1002/qj.828
https://doi.org/10.1145/312129.312220

[23] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization”. In: Jour-
nal of Machine Learning Research 12.61 (2011), pp. 2121–2159. url:
http://jmlr.org/papers/v12/duchi11a.html.

[24] Lasse Espeholt et al. Skillful Twelve Hour Precipitation Forecasts using
Large Context Neural Networks. 2021. doi: 10.48550/ARXIV.2111.
07470.

[25] V. Eyring et al. “Overview of the Coupled Model Intercomparison Project
Phase 6 (CMIP6) experimental design and organization”. In: Geoscien-
tific Model Development 9.5 (2016), pp. 1937–1958. doi: 10.5194/gmd-
9-1937-2016.

[26] C.F. Gauss. Theoria motus corporum coelestium in sectionibus conicis
solem ambientium. Carl Friedrich Gauss Werke. Hamburgi sumptibus
Frid. Perthes et I.H.Besser, 1809. url: https://books.google.com.
mt/books?id=ORUOAAAAQAAJ.

[27] P. Gentine et al. “Could Machine Learning Break the Convection Param-
eterization Deadlock?” In: Geophysical Research Letters 45.11 (2018),
pp. 5742–5751. doi: https://doi.org/10.1029/2018GL078202.

[28] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of train-
ing deep feedforward neural networks”. In: Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics. Ed. by
Yee Whye Teh and Mike Titterington. Vol. 9. Proceedings of Machine
Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR, 2010,
pp. 249–256. url: https://proceedings.mlr.press/v9/glorot10a.
html.

[29] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[30] Peter Grönquist et al. “Deep learning for post-processing ensemble weather
forecasts”. In: Philosophical Transactions of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences 379.2194 (2021), p. 20200092.
doi: 10.1098/rsta.2020.0092.

[31] Kaiming He et al. “Deep residual learning for image recognition”. In:
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.Vol. 2016-
December. IEEE Computer Society, 2016a, pp. 770–778. isbn: 9781467388504.
doi: 10.1109/CVPR.2016.90.

[32] Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification”. In: Proceedings of the
IEEE International Conference on Computer Vision (ICCV). 2015.

[33] Kaiming He et al. “Identity mappings in deep residual networks”. In:
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics). Vol. 9908 LNCS. Springer Verlag, 2016b,
pp. 630–645. isbn: 9783319464923. doi: 10.1007/978-3-319-46493-
0_38.

112

http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.48550/ARXIV.2111.07470
https://doi.org/10.48550/ARXIV.2111.07470
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
https://books.google.com.mt/books?id=ORUOAAAAQAAJ
https://books.google.com.mt/books?id=ORUOAAAAQAAJ
https://doi.org/https://doi.org/10.1029/2018GL078202
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
http://www.deeplearningbook.org
https://doi.org/10.1098/rsta.2020.0092
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1007/978-3-319-46493-0_38

[34] Sijie He et al. “Sub-Seasonal Climate Forecasting via Machine Learn-
ing: Challenges, Analysis, and Advances”. In: Proceedings of the AAAI
Conference on Artificial Intelligence 35.1 (May 2021), pp. 169–177. url:
https://ojs.aaai.org/index.php/AAAI/article/view/16090.

[35] Tobias Hermann. frugally-deep. 2020. url: https : / / github . com /

Dobiasd/frugally-deep.

[36] K. I. Hodges. “Adaptive Constraints for Feature Tracking”. In: Monthly
Weather Review 127.6 (1999), pp. 1362–1373. doi: 10 . 1175 / 1520 -
0493(1999)127<1362:ACFFT>2.0.CO;2.

[37] K. I. Hodges. “Feature Tracking on the Unit Sphere”. In:Monthly Weather
Review 123.12 (1995), pp. 3458–3465. doi: 10.1175/1520-0493(1995)
123<3458:FTOTUS>2.0.CO;2.

[38] K. I. Hodges. “Spherical Nonparametric Estimators Applied to the
UGAMP Model Integration for AMIP”. In: Monthly Weather Review
124.12 (1996), pp. 2914–2932. doi: 10.1175/1520-0493(1996)124<2914:
SNEATT>2.0.CO;2.

[39] Kevin Hodges, Alison Cobb, and Pier Luigi Vidale. “How Well Are Trop-
ical Cyclones Represented in Reanalysis Datasets?” In: Journal of Cli-
mate 30.14 (2017), pp. 5243 –5264. doi: 10.1175/JCLI-D-16-0557.1.

[40] M Horn, K Walsh, and A Ballinger. Detection of tropical cyclones us-
ing a phenomenon-based cyclone tracking scheme. Tech. rep. US CLI-
VAR, 2013. url: https://usclivar.org/sites/default/files/
documents/2014/2013HurricaneReportFinal.v3_0_1.pdf.

[41] Michael Horn et al. “Tracking Scheme Dependence of Simulated Tropical
Cyclone Response to Idealized Climate Simulations”. In: Journal of Cli-
mate 27.24 (2014), pp. 9197 –9213. doi: 10.1175/JCLI-D-14-00200.1.

[42] Andrew G. Howard et al. “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications”. In: (2017). url: http://
arxiv.org/abs/1704.04861.

[43] Gao Huang et al. “Densely Connected Convolutional Networks”. In:
Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017
2017-January (2016), pp. 2261–2269. url: http://arxiv.org/abs/
1608.06993.

[44] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Op-
timization”. In: International Conference on Learning Representations
(Dec. 2014).

[45] Günter Klambauer et al. “Self-Normalizing Neural Networks”. In: Ad-
vances in Neural Information Processing Systems. Ed. by I. Guyon et
al. Vol. 30. Curran Associates, Inc., 2017. url: https://proceedings.
neurips.cc/paper/2017/file/5d44ee6f2c3f71b73125876103c8f6c4-

Paper.pdf.

[46] S. Kleppek et al. “Tropical cyclones in ERA-40: A detection and tracking
method”. In: Geophys. Res. Lett. 35.10 (2008). issn: 00948276. doi: 10.
1029/2008GL033880.

113

https://ojs.aaai.org/index.php/AAAI/article/view/16090
https://github.com/Dobiasd/frugally-deep
https://github.com/Dobiasd/frugally-deep
https://doi.org/10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2
https://doi.org/10.1175/JCLI-D-16-0557.1
https://usclivar.org/sites/default/files/documents/2014/2013HurricaneReportFinal.v3_0_1.pdf
https://usclivar.org/sites/default/files/documents/2014/2013HurricaneReportFinal.v3_0_1.pdf
https://doi.org/10.1175/JCLI-D-14-00200.1
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
https://proceedings.neurips.cc/paper/2017/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://doi.org/10.1029/2008GL033880
https://doi.org/10.1029/2008GL033880

[47] Kenneth R. Knapp et al. International Best Track Archive for Climate
Stewardship (IBTrACS) Project, Version 4. 2018. url: https://data.
nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C01552 (visited on
12/04/2019).

[48] Kenneth R. Knapp et al. “The international best track archive for cli-
mate stewardship (IBTrACS)”. In: Bull. Am. Meteorol. Soc. 91.3 (2010),
pp. 363–376. issn: 00030007. doi: 10.1175/2009BAMS2755.1.

[49] Sotiris Kotsiantis and P. Pintelas. “Mixture of expert agents for han-
dling imbalanced data sets”. In: ”Annals of Mathematics, Computing
and Teleinformatics” 1 (Jan. 2004), pp. 46–55.

[50] Vladimir Krasnopolsky, Michael Fox-Rabinovitz, and Dmitry Chalikov.
“New Approach to Calculation of Atmospheric Model Physics: Accurate
and Fast Neural Network Emulation of Longwave Radiation in a Cli-
mate Model”. In: Monthly Weather Review - MON WEATHER REV
133 (May 2005), pp. 1370–1383. doi: 10.1175/MWR2923.1.

[51] T N Krishnamurti, H S Bedi, and V M Hardiker. An Introduction to
Global Spectral Modeling. Oxford University Press, May 1998. doi: 10.
1093/oso/9780195094732.001.0001.

[52] Christina Kumler-Bonfanti et al. “Tropical and Extratropical Cyclone
Detection Using Deep Learning”. In: Journal of Applied Meteorology and
Climatology 59 (Dec. 2020), pp. 1971–1985. doi: 10.1175/JAMC-D-20-
0117.1.

[53] Thorsten Kurth et al. “Deep Learning at 15PF: Supervised and Semi-
Supervised Classification for Scientific Data”. In: Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. SC ’17. New York, NY, USA: Association for Com-
puting Machinery, 2017. isbn: 9781450351140. doi: 10.1145/3126908.
3126916.

[54] Valliappa Lakshmanan et al. “Which polarimetric variables are impor-
tant for weather/no-weather discrimination?” In: J. Atmos. Ocean. Tech-
nol. 32.6 (2015), pp. 1209–1223. issn: 15200426. doi: 10.1175/JTECH-
D-13-00205.1.

[55] Bryan Lawrence et al. “The JASMIN super-data-cluster”. In: ArXiv
abs/1204.3553 (2012).

[56] Yann A LeCun et al. “Efficient backprop”. In: Neural networks: Tricks
of the trade. Springer, 2012, pp. 9–48.

[57] AM Legendre. New methods for the determination of the orbits of comets
[microform] / by AM Legendre. French. F. Didot Paris, 1805, viii, 80 p.,
[1] leaf of plates:

[58] Hui Li et al. “Parametric prediction on default risk of Chinese listed
tourism companies by using random oversampling, isomap, and locally
linear embeddings on imbalanced samples”. In: International Journal of
Hospitality Management 35 (2013), pp. 141–151. issn: 0278-4319. doi:
https://doi.org/10.1016/j.ijhm.2013.06.006.

114

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C01552
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C01552
https://doi.org/10.1175/2009BAMS2755.1
https://doi.org/10.1175/MWR2923.1
https://doi.org/10.1093/oso/9780195094732.001.0001
https://doi.org/10.1093/oso/9780195094732.001.0001
https://doi.org/10.1175/JAMC-D-20-0117.1
https://doi.org/10.1175/JAMC-D-20-0117.1
https://doi.org/10.1145/3126908.3126916
https://doi.org/10.1145/3126908.3126916
https://doi.org/10.1175/JTECH-D-13-00205.1
https://doi.org/10.1175/JTECH-D-13-00205.1
https://doi.org/https://doi.org/10.1016/j.ijhm.2013.06.006

[59] Y. Liu et al. “Application of Deep Convolutional Neural Networks for De-
tecting ExtremeWeather in Climate Datasets”. In:ArXiv abs/1605.01156
(2016).

[60] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. “Rectifier nonlin-
earities improve neural network acoustic models”. In: in ICML Workshop
on Deep Learning for Audio, Speech and Language Processing. 2013.

[61] Syukuro Manabe and Kirk Bryan. “Climate Calculations with a Com-
bined Ocean-Atmosphere Model”. In: Journal of Atmospheric Sciences
26.4 (1969), pp. 786 –789. doi: 10.1175/1520-0469(1969)026<0786:
CCWACO>2.0.CO;2.

[62] Syukuro Manabe and Richard T. Wetherald. “Thermal Equilibrium of
the Atmosphere with a Given Distribution of Relative Humidity”. In:
Journal of Atmospheric Sciences 24.3 (1967), pp. 241 –259. doi: 10.
1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

[63] Pamela McCorduck. Machines who think: A personal inquiry into the
history and prospects of artificial intelligence. CRC Press, 2004.

[64] Warren McCulloch and Walter Pitts. “A Logical Calculus of Ideas Im-
manent in Nervous Activity”. In: Bulletin of Mathematical Biophysics 5
(1943), pp. 127–147.

[65] J. McGibbon et al. “fv3gfs-wrapper: a Python wrapper of the FV3GFS
atmospheric model”. In: Geoscientific Model Development 14.7 (2021),
pp. 4401–4409. doi: 10.5194/gmd-14-4401-2021.

[66] Met Office Hadley Centre. “WCRP CMIP6: Met Office Hadley Centre
(MOHC) HadGEM3-GC31-HH model output for the ”highres-future”
experiment”. In: (2020). url: https://catalogue.ceda.ac.uk/uuid/
6674daf12f33474e826952c8d27a9f9b (visited on 11/23/2021).

[67] Met Office Hadley Centre. “WCRP CMIP6: Met Office Hadley Centre
(MOHC) HadGEM3-GC31-HH model output for the ”hist-1950” exper-
iment”. In: (2020). url: https://catalogue.ceda.ac.uk/uuid/
56fd51e7a5854128bffb82302fb6e513 (visited on 11/23/2021).

[68] Ryo Mizuta et al. “Climate Simulations Using MRI-AGCM3.2 with 20-
km Grid”. In: J. Meteor. Soc. Japan 90A (2012), pp. 233–258. doi: 10.
2151/jmsj.2012-A12.

[69] Mayur Mudigonda et al. “Segmenting and Tracking Extreme Climate
Events using Neural Networks”. In: 31st Conf. Neural Inf. Process. Syst.
(2017), pp. 1–5. url: https://dl4physicalsciences.github.io/
files/nips{_}dlps{_}2017{_}20.pdf.

[70] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Re-
stricted Boltzmann Machines”. In: Proceedings of the 27th International
Conference on International Conference on Machine Learning. ICML’10.
Haifa, Israel: Omnipress, 2010, 807–814. isbn: 9781605589077.

[71] Y. E. Nesterov. “A method for solving the convex programming problem
with convergence rate O(1/k2)”. In: Dokl. Akad. Nauk SSSR 269 (1983),
pp. 543–547. url: https://ci.nii.ac.jp/naid/10029946121/en/.

115

https://doi.org/10.1175/1520-0469(1969)026<0786:CCWACO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)026<0786:CCWACO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2
https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2
https://doi.org/10.5194/gmd-14-4401-2021
https://catalogue.ceda.ac.uk/uuid/6674daf12f33474e826952c8d27a9f9b
https://catalogue.ceda.ac.uk/uuid/6674daf12f33474e826952c8d27a9f9b
https://catalogue.ceda.ac.uk/uuid/56fd51e7a5854128bffb82302fb6e513
https://catalogue.ceda.ac.uk/uuid/56fd51e7a5854128bffb82302fb6e513
https://doi.org/10.2151/jmsj.2012-A12
https://doi.org/10.2151/jmsj.2012-A12
https://dl4physicalsciences.github.io/files/nips{_}dlps{_}2017{_}20.pdf
https://dl4physicalsciences.github.io/files/nips{_}dlps{_}2017{_}20.pdf
https://ci.nii.ac.jp/naid/10029946121/en/

[72] Kazutoshi Onogi et al. “The JRA-25 Reanalysis”. In: Journal of the
Meteorological Society of Japan. Ser. II 85.3 (2007), pp. 369–432. doi:
10.2151/jmsj.85.369.

[73] Jordan Ott et al. “A Fortran-Keras Deep Learning Bridge for Scientific
Computing”. In: Scientific Programming 2020 (Aug. 2020), p. 8888811.
issn: 1058-9244. doi: 10.1155/2020/8888811.

[74] Pearu Peterson. “F2PY: a tool for connecting Fortran and Python pro-
grams”. In: International Journal of Computational Science and Engi-
neering 4.4 (2009), pp. 296–305. doi: 10.1504/IJCSE.2009.029165.

[75] Norman A. Phillips. “The general circulation of the atmosphere: A nu-
merical experiment”. In: Quarterly Journal of the Royal Meteorological
Society 82.352 (1956), pp. 123–164. doi: https://doi.org/10.1002/
qj.49708235202.

[76] Prabhat et al. “ClimateNet: an expert-labeled open dataset and deep
learning architecture for enabling high-precision analyses of extreme
weather”. In: Geoscientific Model Development 14.1 (2021), pp. 107–124.
doi: 10.5194/gmd-14-107-2021.

[77] Prabhat et al. “TECA: A parallel toolkit for extreme climate analysis”.
In: Procedia Comput. Sci. Vol. 9. Elsevier B.V., 2012, pp. 866–876. doi:
10.1016/j.procs.2012.04.093.

[78] Prabhat et al. “TECA: Petascale Pattern Recognition for Climate Sci-
ence”. In: Computer Analysis of Images and Patterns. Ed. by George
Azzopardi and Nicolai Petkov. Cham: Springer International Publish-
ing, 2015, pp. 426–436. isbn: 978-3-319-23117-4.

[79] Ning Qian. “On the momentum term in gradient descent learning algo-
rithms”. In: Neural Networks 12.1 (1999), pp. 145–151. issn: 0893-6080.
doi: https://doi.org/10.1016/S0893-6080(98)00116-6.

[80] Evan Racah et al. “ExtremeWeather: A large-scale climate dataset for
semi-supervised detection, localization, and understanding of extreme
weather events”. In: NIPS. 2017.

[81] Stephan Rasp and Sebastian Lerch. “Neural Networks for Postprocess-
ing Ensemble Weather Forecasts”. In: Monthly Weather Review 146.11
(2018), pp. 3885 –3900. doi: 10.1175/MWR-D-18-0187.1.

[82] Stephan Rasp, Michael S. Pritchard, and Pierre Gentine. “Deep learning
to represent subgrid processes in climate models”. In: Proceedings of
the National Academy of Sciences 115.39 (2018), pp. 9684–9689. doi:
10.1073/pnas.1810286115.

[83] Stephan Rasp, Michael S. Pritchard, and Pierre Gentine. “Deep learning
to represent subgrid processes in climate models”. In: Proceedings of
the National Academy of Sciences 115.39 (2018), pp. 9684–9689. doi:
10.1073/pnas.1810286115.

[84] Suman Ravuri et al. “Skilful precipitation nowcasting using deep gener-
ative models of radar”. In: Nature 597.7878 (2021), pp. 672–677. issn:
1476-4687. doi: 10.1038/s41586-021-03854-z.

116

https://doi.org/10.2151/jmsj.85.369
https://doi.org/10.1155/2020/8888811
https://doi.org/10.1504/IJCSE.2009.029165
https://doi.org/https://doi.org/10.1002/qj.49708235202
https://doi.org/https://doi.org/10.1002/qj.49708235202
https://doi.org/10.5194/gmd-14-107-2021
https://doi.org/10.1016/j.procs.2012.04.093
https://doi.org/https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1175/MWR-D-18-0187.1
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.1038/s41586-021-03854-z

[85] Lewis F. Richardson. Weather Prediction by Numerical Process. Cam-
bridge University Press, 1922.

[86] Malcolm J Roberts et al. “Tropical Cyclones in the UPSCALE Ensemble
of High-Resolution Global Climate Models”. In: J. Clim. 28.2 (2015),
pp. 574–596. doi: 10.1175/JCLI-D-14-00131.1.

[87] E Roeckner et al. “The atmospheric general circulation model ECHAM
5. PART I: model description”. In: Max Planck Institute for Meteorology
Report 349 (Jan. 2003).

[88] Sebastian Ruder. “An overview of gradient descent optimization algo-
rithms”. In: arXiv preprint arXiv:1609.04747 (2016).

[89] S. Saha. “The NCEP Climate Forecast System version 2”. In: J. Climate
27 (2014), pp. 2185–2208.

[90] Benjamin A. Schenkel and Robert E. Hart. “An Examination of Tropical
Cyclone Position, Intensity, and Intensity Life Cycle within Atmospheric
Reanalysis Datasets”. In: Journal of Climate 25.10 (2012), pp. 3453 –
3475. doi: 10.1175/2011JCLI4208.1.

[91] G. A. Schmidt. “Configuration and assessment of the GISS ModelE2
contributions to the CMIP5 archive”. In: J. Adv. Model. Earth Syst. 6
(2014), pp. 141–184.

[92] R. R. Selvaraju et al. “Grad-CAM: Visual Explanations from Deep Net-
works via Gradient-Based Localization”. In: 2017 IEEE International
Conference on Computer Vision (ICCV). 2017, pp. 618–626. doi: 10.
1109/ICCV.2017.74.

[93] Agon Serifi, Tobias Günther, and Nikolina Ban. “Spatio-Temporal Down-
scaling of Climate Data Using Convolutional and Error-Predicting Neu-
ral Networks”. In: Frontiers in Climate 3 (2021). issn: 2624-9553. doi:
10.3389/fclim.2021.656479.

[94] Yingkai Sha et al. “Deep-Learning-Based Gridded Downscaling of Sur-
face Meteorological Variables in Complex Terrain. Part I: Daily Maxi-
mum and Minimum 2-m Temperature”. In: Journal of Applied Meteorol-
ogy and Climatology 59.12 (2020), pp. 2057 –2073. doi: 10.1175/JAMC-
D-20-0057.1.

[95] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: arXiv 1409.1556 (2014).

[96] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”. In: Journal of Machine Learning Research
15.56 (2014), pp. 1929–1958. url: http://jmlr.org/papers/v15/
srivastava14a.html.

[97] Jane Strachan et al. “Investigating Global Tropical Cyclone Activity
with a Hierarchy of AGCMs: The Role of Model Resolution”. In: Journal
of Climate 26.1 (2013), pp. 133 –152. doi: 10.1175/JCLI-D-12-00012.
1.

117

https://doi.org/10.1175/JCLI-D-14-00131.1
https://doi.org/10.1175/2011JCLI4208.1
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.3389/fclim.2021.656479
https://doi.org/10.1175/JAMC-D-20-0057.1
https://doi.org/10.1175/JAMC-D-20-0057.1
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1175/JCLI-D-12-00012.1
https://doi.org/10.1175/JCLI-D-12-00012.1

[98] Richard S. Sutton. “Two Problems with Backpropagation and Other
Steepest-Descent Learning Procedures for Networks”. In: Proceedings of
the Eighth Annual Conference of the Cognitive Science Society. Hillsdale,
NJ: Erlbaum, 1986.

[99] Christian Szegedy et al. “Inception-v4, inception-ResNet and the impact
of residual connections on learning”. In: 31st AAAI Conf. Artif. Intell.
AAAI 2017. AAAI press, 2017, pp. 4278–4284. url: https://arxiv.
org/abs/1602.07261v2.

[100] Christian Szegedy et al. “Rethinking the Inception Architecture for Com-
puter Vision”. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. Vol. 2016-December. IEEE Computer Society, 2016, pp. 2818–
2826. isbn: 9781467388504. doi: 10.1109/CVPR.2016.308.

[101] Casper Kaae Sønderby et al. MetNet: A Neural Weather Model for Pre-
cipitation Forecasting. 2020. doi: 10.48550/ARXIV.2003.12140.

[102] Nguyen Thai-Nghe, Zeno Gantner, and Lars Schmidt-Thieme. “Cost-
sensitive learning methods for imbalanced data”. In: The 2010 Interna-
tional Joint Conference on Neural Networks (IJCNN). 2010, pp. 1–8.
doi: 10.1109/IJCNN.2010.5596486.

[103] Kevin Trebing, Tomasz Stanczyk, and Siamak Mehrkanoon. “SmaAt-
UNet: Precipitation nowcasting using a small attention-UNet architec-
ture”. In: Pattern Recognition Letters 145 (2021), pp. 178–186. doi:
https://doi.org/10.1016/j.patrec.2021.01.036.

[104] P. A. Ullrich and C. M. Zarzycki. “TempestExtremes: a framework for
scale-insensitive pointwise feature tracking on unstructured grids”. In:
Geoscientific Model Development 10.3 (2017), pp. 1069–1090. doi: 10.
5194/gmd-10-1069-2017.

[105] S. M. Uppala et al. “The ERA-40 re-analysis”. In: Quarterly Journal
of the Royal Meteorological Society 131.612 (2005), pp. 2961–3012. doi:
https://doi.org/10.1256/qj.04.176.

[106] F. Vitart, J. L. Anderson, and W. F. Stern. “Simulation of Interannual
Variability of Tropical Storm Frequency in an Ensemble of GCM Integra-
tions”. In: Journal of Climate 10.4 (1997), pp. 745–760. doi: 10.1175/
1520-0442(1997)010<0745:SOIVOT>2.0.CO;2.

[107] K. Walsh et al. “Objectively determined resolution-dependent thresh-
old criteria for the detection of tropical cyclones in climate models and
reanalyses”. In: J. Climate 20 (2007), pp. 2307–2314.

[108] D. Walters et al. “The Met Office Unified Model Global Atmosphere
7.0/7.1 and JULES Global Land 7.0 configurations”. In: Geoscientific
Model Development 12.5 (2019), pp. 1909–1963. doi: 10.5194/gmd-12-
1909-2019.

[109] Fang Wang et al. “Deep Learning for Daily Precipitation and Temper-
ature Downscaling”. In: Water Resources Research 57.4 (2021). doi:
https://doi.org/10.1029/2020WR029308.

118

https://arxiv.org/abs/1602.07261v2
https://arxiv.org/abs/1602.07261v2
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.48550/ARXIV.2003.12140
https://doi.org/10.1109/IJCNN.2010.5596486
https://doi.org/https://doi.org/10.1016/j.patrec.2021.01.036
https://doi.org/10.5194/gmd-10-1069-2017
https://doi.org/10.5194/gmd-10-1069-2017
https://doi.org/https://doi.org/10.1256/qj.04.176
https://doi.org/10.1175/1520-0442(1997)010<0745:SOIVOT>2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010<0745:SOIVOT>2.0.CO;2
https://doi.org/10.5194/gmd-12-1909-2019
https://doi.org/10.5194/gmd-12-1909-2019
https://doi.org/https://doi.org/10.1029/2020WR029308

[110] Jonathan Weyn et al. “Sub-Seasonal Forecasting With a Large Ensemble
of Deep-Learning Weather Prediction Models”. In: Journal of Advances
in Modeling Earth Systems 13 (July 2021). doi: 10.1029/2021MS002502.

[111] Colin M. Zarzycki and Paul A. Ullrich. “Assessing sensitivities in algo-
rithmic detection of tropical cyclones in climate data”. In: Geophysical
Research Letters 44.2 (2017), pp. 1141–1149. doi: https://doi.org/
10.1002/2016GL071606.

[112] Ming Zhao et al. “Simulations of Global Hurricane Climatology, Inter-
annual Variability, and Response to Global Warming Using a 50-km
Resolution GCM”. In: Journal of Climate 22.24 (2009), pp. 6653 –6678.
doi: 10.1175/2009JCLI3049.1.

119

https://doi.org/10.1029/2021MS002502
https://doi.org/https://doi.org/10.1002/2016GL071606
https://doi.org/https://doi.org/10.1002/2016GL071606
https://doi.org/10.1175/2009JCLI3049.1

Appendix A

The frugally-deep package

As explained in the Chapter 5, the package frugally-deep is used to be able
to use the deep learning model trained in Python in the FORTRAN-based UM.
In this appendix, we will attempt to show the inner workings for this package
and how it was used in the UM implementation discussed in Chapter 5.

The package is a header-only library written in C++ except for a script
which saves the trained model to disk which is written in Python. The aim of
this package is to use Tensorflow trained deep learning models in C or C++
code, without having to configure Tensorflow on the system being used. As
such, frugally-deep can only produce inferences using the trained model.

First, an important Python script is included in the package which converts
and saves the trained model to disk in a readable format for frugally-deep. It
requires a trained model that has been saved to an HDF5 file via Tensorflow’s
model.save() routine. This model is loaded by the converter and the converted
model is saved as a as a JavaScript Object Notation (JSON) file which has six
entries. The first is the architecture, i.e. the layer types and other hyperpa-
rameters, of the model in JSON format. The second entry is the image data
format, i.e. whether the data that will be put into the model will have the
channels index as the first or the last dimension of any array used. The next
two entries are the expected input and output array shapes. The penultimate
entry contains all of the model’s weights in ASCII format and the final entry
has the model’s hash stored.

In C++ code, frugally-deep loads the model via model.load model()

routine. This uses the json dependency to read in the json file and constructs
the model by loading the weights and architecture into vectors. This C++ code
is called from the UM’s FORTRAN code and returns a pointer to the loaded
deep learning model to be stored and used in the FORTRAN code.

After this, the data needed to produce the inference is constructed. The
preprocessed data is obtained from the UM and is given as a three dimen-
sional array. This array is passed onto a C++ routine and used to construct
frugally-deep tensors. These tensors are then passed onto the constructed
model for an inference to be made via frugally-deep’s model.predict()

which return another frugally-deep tensor. The inference is extracted from
this tensor and returned to the UM’s FORTRAN code, where it is handled and
processed to get the needed decision on whether to save data to disk or not.

120

	Abstract
	Introduction
	Deep Learning
	Artificial Neural Networks
	Loss Functions
	Optimisers
	Learning Rate
	Activation Functions
	Weight Initialisation Methods
	Dropout Regularisation
	L2 Regularisation
	Dataset Balancing

	Convolutional Neural Networks
	Deep Learning in Climate Science
	Fortran-Python Coupling

	Tropical Cyclones
	Tropical Cyclone Characteristics
	Previous TC detection systems
	Classical algorithms
	Algorithms utilising Deep Learning

	TC Detection Methods used in this study
	IBTrACS
	TRACK
	Performance Metrics

	Detecting the Presence of Tropical Cyclones in Climate Model Data
	Deep Learning Network
	Data
	Network Architecture
	Hyperparameter Tuning

	Network Understanding and Justifications
	Network Statistics
	Comparison with Standard Networks
	Network Explainability

	Chapter Summary

	Investigating differences between Tropical Cyclone detection systems and observations
	Data and Methods
	IBTrACS
	The TCDetect Deep Learning Network
	TRACK

	Results
	Detection
	Location
	Effects of TC Structure on Detection Skill
	Deep Learning Retraining

	Chapter Summary

	Implementing Tropical Cyclone detection using deep learning in the UK Met Office Unified Model
	Using TCDetect in the Met Office Unified Model
	Scientific Validation
	Method Adaptability
	The Effect of Different Labelling

	Computational Performance
	Data Reduction
	Method Timing

	Chapter Summary

	Conclusions
	The frugally-deep package

