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A potential explanation for the global
increase in tropical cyclone rapid
intensification

Kieran Bhatia 1 , Alexander Baker 2, Wenchang Yang 3,
Gabriel Vecchi 3,4, Thomas Knutson 5, Hiroyuki Murakami 5, James Kossin6,
Kevin Hodges2, Keith Dixon5, Benjamin Bronselaer7 & Carolyn Whitlock8

Tropical cyclone rapid intensification events often cause destructive hurricane
landfalls because they are associated with the strongest storms and forecasts
with the highest errors. Multi-decade observational datasets of tropical
cyclone behavior have recently enabled documentation of upward trends in
tropical cyclone rapid intensification in several basins. However, a robust
anthropogenic signal in global intensification trends and the physical drivers
of intensification trends have yet to be identified. To address these knowledge
gaps, here we compare the observed trends in intensification and tropical
cyclone environmental parameters to simulated natural variability in a high-
resolution global climate model. In multiple basins and the global dataset, we
detect a significant increase in intensification rateswith a positive contribution
from anthropogenic forcing. Furthermore, thermodynamic environments
around tropical cyclones have becomemore favorable for intensification, and
climate models show anthropogenic warming has significantly increased the
probability of these changes.

Rapid intensification (RI; defined as the 95th percentile of 24-h inten-
sity changes1) can quickly transform a tropical cyclone (TC) from a
relatively predictable natural hazard (such as heatwaves) with skillful
long-range forecasts to an unpredictable one (such as tornadoes) with
reliable warnings only hours in advance. Over the last five years, gui-
dance models and National Hurricane Center (NHC) forecasts have
exhibited more skill in forecasting RI in the east Pacific and North
Atlantic (hereafter, Atlantic refers to the North Atlantic) basins2.
However, the intensity forecast errors for RI events are still approxi-
mately 2–3 times larger thannon-RI events, dependingon forecast lead
time3. The forecasting challenges associated with these RI events were
likely exacerbated by the recent upward trend in the proportion of
storms that achieved RI4–10. Projections for an increase in the

probability of RI in the future11,12 suggest that the forecasting of TCs
could grow even more challenging.

Still, the anthropogenic contribution to the recent changes in TC
intensification rates and the favorability of TC environments has
received little attention. Various basin-specific forms of multidecadal
variability (e.g., the Atlantic Multidecadal Variability [AMV] and the
Pacific Decadal Oscillation [PDO]) becoming more conducive to TC
development7,13 has coincided with the relatively short period with
reliable TC intensity estimates14. Multidecadal natural variability,
anthropogenically-forced climate change, and observational data
limitations need to be carefully considered in order to identify the
various contributions to the recent trends. Bhatia et al.6 first attempted
to understand the role of natural climate variability in the increase of
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TC intensification by comparing observed trends (1982–2009) to
trends from an unforced control simulation of the High-Resolution
Forecast-Oriented Low Ocean Resolution model (HiFLOR15). HiFLOR is
a high-resolution coupled global climatemodel that can recover many
aspects of the highest TC intensification rates observed in nature and
capture the connection between low-frequency climate oscillations
and TC behavior11,15,16. The results suggested a detectable increase in
Atlantic intensification rates with a positive contribution from
anthropogenic forcing but required a longer time series to detect a
robust trend at the global scale.

Here, we expand on the results of Bhatia et al.6 by examining 24-h
intensification rates during the 36-year period between 1982–2017 and
comparing the intensification trends to those in HiFLOR. We then
utilize reanalysis datasets to examine trends in the observed storm-
ambient and tropical-mean environments during the same period.
Finally, the observed trends in the tropical-mean environments are
compared to those in CoupledModel Intercomparison Project phase 6
(CMIP617) simulations.

Results
Comparing observational and model intensification trends
Following the work of Bhatia et al.6, we calculate 24-h intensification
trends using two observational datasets, the Advanced Dvorak
Technique-Hurricane Satellite-B1 (ADT-HURSAT18) and International
Best Track Archive for Climate Stewardship (IBTrACS19). Overall, ADT-
HURSAT is considered a more reliable dataset for trend analysis
because it is derived from a temporally and spatially homogenized
record of TC intensity18. IBTrACS relies on the best-available observing
practices from different operational agencies across the world, and
thus provides more accurate intensity measurements for individual
TCs. A detailed discussion of the strengths and weaknesses of each
dataset is presented in Bhatia et al.6.

Using IBTrACS and the updated ADT-HURSAT dataset20, we apply
intensity, longevity, and latitude thresholds (see Methods) to evaluate
the intensification trends of TCs over the ocean between 1982–2017. RI
ratio, defined as the number of 24-h intensity changes greater than 30
knots divided by all 24-h intensity changes, is selected as a normalized
metric to capture how the probability of TC RI has evolved with time.
Figure 1 shows annual RI ratio between 1982–2017 for the Atlantic, East
Pacific, West Pacific, Australian, and South Pacific basins as well as
global data. The Indian and Central Pacific basins are respectively
excluded from the analysis because of well-documented gaps in
satellite coverage in the early portion of the times series18 and infre-
quent TCs limiting the sample size. The exclusion of these basins from
the analysis does not significantly change any of our conclusions.

Throughout all basins, there are significant (rejecting the null
hypothesis of no trend at the p =0.05 significance level) upward trends
in RI ratio defined using IBTrACS data (Fig. 1), which agrees well with
recent studies6,10. Thewest Pacific, Atlantic, andAustralianbasins show
significant upward trends in ADT-HURSAT and IBTrACS data and are
largely responsible for the significant upward global trend in both
observational datasets. The agreement between the two observational
datasets and similar results from recent studies10,20 suggests the trends
in these basins are robust. The change in the proportion of intensity
changes undergoing RI in these basins is part of an overall broadening
of the intensity distribution and not just an increase in intensity
changes greater than 30 knots. Supplementary Fig. 1 is formulated21

using a similarmethodology to Fig. 2 inBhatia et al.6 and shows that the
majority of the upper quantiles are increasing and lower quantiles are
decreasing, reflecting less storms maintaining a steady intensity.

In some basins, there are noteworthy discrepancies in the trends
of RI ratio between the two observational datasets. In particular, the
east Pacific and south Pacific show different signed RI ratio slopes
between ADT-HURSAT and IBTrACS, with ADT-HURSAT showing
negative slopes and IBTrACS showing positive slopes. Even with more

temporally-consistent observational data integrated into IBTrACS
intensity estimation during the satellite era, trends calculated using
IBTrACS data are likely overstated. For the remainder of the manu-
script, we focus on the west Pacific, Atlantic, Australian, and global
datasets because of the agreement in the sign of the trends in the
observational datasets for these basins.

To assess the extent to which these trends in RI ratio can be
explained by natural, internal climate variability, we follow a similar
methodology to Bhatia et al.6. Internal natural variability in TC inten-
sification is estimated based on the internal variability from simula-
tions of preindustrial conditions modeled using HiFLOR. Specifically,
we use HiFLOR simulations with anthropogenic forcing (e.g., CO2,
aerosols, and ozone) and natural forcing (e.g., volcanic aerosol loading
and solar insolation) held fixed at “pre-industrial” levels representative
of the year 1860 (1860CTL; See Methods). To adjust for systematic
errors in the HiFLOR distribution of intensification and ensure realistic
slopes in RI ratio, quantile delta mapping (QDM)22 is applied to each
basin6. Overlapping 36-year RI ratio slopes in the bias-corrected
1860CTL are then compared to the observed ADT-HURSAT and
IBTrACS RI ratio slopes between 1982 and 2017.

Figure 2 contains raincloud23 plots that show the distribution of RI
ratio slopes for the QDM-corrected 1860CTL. The observed slopes for
IBTrACS and ADT-HURSAT during 1982–2017 are overlaid. In all the
analyzedbasins, the slope of the annual RI ratios for IBTrACS are above
the 99th percentile of the slopes of the bias-corrected HiFLOR
1860CTL. The ADT-HURSAT slope is also significantly higher than, at
the 95th percentile or above, the HiFLOR slopes for the Atlantic and
West Pacific (Australian basin is at the 94th percentile) basins as well as
globally. The emergence of global and basin-specific trends in ADT-
HURSAT that are extremely rare or outside the range of internal cli-
mate variability simulated by HiFLOR increases the likelihood that the
recent uptick in TC RI is an anthropogenically-forced trend. Further-
more, Fig. 6 of Bhatia et al.6 supported this conclusion when they
compared RI ratio in 1860CTL and the HiFLOR simulations with
stronger anthropogenic forcing (1940CTL, 1990CTL, and 2015CTL).
Using this figure, they showed that anthropogenic forcing significantly
increases extreme TC intensification rates in the HiFLOR model.

HiFLORʼs realistic simulation of TCs and their connection to cli-
mate variability instills some confidence in the significance of these
results11,15,16. However, it is important to emphasize that these results
rely on one bias-corrected climate model to estimate internal climate
variability, and the model-dependence of the results should be
exploredwhenother coupled climatemodels can simulateRI statistics.
Also, the horizontal atmospheric resolution (0.25° × 0.25°) in the
model suggests that some of the small-scale processes associated with
TCRI are not fully resolved24,25. A concurrent anthropogenically-forced
increase in the conduciveness of storm environments would suggest
that it is very likely that anthropogenic forcing contributed to the
observed increase in RI ratio.

Observed trends in the environmental favorability for tropical
cyclone intensification
Recent studies have suggested that rising sea surface temperatures
and potential intensities couldprovide a physical explanation formore
intenseTCs andextreme intensification events7,10,18,26,27. However, there
is not yet analysis on whether changes in storm tracks and variability
on weather time scales could potentially prevent TCs from experien-
cing these environments that are more conducive for RI28,29. In this
section, we examine trends in the local environments surrounding TCs
to determine whether intensification trends can be explained by
storms experiencing more favorable environmental conditions.

Four environmental variables, documented as vital for TC RI1, are
calculated using the European Centre for Medium-Range Weather
Forecasts (ECMWF) fifth-generation global atmospheric reanalysis
(ERA530) and Modern-Era Retrospective Analysis for Research and
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Fig. 1 | Rapid intensification ratio trends. Observed trends in the rapid intensi-
fication (RI) ratio of ADT-HURSAT (blue) and IBTrACS (red) over the 36-year period
1982–2017 using (a) Global and (b) South Pacific (c) West Pacific (d) Atlantic (e)
Australian (f) and East Pacificdata. RI ratio is defined as the number of 24-h intensity
changes above 30 knots divided by the total number of 24-h intensity changes. The
36-year period is divided into three terciles (1982–1993, 1994–2005, 2006–2017)

and plotted as circles. The slopes of the trend lines and their 90 percent confidence
intervals are respectively demarcated as solid lines and shading. The slopes and
confidence intervals are calculated using 1000 randomly perturbed samples of the
observational data. Shading represents the 5th and 95th percentiles of the 1000
regressions with these randomly perturbed observational data (Methods).
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Applications, version 2 (MERRA-231): vertically-averaged relative
humidity (RH; at 850, 700 and 600 hPa), vertical wind shear (SHR;
between 850 and 200 hPa), sea-surface temperature (SST), and
potential intensity (PI32). PI and SST are related metrics, but PI is
uniquely impacted by the tropospheric profile of temperature and
moisture. Calculated using the large-scale environment, PI represents
an upper limit of TC intensity33 that is derived from the thermo-
dynamic disequilibrium between the surface of the ocean and the
upper atmosphere34. When PI increases, the theoretical intensity range
for a storm expands and greater 24-h intensity changes are possible.
For these reasons and because of the ongoing research on the evolu-
tion of the relationship of PI and SST under climate change, we include
both environmental variables in our analysis analysis35. The difference
between PI and current TC intensity is also analyzed because it has a
slightly higher correlation with intensification than solely PI36.

To isolate the storm-ambient environment without the vortex
signature, we first track storms in both reanalyses37,38, spectrally filter
the relevant environmental field, match environmental values to
IBTrACS intensity fixes, and then compute spatial averages (further
detail in Methods section). Before analyzing trends in the storm-local
environments, it is important to demonstrate the viability of the
selected ERA5 environmental variables at diagnosing situations
favorable for TC RI. We primarily focus on ERA5 results because of its
superior resolution and data-assimilation techniques30. Similar to
Kaplan and DeMaria1 Figs. 8 and 9, we compare the probability of RI
above and below specific environmental thresholds. However, rather
than taking themean of the initial conditions for RI and non-RI cases to

define the critical threshold for an environmental parameter, we solve
the logit equation to attain the critical threshold that corresponds to
the probability of RI in each basin. For example, the critical wind shear
threshold in the Atlantic basin is 9.2m/s which yields the mean prob-
ability between 1982–2017, 5.3%, of a 24-h wind speed exceeding 30
knots. Supplementary Table 1 includes the critical thresholds for the
plotted basins and environmental parameters.

For each basin and parameter, Fig. 3a shows the RI ratio for cases
satisfying the defined environmental thresholds as well as the RI ratio
for cases where the threshold is not met. IBTrACS is exclusively used
for the intensificationdata in thisfigure becauseweare not conducting
trend analysis and therefore prioritize more accurate TC intensity
measurements over the temporal consistency of observing cap-
abilities. In all the basins, when the variables exceed (or in the case of
shear, fall below) the defined thresholds, there is a significantly higher
probability of RI compared to when the threshold is not met.

Figure 3b shows how the probability of RI changes asmore critical
storm-environment thresholds are exceeded. In every basin, the
probability of TC environments satisfying multiple thresholds is low
but when they occur, RI ismore likely. For our given storm sample and
intensity criteria (Methods), SupplementaryTable 2 lists the number of
times that the storm-local environments satisfied the different
amounts of thresholds and how often RI occurred. Figure 3 reflects
that TC intensity in the IBTrACS dataset evolves in a physically con-
sistent way with the defined ERA5 environmental parameters and
demonstrates that TC intensification is highly sensitive to changes in
RH, SST, PI, and SHR. The documented relationship between TC

Fig. 2 | Observed trends in rapid intensification ratio vs. HiFLOR natural
variability. Raincloud plots represent the distribution of rapid intensification (RI)
ratio slopes in the Quantile Delta Mapping-corrected 1860 HiFLOR control simu-
lation using a half-violin plot (top) and raw jittered data and box-and-whisker plots
(bottom) for four basins (a) Global (b) Atlantic (c) Australian (d) West Pacific. Each
of the HiFLOR slopes is calculated by applying least squares regression analysis to

annual RI ratio values in 1,414 (number of available years reduced by 36) over-
lapping 36-year periods. The center line of the box represents the median and is
bounded by the 25th and 75th percentiles of the data, and the whiskers bracket
approximately95%of thedata. IBTrACS andADT-HURSAT trends in annualmeanRI
ratio between 1982–2017 are respectively represented in bottom (top) subplot by a
blue diamond (blue dotted line) and red circle (red dotted line).
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intensification and the storm environment is supported by theory and
numerous modeling experiments39–43. Although internal dynamical
processes of TCs are also important for RI44, they are challenging to
quantify and predict even with high-resolution numerical weather
prediction models3. Additionally, it is not currently possible to assess
how the internal dynamical processes will change with global warming
using global climate models while large-scale environmental condi-
tions arewell-observed and captured by global climatemodels. Hence,
we aim to develop understanding on how the environmental condi-
tions surrounding TCs, rather than TCs’mesoscale processes, respond
to a changing climate.

To determine if these unique synoptic situations conducive to RI
are becoming more probable, we examine the annual proportion of
cases meeting 3 or 4 thresholds and 0 or 1 threshold. Figure 4 shows
how these environmental proxies for RI favorability evolve between
1982–2017 in the Atlantic,West Pacific, Australian, and global datasets.
Excluding the Australian basin, there is a significant (p <0.05 using the

Wald Test45) increase in the proportion offixes where 3 or 4 thresholds
aremet and a significant decrease in the proportion of fixes where0 or
1 threshold is met. The Atlantic basin displays the largest changes in
environmental favorability for RI during the 36-year period with more
than a doubling in the annual proportion of cases satisfying 3 or 4
thresholds and a greater than 50% reduction in the annual proportion
satisfying 0 or 1 threshold.

Supplementary Figs. 2 and 3 provide additional evidence of local
TC environments becoming more favorable. In Supplementary Fig. 2,
the 75th and 95th percentiles of global RH, SST, PI, and SHR are plotted
for 1982–2017. Both PI and SST show the most robust changes during
the 36-year period which highlights the improved thermodynamic
situations surrounding storms. Supplementary Fig. 3 further explores
the time evolution of the local thermodynamic environments around
storms in the Australian, Atlantic, West Pacific, and global datasets. In
Supplementary Fig. 3, the probability of RI is contoured based on a
logistic regression with two predictors, SST and PI, and the mean
values of SST and PI for 1982–1993, 1994–2005, and 2006–2017 are
plotted as red plus signs. For all the plotted basins (besides the last two
terciles in the Australian basin), the later terciles progressively shift to
higher SSTs and PIs and thus move across the contours to environ-
ments that are more favorable to RI. Supplementary Figs. 2 and 3
support the trends captured in Fig. 4 and explainwhymore storm-local
environments are satisfying the key thresholds later in the time series.
Additionally, the trends in Fig. 1 and Supplementary Fig. 1 align well
with theory that the distribution of TC intensity and intensification
should shift to higher values with more conducive thermodynamic
environments20,46.

Anthropogenic influence and tropical-mean environments
Thus far, our analysis of the trends in TC environments have focused
on storm-local, 6-hourly data. This granular analysis is crucial to better
understanding the changes in the most relevant temporal and spatial
scales for the intensification of individual storms. However, most cli-
mate models cannot resolve the temporal and spatial scales necessary
to captureTCRIor the influence of storm-local environments onTCRI.
In this section, we take spatial averages of synoptic variables in tropical
ocean regions (“tropical-mean”) as a proxy for TC RI in global climate
models and check whether the trends in storm-local environments
manifest in the tropical-mean values.

Figure 5 shows the annual trend in tropical-mean (defined in
Methods) RH, SST, PI, and SHR in theMERRA-2 and ERA5 datasets. The
plotted environmental fields represent “peak TC-season” averages in
both hemispheres: August-September-October in the northern hemi-
sphere and February-March-April in the southern hemisphere. The
slopes of the different environmental variables closely resemble those
calculated with storm-local environmental data. Significant upward
trends (p <0.05 using the Wald Test) are observed for PI and SST in
both hemispheres and reanalyses, while shear exhibits a small but
insignificant downward trend in both hemispheres and reanalyses. RH
has opposite-signed trends depending on the reanalysis dataset
(positive in ERA5 and negative in MERRA-2) and there is a large dis-
agreement in the annual-mean values in the two reanalyses: a potential
consequence of their differing data-assimilation techniques.

To assess the influence of anthropogenic forcing (including
aerosols and greenhouse gasses) on tropical-mean environments, we
comparemultipleCMIP6 simulations usingdifferent forcing estimates.
The all-forcing simulations (AllForc) include both anthropogenic for-
cing as well as natural forcing from volcanoes and solar variability. The
greenhouse gas only forcing (GHGforc) and natural only forcing
(Natforc)CMIP6 simulations use subsets of theAllForc simulations.We
calculate the linear trend in peak-season SST, PI, SHR, and RH over the
period 1982–2014 (2015–2017 is not available) for each ensemble
member to create two types of plots in Fig. 6. Supplementary Table 3
contains the list of available CMIP6 simulations for each variable, and

Fig. 3 | Storm environment and rapid intensification probability. a Histograms
for six basins (Atlantic [AL], East Pacific [EP], West Pacific [WP], South Pacific [SP],
Australian [AU], and Global [GL]) and four ERA5 environmental variables (Shear,
Relative Humidity, Sea Surface Temperature, Potential Intensity-Current Intensity)
showing ratios of rapid intensification (RI) cases satisfying the critical environ-
mental thresholds divided by entire samples satisfying thresholds (blue histo-
grams) and the analogous ratios for cases where the critical thresholds are not met
(red histograms). Critical thresholds are calculated by solving a logit equation for
the environmental variable value that yields the average basin-wide probability of
RI. b The probability of RI for six basins dependent on the number of critical
thresholds (as defined in text) met. The black dashed line indicates the global
probability of RI for all cases.
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the detailed methodology to prepare this figure is summarized in our
Methods section. Figure 6a, c, e, g respectively show the probability
density function (pdf) of the 1982–2014 slopes of all the ensemble
members for SST, PI, RH, and SHR. The observed MERRA-2 and ERA5
trends are overlaid on the plots for comparison. Figure 6b, d, f, h
respectively show the annual mean values of SST, PI, RH, SHR for the
equally-weighted ensembles. The equally-weighted ensembles are
constructed by normalizing each ensemble member by the total
number of members for a modeling center and helps mitigate the
outsized influence of models (e.g., CanESM5) with significantly more
ensemble members.

Pairwise t-tests and Kolmogorov–Smirnov tests47 are applied to
compare the slope distributions in Fig. 6a, c, e, g. The title of each pair
of plots for an environmental variable denotes the p values of these
statistical tests comparing the CMIP6 ensemble slopes. For all vari-
ables, the tests reveal the mean of the AllForc and NatForc slopes are
significantly different fromone another, and the two samples are likely
drawn from different probability distributions. Additionally, a stu-
dent’s t-test48 is used to compare the slopes of the equally-weighted
AllForc and NatForc ensembles for SST and PI in Fig. 6b, d, f, h. The
AllForc equally-weighted ensemble mean slopes for SST and PI are
significantly different from zero and those produced by NatForc.

Statistical tests yield similar results for RH but the equally-weighted
ensemble mean trend in SHR for the historical simulations is not sig-
nificantly different from zero or from the NatForc simulation.

The 1982–2014 trends inMERRA-2 and ERA5 SST are located near
the middle of the CMIP6 AllForc pdf but are outside the NatForc pdf.
These results indicate a detectable anthropogenic influence on SST in
these regions. In the case of PI, ERA5 and MERRA-2 trends are again
outside of the pdf of the natural forcing slopes but are also outside of
the pdf of the AllForc ensemble. Themagnitude of the observed trend
(~1m/s/year) in the reanalyses (stars in panel c) is more than 3 times
larger than the mean slope (~0.3m/s/year) of the equally-weighted
AllForc ensemble (gray line in panel d). This result constitutes a
detectable but largely unexplained trend in the MERRA-2 and ERA5 PI
time series. However, the MERRA-2 and ERA5 trends are in the same
direction as the anthropogenically forced signal (inferred by compar-
ing the AllForc and NatForc pdfs), suggesting that anthropogenic
forcing is likely contributing to the observed changes in PI.

Further research is required to better understand the source of
the discrepancy between the PI trends in the AllForc ensemble and the
reanalyses, but initial analysis suggests the discrepancy in the vertical
structure of temperature changes (ERA5/MERRA-2 vs. CMIP6) is
important for the divergent tropical PI trend behavior. A recent study

Fig. 4 | Observed trends in the favorability of storm environments. Observed
trends in the annual probability of satisfying 3 or 4 (black) and 0 or 1 (blue) critical
ERA5 environmental thresholds over the 36-year period 1982–2017 using (a) Global
and (b) Atlantic (c) Australian (d) West Pacific data. Annual values are denoted by

dots, and the slope derived from least squares regression of annual values are
plotted as solid lines. The slope of both lines and their 95% confidence interval
(Wald Test) is shown in the top right corner of each subplot.
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by Keil et al.49 found that climate models on average overestimate the
amount of recent (1979–2014) upper-troposphericwarming for a given
lower-tropospheric warming. They suggested that the unrealistically
large upper tropospheric warming in CMIP6models was caused partly
by imperfect convective parametrizations spuriously increasing latent
heat release in the upper troposphere. Supplementary Fig. 4 displays
trends in the tropical vertical temperature profiles in CMIP6,MERRA-2,
and ERA5 between 1982–2014. The discrepancy between the trends in
the upper troposphere appears to support Keil et al.49 and partially
explain the differing trends in CMIP6 and the reanalysis data. This
finding is particularly meaningful and demands further research
because it suggests that future increases of TC intensities and RI could
be underestimated by current climate model-based projections that
contain this bias.

Discussion
This study leverages new datasets, climate model output, and
analysis techniques to explicitly examine the question of whether
climate change has contributed to the observed changes in TC
intensification and environments surrounding TCs. Over the 36-
year period 1982–2017, we observed a robust global increase in the
proportion of RI events in a spatially and temporally homogeneous
dataset (ADT-HURSAT) which was significantly (p < 0.05) higher
than the trends in HiFLOR. The emergence of a significant trend in
any TC metric at the global scale is noteworthy because it is
unclear whether natural climate variability can modulate TC
behavior at this spatial scale. The increase in the probability of RI is
supported by storm-local and tropical-mean environments
becoming more favorable to intensification.

Higher SSTs in recent years are primarily caused by anthro-
pogenic drivers, and anthropogenic forcing has also significantly
contributed to recent increases in tropical-mean PI. These environ-
mental changes manifest in both coarse and granular temporal and
spatial scales which suggests that track variability (such as a shift to
more poleward locations50) is unlikely to prevent additional increases
in TC intensification with further anthropogenic warming. Given the
high confidence in growing atmospheric greenhouse gas concentra-
tions over the next two decades and implications for continued SST
warming, bolstering the development of high-resolution models cap-
able of better resolving mesoscale processes and the environments
surrounding TCs should be a societal priority. Additionally, our con-
clusions indicate that anthropogenically-forced climate change has
already contributed to the observed, detectable increase in the pro-
portion of rapidly intensifying hurricanes and highlight the immediate
need to improve coastal resilience to prepare against these dangerous
events.

Methods
Tropical cyclone observations
We used the International Best Track Archive for Climate Stew-
ardship (IBTrACS19), v04r00, and the Advance Dvorak Technique-
Hurricane Satellite-B1 (ADT-HURSAT18,20) for the period
1982–2017. The ADT-HURSAT data record was recently expanded
by 8 years to span the 39-year period between 1979–2017. We omit
the first three years of the record where limited geostationary data
results in missing storms and focus on the 36-year period between
1982–2017. For our IBTrACS analysis, we only consider best-track
data from the National Hurricane Center for the Atlantic and east

Fig. 5 | Trends in the favorability of tropical-mean environments. Observed
trends in tropical-mean relative humidity (RH), vertical wind shear (SHR), sea sur-
face temperature (SST), and potential intensity (PI Vmax) (top to bottom) in
MERRA-2 (red) and ERA5 (blue) between 1982–2017. Dashed lines are used to

connect annual southern hemisphere tropical-mean values and solid lines are used
to connect annual northern hemisphere tropical-mean values. The slopes of each
reanalysis dataset and hemisphere combination are included in the legends of each
subplot, and the text is in bold if the slope is significant (Wald test, p <0.05).
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Pacific and the Joint TyphoonWarning Center for the remainder of
the globe19. One of the benefits of only using data from these U.S.
agencies is they follow the same definition of maximum winds: the
highest 1-min average at 10 m height over a smooth surface51. Best-
track data start as operational estimates of the intensity and track
of a TC and are refined at the end of a TC season with a combina-
tion of in situ (e.g., dropsondes, scatterometers, buoys), radar, and
satellite measurements. Best-track intensity and position esti-
mates are available every six hours at the four synoptic times

(0000, 0600, 1200, and 1800 UTC) and are recorded to the
nearest 5 knots (1 kt = 0.5144 m s−1) and 0.1° latitude/longitude52.

The creation of ADT-HURSAT consists of three main steps.
Geostationary satellite imagery is first analyzed from International
Satellite Cloud Climatology Project (ISCCP)-B1 data53–55. Then, the data
is centered on IBTrACS TCs and subsampled to be both spatially and
temporally homogeneous. Finally, a simplified version of the advanced
Dvorak technique56 is used to evaluate the data and determine a
maximumTCwind speed. ADT-HURSATdata areproducedevery three

Fig. 6 | Comparing tropical-mean trends in CMIP6 simulations. a–h Observed
trends between 1982−2014 in tropical-mean sea surface temperature (SST),
potential intensity (PI), relative humidity (RH), and vertical wind shear (SHR) for
CMIP6 historical (gray), hist-nat (blue), and hist-GHG (orange) simulations.
a, c, e, and g show probability distribution functions (pdfs) of the tropical-mean
slopes of all the available ensemble members for each simulation type. The pdf
curves are calculated using a maximum likelihood estimation of the normal dis-
tributionparameters. The slopes of theMERRA-2andERA5 tropical-mean values for

all four environmental variables are calculated between 1982–2014 and illustrated
as black stars on the subplots. b, d, f, and h show the annual values of the tropical-
mean environmental variables derived from the equally-weighted ensemble mean
of historical, hist-nat, and hist-GHG simulations. The title of eachpair of plots for an
environmental variable denotes the p values of a pairwise t test and
Kolmogorov–Smirnov test comparing historical and hist-nat (hist-GHG) ensemble
slopes in a, c, e, and g.
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hours based on satellite data that has been uniformly subsampled to a
horizontal resolution of 8 km, and wind speeds are recorded to the
nearest tenth of a Dvorak “T-number” (depending on the current
intensity, between 1–3 knots).

Defining storm-local and tropical-mean environments
Data for the analysis of cyclone environments were taken from ERA530

andMERRA231,57; reanalyses. Reanalyses combine a forecastmodelwith
continuous assimilation of observational data to construct a global
representation of historical atmospheric variability. The native spec-
tral resolution of ERA5 is T639 (nominally 31 km) and the native reso-
lution of MERRA-2 is 0.5° × 0.625° (nominally 50km). We focus on
these reanalyses because they capture realisticmoisture, temperature,
and wind values in the lower atmosphere58,59. For storm-local envir-
onment calculations, we identified and tracked tropical cyclones in
ERA5 and MERRA-2 objectively using the Lagrangian feature-tracking
algorithm—TRACK—of Hodges37. This methodology was documented
in greater detail by Hodges et al.60.

Vertically averaged relative humidity (at 850, 700 and 600hPa),
vertical wind shear (computed as the square-root of the sum of the
squared differences in the zonal and meridional winds between 850
and 200 hPa), and sea-surface temperature were spectrally filtered to
T11 resolution to remove cyclonic circulation features and retain only
the large-scale, background environmental fields. Sensitivity analysis
of ERA5, the highest-resolution reanalysis available, shows that 95% of
the T639-resolution cyclonic circulation is removed at a T11 truncation
(Supplementary Fig. 5). Along-track sampling of mean values from the
spectrally filtered fields within a 5° storm-centered radius (geodesic)
was performed. To compute potential intensity along cyclone tracks,
reanalysis data (sea-surface temperature, mean sea-level pressure, air
temperature, and specific humidity) were regridded first to 1° resolu-
tion. Regridding from the native reanalysis resolutions to 1° has a
negligible effect on potential intensity and no spectral filtering was
performed. Potential intensity was computed by taking input fields
from the grid cell nearest to the storm center at each timestep, fol-
lowing Bister and Emanuel61 and using published code62,63 (Gilford
et al.). Vertical soundings of temperature and specific humidity were
constructed from reanalysis data on 14 isobaric levels (1000, 925, 850,
700, 600, 500, 400, 300, 250, 200, 150, 100, 70, and 50 hPa). By
default, the code allows reversible ascent and dissipative heating; the
ratio of the exchange coefficients of enthalpy and momentum flux is
0.9; and output velocity is scaled by0.8 to reflect surface drag. Further
discussion of these constants is given in Emanuel33 and Gilford
et al.62,63.

The tropical-mean of these fields are also calculated but with no
spectral filtering. Annual averages are comprised of peak-TC-season
means in each hemisphere, August-October (ASO) in the Northern
Hemisphere and February-April (FMA) in the Southern Hemisphere
and then averaged between the two Hemispheres (area-weighted).
June-October (JJASO) in the northern hemisphere and December-
February (DJFMA) were also tested but yielded comparable results. In
the northern hemisphere, the tropical-mean is an area-average of
environmental values over the ocean between 10°−30°N and 40°E-
20°W. In the southern hemisphere, the bounds for averaging are
10°−30°S and 30°E-150°W.

HiFLOR experiments
HiFLOR control simulations introduced in Murakami et al.64 and
Bhatia et al.6 were used here to represent natural (unforced) cli-
mate variability and provide the framework for exploring
anthropogenic effects on TC intensification. We focused on the
control simulation that used anthropogenic forcing fixed at 1860
(1860CTL) levels because it has the longest simulation length:
1500 years. The first 50 years of the simulation were disregarded

to mitigate effects of model drift. The approach developed by
Harris et al.65 is used to track TCs in HiFLOR and is applied using
the parameter values of Zhang et al.16 and Murakami et al.15. The
warm core criteria discussed in Murakami et al.15 is applied to the
HiFLOR data before analysis.

CMIP6 experiments
We examine linear trends of the four tropical-mean environmental
fields from all available CMIP6 simulations over the period 1982–2014.
The fields are defined in an identical way to the observed fields in
MERRA-2 and ERA5.Models and the number of ensemblemembers for
eachmodel that contain the relevant environmental variables are listed
in Supplementary Table 3.

Storm criteria
For consistency, intensity change values in HiFLOR, and the observa-
tional datasets are rounded to the nearest five knots.We only consider
TCs that are active for at least 72 h and exceedwind speeds of 34 knots
for at least 36 h. We restrict our analysis sample to only consider cases
where the TC center is located over the ocean, the starting and ending
TCposition are below40degrees of latitude, and theTC intensity stays
above 34 knots. We do not examine TC intensity changes above 40°
latitude because storms typically complete extratropical transition66

and achieve their lifetime maximum intensity equatorward of this
latitude50. Thewarmcorecriteria discussed inMurakami et al.15 are also
applied to the HiFLOR data before analysis. For the analysis involving
storm-local environments, all storm fixes within 0.5 degrees of land in
any direction are removed to reduce the number of spurious PI
readings.

Uncertainty quantification
For Fig. 1 and Supplementary Fig. 1, we use Monte Carlo techniques to
create random noise before analyzing the discretized data. Random
noise prevents multiple data points from having the same value and
provides an estimate of the typical error associatedwithmeasuring TC
intensity. 1000 subsamples were produced by adding random noise
from a uniform distribution on the interval ± 2×

ffiffiffiffiffiffi

50
p

knots to each
intensity change value. Themagnitude of this random noise is derived
by adding 5 knots of error in quadrature (propagation of errors
stemming from the intensity change calculation), which is a con-
servative estimate for the typical error associated with each TC
intensity observation. Figure 1 and Supplementary Fig. 1 involved the
calculation of the 5th and 95th percentile in each of the 1000 sub-
samples for each year. 1000 slopes of each percentile or quantile were
calculated, and the mean of the slopes was considered the best esti-
mate of the 1982–2017 slope of the percentile or quantile. The 5th and
95th percentiles of the 1000 slopes were shaded as the uncertainty
bounds.

Data availability
Besides the HiFLOR data, all the data used for this study are publicly
available without access codes. CMIP6 model output is available at
https://esgf-node.llnl.gov/projects/cmip6/. The ERA5 data can be
downloaded here: https://cds.climate.copernicus.eu/#!/search?text=
ERA5&type=dataset. The IBTrACS data can be downloaded here:
https://www.ncei.noaa.gov/products/international-best-track-archive.
The ADT-HURSAT data can also be downloaded20.

Code availability
The code that supports the findings of this study is available from the
corresponding author on request. The code used for tracking TCs in
ERA5 and MERRA-2 are available here: https://gitlab.act.reading.ac.uk/
track/track. The source code of the HiFLOR model can be found at
https://www.gfdl.noaa.gov/cm2-5-and-flor.
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