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A B S T R A C T   

Effective and rapid triaging from primary care into secondary care plays a pivotal role in providing patients with 
timely treatment and managing increasing demands for healthcare resources. Existing triaging methods from 
primary care to secondary care are labor-intensive processes that involve manually reviewing referral data from 
multiple sources and can cause long referral to treatment time. There has been no research using machine 
learning methods that automatically analyzes heterogeneous data including referral letters to recognize regu
larities to support the primary to secondary care triage. In this paper, we propose a heterogeneous data-driven 
hybrid machine learning model including Natural Language Processing (NLP) to improve hospital triage effi
ciency at the point of triage. The proposed model achieved a precision of 0.83, recall of 0.82, F1-Score of 0.83, 
accuracy of 0.82, AUC of 0.90 in identifying patients with non-inflammatory conditions (NIC) and inflammatory 
arthritis (IA) at the point of triage with explainable risk stratifications. Our model is piloted in a real-world trial 
in a large secondary care hospital in the UK to compare referral accuracy and time saved between our model and 
clinicians, and evaluate its acceptability by users. Our model achieved precision and recall of 0.83 and 0.81, 
compared with the precision and recall of 0.80 and 0.78 by clinicians. The research also shows that our model 
enabled decision support can save clinicians 8 h per week in assessing the referral assessment. This paper is the 
first study to streamline hospital triage from primary care to secondary care using machine learning.   

1. Introduction 

Rapid triage and referral assessment from primary to secondary care 
is essential for timely medical intervention to prevent death and 
disability [1]. However current manual referral assessment at secondary 
care hospitals is a time-consuming process and referrals from GP for 
some diseases are mostly inaccurate due to vague presenting symptoms. 
For example, early inflammatory arthritis (EIA) can be difficult to di
agnose and can present with non-specific symptoms [2]. In the UK, 
many patients referred by General Practice (GP) ultimately did not have 
a diagnosis of EIA, with only 40% of referrals proved to be EIA cases 
entering EIA pathways at secondary hospitals in the period of 
2019–2020 [3]. Inaccurate referrals can lead to longer times for elective 
care patients to access the right clinics. To improve the referral triage 
quality, every GP referral letter and clinical information need to be read 
and assessed by a specialist clinician in the secondary care hospital to 
determine the appropriate care pathway as shown in Fig. 1. This is a 

compulsory requirement for secondary hospitals in the UK before 
booking any appointment with patients in elective care [4] because 
evidence shows incorporating clinicians’ assessments and feedback from 
secondary care hospitals will improve referral quality [5]. However, 
referral assessment is time-consuming for clinicians and it has to be 
fitted in the time that could have been better used for patient care and 
other clinical activities at the hospital. There have been delays between 
a hospital rheumatology department receiving a referral from GP for 
suspected EIA and the date of clinic assessment. The National Early In
flammatory Arthritis Audit (NEIAA) requires referral triage assessment 
by secondary care rheumatology department within three weeks of 
referral but fewer than half of hospitals achieve target times [1]. 

To improve the triage referral assessment, there are solutions such as 
referral guidelines, education interventions (e.g., feedback of referrals 
from secondary care clinicians to GP) and organizational interventions 
(e.g., the establishment of the referral management center), and finan
cial incentives [5]. Those approaches are effective in improving referrals 
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to some extent however the cost-effectiveness remains unclear and can 
lead to higher costs according to the evidence [5,6]. Streamlining the 
referral assessment using machine learning becomes a key attention 
point given its potential to provide rapid assessment and decision sup
port automatically without significant organizational cost. Machine 
learning-based decision support systems that identify patients’ diseases 
based on healthcare data at the point of triaging have proven cost- 
effective and showed high accuracy in disease early diagnosis [7,8]. 
Therefore, our motivation is to utilize machine learning to provide a 
more cost-effective, faster, and more accurate referral assessment 
method for elective care. However real-world healthcare data at the 
point of triaging in elective care are sometimes incomplete and always 
heterogeneous [9] with different modalities, including unstructured 
data that is GP referral letters of clinical information summary and 
structured blood test results data. Extracting information from un
structured GP letters requires extensive feature engineering but state-of- 
the-art natural language processing (NLP) methods have the potential to 
automatically extract context information. To our best knowledge, there 
is no prior research using unstructured data contained in the GP letters 
for referral triage assessment, though GP referral letters often contain 
useful information and would be very helpful to be incorporated into 
machine learning models for triage efficiency improvement. Further
more, the research of utilizing deep learning and natural language 
processing to process real-world heterogeneous data for referral triage 
from primary to secondary care is still a blank research field. In this 
research, we develop a novel heterogeneous data-driven hybrid machine 
learning approach to improve triaging from primary care to secondary 
care with the further contributions: 

• We develop a hybrid machine learning method to address hetero
geneity and incompleteness challenges in a real-world referral tri
aging context. We firstly integrated GP referral letters into modeling 
and developed an ensemble decision-making methodology for hos
pital referral triage. Specifically, our approach can cover all referral 
data scenarios by developing two models separately for patients 
either having GP referral letters or blood test data, and a probabilistic 
fusion method for patients having both heterogeneous data. 

• We contribute to analytical methods of GP referral letters by devel
oping a Bidirectional Encoder Representations from Transformers 
(BERT)-based dynamical feature fusion model to identify patients 
with inflammatory arthritis and patients with non-inflammatory 
conditions using GP referral letters.  

• We develop local prediction explanation method into our triaging 
model to provide explainable referral triage recommendations, 
which will help clinicians to understand the underlying logic and 
ensure that the model can be checked for the reliability of model 
recommendations. This will also speed up the triaging process by 
highlighting the key information for clinicians. 

2. Related works 

We review the state-of-the-art hospital triage methods through the 
lens of traditional expert-based methods and data-driven methods 
respectively. A spectrum of methods from manual scoring methods to 
machine learning-based methods have been examined to identify 
research gaps in improving the referral triaging process and the con
tributions of our research in addressing current gaps. 

2.1. Expert-based hospital triage research 

Expert-based triage has a long history [10] and still plays a critical 
role in the hospital to accurately prioritize the patients’ health care 
demands or triage patients when they arrive at the hospital [11,12]. This 
clinical assessment process is often conducted manually by hospital 
workers such as nursing staff [11], and sometimes performed online or 
remotely [13,14]. 

A fundamental step of this traditional triage method is to build the 
assessment scales based on the experts’ experience. The majority of 
current expert-based triage methods are developed and used in the 
emergency department to identify urgency levels, such as Ipswich Triage 
Scale (ITS) [15], Australasian Triage Scale (ATS) [16], Manchester 
Triage Scale (MTS) [17], Canadian Triage and Acuity Scale (CTAS) [18], 
Emergency Severity Index (ESI) [19]. Furthermore, some early warning 
tools are used in the emergency department to identify patient deteri
oration in emergency care, such as Early Warning Scores (EWS) [20], 
Modified Early Warning Score (MEWS) [21], and National Early 
Warning Score (NEWS) [22]. However, the use of the early warning 
system such as the MEWS score has been controversial for its ability to 
escalate patients and cannot be used as the only source for ED triage 
referral in practice [23]. 

Existing triage scores designed for emergency care are not fit for 
purpose of the elective care which is our research focus. Elective care is 
non-urgent care normally referred by GP to different hospital specialist 
departments according to patients presenting symptoms and test results. 

Fig. 1. Elective care referral triage process from primary care to secondary care hospital.  
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The referral of elective care from primary care GP to secondary care 
hospital is quite different from emergency care because the referral 
decisions rely heavily on disease-specific symptoms and biomarkers 
instead of urgency scales or deterioration levels [24,25]. There are some 
special triage scales developed for specific diseases. For example, 
assessment scales for obstetrics include United States Maternal Fetal 
Triage Index (MFTI) [26], Canada Obstetric Triage Acuity Scale (OTAS) 
[27], United Kingdom Birmingham Symptom specific Obstetric Triage 
System (BSOTS) [28], Iranian Obstetric Triage Index (IOTI) [29], Swiss 
Emergency Triage Scale (SETS) [30]. However, a manual referral 
assessment review is still needed to ensure triage accuracy, especially for 
disease like inflammatory arthritis where symptoms are non-specific and 
there is no single current marker that is diagnostically definitive 
[31–33]. Besides, tele-triage [13,34] is increasingly attracting attention 
because it to some extent can reduce the need to travel to clinics 
[11,35–37]. However, both hospital triage and tele-triage involve a 
heavy workload with manual reviewing and sometimes inaccurate 
triage to treatment. Manual assessment is inevitable in elective care 
because key clinical information is in the unstructured GP referral letters 
and currently there is no research to automatically risk stratify patient 
from unstructured letter. 

2.2. Data-driven hospital triage research 

With the development of artificial intelligence, data-driven methods 
show great potential in the applications of hospital triage. Therefore, 
there is an obvious shift from expert-driven to data-driven methods 
using machine learning and deep learning. 

A primary application of machine learning is the prediction of 
mortality and hospitalization admission at the point of triage in the 
emergency department. Rocío Sanchez-Salmeron summarized machine 
learning-related applications in the Emergency Department (ED) triage 
[11]. Specifically, this study depicts that the machine learning models 
could outperform the traditional methods in different ED triage sce
narios, including the 24-h mortality prediction [38], the early and short- 
term mortality prediction [39], and the critical care and hospitalization 
admission predictions [40–43]. Similarly, Logistic Regression (LR) has 
been used to predict the mortality of inpatients using information 
collected from the ED [44] as well as the inpatient admission from the 
emergency department [45]. Besides, Arnaud et al. used deep learning 
to predict hospitalization at the ED [46], and Tahayori et al. utilized 
machine learning married with the NLP method to predict the disposi
tion of patients and thus optimize the resource allocation in the ED on 
the basis of emergency triage notes [47]. 

Machine learning has also been applied to the classification of the 
severity of the patients and early recognition of some specific diseases at 
the initial ED triage. For example, Zmiri et al. applied Naïve Bayes and 
C4.5 algorithms to the classification of the severity grades of patients in 
the ED [48], while Emmanuel et al. used Fuzzy Logic to classify the 
severity and provide priority for patients [49]. Similarly, Tsai et al. used 
Long-Short Term Memory neural networks (LSTM) to identify the pain 
level of patients in emergency triage [50]. In addition, Kijpaisalratana 
et al. used patients’ electronic health records to identify sepsis patients 
in the ED [51], and Choi et al. utilized the patient data obtained from the 
ED and XGB model to detect low-risk bacteremia patients [52]. 

Some researchers have applied machine learning to predict the pa
tient’s chief complaints, medical needs, and waiting time in the ED. For 
instance, Jernite et al. used Support Vector Machine to predict patients’ 
chief complaints at triage time according to the patient’s state and 
nurses’ description when they arrive at the emergency department [53]. 
Sterling et al. used machine learning to predict the required resources at 
the ED based on the nursing triage notes and the clinical data from the 
electronic health record (EHR) [54]. Djordje et al. introduced the deep 

attention model to predict what kinds of medical resources a patient 
would need when he or she arrives at the emergency department [55]. 
Furthermore, Ali et al. utilized the Decision Tree (DL) to predict how 
long patients will stay at the emergency department [56]. Besides, 
Sterling et al. utilized the NLP techniques of nursing triage notes to 
predict final emergency department disposition [57]. 

Despite the potential of data-driven methods demonstrated in 
emergency care, there is no study of machine learning-supported triage 
from primary to secondary care. Triaging from primary to secondary 
care normally involves challenges of heterogeneous data such as struc
tured blood test results and unstructured data like GP referral letters, 
and real-world GP referral letters are at various levels of details of dis
ease history, drug history, and previous symptoms. There are researches 
developing machine learning-based clinical outcome forecasting [58] 
and phenotyping [59] models for patients already diagnosed with 
rheumatoid arthritis. However, these models target decision support 
after the patients are diagnosed (after Step 5 in Fig. 1) using Electronic 
Health Record data generated at the secondary care hospital, for treat
ment monitoring purposes. There is no machine learning-based method 
targeting triage referral assessment in Step 3 and 4 of Fig. 1 before a 
clinic appointment being booked and a final diagnosis being made, 
when only GP referral letters and blood test results from primary care 
are available for referral assessment and model training. Moreover, 
there is no research using the state-of-the-art language model for NLP 
such as the BERT-based model analyzing GP referral letters. There is no 
machine learning-based triage referral assessment providing local pre
diction explanation which is critical in triage decision support practice. 

Table 1 summarizes current hospital triage methods and gaps. Our 
study is the first research in primary care to secondary care triage and 
addresses the above-mentioned research gaps. 

3. Methodology 

An overall framework of the proposed heterogeneous data-driven 
hybrid machine learning model to support triage referral assessment 
from primary care to secondary care can be found in Fig. 2. Our 
approach has three sub-models including the Blood Test Result (BTR) 
model, the General Practitioner Referral Letter (GPRL) model, and the 
hybrid model. 

The GPRL model set out to develop the BERT-based NLP models and 
select the best-performing one. This model has a series of steps: (a) data 
cleaning and formatting of original GP referral letters that have been 
anonymized; (b) text data augmentation methods are used to alleviate 
the potential data size effect when there are limited machine-readable 
referral letters; (c) two BERT-based classification models are devel
oped, and threshold optimization is utilized to search for the best clas
sification threshold; (d) the best performing model and parameters are 
applied to predict the probabilities of diagnosis for new patients. 

For the BTR model, the main goal is to determine the proper com
bination of various missing data imputation methods, sub-sampling 
methods, and machine learning models. This model also comprises 
several succeeding steps after the data anonymization: (a) prepare for 
the BTR training dataset by using different data cleaning methods, 
including strategies to impute the missing values and to handle the 
outlier values; (b) different sub-sampling techniques are used; (c) train 
and validate various machine learning models, and select the best model 
by tuning the threshold; (d) use the best-combined method to predict the 
probabilities for new patients. 

The third part of our approach is a hybrid model that fuses pre
dictions from GPRL and BTR models if a patient has GPRL data and BTR 
data available simultaneously. Otherwise, the model will output the 
classification result directly using the preceding model’s result, i.e., 
either the GPRL model or BTR model depending on data available at the 
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point of triage. The classification result will identify patients with in
flammatory arthritis (IA) and patients with non-inflammatory condi
tions (NIC), which will result in suggesting different triaging routes and 
clinics in secondary care. 

3.1. Methods for GPRL model 

3.1.1. Data preparation 
GPRL data preparation has two steps: (a) excluding letters without 

clinical concepts, GPRL letters without any clinical concepts are 
excluded in our research; (b) removing special characters, which means 

to format GPRL texts for every patient by removing typical characters 
like line break character, and extra whitespace character. 

3.1.2. Data augmentation 
After the data preparation procedure, there are only 332 IA patients 

in the GPRL dataset, which is relatively small to fine-tune a BERT-based 
model. To maximize the potential of the BERT-based model in our study, 
different text augmentation methods are compared with the original 
dataset, including the Easy Data Augmentation (EDA) [62], and Back 
Translation (BT) [63], which serve as effective methods for domain 
applications when the dataset is relatively small. 

Table 1 
Survey of current hospital triage methods and our study.  

Study Category Methods Data Type Advantages and disadvantages Triage Application 

[15–22,60,61] EBT Triage scales, 
EWS, MEWS, 
NEWS 

Enquiry or scoring Labor-intensive, manual processes, 
sometimes may have over triage 
due to accuracy. 

General triage purpose in the 
ED or sometimes for 
inpatients. 

[26–30] EBT Triage scales Disease-specific enquiry or scoring Labor intensive, manual processes, 
used for specific diseases only. 

Specific disease triage like 
obstetrics. 

[48,49,53,56] DDT NB/C4.5, Fuzzy 
Logic, SVM, DT 

Machine learning model is mainly based on structured 
data (general patient characteristics, test results, vital 
signs, etc.) 

Mainly used in ED and suitable for 
predictions during triage where 
only structured data is available. 

Severity grades classification, 
hospitalization mortality 
predictions. 

Our Approach DDT LGBM, GNB, DT, 
LDA, RF, SVM, 
BERT, EL 

Heterogenous data-driven machine learning methods to 
address real-world data challenges using transformer- 
based NLP method and hybrid model to incorporate 
different data modality 

Address healthcare real-world data 
challenges; 
can be used for multi-modality 
data and can be used in different 
triaging scenarios. 

The first data-driven method 
for triage from primary care to 
secondary care. 

Expert Based Triage (EBT); Data Driven Triage (DDT), Naïve Bayes (NB), LightGBM (LGBM); Gaussian Naïve Bayes (GNB); Decision Tree (DT), Linear Discriminant 
Analysis (LDA), Random Forest (RF), Support Vector Machine (SVM), Bidirectional Encoder Representations from Transformers (BERT), Ensemble Learning (EL), Early 
Warning Scores (EWS), Modified Early Warning Score (MEWS), and National Early Warning Score (NEWS). 

Fig. 2. The framework of the machine learning based triaging methods.  
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3.1.3. NLP models for text classification 
In this section, we develop different BERT-based models for text 

classification, which are comprised of the BERT-based model and 
various classification layers. 

3.1.3.1. Multi-layers feature fusion of BERT model (MBERT). Bidirec
tional Encoder Representations from Transformers (BERT) is the state- 
of-the-art pre-trained language representation model [64]. According 
to [65], diverse layers of the BERT are capable of extracting different 
kinds of features or patterns from the text. For example, the low-layer 
networks identify phrase-level features, while the intermediate-layer 
networks extract linguistic features, and the top-layer networks learn 
semantic features. Thus, with the consideration of the various infor
mation extracted by different layers, we weighted-combine different- 
level hidden layers’ outputs as the BERT’s output for the following 
layers, and the weighted parameters for each layer will be learned by the 
model on the fly. The multi-layers feature fusion method is called the 
MBERT model. The output of the MBERT model is OMBERT =

∑
i=1
N (αi •

h_oi), where N is the total layers of the BERT model used in our research, 
i.e., 12 for BERT-base or 24 for BERT-large, and h_oi is the output of the i- 
th hidden layer of the BERT. The αi = Softmax(Dense_layer(h_oi)) is the 
weight of the i-th layer, and all αi are summed up to 1, as 

∑N
i=1αi = 1. 

3.1.3.2. Classification models. In our research, we extracted two kinds of 
text representations for the patient’s letter, which are used as the input 
of the following classification layers, separately including the output of 
BERT and MBERT models. Based on the different text representations, 
we add various layers to develop two classification models, including 
BERT-LL-SL, and MBERT-LL-SL, as illustrated in Fig. 3. 

Looking at Fig. 3 (a), BERT-LL-SL, as the basic text classification 
model in our research, is made up of a BERT model, a fully connected 
linear layer (LL), and a SoftMax layer (SL). Notably, in this model, we 
only use the first token vector of the final layer of the BERT model. In 
Fig. 3 (b), MBERT-LL-SL has the same following layers as BERT-LL-SL 
except for the BERT model layers. MBERT-LL-SL uses the weighted 
combination of all hidden layers as the input of the classification layer to 
predict the labels. 

3.2. Methods for BTR model 

3.2.1. Data formatting and cleaning 
The formatting and cleaning procedure of the BTR dataset consists of 

two steps: the first step involves the back fill-in of missing data from the 
recent data. In our research, we use the patient’s previous latest records 
to fill in a part of the missing values. This method is reasonable and 
acceptable because IA is a long-term disease, and some important blood 
test indicators might remain stable for a long time according to profes
sional experience and suggestions from clinicians. The second step is to 
handle outliers. We remove some invalid string values in the data frame, 
such as “In progress”, “Insufficient sample for testing”, and so on. Be
sides, we used one-hot encoding to encode the categorical data like 
‘negative’ and ‘positive’ values in the BTR data. 

3.2.2. Data imputation and sub-sampling 
After the data formatting and cleaning process, there is also a tiny 

percentage of missing values in the BTR dataset, which should be further 
imputed before feeding to the final machine learning models. In our 
research, two imputation methods are used, including K-Nearest 
Neighbors (KNN) imputation and multivariate imputation [66,67]. 
Because different variables have various data ranges, it is essential to 
scale the variables to the same data range. In our research, we use 
standardization to format the dataset. Furthermore, different sub- 

sampling methods are compared in our research hoping to further 

boost models’ performance, including the no-sampling, random down- 
sampling, and random up-sampling. 

3.2.3. Model training and parameters tuning 

3.2.3.1. Machine learning models. Generally, different machine learning 
methods would perform differently on the various datasets based on 
various data preparation methods, such as missing data imputation and 
sub-sampling methods. Based on this, in our research, we compare two 
kinds of machine learning algorithms, including single classifiers and 
ensemble classifiers. (a) single classifiers, which represent a series of 
basic machine learning models, such as Gaussian Naïve Bayes (GNB), 
Decision Tree (DT), Linear Discriminant Analysis (LDA), and Support 
Vector Machine (SVM); (b) ensemble classifiers, where different base 
classifiers would be trained and the prediction of the ensemble classi
fiers is a combination of the outputs of various base classifiers, such as 
LightGBM (LGBM) and Random Forest (RF). 

3.2.3.2. Grid search for optimal parameters. For most machine learning 
models, there are a plethora of hyper-parameters that would affect the 
model performance. To unleash the full power of the model, tuning the 
hyper-parameters is a quintessential procedure to develop a robust as 
well as practical application. In our research, hyper-parameter space for 
different models is tuned by using an exhaustive 4-fold grid search and 
cross-validation scheme. 

3.3. Decision fusion and system output 

We have thus far developed two models separately for the GPRL 
dataset and the BTR dataset. As described in Fig. 2, different decision 
strategies would be applied to predict the final output on the basis of 
various data types of the patients. First, for patients with either GPRL 
data or BTR data, the model would directly use the probabilistic pre
diction of the previous models, i.e., the GPRL model or the BTR model. 
Second, for patients having both GPRL data and BTR data, we fuse the 
probabilistic predictions of the GPRL model and the BTR model as the 
final prediction. Various methods have been proposed to integrate 
different models’ predictions, such as voting, blending, and so on 
[68,69]. Based on these researches, we proposed a method to fuse 
probabilistic predictions of heterogeneous data models, as described in 
Algorithm 1, and tested three kinds of probabilistic fusion methods, 
including simple average (SAVG), weighted G-Mean (WGM), and 
weighted AUC (WAUC). 

Algorithm 1. Decision fusion and system output method 

Fig. 3. Text classification models.  
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where TGPRL, TBTR, and TE are the optimal thresholds for the GPRL 
model, BTR model, and ensemble model respectively. Oμ

+1(x) is pre
dicted probability for positive class. The βμ is the weight of the μ-th 
model. Specifically, βμ = 1

2,∀μ ∈ GPRL,BTR for SAVG, βμ =
G− Meanμ∑

μ
G− Meanμ

,∀

μ ∈ GPRL,BTR for WGM, and βμ =
AUCμ∑

μ
AUCμ

, ∀μ ∈ GPRL,BTR for WAUC. 

3.4. Method for prediction explanation 

Deep learning methods including BERT-based models are black-box 
predictions that cannot be readily explained to clinicians [70]. To 
benefit from the higher predictive power, it is important to have 
explainable and transparent DL algorithms for disease classification, as 
it will help clinicians back-trace disease predictions for transparent tri
aging recommendations [71]. Local interpretable model-agnostic 
explanation (LIME) is introduced to investigate the BERT-based 
model’s interpretability in the classification of GPRL texts. Briefly, 
LIME explains models by using the interpretable algorithm to approxi
mate the predictions of any black-box models [72]. In this paper, we use 
LIME to identify words and variables that highly contribute to the 
model’s prediction. 

3.5. Performance metrics and cross validation 

In order to measure the performance of the different previously- 
mentioned models, we utilize six categories of matrices, including the 
Accuracy, Precision, Recall, F1-score, G-mean, and AUC. Furthermore, 
to validate the consistency of the models, the stratified 5-fold cross 
validation test is applied in this study, which could preserve the per
centage of samples for each class. It involves the following steps. First, 
the dataset is randomly shuffled and evenly split into 5 groups. Second, a 
unique group is taken out as the test set and the remaining groups as the 
training set. Third, train the model on the training set and evaluate it on 
the test set. Fourth, iterate step 2 and step 3, and average the 5-fold cross 
validation results as the models’ final evaluation scores. 

4. Experimental results 

4.1. Dataset preparation 

Our dataset was collected from the Rheumatology Department of a 
large secondary care hospital in the UK. All data used has been anony
mized in accordance with the regulations of data protection and infor
mation governance. The whole dataset was split into three sub-datasets 
according to different data modalities that patients have, including the 
GPRL dataset, BTR dataset, and GPRL+BTR dataset. The GPRL sub- 
dataset had 1264 patients referred from February 2018 to July 2021, 
including 932 NIC patients and 332 IA patients. This dataset was a 
general natural language description of the patient’s physical conditions 
when they came to the primary care GP clinics, including physical 
check-ups, simple blood test results, disease history, drug history, GP’s 
consideration, suggestions, etc. The BTR sub-dataset involved 1181 
patients with BTR data referred from February 2017 to July 2021, 
including 353 NIC patients and 828 IA patients. All the input variables of 
the BTR dataset were categorized into four groups, including patients’ 
demographic information, haematology (routine), blood biochemistry 
(routine), and immunology. There were only 119 patients who had 
GPRL data and BTR data simultaneously, which included 65 NIC pa
tients and 54 IA patients, thus we use this sub-dataset (GPRL+BTR 
Dataset) to test the ensemble method described in Section 3.3. 

Different data partition tactics were applied to various datasets. 
Specifically, for the GPRL model and BTR model, we used 80% to train 
the model and 20% for the test due to the stratified 5-fold cross vali
dation applied in our study. To validate the ensemble model, we chose 
the validation: test ratios of 2:1 to split the ensemble dataset, and the 
validation set is used to calculate the weighted ratios for fusing pre
dictions of the GPRL and BTR models. Furthermore, stratified sampling 
is used throughout our research to maintain the real distribution of the 
sub-dataset same as the original dataset. 

4.2. Results of GPRL model 

4.2.1. Data cleaning and augmentation 
Following the processing steps described in Section 3.1.1, we got a 

dataset of 1264 patients having GPRL data. In order to get the best 
performance of models, BERT and MBERT described in Section 3.1.3 
were separately compared based on different data augmentation 
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methods, including the original dataset (Baseline), EDA-augmented 
dataset (EDA), and BT-augmented dataset (BT), as described in Sec
tion 3.1.2. For the EDA method, we generated approximately four 
augmented sentences per original sentence. For BT augmentation, we 
used a pre-trained translation package provided by Transformers to 
translate the original training dataset to four kinds of languages (French, 
Spanish, Romanian, and Romansh), and then translate them back to 
English to get a new training dataset. 

4.2.2. Comparison study of GPRL models 
A comparison study of the BERT and MBERT models is described in 

Table 2, which is based on various data augmentation methods as 
described in Section 4.2.1. Overall, the MBERT model achieved the best 

performance in all measures compared with the BERT model, and spe
cifically achieving the weighted precision, recall, and F1-Score of 0.79, 
0.77, and 0.77. 

The MBERT model trained on the dataset without augmentation 
(Baseline) achieves the best performance. Specifically, it achieves the 
Accuracy, AUC, and G-Mean of 0.77, 0.81, and 0.74, as well as weighted 
values of Precision, Recall, and F1-Score of 0.79, 0.77, and 0.77. It is 
clear that data augmentation methods such as EDA and BT cannot 
improve the model’s performance. Thus, the baseline MBERT model 
trained on the original data set will be used for triage classification. 

4.3. Results of BTR model 

4.3.1. Data cleaning and preparation 
According to the feature selection method described in Section 3.2.1, 

a total number of 27 blood test result features in the category of de
mographic information, haematology (routine), blood biochemistry 
(routine) and immunology were used to train the model, as shown in 
Table 3. After feature selection, 1181 patients have BTR data in total. 

4.3.2. Comparison study of BTR models 
We conducted 5-fold cross validation to test the consistency of the 

results and exhaustive experiments to search for the best combination of 
the different missing data imputation methods (KNN and Multivariate) 
and the various sub-sampling methods (No sampling, Over-sampling, 
and Under-sampling). Table 4 indicates the best 5-fold cross validation 
results of six various machine learning models depending on the missing 
data imputation method and the sub-sampling method. It was apparent 
from Table 4 that LGBM consistently outperforms the other five models 
in the 5-fold cross-validation test, and the Accuracy, AUC, and G-Mean 
values were 0.77, 0.81, 0.73, using the multivariate imputation and no 
sub-sampling method. Notably, our model resulted in the weighted 
precision, recall, F1-Score values of 0.78, 0.77, and 0.77 for identifying 
IA and NIC. Therefore, the LGBM model with the multivariate imputa
tion and the no sub-sampling method will be used for triage 
classification. 

4.4. Results of hybrid model 

The GPRL+BTR dataset was split into the validation and test set with 
a ratio of 2:1. We used the validation set to calculate the weights for 
different models and verified them on the testing dataset. The weights of 

Table 2 
Comparison results with 95%-CI of 5-fold cross validation of different GPRL models.  

Model AUG Precision Recall F1-Score Accuracy AUC G-Mean 

BERT Baseline 0.73 ± 0.05 0.69 ± 0.06 0.70 ± 0.06 0.69 ± 0.06 0.69 ± 0.06 0.66 ± 0.06 
EDA 0.69 ± 0.06 0.59 ± 0.06 0.61 ± 0.06 0.59 ± 0.06 0.60 ± 0.06 0.60 ± 0.06 
BT 0.69 ± 0.06 0.61 ± 0.06 0.63 ± 0.06 0.61 ± 0.06 0.62 ± 0.06 0.60 ± 0.06 

MBERT Baseline 0.79 ± 0.05 0.77 ± 0.05 0.77 ± 0.05 0.77 ± 0.05 0.81 ± 0.05 0.74 ± 0.05 
EDA 0.77 ± 0.05 0.74 ± 0.05 0.75 ± 0.05 0.74 ± 0.05 0.80 ± 0.05 0.71 ± 0.06 
BT 0.77 ± 0.05 0.76 ± 0.05 0.76 ± 0.05 0.76 ± 0.05 0.77 ± 0.05 0.70 ± 0.06 

Note: Augmentation method (AUG), Original Dataset without augmentation (Baseline), Easily Data Augmentation (EDA), Back Translation Dataset (BT). 

Table 3 
Summary of the BTR dataset.  

Group types Data sub-items 

Demographic 
information 

Age, Gender. 

Haematology 
(Routine) 

Haemoglobin, White blood cell count, Platelet count, Red 
blood cell count, Mean cell volume, Haematocrit, Mean 
cell haemoglobin, Mean cell haemoglobin conc, 
Neutrophil count, Lymphocyte count, Monocyte count, 
Eosinophil count, Basophil count, Erythrocyte 
sedimentation rate. 

Blood biochemistry 
(Routine) 

Sodium, Potassium, Urea level, Creatinine, Albumin, 
Bilirubin, Alkaline phosphatase, Alanine transaminase, C- 
reactive protein. 

Immunology Rheumatoid factor, Cyclic citrullinated peptide Ab.  

Table 4 
Comparison results with 95%-CI of 5-fold cross validation of different BTR 
machine learning models.  

Model Imp, 
Sub 

Precision Recall F1- 
Score 

Accuracy AUC G- 
Mean 

GNB Mul, 
Under 

0.71 ±
0.06 

0.64 
± 0.06 

0.66 
±

0.06 

0.64 ±
0.06 

0.70 
±

0.06 

0.65 
±

0.06 
DT Mul, 

Over 
0.73 ±
0.06 

0.71 
± 0.06 

0.72 
±

0.06 

0.71 ±
0.06 

0.69 
±

0.06 

0.68 
±

0.06 
LGBM Mul, 

No 
0.78 ± 
0.05 

0.77  
± 
0.05 

0.77  
± 
0.05 

0.77 ± 
0.05 

0.81  
± 
0.05 

0.73  
± 
0.06 

LDA KNN, 
No 

0.73 ±
0.06 

0.66 
± 0.06 

0.68 
±

0.06 

0.66 ±
0.06 

0.71 
±

0.06 

0.67 
±

0.06 
RF Mul, 

No 
0.76 ±
0.05 

0.73 
± 0.06 

0.74 
±

0.06 

0.73 ±
0.06 

0.79 
±

0.05 

0.72 
±

0.06 
SVM Mul, 

Over 
0.72 ±
0.06 

0.68 
± 0.06 

0.69 
±

0.06 

0.68 ±
0.06 

0.73 
±

0.06 

0.67 
±

0.06 

Note: Gaussian Naïve Bayes (GNB), Decision Tree (DT), LightGBM (LGBM), 
Linear Discriminant Analysis (LDA), Random Forest (RF), Support Vector Ma
chine (SVM), Multivariate (Mul), Sub-sampling method (Sub), Imputation 
method (Imp). 

Table 5 
Comparison of ensemble model results with 95%-CI.  

Method Precision Recall F1- 
Score 

Accuracy AUC G-Mean 

SBTR 0.73 ±
0.14 

0.72 ±
0.14 

0.73 ±
0.14 

0.73 ±
0.14 

0.81 ±
0.12 

0.72 ±
0.14 

SGPRL 0.81 ±
0.12 

0.80 ±
0.12 

0.80 ±
0.12 

0.80 ±
0.12 

0.79 ±
0.13 

0.78 ±
0.13 

WAUC 0.83 ± 
0.12 

0.82 ± 
0.12 

0.83 ± 
0.12 

0.82 ± 
0.12 

0.90 ± 
0.09 

0.83 ± 
0.12 

Note: Single BTR(SBTR), Single GPRL (SGPRL), Weighted AUC (WAUC). 
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GPRL and BTR models for best combination are calculated dynamically 
in each model training and updating rather than once. Same as param
eters in GPRL and BTR, they will be updated if we retrain the model with 
new referral data. 

Table 5 shows the results of ensemble models on the GPRL+BTR 
dataset. Overall, WAUC achieved the best Accuracy, AUC, and G-Mean 
values of 0.82, 0.90, and 0.83, which were significantly better than 
single GPRL and BTR models. Furthermore, the SAVG and WGM have 
the same results as WAUC. Specifically, our hybrid model achieves the 
weighted values of Precision, Recall, and F1-Score of 0.83, 0.82, and 
0.83. 

4.5. Explaining disease predictions for patient triaging 

As discussed in Section 3.4, we have developed local prediction 
explanation into our triaging classification processes using the LIME 
method. LIME provides explanations in the form of highlighting the 
words and blood test results that are more important for the model 
prediction of a patient having inflammatory arthritis or other inflam
matory conditions, from a patient’s input GP referral letter text and 
blood testing data. The explainable triaging classification could help 
clinicians to make a final decision about triaging a patient to IA or NIC 

clinics, help build trust in the triaging model, and also serve as a 
confirmation that the model-internal logic is sound and reliable. 

As shown in Fig. 4, we exemplify the LIME explanations for triaging 
recommendation of a real IA patient estimated to have IA with 0.73 
probability by the hybrid WAUC model. From Fig. 4(a), it was evident 
that the “arthralgia”, “rheumatoid arthritis”, “inflamed”, “wrists”, and 
so on in the text were of relatively-high importance to identifying a 
patient to have inflammatory arthritis from the GP referral letter. From 
this patient’s blood test results, test results like “Alanine transaminase”, 
“Lymphocyte count”, and so on had a high positive contribution to the 
classification as having inflammatory arthritis, as shown in Fig. 4(b). 

5. Real-world case study and evaluation 

5.1. Practical implications on triage referral assessment pathway 

In real-life practice, our model offers a readily-available means of 
rapid streamlined referral assessment for clinicians to identify patients 
with suspected IA or NIC, on the basis of their GPRL and BTR data. 
Patients identified with suspected IA will be booked to an outpatient IA 
clinic to confirm the final diagnosis and pathway. If the patient is 
diagnosed as IA in the outpatient clinic, they will be offered early 

Fig. 4. Example of LIME prediction explanation of a triage recommendation of inflammatory arthritis (ensembled risk probabilities: NIC: 0.27 and IA: 0.73)  
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treatment with disease-modifying anti-inflammatory drugs such as 
methotrexate or biologic drugs directed at specific inflammatory cyto
kines [3,73–75]. 

From Fig. 1, a typical current referral pathway from a GP to a 
rheumatologist at the secondary care hospital in the UK is for the GP to 
see the patient and write a referral letter to a rheumatologist. The patient 
then selects a rheumatology department on the NHS e-Referral Service 
(formerly known as Choose and Book) website. The GP referral letter is 
directed by the e-Referral Service to the selected secondary care hospital 
department for a rheumatologist to assess the referral and triage the 

patient to a suitable clinic. This takes 2 h a day screening and answering 
GP referrals (10 h a week) which equals 2.5 clinics, and has to be fitted 
into time devoted to other clinical activities. Streamlined assessment of 
referrals would reduce the delay due to human triage and speed up the e- 
Referral process at all stages. This will also release the time of rheu
matologists to see patients as clinical time currently used for triage of the 
many patients referred each week, will be regained. 

As shown in Fig. 5, our referral assessment tool will be used to 
analyze heterogenous data automatically. The clinicians (consultants) 
will be presented with the risk of having IA or NIC and prioritize the 

Fig. 5. Hybrid machine learning supported referral assessment process. Inflammatory Arthritis (IA), Non-inflammatory Condition (NIC).  

Fig. 6. Demonstration: real-time risk stratification of referrals waiting to be triaged through the decision support system.  
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clinics according to the risk. The prediction risk is explainable for each 
patient from both GP referral letters and blood test results with key 
symptoms and test results highlighted by the LIME method. We co- 
developed the decision support tool prototype based on our model 
with clinicians in a large secondary care hospital in the UK and the pilot 
details are discussed in Section 5.2. 

5.2. Triage referral assessment decision support system pilot 

The triage referral assessment decision support tool is being co- 
developed with the clinician team and is under the preparation of roll
ing out in the rheumatology department of a secondary health care 
hospital in the UK. We developed an easy-to-use software demonstration 
dedicated to simplifying the referral assessment processes for clinicians 
at the secondary care hospital. Furthermore, all models in this system 
will be auto-updated periodically when more new referral data are 
available, including the GPRL, BTR, and hybrid models. 

As shown in Fig. 5 and Fig. 6, instead of clinicians searching for the 
individual patient’s referral letter and blood test results manually and 
separately, our tool will extract data automatically from different 
sources for real-time risk stratification. 

The referral triage assessment decision support system features real- 
time risk stratification of patients having inflammatory arthritis or non- 
inflammatory conditions, at the individual patient level and the point of 
referral assessment. Patient referrals are sorted from high to low-risk 
probabilities of having IA, as well as high (red), medium (yellow), and 
low risk (green) groups. Fig. 6 shows the screenshot of the decision 
support tool in the real-world application. 

During referral assessment, clinicians will first look at the risk 
stratifications of all referrals waiting to be triaged in Fig. 6, and then 
they can click to investigate individual referrals for risk stratification 

details as shown in Fig. 7. Take a referral with a predicted 71% proba
bility of having IA as an example, the system visualizes important words 
in the GP referral letter that contribute to the risk prediction (left part of 
Fig. 7), and rank blood test result according to their importance to the 
predicted risk from high to low (right part of Fig. 7). Risk stratification 
and explanations of the risk in Fig. 6 and Fig. 7 will provide decision 
support for clinicians to make decision on triage i.e., book outpatient IA 
appointment or triage to other pathways. 

5.3. Decision support pilot evaluation 

To evaluate the practical value of our model, a real-world pilot was 
conducted in June and July 2022 at the same hospital described in 
Section 4.1. In this real-world pilot, we designed a human versus ma
chine trial to compare the practical performance of our model and cli
nicians in terms of referral assessment accuracy and time spent in 
referral assessment. We also collected qualitative feedback from clini
cians who used the pilot decision support tool in referral assessment. 

5.3.1. Referral assessment accuracy 
To compare the referral assessment accuracy of the model and cli

nicians, we collected referral and diagnosis data of 88 patients referred 
to the hospital from November 2021 to December 2021. We chose this 
period because it takes around 3 months for the final coded diagnosis 
information to be available in the Electronic Health Record after the 
outpatient clinic appointment because time is needed for the coding 
team to finalize the ICD10 code according to clinical notes in the 
outpatient appointment. It takes a longer time in 2021/22 due to the 
appointments backlog caused by the COVID-19 pandemic. The coded 
diagnosis information is used as the benchmark to calculate the preci
sion, recall, and accuracy of clinicians’ assessment and the triage deci
sion, as well as the model’s prediction. According to the diagnosis 
information, there are 62 patients diagnosed as NIC and 26 patients 
diagnosed as IA. Furthermore, to calculate clinicians’ accuracy of 
referral assessment and triage decision, four metrics (false positive, false 
negative, true positive, and true negative) are defined to calculate the 
confusion matrix based on the assessment/triage outcome and the final 
diagnosis. 

Table 6 shows that our model outperforms clinicians in the values of 
all measure metrics. Our model achieves the Accuracy and G-Mean of 

Fig. 7. Demonstration: key information that contributes to the risk stratification of individual referrals.  

Table 6 
Comparison results with 95%-CI of human and model performance.  

Types Precision Recall F1-Score Accuracy G-Mean 

Clinician 0.80 ±
0.08 

0.78 ±
0.09 

0.79 ±
0.09 

0.78 ±
0.09 

0.77 ±
0.09 

Model 0.83 ±
0.08 

0.81 ±
0.08 

0.81 ±
0.08 

0.81 ±
0.08 

0.81 ±
0.08  
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0.81 and 0.81 compared with the 0.78 and 0.77 by physicians. Specif
ically, it achieves the weighted Precision, Recall, and F1-Score of 0.83, 
0.81, and 0.81, which are clearly better than clinicians. This means more 
patients will be booked to the right clinic appointments faster with the 
support of our model, i.e., the patients will not need to attend unnec
essary appointments back and forth before they are booked for the right 
clinics, thus reducing the referral to treatment time. 

5.3.2. Time spent in referral assessment 
The estimated time for referral assessment was compared between a 

clinician assessing without decision support in June 2022 and a clinician 
assessing with decision support of our machine learning model in July 
2022. There are approximately 84 referrals per month (around 1000 per 
year). For the clinician assessing without decision support, 2 h per day 
(10 h per week) is needed to go through referral data and suggest clinic 
appointment that patient to be triaged, while the model predicts disease 
probability and visualize the explainable results in real-time and it is 
expected that only 2 h per week will be needed to to assess the referrals 
with the decision support. 

The pilot shows our model can potentially reduce clinicians’ time 
spent on referral assessment from 10 h per week (equals to 2.5 clinics 
which have to be fitted into time devoted to other clinical activities), to 
2 h per week. This means 8 h (equals to 2 clinics) can be saved for other 
clinical activities and for clinicians to see more patients and provide 
better care. This also means faster referral assessment and less delay 
between a hospital rheumatology department receiving a referral from 
GP for suspected EIA and the date of clinic assessment for diagnosis. This 
also contributes to early diagnosis and treatment that are critical to 
preventing patient distress, serious complications, avoidable disability, 
and potential loss of employment and quality of life. 

5.3.3. End users’ feedback 
Positive feedback from clinical end users of the referral assessment 

decision support system has been received in the trial. According to the 
feedback, the model is gaining more trust than the traditional approach 
because 1) it demonstrated better performance than humans and all the 
existing clinical criteria. For example, existing clinical criteria of ACR/ 
EULAR 2010 has 0.74 recall (sensitivity) and specificity 0.66 and 0.79 
AUC [76]; 2) we are not automating the referral assessment using ma
chine learning. Instead, our model will provide decision support infor
mation of disease risk probability and highlight important words in the 
GP referral letters and blood test results that contributed to the predicted 
risk. This provides transparency and explainability of the underlying 
logic and ensures that the model can be checked for the reliability of 
model recommendations. It is reported that the explainable prediction 
information shows similar ways of doctors assessing the referrals thus 
further improving the confidence of using the model.; 3) The risk 
stratification and explainable decision support also provide clinicians an 
intuitive and straightforward way to prioritize high-risk patients and 
identify key information faster. The process of referral for specialist 
rheumatology assessment from the moment of referral to being seen in 
an appropriate clinic would be shortened from two to three weeks to a 
few days. This matters to the patients themselves and would help in 
achieving the key target required by NICE Quality Standard 33 of getting 
patients with IA onto disease-modifying drugs within 6 weeks of referral 
[77]. 

6. Conclusion and discussion 

6.1. Summary of results 

Inflammatory arthritis (IA) is an autoimmune disease that can cause 
severe joint damage and disabilities. Accurate and fast referral assess
ment of IA for triaging is an important but challenging task due to vague 
symptoms and manual processes. In this research, a heterogeneous data- 
driven hybrid machine learning approach was developed to perform the 

IA and non-inflammatory conditions (NIC) disease triage from primary 
care to secondary care. Specifically, a Multi-layers Feature Fusion BERT 
model (MBERT) was developed, and a comparison study between BERT 
and MBERT has been carried out to classify IA and NIC triages from GP 
referral letters. Moreover, various data augmentations including EDA 
and BT have been compared with NLP models in our study. We also 
developed an ensemble method to fuse the probabilistic predictions 
from multimodal data including natural language in the GP referral 
letters and blood test results, which can predict whether it is needed to 
be triaged for IA and NIC with weighted values of precision, recall, and 
F1-Score of 0.83, 0.82, and 0.83, and accuracy, AUC and G-Mean of 
0.82, 0.90, and 0.83. Furthermore, a real-world case study showed that 
our model achieved the weighted precision, recall, F1-Score of 0.83, 
0.81, 0.81, and accuracy 0.81, comparing the weighted precision, recall, 
F1-Score of 0.80, 0.78, 0.79, and accuracy 0.78 of clinicians in the trial. 
The pilot also shows that our model enabled decision support can save 
clinicians 8 h per week in assessing the referral assessment. Our 
approach also has superior diagnostic performance and reliability than 
existing clinical criteria for IA [76], which can be used in cohorts with 
diverse disease manifestations and can be adapted for primary to sec
ondary care triaging in other diseases. 

6.2. Limitations and future research 

Our study lays the groundwork for future research upon several as
pects. Apart from GP referral letters and blood testing, we will collect 
electronic Patient Reported Outcomes (ePROMs) and remote blood 
testing monitoring data for clinical phenotyping to map different phe
notypes with different diagnoses so that personalized treatment rec
ommendations could be provided at the time of triage. We will also 
continue our real-world pilot and human versus machine trial in the live 
referral triage process to further test the model’s reliability and effec
tiveness. If the model proves to be effective in a longer pilot consistently, 
we will further extend our triaging model into other specialties that are 
under pressure with demand often outstripping clinical capacity such as 
gastroenterology and cardiology, etc. Finally, our triage tool is depen
dent on GPRL and BTR data being machine-readable, which is currently 
variable with the digitalization levels of the hospitals. However, with the 
digital transformation and NHS digital-first strategy, this tool will make 
a great impact to save clinicians time and improve efficiency. 
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