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A B S T R A C T

The paper proposes a novel adaptive search space decomposition method and a novel gradient-free optimization-
based formulation for the pre- and post-buckling analyses of space truss structures. Space trusses are often
employed in structural engineering to build large steel constructions, such as bridges and domes, whose
structural response is characterized by large displacements. Therefore, these structures are vulnerable to
progressive collapses due to local or global buckling effects, leading to sudden failures. The method proposed
in this paper allows the analysis of the load-equilibrium path of truss structures to permanent and variable
loading, including stable and unstable equilibrium stages and explicitly considering geometric nonlinearities.
The goal of this work is to determine these equilibrium stages via optimization of the Lagrangian kinematic
parameters of the system, determining the global equilibrium. However, this optimization problem is non-
trivial due to the undefined parameter domain and the sensitivity and interaction among the Lagrangian
parameters. Therefore, we propose to formulate this problem as a nonlinear, multimodal, unconstrained,
continuous optimization problem and develop a novel adaptive search space decomposition method, which
progressively and adaptively re-defines the search domain (hypersphere) to evaluate the equilibrium of the
system using a gradient-free optimization algorithm. We tackle three benchmark problems and evaluate a
medium-sized test representing a real structural problem in this paper. The results are compared to those
available in the literature regarding displacement–load curves and deformed configurations. The accuracy and
robustness of the adopted methodology show a high potential for gradient-free algorithms to analyze space
truss structures.
. Introduction

Space truss structures represent one of the most extensively used
tructural typologies in civil engineering to build non-ordinary steel
tructures such as bridges, large span arches, domes, and transmission
owers. These structures generally show large displacements even under
ervice loadings, and their ultimate response is often characterized by
nap-through post buckling mechanisms in which the structure passes
apidly from an equilibrium state to a non-adjacent equilibrium config-
ration (Hrinda, 2010). Furthermore, some catastrophic events (Martin
nd Delatte, 2001) and numerical studies (Smith, 1984; Murtha-Smith,
988; Blandford, 1996) revealed that truss structures are prone to
ctivate progressive collapses due to equilibrium instability, leading
o brittle and sudden failure, which may lead to significant economic
nd human losses. Hence, complex nonlinear analyses considering the
echanical and geometrical nonlinearities that allow for a complete

quilibrium path of the structure are needed to assess the structural

∗ Corresponding author at: University of Reading, Reading, UK.
E-mail address: v.k.ojha@reading.ac.uk (V. Ojha).

robustness of truss structures against progressive collapses (Gilbert and
Tyas, 2003).

In the last decades, many structural optimization procedures, based
on linear programming (Gilbert and Tyas, 2003; Tyas et al., 2006; Horst
and Tuy, 2013), genetic algorithms (Saka, 2007; Hasançebi et al., 2009;
Huang et al., 2019; Lute et al., 2009), or iterative finite element pro-
cedures (Hrinda and Nguyen, 2008), have been developed to research
optimum design of large truss structures through exploring optimum
topology (Yildiz, 2013) or geometry of the system and optimum cross-
sectional dimensions for the members. In these methods, the objective
function has generally been the total weight of the structure, and
the material tensile and compressive strengths have been considered
as constraints, eventually considering the elements’ local buckling.
However, these methods do not provide information on the nonlinear
post-buckling response of the structure and its effective safety level.
Authors have also used neural networks and optimization algorithms
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for other structural engineering problems such as structural damage
detection (Tran-Ngoc et al., 2021; Khatir et al., 2021), and simulation
of fracture mechanics (Khatir and Wahab, 2019), and monitoring of
structural health (Khatir et al., 2019).

Many authors proposed mathematical optimization algorithms based
on mathematical programming to perform the limit analysis on struc-
tural systems such as frictional rigid-block assemblages (Gilbert et al.,
2006; Ferris and Tin-Loi, 2001; Baggio and Trovalusci, 2000) or elasto-
plastic Von-Mises steel structures (Bisbos and Pardalos, 2007; Bisbos
et al., 2005). These approaches provide valuable information about the
failure mechanism and corresponding load multiplier. However, they
are generally formulated under the hypothesis of small displacements
and do not consider the incremental loading process. Thus, they cannot
be applied for buckling analyses.

On the other hand, incremental procedures within the finite element
framework, based on the Arc-length method (Crisfield, 1991, 1996;
Memon and Xiao-zu, 2004) combined with iterative Newton–Raphson
techniques (De Borst et al., 2012; Bathe, 2006), represent effective tools
for performing nonlinear and buckling analysis considering the material
and geometric nonlinearities. According to these strategies, an iterative
stepwise linearization of the nonlinear structural behavior is consid-
ered. At each iteration, the tangent stiffness matrix and the geometrical
stiffness matrix describe the mechanical and geometrical nonlinearities
of the system, respectively. Thus, iterative Newton–Raphson procedures
are effectively employed to evaluate the nonlinear response of 2D
and 3D large structures, even in the presence of damage-plasticity
constitutive laws (Chen and Han, 2007; Macorini and Izzuddin, 2011).
However, they require a significant computational effort to update
the stiffness matrices at each analysis iteration. Moreover, close to
the critical points of the structural response, where the equilibrium
configuration changes from stable to unstable (or vice-versa), numerical
issues may appear, significantly increasing the number of iterations
required to get the solution or leading to the divergence of the solution.

A few learning algorithms for neural networks have been developed
and applied for the nonlinear modeling of mechanical systems (Memon
and Xiao-zu, 2004) and for approximation of nonlinear behavior of
structures (Wang and Adeli, 2015), covering the drawbacks of Newton–
Raphson like procedures. These algorithms are based on quasi-Newton
methods (Li and Yan, 1995; Geradin et al., 1981) that estimate the
inverse Hessian of an objective function from the gradient to enable
Newton-like optimization algorithms. Thus, not requiring the assem-
bling of global stiffness matrices. Despite their potentialities, these
approaches have not yet been exploited for the nonlinear assessment
of large structural systems.

The main goal of the paper is to propose a novel formulation of
the nonlinear pre- and post-buckling analysis of space truss structure
using gradient-free optimization algorithms. In this formulation, we
subject a space truss structure (system) to large displacements and
optimize the Lagrangian kinematic parameters (displacement) and the
load multiplier of the system to guarantee the global equilibrium of the
system. In our formulation, we define an objective function (the global
equilibrium) in terms of global unbalance determined as the difference
between the vectors of external and internal forces on the system. To
the best of the authors’ knowledge, this is the first work performing
incremental (multistep) analysis of structures using gradient-free global
optimization algorithms.

The presented optimization problem can be classified as a nonlinear,
multimodal, unconstrained, continuous optimization problem. It is a
challenging problem to solve as the search space for displacement and
load multiplier variables has an undefined upper bound. Additionally,
the search landscape poses significant challenges to existing continuous
optimization algorithms. Hence, this problem could be considered as
a testbench for optimization algorithms. The implementation of this
research work is available on our GitHub page.1

1 https://github.com/vojha-code/Hypershpere-Search
2

In this paper, we show experimental approaches considered to
decompose and define search space in order to solve this optimization
problem. Such experimental approaches allowed us to propose a novel
search space decomposition method that we call adaptive search space
decomposition method, which progressively and adaptively defines new
hyperspheres (a bounded search space) for solving the optimization
problem. The method is based on iteratively finding new centers for
new hypersphere such that the centers follow the global equilibrium
path a space truss structure. Thus allowing the study of the equilib-
rium stages and potential snap-through mechanisms of a space truss
structure.

In this work, three benchmark problems investigated in the litera-
ture through Newton-like approaches (Crisfield, 1991) are considered
to assess the accuracy and performances of the selected set of opti-
mization algorithms and proposed adaptive search space decomposition
method. Each problem is solved using ad-hoc differential evolution
algorithms (a gradient free optimization algorithms), comparing the
results with those available in the literature regarding displacement
load capacity curves and failure deformed configurations. Finally, a
medium-size structure (a test problem on a 3D reticular beam), de-
signed in the literature following the criteria of minimum weight, is
solved to prove the applicability of the proposed procedure and to solve
relevant problems in structural engineering.

The rest of the paper is organized as follows: First we introduce
the structural model and its formulation as an optimization problem
in Sections 2.1 and 2.2. Then the search space decomposition methods
are discussed in methodology Section 3. The adaptive search space
decomposition method is described in Section 3.2. The results on three
benchmark problems and a test problem are presented and analyzed
in Section 4. Finally, discussions and conclusions are presented in
Sections 5 and 6.

2. Space truss structure problem

2.1. Kinematic and static of space truss structure

The system kinematics described by model adopt a Lagrangian
description by considering large displacements and small strain hy-
potheses. The degrees of freedom are assumed to be coincident with
the 3𝑁 absolute displacements of the 𝑁 free nodes of the truss system,
referred to as the global reference system on x–y–z axes (Fig. 1). The
displacements of the generic node 𝑛𝑘 with 𝑘 = 1,… , 𝑁 , are collected in
a vector 𝐮𝑘 = [𝑢𝑘,𝑥, 𝑢𝑘,𝑦, 𝑢𝑘,𝑧] while the corresponding dual nodal forces
are collected in a vector 𝐟𝑘 = 𝐟0𝑘+𝜆𝐟𝑘[𝑓0𝑘,𝑥, 𝑓0𝑘,𝑦, 𝑓0𝑘,𝑧]+𝜆[𝑓𝑘,𝑥, 𝑓𝑘,𝑦, 𝑓𝑘,𝑧]
where 𝐟0𝑘 represents the permanent loads and 𝐟𝑘 represents variable
loads, which are amplified by the load multiplier 𝜆 (Fig. 1). Each node
can be connected with an arbitrary number (𝑚) of nodes (𝑛𝑘,1,… , 𝑛𝑘,𝑚)
by as many trusses (𝑡1,… , 𝑡𝑚) as shown in Fig. 1. The generic 𝑝th truss
(𝑝 = 1,… , 𝑚) connecting the node 𝑛𝑘 with the node 𝑛𝑘,𝑝 is represented
in Fig. 2, where the vector 𝐗𝑘 and 𝐗𝑘,𝑝 represent the initial coordinates
of the truss end nodes, 𝐮𝑘,𝑝 the displacement vector of the node 𝑛𝑘,𝑝 and
𝐪𝑘,𝑝 the nodal axial forces acting on the truss.

According to the hypothesis of small deformations (Crisfield, 1991),
the truss deformation (𝜖𝑝) is evaluated considering the engineering
strain definition as:

𝛿𝑘,𝑝 =
𝑙𝑘,𝑝
𝐿𝑘,𝑝

− 1 (1)

where 𝐿𝑘,𝑝 = ‖𝐗𝑘,𝑝 − 𝐗𝑘‖ and 𝑙𝑘,𝑝 = ‖𝐗𝑘,𝑝 + 𝐮𝑘,𝑝 − 𝐗𝑘 − 𝐮𝑘‖ are the
initial and current length of the truss, respectively and ‖ ⋅ ‖ indicates
the Euclidean norm.

Given 𝑘𝑝 the axial stiffness of the truss and 𝐢𝑘,𝑝 the unitary vector
identifying its current orientation, the internal force can be written as
follows:

𝐪𝑘,𝑝 = 𝑘𝑝𝛿𝑘,𝑝𝐢𝑘,𝑝 = 𝑘𝑝

(

‖𝐗𝑘,𝑝 − 𝐗𝑘‖ − 1
)

𝐢𝑘,𝑝, (2)

‖𝐗𝑘,𝑝 + 𝐮𝑘,𝑝 − 𝐗𝑘 − 𝐮𝑘‖

https://github.com/vojha-code/Hypershpere-Search


V. Ojha, B. Pantò and G. Nicosia Engineering Applications of Artificial Intelligence 117 (2023) 105593

n
a
𝑙

w

𝐢

T
n

𝐟

l
f

2

e
w
t
t
a



Fig. 1. Independent displacements (Left) and dual forces (Right) of a generic node 𝑛𝑘 connecting 𝑚 trusses 𝑡1 , 𝑡2 ,… , 𝑡𝑚 with nodes 𝑛𝑘,1 , 𝑛𝑘,2 ,… , 𝑛𝑘,𝑚. The node 𝑛𝑘 has its displacements
𝑢𝑘,𝑥 , 𝑢𝑘,𝑦 , 𝑢𝑘,𝑧 and corresponding forces 𝑓𝑘,𝑥 , 𝑓𝑘,𝑦 , 𝑓𝑘,𝑧 along 𝑥, 𝑦 and 𝑧 dimensions of the space.
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Fig. 2. Kinematic and internal forces of a generic 𝑝th truss connecting node 𝑛𝑘 with
ode 𝑛𝑘,𝑝. The truss has an initial length 𝐿𝑘,𝑝 and its nodes’ initial coordinates are 𝐗𝑘
nd 𝐗𝑘,𝑝. The axial nodal force of the truss is 𝐪𝑝, its current length and orientation are
𝑘,𝑝 and 𝐢𝑘,𝑝 and nodal displacements are 𝐮𝑘 and 𝐮𝑘,𝑝.

here

𝑘,𝑝 =
(𝐗𝑘,𝑝 + 𝐮𝑘,𝑝 − 𝐗𝑘 − 𝐮𝑘)

𝑙𝑘,𝑝
. (3)

he equilibrium between the external and internal forces at the generic
ode 𝑛𝑘 can be expressed as follows:

0𝑘 + 𝜆𝐟𝑘 +
𝑚
∑

𝑝=1
𝐪𝑘,𝑝 = 𝟎 for each 𝑘 = 1,… , 𝑁. (4)

Note that this work does not consider material nonlinearities (i.e., a
inear elastic constitutive law characterizes structural elements). There-
ore, truss stiffnesses assume constant values during the analysis.

.2. The global equilibrium as an optimization problem

In this Section, the global equilibrium of the truss system is math-
matically characterized and formulated as an optimization problem
hose free variables are represented by the Lagrangian parameters of

he system, collected in the vector 𝐮 = [𝐮1,… ,𝐮𝑁 ] and the load mul-
iplier 𝜆. The objective function ( ) that the optimization algorithms
im to minimize is expressed in terms of global unbalance as follows:

(𝐮, 𝜆) =

√

𝐑2
1 + 𝐑2

2 +⋯𝐑2
𝑁

√

𝐟21 + 𝐟22 +⋯ + 𝐟2𝑁
= 0, (5)

where 𝐑𝑘, 𝑘 = 1,… , 𝑁 is the unbalance vector of the 𝑘th node, which
can be easily obtained from Eq. (4). A value 0 is the global minima
of Eq. (5) indicates an equilibrium state of the structure.

The incremental multistep procedure shown in Fig. 3, known in
the literature as arc-length method (Crisfield, 1991), can be adapted to
draw the equilibrium path of the structure in the 𝑑−𝜆 space, where 𝑑 is
a chosen control point, which can coincide with the physical displace-
ment of a structural node or a function of a number of displacements.
3

Fig. 3. Multistep procedure. Variables 𝑑, 𝜆, and 𝛥 respectively are control point,
load multiplier, and discrete steps along the control point dimension for producing an
equilibrium path (curve in black). Any optimal point (a solution that satisfy Eq. (5);
otherwise sub-optimal solution) on this curve and within a radius 𝛥 that satisfies
onstraints in Eqs. (6) and (7) is a feasible solution in terms of its characteristics being
ithin a tolerance proximity to the equilibrium path formed by a vertical hypothesis

oad. Solutions not within this tolerance proximity defined by Eqs. (6) and (7) are
nfeasible or belong to a path concerning non-vertical hypothesis load.

or instance, the control point can be assumed coincident with the
uclidean norm of the vector 𝐮(𝑑 = ‖𝐮‖). This multistep arc-length
rocedure is framed within the equilibrium optimization problem, by
onsidering the equality constraint reported in Eqs. (6) and (7), where
𝑖 and 𝜆𝑖 are the control point and load multiplier at the generic
th equilibrated configuration belonging to the equilibrium path, and
𝑇 − 𝜆𝑇 the corresponding trial values:

((𝑑𝑇 − 𝑑𝑖)2 + (𝜆𝑇 − 𝜆𝑖)2) = 𝛥, (6)

here 𝛥 is a parameter of the procedure governing the discretization
f the equilibrium path; furthermore, if 𝑖 > 1, a second constrain is
onsidered as:

𝑑𝑇 − 𝑑𝑖)(𝑑𝑖−1 − 𝑑𝑖) + (𝜆𝑇 − 𝜆𝑖)(𝜆𝑖−1 − 𝜆𝑖) ≤ 0, (7)

here, 𝑑𝑖−1 and 𝜆𝑖−1 are the values of the control point and load
multiplier at step 𝑖 − 1.

2.3. Challenges of the global equilibrium optimization

The challenging issue with the optimization problem defined in
Section 2.2 is the lack of a properly defined search domain for the
free variables displacement and load multiplier, to be pursued using
gradient-free optimization algorithms. The search domain for the free
variables is only the initial elastic prediction of the structural response
and simple equilibrium considerations.

The unavailability of a straightforward search domain definition
for the space truss structure makes it an ill-posed problem. However,
the gradient-free optimization algorithms allow experimenting with an
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intuitive guess of the search domain. Hence, we formulate this space
truss structure buckling analysis problem as an optimization problem.

The geometric nonlinearities, high physical interaction and sensi-
tivity among displacement variables, and numerous possible imbalance
states for a particular load multiplier make this problem further chal-
lenging. This can be seen later in results Section 4 mentioned as
sub-optimal and local minima solutions.

We, therefore, classify the optimization of Eq. (5) as a nonlinear,
multimodal, unconstrained, continuous, minimization problem whose
search landscape is complex containing many local and global minima,
i.e., its search landscape is rugged.

In order to solve this optimization problem, first, an intuitive guess
was made based on an initial elastic prediction of the structural re-
sponse and simple equilibrium considerations. However, each displace-
ment variable has its own domain, and fixing one min–max domain
range to all variables complicates the search landscape, leading to an
impossible optimization (demonstrated later in Section 4). Therefore,
a number of strategies for search space decomposition discussed in
Section 3 are used in this research to solve this problem as efficiently
as possible.

In this paper, we show experimental approaches considered to
decompose and define search space in order to solve this optimiza-
tion problem. Furthermore, such experimental approaches allowed us
to propose a novel adaptive search space decomposition method for
multistep analyses, denoted as the hypersphere search method or adap-
tive search space decomposition method, representing an efficient and
robust transposition of the arc-length method into the optimization
framework.

3. Methodology

The procedure adopted in this study to solve the optimization
problem defined in Section 2, is based on gradient-free algorithms and
search space partitioning methods characterized by different levels of
complexity. First, an informed decomposition of search space was based
on the equilibrium-path curve (also referred to as baseline equilibrium
path), available for some selected benchmarks, already investigated in
the literature by adopting Newton–Raphson iterative procedures com-
bined with arc-length methods (Hrinda, 2010; Crisfield, 1991; De Borst
et al., 2012). Second, a more sophisticated adaptive search space partition
technique is used.

3.1. Informed decomposition of search space

In this study, we consider two alternative options for decomposing
the search space for this problem. First, we partition the control point
displacement target into several discrete steps as the literature provided
the information on the control point.

Second, in addition to partitioning the control point, we incremen-
tally partition the space for all free displacement variables. Compared
to the first option, the second option was more effective (as discussed
later in Section 4) in finding solutions across the baseline equilibrium
path shown in the literature (Crisfield, 1991, 1996). The performance
of each optimization algorithm is discussed later in the results reported
in Section 4.

These search domain partition strategies highlighted the strengths
and weaknesses of the optimization algorithms in solving this chal-
lenging class of optimization problems. The goal of the space truss
structures optimization was to find solutions across the known equilib-
rium path of the benchmark problems as dense as possible. Therefore,
denseness, coverage of the path, the number of optimal solutions, and speed
of the convergence, among others, were the main criteria for evaluat-
ing the effectiveness of our methodology in solving this nonlinear,

unconstrained, continuous and multimodal, optimization problem. b

4

3.2. Adaptive decomposition of search space

Instead of decomposing the problem search space in a pure discrete
form mentioned in Section 3.1, a method for adaptive decomposition
of search space is proposed in this Section. In this method, we auto-
matically search hyperspheres that define suitable search space for the
multi-step pre-and post buckling analysis of space truss structures.

This is an iterative procedure where the method starts with an initial
seed hypersphere. The initial seed hypersphere is defined by a small
range of the free displacement and load multiplier variables. This is
to simulate a minute displacement of the structure, which is observed
through the control point (node at which vertical load is applied)
dimension.

For this seed hypersphere, the method at first evaluates a few
trail solutions (e.g. five solutions). Then from all optimal solutions, it
searches for a new hypersphere. This process continues until the max
displacement of the control point of a problem is reached (see Fig. 4).

The proposed adaptive search space decomposition method, called
hypersphere search algorithm, finds the most suitable hyperspheres to
support gradient-free optimization algorithms to find the global equi-
librium effectively. The method comprises the following steps:

Step 1. The first step is to initialize a hypersphere 𝐻𝑘 with
center in 𝐜𝑘 for 𝑘 = 1 and radius 𝑟. The search of the centers is
controlled by a 2-dimension vector [𝑑, 𝜆], where 𝑑 is the initial
displacement control point (generally zero) and 𝜆 is the corre-
sponding load multiplier that guarantees the global equilibrium
solution. A gradient-free optimization algorithm then evaluates
one or more trial solutions within this hypersphere.
Step 2. The second center 𝐜𝑘 for 𝑘 = 2 is the farthest point in the
previous hypersphere 𝐻𝑘−1 from its center 𝐜𝑘−1 among all trial
solutions in Step 1 that are optimal (a value 10−5). In other
words, the second center 𝐜𝑘 is set to the solution that has max
value of 𝑑 and is optimal. Then the hypersphere 𝐻𝑘 for 𝑘 = 2
is formed around the center 𝐜𝑘 with radius 𝑟. Similar to Step 1,
one or more trial solutions within this new hypersphere 𝐻𝑘 are
evaluated for obtaining the hypersphere 𝐻𝑘+1.
Step 3. The next center 𝐜𝑘 for 𝑘 = 3 is the farthest point from
the center 𝐜𝑘−1 among all trial solution points 𝐜𝑖 obtained in the
hypersphere 𝐻𝑘−1 and is the point that satisfies the following
condition:

𝐛𝑖 ⋅ 𝐚 < 0 and ‖𝐛𝑖‖ > ‖𝐛𝑗‖, 𝑖 ≠ 𝑗 for all 𝑖 and 𝑗 in 𝐻𝑘−1, (8)

where 𝑖 and 𝑗 are indexes of trial solutions in the hypersphere
𝐻𝑘−1, vector 𝐚 = 𝐜𝑘−2 − 𝐜𝑘−1, and 𝐛𝑖 = 𝐜𝑖 − 𝐜𝑘−1. Once the center
𝐜𝑘 is obtained, a hypersphere 𝐻𝑘 is formed with a radius 𝑟. This
step is shown in Fig. 4.
Step 4. Stop if 𝑘 is reached a max number of hypersphere trails
or a center reached a predefined max displacement 𝑑max. Else set
𝑘 = 𝑘 + 1 go to Step 3 to find other hyperspheres.

The user-defined hyper-parameter of this algorithm is the radius 𝑟,
he number of trial solutions needed to be produced in a hypersphere,
nd the stopping criteria. While the radius 𝑟 depends on the user set
alue, the number of trial solution evaluation depend on the experimen-
ation. The stopping criteria can be set to either an arbitrary sufficient
umber of solutions that may approximately cover equilibrium path
btained by the arc-length method, or to a maximum displacement
alue of the control point dimension obtained by arc-length method
or an intuitive guess that could be made about the buckling of the
tructure).

.3. Experiment setup

As described in Section 3, the optimization is performed by adopting
radient-free algorithms and search of the solution was supported

y space partitioning methods. In this Section, the setups of these
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Fig. 4. Adaptive search space decomposition method (i.e., hypersphere search algo-
rithm). An initial hypersphere 𝐻1 is first constructed based on an input radius 𝑟 and
he center 𝐜1. Hyperspheres 𝐻2 ,… ,𝐻𝑛 are discovered by the algorithm automatically
y taking a boundary point (i.e., a solution within a hypersphere that has the largest
istance from the previous hypersphere’s center). For example, center 𝐜2 has a distance
from center 𝐜1 and center 𝐜3 has a distance 𝐛 from center 𝐜2.

pproaches are described. This methodology is validated on three
enchmarks already investigated in the literature by means of iter-
tive Newton–Raphson procedures arc-length methods and tested on
medium-sized test problem. The three benchmarks consisted in 3D

hallow truss structures, for which the baseline is available from the
iterature, enabling the setting of the min–max displacement and load
ultiplier value. However, these min–max values were an intuitive

uess of the range, i.e., the maximum displacement that the control
oint displacement can take and the range of variability of external
oad. Therefore, the domain range was initially set to the min and
ax values of these benchmark problems in the literature. However,

ptimization algorithms could not find solutions for the first two bench-
ark problems across the equilibrium path shown in the literature, as
iscussed later in results Section 4. Hence, a strategy to decompose
he search space was adopted. Finally, the results obtained for the
hree considered benchmarks were compared with the baseline from
he literature.

.3.1. Gradient-free algorithms for the equilibrium path analysis
This section briefly explains each optimization algorithm used for

he optimization. The first set of algorithms chosen were single solution
ptimization algorithms DIRECT and Simulated Annealing (SA). Both
lgorithms work on a single solution, and they can provide a quick
nderstanding of the problem to be optimized. DIRECT is a pattern
earch algorithm of a class of Lipschitz optimization methods that relies
n a dividing rectangle principle, hence it is called DIRECT (Jones
t al., 1993). SA, a heuristic-based gradient-free algorithm (Kirkpatrick
t al., 1983), probabilistically accepts solutions while exploring the
eighborhood of a search point. The probability of acceptance depends
n an energy factor called temperature that goes to zero from a certain
nitial value in a controlled manner by a factor reducing it in each
teration. This is analogous to the annealing process in metallurgy,
ence the name Simulated Annealing.

The second class of algorithms were swarm intelligence-inspired
opulation-based optimization algorithms: Artificial Bee Colony Opti-

ization (ABC), Ant Colony Optimization (ACO), and Particle Swarm

5

ptimization (PSO). These algorithms emulate the foraging behavior
f the swarm. For example, ABC follows the foraging behavior of hon-
ybees (Karaboga and Basturk, 2008), while ACO follows ants (Socha
nd Dorigo, 2008), and PSO follows the behavior of a flock of birds or a
chool of fish (Kennedy and Eberhart, 1995; Clerc, 1999). Each of these
lgorithms has its own framework and convergence properties. For
xample, ABC maintains three types of honeybees: employed, onlooker,
nd scout bees. ACO uses Gaussian distribution for its pheromone and
olution matrix update. PSO uses an inertia factor (Kennedy and Eber-
art, 1995) (PSO-Std) or constriction factor (Clerc, 1999) (PSO-Const)
o update the velocity and position of particles. However, common
eatures are updating a solution vector for a defined objective function
hat governs the solution’s quality that needs an update in every
eneration of the optimization.

The final class of algorithms and the main focus of this research
s the differential evolution (DE) algorithm from the family of evo-
utionary algorithms, which uses mutation, crossover, and selection
perations on the solution vectors (Storn and Price, 1997). There are
everal versions of the DE algorithm (Opara and Arabas, 2019). After an
nitial performance evaluation (in terms of speed of convergence and
iversity of solutions in multiple runs) of a set of 12 versions of DE
trategies available in Scipy (Scipy, 2021), this paper selects the two
ost promising DE versions: DE/rand/1/bin and DE/best/2/bin. These

wo versions vary in how they select a base vector [randomly (rand) or
est] and the number of differences of vectors (one difference vector or
wo differences of vectors) for the mutation operation in DE. However,
oth do a binomial (bin) crossover.

.3.2. Setup of hyperparameters of the algorithms
Initial trials on benchmark problems were performed to fixate hy-

erparameter values of the algorithms. For DIRECT, except for termi-
ation criteria, there was no other hyperparameter to set. Moreover,
IRECT is a single solution based optimization algorithm. Similar to
IRECT, SA is a single solution optimization algorithm. However, SA
as its other hyperparameters temperature and initial temperature
eduction rate was set to 0.1 and 0.99.

The swarm-based algorithms population size was set to 50, where
ther hyperparameters specific to each algorithm were as follows:
he hyperparameters of ABC was abandonment limit and acceleration
oefficient upper bound and they were set to 0.6 and 1; the hyperpa-
ameters of ACO sample size, selection pressure, and deviation-distance
atio, respectively set to 40, 0.5, and 1; hyperparameters of PSO-Std
nertia weight, inertia weight damping ratio, personal learning coeffi-
ient, global learning coefficient respectively set to 1, 0.99, 1.5, and
.0; and hyperparameters of PSO-Const personal learning coefficient
nd global learning coefficient were equal to inertia weight×𝜙, where
nertia weight = 2∕(𝜙−2+

√

𝜙2 − 4 × 𝜙) for 𝜙 and inertia weight damp-
ing set to 2.05 and 1. Finally, the hyperparameters of DE algorithm
scaling factor bound and crossover rate were set to [0.2, 0.9] and 0.9.
Two versions of mutation ‘‘DE/rand/1/bin’’ and ‘‘DE/best/2/bin were
used.

The initial radius for the adaptive search space decomposition
method (see Section 3.2) was set to 5 and termination condition was
set to max displacement in the baseline of the problems. The rest of the
experiment setting about benchmark problems are described in results
in Section 4 as when a they are introduced.

4. Results and analysis

4.1. Benchmark 1: Eight-member shallow truss structure

The first benchmark problem was a shallow truss structure compris-
ing eight members fully restrained at the base and connected to each
other by a central node (Fig. 5). Each truss has a horizontal length of
12 700mm and a vertical rise of 1000mm. All the trusses have the same
cross-section area, equal to 6450mm2, and Young’s modulus of 70MPa.
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Fig. 5. Eight-Member Shallow Truss Structure: Top view and Side view (dimensions
in mm). The central node of the structure is indicated by a lighter color dot in Top
view and a light color arrow pointer in Side view. The arrow on Side view indicates
a vertical downward external force of 4.45 kN applied on the central node.

he structure is loaded with a concentrated vertical force of 4.45 kN
pplied at the central node.

The search space for the eight-member truss structure has three
egrees of freedom (DoF) corresponding to the three translations of
he central point (𝑁 = 1). Therefore, four variables were subjected to
ptimization, including the control point of the displacement variable
nd one load multiplier variable. The domain range for the experiments
or the displacement was [0mm, 3000mm], and for the load multiplier,
t was set to [−0.2, 1]. All select algorithms were applied to optimize
he eight-member truss structure on the full domain for initial trials.
nitially, 1000 solutions were evaluated. That is, the algorithms were

run for 1000 instances. All algorithms for all 1000 trials converged
to a global optimum, i.e., the precision of the order of 1 × 10−5. The
onvergence speed and variance of the algorithms are shown in Fig. 6.

Fig. 6 shows that ABC converged the fastest, followed by DE/best/2/
in, DIRECT, PSO-Std, PSO-Constriction (PSO-Const), DE/rand/1/bin,
CO, and SA. However, this performance is significant only if the
lgorithms were able to obtain solutions across the equilibrium path—
ig. 7 plots solutions obtained by the algorithms on a control-point and

oad multiplier axis to verify solutions. ABC, DIRECT, and ACO were

6

not able to discover solutions across the equilibrium path. However, the
performances of DIRECT and ACO were better than the performance of
ABC. ABC failed to find any solution on the path except for a value
of 0.0. The other algorithms, SA, PSO-Const, PSO Std, DE/best/2/bin,

E/rand/1/bin, successfully covered the whole equilibrium path in
000 trials. The continuous line reported in the graphs of Figs. 7 and
represents the analytical solution from the literature (Hrinda, 2010;

risfield, 1991; De Borst et al., 2012).
The properties and the framework of the algorithms played a role

n such characteristics of the solutions. For example, the DIRECT al-
orithm divides the rectangle and starts from the initial range, and
artitions are based on the first solution obtained for the objective
unction for a given range. Moreover, since it has a deterministic
pproach toward optimization, it seemingly finds a solution at the
enter of the value of the first variable (load multiplier). Hence, in all
000 trials, it found the exact same solution every time.

The other best-performing algorithms SA, PSO-Const, PSO Std,
DE/best/2/bin, and DE/rand/1/bin, use uniform distribution to initial-
ize the solutions. This has enabled them to cover the full range of the
domain uniformly. On the other hand, ACO’s new solutions are sampled
from a Gaussian distribution, leading to the solutions following the
central tendency (see Fig. 7).

Since DIRECT and ACO were unable to cover the whole of the
equilibrium path, the discrete control-point search space trials were
performed to evaluate if these algorithms have the potential to find
all other solutions for this problem. Both algorithms were able to
cover the equilibrium path (see Fig. 8). However, ACO could densely
cover the equilibrium path, whereas DIRECT shows sparsity for the
higher displacement and load multiplier values. These initial results
helped select fewer best-performing algorithms to optimize the second
benchmark’s problem of the space truss structures.

4.2. Benchmark 2: Sixteen-member shallow truss structure

The second benchmark problem was the Sixteen-Member Shallow
Truss Structure (Fig. 9). The structure has four constraint nodes and five
free nodes (𝑁 = 5). Therefore, it is characterized by 15 DoF. The global
dimensions in the plane are 254mm in each direction, and the global
vertical rise is 100mm. All the trusses have the same cross-section area
of 645mm2 and Young’s modulus of 68 950MPa. The structure is loaded
with a concentrated vertical force of 4450 kN applied at the central node
of the structure in Fig. 9.

4.2.1. Results of the informed search space decomposition methods
The search space for the sixteen-member truss structure comprises

16 variables to be optimized, including the 15 free displacements of

the structure and the load multiplier variable. The domain range of
Fig. 6. Convergence profile of algorithms averaged over 1000 trail solutions, all with optimum equilibrium value 1 × 10−5. Algorithms ABC, ACO, DE/best/2/bin, DE/rand/1/bin,
irect, PSO-Const, PSO-Std, and SA, respectively are in blue, orange, green, red, purple, brown, magenta, and gray; and they are respectively marked with symbols ∙,▾,★,×,⧫, |, <,
nd ■. The shaded width of color around a line represents the standard deviation of the convergence.
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Fig. 7. Eight-Member truss structure optimized solutions generated by searching with a domain setting of [0, 1] for load multiplier and [0mm, 3000mm] for displacement variables
(DoF), including the control point. Each plot is an x–y plane of control point displacement (x-axis) against load multiplier (y-axis). The solutions are shown by blue circles, and
the red line represents the equilibrium path obtained by the standard Arc-length method mentioned in Section 2.2. From top left to bottom right, the algorithms are Direct (top
left), SA, ABC, ACO, PSO-Std, PSO-Const, DE/rand/1/bin, and DE/best/2/bin (bottom-right). For each algorithm, the percentage of successful solutions (pts < 0.001) generated are
indicated in the plots, e.g., DIRECT produced 100% successful points. i.e., 1006 solutions have a precision of 0.001 out of a total of 1006 trials. Similarly, SA produced 848/848
solutions with a precision of 0.001.

Fig. 8. Solutions of Direct (Left) and ACO (Right) generated by decomposing domain of only control point (variable related to central node), which produced discrete sets like
[0, 250], [250, 500],… , [2750, 3000]. For each set, approx 100 trail solutions were evaluated.

Fig. 9. Sixteen-Member Shallow Truss Structure. Left: Top View. Right: Side View. Th central node of the structure is indicated by a lighter color dot in Top view and a light
color arrow pointer in Side view. The arrow on Side view indicates a vertical downward external force of 4450 kN applied on the central node.

7
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Fig. 10. Sixteen Members initial trial solutions. Left: initial trials for all discretized domain (inner-plot shows solution obtained for the experiment on full non-discretized domain
[0mm, 250mm]). Right: Displacement variables (DoF) domain analysis and approximation.
Fig. 11. Optimization of Sixteen-Member shallow truss structure using five algorithms: (Left) Convergence profile of algorithms averaged over solutions with equilibrium value
of 500 and (Right) a closer snapshot of convergence profile with non-converging solutions filtered out. Algorithms ACO, DE/best/2/bin, DE/rand/1/bin, PSO-Const, and PSO-Std
are in blue, orange, green, red, and purple; and they are marked with symbols ∙,▾,★,×,⧫. The shaded width of color around a line represents the standard deviation of the
convergence. The 𝑥-axis indicate number of generations and 𝑦-axis indicate objective as per Eq. (5).
the displacement variables was [0mm, 250mm], and the load multiplier
domain was set to [−0.4, 0.85].

Full domain analysis. After setting an intuitive domain of the vari-
ables of the sixteen-member truss structure problem, the best per-
forming algorithm of the first benchmark, i.e., DE/rand/1/bin was
first applied to solve this sixteen-member truss structure. However,
contrary to the results of the first benchmark, only a few solutions were
obtained in all 1000 trials, and a tiny number of solutions were obtained
on the equilibrium path (see the inner plot in Fig. 10). Therefore, a
decomposed domain analysis procedure (see Section 3.1) was launched
to find a suitable domain for respective variables. Again, the continuous
red line in Fig. 10 indicates the analytical result from the literature,
obtained under the hypothesis of vertical displacement of the central
point.

Domain decomposition analysis. The decomposed domain analysis
procedure partitioned the control point domain and the domain of other
displacement variables. Based on the knowledge from the literature, the
discretization of the control point dimension was straightforward. How-
ever, the discretization of the other variables could not be performed
individually. Hence, an intuitive incremental guess was applied.

The grid space in Fig. 10(left) shows the procedure adopted to
analyze suitable domains for these variables. For each grid space,
50 trial solutions were evaluated. All trial solutions that provided
global-optimum value are plotted on an x–y plane of control point
displacement and load multiplier in Fig. 10(left). The DE/rand/1/bin

provided several solutions within the range [0mm, 225mm] of the

8

control point in good agreement with the analytical solution available
in the literature. Other solutions, far from the analytical curve, are
provided by this optimization algorithm as well. However, these so-
lutions correspond to alternative equilibrium paths characterized by a
non-vertical displacement of the central node.

Fig. 10(right) shows the displacement value distribution of each
variable. The plot in Fig. 10(right) provides the min–max range of
each displacement variable for which global optimum solutions could
be obtained. The knowledge of this min–max range (i.e., displacement
domain knowledge) was then be used by all optimization algorithms.

4.2.2. Results of the optimization on a learned search space
On the obtained knowledge of the domain shown in Fig. 10(right),

ACO, DE/best/2/bin, DE/rand/1/bin, PSO-Const, and PSO-Std algo-
rithms were applied (with the domain setting of each displacement
variable) for stopping criteria of solution accuracy 1 × 10−5 and max-
imum iterations of 50 000. Fig. 11(left) shows each algorithm’s average
(of all solutions, including optimal and suboptimal) convergence pro-
file. The average convergence profile rejects PSO-Const and PSO-Std
algorithms. However, this only means that PSO obtained many poor
(suboptimal) solutions (or even non-converging solutions) that affected
the average convergence profile. A similar result was obtained for
DE/best/2/bin, where poor solutions affected its average convergence
profile. ACO and DE/rand/1/bin show more robustness in this scenario.
They show the ability to escape local minima in most cases, which
is observed from these two algorithms’ smooth average convergence

profile in Fig. 11(left).
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Fig. 11(right) offers a microscopic view of the convergence of these
lgorithms. In Fig. 11(right), all solutions converged to a suboptimal
quilibrium function [Eq. (5)] value of 500, selected after a few anal-
ses of suboptimal points to see how best the algorithm’s profile could
e studied. The convergence profile is the average of all converging
olutions to this suboptimal value, and all non-converging (all solutions
tuck to local minima or did not converge at all) were filtered out. In
his plot, DE/best/2/bin is the fastest converging algorithm, with all its
elect solutions being converged to global minima, i.e., 1 × 10−5 in less
han 5000 iterations.

Similarly, all solutions of the DE/rand/1/bin algorithm converged
o global minima and this algorithm was the second-fastest. PSO-Const
nd PSO-Std were the subsequent fastest converging algorithms, where
SO-Const showed smoother convergence than the PSO-Std. However,
he average convergence profiles of both reached near a suboptimal
quilibrium value of 500 in 5000 iterations. Finally, the ACO algo-
ithm’s convergence was the last among this set of algorithms, and it is
he slowest to reach the suboptimal value of 500.

The convergence profiles analysis compared these algorithms in
erms of their ability to escape local minima, speed of convergence,
nd the ability to find global optimum solutions. However, the ac-
uracy of solutions of this class of space truss structure problem is
lso about how the solution compared to the analytical solution from
iterature like arc length (Hrinda, 2010; Crisfield, 1991; De Borst et al.,
012) for achieving the equilibrium path characterized by a verti-
al displacement of the central node. Therefore, the filtered solution
btained by ACO, DE/best/2/bin, DE/rand/1/bin, PSO-Const, and PSO-
td in Fig. 11(right) were plotted on an x–y plane of control point
isplacement and the load multiplier in Fig. 12.

olutions accuracy analysis against the analytical curve. Fig. 12
lots suboptimal solutions in cyan and optimal solutions in blue. As
hown in Fig. 12 (row 1), the ACO algorithm, although accurate in
inding solutions on the equilibrium path, was only able to find subopti-
al solutions. However, the discrete domain analysis along the control
oint displacement dimension was performed for generating 100 more
rial solutions of ACO with 100 000 iterations as its stopping criteria.
his analysis improved the results, and there were several optimal
olutions on the equilibrium path; however, they were mainly scattered
cross the path.

Similar to the ACO algorithm, PSO-Std and PSO-Const were unable
o find any near-optimal solution in 50 000 iterations. Additionally,
SO-Std and PSO-Const solutions were scattered (mostly belong to
lternative equilibrium paths characterized by a non-vertical displace-
ent), and rarely solutions were on the equilibrium path characterized

y vertical displacement (see cyan points in row 2 of Fig. 12). Since PSO
ersion solutions were spread across the full domain of the problem,
nlike ACO, it was not required to discretize the domain for further
nalysis. Instead, an analysis involving generating additional 100 new
rial solutions for a 100 000 iteration as stopping criteria was performed.
ncreasing iteration was for testing PSO robustness was evident from
he fact that the solutions spread across, and the solutions were closer
o suboptimal value than ACO (see Fig. 11(right)). However, even
n this analysis, PSO-Std could not find any near-optimal solutions,
nd although PSO-Const found many near-optimal solutions, they were
ainly inaccurate when compared with the required equilibrium path

haracterized by vertical displacement.
In contrast to ACO and PSO algorithms, DE versions were able to

ind a high percentage of accurate, near-optimal, and optimal solutions
Fig. 12, last row). Interestingly, the DE version DE/rand/1/bin was
ore accurate than DE/best/2/bin. A possible explanation is that pre-
ature convergence to local minima is more frequent in DE/best/2/bin

han in DE/rand/1/bin. This is because solutions of DE/best/2/bin
tart following the local best solution, and if the best solution finds a
rajectory leading to local minima on the hypersurface of the solution
earch space, then the DE/best/2/bin will not converge to global min-
ma. This fact is evident in Fig. 11(left), where DE/best/2/bin average
 u

9

onvergence profile is poorly affected by solutions that are stuck into
ocal minima.

Since both DE/rand/1/bin and DE/best/2/bin were able to provide
high percentage of near-optimal and accurate solutions, it was not

ecessary to do either a discrete or an extensive iteration analysis. How-
ver, many solutions were not on the equilibrium path characterized by
ertical displacement. Rather, many solutions belong to the equilibrium
ath of varied characterizations. This is a disadvantage as it is only
ossible to pick a solution and analyze the equilibrium, but the space
russ structure’s equilibrium path (or a buckling direction) could not be
bserved clearly for the hypothesis’s vertical downward force. Hence,
n equilibrium path identification analysis was performed.

quilibrium path characteristics identification analysis. A cluster-
ng analysis using the DBSCAN algorithm (Ester et al., 1996) was
erformed to analyze whether a few sets of solutions follow similar
roperties and whether they can be grouped together that identify
articular equilibrium path characteristics. The DBSCAN algorithm was
hosen because its characteristics to scan through point cloud. The
canning of the neighborhood of the point cloud formed by solutions
ere also required for the equilibrium path characteristics identifi-

ation, where the nearest connected points were expected to cluster
ogether to represent particular path characteristic. Fig. 13 shows the
lustering analysis results on DE/rand/1/bin solutions, and it does find
set of solutions that appear to follow particular equilibrium path

haracteristics. Hence, one can choose a cluster (a color) representing
articular equilibrium path characteristics.

One advantage of clustering analysis is that it offers several equi-
ibrium paths compared to the standard civil engineering Arc-length
ethod. However, solutions are not in order, and this approach pro-
uces too many equilibrium paths of varied unknown characteristics,
specially many belonging to non-vertical displacement. Moreover, this
nalysis leaves with another issue, i.e., a cluster selection problem
eeded to be solved if one would like to choose only a single equi-
ibrium path. Therefore, a more efficient method was required. In
his research, a new algorithm called hypersphere search algorithms
s presented for solving these class problems as accurately as possible.

.2.3. Results of the adaptive search space decomposition method
Further analysis on the sixteen members truss structure problem

as performed through the proposed hypersphere search algorithm.
he algorithm started with a small domain of [−10mm, 10mm] for the
isplacement variables and [−0.2, 0.2] for the load multiplier variable.
irst, a set of 5 trial solutions were evaluated in step 1 pertaining to
ypersphere initialization and first hypersphere center identification of
his algorithm (cf. Section 3.2). Then, a radius 𝑟 = 5mm was used for the
onstruction of the next hypersphere around the obtained center, and
nother set of 5 trial solutions were evaluated to choose the next center
or the next hypersphere, and this process continued until the control
oint reached the fixed maximum value of 250mm or the maximum
umber of 1000 trials was reached.

Fig. 14 shows the results of the hypersphere search algorithm. The
btained centers are shown in red, and all other optimal solutions are
hown in cyan. This analysis has produced accurate solutions and a
nique equilibrium path characterization for the vertical displacement.
he only limitation of this method is the difficulty of this ill-posed
onlinear post-buckling analysis, where this algorithm finds it computa-
ionally challenging to search the next hypersphere where the structure
as reached its breaking point (buckling point). That is, the radius
= 5mm for the hypersphere seems unable to find the next appropriate
ypersphere due to sharp and sudden change in the search space (see
blue-shaded spike of the computational needs). This poses a highly

hallenging task for optimization algorithms.
Another set of experiments was done to fine-tune user-defined

yperparameter radius 𝑟 of the hypersphere search algorithm. The first
rial was to reduce to radius 𝑟 by a factor of half each time it was

nable to find the next hypersphere (i.e., when it reached the breaking
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Fig. 12. Quality of solutions (in blue solutions with a precision of 0.001 as their equilibrium value and solution in cyan are with precision 500) produced by optimization
algorithms over 10 000 generations and 100 000 generations for ACO-Discrete and PSO-100K versions. Arc-length method based equilibrium path is shown in red. From top-left to
bottom-right algorithms are ACO, ACO (with a discrete domain of control points over 100 000 generations), PSO-Std, PSO-Const, PSO-Std with 100 000 generations, PSO-Const with
00 000 generations, DE/rand/1/bin, and DE/best/2/bin.
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oint). This was done by making radius 𝑟 adaptive to the iteration of
ypersphere construction as per this expression: 𝑟new = 𝑟prev × 0.5.
he analysis in Fig. 15(left) shows that the algorithm can follow the
harp breaking path; however, it is computationally challenging and
low. This is because eventually, the hyperspheres become small and
nfeasible for the algorithm to continue. The computational effort of
his stage is shown by the spikes (peak values) of computational effort
n Figs. 14 and 15.

Another trial was an additive approach where radius 𝑟 was gradually
ncreased by a value of 5 mm, i.e., 𝑟new = 𝑟prev +5. Fig. 15(right) shows
he algorithm was able to escape the breaking point, but it deviated
rom finding an exact unique path, and it jumped to other feasible
olutions (belonging to non-vertical load) like the many alternatives
ound in clustering analysis in Section 4.2.1.
 t

10
.3. Benchmark 3: Twenty four member shallow truss structure

The third benchmark, represented in Fig. 16(left side), is a space
russ structure composed of 24 trusses, whose axial rigidity is 960.5 kN,
even free nodes, and 21 free displacements. The permanent load
omprises a vertical force of 50 N applied on the central node and six
ertical forces applied on the other free nodes of the structure. The
tructure has been analyzed in Rezaiee-Pajand and Alamatian (2011)
sing a dynamic relaxation method. Therefore, the load path curve of
he structure, referring to the vertical displacement of the central node,
s known in the range from 0mm to 50mm. Fig. 16 (right side) shows the
oad–deflection curve of the central node and the solutions provided by
he adopted optimization procedure. The two critical points are located



V. Ojha, B. Pantò and G. Nicosia Engineering Applications of Artificial Intelligence 117 (2023) 105593

p

a
t
m

t
s
t
r
c
o
r
i
m
t
d
m

Fig. 13. Clustering of solutions (obtained by DE/rand/1/bin algorithm) for identifying different feasible characteristics of equilibrium path (in different color circles).
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t
s

Fig. 14. Quality of solutions produced by the hypersphere search algorithm with input
radius 𝑟 = 5mm. Solutions in blue are trial solutions of respective hypersphere whose
centers are indicated in red. The computational effort in terms of normalized (between
−0.4 and 0.5) total number of DE generations spent per mm displacement is shown in
shaded blue area. The average computation effort is 8125 generations and max (i.e the
eak) computation effort is 274 168 generations.

pproximately at 8mm and 30mm. Between these displacement values,
he structural response is characterized by an evident snap-through
echanism.

The hypersphere method for the adaptive search space decomposi-
ion together with DE algorithms provided a good-dense distribution of
olutions in most of the investigated range of displacements, including
he two critical zones where a limited number of iterations were
equired for the convergence. The proposed methodology was also
apable of describing the snap-through path with a significant number
f solutions. However, a significantly higher number of iterations were
equired in this response stage. In addition, from the comparison, it
s possible to observe that the solutions provided by the proposed
ethodology follow the baseline with a good level of accuracy within

he entire investigated range of displacements. Finally, Fig. 17 shows
ifferent deformed shapes of the structure at different displacement
agnitudes.
11
.4. Test problem: spatial reticular beam structure

This Section presents the results of the analysis on a medium space
russ structure representative of a 3D steel beam supporting a roof
ystem. The structure has a span of 8000mm, a width of 2000mm, and

a height of 750mm, arranged with the geometrical layout shown in
Fig. 18(row 1). The beam is composed of 33 trusses, 10 free nodes, and
30 DoF. Each truss has 2500mm2 of cross-section area and 200 000MPa
of Young’s modulus. Four simple supports are considered at the two
ends of the beam, and the external load is represented by four vertical
forces, equal to 100 kN, applied at the beam top nodes.

On this problem, DE/rand/1/bin and DE/best/2/bin algorithms
were applied as they were the most suitable algorithms for this class of
structure analysis problem in the benchmark problem optimization. The
goal was to find a few feasible solutions to approximate an equilibrium
path containing pre-and post-buckling stages of a 3D steel beam. Hence,
the variable domain setup was [0mm, 2500mm] for the displacement
and [1, 300] for the load multiplier. In this setting, both DE algorithms
versions were applied with stopping criteria of 1 million iterations or
convergence accuracy of 1 × 10−5. Several instances of both versions of
DE reached an accuracy of 1 × 10−5. However, when filtering solutions,
DE/rand/1/bin was found to be producing a greater number of solu-
tions that were accurate compared to DE/best/2/bin. Hence, solutions
obtained by DE/rand/1/bin are shown in Fig. 18. In Fig. 18, rows 2 to
5 show deformed shapes of four equilibrated and feasible solutions.

A rough representation of the equilibrium path is represented in
Fig. 19 in terms of maximum vertical displacement of the structure and
the load multiplier to characterize these solutions. The dashed lines
connecting the solutions represent qualitatively the equilibrium path
between these solutions which can be drawn by considering a refined
set of solutions. However, despite the limited number of solutions
considered, it was possible to highlight the main characteristics of the
pre- and post-buckling behavior of the structure.

More in detail, it is possible to observe that solutions A and B belong
to the stable equilibrium (pre-buckling) region, where the increase of
deformations corresponds to the increase of the external loads and the
deformed shape is symmetric (cf. Figs. 18 and 19). On the other hand,
solution C shows a buckling behavior (cf. Figs. 18 and 19) involving the
truss elements of the right part of the beam, leading to the decrease of
the load multiplier and the loss of the symmetry of the deformed shape.
Finally, Solution B is characterized by the global buckling with the
overturning of the structure (cf. Figs. 18 and 19). After this point, the
system behaves as a catenary rather than a beam, and the equilibrium
is again stable.
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Fig. 15. Sixteen-Member solutions produced by hypersphere search algorithm with input radius 𝑟new = 𝑟prev × 0.5 (Left) and with input radius 𝑟new = 𝑟prev +5mm (Right). Reduction
of the radius make algorithm stay at the buckling point and increase of the radius lead to non-vertical hypothesis equilibrium stages/path. Solutions in blue are trial solutions of
respective hypersphere whose centers are indicated in red. Both experiments in Left and Right were started from a ‘‘center’’ immediate behind the breaking points (see computational
spike) obtained by the experiment in Fig. 14.
Fig. 16. Twenty Four Member Shallow Truss Structure. Left: Top View and Side View of the structure. The central node of the structure is indicated by a lighter color dot in Top
view and a light color arrow pointer in Side view. The arrow on Side view indicates a vertical downward external force of 960.5 kN applied on the central node. Right: The results
of adaptive search space decomposition method applied on this benchmark. Blue circles are optimal solution, red circles are centers of the hyperspheres of the adaptive search
space decomposition method. Shaded curve area is the computational effort in terms of normalized (between −5 and 10) sum of the number of generations spent of searching
solutions at a hypersphere center per mm displacement. The average computation effort is 24 468 generations and max (i.e the pick) computation effort is 37 369.
5. Discussions

This paper presents a novel methodology based on gradient-free
optimization algorithms for assessing the nonlinear structural response
of space truss structures subjected to large displacements, accounting
for geometrical nonlinearities. This methodology allows for evaluating
the load path of the structure, including stable and unstable equilibrium
stages, thus characterizing its post-buckling behavior and assessing
the vulnerability to progressive collapses. Compared to the standard
12
Newton–Raphson procedures, the proposed methodology does not re-
quire the assemblage and update of the global stiffness and geometric
matrices (Section 2.2). Moreover, it is not exposed to the potential nu-
merical issues affecting the Newton–Raphson and arc-length methods
in correspondence to the critical points, where the equilibrium changes
from the stable to the unstable.

This research applied four classes of optimization algorithms: deter-
ministic optimization algorithm (DIRECT), single solution-based algo-
rithm (Simulated Annealing), swarm inspired algorithms (ABC, ACO,
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Fig. 17. Deformed shapes and equilibrium stages of twenty four member shallow truss structure member space truss structure.
nd PSO), and an evolutionary algorithm (DE) (Section 3.3.1). The DE
lgorithm was found to be better at converging among all algorithms
rom our initial trial of three benchmark problems. Hence, the scope
f this work mainly relied on the DE algorithm as it was competitively
he most successful in solving this class of problems. Finally, this study
eveloped a multistep analysis algorithm, the hypersphere algorithm
or the adaptive decomposition search space to support gradient free
lgorithms effectively describe the structure load path.

Three benchmarks of 3D truss structures and one test case represen-
ative of a medium-sized structural problem were tackled as optimiza-
ion problems. The optimization problem associated with the global
tructural equilibrium (Section 2.2) can be classified as a nonlinear,
ultimodel, unconstrained minimization optimization problem, which
resents significant challenges to optimization algorithms. It was highly
hallenging to solve as variables were highly sensitive to each other
13
due to their physical interactions (see Section 4). Moreover, this op-
timization problem has a significantly large number of local minima.
Additionally, this problem has multiple global minima, but the global
minima were strongly linked to the load multiplier variable and the
direction of loadings (downward forces on a structure), making this
problem a nonlinear, multimodal, unconstrained optimization problem.
Based on the results of numerical experiments conducted in Section 3,
it was possible to draw the following conclusions:

• The DIRECT algorithm was able to find solutions for the first
benchmark but could not explore any other solutions except when
the search space was manually partitioned to help it find other
solutions and when the search space was highly restricted after
domain analyses (cf. Figs. 7 and 8). Apart from that, DIRECT
struggled to find any other solutions to benchmark problems. This
is because the hyperspace became ill-defined or search space too
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Fig. 18. Equilibrium stages of 3D reticular beam structure optimized using DE algorithm version DE/rand/1/bin. Lighter color arrows (on Side view and Top View) indicates the
application of the vertical downward force (𝑃0 = 100 kN) applied on the nodes 𝑛1 , 𝑛2 , 𝑛3, and 𝑛4 of 3D reticular beam structure. The undeformed (original) structure shapes are
drawn with black lines and deformed structure shapes are drawn with blue lines. The structure shapes 2D view is in the left column and their 3D view is in the right column.
All deformed shapes presented achieved an accuracy of 1 × 10−5 on the objective function Eq. (5). Row 1 is original structure and rows 2 (Shape A), 3 (Shape B), 4 (Shape C), 5
(Shape D) are deformed shapes for respective applied external lead multipliers values 25.6302, 158.6989, 13.5174, 55.8157. The deformed shapes A, B, C, and D respectively has
their control point displacements 274.2566, 921.2034, 1482.2, and 1943.6.
complex for DIRECT to work properly. A similar observation is
applied to the Simulated annealing algorithm, which was able to
solve the first problem, a small benchmark problem consisting of
four variables, but SA could not effectively solve the 16 variables
sixteen-member problem.

• ACO demonstrated a tendency to find a solution only at the center
of the domain. A close examination suggests that the ACO uses
Gaussian distribution to generate new solutions in its iterations,
and that may lead the solutions following the denser region of
the search space (cf. Figs. 7 and 12). However, this observation
is merely a hypothesis given the nature of this algorithm and this
problem as observed during the experimentation.

• Swarm-inspired PSO algorithms were able to solve the first bench-
mark, but they had relatively poor performance on the second
benchmark (cf. Figs. 7 and 12). The DE versions were the best
performing algorithms for this class of ill-posed problems.
14
• Despite being the best performing, DE versions were unable to
find the expected number of accurate solutions on the equilibrium
path (Fig. 10). Only after a domain decomposition analysis to
better inform the algorithms about the domain range of variables,
DE versions were able to find a high percentage of accurate
solutions (Figs. 10 and 12).

• Among DE/best/2/bin and DE/rand/1/bin, the DE/rand/1/bin
was found to be best performing for such challenging opti-
mization problems; the convergence profiles of both show that
DE/best/2/bin tended to fall into local minim more often than
the DE/rand/1/bin. This was attributed to solutions following the
local best solution leading to local minima (Fig. 11).

• On the test problem, the 3D reticular beam, which is a real
medium-size structure, DE/rand/1/bin, like in the case of the
second benchmark, outperformed DE/best/2/bin. It was able to
find more optimal solutions for the test problem 3D reticular
beam. The results of DE/rand/1/bin presented in Section 4.4
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Fig. 19. Pre- and post buckling equilibrium states of the 3D reticular beam. These states are obtained for a multistep analysis mentioned in Fig. 3. The dotted line is the hypothesis
quilibrium path connecting the obtained states for this test problem.
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have high precision and produce solutions for both pre- and
post buckling stages (Fig. 18). These solutions allowed producing
hypothesizing the equilibrium path (Fig. 19).

• The proposed hypersphere algorithm, i.e. adaptive search space
decomposition method, incrementally constructed hyperspheres
using the knowledge from the previous hyperspheres (Section 3.2).
This method helped DE find solutions accurately, and its per-
formance was comparable to the arc-length method used in civil
engineering for the equilibrium path analysis (Figs. 14 and 16).

• The main challenges with the proposed adaptive search space
decomposition method were to tune the value of the user-defined
hyperparameter radius of the hyperspheres, which included
whether to fix it a single value for all iterations or make it
adaptive to iterations (Section 4.2.3). Additionally, this algo-
rithm suffers from an obvious issue concerning sudden and sharp
change in the hypersphere’s domain at the breaking/buckling
point of the structure. Since the buckling point changed the
domain sharply and suddenly, this algorithm struggled to find the
next hypersphere (Fig. 15).

In summary, the main outcome of this research is to demonstrate
hat the use of heuristic-based optimization algorithms can be adopted
or solving nonlinear structural problems, in particular for assessing
he geometrically-nonlinear response of space truss structures, which
re particularly prone to show complex, unstable equilibrium stages
nd snap-through mechanisms. This outcome was achieved by suc-
essfully solving three benchmark problems to a high degree of ac-
uracy and provided several optimal solutions for the test problem
hat helped hypothesize an equilibrium path connecting four pre- and
ost buckling equilibrium states (solutions). These presented results
emonstrate that the proposed procedure can be adopted to describe
omplex post-buckling behaviors of large structural systems. Therefore,
his methodology can represent an effective alternative approach to
ewton–Raphson strategies for buckling analyses of truss structures
r combined with them to improve the robustness and accuracy of
tructural analyses.

This research provided solutions to this challenging nonlinear, mul-
imodel, unconstrained minimization optimization problem, which the
ptimization research community can consider as a testbench to test
nd evaluate new optimization algorithms. This research was able
o solve this multimodel optimization problem by running various
nstances. However, one would ideally run a single instance to find as
any solutions as possible. For example, the population diversity of DE

the best performing algorithm for this set of problems) was extremely
ow, i.e., almost all individuals in the population produce extremely
imilar solutions. Hence, only one point on the equilibrium path could

e considered in one instance of a run. Therefore, this problem can p

15
be presented as a test problem to assess the quality of an algorithm’s
diverse solutions.

Additionally, the number of iterations required for solving problems
with increasing DoF (free variables) was exponentially increasing. For
example, space truss structure optimization of 4 variables took on aver-
age between 150–500 iterations, 16 variables took on average between
000–10 000 iterations (for some solutions, it took larger than 10 000
terations depending on the position of solutions on the equilibrium
ath), 21 variable took 20 000–25 000 iterations, and 30 variables took
bout 100 000–150 000 iterations. Hence, the dimension of this problem
s also presenting significant challenges to optimization algorithms. In
ummary, this test problem presents challenges to optimization algo-
ithms to produce accurate and diverse solutions with high convergence
peed.

. Conclusions

This work presents a novel analysis methodology based on gradient-
ree optimization algorithms for the nonlinear structural analysis of
pace trusses. The proposed methodology formulated the optimization
f the global equilibrium of the system as a nonlinear, multimodal, un-
onstrained, continuous optimization problem. This problem is solved
ithin a new effective multistep analysis procedure providing the
onlinear load path of the system. The proposed methodology can rep-
esent an effective method, alternative to Newton–Raphson procedures
r combined with them for nonlinear post-buckling analysis of real
tructural systems.

The search landscape of this problem and the interaction between
he free (displacement) variables pose significant challenges to existing
ontinuous optimization algorithms to produce diverse and accurate
olutions with high convergence speed. In this research, a number
f strategies for search domain decomposition are presented. Con-
equently, a novel adaptive research space partition method, called
ypersphere search algorithm, is proposed and applied to solve this
roblem. This algorithm iteratively moves through the search landscape
f the problems to find as many accurate solutions as possible to
rovide the complete load-path curve of the structure.

Among the different investigated algorithms, the Differential Evo-
ution (DE) algorithm is identified as the most competitive algorithm
o solve this class of problems. Therefore, DE algorithms were applied
o solve a test problem concerning a 3D medium-sized reticular beam.
s a result, the algorithm optimally produced deformed equilibrium
hapes and hypothesis equilibrium path, proving the capability to the

rocedure to be applied for assessing real structural systems.
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