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ABSTRACT: The ice shelf–ocean boundary current has an important control on heat delivery to the base of an ice shelf.
Climate and regional models that include a representation of ice shelf cavities often use a coarse grid, and results have a
strong dependence on resolution near the ice shelf–ocean interface. This study models the ice shelf–ocean boundary cur-
rent with a nonhydrostatic z-level configuration at turbulence-permitting resolution (1 m). The z-level model performs well
when compared against state-of-the-art large-eddy simulations, showing its capability in representing the correct physics.
We show that theoretical results from a one-dimensional model with parameterized turbulence reproduce the z-level
model results to a good degree, indicating possible utility as a turbulence closure. The one-dimensional model evolves to a
state of marginal instability, and we use the z-level model to demonstrate how this is represented in three dimensions. In-
stabilities emerge that regulate the strength of the pycnocline and coexist with persistent Ekman rolls, which are identified
prior to the flow becoming intermittently unstable. When resolution of the z-level model is degraded to understand the
gridscale dependencies, the degradation is dominated by the established problem of excessive numerical diffusion. We
show that at intermediate resolutions (2–4 m), the boundary layer structure can be partially recovered by tuning diffusiv-
ities. Last, we compare replacing prescribed melting with interactive melting that is dependent on the local ocean condi-
tions. Interactive melting results in a feedback such that the system evolves more slowly, which is exaggerated at lower
resolution.

KEYWORDS: Ice shelves; Boundary currents; Shear structure/flows; Turbulence; Model comparison; Parameterization

1. Introduction

The Antarctic Ice Sheet is a significant reservoir of water,
holding the equivalent of 57.9 6 0.9 m in sea level rise
(Morlighem et al. 2020). Since the early 1990s, West Antarctica
has experienced considerable ice sheet mass loss, which has ac-
celerated over time (Paolo et al. 2015; Shepherd et al. 2018).
This ice loss is predominately accounted for by ocean-driven
melting beneath floating ice shelf extensions of the ice sheet
(Rignot et al. 2013). Enhanced ablation at the ice shelf–ocean
interface leads to reductions in ice sheet buttressing and sub-
sequent ice sheet retreat (Pritchard et al. 2012; Gudmundsson
et al. 2019). If we are to address growing concern around ice

loss and global sea level rise, it is critical that we understand
the processes behind ocean-driven ice shelf melt and use this
insight to constrain estimates of melt in ocean models.

Ice shelf melting is dependent on the transfer of heat and
salt across the ice shelf–ocean interface. The transfer of heat
and salt is, in part, determined by large-scale external factors
such as the time-variable delivery of heat from the open ocean
(Dutrieux et al. 2014; Jenkins et al. 2018). However, the
near-boundary region is also important and often exhibits
a buoyancy-driven boundary current that regulates the trans-
fer of scalars across the interface. The dynamics within the
boundary current dictate the turbulent heat flux and therefore
control the level of heat and salt that reaches the ice.

Despite recent advances in our understanding of the ice
shelf–ocean boundary current (e.g., Jenkins 2016; Mondal
et al. 2019; Jenkins 2021), much remains unknown about the
dynamics of the current. Among the unknowns are the influ-
ence of Ekman rolls, which arise from a shear instability
in the Ekman layer and have long been observed in the atmo-
sphere (Brown 1980). Although there is yet to be observa-
tional evidence of their existence within the ice shelf–ocean
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boundary current, Ekman rolls were recently identified in
simulations applicable to Larsen C ice shelf (Vreugdenhil et al.
2022).

The boundary current is suggested to emerge as a well-
mixed turbulent layer, separated from the far field by a mar-
ginally stable pycnocline (Jenkins 2021). Within the boundary
current there is a frictional sublayer where the flow interacts
with the solid boundary. Melt rates and turbulent transfer
within this ice shelf–ocean boundary layer are commonly rep-
resented by the three-equation model (Holland and Jenkins
1999), adapted from theory of the sea ice–ocean boundary
layer. This model uses simultaneous equations to describe the
conservation of heat and salt across the ice–ocean interface,
and represents phase changes via the liquidus condition:

riabLi 5 cwr0u*GT(Tw 2 Tb), (1a)

riabSb 5 r0u*GS(Sw 2 Sb), (1b)

Tb 5 l1Sb 1 l2 1 l3Pb, (1c)

where l1, l2, and l3 are constant coefficients; Pb is pressure;
T and S are temperature and salinity; L is the latent heat of
fusion; cw is the specific heat capacity; ab is the ablation rate;
subscript i, w, and b represent ice, ambient mixed layer, and
ice–ocean boundary, respectively;

u* 5 C1/2
d |uhw| (2)

is the friction velocity; Cd is the drag coefficient; and uhw is the
horizontal velocity vector in the mixed layer. The three-equation
model estimates interfacial fluxes of heat and salt based on
temperature and salinity differences across the ice shelf–ocean
boundary layer and assumes that Tw and Sw are sampled from
within a well-mixed region outside of the boundary layer.

In ocean models, grid size limits the ability to resolve
boundary processes at the spatial scales important for the de-
livery of heat and salt to the ice shelf–ocean interface. The
rate and distribution of melting in models strongly depends
on the grid layout and resolution (Losch 2008; Schodlok et al.
2016; Gwyther et al. 2020). Models are typically configured
with the three-equation parameterization at the boundary, de-
signed to account for the boundary layer. The ability of the
model to capture processes outside of the boundary layer is
reliant on a combination of the resolved dynamics and generic
subgrid-scale mixing schemes, with no explicit parameteriza-
tion for the boundary current. In a z-level model, vertical
resolution dictates the length scale over which the three equa-
tions act and the degree to which the boundary current is re-
solved. In many cases, constraints on resolution mean that
grid size can approach or exceed the length scale of the entire
boundary current. As a result, representation of the boundary
current is omitted, and it is instead parameterized by the three
equations. Although tuning of coefficients can compensate
for the deficiencies of this approach, the implementation of
the three-equation model to represent the entire boundary
current is not appropriate, because this parameterization is
formulated strictly for the boundary layer. Until models

consistently resolve the boundary current, uncertainty will re-
main for estimates of heat transport toward the ice shelf–
ocean interface. A resolution-independent parameterization
of the full boundary current would mitigate these issues.

To accurately parameterize the ice shelf–ocean boundary
current, there is a need to understand both the real physics
and the degree to which model simulations capture these phys-
ics. The task is then to parameterize the difference between the
two. Since model representation of physical processes varies
with grid resolution, the difference between model and reality is
not necessarily uniform across model resolution. We seek to ad-
dress this by providing a basis on which to develop a resolution-
independent ice shelf–ocean boundary current parameterization.
Our investigation is complementary to a recent study that ex-
plores resolution dependence of a one-dimensional model,
which combines the three-equation model with a resolution-
dependent stress parameterization at the ice shelf–ocean
boundary (Burchard et al. 2022). Here we focus more directly
on representation of the boundary current within three-
dimensional z-level models.

We begin with intermodel comparisons of different models
against a z-level model at turbulence-permitting scales (1-m
resolution). The z-level simulations use the Massachusetts
Institute of Technology general circulation model (MITgcm;
Marshall et al. 1997a,b; Adcroft et al. 2022). The first compari-
son is made against a recently developed one-dimensional
model (Jenkins 2016, 2021), where mixing is fully parameterized.
We then compare against a three-dimensional large-eddy simula-
tion (LES; Vreugdenhil et al. 2022). Both comparison models
use coordinate systems that are rotated parallel to the ice base,
removing any effect of stepped topography, and use state-of-the-
art mixing schemes designed for the setting. The mixing schemes
of the one-dimensional model are derived from previous efforts
on the sea ice–ocean boundary layer (McPhee 1994, 1999), while
the LES calculates subgrid-scale mixing using the anisotropic
minimum dissipation model (AMD; Rozema et al. 2015). None
of the three approaches are regarded as representing the truth,
but we use the comparison to identify discrepancies and com-
monalities that arise from each approach. The LES is assumed
to give a best estimate of the dynamics, and we use these simu-
lations to investigate the ability of the z-level model to represent
the ice shelf–ocean boundary current. The chosen resolution of
the three-dimensional models is fine enough to observe Ekman
rolls similar to those identified by Vreugdenhil et al. (2022).

Once the fidelity of the z-level model is assessed at high res-
olution, it is possible to diagnose the degradation of dynamics
as horizontal and vertical resolution is reduced from 1 to 16 m,
providing insight into the resolution dependency associated with
model approximation of subgrid-scale processes. In comparison,
previous evaluations of resolution dependence have been on
cavity-scale environments, where vertical resolutions of 10–450 m
(Losch 2008) and 2–20 m (Gwyther et al. 2020) are used. Turbu-
lent boundary dynamics are not the focus of these studies,
and their horizontal resolutions of 6–11 km (Losch 2008) and
2 km (Gwyther et al. 2020) do not permit turbulence. A
dedicated turbulence-permitting examination of resolution
dependence is yet to be done. We investigate the resolution
dependence with two representations of the ice shelf–ocean
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boundary condition: The three-equation model and a constant-
flux boundary condition. This allows us to delineate the effects
of including meltwater feedbacks in the system.

Section 2 outlines the methods, detailing the z-level model
configuration and novel adjustments made to model code that
are necessary for this study. Section 3 introduces the LES and
one-dimensional configurations. The models are then com-
pared and contrasted against the z-level model, and the un-
derlying physics of the boundary layer are described. Section 4
presents the results of varying model resolution and discusses
the grid-dependent dynamics. Section 5 provides the conclusions
and discussion on further avenues of exploration.

2. Modeling

This study investigates the initial-value problem of the ad-
justment of a sub–ice water column to specified initial condi-
tions, with a sloped ice base conducive to a buoyancy-driven
current (e.g., Jenkins 2016, 2021). To configure a turbulence-
permitting model, simulations must be high resolution, O (1)m.
Modeling entire ice shelf cavities at this resolution is not possi-
ble, and thus, we chose small domain sizes and focus on the
boundary layer at the base of an ice shelf. Incorporating a
buoyant current requires periodic boundary conditions in the
along-slope direction with an infinite sloping ice base. In both
the one-dimensional and LES models, this is achieved by rotating
the coordinate system to align with the ice shelf base (Fig. 1a).
For the z-level model, we keep the coordinate system aligned
with gravity and instead vertically shift the periodic boundary
conditions (Fig. 1b). This is dynamically equivalent to rotating
the domain but has the advantage that the ice base and mixing
are represented exactly as they would be in a cavity-scale model.
In this section, we outline the z-level model along with details of
the boundary shift. Particulars of the one-dimensional and LES
configurations are given in sections 3a and 3c.

a. Shifted lateral boundary conditions

In the unmodified z-level model, communication between
cells at the lateral boundaries occurs at a particular z level.
This means, with a sloping ice base, as fluid crosses the lateral
boundary, it moves vertically closer/further from the ice–
ocean boundary (Fig. 1b). To overcome this problem, we have
adjusted the boundary conditions such that lateral communica-
tion between cells is set according to the slope. Figure 1b gives
an example of this adjustment. With standard boundary condi-
tions, at z 5 k, the cell bounding the ice on the right-hand side
would be connected to the ice cell on the left-hand side. The
adjusted boundary conditions instead dictate that this cell is
connected to the ocean cell at z 5 k 1 1. As a result, the fluid
remains at the same distance from the ice shelf–ocean interface
as it crosses the lateral boundary and is representative of an in-
finite planar slope. This is a Boussinesq (incompressible) model
using a linear equation of state. Therefore, the density is only
dependent upon temperature and salinity, which are continu-
ous across the boundary. The shift of one cell in Fig. 1b is used

for illustration purposes, and this offset can be chosen to be
any integer number of grid cells.

b. z-level model

The z-level model, MITgcm, solves the nonhydrostatic
Boussinesq Navier–Stokes equations:

Du

Dt
1 fk 3 u 5 2

=p 1 Drgk
r0

1 n=2u, (3)

with conservation of volume

= · u 5 0, (4)

where Dr 5 r 2 r0, r is density, and r0 is the reference density;
Du/Dt 5 ­u/­t 1 u · =u is the material derivative; t is time;
u 5 {u, y, w} is the velocity vector where u, y, and w are the
velocity components in the up-slope x, across-slope y, and
vertical z directions; f is the Coriolis parameter; k is the unit
vector pointing upward; p is the pressure; and n is the kine-
matic viscosity coefficient. Nonhydrostatic components of the
Coriolis term are neglected from (3) due to an f-plane approx-
imation. The scalar equations are defined,

z

k

k+1

Ice

Ocean

x

(a)

(b)

not actual grid

not actual grid

Rotated grid

z-level model

g

z

Ice

Ocean

x

FIG. 1. Schematic representation of (a) the rotated domain for
the 1D and LES models and (b) the shifted lateral boundary condi-
tions undertaken for the z-level model. Shading represents the ice
topography (blue), the solid lower boundary (gray), and the com-
munication cells of the periodic boundary (orange). Dashed lines
represent the grid layout. The ocean boundary is marked by the
solid black line. In (b), black arrows show the alignment of existing
boundary communication in the z-level model, and the red arrow
shows an example of shifting this communication by one cell. The
number of grid cells used in the model simulations far exceeds
what is shown here.
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DT
Dt

5 kT=
2T and

DS
Dt

5 kS=
2S, (5)

where kT and kS are the coefficients of diffusivity. Unless
stated otherwise, simulations use a linear equation of state,

Dr

r0
5 2a(T 2 T0) 1 b(S 2 S0), (6)

where a and b are thermal expansion and haline contraction
coefficients and T0 and S0 are the reference temperature and

salinity set to the initial conditions. For reference, parameter
values used in the model are listed in Table 1.

c. z-level model configuration

Here we outline all configuration choices relevant to the z-level
model. A summary of model design is given in Table 2, and
Fig. 2a provides a visualization of the domain. Model configu-
rations are referenced using fields in Table 2. For example,
MITgcm_Refer refers to the “Refer” class, whereas MITgcm_
Refer_1m refers to the 1-m configuration within that class.

TABLE 1. Parameter list.

Parameter Description Value Units

r0 Reference seawater density 1030 kg m23

ri Ice density 917 kg m23

a Thermal expansion coefficient 3.2861 3 1025 8C21

b Haline contraction coefficient 7.8358 3 1024 }

T0 Initial temperature 20.121 95 8C
S0 Initial salinity 34.5 }

Li Latent heat of fusion 3.34 3 105 J kg21

cw Specific heat capacity of seawater 3994 J 8C21 kg21

f Coriolis parameter 21 3 1024 s21

g Gravitation acceleration 9.81 m s22

z0 Roughness length 3 3 1024 m
kK von Kármán’s constant 0.4 }

l1 Salinity coefficient of liquidus condition 20.0573 8C
l2 Constant coefficient of liquidus condition 0.0832 8C
l3 Pressure coefficient of liquidus condition 27.61 3 1024 8C Pa21

TABLE 2. List of model configurations. The “Advec.” column displays the choice of advection scheme according to the MITgcm numbering
system. The “Scalars” column refers to the number of scalars in the equation of state. SGS stands for subgrid-scale and refers to the use of
diffusivity and viscosity coefficients that vary in both time and space. “Dims.” shows the number of spatial dimensions for each configuration.

Model Class Dims.
Resolution

(m)
Lx/y

(m)
Lz

(m) Scalars
Melt

condition
Wall
stress Advec. n (m2 s21) k (m2 s21)

Dt
(s) Ri taper

1D Const 1D 1 } 75 One Dirichlet No slip } 5 3 1023 5 3 1024 } }

1D SGS 1D 1 } 75 One Dirichlet LoW } SGS SGS } 0.25–1
1D SGS 1D 1 } 75 One Dirichlet LoW } SGS SGS } 0.125–0.25
LES Const 3D 1 400 100 Two Constant flux 3 3 1023 } 1 3 1024 1 3 1024 } }

LES SGS 3D 1 400 100 Two Constant flux 3 3 1023 } SGS SGS } }

MITgcm 1DCST 3D 1 100 100 One Restoring LoW 77 5 3 1023 5 3 1024 1 }

MITgcm 1DSGS 3D 1 100 100 One Restoring LoW 77 1 3 1024 1 3 1025 1 }

MITgcm Refer 3D 1 400 100 Two Constant flux 3 3 1023 77 1 3 1024 1 3 1024 1 }

MITgcm Refer 3D 2 400 100 Two Constant flux 3 3 1023 77 2 3 1024 2 3 1024 2 }

MITgcm Refer 3D 4 400 100 One Constant flux 3 3 1023 77 4 3 1024 4 3 1024 4 }

MITgcm Refer 3D 8 1600 400 Two Constant flux 3 3 1023 77 8 3 1024 8 3 1024 8 }

MITgcm Refer 3D 16 1600 400 Two Constant flux 3 3 1023 77 1.6 3 1023 1.6 3 1023 16 }

MITgcm Diffu 3D 2 400 100 Two Constant flux 3 3 1023 77 2 3 1024 1 3 1024 2 }

MITgcm Diffu 3D 4 400 100 Two Constant flux 3 3 1023 77 4 3 1024 1 3 1024 4 }

MITgcm Diffu 3D 8 1600 400 Two Constant flux 3 3 1023 77 8 3 1024 1 3 1024 8 }

MITgcm Diffu 3D 16 1600 400 Two Constant flux 3 3 1023 77 1.6 3 1024 1 3 1024 16 }

MITgcm AdvOpt 3D 2 400 100 Two Constant flux 3 3 1023 2 2 3 1024 1 3 1024 2 }

MITgcm AdvOpt 3D 4 400 100 Two Constant flux 3 3 1023 2 4 3 1024 1 3 1024 4 }

MITgcm AdvOpt 3D 8 1600 400 Two Constant flux 3 3 1023 2 8 3 1024 1 3 1024 8 }

MITgcm AdvOpt 3D 16 1600 400 Two Constant flux 3 3 1023 2 1.6 3 1023 1 3 1024 16 }

MITgcm 3EQ 3D 2 400 100 Two 3 Eq. model 3 3 1023 77 2 3 1024 2 3 1024 2 }

MITgcm 3EQ 3D 4 400 100 Two 3 Eq. model 3 31023 77 4 3 1024 4 3 1024 4 }

MITgcm 3EQ 3D 8 1600 400 Two 3 Eq. model 3 3 1023 77 8 3 1024 8 3 1024 8 }

MITgcm 3EQ 3D 16 1600 400 Two 3 Eq. model 3 3 1023 77 1.6 3 1023 1.6 3 1023 16 }
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All MITgcm configurations make use of the partial-cell
method for representation of topography (see Adcroft et al.
1997). There is a sloped ice shelf topography at the upper
boundary with slope angle of 0.01 rad. At the lower bound-
ary, the flow is bounded by a wall with the same slope of
0.01 rad. This lower boundary is considered an arbitrary far
field rather than a seabed and, as such, a free-slip condition
is applied. The lateral boundary conditions are periodic
with the shifted adjustment in the x direction described
above. At the upper boundary, we represent processes at
the ice shelf–ocean interface with a melt condition and a
drag parameterization, which are both described in more
detail below.

Resolution is varied across configurations with isotropic
grid cells of 1, 2, 4, 8, and 16 m in size, and the time step is
adjusted linearly with grid resolution. The boundary shift dic-
tates that the ice slope must cover at least one vertical cell
over the domain, and so there is a minimum requirement on
domain size for a given slope. To address this, we do not use
the same domain size across all simulations. We use a 400 m
horizontal 3 100 m vertical domain with 1-, 2-, and 4-m

resolutions and a 1600 m horizontal 3 400 m vertical domain
with 8- and 16-m resolution. Domain-size dependencies have
been tested by comparing results for the small and large do-
main at 4-m resolution. There was little difference in results
between the domain sizes. Comparison of MITgcm with the
LES is made with the 400 m horizontal 3 100 m vertical do-
main at 1-m resolution. To reduce computational cost, com-
parisons with the one-dimensional model are made with a
100-m cubed domain with 1-m resolution.

The majority of simulations use a second-order upwind
flux-limited advection scheme (MITgcm option 77). This
scheme avoids issues of overshooting solutions but can be
overly diffusive at low resolution. In section 4b, we explore
whether the results are sensitive to a less-diffusive advection
scheme. Our choice is the second-order centered method
(MITgcm option 2). These configurations are labeled “AdvOpt”
in Table 2.

Viscosity and diffusivity coefficients are chosen as isotropic
and constant in space and time. There are two purposes of the
background viscosity; one is to keep numerical stability, and
the other is to represent unresolved subgrid-scale processes.

FIG. 2. Example of the z-level reference case (MITgcm_Refer_1m) with 1-m resolution. (a) A 3D view of the do-
main with vertical velocities plotted on each vertical face. (b) The time evolution of isopycnals over a vertical slice of
the top 30 m of the domain. Gray shading represents the bottom/ice topography. The inset shows an enlargement of
the ice shelf–ocean interface to highlight the stepped partial cell representation.
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For our experiments that use the stable second-order upwind
advection scheme (option 77), background diffusivity is
present to represent unresolved subgrid-scale processes
only. Where the second-order centered method (option 2)
is used, a small amount of background diffusivity is re-
quired for numerical stability. Our choice of diffusivity
coefficients is not constrained by this minimum value. We
assume that the unresolved turbulence mixes momentum
and scalars equally, maintaining a Prandtl number of one,
so diffusivity is equal to viscosity unless otherwise stated.
For model stability, viscosity is increased linearly with de-
creases in resolution. In all simulations, the Lewis number
(Le) is one, meaning kT 5 kS, so we simply refer to both as
k from here on.

In section 4b, we examine sources of diffusivity in the
model via the “Diffu” and “AdvOpt” experiments. Unlike
the reference case, Refer, these simulations reduce any influ-
ence of the background diffusivity by keeping the diffusivity
coefficients at a constant value of 1 3 1024 m2 s21 for all
choices of resolution.

To aid development of a turbulent field, the horizontal ve-
locities are initialized with small-magnitude random noise
centered on zero with limits61 3 1023 m s21. By default, the
model is initialized with uniform temperature and salinity rep-
resentative of a warm ice shelf cavity environment in the
Amundsen Sea, with

T* 5 Tw 2 Tb 5 28C, S 5 34:5 at t 5 0, (7)

where T* is the thermal driving. The initial in situ temperature
Tw is found by rearranging the thermal driving relation to
give Tw 5 T* 1 Tb 5 T* 1 l1Sb 1 l2 1 l3Pb. The pressure
Pb is set constant throughout, justified by the small varia-
tions in pressure over distances examined and necessary to
avoid pressure jumps across the shifted boundaries. The
pressure Pb is calculated separately from the dynamical
pressure p, which varies in space and time. With Sb 5 34.5,
and the pressure dependence removed by setting P5 300 dbar,

Tw 5 20:12 1958C: (8)

Melting at the ice–ocean interface is prescribed using either the
three-equation model or a constant-flux condition. Models
described in Table 2 as “constant flux” use a constant heat and
salt flux that is equivalent to ab 5 10 m yr21. This value is
chosen to approximately match the ablation seen for the
MITgcm cases that use the three-equation model. The cons-
tant heat and salt fluxes are calculated as

k
dT
dz

∣∣∣∣
b
5

riabLi

r0cw
5 22:37 3 1025 8Cm s21, (9)

k
dS
dz

∣∣∣∣
b
5

riabSb
r0

5 28:47 3 1026 m s21, (10)

where Li 5 3.34 3 105 J kg21, cw 5 3974 J 8C21 kg21,
Sb 5 30, r0 5 1030 kg m23, and ri 5 916 kg m23. These param-
eter choices for the constant-flux condition follow Jenkins et al.
(2010), whereas configurations in Table 2 that use the three-

equation model apply the default values of MITgcm given in
Table 1. Fluxes at the ice–ocean interface in the three-equation
simulations are computed according to

k
dT
dz

∣∣∣∣
b
5 C1/2

d |uhw|GT(Tw 2 Tb), (11)

k
dS
dz

∣∣∣∣
b
5 C1/2

d |uhw |GS(Sw 2 Sb): (12)

uhw, Tw, and Sw are sampled at the center of the ocean portion
of the cells bounding the ice. This sampling distance is influ-
enced by the partial cells, which can affect the magnitude of
melting. A common correction for this influence supplies a
weighted mean of these quantities over a given thickness of
ocean beneath the ice (Losch 2008). This study seeks to un-
derstand the simplest case, and we therefore do not use this
correction method.

In all MITgcm simulations, while a free-slip condition is im-
plemented on the lower boundary to represent an arbitrary
far field, the upper momentum boundary condition is

n
du
dz

∣∣∣∣
b
5 Cd|uhw|uhw: (13)

The drag coefficient Cd accounts for the effects of roughness
at a given distance from the wall and is commonly assumed
constant in space and time. In a constant-stress boundary
layer, Cd has a logarithmic profile and varies with the distance
at which velocities are sampled dz. The choice of constant Cd

is based on the assumption that samples are far away from the
wall, where variations in dz have little impact on Cd. Where
samples are sufficiently close to the wall, Cd is highly depen-
dent on dz and it is no longer appropriate to assume that Cd is
constant. In this case, a functional form can be used to ac-
count for variation in Cd with sampling distance. A simple
functional relationship for the drag coefficient is the law-of-
the-wall (LoW) scaling (McPhee 2008; Jenkins 2021):

Cd 5
1
kK

ln
dz
z0

( )22

, (14)

where kK is von Kármán’s constant and z0 is the roughness
length.

In z-level model simulations, there are multiple sources of
variations in dz. Resolution that is nonuniform with depth,
changing resolution between configurations, evolving ice in
coupled ocean–ice models, and the implementation of partial
cells all influence dz. At low resolution, this is generally not a
concern due to the weak sensitivity of Cd to variation in dz
when sampling distance is large. As resolution increases, the
assumption of a constant Cd has the potential to bias the
results.

The choice of Cd for each configuration in this study is
noted by the wall stress column in Table 2. The default drag
coefficient is set to a constant value of Cd 5 3 3 1023, which
is the choice for the majority of the z-level simulations. A se-
lection of configurations deviates from this choice and use the
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law-of-the-wall scaling instead of a constant value (see LoW
in Table 2). This is implemented for consistency with the one-
dimensional model. The scaling is applied with a roughness
length of z0 5 3.3 3 1024 m, chosen to match Jenkins (2021).
The drag coefficient Cd is always consistent across (11), (12),
and (13).

The turbulent transfer coefficients GT and GS are associated
with the flux of scalar properties across the boundary layer. The
transfer is dominated by molecular processes within the viscous
sublayer [O(1)mm from the boundary], where turbulence is sup-
pressed and scalar transfer is governed by molecular diffusivity,
meaning GTÞ GS. Turbulent transfer coefficients are set constant
on the basis that dominant molecular diffusion renders fluxes
that have a quasi-linear relationship with u* (Holland and Jen-
kins 1999; Jenkins et al. 2010). We use constant values of GT 5

1.13 1022 and GS 5 3.13 1024, following Jenkins et al. (2010).
Figure 2b highlights the transient progression of the density

field as meltwater is fluxed into the domain at the upper
boundary, and the inset shows the stepped boundaries that
exist within a z-level model. In general, the use of partial cells
creates a gradual transition in topography and minimizes step
size to the extent that most steps are not visible in the inset
(Fig. 2b) at this horizontal resolution (see Adcroft et al.
1997). However, the partial-cell formulation requires a mini-
mum cell thickness in order to avoid numerical instability.
Where the layer would be thinner than the minimum thick-
ness, the cell is either collapsed to zero thickness or expanded
to the minimum thickness, whichever is closer (Adcroft et al.
1997). Larger topographic steps appear where this occurs (with-
out the use of partial cells, these steps would be significantly
larger). The size of the step can be adjusted by changing mini-
mum cell thickness. A lower minimum creates a smoother slope
at the cost of requiring a shorter time step to maintain stability.
The topographic steps appear to generate waves in the isopyc-
nals that propagate away from the boundary. We examined the
sensitivity of boundary current to the prescribed minimum cell
thickness at 1-m resolution (not shown). The time evolution of
r, u, and y is similar between these simulations, suggesting the
waves are of minor influence on the dynamics.

3. Model evaluation and dynamical stability

a. The 1D model

We first compare MITgcm against the one-dimensional
models presented in Jenkins (2016, 2021). A first comparison
is made against the laminar solution from Jenkins (2016) with
constant coefficients of viscosity and diffusivity. A second com-
parison is made with the turbulent solution from Jenkins (2021).
Coefficients of diffusivity and viscosity in this latter model are
based on a functional relationship that incorporates the local
turbulence closure (LTC) of McPhee (1994) and the gradient
Richardson number mixing scheme (PP) of Pacanowski and
Philander (1981). This combined mixing scheme is termed the
hybrid turbulence closure (HTC) and is developed specifically
for the ice–ocean boundary current. Aside from an adjusted
taper for the HTC, which we will describe below, the one-
dimensional results are identical to Jenkins (2016, 2021).

The one-dimensional model is cast in terms of a single sca-
lar, the thermal driving T*. The equation of state is written as
a function of the thermal driving:

Dr

r0
5 a*T*, (15)

where a* 5 2:53 1024 8C21. The initial conditions are set
such that thermal driving is initially 28C everywhere. Merging
of the LTC scheme and PP to form the HTC is based on a
Richardson number criterion. We define the single-scalar
Richardson number as

Ri* 5 a*

g cosu(dT*/dz)
|du/dz|2 , (16)

where u is the ice-slope angle. Given bounds a and b, a , b,
LTC is applied where Ri*#a, PP is applied where Ri* . b,
and the scheme linearly tapers LTC and PP between a and
b. The second model comparison uses the one-dimensional
model with the taper range used in Jenkins (2021) of 0.25–1.
A third comparison is made where this range is adjusted to
0.125–0.25, which will be referred to as the adjusted taper.
The adjusted taper was chosen based on insight from previous
literature by Miles (1961) and Maslowe and Thompson
(1971), and no other choices were tested. Taper choice will be
discussed in more detail in section 3b.

In the laminar one-dimensional model, the thermal driving
is governed by a Dirichlet boundary condition at the ice–
ocean interface that is held at the initial value of T* 5 08C. In
the turbulent one-dimensional model, a Neumann condition
is applied that takes the form of the three-equation model,
framed in terms of the thermal driving,

kT*
dT*

dz

∣∣∣∣
b
5 C1/2

d |u|GT*
T*, (17)

where GT* 5 0:006. Stress at the boundary is modeled differ-
ently in each one-dimensional case: the turbulent case param-
eterizes stress as (13) with the law-of-the-wall scaling (14)
applied; the laminar case uses the no-slip condition.

Two MITgcm cases are configured to match the laminar and
turbulent one-dimensional configurations, 1DCST and 1DSGS
(see Table 2). Scalars are modeled in terms of thermal driving by
defining the equation of state according to (15). Although we
match model configurations as closely as possible, we do not use
a Dirichlet boundary condition within MITgcm. Initial conditions
of T* 5 28C impose a large temperature gradient at the ice–
ocean interface, leaving MITgcm susceptible to stability issues at
initialization when using a Dirichlet boundary condition. To ac-
count for this, when comparing laminar solutions, MITgcm ap-
plies a Neumann condition that restores to the boundary value,

kT*

dT*

dz

∣∣∣∣
b
5 cT*, (18)

where c 5 0.006 m s21. Since we define a positive heat flux as
upward, this acts to restore the thermal driving to zero. In es-
sence, this performs the same function as (11) and (12).

P A TMORE E T A L . 619FEBRUARY 2023

Unauthenticated | Downloaded 03/28/23 10:12 AM UTC



However, c is chosen to both minimize numerical instability
and maximize the flux to the extent that it is initially equiva-
lent to a melt rate of ;5000 m day21. This enormous value
dictates that the flux at the interface dominates over any flux
from below, limiting the temperature difference between the
ice and the ocean. The reduction in temperature difference at
the boundary maintains T* 5 08C in the top grid cell, aligning
the boundary conditions of the two models despite the differ-
ent formulations. When comparing against the turbulent one-
dimensional model, we apply the boundary condition given
by (17). Both comparative MITgcm simulations use the drag
law with the law of the wall, creating further configuration dif-
ferences in the laminar comparison. These differences are
summarized in Table 2. It will be shown in what follows that
the configuration differences between MITgcm and the one-
dimensional laminar case have little influence over the results.

b. MITgcm versus 1D model

We now compare MITgcm against the one-dimensional
configurations described above. This comparison is made in
Fig. 3. The columns show the density anomaly, the up-slope x
velocities, and the across-slope y velocities. The rows repre-
sent the three different one-dimensional model configura-
tions: the laminar case from Jenkins (2016), the turbulent case
of Jenkins (2021), and a new configuration of the turbulent
case where the HTC scheme in the one-dimensional model
uses the adjusted taper. For MITgcm, the profiles are calcu-
lated as the mean in the ice-parallel direction, which we term
as the ice-plane average. The calculation is made by taking a
coordinate transform that re-references the grid in terms of
distance from ice base, then averages across the horizontal di-
mensions of the transformed coordinate system. Each profile
represents a snapshot in time, where the number of days and
hours elapsed since model initialization are noted by the let-
ters d and h.

The black lines in Figs. 3a–c show profiles for MITgcm
where constant background diffusivity and viscosity co-
efficients are chosen to match the one-dimensional model,
with n 5 5 3 1023 m2 s21 and k 5 5 3 1024 m2 s21. These
values are high enough to suppress any turbulence in the
MITgcm simulations, and a purely laminar solution emerges.
In this laminar configuration, there is very good agreement
between MITgcm and the one-dimensional simulation, with
little difference between the curves for all quantities shown.
The small deviations in density near the upper boundary
likely stem from restoring to T* 5 0 with a Neumann bound-
ary condition [(18)]. Density is initially uniform with a step
change at the upper boundary. This diffuses over time and the
density deficit generates an across-slope y current via geostro-
phy. In Fig. 3c, the black dashed lines represent the expected
flow for MITgcm based on density gradients if the flow was
purely geostrophic. This is calculated in line with Jenkins
(2016), where yg 5 2(Dr/r0)g sinu/f, with Dr defined by (6),
and u is the slope angle. The deviations from these geo-
strophic curves are due to viscous stress. The combination of
boundary stress and planetary rotation leads to the produc-
tion of an Ekman boundary current, and up-slope u velocities

develop as a result. The Ekman dynamics result in u being a
function of the velocity deficit between y and the dashed geo-
strophic curves (Jenkins 2016).

For the turbulent solution, we compare the HTC back-
ground mixing scheme of the one-dimensional model against
a turbulence-permitting configuration of MITgcm. Turbu-
lence is introduced in MITgcm by reducing the diffusivity
and viscosity coefficients to the background values of the
HTC scheme (Jenkins 2021): n 5 1 3 1024 m2 s21 and
k 5 1 3 1025 m2 s21. These values are chosen to match that
of Jenkins (2021) and are small enough to produce a turbu-
lent solution. The transition to turbulence can be identified
by the convex/concave geometry of the density anomaly. In
the laminar solution (Figs. 3a–c), all curves are concave. In
the turbulent solution (Figs. 3d–i), curves begin concave
and transition to convex as turbulence begins to enhance
mixing. Figures 3d–f show the one-dimensional configura-
tion presented in Jenkins (2021). The profiles are qualita-
tively similar in comparison to MITgcm, with the main
difference being the presence of an enlarged well-mixed
layer near the surface in the one-dimensional model. The
bold lines in Figs. 3d and 3f highlight the region of transition
between the two turbulence closures, where 0:25,Ri*#1.
Below this, the pycnocline in the one-dimensional model is
marginally stable with Ri* ’ 1 throughout, and the emergence
of this condition was used in Jenkins (2021) to provide a final
stage of the three-phase description of the flow. The three
phases begin with an initial laminar phase where velocities are
weak and stratification is strong (d0h12 and d1h13). As the
simulation progresses, the flow enters the second phase as a
turbulent region appears between the current maximum and
the upper boundary (d4h2). During the third phase, a constant
gradient pycnocline emerges. For MITgcm, the pycnocline is
slightly steeper and 0:25,Ri* # 1 throughout. Thus, MITgcm
exhibits the same dynamical phases, but the third phase
emerges with a lower Richardson number, yielding a slightly
sharper pycnocline and shallower mixed layer than in the
one-dimensional model.

In the one-dimensional model, mixing above the current
maximum is generally controlled by the LTC scheme, which
is applied using the Richardson number criteria outlined in
section 3a. This suggests a possible sensitivity of the HTC to
the choice of taper between LTC and PP. Jenkins (2021)
tested the effect of changing the size of the taper range, but a
shift in the range has not been examined. The default range is
0:25,Ri*#1. This choice tends to generate a marginally sta-
ble pycnocline in the third phase of dynamics that maintains
Ri* 5 1. It could be argued that a more appropriate limit of
marginal stability is Ri* 5 0:25 (Miles 1961; Maslowe and
Thompson 1971). We show in Figs. 3g–i the result of meeting
this lower limit by shifting the taper of the HTC to
0:125,Ri*#0:25. This adjustment to the HTC scheme leads
to a remarkable agreement between the one-dimensional
model and MITgcm. The pycnocline in the one-dimensional
case is now maintained in a state of marginal stability charac-
terized by Ri* ’ 0:25. The upper limit of Ri* for the bold seg-
ments in Figs. 3g and 3i are chosen to reflect the depth of the
pycnocline. While this is imposed by the taper for the one-
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dimensional model, for MITgcm, it is set by a combination of
parameterized diffusive fluxes and resolved mixed-layer insta-
bilities. MITgcm has a slightly stronger stratification above
the velocity maximum, and the pycnocline is maintained by a
larger range of Ri*, up to 0.6. The presence of Ri* values

between 0.25 and 0.6 above the pycnocline in MITgcm can be
attributed to the occurrence of resolved instabilities, which
do not adhere to a strict limit of Ri* and can occur at a range
of Ri* above the neutral stability Richardson number (Kaylor
and Faller 1972).

FIG. 3. Comparison of MITgcm 3D (black lines) against the 1D model (orange lines). Profiles are ice-plane-averaged
snapshots with times shown in (a) over the top 40 m of the domain, where the ice plane is defined as the tangent plane to
the ice shelf–ocean boundary. Profiles are plotted for day 0 hour 12, day 1 hour 13, day 4 hour 2, day 8 hour 5, and day
15 hour 10, which align with the snapshots presented in Jenkins (2021). Columns represent the (left) density anomaly Dr,
(center) up-slope velocity u, and (right) across-slope velocity y. Dashed black lines estimate the geostrophic velocity yg.
(a)–(c) Laminar solution, where both models use constant viscosity and diffusivity coefficients of n 5 5 3 1023 m2 s21

and k 5 5 3 1024 m2 s21 (1D_Const and MITgcm_1DCST). (d)–(i) Turbulent solutions, where the 1D model employs
an HTC mixing scheme (1D_SGS), and MITgcm reduces coefficients to n 5 13 1024 m2 s21 and k 5 13 1025 m2 s21

(MITgcm_1DSGS). Ric represents the upper limit of the linear taper used in the HTC. In (d)–(f) and (g)–(i), the HTC
uses a linear taper where, 0:25,Ri*#1 and 0:125,Ri*#0:25, respectively. Bold segments in (d) and (f) highlight
where 0:125,Ri*#0:25. In (g) and (i), bold segments show where 0:125,Ri*#0:25 for the 1D model and 0:125,
Ri*#0:6 for MITgcm.
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c. LES

We compare MITgcm against two simplified configurations
of the LES presented in Vreugdenhil and Taylor (2018, 2019).
The LES performs well at representing stratified shear-driven
turbulence (Vreugdenhil and Taylor 2018), and we treat this
model as our best-available source of information about how
turbulence influences ice shelf–ocean boundary layer evolu-
tion. The comparisons are made against the 1-m configuration
of the MITgcm_Refer class (see Table 2). The term “two
scalar” will be used to distinguish this configuration from the
single-scalar results presented above. We use the comparison
to assess the performance of MITgcm at this fine 1-m spatial
resolution. The purpose is also to identify the extent to which
MITgcm’s partial-cell step topography and constant coeffi-
cients of diffusivity and viscosity influence the results.

Similar to the one-dimensional model, the LES uses ice-
parallel coordinates and does not have stepped topography
as is required with z levels. The LES also has the option of a
subgrid-scale (SGS) mixing scheme that varies in time and
space, the AMD (Rozema et al. 2015). To isolate the effects
of step topography, the first LES configuration (LES_Const) is
designed such that the coordinate system and therefore the lack
of stepped topography is the only major difference with
MITgcm. This is achieved by replacing the SGS mixing scheme
with constant viscosity and diffusivity coefficients that match
those of MITgcm, where k 5 n 5 1 3 1024 m2 s21. The second
LES configuration (LES_SGS) differs from MITgcm in both co-
ordinates and subgrid-scale mixing by employing the AMD.

Aside from the SGS mixing scheme and rotated coordinates,
the MITgcm and LES are designed with similar configurations
and are aligned with the defaults discussed in section 2c. The
grid resolution of both models is 1 m, the domain size is 400 m
in the horizontal, and the water-column depth is 100 m. The
simulations are initialized with a uniform temperature and
salinity associated with a 28C thermal driving and apply a
constant heat/salt flux at the upper boundary. Recent itera-
tions of the LES include a Monin–Obukhov near-wall model
(Vreugdenhil et al. 2022). To minimize differences between
configurations, this near-wall model is not used here, and
stress is parameterized at the ice–ocean interface using the
drag law [e.g., (13)], with Cd 5 3 3 1023.

d. MITgcm versus LES

Figure 4 shows a comparison of MITgcm against the LES
for a transient solution. Figures 4a–c show profiles of ice-
plane mean quantities at different times provided as snap-
shots: Dr, up-slope velocity u, and across-slope velocity y. The
black lines are for MITgcm, blue lines for the LES applied
with constant background viscosity and diffusivity coefficients,
and orange lines for the LES with the subgrid-scale mixing
scheme. LES profiles are calculated consistently with MITgcm
by taking ice-plane averages of the three-dimensional fields.
It is possible that statistical variability remains present in
these ice-plane-averaged profiles, which has potential to bias
the results. The magnitude of statistical variability was tested
by averaging the LES profiles over hourly bins. We found
negligible difference in the profiles when calculating these

additional temporal averages (not shown), demonstrating that
statistical variability is sufficiently removed by ice-plane aver-
aging. The constant heat and salt flux at the upper boundary
causes a reduction in the density anomaly in the top cell over
time. The heat and salt then slowly diffuse over time, and
the signal of melt is propagated to depth. The dashed lines in
Fig. 4c are the geostrophic curves as described in section 3b
and highlight the role of Ekman dynamics.

The results show that MITgcm performs well at 1-m resolu-
tion. Nonetheless, subtle differences exist that are associated
with the stress and buoyancy fluxes produced by both models.
Figures 4d–f show the parameterized stress |kduh/dz|, resolved
turbulent stress |w′u′h|, and total stress, where uh 5 (u, y).
Figures 4g–i show the parameterized buoyancy flux kdb/dz,
resolved buoyancy flux w′b′, and total buoyancy flux, where
b 5 gDr/r0. Primes are calculated as anomalies from the ice-
plane mean, and the total in each case is the sum of the
parameterized and resolved contributions.

The total stress (Fig. 4f) and buoyancy flux (Fig. 4g) are
comparable between models, but there are small differences
near the upper boundary, with the LES displaying larger mag-
nitudes for each. When averaged over the top 3 m and mea-
sured at the last time step shown (d6h16), the total stress and
buoyancy flux is 109% and 25% larger for the LES. This
larger buoyancy flux in the top 3 m is associated with a more
defined mixed layer with lower density gradients near the
boundary. The enhanced near-boundary stress is associated
with reduced velocities near the boundary and larger velocity
gradients above the velocity maximum. Splitting the total con-
tributions shows that each model has a different proportion of
resolved and parameterized components. In general, MITgcm
has a larger resolved and smaller parameterized contribution
compared to the LES. This difference is most pronounced in
the parameterized stress (Fig. 4d) over the top 3 m, with the
LES exhibiting 928% more parameterized stress than MITgcm
on the final time step. The large percentage differences in the
stress and buoyancy fluxes lead to small near-boundary dissimi-
larity in the density and velocity profiles of the models.

Primarily, there are three differences in the models: the
underlying numerical methods, the grid design, and the tur-
bulence closure. For the grid, MITgcm uses geopotential co-
ordinates with partial-cell representation for topography,
whereas the two LES models have rotated coordinates with
“smooth” topography. For mixing coefficients, MITgcm_
Refer_1m and LES_Const are identical with constant coefficients
of viscosity and diffusivity, but LES_SGS uses a subgrid-scale
mixing scheme with coefficients that vary both spatially and
temporally. Profiles are similar for the LES_Const and LES_
SGS simulations, suggesting that the choice of mixing scheme
is not important for the differences seen between MITgcm
and the LES. The remaining differences between LES_Const
and MITgcm_Refer_1m are the numerical methods and the
rotated grid, indicating that discrepancies near the boundary
arise from one or both of these components.

The clearly defined mixed layer in the LES suggests the
presence of a greater level of scalar mixing than in MITgcm.
We hypothesize that either spurious numerical mixing or the
topographic steps in MITgcm affect the relative mixing of
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momentum and scalars, prohibiting the development of a
well-defined mixed layer. This leads to a larger density
anomaly in MITgcm, which drives faster flow near the bound-
ary and therefore a reduced shear below this and a weaker
parameterized stress. Future work is required to validate this
hypothesis.

e. Marginal stability and Ekman rolls

Section 3d presents the first 6 days of the MITgcm simula-
tion with constant heat and salt fluxes (MITgcm_Refer_1m).

This configuration is integrated for 16 days in total, and the
extended period reveals important details about the evolution
of the boundary current in a three-dimensional setting. Here
we examine this extended 16-day period of the two-scalar re-
sult presented above, which models temperature and salinity
independently, rather than the single-scalar thermal driving.

Figure 5a investigates along-ice-averaged turbulent kinetic
energy (TKE) as a function of depth and time for the full
time series of the MITgcm_Refer_1m configuration. The
simulation exhibits the three-phase development outlined in
Jenkins (2021). Phases 1 and 2 evolve over the initial 9-day

FIG. 4. Comparison of MITgcm (black lines; MITgcm_Refer_1m) against two LES configurations, where SGS mixing is represented by
either constant background coefficients (cyan lines; LES_Const) matching MITgcm, where k 5 n 5 1 3 1024 m2 s21, or an SGS model
(orange lines; LES_SGS). The MITgcm configuration is different from that shown in Fig. 3 (see Table 2 for differences). Profiles are ice-
plane-averaged snapshots for times shown in (a) over the top 30 m of the domain. (a)–(c) Density anomaly Dr, up-slope velocity u, and
across-slope velocity y. Dashed black lines in (c) are estimates of geostrophic velocity yg. (d)–(f) Parameterized, resolved turbulent, and to-
tal (parameterized 1 resolved turbulent) stress for MITgcm and LES 1 SGS model configuration. (g)–(i) As in (d)–(f), except for the
buoyancy fluxes. The stress is taken as the vector norm of the up-slope and across-slope directions. Profile times are differentiated by solid,
dash–dotted, and dotted lines in (d)–(i).
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period, where there is a monotonic deepening and strength-
ening of TKE. As the boundary layer grows, the turbulent
region spans a greater depth, and a subtle lower magnitude
of TKE appears near the surface, beneath the frictional
layer. After 9 days, there is a regime shift whereby enhanced
levels of TKE appear at depth in a periodic manner. This dy-
namical change is representative of a progression into the
third phase of the dynamics, which is associated with a series
of instabilities.

Within the boundary current, we identify features of alter-
nating vertical velocities suggestive of Ekman rolls. Despite
the term rolls, these are wave-like features, since isopycnals

do not overturn. Ekman rolls are triggered by a linear shear
instability associated with an Ekman layer (Faller 1963; Faller
and Kaylor 1966). The Ekman rolls develop at an angle to the
geostrophic flow due to Ekman turning (Faller 1963). Under
stably stratified conditions, the Richardson number is the key
metric for the instability (Kaylor and Faller 1972; Brown
1972). Ekman rolls in the ice shelf–ocean boundary layer
were first identified in Vreugdenhil et al. (2022) using a varia-
tion of the LES model presented in the previous section.
Figures 5b–5d highlight the presence of Ekman rolls and the
time evolution of these features in our MITgcm simulation.
The earliest time is dominated by turbulence with little

FIG. 5. Evidence of Ekman rolls in the 1-m MITgcm simulation with constant heat and salt fluxes at the upper boundary (MITgcm_
Refer_1m). (a) A Hovmöller diagram of the ice-plane-averaged TKE. (b)–(d) Ice-base-parallel slices of vertical velocity at the depth and
times shown by the markers in (a). Ice-plane-averaged profiles at times shown by the vertical lines in (a): (e) density anomaly Dr, (f) up-
slope velocity u, and (g) across-slope velocity y ; (h) total stress (resolved 1 parameterized) in the up-slope and (i) across-slope directions;
(j) total buoyancy flux (resolved1 parameterized).
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evidence of waves. By day 8 hour 12, a wave-like structure
appears. As velocities grow, this feature becomes more evi-
dent, and by day 10 hour 15 Ekman rolls are clearly domi-
nant. Ekman rolls are known to destabilize following a
secondary instability of the roll (Coleman et al. 1990; Dubos
et al. 2008). This may suggest the instabilities seen in phase
3 are a signature of Ekman roll destabilization. However,
the Ekman rolls show no signs of destabilization, persisting
throughout the third phase. Therefore, an alternative mech-
anism is anticipated for the periodic peaks in TKE during
phase 3.

The instabilities in the third phase of the flow represent a
three-dimensional analog to the region of marginal stability
that develops in the one-dimensional model, regulating the
strength of the pycnocline. Depth profiles in Figs. 5e–j single
out the first event after day 9. In the run-up to the first peak
in TKE, the boundary current cools and freshens through
mixing of the meltwater, generating a buoyant current, which
progresses in a uniform manner. Vertical density gradients in
the pycnocline sharpen, enhancing the geostrophic compo-
nent of the across-slope flow y. In response, the flow becomes
unstable, producing a higher rate of mixing at the pycnocline
depth, with elevated stress and buoyancy fluxes. Mixing then
reduces the density gradients and velocity shear, returning
the turbulent stresses and buoyancy fluxes to their previous
levels.

Results in Fig. 6 show how stability evolves over each of
the three phases of the dynamics in MITgcm_Refer_1m. To
reflect the broader range of Ri that is unstable for MITgcm
(Figs. 3g–i), for the two scalar results, we define the region of

marginal stability as the depths at which Ri 2 (0.125, 0.6],
with

Ri 5
N2

|du/dz|2 , (19)

where N2 5 2g(dDr/dz)/r0 is the Brunt–Väisälä frequency. In
this configuration, stratification has a dual role. At the same
time as stabilizing the flow, it is also responsible for driving
the across-slope geostrophic current. Therefore, the region of
high TKE (Fig. 5a) is associated with relatively stable condi-
tions, where Ri.. 0.6.

The MITgcm result shown in Fig. 6 exhibits two regions of
marginal stability, bracketed by the contours. In general, the
lower region of marginal stability tracks the bottom of the
pycnocline, and below this depth, where flow is negligible,
Ri is set to zero. The dynamics of the one-dimensional model
are characterized by the uppermost region of marginal stability
(Jenkins 2021). Similar to the single-scalar MITgcm case
(section 3b), the upper region of marginal stability in Fig. 6
suggests the first two phases of the dynamics broadly follow
the one-dimensional model. In phase 1, a stable region
(Ri . 0.6) appears as the pycnocline develops, with corre-
sponding strong stratification (Fig. 6b) and weak velocity
shear (Fig. 6c). The second phase emerges after day 3, where
a region of marginal stability develops over the top 5 m, asso-
ciated with turbulent mixing above the current maximum that
dramatically decreases the stratification.

The third phase produced by the one-dimensional model is
characterized by the region of marginal stability extending

FIG. 6. Time series of the ice-plane-averaged (a) Richardson number (Ri), (b) Brunt–Väisälä frequency N, and (c) velocity shear |du/dz|
over time and depth for the 1-m configuration of MITgcm_Refer_1m. White lines show where Ri 5 0.6. Orange lines show where Ri 5
0.125. Ri is set to zero where |du/dz|2 , 13 1026.
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beyond the current maximum. In Fig. 6, the region of mar-
ginal stability periodically deepens and shallows with each in-
stability and only ever briefly coincides with the current
maximum (not shown). Although on average the current
maximum remains below the region of marginal stability,
both Fig. 6b and the magenta, purple, and black contours in
Fig. 5e show that the oscillatory behavior limits stratification
in the pycnocline. This modulation of the pycnocline stratifi-
cation is similar to the one-dimensional case, where the mix-
ing scheme taper imposes a region of marginal stability that
moderates the stratification. Despite the differences induced
by three-dimensional turbulence with MITgcm in phase 3, the
broader dynamical feedbacks of marginal stability parameter-
ized by the one-dimensional model remain present.

4. Modeling implications

a. Sensitivity to resolution with a constant interfacial
heat/salt flux

We have shown that MITgcm performs well against other
state-of-the-art models at high resolution. To improve model
representation of the ice shelf–ocean boundary current at
more typical ocean-model resolutions, we must understand
how the results change when resolution is decreased.

Our first step investigates resolution dependence with a
constant surface heat and salt flux, as used in sections 3c–e.
Coefficients of viscosity and diffusivity and time step are in-
creased linearly as the grid is coarsened. An increase in hori-
zontal viscosity coefficients is required for numerical stability,
and the diffusivities are kept equal to the viscosity under the
assumption that the unresolved turbulence mixes momentum
and scalars equally. Vertical and horizontal motion becomes
increasingly isotropic with coarsening grid resolution, but

horizontal motion will still dominate at the spatial scales mod-
eled here. This means our choice of isotropic viscosity and dif-
fusivity results in larger-than-necessary coefficients in the
vertical. The impact of these choices is discussed in section 4b.
Constant-flux simulations allow for continuity with results
shown in sections 3c–e and are beneficial for isolating the ef-
fects of melt feedbacks associated with an interactive melt
condition by holding melt rates fixed across resolutions. A
comparison with an interactive melt condition will be pre-
sented in section 4c.

Figure 7 shows Dr, u, and y plotted at a fixed time for five
different spatial resolutions, where the top of each profile is
the middepth of the uppermost grid cell. There is a clear reso-
lution dependence in the density and velocity profiles. The 1-,
2-, and 4-m cases are qualitatively similar, but the boundary
layer structure is lost when resolution is coarser than 4 m. The
low-resolution results appear much more diffuse in compari-
son to high resolution, with enhanced scalar mixing through-
out the water column. Toward higher resolution, the density
anomaly is higher near the surface and lower at depth, and
there is a general increase in vertical density gradients. Since
the across-slope y velocities are primarily balanced by stratifi-
cation through geostrophy, the story is similar for the veloci-
ties. Lower vertical density gradients are associated with
lower vertical gradients in y as resolution is reduced.

Stress in the boundary cells behaves differently for each
model resolution. The boundary stress is based on the velocity
magnitude within the top cell, and it influences the interior of
the domain through the presence of turbulence and viscosity.
In the low-resolution results, the current maximum occurs at
the uppermost grid point, and near-boundary stress is entirely
modeled within this top cell. As resolution increases, the
near-boundary stress begins to be resolved over multiple grid

FIG. 7. Variation of resolution for MITgcm with a constant surface-flux boundary condition (MITgcm_Refer). Profiles are as in
previous figures, except color represents resolution of each profile. Profiles are sampled at time day 8 hour 0. Viscosity and diffu-
sivity coefficients and time step are scaled linearly with resolution.
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points, and a current maximum appears away from the bound-
ary cell.

The varying degrees of resolved stress are associated with
different profiles of up-slope u velocities. Ekman layer dy-
namics are the sole driving force for up-slope velocities in a
periodic sloping ice shelf–ocean boundary current in the ab-
sence of tides, because there is no large-scale pressure gradi-
ent in the across-slope direction. Up-slope u′ and across-slope
y ′ Ekman velocities are defined as (Jenkins 2021):

u′ 5
n

f
d2y ′

dz2
, (20a)

y ′ 5 2
n

f
d2u′

dz2
: (20b)

These velocities also correspond to the deviations from the
geostrophic flow. Stress above the peak maximum in across-
slope y velocities is associated with up-slope Ekman velocities
u′. Where resolution is high and dy ′2/dz2 is negative, u′ is pos-
itive. However, dy ′2/dz2 reduces with decreasing resolution,
the Ekman layer is less resolved, and flow is increasingly geo-
strophic. In this case, stress at the boundary is dominated by
parameterization within the boundary cell. Since the stress pa-
rameterization does not incorporate the Coriolis force, the
up-slope Ekman velocities disappear. This deficiency was ad-
dressed by the parameterization of Wilchinsky et al. (2007)
and results here suggest support for the use of such develop-
ments when modeling the ice shelf–ocean boundary current.

b. Effect of viscosity and diffusivity

We have shown there is a significant degradation of results
with decreasing resolution. The solutions become overly dif-
fuse, density gradients are greatly reduced, and this feeds into
the velocity profiles. There are three sources of diffusion
within the model: (i) parameterized mixing, (ii) resolved
turbulent mixing, and (iii) numerical diffusion (truncation
errors). The magnitude of parameterized mixing is, in part,
governed by the diffusivity coefficient. Resolved turbulent
mixing will scale with turbulence and thus increase with reso-
lution. Numerical diffusion is associated with the advection
scheme and generates spurious mixing that reduces with reso-
lution (Griffies et al. 2000). In this subsection, we investigate
the relative importance of each component.

Results presented in Fig. 7 used diffusivity coefficients that
increased with resolution, which is required by numerical sta-
bility if we seek to keep diffusivities equal to viscosities. As a
result, these simulations do not separate the influence of nu-
merical and parameterized diffusion. We isolate the role of
numerical diffusion by lowering the resolution while keeping
the diffusivity coefficient constant. Figure 8 compares the
same profiles of r, u, and y presented in Fig. 7 against confi-
gurations where the 1-m resolution reference diffusivity of
1 3 1024 m2 s21 is applied. The viscosity and time step varies
linearly in the same manner as the reference cases. All simula-
tions have a closer agreement with the 1-m case than their higher
diffusivity coefficient equivalent, with particular alignment at 2-
(Figs. 8a–c) and 4-m (Figs. 8d–f) resolution. Despite the

improvements brought about by holding k constant at high
resolution, the 8- (Figs. 8g–i) and 16-m (Figs. 8j–l) solutions
remain overly diffuse, suggesting a significant influence of
spurious numerical diffusion.

An additional consideration for the observed resolution
sensitivity, which we do not fully investigate in this study, is
the vertical component of the viscosity and diffusivity co-
efficients. The choice of parameterizing diffusivity and vis-
cosity as isotropic results in larger-than-necessary vertical
coefficients due to anisotropy between horizontal and vertical
motions in stratified flows. Reducing vertical viscosity or diffu-
sivity coefficients could reduce resolution sensitivity of the
profiles without compromising the numerical stability. Our
results provide some indication of the sensitivity to vertical
diffusivity coefficients. There is low sensitivity to an order of
magnitude change in diffusivity coefficients for the 16-m case
(Figs. 8j–l), which suggests vertical diffusivity is not a limiting
factor in recovering the vertical structure of the 1-m case. On
the other hand, we can only speculate on the role of vertical
viscosity coefficients, and it is plausible that vertical viscous
damping of horizontal motion influences the resolution sensi-
tivity displayed in Fig. 8.

The role of numerical diffusion is dependent on the choice
of advection scheme. In general, this choice is based on a
trade-off between the smoothness and the conservation of
scalar fields (Griffies et al. 2000). Upwind schemes tend to
produce smooth fields but are prone to spurious numerical
diffusion (Griffies et al. 2000). Centered schemes can generate
near-grid-scale noise (dispersion errors) but minimize numeri-
cal diffusion (Griffies et al. 2000). To illustrate the influence
of numerical diffusion in our simulations, we compare both
types of advection scheme. Figure 9 shows a comparison of
Dr for simulations with centered and upwind schemes. In all
simulations, the diffusivity is held constant. The default in this
paper is the upwind scheme (Fig. 9a), chosen because it is sta-
ble, produces a bounded solution, and is commonly used with
MITgcm. The results show less sensitivity of the solution to
resolution with the linear-centered scheme. The sensitivity of
the profiles to advection scheme provides further confirma-
tion of the importance of numerical diffusion.

It is well known that dispersive errors and numerical diffu-
sion both scale with resolution (e.g., Griffies et al. 2000), but
their relative influence in comparison to resolved and para-
meterized mixing, across different resolutions, has not been
evaluated for the ice shelf–ocean boundary current. Our
investigation identifies that spurious numerical mixing is
an important source of resolution sensitivity with commonly
used advection schemes, and this sensitivity is greatly reduced
at 1-, 2-, and 4-m resolution. We experiment with the use of
two advection schemes, but many more choices exist. Further-
more, our experiments are limited to constant coefficients
of diffusivity and viscosity, the simplest possible turbulence
closure. This was chosen to enable control over the magnitude
of coefficients, and thus make it possible to isolate parameter-
ized and numerical diffusion. Schemes such as Smagorinsky
(1963) or the AMD (Rozema et al. 2015) would be a more
appropriate choice for representation of the boundary current,
since they vary coefficients in space and time. These schemes
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would not eliminate numerical diffusion, but there may
be feedbacks between variable coefficients and advection
schemes. An investigation into the optimal advection scheme
for representing boundary layer dynamics at coarse resolu-
tion and how results are influenced by variable coefficients of
viscosity and diffusivity could form the basis of a useful
follow-up study.

c. Interactive melting and time scales

So far, we have used constant heat and salt fluxes to repre-
sent a fixed melt rate at the upper boundary. In reality, melt
rates are variable and dependent on ocean conditions. An in-
teractive melt rate allows for a more realistic feedback between

ice and ocean. Accurate interactive melt is the central require-
ment of modeling an ice shelf cavity. Here we investigate the
role of interactive melting (three-equation model) at different
resolutions.

Figures 10a–c show the difference between using interactive
melting and a constant heat and salt flux. With a constant flux,
lower resolution triggers a deeper diffusion of meltwater, re-
flecting the higher levels of mixing discussed in section 4b.
For interactive melting, the relationship with resolution is dif-
ferent, and density anomalies reduce throughout the water
column as resolution is decreased. At 1-m resolution, the pro-
files are similar for each choice of boundary condition, but as
the resolution decreases, an increasing disparity emerges. For

FIG. 8. Comparison of using constant diffusivity coefficients vs one that varies with resolution (MITgcm_Refer and
MITgcm_Diffu). Columns show Dr, u, and y. Profiles from Fig. 7 with resolution-dependent diffusivity coefficients are
shown as solid lines. Dashed lines show simulations where the diffusivity coefficient uses the 1-m value of k 5 1 3

1024 m2 s21 for all resolutions.
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a given time, interactive melting exhibits reduced density
anomalies in comparison to the constant-flux cases, with the
largest difference at coarse resolution. This demonstrates that
interactive melting leads to lower overall meltwater content,
thus indicating reduced melt rates.

Figure 10g shows the melt-rate evolution over time for each
case. The constant-flux case is designated with a constant melt
rate of 10 m yr21. The interactive melt cases follow a similar
evolution to each other but on differing time scales. The melt
rates for lower-resolution results are much slower to build.
The vertical dashed line signifies the time at which the results
are sampled in Figs. 10a–10c. Melt rates are lower for lower
resolution in the run up to this point, which creates a lower
accumulated melting (Fig. 10h).

The interactive melt is a function of temperature, salin-
ity, and velocities at the ice base. In the absence of tides,
the boundary current beneath ice shelves features a strong
feedback whereby melting creates buoyant meltwater,
which drives a stronger current and hence more melting
(Holland et al. 2008; Jenkins 2016, 2021). Enhanced mixing
at lower resolution combined with this feedback in the
dynamics causes a delay for lower-resolution cases to gen-
erate equivalent melt rates to the higher-resolution coun-
terparts. Lower-resolution cases have lower near-ice
density anomalies for a given quantity of melt (Fig. 7),
which leads to reduced velocity magnitudes. Since melt
rates are dependent on velocities, the acceleration of melt-
ing is dampened.

Our investigation into the constant-flux configurations
omitted any thermodynamic feedbacks at the ice–ocean in-
terface, since there was a prescribed amount of meltwater in
the system at any one time. This is not the case when

presenting the interactive-melt model. In Figs. 10d–f, rather
than plotting results at a given time, we plot results after a
given accumulated melting and separate the effect of vary-
ing meltwater content. The times chosen are marked by the
dots on Fig. 10h. Sampling according to accumulated melt
(Figs. 10d–f) vastly reduces the differences between profiles
for the interactive-melt (dashed) and constant-flux (solid)
cases at each resolution in comparison to sampling at a
specified time (Figs. 10a–c). The similarity between profiles
at each resolution in Figs. 10d–f shows that disparity be-
tween the methods is almost entirely down to the meltwater
content, and there is little evidence of additional dynamical
feedbacks due to melt rates evolving on different time
scales. Nonetheless, interactive melting feeds back onto the
density profiles at lower resolution in a way that, when
viewed at a fixed time, leads to a larger sensitivity of the
vertical density structure to changes in resolution. Getting
the time evolution of the boundary current and conse-
quently melt rates correct at lower resolution is imperative
for transient solutions.

5. Discussion, conclusions, and modeling suggestions

a. Discretization effects on melting

In most of this study, we prescribe a constant flux of heat
and salt at the upper boundary to represent melting, but in
section 4c, we investigate the role of resolution on the three-
equation melting model. There are various ways to discretize
the three-equation model, and this choice has a strong influ-
ence on melt rates (Gwyther et al. 2020). Our simulations sim-
ply sample tracers and distribute meltwater in the top cell.

FIG. 9. Profiles of Dr for different resolutions and advection schemes at day 8 hour 0.
(a) Nonlinear upwind scheme second-order flux limiter, option 77 in MITgcm (MITgcm_Diffu).
(b) Linear scheme centered second order, option 2 (MITgcm_AdvOpt).
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Other methods involve setting these positions to fixed distan-
ces from the ice base or relative to the number of vertical
model cells. Our results show that melt rates are dependent
on resolution. Results from Gwyther et al. (2020) indicate
that this resolution dependence may reduce if sampling
and meltwater distribution positions are held constant with
changes in resolution. On the other hand, if these positions
are set relative to the number of grid cells, resolution depen-
dence would be greater.

The z-level models tend to be biased toward enhanced dia-
pycnal mixing, leading to thicker boundary layers and higher
melt rates at coarse resolution (Losch 2008; Gwyther et al.
2020). As vertical resolution increases, cavity-scale simulations
can produce strong stratification that suppresses this mixing

near the boundary (Gwyther et al. 2020). Distributing meltwa-
ter away from the boundary has a similar effect to imposing
higher mixing rates near the boundary and can increase melt
rates at high resolution (Gwyther et al. 2020). This is a common
practice in z-level models, usually implemented over the top
two cells. When used over multiple cells, it reduces the differ-
ences in melt rates between resolutions toward that of the lower
resolution (Gwyther et al. 2020). Although this may suggest a
negative outcome, simulations of Gwyther et al. (2020) are
laminar, and it is possible that the presence of turbulence
would similarly somewhat limit the stratification. We present
turbulence-permitting simulations with a 1-m isotropic grid.
Stratification increases with resolution in our results, but this
does not appear to limit the turbulent transfer of heat toward

FIG. 10. Comparison of an interactive melting and the constant-flux boundary condition (MITgcm_3EQ and
MITgcm_Refer). (a)–(f) Ice-plane-averaged profiles of Dr, u, and y at different resolutions with and without the
three-equation model applied. (g), (h) Melt rates and accumulated melt for each simulation over time. In (a)–(c), all
profiles are sampled at day 8 hour 0, as before. In (d)–(f), profiles are sampled according to a chosen accumulated
melt highlighted by the dots in (h).
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the boundary to the same extent as Gwyther et al. (2020). A 1 m
isotropic grid is not achievable for general ocean models, and
turbulence-permitting simulations are not realistic on the cavity
scale. Conceptually, although distributing meltwater over a num-
ber of cells can counteract the consequences of stratification, it
may be an overly simplistic fix. Sophisticated parameterization
of the boundary current provides a more targeted method for
improving the fidelity of models.

b. Numerical diffusion in previous studies

We show that numerical diffusion can be an important in-
fluence in coarse-resolution z-level simulations of the ice
shelf–ocean boundary current. Numerical diffusion is known
to scale with resolution (e.g., Griffies et al. 2000), but its role
is not accounted for in parameterized mixing of the ice shelf–
ocean boundary current. Our results suggest that previous
studies of ice shelf cavities with z-level models may have ex-
perienced excess diapycnal mixing due to numerical diffusion.
This has significant implications in a setting where the pycno-
cline is a primary barrier to heat delivery and thus melting.
Despite taking longer to build, melt rates peak at a higher
level with coarser resolution in our transient results (Fig. 10g).
Spurious homogenization implies enhanced melt rates due to
elevated entrainment of heat from below. Numerical diffusion
could partially explain the mixing bias observed in previous
studies, which is greatly reduced with enhanced resolution
(Losch 2008; Gwyther et al. 2020).

c. Comparison with 1D resolution dependence

Our work is complementary to a recent study that ad-
dresses resolution dependence in a one-dimensional model of
the ice shelf–ocean boundary current (Burchard et al. 2022).
Combining the three-equation model with a turbulence clo-
sure for the boundary current, they examine the effects of de-
creasing resolution (Burchard et al. 2022). Their simulations
showed little sensitivity to resolution in regions of weak strati-
fication, but, similar to our results, 2-m resolution was re-
quired to represent the full boundary current accurately.
Burchard et al. (2022) attribute reduced dependence on reso-
lution to the application of the law of the wall within the drag
parameterization. Tests within MITgcm are in contrast with
this conclusion, showing negligible changes when comparing
the law of the wall with a bulk formula for momentum
(not shown). It is worth noting, however, the conclusions of
Burchard et al. (2022) are drawn under different experimen-
tal conditions. Burchard et al. (2022) use pressure-gradient-
forced simulations with no rotation and a different choice of
roughness length. As discussed in section 2c, for example, a
smaller roughness length leads to reduced changes in drag
with resolution. This is something to bear in mind with future
investigations.

d. Conclusions

The performance of models in simulating the ice shelf–
ocean boundary current has a significant impact on our ability
to constrain estimates of ice shelf melt rates and potential ice
sheet mass loss. To improve model representation, there is a

need to understand the dynamics of this setting and explore
model capability. In this paper, we have investigated the
dynamics of the ice shelf–ocean boundary current at turbulence-
permitting scales. We then considered how the physics of the
ice shelf–ocean boundary current is captured within the frame-
work of a z-level model (MITgcm).

Similar to results in Vreugdenhil et al. (2022), we identify
the formation of Ekman rolls in the MITgcm simulations. We
also show that MITgcm exhibits the three-phase development
of the boundary current outlined in Jenkins (2021). The
MITgcm results show how modulation of the pycnocline in
the one-dimensional model emerges as a series of instabilities
when modeled in three dimensions. The Ekman rolls do not
fully destabilize at any point and persist throughout this final
phase.

It is not yet understood what influence Ekman rolls have
on the third phase of development of the boundary current.
We suggest that a dedicated modeling study is required to
fully understand the role of Ekman rolls in the ice shelf–ocean
boundary current. Moreover, they have so far only been ob-
served within model simulations. Identifying the presence of
these features in field observations would be highly beneficial
to our understanding, advancing assessment of their relative
importance and ubiquity.

In comparing MITgcm with a state-of-the-art LES and one-
dimensional model at turbulence-permitting scales, we find
remarkable agreement between the three models. The LES is
proven to perform well at representing wall-bounded strati-
fied flows at turbulent scales (Vreugdenhil and Taylor 2018)
and is used as a reference case. MITgcm has geopotential co-
ordinates with partial cells for topography, whereas the LES
uses a rotated grid with planar topography. Additionally, the
LES has the superior AMD for scalar mixing (Rozema et al.
2015), which is not available for MITgcm. Agreement with
the LES, both with and without the AMD, suggests that fun-
damental differences in the grid and mixing schemes do not
have a prohibitively negative impact on the MITgcm results.
However, the results show the grid and/or numerical methods
may impact MITgcm’s ability to reproduce equivalent levels of
turbulent mixing near the boundary. For the one-dimensional
model, we identify that configuration choice of the HTC scheme
is an important factor in the agreement, and by shifting the taper
region of the HTC, we show a considerable improvement in the
consensus with MITgcm. As MITgcm also matches well with the
LES, the implication is that the adjustment represents an im-
provement of the one-dimensional model.

Given the match in representation of the boundary current
between the one-dimensional model, with an adjusted taper,
and MITgcm at turbulence-permitting resolution, the HTC
scheme of the one-dimensional model could form the basis of
an effective parameterization of the boundary current. In its
current form, this mixing scheme may face the same issues as
MITgcm when reductions in vertical resolution are consid-
ered. A future investigation of the one-dimensional model un-
dertaken in a similar manner to Burchard et al. (2022) would
provide useful insight on this.

Our turbulence-permitting, z-level model has isotropic grid
resolution and coefficients of diffusivity and viscosity. We
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degrade the model resolution uniformly in the horizontal and
vertical. At 1-, 2-, and 4-m resolution, the results are qualita-
tively similar. However, in general, the boundary current be-
comes more diffuse with coarser resolution and the Ekman
layer disappears. The excess diffusion can be partially rem-
edied by tuning diffusivity coefficients, but this is not sufficient
at coarse resolution, where the feature is modeled over a
small number of grid cells, and numerical diffusion becomes a
limiting factor. Thus, heat and momentum transfer have to be
parameterized. Existing boundary layer parameterizations do
not provide a solution, and interactive melting exacerbates
these issues by introducing a time-scale dependence in the
evolution of melt rates between resolutions. The time-scale
dependence has implications on the transient response to
changing conditions and may impact sensitivities such as those
found in Holland (2017). We show this dependence can
be mostly removed by resampling according to accumulated
melt.

Cavity-scale models do not resolve the full ice shelf–ocean
boundary current. Parameterization within MITgcm (three-
equation model) is targeted at the ice shelf–ocean boundary
layer, which typically spans the first meter of the boundary re-
gion. This is not necessarily the best approach for coarser-
resolution models that fail to represent the boundary current
that extends further from the boundary. A z-level model pre-
sents the challenge that increasing vertical resolution at the ice
base for a sloped ice shelf requires higher resolution for almost
the entire domain. To overcome this, we suggest the develop-
ment of a scale-aware boundary current parameterization that
is independent of resolution. Our results provide a basis on
which to make progress by highlighting some key weaknesses
that exist with current strategies.
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