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Abstract

Extreme weather events are often the result of slow-moving, large-scale wave pat-

terns. Greater understanding of these large-scale modes of variability would allow us to

anticipate how quasi-stationary modes might depend on changes to the background state

in future climate. In this thesis the Empirical Normal Mode (ENM) technique, a tech-

nique for extracting dynamical modes of variability from atmospheric timeseries data, is

utilised to examine the dependence of mode structure and frequency on jet latitude.

The ENM methodology is extended to include the lower troposphere spanned by

isentropic surfaces that can intersect the ground. This involves careful accounting of the

terms in large amplitude pseudomomentum and pseudoenergy associated with this region

of the atmosphere - terms that contribute to the ”boundary wave activity” in the limit

of small amplitude.

In the third chapter, the implementation of the technique itself is validated by testing

the characteristic ‘intrinsic’ phase speed of the ENMs against an empirical phase speed

derived from the modes’ principal component timeseries, using a set of idealised model

experiments simulated using the Reading IGCM2.2. It is found that the phase speed

matching conditions are met for the dominant freely propagating baroclinic modes, vali-

dating the approach to the calculation of wave activity and some approximations used in

deriving relevant wave activity norms.

In the fourth chapter, a new series of idealised experiments are devised that possess

a jetstream with controllable latitude such that the change in behaviour of the modes

of variability with a shift in jet latitude may be examined. The initial and relaxation

temperature field in thermal wind balance with a prescribed zonal wind field with jet

latitudes ranging from ∼ 40° to ∼ 65° is found, and a sloping tropopause is added in

order to maintain baroclinicity.

Subsequently, in the fifth chapter, the ENM structures of these experiments are found,

and the change in the phase speed of the modes as the jet latitude changes is explored.

A quasi-stationary branch of modes is identified which is associated with the most per-

turbation energy (for each zonal wavenumber) and therefore can propagate most strongly

westwards against the background state westerly flow. As the jet is shifted polewards,

the wavelength of the most energetic modes remains approximately the same, but they

shift to lower zonal wavenumbers due to reduction in the latitude circle circumference.
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Chapter 1:

Introduction

1.1 Motivation

Each year, extremes in weather cause billions of pounds of damage in Europe (Eu-

ropean Environment Agency, 2021), the US (National Oceanic and Atmospheric Admin-

istration, 2021), Africa (Wang et al., 2009), Asia and the Pacific (Hashim and Hashim,

2016); globally, losses are estimated at $3.47tn (World Economic Forum, 2019). Economic

losses do not capture the full extent of the disruption and damage caused by extreme

weather events; between 1998 and 2017 extreme weather was estimated to have caused

526,000 deaths worldwide, and primarily countries with a low economic development index

bear the brunt of this cost (World Economic Forum, 2019).

With high impact weather exacting such a heavy economic and human toll, it is vital

to understand the causes of extreme weather events in order to be able to predict their

occurrence, such that their impacts might be mitigated. This is especially true as a result

of climate change, which has already caused changes in the frequency and intensity of

extreme weather events (Arneth et al., 2019).

Often, the impact of an extreme weather event is a result not of the short-term

synoptic attributes such as a single rainfall event or warm day, but a long-lasting set of

atmospheric conditions in a given location. These subseasonal climate variations with

high persistence such as blocking events, or slow-moving waves are the result of large-

scale atmospheric variability. A Rossby wave structure which maintains its position due

to a low phase speed can create conditions which lead weather events to have an outsize

impact. Our ability to forecast the large-scale structure of the atmosphere is then key in

mitigating and preparing for high-impact weather events. For example, these large-scale

stationary waves control the position of the storm tracks (Branstator (1995), Chang et al.
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1.2. BACKGROUND

(2002)), which are linked to high-intensity weather events (Shaw et al., 2016).

In addition to extreme events, large-scale variability can have an impact on forecast-

ing. Even now, it is possible for very large-scale forecast busts to result from the mischar-

acterisation of the large-scale circulation, such as blocking events (Grams et al., 2018).

Low zonal wavenumber planetary structures with global spread can also be mischarac-

terised, such as a recent ECMWF forecast which displayed an opposite wavenumber-2

phase to the global pattern observed (Leonard, 2021) at a 3 week lead time.

1.2 Background

1.2.1 Rossby Wave Propagation Mechanism

Motions observed in the atmosphere commonly exhibit wavelike characteristics. At-

mospheric waves can be broken down into three groups; acoustic waves, gravity waves

and Rossby waves. Acoustic waves, or compression waves transfer energy through com-

pressions in the atmosphere with characteristic speeds based on temperature and density.

They can generally be ignored when considering motion at large scales. Gravity waves

are a form of buoyancy waves, their motion controlled by the buoyant restoring force

for a stratified fluid in the presence of gravity and can grow large enough to be affected

by the Coriolis force (inertia-gravity waves), and can make an important contribution to

large-scale dynamics, requiring consideration even if they are ultimately ignored. Rossby

waves, of which planetary waves are a subset, are large-scale waves in Potential Vorticity

(PV) gradients in the atmosphere. Potential vorticity is defined as;

q =
ζ · ∇θ
ρ

=
ζθ
r

(1.1)

where ζ is the absolute vorticity vector, and ζθ is its vertical component in isen-

tropic co-ordinates; θ is the potential temperature; ρ is the density of air; and r is the

isentropic density; PV is a useful tracer for studying atmospheric dynamics which may

be inverted to find the full flow field. Rossby waves are driven by variation in vorticity

perpendicular to the flow, for example the meridional variation in the vertical component

of planetary vorticity in the presence of a zonal flow. While earlier research indicated the

existence of large-scale waves on a rotating sphere, it was Rossby (1939) who first de-

scribed their propagation through the β-plane approximation; where latitudinal variation

in the Coriolis parameter is approximated by a linear value.
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Consider the barotropic vorticity equation in the beta-plane approximation;

D

Dt
(ξ + f) = 0 (1.2)

where ξ is the relative vorticity. Expanding the material derivative as;

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
ξ + βv = 0 (1.3)

Where D/Dt represents the material derivative, that is the rate of change of a quan-

tity with time as measured in an in-situ fluid parcel; f is the Coriolis parameter, the

contribution to the vorticity from the Earth’s rotation, and β is the approximated gra-

dient of f in the meridional; ∂f/∂y. By linearizing this equation about an appropriate

background state (i.e. time-invariant, & zonally symmetric) we can examine the propa-

gation of small-amplitude waves under this approximation. Taking u0 as our basic flow,

and ue as the perturbation upon it (with corresponding background and perturbation PV

quantities q0 & qe), and dropping products of perturbation quantities;

(
∂

∂t
+ u0

∂

∂x

)
qe + βve = 0 (1.4)

Consider a PV wave solution to this equation of the form;

qe = qk,le
i(kx+ly−ωt) (1.5)

Where k and l here represent wavenumbers in the zonal and meridional directions

respectively and ω is the frequency of the wave. As the PV is related to the flow by the

streamfunction in the barotropic model by: ∇2ψ = q− f = q− βy, qe can be substituted

into in the perturbation equation, and it is possible to solve for the zonal speed of the

Rossby waves, giving the barotropic dispersion relation;

c = u0 −
β

k2 + l2
(1.6)

Although the scale dependence varies depending on the dynamics used, using the

barotropic vorticity equation, Rossby waves derive their phase speeds from a combination

of advection by the basic state (u0), and propagation along vorticity contours westwards

relative to the flow. This propagation is proportional to the square of the wavenumber of

the wave; larger waves, with smaller wavenumber k & l propagate faster against the flow.
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1.2. BACKGROUND

Indeed it is possible for larger waves to be stationary relative to the ground given the right

background state. The specific square power of k and l are a result of the dynamics of the

vorticity equation; for other dispersions, this detail might vary, but that the propagation

speed of larger waves is higher is a general result.

While the idealised relations given here seem relatively straightforward nowadays,

and would be insufficient to make predictions about the local behaviour of the actual

atmosphere (indeed, Rossby waves can exist on boundary potential temperature gradi-

ents), they nonetheless convey the dynamics of its large-scale behaviour well, and are a

good description of the “bigger picture” of the motion of planetary waves, and when first

published, were the first real theoretical picture of large-scale motion on shear flows. The

ideas considered here, such as advection of planetary waves by the basic state flow versus

propagation ’upstream’ against it are still key concepts when considering the speed of

Rossby waves.

1.2.2 Stationary Rossby Waves in the Atmosphere

Quasi-stationary waves in the atmosphere may be characterised into distinct regimes

on the basis of season, with separate regimes in winter and summer, and transitions

between them during the equinoxal seasons. The northern and southern hemispheres

exhibit distinct behaviour due to the vast differences in orography, as well as landmass,

between them, as orography is a key driver of stationary waves (Andrews et al., 1987a).

In the northern hemisphere, the variance of planetary waves is overwhelmingly dom-

inated by the presence of large waves forced by orography, as well as land-sea contrast

at the surface. This land-sea contrast can be regarded as similar to orographic forcing in

isentropic co-ordinates (Brayshaw et al., 2008). The Tibetan plateau and Rocky moun-

tain ranges in particular are responsible for the excitation of large-scale stationary waves

(Chen (2010), Charney and Eliassen (1949), Hoskins and Karoly (1981), & Held et al.

(2002)). Orographic forcing of waves can be explained using simple barotropic theory;

fluid parcels travelling upslope are squashed in the vertical, leading to generation of an-

ticyclonic vorticity, and stretched over the ridge on the downslope givng rise to cyclonic

vorticity. Another significant forcing for stationary wave patterns visible in the time-

mean is thermally forced waves, which contribute comparably to the global circulation

(Smagorinsky (1953), Manabe and Terpstra (1974)). These stationary waves result in

a dominant wavenumber two pattern, with ridges above the eastern sections of the two

oceans, and troughs above the eastern portions of the continental landmasses (Lau, 1979).
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This wavenumber two pattern has wide-reaching effects on global weather patterns;

contributing to the dryness of the continental US and Asian plateau in winter (Broccoli

and Manabe, 1992); the precipitation of the East Asian monsoon region in summer (Chen,

2010); and the wintertime warmth of western europe (Seager et al., 2002).

Due to the relative lack of orographic forcing in the southern hemisphere, the struc-

ture of waves is different to the northern hemisphere, with a bigger reliance on thermal

forcing from low-latitude ocean basins, while at higher latitudes orographic forcing from

the Antarctic and Andes mountain ranges still has an effect (Quintanar and Mechoso,

1995) despite their narrow band of latitudes compared to planetary scale waves.

Aside from stationary waves present in the global time-mean, more attention has

been paid recently to transient slow-moving waves and the high impact weather they

cause. Recently, extreme weather events such as heatwaves in North America, Western

Europe, and the Caucasus; and extreme rainfall in south-east Europe and Japan; have all

been linked to a dominant global Rossby-wave number seven pattern (Kornhuber et al.,

2019). Due to the formation of circumpolar or nearly circumpolar stationary wave trains,

conditions required for extreme weather events (such as heatwaves or floods) may co-occur

at distant longitudes due to these teleconnections; this has been shown for heatwaves

across Eurasia by Wu et al. (2012) & Zhou and Wu (2016).

1.2.3 Baroclinic Waves and Modal Growth

Physical systems can be characterised by ‘normal modes’; these are periodic sinu-

soidal motions which can be exhibited by the system, where all parts of the system move

with the same frequency, or a set number of frequencies with a fixed relationship between

them, and with a fixed phase relation between them. Normal modes are orthogonal, and

as such changes in the amplitude of one do not affect the amplitude of the others; in fact

they form a basis set from which all possible motions of the system may be derived or

reconstructed. Normal modes of physical systems have been investigated since at least

the 1700s, when first, Brook Taylor described the normal modes of a simple harmonic

oscillator, and Daniel Bernoulli subsequently conjectured that the general solution of the

equation of motion of an oscillator is a (possibly infinite) linear combination of its normal

modes.

By the mid 20th century, models of the atmosphere were being developed for which

modes could be calculated. The first of these models, developed independently by Eady

(1949) and Charney (1947), were possible due to the simultaneous development of quasi-
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geostrophic theory. In Eady’s model, a rigid upper boundary allows instability (and

hence modal growth), as the upper-boundary potential temperature perturbation grows

to interact with the lower boundary. A short-wave cut-off for modes exists in the Eady

model because as modes increase in wavenumber and the propagation against the flow

weakens, the strength of the interaction between the upper and lower level disturbance

decreases, and phase-locking between the two cannot be maintained in the presence of

wind-shear between the vertical levels.

Conversely, in Charney’s model, an interior PV gradient (not included in the Eady

model) allows for a counter-propagating Rossby wave propagating westwards relative to

the eastwards flow. The boundary thermal gradient, which is equivalent to a negative PV

gradient, supports a counter-propagating wave propagating eastwards where the flow is

weak. Indeed Charney and Stern (1962) would go on to establish that small disturbances

cannot grow exponentially in a flow where the sign of the PV gradient on isentropic

surfaces is everywhere-positive. An additional condition on the existence of baroclinic

instability is the Fjørtoft condition (Charney, 1973), which requires a positive correlation

between the zonal flow and meridional PV gradient. The first of these conditions is

necessary for counter-propagating waves to amplify mutually, if their phase difference is

correct, and the second is necessary for the waves to lock in phase, and therefore enable

modal growth with fixed perturbation structure despite advection by the shear flow.

Eady’s approach, where there exists no meridional PV gradient in the interior, only

allowed waves on the potential temperature gradients on the top and bottom boundaries,

and the resultant shortwave instability cutoff were later expanded upon by Bretherton

(1966) in a two-layer model. Bretherton’s model shows that the presence of an upper-level

(for example) “differential” wave can result in the development of a phase locked “mean”

wave in the lower layer, propagating in the opposite direction. The two waves exist

in a normal mode configuration, and serve to re-inforce one another, resulting in mutual

growth. In addition to the shortwave cutoff (and an additional, mathematically equivalent

longwave instability cutoff introduced in Bretherton’s paper), instability can only occur

if the PV gradients within the two layers (or on the two surfaces in the Eady model

case) are of the opposite sign (Charney and Stern, 1962). While a powerful conceptual

tool, Bretherton and Eady’s approaches do not account for the continuous PV gradient

throughout the interior of a multi-layered atmospheric model, or indeed any kind of mean

PV gradient not concentrated at the boundaries.

Due to the conceptual uses of Bretherton’s interpretation, a generalised counter-
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propagating Rossby wave (CRW) model for situations where waves are not confined to

the boundaries was developed by Heifetz et al. (2004a). Their result shows that the

CRW normal mode growth mechanism applies in any situation where a PV gradient ex-

ists across a jetstream, with horizontally interacting barotropic waves resulting from a

horizontal shear which they interact across, as in the much earlier model of Rayleigh

(1880). Conversely, baroclinic waves consist of CRWs at different heights with an inter-

action between the lower and upper layer. Whereas in barotropic instability the reversal

of the cross-stream PV gradient is on one level (or in a single-layer fluid), in baroclinic

instability the “home-bases”, or opposing PV gradients are on different levels. In a mid-

latitude westerly flow, this corresponds to a situation where the negative PV gradient is

associated with the poleward decrease in temperature towards the pole, and the interior

PV gradient is typically positive everywhere, especially at tropopause level.

For these growing normal mode configurations of CRWs, it is a requirement that the

total pseudomomentum of the modes is zero, such that global conservation of pseudomo-

mentum is not violated as the modes grow (Methven, 2013). In the CRW construction,

the upper CRW has positive pseudomomentum and the lower CRW possesses negative

pseudomomentum of equal magnitude such that their sum is identically zero. Therefore,

the disturbances can amplify mutually while globally, pseudomomentum is conserved. As

such, when extracting modes using the Empirical Normal Mode technique discussed in

this thesis, only the upper CRW is picked out by design, as the ENMs are constructed

such that they maximise pseudomomentum; specifically the pseudomomentum of the in-

terior domain of the atmosphere. By taking the principal component associated with a

mode, and projecting it onto the lower boundary to find Pext, the lower boundary pseudo-

momentum, a lower boundary wave with opposite pseudomomentum can be found. This

wave on the lower boundary is phase-locked by design with the upper CRW, and as such

the two make up a CRW pair behaving in a normal mode configuration.

1.2.4 Vortex Erosion Mechanism

At high latitudes, the atmosphere is dominated by high PV air, this is the strato-

spheric polar vortex and is separated from low-PV equatorial air by a jet along its edge

which inhibits transport of air into or out of the vortex, acting as a barrier. As Rossby

waves along the edge of the vortex grow and break they serve to mix the airmasses.

One process through which mixing occurs is filamentation. As waves break, filaments of

high PV air are stretched out into tendrils (Polvani and Plumb, 1992) through chaotic
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advection (Aref, 1984) and subsequently mixed into surrounding air through turbulent

and dissipative processes. This process serves to relax the vortex towards axisymmetry

(Melander et al., 1987), and results in a sharper PV gradient and a stronger jet around

the edge of the polar vortex.

1.2.5 Evidence for Dependence of Slow Modes on Westerly Jet Prop-

erties

Some evidence suggests that the presence, or propagation, of slow planetary waves

depends on the properties of the jetstream. In the northern hemisphere, the annular mode

is known as the Arctic Oscillation (AO). The variation in regimes present on the AO are

closely linked to the latitude of the jetstream (Athanasiadis et al., 2010). The North

Atlantic Oscillation (NAO), a localised expression of the AO (Ambaum et al., 2001), has

been shown to display more persistence in the negative phase (Jia et al. (2007) Blessing

et al. (2005)), which is correlated to a more equatorial jet latitude (Woollings et al., 2014).

Studies have also linked increased persistence of weather regimes to lower latitude

jet positions (Barnes and Hartmann (2010) Woollings et al. (2010)), at least in the winter

state. Barnes and Hartmann (2010) use stochastic stirring of the barotropic vorticity

equation to produce a set of runs with jetreams with a mean latitude of between ∼ 20°

and ∼ 50°. When the jet is close to the equator, annular mode events with both high and

low phase persist for similar lengths of time, however in the mid-latitudes, events with

high phase are less persistant than those with low phase. This asymmetry in persistence

is attributed to spherical geometry inhibiting wavebreaking on the polar flank of the jet

at higher jet latitudes. In re-analysis data, Woollings et al. (2010) use mslp and 500-hPa

geopotential height and find statistical associations between negative NAO, where the

transatlantic jet is in a southerly state, and persistent blocking events at higher latitudes.

These results are promising, but account only for annular modes (in the Barnes &

Harmann case) and variability in the northern hemisphere atlantic region (Woolings et

al.), and other studies indicate that there may be a seasonal component to this relationship

(Franzke et al., 2011).

In the southern hemisphere, the southern annular mode is more prominent due to the

relative lack of orography. Model studies of the SAM have shown that lower latitude jets

are associated with greater persistence (Kidston and Gerber (2010), Son and Lee (2005),

Gerber and Vallis (2007), Barnes et al. (2010), & Simpson et al. (2010)).
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1.2.6 Extracting Patterns of Variability

In order to study modes or patterns of variability in a physical system, it is necessary

to be able to extract structures which describe that variability from the system. In classi-

cal mechanics, for a given set of dynamics used to describe a physical system it is possible

to extract the normal modes directly from the equations of motion. By establishing a

set of normal co-ordinates for the system which correspond to its degrees of freedom and

evolve independently from one another, the motions for which these normal co-ordinates

oscillate with the same frequency are the normal modes. The general solution of the sys-

tem of equations is a linear superposition of these independent modal motions, which may

be found by decoupling of the normal co-ordinates, or systematically through solution of

an eigenvalue problem involving the equations of motion. In continuum mechanics and

specifically geophysical fluid dynamics, characterising modal behaviour in models is more

challenging, as discussed in section 1.2.3 above. Nonetheless; for a suitable description of

the dynamics it is possible to extract the normal modes of oscillation analytically from

the model used to describe the system.

In the real atmosphere, where patterns of variability must be extracted from time-

series observations, statistical methods are generally used to find dominant patterns of

variability. One such method is Empirical Orthogonal Function (EOF) analysis. An

eigendecomposition of the covariance matrix, a matrix constructed from the inner prod-

uct of the variance of a state variable with itself, is performed on a variable such as mean

sea level pressure, or geopotential height. For a given state variable X, with matrix Xs,n

containing the values of that state variable at each spatial point s and each time point n,

the covariance matrix K is;

K = Cov(X) =
1

Nt

Nt∑
i=1

(Xi − X̄)′(Xi − X̄), (1.7)

of size Ns ×Ns where Ns is the number of spatial points, Nt is the number of time

points, and X̄ represents the time-mean of X. Solving the following eigenvalue problem;

KVx = VxΛ, (1.8)

yields Vx, the matrix the columns of which are the eigenvectors, or spatial EOFs,

and Λ is the diagonal matrix containing the eigenvalues. The eigenvectors are a set of

orthogonal functions which describe the variability of state variable X. By construction,
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the amount of variability described by the leading EOF (ordered by eigenvalue) is max-

imised, with each subsequent EOF explaining proportionally less of the spatial variability

of the state variable in the input time-series.

EOF analysis is a powerful statistical tool used often in geophysical fluid dynamics

to extract patterns of variability from atmospheric timeseries data (and is indeed used

in the studies cited in the section above). However, EOFs do not correspond to indi-

vidual dynamical modes, and do not correspond to kinematic degrees of freedom of the

atmosphere (Monahan et al., 2009).

These two approaches; of finding normal modes using the dynamics of the equation

set used to model the atmosphere; and of finding statistical patterns of variability in

timeseries data, may be brought together by carefully choosing an inner product for

the EOF calculation that is motivated theoretically by the global conservation of that

product. This technique produces a set of functions, called Empirical Normal Modes,

which describe the spatial variability, (as well as the amplitude timeseries, which may

also be calculated for EOFs) which possess properties analogous to the normal modes of

the primitive equations on a sphere, used to define the conservation quantity from which

the inner product is constructed.

1.3 Direction of Novel Research

The Empirical Normal Mode technique presented here is a development on the theory

presented by Brunet (1994). Brunet used data from a single level (500hPa) and a shallow

water model to construct a set of ENMs. This was taken further by Zadra et al. (2002b)

by considering multi-level data. Isentropic coordinates were used because the wave ac-

tivity framework extends to the stratified primitive equations most readily in isentropic

coordinates (Haynes (1988), Magnusdottir and Haynes (1996), Andrews et al. (1987a)).

However, only the upper troposphere and lower stratosphere were considered and they

did not extend their analysis down to isentropic surfaces that intersect the ground. The

intersection adds considerably complication because you cannot use Fourier transforms

in the zonal direction if the data does not wrap around a latitude circle. Also, there

are boundary contributions to wave activity. Indeed, as discussed in Section 1.2.3, the

boundary wave activity associated with disturbances to the gradient of potential tempera-

ture along the lower boundary are central to baroclinic instability, growing normal modes

and more generally to transient baroclinic growth. Nonetheless, the analysis by Zadra

was applied as a diagnostic study of the GEM’s dynamical core Zadra et al. (2002b) and
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NCEP re-analysis Zadra et al. (2002a).

The exact implementation used here is described in Chapter 2. However, in general

the novel aspect of this implementation is the inclusion of additional parts of the wave

activity quantity used for the ENM technique. Following Methven and Berrisford (2015),

wave activity is calculated for points where isentropic surfaces used in the analysis inter-

sect with the ground at certain latitudes, resulting in the inclusion of the ‘intersection’

and ‘exterior’ components of wave activity; the precise details are included in section

2.3 of Chapter 2. In brief, however, this has allowed us to probe through the tropo-

sphere to the lower boundary, whereas in previous implementations, upper-troposphere /

lower-stratosphere variability was explored using ENMs.

In the experiments presented here, the atmosphere is relaxed to an unstable jet state

with Rayleigh friction in the lower troposphere in order to obtain a set of atmospheric

model timeseries data with (1) distinct dynamics (Chapter 3) and (2) a jet which can be

varied in latitude (Chapters 4 & 5). A subset of the experiments presented by Zadra et

al. use the Held-Suarez Newtonian relaxation field and the ENM technique is used there

as an intercomparison of models with re-analysis data. In Zadra et al. (2002b), model

experiments are done which use the ENM technique to verify the ability of the forcing

regimes considered to reproduce variability and climatology seen in NCEP re-analysis.

The approach presented here offers several developments; first, the use of the Modified

Lagrangian Mean as a background state differs significantly from the zonal mean approach

taken by Zadra et al. (2002b); as shown in Chapters 3 & 4, the MLM varies more slowly,

and exhibits faster zonal flow than the zonal average. As a result it is likely that the

work by Zadra et al. (2002b) underestimates the advection term of the wave activity. The

large-amplitude wave activities and their conservation properties used here are defined

relative only to the MLM, not the zonal average.

Due to the aforementioned lower-boundary components of the wave activity, ENMs

may possess structures that penetrate through the troposphere right to the surface, which

as will be shown for the ENM structures in Chapters 3 & 5, are important for charac-

terising baroclinic modes, and the boundary contributions to the wave activity have a

significant effect on the phase speeds of the modes. The finite amplitude formulation of

wave activity on isentropic surfaces intersecting the lower boundary (following Magnus-

dottir and Haynes (1996)) enables us to treat the wave activity on these surfaces in a

rigorous fashion. This activity is crucial to the existence and propagation of baroclinic

waves. The expression for wave activity used by Zadra is obtained by linearisation of the
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wave activity about the background, zonal, mean state; here, the full non-linear wave ac-

tivity is used in order to obtain values for the ‘exterior’ & ‘intersection’ domains, whereas

within the interior domain, we use the same quadratic forms as Zadra for consistency

with the requirements of the ENM calculation.

In addition to the Held-Suarez experiments, Chapter 4 details the development of

model experiments with a latitudinally confined jetstream, controllable by a single pa-

rameter. This approach has not thusfar been undertaken in the literature and represents

a novel line of inquiry. In examining the ENMs of these experiments, Chapter 5 ad-

dresses specifically the evolution of the stationary modes with jet latitude, controlled by

the relaxation, to determine how they evolve.

1.4 Aims of the thesis

This thesis aims to examine how large scale patterns of variability evolve in structure

and timescale as the background state of the atmosphere changes. In order to do that,

the following principal hypotheses will be addressed;

H1 The variability associated with large-amplitude disturbances on the jet can be de-

composed into a small set of dominant modes with a distinct structure and intrinsic

frequency which can be deduced from that structure.

H2 This intrinsic frequency matches the frequency observed in the timeseries data of

the mode

H3 The dominant modes vary continuously with jet latitude and there is a relationship

between mode frequency (for a given zonal wavenumber) and jet latitude

That atmospheric data may be decomposed into an orthogonal basis set of modes

is true a priori. H1 asserts specifically that the number of significant modes obtained is

small. It is possible that a large number of modes are required to explain atmospheric

variance, and that variability is widely distributed between them.

While the modes obtained may possess an intrinsic frequency, or characteristic phase

speed, there are many factors which could contribute to that speed differing from the

speed empirically observed in the model atmosphere. Non-linear behaviour such as wave

breaking, or wave coupling, can modify the speeds such that they differ from the theoret-

ical speed which would otherwise result from the modes’ structure. While testing H2, the

conditions under which the speeds match are identified, and where they don’t, why that
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is the case. While frequency is used to characterise the modes in past literature on ENMs

(Brunet and Vautard, 1996), here the phase speed of the modes is used for convenience,

as slowly moving structures with low frequencies are studied.

It is expected that should the background jet increase in speed, then longer wave-

lengths would be required to balance the advection (equation 1.6) to achieve slow moving

modes. In the real atmosphere, it is observed in summer, when the jet is weaker, that

shorter wavelengths are observed in the dominant stationary structures. Similarly, ob-

servation has shown a link between persistent structures; slow moving structures which

result in persistent weather conditions, and background flow configurations where the jet

is in a lower latitude state. In testing H3, a number of questions arise; should the modes

vary continuously with latitude, do dominant waves present on more southerly jets pos-

sess lower frequency? Do a set of dominant quasi-stationary modes arise? How do the

modes evolve with latitude?

Firstly, the implementation of the ENM technique, as well as the background material

required for its use, will be discussed in Chapter 2. Part I of this chapter will deal with the

currently published material concerning the MLM background state, and the conserved

wave activity quantities which are used in the analysis. Part II consists of the novel

development of the ENM technique. The veracity of the implementation of this technique

will be discussed in Chapter 3 using idealised numerical model experiments. This is done

in order to determine the constraints on the kinds of structures whose behaviour can be

accurately captured by the ENM technique; a test of H2. This will also help to address

H1; it is expected that a dynamically simple model experiment should trivially give rise

to a small set of modes which dominate variability.

Following this, using a set of model experiments defined in Chapter 4, the relationship

between mean jet latitude and mode frequency are explored using the ENM technique in

Chapter 5, in order to address H3, while providing more cases to answer H1. Finally, in

Chapter 6 the conclusions from the previous chapters are summarised, and details of a

proposed scheme of future work are laid out.
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Chapter 2:

Methodology: Background State,

Wave Activity, and Empirical Nor-

mal Mode calculation

2.1 Introduction

There are many steps involved with calculating Empirical Normal Modes from grid-

ded timeseries data. In this chapter, Part I will first detail how the background state is

determined, followed by the calculation of wave activity for large amplitude disturbances,

described by the primitive equations on the sphere, using the previously derived back-

ground state, referring to the appropriate literature. Secondly, in Part II I will describe

the novel development of the Empirical Normal Mode (ENM) technique. The specific cal-

culation of the background state is key in order to ensure that the conservation properties

that the ENM calculation relies on are applicable, and is therefore important background

for the remainder of the thesis.

In Part I, the first two sections 2.2 & 2.3 are an essential summary of the relevant

parts of Methven and Berrisford (2015) & Methven (2013) respectively, detailing firstly

how the Modified Lagrangian Mean (MLM) background state used in the calculation is

derived, and then the forms of the wave activity quantities used in the ENM calculation.

This process of calculating the background state first requires an adiabatic rearrangement

of the full flow into a zonally symmetric state such that integrals of mass and circulation

are contained within a set of ‘equivalent’ latitudes (section 2.2.1). Following this, these

integrals are used to acquire the background state mass density and zonal flow via a

PV inversion, simultaneously calculating the equivalent latitudes. Details of this PV
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inversion are given in section 2.2.2. Subsequently, in section 2.3.1 wave activity quantities

with conservation laws valid for large-amplitude disturbances are calculated using the

background and perturbation variables provided.

In Part II section 2.4 details the Empirical Normal Mode technique; firstly by de-

scribing the Fourier filtering of perturbation data into zonal wavenumbers, and then the

eigendecomposition in terms of one of the derived wave activity quantities, the pseudo-

momentum, is shown in section 2.4.2, yielding the Empirical Normal Modes. This devel-

opment of the ENM technique is novel and there is currently a manuscript in preparation

with authors John Methven; Thomas Frame; Carlo Cafaro; Lina Boljka; and myself as

contributors.

Part I: Calculation of Background State & Conserved Wave

Activity Quantities

2.2 Calculation of the Background State

2.2.1 Mass and Circulation Integrals

The MLM background state is zonally symmetric and defined with respect to isen-

tropic vertical co-ordinates and PV contours. As such, data, initially in gridded time-series

form (from the IGCM, or else ECMWF re-analysis) with the terrain-following sigma ver-

tical co-ordinate σ, is first interpolated to θ-levels. Once this vertical interpolation is

complete, Ertel PV (q = ζθ/r) is calculated at each point; the isentropic vorticity with

respect to theta is calculated through a centred finite difference formula.

The determination of isentropic density is somewhat more involved; firstly, the Mont-

gomery potential is calculated through integration of the hydrostatic balance relation in

isentropic co-ordinates 2.7. Following this, the first and second derivatives of M with

respect to theta are calculated, which are used to calculate r (equation 2.8).

The MLM state is defined using volumes of integration, integrals of both mass

M(Q,Θ) and circulation C(Q,Θ) found using the full 3D fields of the PV (q) and the

isentropic density (r). The integration is performed over the area bounded by the con-

tour q = Q, i.e. anywhere where the PV exceeds Q, including isolated cut-off ‘islands’ of

positive PV. This is done over each isentropic surface.
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M(Q,Θ) =
1

∆θ

∫ ∫∫
q≥Q

ra2 dλdµ dθ, (2.1)

C(Q,Θ) =
1

∆θ

∫ ∫∫
q≥Q

ζa2 dλdµ dθ, (2.2)

Where ∆θ is the spacing between the chosen isentropic surfaces, a represents the

radius of the earth and µ = sinϕ.

2.2.2 PV Equation for Inversion

With the constraint that the zonally symmetric background state is constrained by

the mass and circulation integrals of the full flow, each contour Q of PV in the full flow

will have an “equivalent” latitude in the background state (as on each isentropic surface,

each Q contour has only one latitude, due to the zonal symmetry of the background and

a requirement that the arrangement of PV is monotonic with respect to latitude). PV

inversion can be used to obtain the zonal flow and density. The procedure described below

explains how an iteration is required to find the equivalent latitudes of the PV contours

in the MLM background state on every isentropic surface.

As the background state is zonally symmetric, Stokes’s theorem can be applied to

the circulation C in order to find an expression for the zonal flow associated with the

background state, U0 = (u0/a) cosϕ.

C(Q,Θ) = 2πa2
[
U +Ω

(
1− µ2e

)]
(2.3)

Where µe = sinϕe. In order to solve this equation for U , it is necessary to know

the values of equivalent latitude µe(Q,Θ) in the background state for each PV value. In

a flow which is horizontally non-divergent, such as the Quasi-Geostrophic shallow water

equations, the equivalent latitudes can be calculated directly from the area enclosed by a

given PV contour, as the density is uniform in each isentropic layer. However, here, density

can vary, and as such the mass enclosed by a given PV contour cannot be calculated from

the area. Nonetheless, using an area integral, a sufficient ‘first guess’ at the equivalent

latitudes can be made, even in the case where density is non-uniform;

µ1e(Q,Θ) = 1− A(Q,Θ)

2πa2
(2.4)

where;
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A(Q,Θ) =
1

∆θ

∫∫∫
q≥Q

a2 dλdµdθ (2.5)

however, to fully calculate the equivalent latitudes, a simultaneous solution of U and

r is required.

In order to calculate both the background zonal wind field, and the background

isentropic density, it is necessary to use the invertibility property of PV q = ζ/r. By

deriving appropriate expressions for both the vertical component of absolute vorticity

(ζ) and isentropic density r, it is possible to describe a PV equation in terms of only

the circulation C and the Montgomery potential M . It is also necessary to specify a

balanced flow for this equation; in this case, hydrostatic & gradient wind balance on the

sphere. Solving for M allows us to subsequently calculate the background zonal flow and

isentropic density. The Montgomery potential is defined as;

M = cpT + gz. (2.6)

Where cp is the specific heat capacity of air, T is the temperature, g is the acceleration

due to gravity and z is the geopotential height. Taking the derivative of M with respect

to θ, hydrostatic balance can be expressed in terms of M and θ (Andrews et al. (1987b));

∂M

∂θ
= cp

(
p

p00

)κ

(2.7)

Taking the second derivative of M, ∂2M/∂θ2 = R/P00 (p/p00)
κ−1 ∂p/∂θ, an expres-

sion for r in terms of M can be derived;

r = −1

g

∂p

∂θ
= − 1

gΓ

∂2M

∂θ2
(2.8)

Where the function;

Γ =
R

p00

(
1

cp

∂M

∂θ

)κ−1
κ

. (2.9)

Once an expression for r has been derived, it may be used in combination with the

definition of ζ on a sphere with angular velocity Ω with zonally symmetric flow;

ζ = 2Ωµ− ∂U

∂µ
, (2.10)
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in order to obtain a PV equation. By substituting both expressions into the definition

of PV, we obtain the PV equation;

2Ωµ− ∂U

∂µ
= − q

gΓ

∂2M

∂θ2
. (2.11)

It is possible to replace ∂U/∂µ in order to write equation 2.11 solely in terms of

Montgomery Potential and C. Firstly, an expression for −∂U/∂µ can be found by taking

the derivative of the gradient wind balance on the sphere,

(
2Ω sinϕ+

U sinϕ

cos2 ϕ

)
Ua+

cosϕ

a

∂M

∂ϕ
= 0, (2.12)

with respect to µ. Substituting this expression into the PV equation (2.11), it then

becomes;

2Ωµe +

UΩ
µe

+ U2

2µe

(
sin2 ϕe+1
cos4 ϕe

)
+ 1

2a2µ
∂

∂ϕe

∂M
∂ϕe

Ω+ 1
cos2 ϕe

+
q

gΓ

∂2M

∂θ2
= 0. (2.13)

Stokes’ theorem (equation 2.3) can then be used to substitute for U in equation 2.13

in order to obtain an expression for the PV equation (2.11) which depends only on second

order derivatives of M in both ϕe and θ, (aside from the nonlinear factor Gamma), and

the circulation (which is known).

1 +
1

(2Ωa sinϕe cosϕ)2

[
(1 + sin2 ϕe)

3

2 sin2 ϕe cosϕe

∂

∂ϕe

(
cosϕe

1 + sin2 ϕe

∂M

∂ϕe

)
− (1 + 3 sin4 ϕe)

2 sin2 ϕe cosϕe

∂

∂ϕe

(
cosϕe

∂M

∂ϕe

)
+
qC(q, θ) sinϕe

Γgπ

∂2M

∂θ2

]
= 0.

(2.14)

With this equation, given the PV distribution (q) and Circulation functional (C(Q,Θ))

it is possible to solve for the Montgomery potentialM , and fromM , both the background

zonal wind and the background isentropic density can be calculated using equations 2.11

and 2.8.

2.2.3 Boundary Conditions on the PV Inversion

In order to perform the PV inversion, it is necessary to establish the boundary con-

ditions for the domain such that equation 2.14 can be solved.
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Equator & Pole

As the method had been designed for a hemispheric domain, a lateral boundary

condition is required at both the pole and the equator. As cos(ϕ) reduces to 0 at the

pole,

cosϕ
∂M

∂ϕ
= 0, (2.15)

we can see from 2.12 that U = 0 at the pole. At the equator, sin(ϕ) = 0, and so, again

from 2.12, we can see that that 2.15 also applies here. This is to ensure that gradient

wind balance applies all the way to the equator, despite the Coriolis parameter tending

to zero there. Refer to Methven and Berrisford (2015) section 2.2.1 for full details.

Top Boundary

The pressure on the isentropic surface defining the top boundary to the inversion

domain is imposed from the Eulerian zonal average of the full state data. This pressure

is used to specify the vertical derivative of M at the top boundary, using hydrostatic

balance 2.7.

Lower Boundary

Following Bleck (1973), the lower boundary condition is;

M = gz + θ
∂M

∂θ
. (2.16)

which is an identity obtained through substitution of hydrostatic balance 2.7 into

the definition of M 2.6. This combination of M and its first derivative is a general

form of boundary conditions for elliptic equations like 2.14; more commonly used are

the Dirichlet boundary condition (where the solution at the boundary is prescribed) and

Neumann boundary conditions (where the first derivative at the boundary is prescribed).

The lower boundary condition is met by fitting a quadratic curve, M = a+ bθ+ cθ2,

vertically through the two isentropic levels above the boundary subject to the lower

boundary constraint;

M = gzLB + θLB
∂M

∂θ
(2.17)

Where zLB and θLB are the geopotential height and potential temperature on the

Page 19



2.2. CALCULATION OF THE BACKGROUND STATE

lower boundary at a given position (ϕ, t). However, as some isentropic surfaces intersect

the ground, it is necessary to provide a lateral lower boundary condition in addition to

the vertical lower boundary condition provided by 2.17. The lower boundary condition is

used in conjunction with the fitted quadratic to extrapolate M below the surface which

provides the lateral lower boundary condition.

Once M has been calculated, this quadratic curve also defines the pressure pLB and

density ρLB at the lower boundary of the background state. These quantities are used to

calculate the geostrophic wind, defined below;

ugLB = − 1

2Ωa sinϕ

(
1

ρLB

∂pLB
∂ϕ

+ g
∂zLB
∂ϕ

)
(2.18)

ugLB can then be used to calculate the lower boundary background state wind, using;

ug = u

(
1 +

u

2Ωa cosϕ

)
(2.19)

2.2.4 Numerics for PV Inversion

The inversion of the PV equation is made more complicated by the presence of the

Γ function, which introduces weak non-linearity, as without it, equation 2.14 would be

linear and elliptical. In addition, the lateral lower boundary condition defined above also

introduces non-linearity. It is done via a two step process which first uses a linear inverter

(routine D03EBF in the NAG library (NAG)) which makes an assumption about the

form of Γ, followed by a step to recalculate Γ, as well as the lower boundary, from the

results of the linear inverter, before feeding them back into it.

This is followed by an ‘outer’ iteration where differences in M & C between the

inverted (i.e. background) state and the full flow are reduced by recalculation of the

equivalent latitudes µe from the first-guess latitudes from equation 2.4. This is done by

adjusting the equivalent latitudes at each value of q = Q using estimates from both M &

C;

δµMe (Q,Θ) = −(M0 −M)
∂µ

∂M
µ

1
4
e (2.20)

and

δµCe (Q,Θ) = −(C0 − C)∂µ
∂C
µ

1
4
e (2.21)
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2.3. CALCULATION OF WAVE ACTIVITY

the contributions to the shift in µe are averaged from both the mass and circulation.

Iterations are then performed until the difference in equivalent latitudes between iterations

fall below a tolerance threshold.

This method does not guarantee the uniqueness of the solution obtained; it is possible

that results obtained are local solutions, based on the position of the first-guess equivalent

latitudes.

In summary, when performing the PV inversion, the following iteration procedure is

followed;

1. Estimate the equivalent latitudes (equation 2.4)

2. Calculate q and then the integrals M & C (equations 2.1 & 2.2) on the (ϕ, θ) inverter

grid

3. Calculate a first-guess of M using equation 2.14 given the circulation C and the

estimate of the equivalent latitudes provided in point (1). Isentropic density is then

calculated using 2.8.

4. Start the non-linear iteration; calculate Γ (equation 2.9) and the lower lateral bound-

ary condition (section 2.2.3) using the latest values of M

5. Perform linear iteration to recalculate M until the residual is sufficiently reduced

that the required precision is achieved

6. Return to step 4. and iterate non-linearly, followed by the liner iteration 5., until the

residual in M is sufficiently reduced that the required precision is achieved between

non-linear iterations

7. Return to step 1. and perform the outer iteration by adjusting the equivalent

latitudes (equations 2.20 & 2.21) until the equivalent latitude residuals is reduced

to within the required precision.

2.3 Calculation of Wave Activity

2.3.1 Defining Wave Activity

A key requirement when defining a wave activity quantity is that it follows a conser-

vation law. Such a law may be expressed mathematically by;
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2.3. CALCULATION OF WAVE ACTIVITY

∂A

∂t
+∇ · F = S (2.22)

Where A is the given wave activity density quantity, the F term represents fluxes of

that quantity, associated with propagation or advection, and S represents any sources or

sinks of the wave activity. Globally, wave activity is conserved, as long as S = 0 (there

are no sources or sinks), and there is no flux of wave activity through the lower boundary

(assuming the domain to be unbounded above).

Invariants such as the global zonal angular momentum, or energy, which arise from

rotational and time symmetries via Noether’s theorem, usually form the basis for wave

activity quantities due to their conservation properties. However, as wave activites mea-

sure the perturbation of a system relative to its background flow, these quantities taken

alone are not invariant within the perturbation (or indeed the background state) as they

may be exchanged between the perturbations and the background state.

Following the method presented in McIntyre and Shepherd (1987) it is possible to

systematically construct further conservation laws through a combination of the invariants

described above, with arbitrary functions of potential temperature and PV, C(q, θ), known

as Casimirs. Both θ and PV are materially conserved in adiabatic and frictionless flows

meaning that a fluid parcel does not change θ or q, though the total θ and q. This makes

any function C(q, θ) a conservative quantity. Specific functions C may be chosen and

combined with invariants in order to derive wave activities which are second order and

globally conserved, however in order to utilise this method, the chosen background state

must possess rotational and time symmetry in order for the zonal angular momentum

and energy invariants to be used in these wave activity constructions.

Pseudo-Angular Momentum Conservation

Following Haynes (1988), the pseudo-zonal angular momentum density (henceforth

abbreviated to pseudomomentum) is defined as

P (λ, ϕ, θ, t) = −r(Z + C) + r0(Z0 + C0), (2.23)

where r is the isentropic density, C is the Casimir density, an arbitrary function of θ

and PV, and Z is the specific zonal angular momentum at latitude ϕ on a sphere rotating

at rate Ω, defined as
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2.3. CALCULATION OF WAVE ACTIVITY

Z = (u+ aΩcosϕ) cosϕ, (2.24)

where q0 denotes background state PV, and C0 specifically means C(q0, θ). As Z and

C are both conserved in the full flow and the chosen background state (in this case, the

MLM), P is therefore also globally conserved, and thus C can be chosen so as to ensure

that P is second order in disturbance quantities. It is then possible to use the relationship

between the full flow, the background state, and the perturbations to derive an equation

for P expressed in terms of perturbation quantities. Taking a Taylor expansion of the

Casimir function about the background PV value q0 and gathering all terms second order

and higher into a residual term C2,

C = C0 +

(
∂C

∂q

)
0

qe + C2(q0, qe, θ), (2.25)

where qe refers to the perturbation PV, i.e. the difference between the full flow and

the background state. After applying the identity rqe = ζe − reqo, equation (2.23) can

then be expressed in terms of both background state q0 and perturbation qe quantities.

P = −rC2 − reue cosϕ− r0ue cosϕ

−
(
∂C

∂q

)
0

ζe − re

[
Z0 + C0 − q0

(
∂C

∂q

)
0

] (2.26)

ζe can be expanded in terms of the zonal and meridional velocity perturbations;

ζe = (1/a cosϕ)∂ve/∂λ−(1/a cosϕ)∂(µe cosϕ)/∂ϕ. Applying this and substituting it into

2.26 gives:

P = −rC2 − reue cosϕ

− 1

a cosϕ

∂

∂λ

[
ve

(
∂C

∂q

)
0

]
+

1

a cosϕ

∂

∂ϕ

[
ue

(
∂C

∂q

)
0

cosϕ

]
−ue

[
r0 cosϕ+

1

a

∂

∂ϕ

(
∂C

∂q

)
0

]
− re

[
Z0 + C0 − q0

(
∂C

∂q

)
0

] (2.27)

Here, the first line consists of quantities that are second order or higher; the C2 term

(i.e. the 2nd order and higher terms of the Casimir function) and the second term con-

taining only perturbation quantities. The second line is a horizontal divergence. Hence,

the terms of the final line must equal zero in order for the global integral of P to be
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second order (as the divergence terms will vanish in the global integral). This places a

constraint upon the Casimir function which can be suitably chosen to ensure that both

terms are zero.

∂

∂ϕ

(
∂C

∂q

)
0

= −ar0 cosϕ (2.28)

Z0 + C0 − q0

(
∂C

∂q

)
0

= 0 (2.29)

By integrating the first of these constraints with respect to ϕ, we can express it in

terms of the mass integral (equation 2.1) from earlier.

(
∂C

∂q

)
0

= −a
∫ ϕ

0
r0(ϕ̃, θ, t) cos ϕ̃dϕ̃

=
1

2πa
[M(Q, θ)−Ms(θ)] ,

(2.30)

Where M2 is the total mass of the isentropic shell in the hemisphere. This enables

the calculation of the Casimir function using the previously calculated mass integral 2.1.

Rearranging 2.25 for expression for C2,

C2(q0, qe, θ) = C − C0 − qe

(
∂C

∂q

)
0

, (2.31)

C2 can be expressed in terms of the Mass and Circulation integrals by integrating

over PV values, as shown in Thuburn and Lagneau (1999),

C2 =
1

2πa

(
q[M]qq0 − [C]qq0

)
. (2.32)

With P now expressed in a calculable form, the full global pseudomomentum (Mag-

nusdottir and Haynes (1996)) can be derived by integration of 2.27 over different domains;

P =

∫
D̄
(−rC2 − reue cosϕ)a

2 cosϕdλdϕdθ −
∫
∂̄D

(
∂C

∂q

)
0

ue cosϕadλdθ

+

∫
(D∩D0)\D̄

[
−rC2 − (r0 + re)ue cosϕ−

(
∂C

∂q

)
0

ζe

]
a2 cosϕdλdϕdθ

−
∫
D\(D∩D0)

r(Z + C)a2 cosϕdλdϕdθ +

∫
D0\(D∩D0)

r0(Z0 + C0)a
2 cosϕdλdϕdθ.

(2.33)

Whereas before, P (in normal caps) referred to the wave activity density, the curly
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P notation will refer to the full global integral of wave activity.

In the “interior” domain, where isentropic surfaces of both the full and background

flow do not intersect the ground (corresponding to the brown area on figure 2.1), the

volume integral of the first two terms of 2.27 reduces to the first integral of 2.33. This is

split into two terms; the Rossby wave, or advection term Pw, which measures the wave

activity from displacement of PV contours; and gravity wave term Pg, which involves

correlation between the isentropic density and the horizontal perturbation velocity- which

does not measure Rossby wave activity, hence being termed the gravity wave term, as

these waves are the dominant waves measured (though other waves such as Kelvin waves

also possess this type of wave activity).

The boundary integral, (along ∂D in figure 2.1), reduces to the integral of the diver-

gence term of 2.27, which is the second integral of 2.33, which we call the boundary term,

Pb.

In the “intersection” domain, where isentropic surfaces of both the full flow and

background state are above the ground at certain longitudes (corresponding to the red

area on figure 2.1) divergence terms are retained giving rise to the second line of 2.33.

The resultant integral is referred to as the intersection pseudomomentum, Pd.

In the exterior domains (corresponding to the yellow hatched area and green area of

2.1), where points are above the lower boundary only in either the background or full flow,

the wave activity density must be calculated separately for the two domains, resulting in

the final two integrals on the last line of 2.33, or the exterior domain pseudomomentum,

Pe.

These contributions to the pseudomomentum are summarized in table 2.1, along with

the shorthands used when plotting timeseries of global pseudomomentum contributions.

In the small amplitude limit (Magnusdottir and Haynes (1996),Methven (2013)), the

expression for the pseudomomentum density (equation 2.27) reduces to;

Domain Name Pseudomomentum Contribution Plotting Shorthand

Interior Rossby Wave Pw twatrop, twastrat

Interior Gravity Wave Pg twag

Intersection Pd twad

Boundary Pb twab

Exterior Pe twae

Table 2.1: A summary of the contributions to Pseudomomentum.
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P =
r2o cosϕo
qoy

q2e
2

− reue cosϕ

+

(
r2oqo

y2be
2

− roueybe

)
cosϕbo

∂θbo
∂y

δ (θ − θbo)

(2.34)

where y = aφ and qoy = ∂qo/∂y, (qbo = Q) is the background state PV contour

everywhere coincident with the intersection of the isentropic layer with the ground, ϕbo

and θbo are the latitude and potential temperature of the boundary in the background

state, ybe is the value of y corresponding to ϕbe = ϕb − ϕbo .

Pseudo-energy Conservation

Similarly to above, the pseudoenergy density, H can be defined as;

H(λ, ϕ, θ, t) = r(E +B)− r0(E0 +B0) (2.35)

where E, the specific energy, is defined as;

E ≡ 1

2

(
u2 + v2

)
+ h(p, θ) (2.36)

and h is the specific enthalpy. In this case, the Casimir function is written B to

distinguish it from the function used in (2.23). Similarly to before, it can be expanded in

PV using a Taylor expansion;

B = B0 +

(
∂B

∂q

)
0

qe +B2 (q0, qe, θ) . (2.37)

Similarly, by expanding the enthalpy with respect to the pressure perturbation, an

equation for h can be derived;

h = h0 +

(
∂h

∂p

)
0

pe + h2 (p0, pe, θ)

= h0 +

(
∂h

∂p

)
0

pe +

∫ pe

0
(pe − p̃)

∂2h

∂p̃2

∣∣∣∣
θ

(p0 + p̃, θ) dp̃.

(2.38)

Re-writing (2.36) in terms of the expression for enthalpy 2.38, and the Taylor expan-

sion of the Casimir B (2.37) gives;
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H =
r

2

(
u2e + v2e

)
+ rB2 + rh2 + r (u0ue + v0ve)

+ re

[
E0 +B0 − q0

(
∂B

∂q

)
0

]
+

(
∂B

∂q

)
0

ζe

−
(
∂h

∂p

)
0

1

2g

∂p2e
∂θ

+ r0

(
∂h

∂p

)
0

pe

(2.39)

In the small amplitude limit, the expression for pseudoenergy density reduces (Methven

(2013)) to to give

H =
ro
2

(
u2e + v2e

)
+
κho
gpoθ

p2e
2

− r2ouo
qoy

q2e
2

+ reuoue

+

(
−r2oqouo

y2be
2

+ rououeybe

)
∂θb
∂y

.δ (θ − θb) .

(2.40)

These terms can be split up similarly to those in the pseudomomentum equation. The

various terms are detailed in table 2.2. The first term in 2.40 represents the kinetic energy

contribution to the pseudoenergy, HKE . The second corresponds to the available potential

energy component from the energy, HAPE . The third term is the interior Rossby Wave

term, corresponding to the B2 term in the full large-amplitude pseudoenergy, Hw. This

is similar to the Pw term from the pseudomomentum, and corresponds to contributions

to the wave activity from displacement of PV contours. The following term, Hg is the

’gravity wave’ term, measuring contributions from gravity and other waves such as Kelvin

waves. The final two terms are the boundary (Hb) and exterior (He) corresponding to

the same domains as in the pseudomomentum detailed above.

Generally, the gravity wave contributions are neglected due to their small magnitude.

Domain Name Pseudoenergy Contribution

Interior Rossby Wave Hw

Interior Gravity Wave Hg

Interior Kinetic Energy HKE

Interior APE HAPE

Boundary Hb

Exterior He

Table 2.2: A summary of the contributions to Pseudoenergy.
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Part II: Novel Development of the Empirical Normal Mode

Technique

2.4 Calculating Empirical Normal Modes

2.4.1 Fourier Filtering

In general, through the use of a basic state, a set of perturbations are able to be

derived for key variables (u, v, p, r, q; illustrated here using q) through a subtraction of

the relevant basic state quantities from the full flow fields.

qe(λ, ϕ, θ, t) = q(λ, ϕ, θ, t)− q0(ϕ, θ, t) (2.41)

However, in the following calculation, in order to ensure that the calculated ENMs

are computed with respect to single zonal wavenumbers it is necessary to perform a

Fourier filter in order to calculate the perturbations with respect to the background state

at separate zonal wavenumbers. This Fourier transform is performed on the full grid-

point data in (λ, ϕ, σ) space, as in θ space the lower boundary intersects with the ground

at some latitudes. Thus the full data is transformed into phase space and partitioned

according to its zonal wavenumber;

q(λ, ϕ, σ)
FFT, partition−−−−−−−−−→ q̃m(ϕ, σ) (2.42)

For each desired zonal wavenumber then, the spectral space data is subsequently

transformed back into gridpoint space retaining only the zonal average m = 0 and the

desired wavenumber m = M . The resulting physical space perturbation q̂m(λ, ϕ, σ, t) is

then interpolated onto theta levels, to provide q̂m(λ, ϕ, θ, t). This quantity contains zon-

ally symmetric components which must be removed to perform the ENM analysis; these

components have two sources. One of which is differences between the MLM background

state and the zonal average such that when the perturbations are calculated in equation

(2.41), the difference between the two remains as a zonally symmetric component of qe.

In addition, the vertical interpolation of variables from σ to θ levels generates signals of

wavenumbers other than the desired wavenumber m = M , especially in the atmospheric

‘underworld’ (Hoskins (1991)) where isentropic surfaces intersect the ground (as well as

σ levels). As such, a final Fourier transform is performed in order to isolate the Fourier

coefficients of the perurbation quantities in isentropic coordinates where they do not in-
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tersect the lower boundary (the interior domain). The intersection and exterior domains

are treated differently, as described in the following section.

As such, perturbations for each wavenumber are then defined by

qem(ϕ, θ, t) = q̂m(ϕ, θ, t)− q0 − [q̂m(λ, ϕ, θ, t)] , (2.43)

thus essentially removing the zonally symmetric part of the perturbation field and

only retaining a single wavenumber at a time for the ENM calculation.

Defining Lower Boundary Pseudomomentum Contribution

Using equations (2.33) & 2.39 above to calculate P & H requires the analysis domain

to be partitioned on each θ level into a number of parts.

• The interior domain, D̄, contains latitudes where both the background state and

the full flow are above the lower boundary at all longitudes; the Rossby wave and

gravity wave terms of 2.33 are calculated over this domain. The boundary integral

is evaluated along its edge.

• The domain of intersection, (D∩D0)\D̄, contains points where at certain longitudes,

both the background state and full flow are above the lower boundary but excluded

from the ”interior” domain because the theta surface hits the lower boundary at

some longitude.

• The background domain exterior to the intersection domain, D0\(D∩D0), contains

points which are above the lower boundary only in the background state. The

exterior pseudomomentum term is calculated in this domain.

• The full flow domain exterior to the intersection domain, D0\(D ∩ D0) contains

points above the lower boundary only in the full flow and not the background state.

The exterior pseudomomentum is also calculated in this domain.

For finite amplitude disturbances, the pseudomomentum density is positive definite

in both the interior and intersection domains, owing to the meridional PV gradient of the

background state being positive. In the small amplitude limit, both exterior terms Pe

and the boundary term Pb reduce to a single boundary term which is negative definite.

It is necessary to define points as being interior points, exterior points, or points

without data for the ENM technique. In order to do this, the time-average of the back-
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Figure 2.1: Schematic diagram of the division of the flow domain on a single isentropic
surface following Magnusdottir and Haynes (1996). Here ∂D0 indicates the equivalent
latitude within which the background state points are above the lower boundary at all lon-
gitudes; ∂D is the contour within which the full flow is above the lower boundary. Hence,
the central brown area indicates the interior domain, the red indicates the intersection
domain, the yellow hatching indicates points above-ground in the background flow only,
and the green area outside the hatching indicates areas where the full flow only is above
the lower boundary.

ground state is taken, and the ground is defined as the location of the lower boundary

in this time-average state. This is because points must be assigned to either the inte-

rior or the exterior for the entirety of the timeseries; points cannot change designation

for the eigenvector calculation used to find the ENMs. Furthermore, the conservation

of pseudoenergy requires that the background state exhibits time-symmetry, i.e. that it

is invariant. As the MLM is indeed slowly varying, a time-average stays near the MLM

at each time point. The interior domain is defined by the brown region shown in figure

2.1 for isentropic surfaces that intersect the ground. We will denote the pseudomomen-
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tum density in this domain Pw. If a location in the latitude, theta plane has non-zero

exterior domain wave activity for greater than 20% of time points in the average, it is

also assigned to the exterior mask. As these points do not change designation between

boundary and interior throughout the time series, thresholding is required to determine

which mask points are assigned to. In addition, all points below the lower boundary of

the background state with exterior wave activity are also a part of the exterior domain.

Subsequently, at each latitude ϕ, the position of the first interior potential tempera-

ture level above the lower boundary of the time-averaged background state is θm(ϕ). The

intersection domain wave activity (term Pd from equation 2.33) is integrated vertically,

and assigned to the first θ-level below the ‘ground’ in the time-average background state,

θ(m−1)(ϕ). This results in a ‘stripe’ of positive wave activity at the given θ-level, as shown

in figure 2.2 (a). Similarly, the exterior pseudomomentum Pe is integrated in the vertical

and assigned to the θ-level two levels below the ground, θ(m−2)(ϕ), creating a stripe of

negative wave activiy below the positive stripe, shown in figure 2.2 (b).

The reason for the flattening of the intersection and exterior wave activity in this way

is to ensure that the points maintain the correct sign throughout the ENM calculation

(described below), and to allow the subtraction of the time-mean from the global wave

activity used here.
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Figure 2.2: The spatial WA structure of the leading m = 2 ENM from the TO, as a
demonstration of (a) the positive stripe of WA at θ(m−1), and (b) the negative stripe at
θ(m−2)

2.4.2 Eigenvalue Decomposition

Using the above calculation for pseudo-momentum, it is possible to construct a data

matrix whose empirical-orthogonal functions (EOFs) are defined to be orthogonal with

respect to pseudo-momentum. These EOFs define the Empirical Normal Modes for the

data of the given wave activity and background state. To define the matrix, it is necessary

to construct at each time point a wave disturbance whose inner-product is the pseudo-

momentum. The amplitude coefficients for these waves come from the calculated pseudo-

momentum density on a discrete (θ, µ) grid and the phase from the phase of the PV at

each grid location.

To start, Pj,k,n is defined to be the pseudo-momentum density of a grid-box of a

discrete dataset defined on a (θ, µ) grid. Here j indexes θ, k indexes µ and n indexes
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time. Pj,k,n is positive on the interior and intersection points and negative on boundary

points, and it is assumed that time variations in the location of the boundary have been

accounted for as described in the previous section, such that the location of the different

domains within the discrete grid is time invariant. The amplitude coefficient at each grid

location is defined

xj,k,n =
√
∆µj∆θkPj,k,n (2.44)

Vectors will henceforth indexed across all of (θ, µ) space by s which runs from 1 to

Nj × Nk. Notably, the ENM calculation can be calculated regardless of the ordering of

these vectors in space and time; as long as any transformation of spatial or temporal

points is reverted after the calculation, the calculated results will be the same. These

amplitudes and phases derived from the Fourier transformation are combined. Let ϵn be

the vector whose elements are the phase of the perturbation PV at point s at each time

point n for a single Fourier-filtered zonal wavenumber. We can then define a new vector

zn and matrix Z:

zn =

xn ◦ cos(ϵn)

xn ◦ sin(ϵn)

 , (2.45)

and

Z =


| | |

z1 z2 ... zNt

| | |

 (2.46)

Where ◦ represents the Hadamard product. This definition of zn results in the

pseudomomentum being given by P = zTnzn, where Nt is the number of time points. Z

can then be used for the computation of decomposition matrices;

Ptime =
1

Nt
ℜ(Z)Tℜ(Z) and Pspace =

1

Nt
ℜ(Z)ℜ(Z)T (2.47)

Where ℜ(Z) corresponds to the real values of Z such that only the interior points

are included. Either of these matrices can be eigen-decomposed to give a set of EOFs

which are orthogonal with respect to Pinterior. We choose to calculate Ptime however a

calculation of Pspace would yield the same result. The decomposition is performed by

numerical decomposition software; specifically the eig function in MATLAB,
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PtimeVt = VtΛ (2.48)

Where Vt are the principal components, the matrix whose columns consist of the

time eigenvectors of Ptime, and Λ is the matrix which contains the eigenvalues along the

leading diagonal and 0 at all other points. Once the eigenvectors (and corresponding

eigenvalues) have been calculated they are subsequently sorted in order of descending

eigenvalue.

The temporal principal components can be used to calculate the spatial eigenvectors;

Vx =
1√
Nt

ℜ(Z)VtΛ
− 1

2 (2.49)

These spatial eigenvectors are the structures of the ENMs, whereas the temporal

eigenvectors are the principal component timeseries.

2.4.3 Calculation of Pext & H by Projection

Once the ENMs have been calculated from the decomposition of interior (plus inter-

section domain) pseudomomentum, it is necessary to calculate the external contribution

to pseudomomentum for each ENM through the projection of the eigenvalue matrix, Vt

onto Pexterior;

Vexterior
x =

1√
Nt

ℑ(Z)VtΛ
− 1

2 (2.50)

The total pseudomomentum density of each ENM may then be calculated through

the sum of the Pinterior and Pexterior ENM components.

The pseudoenergy of each ENM may be similarly calculated by projection of the vari-

ables needed to calculate each term of H(u, v, p) onto the principal components. Firstly,

for u, we define a vector ûn whose elements are given by;

ûs,n = ues,n

√
1

2
r0s,n∆µs∆θs (2.51)

where ue
n is the Fourier-filtered perturbation wind for a single zonal wavenumber,

(obtained as for PV for equation 2.45). A vector similar to zn may be obtained for u;
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ũn =

ûn cos(ϵ
u
n)

ûn sin(ϵ
u
n)

 (2.52)

where ϵu represents the phase of the Fourier filtered component of zonal wind at µ

& θ points. ũn is set to 0 at all exterior points, as the exterior does not contribute to the

Kinetic Energy term of H which is the term the zonal and meridional wind projections

are used to calculate. A ṽn term can be similarly calculated. Time averages of these

terms are calculated and subtracted to yield;

ũ′
n = ũn− < ũn > & ṽ′

n = ṽn− < ṽn > (2.53)

Similarly for p, using the Fourier filtered pressure perturbation pe
n, the vector p̂n;

p̂s,n = pes,n

√
1

2

Rp
(κ−1)
0

gp00κ
∆µs∆θs (2.54)

Which can be used to calculate p̃n. ũn, ṽn, & p̃n can then each be projected along

the principal components similar to equation 2.50. This projection yields the zonal wind

ui, meridional wind vi, and pressure spatial structure pi of each of the ENMs, with index

i corresponding to the ENM mode number, which can be used to calculate the pseudo-

energy density of each ENM;

Hii = uTi ui + vTi vi + pTi pi −
u0

cosϕ
Pii (2.55)

As only Pinterior (the interior + intersection domain pseudo-momentum) is orthogonal

as a result of the eigendecomposition, it possesses the orthogonality property; P ij
interior = 0

for i ̸= j (where j henceforth is another ENM mode index). It is expected that the full

pseudomomentum and the pseudoenergy are also approximately orthogonal however this

is not guaranteed, and the deviation from orthogonality of the ENMs can be measured

with the quantity;

|Pij |
1
2 (Pii + Pjj)

(2.56)

2.4.4 Pairing ENMs

In order for the ENMs to describe a propagating disturbance, it is required that they

are paired into tuplets whose amplitudes vary in quadrature with one another over time.
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If these pairs of ENMs are purely propagating, they possess the same spatial amplitude

structure, with a phase offset by π/2. In order to find these propagating pairs, a ’matching

statistic’ for each possible mode pair is calculated.

The number of ENMs is equivalent to the number of time-points in the data, however

most of these modes will possess very little pseudomomentum; as a result, a fractional

proportion of all modes, σtrunc are truncated from the spectrum before matching occurs,

retaining only modes with eigenvalues λt which are above the threshold such that;

λifiltered
λ1

> σtrunc (2.57)

Where λ1 s the eigenvalue of the leading mode for that spectrum. Once truncated,

the ENMs can be paired into quadrature matches, where the phases of the two constituent

ENMs are π/2 out of phase. In order to find matches in quadrature, a matching statistic

is defined. First, taking W to be a transformation matrix designed to rotate through

π/2;

W =

0 −1

1 0

 , (2.58)

it is possible to calculate a projection from one ENM onto a mode shifted by π/2;

Mq = VT
x (WVx) (2.59)

This effectively rotates each of the sin and cos components of zn (equation 2.45)

into one another, and as such the matrix Mq is the matching statistic, and each element

contains a measure of how well any two given modes match in quadrature. Its elements,

mqi,j are the individual match statistics of the ENMs. Similar to the amplitude truncation

above, pairs below a certain matching threshold are discarded.

2.4.5 Dynamical Phase Speed Cint

The phase speed of a given ENM can be calculated (Brunet (1994)) from;

cint = −H
P

(2.60)

Due to the conservation of the wave activity quantities, it is expected in general that

a general atmospheric disturbance should appear steady in wave activity. It is possible
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2.4. CALCULATING EMPIRICAL NORMAL MODES

to calculate the speed of this reference frame (Held (1985)), giving equation 2.60.

Due to normalization of ENMs about interior pseudomomentum, P is close to 1,

however due to the contribution of Pexterior, it is not exactly 1, and therefore must be

included in the calculation of cint;

cint = −(Hw +HKE +HAPE +Hb +He)

P
(2.61)

With each term corresponding to a term of the the global integral of pseudoenergy for

a given mode calculated by projection for each ENM. Values of cint are averaged between

members of a pair with equal weighting.
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Chapter 3:

The Phase Speed Condition Test

3.1 Introduction

A fundamental property of dynamical normal modes is that they have an intrinsic

frequency which describes how they oscillate, and a static function which describes their

structure. For a wave disturbance, the time-dependence can be reflected in both the phase

and the amplitude of the wave. ENMs share these modal properties even though the un-

derpinning equations of motion, or the dynamical propagator matrix of the linearised

dynamics, is not used to obtain the ENMs. As described in Chapter 2, they are obtained

by an eigenvector calculation where the spatial components are the ENM structures and

their time dependence is described by the principal components. Since the ENMs are

eigenvectors of the pseudomomentum matrix, they are by construction orthogonal with

respect to pseudomomentum. Since global pseudomomentum is a conserved property,

Held (1985) showed that the analytical normal modes of the system must also be or-

thogonal with respect to pseudomomentum. Hence, in the case of linear dynamics, it is

expected that the ENMs are a linear recombination of the analytical normal modes as

they appear in the timeseries data. Furthermore, the intrinsic phase speed of each mode

is given by the ratio of its pseudoenergy to pseudomomentum. Therefore, by analogy we

can associate every ENM spatial structure with an intrinsic phase speed calculated from

−H/P. Since each ENM also has a single zonal wavenumber, k, the phase speed yields

immediately an intrinsic frequency, ωint = kcint. This is a remarkable special property

of ENMs which can be used to test the relevance of the structures, obtained simply by

statistical means, as a compact description of the dynamics of flow evolution.

By finding ENMs oscillating in quadrature, and examining their principal component

timeseries, it is possible also to extract, cemp, an empirically measured speed of each
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ENM pair, derived from tracking the phase of features across the ENM timeseries. For an

atmosphere with wave-like disturbances described approximately by dynamics linearised

about the background state, cint and cemp should match for each wave number. This is

the ‘Phase Speed Condition Test ’ and matches in phase speed indicate; (1) that the ENMs

are behaving like normal modes; (2) the wave activities are approximately conserved; and

(3) that large-scale behaviour is well described by linear wave dynamics, despite certain

non-linear aspects to the flow.

This chapter presents a series of spectral general circulation model runs used to verify

the implementation of the ENM technique for flows described by the primitive equations

on the sphere. These model runs should approximately meet the requirements for the

speeds to match- almost conservative flow, the absence of forcing, and a lack of nonlinear

interaction between wavenumbers. As a result, performing the Phase Speed Condition

Test will allow us to examine discrepancies, if there are any, between the dynamical speed

and the empirical speed.

Over sufficiently long timescales, models with no seasonal cycle or other slow forcings

will attain a quasi-equilibrium state, as long as other forcings, such as linear relaxation,

or drag are also statistically steady. The background state of such an atmosphere could

only be altered by wave-mean flow interaction and hence is expected to be approximately

steady. For such states, it is expected that the ENM structures extracted from two

distinct, ‘independent’ periods of the model run will exhibit the same characteristics,

due to the absence of a process that might modify them. By comparing structures and

speeds in this way, a test of structural consistency can be performed, called the ‘Quasi-

Equilibrium Structure test ’.

Once both the Phase Speed Condition Test, and the Quasi-Equilibrium Structure

Test have been discussed, this chapter will go on to look at quantifications of the un-

certainty of ENMs. Measurements of uncertainty will be discussed for both estimates of

phase speed. Given the metrics of uncertainty, the effect of varying the sampling frequency

on the uncertainty will be examined. Finally, a series of tests varying the analysis time-

window will be presented, showing how the length of the timeseries affects the distinctness

of the ENM spectra. This will serve as an underpinning for subsequent investigations with

the ENM technique. It is expected that the ENMs obtained by the analysis will converge

if the sampling frequency is much higher than the intrinsic frequency, and the time series

length is longer than the intrinsic period of the ENMs.
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3.2 Experimental Design

In order to test the phase speed condition, a set of idealized atmospheric flow data

is required. There were several requirements for this data:

1. A set up where both seasonal and diurnal cycles could be removed was essential.

This ensured that the model climate can enter a period of quasi-equilibrium where

the background state evolves slowly in the absence of distinctive forcing, needed to

perform the Quasi-Equilibrium Structure Test.

2. A dataset without orography was needed. As Earth’s orography is not zonally sym-

metric, the presence of orography forces large-amplitude stationary waves Dickinson

(1978) Valdes and Hoskins (1989). The phase speed condition test requires propa-

gating waves without external forcing of wave activity, and as such it is convenient

to remove orography for a clean experiment. This does not mean that orographic

waves preclude the ENM technique being used. However, orography introduces ad-

ditional complexity, such as how to define the background state’s lower boundary.

The choice of background state lower boundary is a decision that must be made

when defining the background state (recalling that the background state is zonally

symmetric). For example, the background surface geopotential can be defined as

being uniform, or it could follow zonal mean orography; in either case extrapolation

of data to the surface leaves a signal in θ which can modify wave-activity.

3. Waves propagating in a grid-based model are subject to numerical dispersion. Here

it is preferable to utilise a spectral model so that large scale wave propagation is

represented accurately. In general, spectral models better preserve low-order (and

hence large-scale) structures Simmons and Hoskins (1975), making them favourable

for our application. Ultimately, this ensures that transfer between waves can only

happen as a result of non-linear interactions in the dynamics of the experiment.

3.2.1 Model

The model used was the Reading Intermediate General Circulation Model, IGCM2.2.

It is a multi-level spectral transform primitive equation model on the sphere, based on

the model equations from Hoskins and Simmons (1975), modified by Blackburn (1985).

It includes both Newtonian cooling (as well as the potential for relaxation to variables

other than temperature) and Rayleigh drag. The version used v(2.2) also possesses simple
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moist parameterizations and a boundary layer scheme, neither of which were utilised in

these experiments. For these experiments surface orography is zero.

3.2.2 Specification

The IGCM was specified to run at T42 resolution for the initial experiments pre-

sented in this chapter, retaining the first 42 zonal and total wavenumbers using jagged

triangular truncation. The number of retained spectral coefficients at this truncation is

462; this is equivalent to about 2.79° grid-spacing at the equator on a quadratic Gaussian

grid used for the spectral transforms. Following Thorncroft et al. (1993) there were 30

vertical levels on a stretched grid, with higher resolution in the upper troposphere, on

sigma surfaces. The pressure of the uppermost sigma level is 8.4hPa, ensuring the model

domain extends well into the stratosphere. The model was run with 128 semi-implicit

time steps per day (roughly one time step every 11 minutes) with output fields recorded

at 6 hourly intervals, and global norm data (such as global MSLP and energy) recorded

at each time step. This resolution was chosen as high spatial resolution is not required

to examine large-scale Rossby-wave structures, and in order to reduce computation time.

High temporal resolution is required to maintain a Courant number well below 1, due to

the high propagation speeds in some of the model experiments.

Model Horizontal Res. Vertical Levels ∆t Domain τ -Relaxation τ -Drag

IGCM2.2 T42 30 1 Day / 128 Hemispheric 15 day 1 day

Table 3.1: Summary model specification for the iGCM runs.

A weak sixth order hyper-diffusion was applied, in order to smooth out fine structures

generated by enstrophy cascades from large scale motion, with a timescale of 6 hours on

the smallest retained wavenumber.

3.2.3 Relaxation

A Newtonian relaxation scheme was used to simulate radiative forcing. The relax-

ation timescale was 15 days. The structure of the relaxation state is an analytically

prescribed, zonally symmetric function of temperature from Held and Suarez (1994a):

Teq = max

(
200K,

[
315K − (∆T )ysin

2ϕ− (∆θ)zlog
( p
p0

)
cos2ϕ

]( p
p0

)κ)
, (3.1)
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where (∆T )y = 60K is the temperature difference between the equator and pole;

(∆θ)z = 10K is the dry adiabatic lapse rate; and p0 = 1000hPa is the surface pressure.

The Held-Suarez state was used (1) due to its ubiquity in the literature, and (2) due to

its original purpose of comparing dynamical cores. Figure 3.1 shows the temperature field

described by equation 3.1, and the zonal flow in gradient thermal wind balance with the

temperature. The IGCM is used to obtain this balanced flow using the in-built balancing

routine.

As the Held-Suarez state is analytically defined it is suitable for inter-comparison

between models which should converge to a uniform solution. Were waves entirely con-

servative, the background state would be identical to the Held-Suarez state; instead the

background calculated is a balance between the relaxation and nonlinear wave breaking

and associated stretching, folding and dissipation of PV filaments. As studies have previ-

ously been done with this set-up, any previously run experiments, when analysed by the

ENM technique, should provide the same set of modes, ensuring that the experiment is

easily repeatable.

(a) (b)

Figure 3.1: The specified temperature field used for the radiative forcing as specified in
Held and Suarez (1994a) (a), with its corresponding balanced zonal wind field (b).

The relaxation could be set to relax either to this temperature field, or to both this

temperature field and the balanced vorticity and horizontal divergence fields associated

with it. This relaxation to both zonal temperature and wind fields serves to provide

an additional set of experiments with distinct dynamics, where the atmosphere is forced

towards a state in gradient wind balance. An exact balanced state is obtained using the

IGCM discretisation by running it for one time step and utilising the balancing scheme

BALANC, as described in appendix II of Simmons and Hoskins (1975) to balance from the

prescribed temperature field and a uniform prescribed surface pressure field of 1000hPa
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(whereas in Simmons and Hoskins (1975) a balance to T and ps is achieved from a

prescribed vorticity as opposed to the other way around). It should be noted that this

wind field, in particular the large equatorial jet, is not observed within the the zonal mean

once spin up is complete, as baroclinic instability establishes a mid-latitude jet.

3.2.4 Drag

Rayleigh drag, as described in Held and Suarez (1994a), was also implemented. The

drag possesses a one day timescale and has only a vertical dependence, and its co-efficient

is defined as:

kv = kf max

(
0,
σ − σb
1− σb

)
, (3.2)

where σb = 0.7 is the height of the boundary layer in sigma co-ordinates, and kf = 1

is the relaxation rate in days−1. It is applied to all spectral co-efficients of vorticity except

the first, as the first spectral co-efficient of the vorticity equals the planetary vorticity. At

the surface, the drag possesses its full strength, however it decreases linearly to zero at

σ = 0.7.

3.2.5 Initial Conditions

The balanced relaxation state was used as the initial condition of the simulations,

with a surface pressure of 1000hPa. A random noise component was applied to all surface

pressure spectral co-efficients, has a 0.1hPa amplitude and is set using a pre-determined

random seed (meaning that it is the same for all runs) in order to ensure non-steady flow.

See Chapter 4 for a more detailed discussion of this perturbation.

3.2.6 Experiment List

Four experiments were performed using the aforementioned setup. This was in or-

der to test the robustness of the ENM technique with a variety of model atmospheres,

including extreme cases, and to ensure that results were consistent across multiple exper-

iments. The four experiments were: ‘T-only’, with no drag implemented, and relaxing

linearly to only the HS temperature field 3.1; ‘Relaxall’ with no drag implemented, and

relaxing linearly to both the HS temperature field and the vorticity and divergence of

its balanced wind field; ‘T-only-Drag’ with Rayleigh drag implemented and relaxing only

to the HS temperature field; and finally ‘Relaxall-Drag’ with Rayleigh drag implemented
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and relaxing to both the HS temperature field and its balanced vorticity and divergence

fields. The experiment details are summarized in Table 3.2.

Run Name Relaxation Surface Drag

T-only (TO) Temperature Only OFF

T-only-Drag (TORD) Temperature Only ON

Relaxall (RA) Temperature & Wind OFF

Relaxall-Drag (RARD) Temperature & Wind ON

Table 3.2: Experiment specification summary for IGCM runs.

Relaxation to wind is usually only performed to relax models to observed or analysed

states Hoskins et al. (2012) though it was seen as useful in this scenario. As the relaxation

state is a solution of the primitive equations, and serves to drive the model towards

gradient wind balance. This is in contrast to just the temperature field which is, on its

own, not a solution of the primitive equations and would drive perturbations away from

the balanced state. Temperature is often used on its own as an emulation of radiative

relaxation.

Drag was introduced in order to smooth out the large pressure gradient in the T-

only experiment (detailed in 3.2.7) and make the atmosphere more ‘Earthlike’. These

four experiments produced distinct dynamics that allow a thorough testing of the phase

speed condition in multiple contrasting scenarios.

3.2.7 Experiment Overview

All four experiments display large amplitude, long timescale oscillations, shown by

the root-mean-square vorticity against time plot in figure 3.2. The overall stability of the

state of the model atmosphere can be evaluated by energy norms over the entire domain.

The T-only and Relaxall experiments achieve a state of equilibrium around day 200,

while the T-only Drag and Relaxall Drag experiments achieve equilibrium later, between

days 300 and 400. Indeed there is a slight and gradual decrease in total static energy in

the experiments with drag; this is due to the imposed drag not conserving energy. The

global average surface pressure (not shown) also reduces with time across all experiments,

as mass continuously leaks from the experiments; for example the TO experiment loses

0.02% of its mass over the course of the 1095 day run. This could be due to the relaxation

scheme not conserving mass, or mass loss due to the timestepping scheme; in either case

it was considered small enough to be negligible given the length of the analysis window.

The average energy is higher after the spin up than at the model’s initial time in the
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Figure 3.2: Global integral quantities for each experiment. The top plot shows RMS vor-
ticity in SI units, whereas the bottom gives globally integrated potential (gravitational) and
internal (thermal) energy in dimensionless units as given by the IGCM. The RMS vor-
ticity shows that each experiment undergoes periodic oscillations, the T-only experiment
most clearly. After an initial transient period, the energy of the four experiments can be
seen to level out, indicating they have reached a stable equilibrium.

experiments without drag, due to relaxation adding energy to the model system. Both

the energy and vorticity of the T-only experiment display quite distinct oscillations with

similar periods. A simple linear dependence calculation shows that they possess a signifi-

cant anti-correlation, with a simple linear regression providing a correlation coefficient of

−0.58.

(a) (b)

Figure 3.3: PV on σ = 0.25 from the T-Only experiment at (a) model day 5.5 and (b)
model day 90.

Figure 3.3 (a) shows an initial baroclinic wave lifecycle with wavenumber 14 in the T-
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only experiment as the initial balanced flow breaks down due to the instability introduced

by the noise routine. Without this noise, the flow remains precisely zonally symmetric and

steady. All experiments exhibited a similar baroclinic lifecycle, with wavenumber between

13 and 16 (inclusive). Following this lifecycle the experiments settle into a large-scale pat-

tern of Rossby eddies, and a strong polar vortex is established. Looking at Hovmöller

plots of meridional velocity mid-latitudes (figure 3.4) reveals that each experiment pos-

sesses distinct dynamics. Both the T-only and Relaxall experiments possess very distinct

propagating structures. Both the T-only and Relaxall experiments show large, consistent

westwards propagating modes, though these are moderated in the T-only experiment by a

consistent large scale phase shift, which is absent in the Relaxall experiment. The T-only

Drag experiment exhibits eastwards propagating structures with varying speeds in figure

3.4. Discontinuities in these structures propagating show their peak varying in latitude

(and thus not consistently intersecting the latitude line of 60° the plot is drawn across)

as they propagate longitudinally. Finally, the Relaxall Drag experiment has structures

which appear almost stationary at times. Examining PV fields at 310K reveals that they

correspond to positive PV structures which are deposited through filamentation in the

mid-latitudes from the polar vortex where they remain, stationary in longitude, until they

are subsumed by a passing wave. These ‘obvious’ differences are useful in that structures

extracted by the ENM technique, and notably their phase speeds, can be compared to

the structures visible in the full flow. The phase speed test is expected to work well in

this situation.

The modes in the TO & RA experiments are nonetheless particularly un-Earthlike.

The dominant structures are large-scale barotropic modes with very low wavenumber,

reminiscent of structures found in Mars-based experiments Michelangeli et al. (1987).

The lack of orography or any drag at the surface results in a particularly strong jet,

stronger than 120ms−1 in some cases, which extends to the surface. The resultant pressure

gradient can be seen on model day 90 (the same as in figure 3.3(b)) in figure 3.5 (a). By

introducing drag, this pressure gradient is greatly reduced (Figure 3.5 (b)), and baroclinic

waves dominate in the flow.

The presence of drag also serves to weaken the jet significantly. In the T-Only

experiment jet peak speeds exceed 120ms−1 for the entire timeseries (after spin-up). This

is reduced by a factor of 2 when drag is introduced to the experiments.
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Figure 3.4: Meridional wind speed across longitudes against time at σ = 0.25, with a
latitude of 60N, for experiments T-only, T-only RD, Relaxall, and Relaxall RD, from
model day 400 to 500.

(a) (b)

Figure 3.5: Example surface pressure field for (a) the T-Only experiment and (b) the T-
Only Drag experiment. Note the different contour intervals (20hPa for (a) and (10hPa
for (b)).

3.3 Evolving Background States

As per the process detailed in chapter 2, the background state was computed for each

experiment. Initially, a sampling interval of 6 hours was taken over a total sample period

of 100 days, from model day 400 inclusive (timestamp 2100020500) to model day 500

noninclusive (timestamp 2100051518). This was considered to be a sufficiently long win-

dow for an initial examination of the structures seen, as it is much longer than any of the

Page 47



3.3. EVOLVING BACKGROUND STATES

timescales for the experiments’ physical processes. Nonetheless, when results had been

calculated for all four experiments, it was decided that the time-window for the experi-

ments with Rayleigh drag applied would be increased to model day 1095 (2101123118) for

a total of 695 days of analysis. This was done to ensure the longest possible timeseries for

greatest accuracy when calculating cemp, and in order to subdivide the analysis window

for uncertainty calculations.

(a) T-only (b) T-only Drag

(c) Relaxall (d) Relaxall Drag

Figure 3.6: Global wave-activity for each experiment. The thick line represents the tro-
pospheric contribution of the interior Rossby-wave WA term of Pw (twatrop), the thin
line with long dashes represents total stratospheric WA (twastrat) of the same; all other
lines denote various contributions to the total WA. The thick dashed line represents the
gravity wave contribution Pg (twag), the thin dashed line represents the background state’s
intersection domain WA Pd (twad), the thin solid line represents the WA in the exterior
domain Pe (twae), and the thin dashed line with wide spacing represents the boundary
contribution from between the interior domain and intersection domain Pb (twab). Note
that the x-axis for experiments without drag applied is only 100 days, whereas it is 500
days for experiments with drag.

Examining global pseudomomentum for the four experiments (figure 3.6) highlights
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some of the differences in their dynamics. The interior Rossby Wave term dominates all

experiments, however the experiments with drag show a much higher relative contribution

to WA from this term than those without. The positive gravity wave and intersection

domain terms are approximately balanced by negative interior boundary and exterior

domain terms, though the positive intersection domain term dominates somewhat in the

Drag experiments.

The interior Rossby wave term of the T-only experiment shows a peak in WA at

the beginning of the timeseries, with a decaying amplitude up until day 70, followed by

another peak. This trend is not found in the other experiments’ background states which

exhibit fairly consistent Rossby-wave WA. It is possible that this is a periodic structure,

however a longer analysis timeseries would be required in order to examine this fully; the

wave activity for the TO and RA experiments was only calculated for the initial 100 day

analysis window of model days 400-500.

Examining θ on the lower boundary for the TO experiment, it can be seen that there

is a sharp θ gradient on the edge of the sub-tropics (figure 3.7) in-line with the position of

the jet. This is unsurprising, as the peak of the jet (b) extends all the way to the surface,

effectively creating a partition. This can be seen in the wave activity (figure 3.6(a)) as a

large boundary WA, corresponding to a structure of high WA to the north of the jet (not

shown).
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Figure 3.7: Timeseries of θ on the lower boundary, background PV in PVU, background
wind, and zonal mean wind (all on the 315K θ surface) at each latitude for the TO
experiment for the 100 day analysis window (model days 400 to 500). In the surface θ
and background PV plots, the colour represents the meridional gradient of these quantities.
Purple vertical lines indicate days where the PV inverter failed to converge and states were
replaced by the previous timestep.
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Figure 3.8: Snapshots of background PV, isentropic density & wind, and zonal mean zonal
wind on midnight of day 20 of the above timewindow (model day 420).
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A pattern seen in all experiments is a ‘tongue’ of surface θ gradient, beginning at

the latitude of the jet and extending equatorward. The cross-sections shown in figure 3.8

show the background wind and PV for an example timestep where this pattern occurs.

Of note is the presence of the jet on the poleward flank of the mid-latitude PV gradient.

The MLM state possesses much higher wind speeds than the zonal mean wind (figure

3.8) in the TO (and RA) experiment, with the jets extending to the lower boundary, due

to the large barotropic vortex in these experiments. The BG state is steady in the TO and

RD experiments, however even the zonal mean wind is consistent in these experiments.

Figure 3.9: Timeseries of θ on the lower boundary, background PV in PVU, background
wind, and zonal mean wind (all on the 315K θ surface) at each latitude for the TORD
experiment for the 100 day analysis window (model days 400 to 500). In the surface θ
and background PV plots, the colour represents the meridional gradient of these quantities.
Purple vertical lines indicate days where the PV inverter failed to converge and states were
replaced by the previous timestep.
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Figure 3.10: Snapshots of background PV, isentropic density & wind, and zonal mean
zonal wind on midnight of day 20 of the above timewindow (model day 420).

Due to the reduction in zonal wind (figure 3.10(b)) and the strength of the surface

wind speed by the introduction of Rayleigh drag, the Rayleigh drag experiments’ back-

ground states correspondingly have a much weaker jet, with peak wind values closer to

those found in Earth’s atmosphere. The Eulerian zonal mean jet in the TORD (and

RARD) posesses a great deal more variability than in the experiments without drag,

while the MLM jet changes very little with time, both in strength and variability.

The “tongues” of surface θ gradient in the drag experiments are more frequent and

move faster towards the equator (though the number of inverter failure dates remains

consistent). As shown in figure 3.10, the gradient of the tropopause is less in these

experiments, corresponding to a weaker jet. Interestingly there is a significant variation

in the latitude of the MLM jet and the Eulerian zonal mean jet, due to the presence of

baroclinic wave activity.

3.4 Empirical Normal Modes

The ENM calculation was performed on the four experiments. Similar to the back-

ground state, the calculation was performed with 6 hourly resolution, over the aforemen-
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tioned 100 day window. Upon completion of the initial exploratory analysis a further 595

days were calculated for the TORD and RARD experiments. ENMs were calculated for

wavenumbers 1 to 12, with higher wavenumbers omitted due to low amplitude.

Two measurements were used in order to assess the relative importance of an ENM

pair within a given wavenumber’s spectrum; the first is prominence, how much more

power is contained in the leading pair than the subsequent pair, and is defined;

prominence =

∑
λleading pair −

∑
λnext pair∑

λleading pair
(3.3)

The next is proportion, which is the amount of power in the leading pair relative to

the entire ENM series for that wavenumber.

proportion =

∑
λleading pair∑

λwhole spectrum
(3.4)

3.4.1 Experiments without Drag

The first two experiments shown here, T-only and Relaxall, display large, planetary-

scale disturbances which do not reflect Earthlike-conditions, as discussed above. It was

expected that the Empirical Normal modes would be dominated by modes with low zonal

wavenumber and high amplitude, and this is largely bourne out by analysis of the ENMs.

T-Only

The wave activity power spectrum, shown in figure 3.11(a) for the T-only experiment

shows the dominance (i.e. relative power in pseudomomentum) of both the m = 1 and

the m = 2 wave mode in pseudomomentum, reflecting the large wave structure seen in

the full flow. Wave number three also has significant wave activity, but after this the

power contained in structures with wavenumbers four and above diminishes.

The relative dominance of m = 2’s leading pair is confirmed by its high prominence

and proportion. More than 80% of the total ENM spectrum for wavenumber 2 is dom-

inated by its leading pair (figure 3.11(b)), and it is shown to be dominant even relative

to the next pair in the eigenvalue series. m = 1 does not show quite this same domi-

nance, however m = 3, despite its lower power also shows high prominence in the leading

pair. As expected, higher wavenumbers show much less coherence, with the power in the

spectrum spread out much more among the ENMs.

Examining the structure of the m=2 mode from the TO experiment (figure 3.12),
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(a) (b)

Figure 3.11: (a) The Pseudomomentum spectrum for the T-only experiment, and (b)
Measures of prominence and proportion of spectrum for each wavenumber for the T-only
experiment. In (a) the thin line is the total spectrum (kspec), the dash-dot line (kspeclp)
contains only the leading pair of each wavenumber, and the thick line is only the paired
eigenvalues (kspecp). The final dashed line (kspechead) shows the power contained in
the first 10 ENMs (without pairing). By design, the total spectrum (kspec) is highest in
pseudomomentum, as each of the other quantities is a subset of this quantity.

Figure 3.12: Amplitude (left hand panels) and phase (right hand panels) for the two leading
modes of filtered wavenumber 2 for the T-only experiment. The phases are shown on the
right of each subplot. The 2PVU line is shown in red and background wind is overplotted
in white with a contour interval of 10ms−1. The blue line shows the surface.

from the phase difference between the pair members, the leading pair are in quadrature

and well-matched. The wave activity lies on the equatorward flank of the jet, and extends

deeply through the troposphere from the surface to the tropopause as it increases through

the jet, and tails off in the tropics. The continuity of this mode to the surface results from

the lack of surface drag in the experiment; as the jet is able to extend fully downwards
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to the surface, the wave activity structure is able to exist throughout the troposphere.

Relaxall

Relaxall has a highly dominant m = 1 mode, with the wave activity of the first wave

number almost an order of magnitude larger than subsequent wavenumbers. The power

(shown in figure 3.13(a)) contained in the remainder of the spectrum is lower, falling off

smoothly with increased wavenumber. This step from m = 1 matches expectations, given

the large structure seen in the Hovmöller plots.

(a) (b)

Figure 3.13: (a) The Pseudomomentum spectrum for the Relaxall experiment, and (b)
Measures of prominence and proportion of spectrum for each wavenumber for the Relaxall
experiment. In (a) the thin line is the total spectrum (kspec), the dash-dot line (kspeclp)
contains only the leading pair of each wavenumber, and the thick line is only the paired
eigenvalues (kspecp). The final dashed line (kspechead) shows the power contained in
the first 10 ENMs (without pairing). By design, the total spectrum (kspec) is highest in
pseudomomentum, as each of the other quantities is a subset of this quantity.

Examining the prominence and proportion (figure 3.13(b)), the vast majority of the

power of the m = 1 wavenumber is contained within the first pair of the ENM spectrum,

while the remainder of wavenumbers show power spread out amongst the spectrum of

each wavenumber.

3.4.2 Experiments with Rayleigh Drag

The following experiments, T-only RD and Relaxall RD, were run with a Rayleigh

Drag forcing added, and as a result, the large barotropic-like modes seen above were

not present in these experiments. This results in conditions more similar to those seen

in the literature (Zappa et al. (2010), H. Hendon and Hartmann (1985)), and a mode

structure less dominant at planetary scales with more baroclinic-scale structures visible

in the power spectrum.
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T-only with Rayleigh Drag

There is no clear dominance of any wavenumbers in the TORD power spectrum,

however for zonal wavenumbers higher than m = 5, the power contained in the whole

ENM spectrum gradually falls (figure 3.14(a)). Of note in particular is wavenumber 3,

the leading pair of which captures a much smaller amount of the total power than the rest

of the large-scale spectrum due to its low proportion as shown in figure 3.14(b). While

total power does fall at baroclinic scales above m ∼ 5, there is a maximum in power

within paired ENMs (kspecp of figure 3.14(a)) here, both as an absolute value (at m = 5)

and as a fraction of total power (for most higher m) implying that at these scales, the

ENM technique picks out a greater number of coherent propagating structures, due to

a greater amount of power being described by paired structures as opposed to in the

unsorted modes. Exceptions at m = 8 & m = 11 are due to restrictions on match criteria,

as only the leading pair in these cases matches sufficiently well in phase to be considered.

(a) (b)

Figure 3.14: (a) The Pseudomomentum spectrum for the Tonly Rayleigh Drag experiment,
and (b) Measures of prominence and proportion of spectrum for each wavenumber for the
TORD experiment. In (a) the thin line is the total spectrum (kspec), the dash-dot line
(kspeclp) contains only the leading pair of each wavenumber, and the thick line is only the
paired eigenvalues (kspecp). The final dashed line (kspechead) shows the power contained
in the first 10 ENMs (without pairing). By design, the total spectrum (kspec) is highest
in pseudomomentum, as each of the other quantities is a subset of this quantity.

In addition to the maximum in power for paired ENMs at m = 5, the prominence

(figure 3.14) for wavenumbers m = 5 & m = 6 and proportion of their respective spectra

are highest for all wavenumbers, and indeed the power for both is comparable to that of

waves at planetary scales. The amplitude structure of the m = 5 mode in the TORD

experiment is shown in figure 3.15. The mode here possesses a different vertical structure

to the TO experiment, with wave activity straddling the jet with a change in phase across

it, indicating a varicose mode. The phases of the pair members are in quadrature with
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one another, as expected, indicating a propagating pair.

Figure 3.15: Amplitude (left hand panels) and phase (right hand panels) for the two leading
modes of filtered wavenumber 2 for the T-only Rayleigh drag experiment. The phases are
shown on the right of each subplot. The 2PVU line is shown in red and background wind
is overplotted in white with a contour interval of 10ms−1. The blue line shows the surface.

Relaxall with Rayleigh Drag

The RARD experiment similarly possesses a flat total power spectrum across all zonal

wave numbers up until wavenumber six, tailing off towards smaller scales (figure 3.16(a)).

There is however a peak in the power contained within the leading pair at wavenumber 5

with the leading pair accounting for relatively more of the variance of the ENM spectrum

at this scale, indicating a single coherent mode dominating the variability at this scale.

Examining the structures of the leading ENMs, the low order planetary waves m =

1, 2, 3 resemble varicose wave structures, with two discrete areas of wave activity strad-

dling the background jet with opposing phases. By zonal wavenumber 4, structures (not

shown) instead display an asymmetric sinuous mode structure, indicating a meandering

jet stream.

Similar to the TORD experiment, wavenumbers m = 5, 6 displays the most promi-

nence, and marks a distinct change in character from larger planetary scale waves. In

both cases, it is reasonable to argue that these baroclinic waves emerge because they are

the wavenumbers with the strongest growth rate for baroclinic instability (as argued in

Zappa et al. (2010) & Zappa et al. (2011)).
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(a) (b)

Figure 3.16: (a) The Pseudomomentum spectrum for the Relaxall Rayleigh drag experi-
ment, and (b) Measures of prominence and proportion of spectrum for each wavenumber
for the RARD experiment. In (a) the thin line is the total spectrum (kspec), the dash-dot
line (kspeclp) contains only the leading pair of each wavenumber, and the thick line is
only the paired eigenvalues (kspecp). The final dashed line (kspechead) shows the power
contained in the first 10 ENMs (without pairing). By design, the total spectrum (kspec) is
highest in pseudomomentum, as each of the other quantities is a subset of this quantity.

Variance Captured by Leading ENMs

By examining figures 3.11, 3.13, 3.14, and 3.16 (a), we can assess how well the ENM

technique captures the total amount of variability in the data within the first few modes.

Firstly, it’s worth noting that across all experiments, the pseudomomentum power in both

the set of paired ENMs (i.e. with a matching statistic (eq. 2.59) greater than 0.7) and

the set of the leading 10 ENMs in terms of eigenvalue (regardless of paired status) are

similar at virtually all scales. This shows that even amongst the modes which explain the

most variance, the variability is primarily dominated by paired propagating modes.

The difference then, between the pseudomomentum power across the whole spectrum

and only the paired propagating modes, indicates the partition of variability between the

coherent modes and the “saturated” noise spectrum. Generally, for wavenumbers below

the peak in power at m =≈ 5, 6, figures 3.11, 3.13, 3.14, and 3.16 (a) show that the

coherent modes explain ≈ 70% to 80% of the variability. At the smallest scales, this

decreases to ≈ 50%, however the power generally is weaker at these scales than at the

larger baroclinic and planetary scales, by an order of magnitude or more.

Examining just the leading pair in this fashion, we see that the leading ENM pair

accounts for up to ≈ 30% of this variability at its peak, generally at the baroclinic scales

(m = 4, 5, 6). Generally we see then that the single leading modes at these scales are

the most dominant; they explain the greatest amount of variability while possessing a

coherent structure which describes a propagating wave.
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3.5 Phase Speeds

Once the ENMs have been calculated, both the dynamical phase speed, cint, and

the empirical phase speed, cemp can be calculated. The large-scale planetary modes

found in both the TO and RA experiments resulted in a poor match for the lowest

zonal wavenumbers which possessed very large westward speeds. As the calculation of

cint requires the addition of the various components of the pseudoenergy (Chapter 2,

equation 2.61) a cancellation occurs between advection terms and propagation terms. In

the case of a fast-moving jet with a large-scale mode propagating westwards against the

flow, this results in large values of both the advection term Hw (due to the speed of the

jet), as well as the KE and APE contributions to the wave. It is likely the case that for

disturbances of exceptionally large speed, the linearized forms of P and the projection

onto H are inaccurate; the outcome is a poor measure of cint in these experiments, as

can be seen in figure 3.17. Another possibility is that non-linear interaction between

the waves results in higher wavenumber waves being ‘dragged around’ by the dominant

m = 1 structure. As a result, we retain only the TORD and RARD experiments for

further exploration of the phase speed.

(a) (b)

Figure 3.17: Empirical and Intrinsic phase speeds for (a) T-only, and (b) the Relaxall ex-
periments in degrees per day, against the wave number. The error bars on cint correspond
to the intrinsic phase speeds of the individual members of the leading pairs, and on cemp

they correspond to the spread of values over the principal component timeseries.

Figure 3.18 shows the phase speeds for the leading ENMs for each wavenumber

in both the TORD and RARD experiments. By sub-sampling the analysis window (see

section 3.6.3), a number of samples of cint may be attained in order to establish a measure

of uncertainty. The estimate of cemp is derived by calculating the forward difference in

phase of the leading pair at each timepoint. Then, all points where the amplitude does not

exceed the 40th percentile of the total amplitude over the whole timeseries are discarded.

The average of the phase difference of the remaining time points is taken, and the average

change in phase is used to calculate the angular velocity of the ENM in degrees/day (i.e.
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cemp).

The bars in figure 3.18 show the variance for both estimates of speed. The variance

for cemp is quite large; this represents changes in the value of cemp over the timeseries as

opposed to uncertainty in the measured value as calculated from subsampling. This can

be seen by ‘unwrapping’ the phase of the ENM over the time-window and observing the

changes in the slope over the timeseries (figure 3.19).

(a)

(b)

Figure 3.18: Empirical and Intrinsic phase speeds for (a) T-only RD, and (b) the Relaxall
RD experiments in degrees per day, against the wave number. Box and whisker values for
cint are obtained from subsampling (see section 3.6.3), and on cemp they correspond to the
spread of values over the principal component timeseries.

These changes can come about for a number of reasons; non-linear interactions with
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other modes which are not consistently present during the time-window; variation of the

background flow; an inconsistency of the modes across the window; if the time-series

is short compared to the timescale of variability of the mode, and so on. There are

also uncertainties in the ENMs captured; such as modes picked out not being perfectly in

quadrature, or failing to project well onto the ”true” modes of the system being measured.

A similar picture of the phase speed match emerges from both the TORD and RARD

experiments. At baroclinic scales (wavenumbers ∼ 5 to 8), there appears to be a good

match between the speeds, notably at wavenumbers with greater leading pair prominence

and where a high proportion indicates a greater amount of power is contained within the

leading pair. These are baroclinic waves, and as shown above (figures 3.14, 3.16) single

ENM pairs contain a large proportion of the pseudomomentum (and as we shall see later

(Chapter 5), perturbation energy). At the smallest scales (highest zonal wavenumber),

cint is larger than cemp, the mis-match increasing with decreasing scale. At the largest

scales, where prominence is low, the matching criteria is not met once more.

At the highest zonal wavenumbers, the structures picked out are small structures

advected along the jet, reducing their empirically measured speed relative to their intrinsic

phase speed predicted from their structure. Movies showing the evolution of the PV field

with time show prominent propagating long waves which break and produce PV filaments.

These smaller-scale filaments project onto all higher wavenumbers, but the structures

at all wavenumbers describe the same features which are being advected by the flow.

Therefore, the empirical phase speeds observed of these “modes” are similar to the phase

speed of the dominant m = 5, 6 structures which are modal, as well as dominant and

energetic.

Examinations of correlations between the amplitude timeseries show positive corre-

lations between zonal wavenumber 1 and 7 & above in the RARD experiment (figure

3.20(b)). This, in combination with the similar empirical phase speeds between m = 1

& m ≥ 7 (figure 3.18(b)) hints at a possible non-linear correlation between these waves.

This, in combination with the cross-correlation between all waves with wavenumbers 7

and higher in both the TORD and RARD experiments (with the exception of m = 7, 8 in

TORD) indicates that the structures are indeed filament structures which project across

all high wavenumbers.

Similarly, both phase-speed matching and correlation relationships between a number

of lower wavenumber ENMs indicate the possibility for Rossby wave triad interactions

between the three to account for the mis-match in phase speeds between the empirical
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and intrinsic measures of speed. cint in this case represents the modal speed of the

structure were it not for the non-linear interactions, whereas cemp shows the modified

speed of the waves as seen in the data.

These interactions are non-linear couplings between groups of three waves, where each

combination of two out of the three waves in the triad serves to reinforce the third, such

that energy is exchanged between the waves in the triad but not to other waves outside

of it. These interactions are restricted to combinations of waves whose wavenumbers

sum, and it is expected that two members of the triad are expected to be correlated in

amplitude with time, while the other is anti-correlated, and that the modes are close in

wavenumber.

(a) (b)

Figure 3.20: Cross-correlations in the principal component amplitude timeseries of the
leading ENM pair of each wavenumber for (a) the TORD and (b) the RARD experiment.
Red denotes correlation, whereas blue indicates anticorrelation.

Examining the cross-correlations for the TORD experiment (figure 3.20(a)), positive

cross-correlations between wavenumbers m = 1, 2, 3 rule out this combination as a triad.

Wavenumbers m = 1, 4, 5, display a similar empirical phase speed, and show one positive

correlation (4,5), one anti-correlation (1,5), and one neutral amplitude relation (1,4) which

could nonetheless imply a triad interaction between the three modes, which also share

similar power (figure 3.14) Of note is the lack of correlations between the dominant

baroclinic wavenumbers m = 5, 6, 7 implying that these waves do not interact with one

another, instead only projecting onto less dominant modes.

In the RARD experiment, correlations between m = 2, 3, 5, as well as their close

empirical phase speeds indicate the presence of a triad interaction between these three

modes. The modes also possess similar power (figure 3.16), and m = 2, 5 possess promi-

nent leading pairs, implying that the combination of these wavenumbers possibly project
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onto m = 3. In either case, further investigation is required in order to test these hypoth-

esized triad interactions.

Page 64



3.5. PHASE SPEEDS

(a)

(b)

Figure 3.19: (a) Phase of the leading ENM for m=5 in the RARD experiment against
time. As the absolute phase of ENMs is arbitrary, discontinuities in phase can occur
during a drop in amplitude where phase is ‘re-established’ in another part of the domain.
The overplotted red line shows a linear fit, unsuitable as an estimate of the empirical
phase speed due to discontinuities in phase over the timeseries. (b) Principal component
timeseries for the mode shown in (a) with the leading pair plotted in blue and orange, and
the total amplitude of the ENM in yellow. Points where amplitude is low (due to poor
quadrature match of the pair members) correspond to parts of the phase timeseries with
changing slope.

Page 65



3.6. ROBUSTNESS

3.6 Robustness

In order to justify use of the ENM technique, examining performance in a multitude

of situations is important, as this will determine its robustness. An advantage of the ENM

technique is that it presents an opportunity to extract structures from timeseries where

the sampling frequency is low, or where the sample window is short, as the dynamical

phase speed cint is derived from the structure of the modes and hence does not require

a lengthy or regular timeseries from which to extract phase information. In order to

examine how well the technique functions under these conditions, and to characterise any

uncertainties in the results of the technique, experiments were performed where both the

sampling frequency, and the sampling window were varied.

3.6.1 Eigenvalue Ratio

In order to describe a propagating wave, two ENMs varying in quadrature are re-

quired. The best description can be given when the members of the ENM pair possess

a similar amount of power associated with them, i.e. their eigenvalues are well-matched.

ENM pairs with dissimilar eigenvalues are likely to describe structures less well, as pairs

propagating exactly in quadrature should possess identical eigenvalue. This is because

the pseudomomentum matrix which goes into the eigendecomposition (equation 2.48,

Chapter 2) depends on the background state (equation 2.34, Chapter 2) which is zonally

symmetric and steady, resulting in modes propagating in quadrature to possess the same

pseudomomentum structure, and hence eigenvalue. As a result, their measures of wave

properties such as phase speed are likely to be poorer. The empirical phase speed cemp

is measured through an unwrapping of the ENMs’ phase over the timeseries (figure 3.19,

and a finite difference formula is applied during periods where the amplitude is above the

40th percentile. Figure 3.21 shows the number of wave cycles in the analysis timewindow,

Tanalysis/τempiricali (which is calculated from the empirical phase speed), against the dif-

ference between the eigenvalues of the leading pair normalized by the amplitude from the

experiments described in Chapters 4 & 5. It can be seen that waves with a smaller number

of complete cycles over the analysis window exhibit larger possible discrepancies between

the eigenvalues of the leading pair. As Tanalysis/τempiricali approaches 1 the extraction of

the ENM propagating modes is not as clean, as indicated by the spurious difference in

eigenvalues.
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Figure 3.21: Number of cycles (Tanalysis/τempiricali) in the 400 day time-window of the
ENM analysis of the jet-latitude control experiments performed in Chapters 4 & 5 vs.
the normalized eigenvalue difference of the leading pair chosen by match & structure (see
chapter 5 for details). Points are taken from zonal wavenumbers m = 1− 12 for each of
the 9 experiments for 108 points total.

3.6.2 Sample Frequency

Sample frequencies of 6 hours (the minimum possible based on the output of the

IGCM), 12 hours, 24 hours and 48 hours were used in order to examine the effect on the

phase speed distributions.

Across all zonal wavenumbers the measured phase speeds do not depart significantly

from the values measured for a 6 hourly sample interval. At least up to 48 hours, the

ENM technique does not appear to be sensitive to the sampling interval. This is due

to the calculation of cint relying solely on the spatial structure of the modes and not

timeseries information. Equivalent plots to figure 3.22 for cemp demonstrate that it is less

robust than cint and requires that the timestep δt << τempirical. As a result, this is not

shown, as the data cannot be used.

An exception is if an ENM’s period of oscillation matches exactly the sample interval.

In this case, the mode itself will not contain any variability in the dataset and thus will

not appear as an EOF in the eigendecomposition, and thus neither measure of phase

speed may be applied.
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Figure 3.22: Intrinsic phase speed cint for the T-only experiment, against the sampling
interval in hours. The solid line denotes the leading member of the eigenvalue series, the
dashed line denoting the second member of the same pair. Each wavenumber from 1 to
12 is represented in different colours and linethicknesses as indicated in the legend.

3.6.3 Sample Window

The study of ENMs across varying sample windows was conducted by first running

the analysis across a slightly reduced 672 day window, (as this length contains a greater

number of numerical factors for subdivision) before running with smaller intervals (mea-

sured as integer fractions of the total window length); one half, one quarter, one eighth,

and one sixteenth. For each of the reduced intervals, analysis were performed for each

sub-window and then averaged as in Wheeler and Kiladis (1999) for power spectra in

wavenumber-frequency space. The intervals were arranged in such a way as to span

the entire reduced timeseries back-to-back, with overlapping windows between each sub-

window, e.g. the half-window length analysis was performed across the first half of the full

window, then the second half, and then the inter-quartile half, and a spread is produced

as a measure of uncertainty for the phase speed of the modes. This was done in order to

ensure that the modes dominant at the point a subwindow was taken did not skew the

results; by incorporating subwindows from across the entire timeseries and producing a

spread, it was ensured that the exact same data was being represented in the analysis as

in the full timeseries window.

Data for wavenumbersm = 1−4 &m = 5−12 were separated into figures 3.23 & 3.24

respectively for the sake of clarity, as there is a difference in dynamics (and hence phase

speed) between these two sets of modes. As expected the range of values of speed are
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(a) (b)

Figure 3.23: Speed (cint of the leading pair for wavenumbers 1 to 4 in experiment TORD
(a) & RARD (b) against the length of the subsamples window, with wavenumbers grouped
into two groups for clarity. The shading indicates the range of values for speed at each
subwindow.

reduced as the length of the analysis window increases, for the low wavenumbers in both

experiments. Though it is important to note that the number of values used to estimate

the speed also decreases as the window length increases; by the maximum window length,

there is only a single sample of phase speeds (i.e. the analysis taken from 1 whole window)

with two values for cint (the two members of the leading pair), being used to determine

the ‘range’.

For the shorter waves, shown in figure 3.24, the speeds asymptotically approach the

values observed in the longest window length in some cases, and are reasonably accurate

at even small window-lengths in others. It is possible that changes in speed observed

as the window length changes could result from alternative structures displaying more

dominance in some windows. It is not guaranteed that the same structures are extracted

at the same amplitude or with the same matching strength in each sub-window, which

could mean that as the timeseries progresses and different modes from within a single

wavenumber’s ENM spectrum gain or lose amplitude, the ‘leading pair’ extracted is not

the same mode. This could affect the average value of phase speed as the number of

windows averaged over increases, though this is likely to be a small source of uncertainty.

As the value of cint from the full window analysis is retained, and the skew would only

serve to potentially widen the uncertainty estimate of that measurement of phase speed,

it is of little concern.

These conditions on the sampling interval and sample window allows us to apply a

set of restrictions on the waves that we’re able to extract with the ENM technique;
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(a) (b)

Figure 3.24: Speed of the leading pair for wavenumbers and 5 to 12 in experiment TORD
(a) & RARD (b) against the length of the subsamples window, with wavenumbers grouped
into two groups for clarity. The shading indicates the range of values for speed at each
subwindow.

τempirical < τwindow

&

τempirical > τinterval

3.7 Conclusions

A set of experiments was designed and conducted in order to test the validity of

the Empirical Normal Mode technique, applied using the MLM background state laid

out in 2. The experiments possess distinctive variability in order to establish the various

conditions where the ENM technique produces structures which vary in a modal way, as

established using the phase speed condition test and by exploring their sensitivity to the

data sampling, giving reasons for deviation from modal behaviour. Nonetheless, an impor-

tant aspect of the experiment set is their simplicity such that it is possible to examine the

results of the ENM analysis without contending with the influence of e.g. nonconservative

diabatic effects, orography, or the diurnal cycle. In order to ensure a steady background

state, seasonal variability was omitted, as time-independence is required for conservation

of H, crucial for the calculation of the phase speed of the extracted structures.

Of the four experiments developed, the experiments which possess surface drag pos-

sess ENMs with good phase-speed matching, with some caveats. Especially large-scale

waves still match less well in phase-speed in some cases; this is likely to do with nonlinear

interaction, such as Rossby wave triads though further investigation is required to con-

firm this. Waves at the smallest scales also propagate differently to the intrinsic phase
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speed their structures would suggest; this could be due to weak nonlinear effects; another

explanation is advection of increasingly small-scale waves by the jet reducing the empir-

ical phase speed. The remaining two experiments (those without surface Rayleigh drag)

display large, long-wavelength dominance and very high speeds, which are represented

poorly by the intrinsic phase speeds of the technique, but well by the empirical speeds

derived from tracking the phase of the extracted modes.

Subsampling this analysis allows the establishment of measures of uncertainty of

the calculated intrinsic phase speed, which provide additional confidence that the phase

speeds calculated are reliable. A condition on the sampling must be imposed in order to

extract propagating modes with matching phase speeds; ∆t < τempirical < Twindow. In

addition, intrinsic phase speed cint is easier to extract from limited data than empirical

phase speed cemp, where large τempirical/∆t and Twindow/τempirical are required for tight

estimates of phase speed.

The work in this chapter establishes that the ENM technique, implemented for the

primitive equations on the sphere, is capable of extracting propagating modes and an

accurate estimate of their intrinsic phase speeds. Although the phase speed matching test

only works for the dominant baroclinic wave modes, there are good reasons why the longer

waves (m = 1− 4) and the shorter waves (m > 8) do not meet the phase speed matching

conditions in the experiments examined - as a result of nonlinear triad interaction and

Rossby wave breaking respectively. Nevertheless, we will work on the assumption that

the technique extracts reliable intrinsic phase speeds associated with all modal structures

and when the phase propagation diagnosed empirically from time series differs this is a

result of non-modal processes (either nonlinear interaction between wavenumbers or non-

conservative effects). In the following chapters, it will be used to examine the dependence

of modal variability on the latitude of the jet stream. The advantages of the technique;

deriving measures of speed from structures such that they can be used without spatial or

temporal filtering, and on small time-scales where it might not be possible to track full

oscillations of slow-moving Rossby waves are apt to potentially be applied to a myriad of

studies of atmospheric behaviour.
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Chapter 4:

Relaxation Experiments With

Controlled Jet Latitude Variation

4.1 Introduction

In the previous chapter the use of the Empirical Normal Mode technique on a set

of simple idealised experiments is demonstrated in order to conduct the ‘Phase Speed

Condition Test’ and verify the technique for propagating disturbances that behave like

normal modes, and also identify the circumstances where the intrinsic phase speed asso-

ciated with ENM structure and its movement from its PC time series do not match. This

technique will be used in Chapter 5 in order to examine changes in wave structures as

the jetstream changes in latitude. In order to do this, it is necessary to develop a dataset

with a range of latitudinally-confined jets, without forcing effects such as orography or

seasonal variability which create large-scale non-propagating structures which are not de-

scribed by the ENMs. Also desirable is a sloping tropopause in the relaxation state used

in order to maintain upper-level baroclinicity in the experiment; as the end goal is to

examine the relationship between wave activity and propagation as jet latitude is varied

it is important to maintain Rossby wave activity on the jet.

In this chapter a set of model experiments with confined jets are developed using the

Reading IGCM2.2 which can be used to conduct an analysis of the structure changes as

jet latitude is varied (Chapter 5). These experiments use a series of relaxation states with

varied structure in order to vary the latitude of the jet; the strength of the relaxation

forcing is controlled by a relaxation timescale parameter. As the model is a nonlinear

primitive equation model, it is not necessarily (or likely) the case that the prescribed

relaxation state will match the equilibrium background state of the atmosphere, as wave
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activity is able to drive differences between the background flow and the relaxation field

used for weak forcing of the climate state. As a result, the amplitude of wave activity and

the quasi-equilibrium position of the jet formed through the action of breaking Rossby

waves and sharpening of the tropospheric polar vortex edge is not known a priori and

must be determined through numerical experimentation.

The sensitivity of the output to model parameters is examined, and the modified

Lagrangian mean background state and wave activity are calculated; both in order to

perform the ENM calculation in the next chapter, and so the variability of the quasi-

equilibrium state obtained between experiments can be compared.

4.2 Experiment Specification

4.2.1 IGCM Parameters

The model used in these experiments is the Reading Intermediate General Circulation

Model version 2.2, as in Chapter 3. Again similar to Chapter 3 moist physics have been

turned off in the model, and there is no orography in the experiments. The model is

run with T85 spectral truncation and 30 vertical levels (T85, L30 resolution). A ∇6

hyperdiffusion is used, as well as a Rayleigh drag scheme in the lower troposphere, and

Newtonian temperature Relaxation, the field of which is detailed below.

Two sets of experiments were initially run; the first with a relaxation timescale of

15 days, the second with a reduced timescale of 7.5 days (and hence increased relaxation

strength). This secondary set of experiments were run in order to test the sensitivity of the

model response to relaxation strength to ensure that results were robust to parameters

not used to control the jet latitude. Similar to Chapter 3, the Newtonian relaxation

scheme (but not the particular temperature field used) matches those prescribed in Held

and Suarez (1994b), with a relaxation to temperature only applied in this case. The

drag scheme used in the experiments with drag in Chapter 3 is also applied in these

experiments.

4.2.2 Relaxation Field Definition

We seek a zonally symmetric state with a jet which is confined both in latitude and

height, with a sloping tropopause to use as a relaxation field. Constructing such a state

analytically which is consistent with the zonally symmetric primitive equation gradient

wind balance on the sphere required by the model is not trivial. In order to achieve this,
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the balancing routine within the primitive equation model itself (Hoskins and Simmons

(1975)) can be used to find a consistent balance between variables of a partially-defined

analytic state which, e.g., only defines the vorticity, or else the temperature & surface

pressure, not both. We specify the zonally symmetric zonal wind (and thus the associated

vorticity structure from its meridional gradient). The model balancing routine is used to

calculate the temperature & surface pressure fields. The state in balance with the jet

in the zonal flow is defined using a flat tropopause with a jump in static stability at a

given sigma level. Therefore it is blended linearly with the Held-Suarez state which has

a sloping tropopause, but not a meridionally confined jet.

Initial Zonal Wind Field

In order to achieve a wind field with a jet movable by a single parameter, a method

following Lai (2013) was used, which combined a wind field created by Polvani and Esler

(2007), with a modification (eq. 4.2) from Lai (2013) to be able to shift the latitude.

This set of equations were produced by Polvani and Esler (2007) in order to reproduce

the ‘canonical’ structure of the LC1 experiment described in Thorncroft et al. (1993). In

the LC1 experiment, the speed of the jet, U0 is 45ms−1, and the latitude of the jet is 45°,

corresponding to p = 2, reducing 4.2 to the form used in Polvani and Esler (2007).

u(ϕ, z) = U0F (ϕ)[(z/zT )e
−[(z/zT )2−1]/2] (4.1)

Where;

F (ϕ) =


[sin(πµp)]3 for ϕ ≥ 0

0 for ϕ ≤ 0,

(4.2)

including the p parameter introduced by Lai (2013). This form is chosen in order to

comply with the requirements set out in Polvani and Esler (2007); namely that F (ϕ) &

dF (ϕ)/dµ both go to zero at the poles. This form of F results in a zonal wind field where

the latitude of the jet maximum varies monotonically with p. The value of p corresponding

to a particular latitude of the jet maximum ϕrelax can be calculated with the following

equation obtained from the condition dF/dϕ = 0 at the latitude of the maximum;

p =
ln(12)

ln(sin(ϕrelax))
(4.3)
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Temperature & Surface Pressure Fields

Using the balance routine in the model, the vorticity field associated with the zonal

wind distribution (equation 2.10, Chapter 2) defined above can be used to numerically

calculate the temperature field & surface pressure field in gradient wind balance with

that vorticity field. The zonal temperature field specified in these experiments is the

sum of that latitudinally dependent balance temperature and an analytically defined

vertical reference temperature profile assigned as part of the balance in the primitive

equation model (as the balance only provides the meridional gradient of temperature).

The reference profile is defined;

Tref (ϕ) =


TG + Γ ln (σ) for σ > σtrop

TG −∆Ttrop for σ ≤ σtrop,

(4.4)

where Γ is a constant tropospheric lapse rate, expressed in lnσ which is a pseudo-

height. The temperature in the troposphere falls linearly with lnσ from TG = 285 at the

surface to TG −∆Ttrop at the tropopause, σtrop = 0.4 (such that ∆Ttrop = 50 is the drop

in temperature over the troposphere). The flat temperature profile above the tropopause

is by design in order to create a jump in static stability at a given pressure level. The

result is a flat tropopause, which is unrealistic and will affect wave-breaking behaviour.

In order to ensure the relaxation state maintains baroclinicity, these fields are then

combined through a linear blend with the relaxation temperature and initial surface pres-

sure specified in Held and Suarez (1994b). This temperature field is the zonally symmetric

field specified in Chapter 3 equation 3.1. The initial surface pressure specified is a uniform

P00 = 1000hPa throughout the model domain.

While the Held-Suarez (henceforth HS) state has been used in many experiments

such as Polvani and Kushner (2002), Boer and Denis (1997), Franzke (2002), Harnik and

Chang (2004), Seager et al. (2003), and Williams (2003), it was considered unsuitable for

use on its own for these experiments. The zonal wind profile in gradient wind balance

with the HS temperature field increases all the way to the equator, resulting in strong

westerlies aloft at low latitudes (figure 3.1, Chapter 3). This does not allow for the

generation of a latitudinally-confined jet. The HS state does, however, provide a more

realistic sloping tropopause than the temperature field in gradient wind balance with Lai

(2013)’s modification of the Polvani and Esler (2007) zonal wind field. Therefore, the two

states are blended in order to utilise the properties of both the HS state and Lai (2013)’s
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variable latitude reproduction of the LC1 state.

The blend results in a state with two key properties: (1) The jet is meridionally

confined, and its latitude can be controlled. (2) it possesses a sloping tropopause which

maintains upper level baroclinicity in the experiments. In addition, due to the result-

ing field being of a notably lower temperature than Earth’s atmosphere, an adjustment

parameter is introduced to raise the resultant temperature, as latitude- independent ad-

ditions do not affect the balance (Polvani and Esler (2007)). The temperature field is

then calculated as;

TJC(ϕ, σ) = α TJ(ϕ, σ) + (1− α)THS(ϕ, σ) + Tadj . (4.5)

Where TJ is the temperature field obtained by gradient wind balance from the ana-

lytically prescribed wind field, THS is the relaxation temperature field defined in Held and

Suarez (1994b), α is the parameter used to blend them, TJC is the resultant temperature

field used in the experiments, and Tadj is the temperature adjustment parameter, 5K in

this case, chosen such that surface temperatures in the tropics match observations. The

surface pressure from the Lai and HS states are combined in the same way, though the

adjustment parameter for pressure was zero in these experiments.

Initial Conditions

The resultant surface pressure and temperature fields are used as the initial state

of the experiment model runs, along with the zonal wind field obtained by balance back

from the blended temperature & surface pressure. In addition, the temperature field

is used for the relaxation forcing. The state is designed to be reproducible, as each

component; the HS state, and the TJ state are specified analytically in the temperature

and wind variables respectively. However, numerical solutions of balance for the primitive

equations on a sphere are required to derive other prognostic fields, and to construct the

initial state in temperature and surface pressure (by balancing from the prescribed wind

field) and the initial vorticity field (by balancing back from the constructed temperature

and pressure fields). The state obtained then is in balance up to the precision of the

discrete equations represented by the IGCM. Due to these states’ balance, if they are

used for the initial conditions, the flow remains exactly steady, as the zonally symmetric

balance state is a solution of the discrete model.

As such, a small perturbation is required in order to “kick-start” the model into
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non-steady flow. A random noise component is added to the surface pressure, using the

IGCM’s NOISE subroutine, a common approach used for example by Polvani and Esler

(2007) and also by Magnusdottir and Haynes (1996). The noise is applied to all surface

pressure spectral co-efficients, has a 0.1hPa amplitude and is set using a pre-determined

seed (meaning that it is the same for all runs). This is the same as was used for Chapter

3.

Test of the Balancing Routine

It is expected that the action of the forward and inverse balance routines obtains the

result that you start with, but due to approximations in the numerical balance it does not

exactly. This is because only the lower spectral coefficients are used in balancing in order

to control noise. In order to conduct a brief test of the routine, we first specify the zonal

flow using equation 4.1 and then balance to temperature and pressure with the IGCM,

and we are then able to balance back from temperature and pressure (without performing

a blend) to zonal flow. When doing this, the resultant flow is not exactly equal to the

initial zonal flow field, and the jet is somewhat weaker. Regardless, the quasi-equilibrium

jet state of the nonlinear experiments is quite different to the initial and relaxation state,

so these small differences in the initial state will not have much influence, and the overall

structure of the state is preserved. Similarly, it would be possible to have started with the

HS temperature field, balance to vorticity, and balance back and consider the difference

between the analytic temperature field and the field resulting from balance, however here

we chose to instead examine the wind field to ensure the most important requirement of

the field; a latitudinally confined jet; is preserved.

4.3 Parameter Space

4.3.1 Blending Jet Specification with Sloping Tropopause in Relaxation

States

In examining the parameter space, the balance between these two key properties;

latitudinal confinement of the jet, and a change in static stability across the jet, was

desired for all latitudes of the jet maximum in the relaxation states. As such, a range of

α were examined from 0.5 to 1, shown in figure 4.1. A value of α = 0.7 was determined

to capture the required variation in static stability, as well as preserving the shape and

latitude of the prescribed jet. This was done both in order to pursue the experimental aim
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(a)

(b)

(c)

Figure 4.1: Zonal wind field for a subset of experimental setups; (a) α = 0.5, (b) α = 0.7,
and p (calculated using 4.3) corresponding to relaxation jet maxima of 22°, 45°, and 60°
from left to right. (c) θ field for α = 0.7, in balance with the zonal flows in (b).

of a latitudinally confined jet, as well as to attempt to minimize the tropical westerlies

aloft in the experiments.

4.3.2 Relaxation Latitude

The specification of the relaxation jetstream defined in 4.1 and 4.2 requires ϕrelax to

exceed 21° in order to comply with the conditions on F (ϕ) outlined above, providing a

lower limit to the latitude of the relaxation state matching that of a subtroptical jet. p =

2/3 is the minimum for desired limiting behaviour of the first and second derivatives of F

approaching the equator (corresponding to ϕrelax = 20.7°), however, due to discretisation

of the field at the model resolution, a stronger constraint of p ≥ 1/
√
(2) was used. At

high latitude, 60° was used as an upper limit to relaxation jet latitude, to match the

upper limit on mean observed polar jet latitudes. Between these values, a spacing of 5°
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was used, (with the exception of the lowest latitude values of 22° and 25°). Equation 4.3

is used to calculate the corresponding values of p which are then specified in the model,

providing nine separate experiments with distinct relaxation latitudes in a range of values

between the subtropical and polar regions.

The experiments are designated as p22 through p60; indicating the value of ϕrelax set

by varying the p parameter in the analytic specification of the wind field. Note that the

value of p itself is not equal to the value in the experiment identifier, but is calculated

from ϕrelax using equation 4.3.

4.4 Experiment Results

4.4.1 Initial Spin Up

All experiments were run for a period of 500 days, with each experiment requiring a

spin-up period of between 20-100 days to reach a ‘quasi-equilibrium’ flow, characterised by

an almost steady modified Lagrangian mean background flow and also a steady magnitude

of nonlinear wave activity. All experiments exhibited strong anti-cyclonic wave breaking,

leading to filamentation, which served to sharpen the tropopause boundary, and shift it

polewards relative to the jet maximum in the relaxation state. This is consistent with

the LC1 experiment of Thorncroft et al. (1993) which describes ‘troughs’ filamenting

equatorward anticyclonically off the jet itself, and which was the paradigm which Polvani

and Esler (2007) were attempting to emulate with their simulations.

The initial wave breaking period where this poleward migration occurs is followed

by steady flow at a consistent equilibrium latitude in the MLM state (and Eulerian zonal

mean state).

Some experiments were run with an additional surface pressure perturbation of a

large magnitude, giving rise to a corresponding barotropic zonal flow in balance with

the surface pressure distribution, adding to the baroclinic flow specified by the blend-

ing procedure described above. A number of supplementary experiments were run with

perturbations varying sinusoidally in the meridional direction possessing amplitudes of

10hPa, 20hPa, 40hPa, & 100hPa added to the initial conditions. This is motivated di-

rectly by the LC2 experiment from Thorncroft et al. (1993), which only differs from the

LC1 (which the Polvani and Esler (2007) is a reproduction of) in the meridional surface

pressure variation in the initial state, but the growing mode breaks cyclonically rather

than anticyclonically. The barotropic component of the flow changes the initial state
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substantially, adding a strong cyclonic meridional wind shear across the mid-latitudes.

However, this component is independent of the temperature field and therefore cannot be

maintained by relaxation forcing of temperature. Although the initial Rossby wave break-

ing behaviour is changed, the background state does not evolve to a different equilibrium

structure after spin-up, indicating that the relaxation temperature field and associated

baroclinic zonal flow component is the primary influence on the quasi-equilibrium jet

structure obtained, together with the Rossby wave activity on that jet.

Examining zonally averaged timeseries of the upper level wind, shown in figure 4.2,

it is clear that experiments with a more equatorward initial and relaxation state exhibit

a longer transition period to quasi-equilibrium flow, and undergo further poleward mi-

gration than the states with a more poleward relaxation state. These states with more

equatorward jets show less variability, and possess a more latitudinally confined jet with

longer-scale variability. This is due to the quasi-equilibrium state of the higher latitude

jets being closer to that of the relaxation state, and as such the relaxation forcing is

weaker.

This increased spin-up time can be seen in the global integral of energy, < cpT >;

while all experiments settle on a similar value of total internal + potential energy (i.e.

neglecting kinetic energy), figure 4.3 shows the time taken for the energy to flatten out

into an equilibrium is much longer for the lower latitude ϕr = 22° experiment than for

ϕr = 55°, which after the initial dip (representing the initial baroclinic lifecycle) is almost

Figure 4.2: Eulerian zonal average zonal wind on σ =∼ 0.25 against time for relaxation
latitudes 22°(a) through 60°(i).
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immediately level and consistent over the rest of the experiment’s run.

Note that as shown in figure 4.4, in each case following the initial spin-up, when the

model has achieved quasi-equilibrium, the vertical gradient of the 2PVU contour of the

Eulerian zonal average increases sharply on the equatorward flank of the jet, maintained

by the blending of the relaxation states and the sharpening of the tropopause through

the vortex erosion mechanism.

Figure 4.3: Globally integrated energy norms for experiments p22 and p55 (blue) with
50-day running means overplotted (orange).
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Figure 4.4: Time mean Eulerian Zonal average wind (red) and PV (black) averaged over
model days 200-500 for relaxation latitudes 22°(a) through 60°(i).

4.5 Background States

The Modified Lagrangian Mean background state for each of the nine experiments

was calculated over the 500-day window of each experiment, at each 6-hour interval, using

79 θ levels spaced 2K apart from 244K to 400K. The latitude grid used by the calculation

is a gaussian quadrature grid which matches that used in the IGCM. This small ∆θ is

required (at least in the troposphere) in order to resolve the lower boundary, as calculation

of the background state is easier when the sloping lower boundary in isentropic coordinates

is well resolved.

There were a number of dates when the PV inverter failed to converge; these dates

were filtered out by replacement, substituting the missing date with the previous timestep.

The failure to converge is likely related to the change in position of the lower boundary

as part of the outer iteration and the update of the lower boundary condition in the

nested nonlinear iteration described in Chapter 2. Failures can occur if strong meridional

gradients in θ on the lower boundary approach too near the equator where the elliptic
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PV inversion problem is very stiff (due to the constraints on gradients in Montgomery

potential approaching the equator). As before, in addition to replacement of failed dates

by previous timesteps, methods were employed to filter out spurious solutions from the

background state calculation using the PV inverter. The first is a filter removing any

timesteps outlying in terms of global average surface pressure change over time. This

filter was performed by inspection, though a first-guess algorithm is used to narrow the

range down. This calculates |dp/dt|, the magnitude of the change in global average

surface pressure in the background state at each point, and re-orders the points in terms

of descending |dp/dt| on a plot. As the points to be filtered are spuriously large, by

normalizing the axis, and calculating the point closest to (0, 0), the place where the

discrete step between spurious values and normal solutions may be found and adjusted

by eye in order to filter states out as necessary.

The second filter removes any timesteps with integral isentropic density greater than

1600kgm−2K−1. Both filters acted as markers for dates which had failed to converge to

a reasonable state. Due to the higher (T85) resolution of these experiments, a smaller

proportion (∼ 10%) were filtered relative to the previous experiments.

.

4.5.1 Latitude of the Jet Maximum

The modified Lagrangian mean of the experiments shows similar quasi-equilibrium

jet latitudes to the Eulerian zonal mean, though the MLM exhibits slower time variation.

By calculating the mean latitude of the maximum of the jet after spin-up in both the zonal

average and the MLM state (as well as the zonal average of the experiments with half

the relaxation timescale) it is possible to examine the relationship between the latitude

of the jet seen in the experiment and the latitude of the jet in the relaxation field used in

that experiment (figure 4.5).

In each case, there is an approximately linear relationship between the latitude of

the jetstream and the latitude of the relaxation state of the experiment. Despite the

increased strength of the relaxation in the reduced relaxation timescale experiments, this

linear relationship is maintained, with a slightly steeper gradient, as opposed to the jets

being more closely confined to the relaxation state.

It is possible that the faster relaxation timescale’s similar overall dynamics to the

standard set of experiments is an indirect effect where the background state changes so

that it is a little more unstable (closer to the relaxation state) and then eddy growth rate
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Figure 4.5: Mean latitude of the jet maximum (i.e. maximum in zonal wind) for the
MLM state (blue), Eulerian zonal average (orange), and the Eulerian zonal average of
the reduced relaxation timescale experiments (yellow), versus the latitude of the jet in the
relaxation state.

(associated with instability) increases to match the enhanced damping rate. As a result,

a more dynamic equilibrium is attained with a balance between higher rates of wave

activity generation and dissipation. This is the eddy saturation hypothesis and has been

studied previously in the context of the ocean. Studies (Böning et al. (2008)) show that

the Antarctic Circumpolar Current (ACC), which is driven by wind-stress also exhibits

this eddy saturation behaviour. Increasing wind-stress in models of the ACC does not

alter the mean flow, and instead increases eddy energy, as the energy of the mean flow is

‘saturated’ and released by eddies (Marshall et al. (2017)).

Examining the timeseries of global total internal + potential energy, and enstrophy,

for the p40 relaxation jet (figure 4.6) it is clear that both are consistently higher in the

shorter relaxation timescale experiment, indicating a larger amount of energy contained

within the experiment eddies. This finding is consistent across latitudes. This evidence

indicates that the eddy saturation hypothesis merits further investigation.
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Figure 4.6: Time-series of both the global integral total internal + potential energy, as
well as the root mean square vorticity (enstrophy), for the ϕrelax = 40 experiment with
relaxation timescales τrelax = 7.5days (blue, with 50 day running mean overplotted in
orange), & τrelax = 15days (yellow, with 50 day running mean overplotted in purple)

4.5.2 Speed

The speed of the jetstream is expected to be higher in the background state than

in the Eulerian zonal flow in the presence of disturbances; this is true in the case of

each experiment presented here. See Brunet and Methven (2019) for an argument of the

inequality between u0 & [u]. In addition, it is anticipated that the Eulerian zonal average

will fluctuate with the amplitude of the waves in the timeseries. In each case, following the

overturning of the initial wave, the jetspeed quickly attains its quasi-equilibrium value;

the jets do not increase in speed during the northward migration described above, which

is the case in each experiment.

For some other measures of wave activity, such as Nakamura and Zhu (2010)’s A*

wave activity, or previously introduced measures of wave activity, such as those de-

rived from a Generalized Lagrangian Mean, non-acceleration theorems have been shown

(Solomon and Nakamura (2012)) to indicate a relationship between the reference state,

the wave activity, and the strength of the full flow;

[u] +A ≈ u0 (4.6)

However, this relationship is a result of the specific choice of wave activity quantity. In

the case of Nakamura and Zhu (2010), the relationship holds for a single-layer fluid studied

in that paper, however, this is difficult to generalize to the full 3D case. Examination of

the results from the experiments, such as those shown in figure 4.7, provides a slightly
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different relation;

u0 − [u] ≥ A ≥ 0, (4.7)

such that the Wave Activity sets a lower bound on the difference between the back-

ground and zonal average flow.

Figure 4.7: A comparison of the maximum zonal angular velocity from the Modified La-
grangian Mean (blue) state and the Eulerian zonal average (red), their difference (purple),
and the global pseudomomentum (yellow), all measured in degrees per day, for the p45
experiment.
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4.5.3 Modified Lagrangian Mean Background State Structure

The timeseries of the equilibrium background flow of all experiments is relatively

steady. The zonal flow of the background is steadier and more consistent than in the zonal

average, as seen in figure 4.7. Examining the gradient of theta on the lower boundary

(figure 4.8), there are several ‘tongues’ of sharp theta gradient which migrate equatorward

at similar rates in each case; when these structures reach the equator they are associated

with timesteps where the PV inverter used to calculate the background state fails to

converge.

The latitude of the tropopause at 2PVU remains steady throughout the timeseries,

however the meridional gradient of PV, shown at the 315K isentropic level in figure 4.8,

shows clear episodes of poleward migration and then days when the gradient is large at

two latitudes - indicative of “split jet” states.

This split in PV gradient can be explained more clearly by examining a cross-section

of background PV at an appropriate point in time (figure 4.9). There are two distinct

Figure 4.8: Timeseries of θ on the lower boundary in the background, background PV,
background wind, & Eulerian zonal mean wind at all latitudes on the 315K θ surface
(with the exception of the first plot), with meridional gradients shown in colour, for the
p45 experiment. 315K is chosen due to its intersection with the 2PVU tropopause near
the latitude of the jet maximum. Vertical lines on the lower boundary θ plot indicate days
where the calculation of the background state did not converge and as a result data was
replaced by the previous timestep.
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slopes in PV, at 60° and 35°, which match both to an upwards slope of the tropopause

on the equatorward flank of the main jet as well as further south of the jet seen both

here and in figure 4.4 in the time-mean-zonal-mean wind. We expect latitudes with

strong PV gradients to be associated with stronger zonal flow through the properties of

PV inversion (e.g., the PV staircases described by Dritschel and McIntyre (2008)). The

strong meridional PV gradient at the tropopause and above at around 60N is associated

with a maximum in the MLM zonal wind at the same latitude. The second region of

stronger PV gradient on the edge of the subtropics (at about 35°) is associated with a

plateau in the MLM zonal flow strength (although not quite enough to produce a second

maximum). Similar strong winds can be seen in the zonal mean, zonal wind at this time.

However, the magnitude of the zonal mean wind is much smaller than the MLM zonal

flow because the wave activity has large amplitude at this time (and this results in a

much smaller zonal mean for reasons given above - 4.5.2). The source of this upper-level

jet is possibly the high tropospheric winds in the relaxation state due to the blend with

Held-Suarez, or else a distinct sub-tropical jet forced polewards by the relaxation.

Comparing the background wind with the Eulerian zonal average by taking figures

4.7, 4.8, and 4.9 into account, the background wind is more coherent; despite the strong

Figure 4.9: Cross-sections of background PV, background isentropic density, background
zonal flow, and eulerian zonal mean from from day 300 of the p45 experiment, chosen as
a ‘typical’ timestep. The background state was not averaged over time for this plot due to
its slow variation throughout the timeseries.
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similarities in latitude when taking the maximum, it is clear that the MLM is in fact a

more robust measure of jet latitude due to its simpler structure. Of note is that these

experiments do not have a seasonal cycle or the meridional gradient in solar forcing that

results in a strong Hadley circulation. Therefore they do not have a distinct subtropical

jet that is prominent in global reanalysis data (Zolotov et al. (2018)). Therefore, a single

jet is dominant most of the time in all the experiments (although the zone with highest

meridional PV gradient can split on occasion associated with Rossby wave breaking and

wave-mean flow interaction).

4.5.4 Global Wave Activity

In each experiment, total wave activity increases, as expected, during the initial

overturning wave resulting from the baroclinic instability of the initial state used, before

settling at an equilibrium after ∼ 50 days, as seen in the timeseries shown in figure 4.10.

The modal growth stage of the lifecycle can be seen by the increase of intersection domain

wave activity (i.e. low-level WA, Pd & Pb) which peaks around day 20. At this point,

the low-level baroclinic waves become nonlinearly saturated and thus the wave-activity

at these levels begins to decay. The higher level wave activity continues to grow for

several more days before peaking. This behaviour is seen in both the p45 experiment

(figure 4.10) and the p50 experiment. Across all experiments, wave activity is settled

down to an equilibrium value before the MLM jet completes its poleward migration to

equilibrium, as these migrationary jets nonetheless support waves. In experiments with

a relaxation latitude lower than 35°, there is no large peak in wave activity. Boundary

and exterior terms Pe & Pb terms are negative due to the poleward decrease in potential

temperature at the lower boundary of the background state, and are an essential part of

baroclinic growth of the disturbances that continue to grow and decay on the jet. The

initial overturning increases global WA until it reaches the equilibrium maintained for the

remainder of the timeseries.

The tropospheric interior domain pseudomomentum is by far the largest contribution

to the total wave activity, followed by Pd, the intersection domain wave activity. Both

gravity wave and stratospheric terms are very small, with little variation or contribution

throughout the entire timeseries, as expected. Both exterior and boundary pseudomo-

mentum terms contribute a small but not insignificant amount of negative wave activity.

Further to this, there is strong anticorrelation between Pd and Pb and also Pb+Pe ≈

−Pd. This is a signature of baroclinic waves and fluctuations in amplitude associated
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Figure 4.10: Timeseries of globally integrated wave activity (Pseudomomentum) for the
p45 experiment. The thick line represents the tropospheric contribution of the interior
Rossby-wave WA term P (twatrop), the triple-dashed line represents total stratospheric
WA (twastrat); all other lines denote various contributions to the total WA. The dot dash
line represents the gravity wave contribution Pg (twag), the dotted line represents the
background state’s intersection domain WA Pd (twad), the thin solid line represents the
WA in the exterior domain Pe (twae), and the dashed line with wide spacing represents
the boundary contribution from the interior domain Pb (twab).

with behaviour similar to growing normal modes and their nonlinear life cycles. In a

growing normal mode, it is the case that global P = 0 (section 1.2.3, Chapter 1) and

therefore the negative boundary contributions are equal and opposite to the positive

interior pseudomomentum. In the experiments shown here, the interior p-mom is much

larger and this has also been noted with global analysis data (e.g., Methven (2013)). This

indicates that there is significant wave activity in addition to unstable baroclinic waves.

4.6 Conclusions

The aim of this chapter was to design a set of model experiments with a small number

of control parameters, describing latitudinally-confined jetstreams. These experiments are

presented above, showing that the method used met the criteria set out at the start. A

small number of control parameters were used; a parameter to control the latitude of

the jetstream in the experiment p (corresponding to the relaxation latitude of the jet as
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shown in equation 4.3), a parameter to control the strength of the relaxation τrelax, a

parameter controlling the magnitude of the zonal wind speed U0, the blending parameter

α controlling the ratio of the mix between the balanced temperature of the prescribed jet

and the HS state; the parameters involved in the control of the HS state, and the change

in static stability across the tropopause as determined in the jet state prescription.

Both the variability of the background state within each experiment, looking at the

spin-up time and differences between the Eulerian zonal mean and the MLM, as well

as the intervariability between different experimental runs have been explored. We see

that increasing the latitude of the jet maximum of the wind-field, corresponding to the

balanced relaxation temperature field, increases the latitude of the quasi-equilibrium state

of the jet after spin-up. These two quantities (ϕrelax & ϕeqm) display a linear relationship

with a constant offset in both the Eulerian ZA and the MLM.

The variability of the jets in latitude increases with the latitude, with jets further

south displaying more tightly confined meridional structure, whereas jets further poleward

exhibit larger variability, likely as relaxation forcing is weaker when the equilibrium jet

is closer to the relaxation state, such as in the higher latitude experiments. A series of

experiments was run where initial background state was made different from the relaxation

state by the additional of a barotropic component to the flow associated with a meridional

pressure gradient. The lack of dependence of the equilibrium behaviour of the experiments

on the initial perturbations was shown. The equilibrium behaviour was also shown to

be insensitive to the timescale of the applied relaxation. When the relaxation rate is

increased (i.e. a shorter relaxation timescale), the quasi-equilibrium jet latitude remains

similar (though a little closer to ϕrelax at lower latitudes), but the eddy amplitude, as

indicated by global enstrophy (figure 4.6), and the total internal + potential energy is

also slightly higher.

The wave activity in the experiments is large amplitude; the pseudomomentum is

as much as half of the zonal average zonal flow (figure 4.7). The circulation around the

tropospheric vortex is strong, as indicated by the maximum in the MLM zonal flow, but

as the disturbances are large amplitude, the maximum zonal mean, zonal flow is only just

over half of the MLM flow. This is consistent with the madnitude of the global pseudo-

momentum. In addition, a partition of terms contributing to pseudomomentum reveals

that there is sustained baroclinic wave activity (associated with negative pseudomomen-

tum on isentropic surfaces that intersect the lower boundary) and strong correlation in

the amplitude of the interior and boundary activity, which is behaviour associated with
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baroclinic wave growth (and decay). However, there is large interior pseudomomentum

that is associated with Rossby waves that are not described by growing baroclinic wave

structures.

In the next chapter, the Empirical Normal Modes of these experiments will be calcu-

lated in order to examine the effect of jet latitude on the large-scale modes of the model

runs.
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Chapter 5:

Slow Modes of Variability and De-

pendence on Jet Latitude

5.1 Introduction

In global atmospheric flows with large amplitude wave activity, the background flow

and the eddies propagating relative to that background are strongly coupled and their

partition depends on the theoretical and diagnostic framework used. However, Barnes

et al. (2010) (see Chapter 1 for a more detailed discussion) have shown from the statistics

of reanalysis and simulation data that the frequency of dominant modes of variability may

depend on the structure of the background state jet, especially its latitude. In this chapter,

we use the ENM technique (Chapter 2) to find the dominant modes of variability in the

global IGCM experiments of Chapter 4 where the latitude of the quasi-equilibrium jet can

be controlled primarily through the variation of a single parameter. The ENM technique

not only extracts the structures of the dominant modes, for each zonal wavenumber, but

also predicts their intrinsic phase speeds (and therefore frequencies) from their spatial

structures using the ratio of pseudoenergy to pseudomomentum (see Chapter 3 for tests

of this technique using global simulations). This is used to test the following hypotheses:

1. The variability associated with large-amplitude disturbances on the jet can be de-

composed into a small set of dominant modes with distinct structures and frequen-

cies.

2. The dominant modes vary continuously with jet latitude and there is a relationship

between dominant mode frequency (for a given zonal wavenumber) and jet latitude

In this chapter, the above hypothesis are addressed. The ENM calculation is per-
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formed, and the resultant modes are paired and sorted. A small number of modes dom-

inate the variability. The relationship of these dominant modes to the latitude of the

jetstream is explored, and a set of stationary dominant modes are identified. In particu-

lar, the focus on slow-moving structures, and understanding the factors that contribute

to their dynamics, is motivated by a desire to better understand the causes of extreme

weather events which, as described in Chapter 1, can often be attributed to persistent,

slow-moving waves.

5.2 ENM Calculation

The empirical normal modes for the jet-control experiments were calculated over a

window of 400 days, starting at model day 100 to allow for spin-up as discussed in chapter

4. The analysis used 6-hourly data, and a time-averaged background state spanning the

window is calculated using the modified Lagrangian mean for each instant. A set of ENMs

is calculated for each zonal wavenumber 1 to 12; smaller scales were not chosen in order

to focus on the largest-scale structures. Once all modes have been calculated, all modes

with pseudomomentum less than 1% of the leading mode of each spectrum are neglected

in order to limit the number of eigenvectors returned for use in analysis.

5.3 ENM Mode Distribution

Upon calculating the ENMs, it is possible to see that the greatest amount of variabil-

ity is contained in only the first few modes by examining the mode distribution ordered

by amplitude for a single zonal wavenumber, such as the m = 5 distribution for the p30

experiment shown in figure 5.1. This distribution is distinct from the ENM power spectra

shown in figures 3.11 through 3.16- here we examine the variation in eigenvalues, phase

speed, and pseudoenergy components for a single set of ENMs at one scale (i.e. one zonal

wavenumber) as opposed to comparing the dominant modes across scales. The eigenval-

ues descend in paired steps (as expected), up until mode 7 and beyond, indicating the

presence of three propagating pairs of ENMs.

Total pseudoenergy over pseudomomentum represents the intrinsic phase speed of

the modes, cint. In all spectra, the interior Rossby wave component of the pseudoenergy

Hw provides the largest westerly component of the mode pseudoenergy and is balanced

by the energy components, HKE and HAPE , propagating the structures against advection

by the flow. The exterior component of pseudoenergy provides a small but not negligible
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Figure 5.1: ENM Mode distribution for zonal wavenumber m = 5 in the p30 experiment.
The blue line corresponds to the phase speed of the mode, −H/P. The following lines
correspond to contributions to the pseudoenergy: HKE (orange), HAPE (with the interior
contribution in yellow, and the APE on the top boundary in purple), Hw (green), He

(cyan). The eigenvalues (red line) have been normalized and scaled to the “Doppler term”,
Hw. Finally, the total pseudomomentum P is shown in blue, and is ≈ 1 for all modes in
the spectrum.

easterly contribution to intrinsic phase speed.
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5.4 Sorting Modes

Using the ENM technique allows for a reduction in dimension of the input timeseries

dataset. In order to do this however, a choice needs to be made about which modes are

retained (and more importantly, analysed). Often when undertaking principal component

analysis, only the leading few modes are retained. However, it is important to ensure that

we retain all modes which might possess some physical significance. The section below

details how the ENMs are selected and sorted for analysis.

5.4.1 Pair-matching

As the ENM technique is an eigenvalue decomposition of the pseudomomentum co-

variance matrix, this decomposition aims to orient the data to maximise variance in pseu-

domomentum in the leading modes. As a result, the output of the technique is ordered in

terms of eigenvalue (i.e. the square root of that mode’s pseudomomentum), ordered from

large to small. While this amplitude-sorting is relevant in that modes which explain more

variance are considered first, it is essentially arbitrary in that the modes are calculated

from the dataset as opposed to dynamical normal modes, which are calculated from the

eigenvector problem applied to the linear propagator matrix of the dynamical model.

However, in this analysis we are attempting to reconstruct (and hence simplify) infor-

mation about the dynamics of the system from which the data comes. In order to do this,

we attempt to match the ENMs’ output into pairs whose amplitudes vary in quadrature,

which are able to describe a propagating disturbance. If the variability is dominated

by these propagating modes, then it is expected that the pairs extracted will possess

the same pseudomomentum amplitude structure, but with phases in quadrature (like a

sin/cosine pair, or complex number representation of a propagating wave). If the modes

found are purely propagating, then the two ENMs must have equal eigenvalues, such that

they possess an identical structure in amplitude with only phase differing between the

two, offset by π/2. As such, it is expected that the eigenvalue spectrum (organized in

terms of amplitude) for a given zonal wave number is paired into steps until the part of

the spectrum constructed of “noise” associated with non-modal structures; this can be

seen, for example, in the ENM spectrum for m = 5 in the p30 experiment (5.1).

A match statistic, Mq (equation 2.59 in Chapter 2) measures the quality of the

quadrature match of any two ENMs on the spectrum; an example set of matching statistics

is shown in figure 5.2 for zonal wavenumber m = 5 in the p30 experiment, showing that
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modes i = (1, 2), i = (3, 4), & i = (5, 6) (the bright yellow squares) display a strong

quadrature match, corresponding to the steps seen in figure 5.1.

Figure 5.2: The matching statistics mqi for modes i = 1 − 23 from the m = 5 ENM
spectrum of the p30 experiment. Both x and y axis represent the same spectrum, with
each square representing the match between the modes i = (x, y), resulting in the plot
being mirrored along the y = x line.

Generally, these pairs are also the ‘leading modes’ (i.e. the modes with the highest

amplitude in pseudomomentum) of their respective ENM spectra, however this is not

always the case. Figure 5.3 shows that the vast majority of modes selected by optimising

for matching-statistic (described in Chapter 2) are indeed the leading two modes in terms

of amplitude from their respective ENM mode spectra. However, for larger, planetary

scale waves (i.e. those shown in figure 5.3 with zonal wavenumber less than 4), there are

a small number of cases where the ENMs with the strongest quadrature match are not

the ENMs with the highest amplitude. These cases are also generally less-well matched

implying that at this scale, the ENM technique is less adept at finding propagating Rossby

wave structures.
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Figure 5.3: Matching statistic mq (coloured shading) for the best-matched ENM pair plot-
ted against zonal wavenumber and relaxation latitude ϕrelax). Each value is labelled by
order in terms of amplitude.

5.4.2 Structure Sorting

When we examine these pair-matched modes, it is possible to examine their pseudo-

momentum structures in latitude and potential temperature, in order to compare modes

with similar dynamics across experiments. The structures of high-variance pairs in the

ENM mode spectra are strictly orthogonal to one another within a given experiment and

zonal wavenumber, (with intra-pair variability dominated by the variation in phase, i.e.

the quadrature separation in phase between pair members), and so one way for different

ENM pairs to have an orthogonal structure is to have different wave-like variation in

the meridional and/or vertical directions. For the dynamics of a fluid on a plane, this

would entail different meridional wavenumbers. On a sphere it can be achieved through

projection on different spherical harmonics with latitudinal variation given by associated

Legendre functions. Given the large number of degrees of freedom for the ENM structures
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(at T85 L30 truncation), we characterise the meridional structure of the leading pairs by a

meridional node number determined by visual inspection (the count of pseudomomentum

maxima in the meridional direction in the troposphere). For example, for the ENMs in

figure 5.4 the meridional node number of 1, 2, 3 and 4 in panels (a)-(d).

Figure 5.4: The pseudomomentum amplitude structure (in ms−1) for the first member
of each of the four first leading pairs of ENMs in the ϕrelax = 30° experiment for zonal
wavenumber m = 6. As ENM pair number increases ((a) → (d)), so does meridional
node number. The background state 2PVU line is overplotted in red, and the background
state wind field is overplotted in white (intervals of 10ms−1).

Figure 5.5 shows the meridional node number for the first four propagating ENM pairs

(ordered by the quality of the match between them). By construction, only modes above a

certain match-threshold (0.7) are retained, however a single match with a lower matching-

statistic are also retained if there is no suitable match in that ENM mode spectrum. In

all cases, the leading matched pair for wavenumbers four and higher possesses a simple

l = 1 node structure. Larger, planetary-scale waves generally have more complicated

structures often taking the shape of a varicose mode (Leib and Goldstein (1989)) which

straddles the lower flank of the jet. Some matches possess non-integer node numbers;

nodes were determined by visual inspection, and as non-integer node numbers were chosen

to represent a number of situations. Firstly, where the structure was ambiguous and not

all parts of the structure were separated into a clearly discrete number of nodes that could
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be distinguished by eye. In these cases, one or two distinct nodes were present alongside

the ambiguous structures and as such non-integers were used to best approximate the

node number. Additionaly, for some pairs, the node number was clear and discrete but

different between the members of the ENM pair, and the average of their node numbers

was used.

Of note is the vertical structure of the modes presented. All modes possess structure

with vertical node number two, and as such vertical structure was not considered for

sorting the modes. These nodes correspond to the CRW structure presented by Heifetz

et al. (2004a). Nonetheless, the maxima near the lower boundary and in the upper

troposphere are suggestive of counter-propagating Rossby wave structures coupled in a

baroclinic mode structure as discussed in Chapter 1 section 1.2.3. In each case (both here

and pseudomomentum amplitude structures shown subsequently in this chapter such as

in figure 5.12) the upper node is only near the tropopause at the jet maximum and

polewards of this. On the equatorward flank of the jet the upper mode appears to be

a similar distance above the lower boundary, but below the tropopause (as expected for

Charney modes for example, Heifetz et al. (2004b)).

By selecting the pair with the lowest available node structure at each point in zonal

wavenumber/jet latitude space, we construct a set of ENMs which;

1. Consist of propagating pairs

2. Possess similar spatial structures across experiments & zonal wavenumbers

3. Have the least complex structures

Examining figure 5.5, it can be seen that relatively few changes are present in this set

relative to the set of modes with the highest matches shown in the top left panel of figure

5.5. No modes for zonal wavenumbers 4 and above are filtered. In fact, only Wavenumber

3 of the p25 experiment and wavenumber 2 of the p50 experiment are replaced, both by

the second match.
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Figure 5.5: Pseudocolor plot showing the number of meridional nodes in the pseudomo-
mentum structure of leading quadrature ENM pairs 1 (top-left), 2 (top-right), 3 (bottom-
left), and 4 (bottom-right), in each case over each experiment (x-axis) and over each
zonal wavenumber (y-axis). Points where there is no match above the minimum matching
statistic threshold are greyed out.

5.4.3 Phase Speed

With modes above the amplitude & matching statistic cut-off now arranged in terms

of their meridional structure and quadrature matching statistic, we can examine the

instrinsic phase speeds associated with the structures of each ENM, calculated as;

cint = −H
P
. (5.1)

Examining cint across wavenumber and experiment (figure 5.6) there are several

features of note. Firstly, it is possible to identify two bands where phase speed is ap-

proximately zero; the first of these ranges from zonal wavenumber m = 5 in the more

equatorward relaxation scenarios, m = 4 in the mid-latitudes, descending to m = 3 at the
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most poleward latitudes. This ‘branch’ of similar structures I will call the quasi-stationary

branch (QSB). An initial cursory glance at figure 5.6 would imply that the lowest speeds

in p55 & p60 are at lower wavenumbers; however, in order to examine a consistent set

of structures across experiments, m = 2 in experiment p55 & p60 were avoided due to

their higher meridional node structure. This choice is validated by further investigation

shown in the next section (5.5) which shows that classifying the QSB as m = 3 in these

makes the most sense when considering components of pseudoenergy. The second set of

stationary dominant modes appears for m=2 at mid-latitude ϕrelax, and notably has a

distinct structure from the quasi stationary branch.

Figure 5.6: Intrinsic phase speed across zonal wavenumber and experiments, here with
symbols overlaid indicating the number of peaks in meridional structure for each data
point; black circles, blue triangles and cyan crosses respectively indicate meridional node
numbers 1, 2 and 3. The quasi-stationary branch is outlined in red.

Beyond the QSB, structures at shorter scales (higher wavenumbers) possess higher

cint; however, at these scales this measure of speed is overestimated relative to cemp as

shown in Chapter 3 due to structures with a given intrinsic phase speed being advected by

the jet (see Chapter 3). Comparing 5.6 with a similar plot instead showing the empirically
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derived measure of phase speed (figure 5.7(a)), we see that the overall distribution of

speeds is similar, and the difference (figure 5.7(b)) is mostly in its magnitude, as well as

a ‘lobe’ of high speeds in cint seen at ϕrelax ∼ 30 to 45 for the very highest wavenumbers.

(a) (b)

Figure 5.7: (a) Empirical phase speed cemp across zonal wavenumber and experiments,
with the quasi-stationary branch outlined in red. The pairs shown here match those in
figure 5.6. (b) the intrinsic phase speed cint minus cemp for the same set of modes.Symbols
in each box refer to the meridional node number as in Fig.5.6.

Recalling equation 5.1, the intrinsic phase speed cint is made up of contributions from

the pseudomomentum and pseudoenergy. Due to the orthogonality imposed by the ENM

technique, the interior pseudomomentum Pinterior = 1, and the other contributions to P

are small, making P near to 1, as seen in figure 5.1. As such, insight into the intrinsic

phase speed can be gained by partitioning the H terms (which are all individually divided

by P to obtain cint). It is possible to divide the contributions to H into those which

advect modes along the jet, and energy terms which contribute to propagation against it;

H = Hw +He︸ ︷︷ ︸
Advection Terms

+

Propagation Terms︷ ︸︸ ︷
HKE +HAPE +Hb (5.2)

Negative terms in H provide positive contributions to the phase speed, hence “ad-

vection” terms, whereas positive terms H instead serve to reduce the phase speed, hence

“propagation” terms which serve to move waves against the flow. This partition mirrors

the dispersion relation, equation 1.6 of Chapter 1, with wave speed dictated both by ad-

vection by the basic state, and propagation against the flow. Figures 5.10 and 5.11 show,

respectively, the advection and propagation pseudoenergy values of the selected modes at

each zonal wavenumber, across all the experiments. In figure 5.11 it can be seen that the
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mode with the greatest propagation in each experiment is that identified with the QSB.

Near-zero phase speed is achieved in the QSB because these modes have sufficient energy

to maintain position against advection by the jet (which can be seen for the QSB in figure

5.10).

Looking at modes not on the QSB, the propagation energy is generally strongest

for the mid-latitude jets and weaker for jets established further south and north. Zonal

wavenumber 2 stands out as a notable feature, as between ϕrelax = 22° and ϕrelax = 45°, it

shows both a higher energy than adjacent wavenumbers, and a more complex meridional

structure.

The advection speed peaks for the mid-latitude jets at a given zonal wavenumber.

As shown in figure 5.8 for m = 10, this is due to the relative positions of the wave activity

and the core of the jet. The largest contribution to the advection, Hw/P, the Rossby

wind-weighted term represents the background zonal flow weighted by the wave activity.

As such, the magnitude of this term is controlled by the cross-section of the background

zonal wind, and the location where the wave activity amplitude is greatest.

While the jet’s latitude increases across experiments, the location where the wave

activity is strong moves relatively little, and as a result the cross section of the wave

activity and the jet changes. In the experiments with the lowest ϕrelax, the core of the

jet is initially above the strongest wave activity (5.8 (a)), until ϕrelax is in mid-latitudes

(b), where the core of the background state jet has descended, but its poleward position

relative to the wave activity means that it only partially intersects the jet. When ϕrelax

is in high latitudes, the jet is far enough poleward that it does not intersect the wave

activity significantly at all, despite its continued descent. Thus, the ϕrelax at mid-latitudes

represents the greatest advection of the waves by the jet due to this peak in intersection.

Additionally, it can be seen in figure 5.10 that from experiment ϕrelax = 30 upwards,

the advection speed gets stronger as wavenumber reduces from 9 down to the QSB across

Figure 5.8: Wave activity structures for m = 10 in experiments (a) p22, (b) p40, and (c)
p60, with time-mean background zonal flow overplotted in white, and the 2PVU line in
red, and the lower boundary in blue.
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all experiments. A similar argument can be made to that of the variation across latitude.

As wavenumber increases, as shown for the ϕrelax = 40° experiment in figure 5.9, the

position of the strongest wave activity decreases in latitude. This does not result in a

strong variation in advection speed in the experiments with lowest phirelax as the core

of the jet is above the wave activity, and thus the intersection of WA and the jetstream

does not change. However, in the experiments with ϕrelax = 30° and upwards, the core

of the jet has descended sufficiently that the equatorward change in position of the wave

activity at higher wavenumber does serve to decrease the strength of the advection.

The propagation terms (figure 5.11) show most clearly the dynamical origin of the

QSB; as the branch is a local maxima in wave energy, which acts to counteract advection

by the jet, thus keeping the waves stationary. In each experiment, the ENM energy and

therefore propagation rate increases as wavenumber decreases from 12 to the QSB where it

attains a maximum. For each zonal wavenumber there is also a weak maximum in energy

as jet latitude is varied, being slightly weaker for the lowest and highest jet latitudes.

There is less variation at smaller scales than in the advection terms, however propagation

is noticably weaker at the highest latitudes. This effect is insufficient to counteract the

weakening propagation at high latitude and maintain wave speed, however.

Figure 5.9: Wave activity structures for the p40 across wavenumbers (a) 5, (b) 7, and (c)
9, with time-mean background zonal flow overplotted in white, the 2PVU line in red, and
the lower boundary in blue.
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Figure 5.10: Advection (Hw/P) and exterior He/P term contributions to phase speed (cint)
across zonal wavenumber and experiments. Symbols in each box refer to the meridional
node number as in Fig.5.6.
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Figure 5.11: Propagation term contributions (i.e. HKE/P, HAPE/P & Hb/P) to phase
speed (cint) across zonal wavenumber and experiments. Symbols in each box refer to the
meridional node number as in Fig.5.6.

5.5 Quasi-Stationary Branch

The structure of the pseudomomentum of the ENMs in the QSB are shown in figure

5.12 for each experiment. While the relative position of the WA and the jet changes across

latitudes the individual structures remain similar. Each possesses a bimodal vertical

distribution, with wave activity along the lower boundary, as well as near the tropopause

near the latitude the jet core; this lobe of WA extends equatorwards on isentropic surfaces

in the upper troposphere. All modes in the QSB possess a single dominant node in the

meridional direction close to the jet core, although experiments with ϕrelax = 50° and

above also possess a second much weaker node of wave activity in the subtropics, far from

the jet.

These structures possess similar shapes, and can be identified as a similar mode

changing continuously as the latitude of the background state jet is varied. While the
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relation between the wave activity and the jet does change slightly, as across the lower

jet latitude experiments the core of the jet descends to a lower isentropic level, and in

higher jet latitude experiments, the wave acitivty is on the equatorward flank of the jet.

Nonetheless at the highest latitudes, (figure 5.12 (g) → (i)) an additional ‘lobe’ of wave

activity does appear at the surface in the tropics; in addition the tail found in the structure

aloft becomes more pronounced. These changes in structure accompany changes in the

dynamics of these modes.

Figure 5.12: The pseudomomentum structures for the leading mode of each member of
the QSB, from p22 (a) through to p60 (i). The average background zonal wind of each
experiment is overplotted in white, the tropopause (2PVU line) in red & the surface in
blue.

The phases of these ENM structures, shown in figure 5.13 also display continuity

across latitudes, however this is somewhat more difficult to see. For each mode in the

QSB, phase is coherent across the main node of wave activity, which is not the case

for other ENMs with more complex meridional structure. Phase also changes markedly

between the lower and upper maxima in wave activity, indicating the phase difference in
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PV between the upper and lower counter-propagating Rossby wave. For the high ϕrelax

p50, p55, and p60 states, it is clear that the weak subtropical love of wave activity has a

phase difference from the main node of wave activity on the jet.

Figure 5.13: The cosine of the phase for the leading mode of each member of the QSB,
from p22 (a) through to p60 (i). The average background zonal wind of each experiment
is overplot in black, the tropopause (2PVU line) in red & the surface in blue. The values
of the phase vary greatly between experiments as they are essentially arbitrary; only the
phase differences within a single structure are important. Note that as cos ϵ is used, as
opposed to the phase itself, that phases can appear to ‘wrap around’.

While the zonal wavenumber of the experiments on the QSB decreases as the jet

shifts polewards, by taking the latitude of the jet maximum in the background flow, it is

possible to use the zonal wavenumber as well as the circumference of that latitude circle

to calculate and compare the physical wavelengths of modes across experiments, shown

for the QSB in figure 5.14. The physical wavelength stays within the relatively narrow

range of 5500-7300km for all experiments, with variations imposed by the integer values

of zonal wavenumber.
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Figure 5.14: Physical wavelength in metres of waves at each zonal wavenumber for each
experiment, calculated using the background state latitude of the jet maximum. The first
three points have a zonal wavenumber m = 5, the second three m = 4, and the final three
m = 3.

Figure 5.15 breaks down the phase speed cint of the QSB into its contributions from

advection and propagation, and further breaks down propagation contributions into HKE

vs HAPE . It can be seen that at the equilibrium jet latitude of 55°, there is a change in

behaviour of both the advection and propagation contributions which level out as opposed

to continuing to grow with latitude. In the case of the propagation contribution, this is

due to a reduction of the KE term, which begins to reduce at ∼ 55°. APE on the other

hand continues to grow with latitude.

At this point, the advection term also levels out, whereas it had been following the

zonal angular velocity of the jet as expected at lower jetstream latitudes (the zonal angular

velocity continues to grow despite reduced jet speed due to further poleward shifting).
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Figure 5.15: Contributions to cint (blue) in degrees latitude/day versus latitude of the
background state jet maximum in each experiment. The orange line shows the maximum in
zonal angular velocity of the jetstream. The yellow line shows the advection contributions
to the mode speed (the same as Fig. 5.10), the purple line shows the energy contributions
(the same as Fig. 5.11), with the dashed green and cyan lines representing the HKE &
HAPE components of the energy, respectively.

The point at which this departure of mode advection speed from the Zonal Angular

Velocity occurs, as highlighted in figure 5.16, matches that at which the structures in

the QSB depart from those at low latitude; implying the presence of a critical point

around ∼ 55° where the behaviour of the modes changes subtly. This could be due to

the equatorward position of the WA at these latitudes relative to the jet, which causes a

reduction in the advection term. This reduction is balanced by the reduction in the KE

term, ensuring the modes’ low phase speed despite the shift in the underlying dynamics.
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Figure 5.16: Ratio between the Zonal Angular Velocity and the advection contribution to
cint.

5.6 Conclusions

The ENM technique successfully pulled out a set of modes which explain the variance

of the data in the experiments described in Chapter 4. I was able to use the modes in

order to examine how the large-scale structure changes as the structure of the background

flow changes, with the jet moving polewards. Several observations have been made.

Firstly, and most importantly, is that there exists a set of slow modes which vary

continuously with jetstream latitude. Due to the absence of features fixed relative to

the surface in the experiments (i.e. orography), all structures must propagate, however

a set of quasi-stationary disturbances are seen with near zero phase speed. This quasi-

stationary branch (QSB) of slow modes corresponds to the dominant propagating modes,

selected by the ENM technique, with the highest energy in each experiment.

Each ENM quadrature pair in the QSB has a single dominant maximum in wave

activity in the meridional direction, spanning or flanking the jet maximum in latitude.

In the vertical they possess two separate maxima near the lower boundary and near

the tropopause, related to the counter-propagating Rossby waves of baroclinic instability

theory, discussed in more depth in Chapter 1.

The ENM technique enables a partition of intrinsic phase speed of each mode into

contributions from advection by the background zonal flow and propagation relative to it.

The stronger energy of the QSB modes enables them to propagate westwards relative to
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the eastward background zonal flow, sufficiently fast to achieve their characteristic zero

phase speed.

As jet latitude varies between experiments, the advection rate of the QSB modes is

approximately a constant fraction of the maximum zonal angular velocity of the jet, until

the equilibrium jet latitude reaches ∼ 55°, when the behaviour undergoes a change.

The rate of counter propagation depends on scale (both zonal and meridional). On

the QSB all the ENMs have one meridional node (of similar scale). So variation in

propagation is expected to vary with zonal wavelength. Interestingly, although zonal

wavenumber on the QSB decreases from 5 to 3 as jet latitude is increased, the physical

zonal wavelength does not vary greatly. This indicates that the most energetic modes on

the jet in this spherical domain have similar zonal (and meridional) length scales.

The increase in energy needed to counteract the increase in jet angular velocity and

achieve zero phase speed, as jet latitude increases across the experiments, stems mainly

from an increase in the APE of the ENMs, rather than KE. Therefore it cannot be

explained by recourse for the familiar dispersion relation for Rossby waves in single layer

dynamics, such as the barotropic vorticity equation (the dispersion relation of which is

equation 1.6 of Chapter 1) or QGSW. Indeed, the small variation of KE for the ENMs

on the QSB is consistent with the fact that the zonal wavelength does not vary much

and therefore neither do the wind speed anomalies attributable to the inversion of PV

anomalies in a Rossby wave (the inversion operator being scale-dependent).

The overall finding is that quasi-stationary modes depend on jet latitude in a sys-

tematic way. In the experiments studied, these waves are the most energetic propagating

sinuous modes and they have a preferred zonal and meridional scale. They are baro-

clinic waves with distinct phase-locked upper and lower counter-propagating Rossby wave

structures. Although the zonal advection contribution to propagation increases with jet

zonal angular velocity, the energy of the modes also increases enabling zero net phase

speed. Given the near-constancy of zonal wavelength, it can be predicted that the zonal

wavenumber of the quasi-stationary modes must be lower on higher latitude jets and

that the discrete values of wavenumber have an important influence on the energy of the

dominant modes as jet latitude varies resulting in discontinuous steps in behaviour of the

dominant waves.
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Chapter 6:

Conclusions & Future Work

6.1 Introduction

Several hypotheses were posed in the introduction to the thesis;

H1 The variability associated with large-amplitude disturbances on the jetstream

can be decomposed into a small set of dominant modes, each with a distinct

structure and an intrinsic frequency which can be deduced from the structure.

H2 The intrinsic frequency matches the frequency observed in the timeseries data

of the modes that are freely propagating in the absence of strong forcing by

non-conservative processes or nonlinear interactions between modes

H3 The dominant modes vary continuously with jet latitude and there is a re-

lationship between mode frequency (for a given zonal wavenumber) and jet

latitude

This chapter outlines how the results in this thesis address and answer these hypotheses;

where new, unresolved questions have arisen, and in which direction further research into

this area may be taken.

6.2 Verification of the ENM technique for Baroclinic Flows

6.2.1 Decomposition into Modes & Reduction of Dimensionality

In Chapters 3 and 5, the ENM technique was used to extract modes of variability

from idealised IGCM simulations. The construction of the ENM technique, in contrast
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to other principal component analysis approaches, allows for the classification of wave-

like structures with an intrinsic frequency and phase speed dictated by the structure of

the ENMs themselves due to their construction using conserved wave activity quantities.

Equation 2.60 in Chapter 2 gives the speed of these disturbances for the ENMs. The

extraction of these modes, and the speeds shown in the aforementioned chapters serves

as confirmation of the latter half of hypothesis 1.

For each of the experiments analysed with the ENM technique, it is evident from

inspection that the modes reflect the large scale structure of the model atmosphere time-

series. This is most obvious in the simplified experiments performed in Chapter 3 without

surface drag, where the atmospheric motion consists of large amplitude, large wavelength

planetary waves, with smaller structures riding the edge of the planetary waves. In these

cases, each structure’s zonal wavenumber and empirical phase speed matches the observed

rotation rate of the single dominant mode as seen in Hovmöller plots, and which are ob-

served in animations of upper level PV surfaces. For the model atmospheres where the

presence of drag results in a more complex structure, the Hovmöller diagrams of merid-

ional wind 3.4 demonstrate propagating structures which on deeper examination, can be

seen reflected in the dominant ENMs for these experiments.

In Chapter 3, two measures of relative dominance for leading ENMs in a given spec-

trum were introduced; the ENM prominence, describing the jump in power between the

leading mode pair and subsequent modes; and the ENM proportion, a fractional measure

of the proportion of the total pseudomomentum explained by the leading pair. As the

ENMs are orthogonal with respect to pseudomomentum, the total pseudomomentum is a

sum of the pseudomomentum possessed by each mode and as such the power in the full

field can be decomposed rigorously in this manner. In each case, the dominant modes

of the zonal wavenumbers with the most power as shown by figures 3.11 (a) to 3.16 (a)

display high proportion as shown in subplot (b) of the same figure. In each experiment,

local maxima in power correspond to the leading ENM pair for a given zonal wavenumber

possessing a proportion of at least 0.4. As such, this means that for wavenumbers domi-

nant in a given atmospheric timeseries, nearly all of the total variance of the timeseries is

explained by just the leading ENMs. A large amount of the remainder of the variability is

described by the first few modes in each spectrum. Looking back to figures 3.11 through

3.16 (a) once more, it can be seen that the leading 10 ENMs (kspechead, the dashed line)

match the total power in the spectrum very closely.

All together, for these dominant structures, this evidence points to confirmation of

Page 115



6.2. VERIFICATION OF THE ENM TECHNIQUE FOR BAROCLINIC FLOWS

H1; that the variability may be described by a relatively small set of modes with distinct

structures. The number of co-ordinates required to describe the variability of the wave

activity across the timeseries is reduced from 2000 (i.e. the number of time points in the

atmospheric timeseries used in the analysis) to a few dozen at most, with a significant

proportion of that variability explained by the single leading pair alone.

6.2.2 The Phase Speed Condition Test

An advantage of the ENM technique is the intrinsic phase speed which is related to

the structure of the modes. However, validation of the ability of the ENMs to represent

dynamical atmospheric flows is required in order to utilise these phase speeds to study

the behaviour of large scale waves. The Phase Speed Condition allows for an objective

measure of this ability; the empirical phase speed, as measured from the principal com-

ponent timeseries, must match the intrinsic phase speed for freely propagating modes.

This condition is expected to hold when the pseudoenergy conservation requirement is

met, i.e. the background state is slowly evolving. In addition, it is not expected to hold

when the flow is subject to strong non-conservative forcing, or when there is a significant

amount of non-linear wave-wave interactionss.

Across all experiments in Chapters 3 & 5, a common pattern emerges; dominant

baroclinic scale waves at zonal wavenumbers ∼ 5, 6, 7, 8 meet the phase speed condition,

while larger, planetary scale waves, and smaller structures, do not always match in phase

speed because the dynamics do not meet all the conditions stipulated above. While the

most dominant ENMs (which explain the largest amount of variability in the atmospheric

timeseries) are consistent with phase speed matching, there is a working theory, of why

other structures’ phase speeds do not match.

Firstly, as shown in figure 3.18, the smallest scale structures from wavenumbers ∼ 8

and above show larger eastward intrinsic phase speeds compared to cemp. Nonetheless,

these wavenumbers possess similar cemp to each other and to the largest scale planetary

waves. From this, it can be hypothesized that these structures picked out by the ENM

technique are subject to highly non-local (in wavenumber) nonlinear effects. Large scale

Rossby wave breaking leads to filamentation, where a single dominant planetary scale

wave projects onto the small scale structures. The dominant planetary scale wave un-

dergoes Rossby wave breaking where high PV filaments are wrapped around the cat’s

eye (McIntyre and Palmer, 1985) structures associated with the wave. This behaviour

projects onto wavenumbers higher than that of the dominant wave and it is also expected
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that these structures would move in step with the primary wave. This matching of em-

pirical speeds between high wavenumber structures and the m = 1 planetary wave can

also be seen in the Chapter 5 experiments, in figure 5.7.

It is possible that lower wavenumbers, planetary waves with zonal wavenumber ≤ 5

(depending on the experiment) display a different type of nonlinearity, which is instead

local in wavenumber. We hypothesize that these waves are undergoing Rossby wave triad

interactions. While their cint display different phase speeds, the cemp across wavenum-

bers are similar. Triad behaviour is identified in Chapter 3 for the TORD and RARD

experiments. It is observed that the modes of the proposed triads (1) match the selec-

tion rules in zonal wavenumber k1 + k2 = k3 (on the basis the structures share the same

meridional node structure of a single node); (2) have similar power in pseudomomentum;

(3) have similar cemp, even though the cint do not match; (4) consist of two wavenum-

bers with prominent propagating modes, while the third of the triad does not, and; (5)

the wavenumbers with prominent modes are anticorrelated. All of these observations are

consistent with triad behaviour.

While the phase speed condition test is not met at all scales, the phase speed matching

at wavenumbers with the most prominent propagating pairs, isolating baroclinic waves,

serves as confirmation of H2 for these structures, while there are good possible explana-

tions for exceptions.

6.3 Variation of Phase Speed with Jet Latitude

In order to study the effect of a change in the structure of the background zonal flow,

specifically the latitude of the jetstream, on the ENMs, in Chapter 4 a set of idealised

model experiments were developed. These experiments, like the ones which came before,

lack orography, moist processes and seasonality. However, through the construction of the

relaxation state used in the model, the model timeseries possess an equilibrium jetstream

whose latitude may be controlled by a simple parameter. As shown in figure 4.5, a nearly

linear response is attained in the equilibrium jet latitude from changes to the latitude of

the jet in the relaxation state.

Using these experiments, the change in modal response as equilibrium jet latitude is

varied was examined using the ENMs for each experiment.

Page 117



6.3. VARIATION OF PHASE SPEED WITH JET LATITUDE

6.3.1 Variation of Mode Structure with Latitude

As the latitude of the jetstream increases, the relative position of the structure of

the dominant ENMs and the jet changes. As shown in figure 5.8 (Chapter 5), as the jet

latitude increases, a structure with the same zonal wavenumber, and identical meridional

and vertical node numbers in its pseudomomentum amplitude structure can be observed.

This structure changes the position of its wave activity from underneath the jet core, to

intersecting with it, to a position on the equatorward flank.

These structural changes correspond to changes in speed of the modes, however

these changes are scale-dependent, as can be seen in figure 5.6. At the smallest scales,

the structures all possess an eastward intrinsic phase speed, which is smallest when the

relaxtion jet is at both tropical and polar latitudes as the propagation against the jet is

weak across all latitudes, whereas when the relaxation state jet is in the mid-latitudes

the wave activity’s intersection with the jet increases the advection term, resulting in

fast-moving structures when ϕrelax is at mid-latitudes.

At the dominant scales for baroclinic growth (m = 5− 8), large energy modes domi-

nate, resulting in low phase speeds, due to their large perturbation energy and therefore

ability to counter-propagate, which get faster the further poleward the jet shifts. All the

dominant modes across the experiments for m ≥ 4 have a simple meridional structure

with a single maximum in pseudomomentum which varies in its location relative to the

jet core.

6.3.2 Quasi-Stationary Waves

A ‘branch’ of quasi-stationary waves, or a Quasi Stationary Branch (QSB), exists

across all experiments. These waves possess a similar physical wavelength, and are the

modes with the greatest propagation rate relative to the jet, indicating that they have

the greatest perturbation energy for each zonal wavenumber. They are baroclinic mode

structures with large pseudomomentum amplitude at the tropopause and in the lower tro-

posphere near the lower boundary, the necessary ingredients for strong baroclinic growth

through the interaction of counter-propagating Rossby waves. It is hypothesised that

these dominant modes are the baroclinic wave structures with the strongest baroclinic

interaction strength (and strongest growth rate for normal modes). As in the Eady and

Charney models the fastest growing modes have a characteristic wavenumber determined

by the competition between the requirements for baroclinic interaction between the upper

and lower CRWs (strongest at larger scales) versus the requirement to phase-lock in the
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shear flow (counter-propagation becomes too strong for the longest waves). This even

results in the neutral longwave point in the Charney model ((Heifetz et al., 2004b)). It is

interesting that their wavelength does not vary much between experiments which is likely

a result of the scale effect of PV inversion, relating PV waves to the velocity they induce.

However, the zonal wavenumber of the sphere is discretised. So as the jet shift polewards

and so does the wave activity, the length of the latitude circle a cos(ϕ) reduces. The zonal

wavenumber corresponding to the same wavelength must therefore decrease and it can

only do so in discrete jumps (m = 6, 5, 4). Figure 5.14 shows that as the wavelength

begins to decrease below ∼ 5.5×103km, the wavelength increases sharply (corresponding

to a jump in zonal wavenumber), suggesting a minimum wavelength required to maintain

quasi-stationary behaviour. This shows that a shift in the background jet latitude could

lead to a change in the wavenumber of stationary structures in the real atmosphere.

6.4 Further Research

There are a number of directions in which further research into this topic could

proceed.

6.4.1 Effect of Non-Linear Coupling

Firstly, a number of questions have arisen while answering the hypothesis put forward

at the beginning of this thesis. The first of these, is the impact of non-linear wave-wave

coupling on the ENMs. As discussed in section 6.2.2, some ENMs at the largest and

smallest scales do not meet the ENM phase speed condition. It is hypothesized that this

is due to the effects of nonlinear interactions, both between scales, and in the form of

triad interaction.

Resonant Rossby wave triads are a form of non-linear interaction between three waves

where each combination of two waves interacts to produce the third. This way, energy is

exchanged by the three wave types within the triad, but the waves do not interact with

other waves outside of the triad. Wave triads are subject to strict selection criteria; the

sum of the wavenumbers in a given spatial direction must sum to zero. In practice this

allows for triad interactions between, e.g., wavenumbers 2, 3 and 5, but not between 1,

3 and 5. In addition, selection rules must apply to the frequencies, and therefore phase

speeds of the waves.

A study of Rossby wave triads within the identified ENMs would require examination
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of possible combinations of triads, based upon the selection rules. By examining the sum

of the amplitudes of a given combination, it should be possible to see whether the total

pseudoenergy and also pseudomomentum in a given triad remains constant as would be

expected, due to the triads being unable to exchange energy with other waves outside

the coupling. With an exhaustive examination of the triads it would be possible to see

exactly how nonlinear interactions are modifying the phase speeds of the waves at the

planetary scale, and examine the precise case-by-case mechanism for the phase speed

matching failing at certain small wavenumbers.

For the largest wavenumber waves, triad interaction cannot explain the disparity be-

tween empirical and intrinsic phase speeds. Large scale coupling, where a single dominant

wavenumber projects onto smaller scales as a result of wave breaking is considered to be

the cause of this interaction. Further studies of interaction between the smallest and

largest scales is required to ascertain the mechanics of this interaction. By examining the

phase relationships between the lowest and highest wavenumbers, it is hypothesized that

further insight might be gained.

6.4.2 Effect of Jet Strength on the Modes

The aim of chapters 4 & 5 was to establish a set of experiments where different

aspects of the background state could be varied through changing a simple variable to

define each of them, and examine how the modes evolve as the background flow is changed.

Specifically, the experiments in Chapter 4 vary the latitude of the jetstream while keeping

other parameters constant, however there are other axes within the phase space of the

experimental setup along which to vary relaxation parameters in order to achieve changes

in the background state. For example Chapter 4 briefly discusses a set of experiments

whereby the relaxation strength was altered in order to examine the effect on equilibrium

latitude.

The behaviour in the Jet Control experiments is at odds with the usual seasonal

behaviour in quasi-stationary waves (Kornhuber et al. (2017), Coumou et al. (2015))

where m=3-4 is dominant in winter and m=6-7 is dominant in summer.

A variation in the speed of the jetstream is a likely candidate which would account for

the observed behaviour in the atmosphere, which would provide a more complete picture

of how the modes change with changes in the background flow. In the real atmosphere,

as the jet moves into the weaker summer state, stationary waves of higher wavenumber

appear; as we can see from the barotropic dispersion relation (equation 1.6, Chapter 1),
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weaker zonal mean wind means that higher wavenumbers are able to maintain stationary

phase. By focusing on changing only the strength of the jet, the effect of jet strength on

modes could be isolated.

The most energetic baroclinic waves have the most negative phase speeds in the

jet latitude experiments and there are no modes propagating strongly westwards. This is

hypothesised to be because in the absence of orography or other forcing, all the amplitude

in the waves is driven by baroclinic instability. The semi-circle theorems (e.g., (Pedlosky,

1963)) indicate that unstable modes in shear instability cannot have phase speeds outside

the range of speeds present in the background state. Therefore longer waves with westward

speeds are not excited in these experiments. It is in contrast to the atmosphere where

westward propagating long waves are frequently observed.

6.4.3 Seasonality Effects

In the physical atmosphere, the jet latitude is not constant. The background flow

varies with the seasonal cycle as a result of changes in solar insolation and wave activity,

and with it the latitude of the background jet exhibits seasonal changes. It is possible

that relatively abrupt transitions could occur from wavenumber 6 to 4 as the jet shifts

polewards, mirroring the discrete shifts in wavenumber which can be seen in the QSB

(Fig. 5.6 & similar, Chapter 5 ).

A series of experiments that specifically examine the transitionary behaviour of the

modes, using a seasonally-varying relaxation state that would oscillate the model atmo-

sphere from conditions mimicking winter, to summer, and back, could examine both the

transition of the waves in the timeseries as the season changes, as well as whether the

same structures re-emerge following the return to the initial relaxation scheme.
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