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Abstract 

Humans are reliant on biodiversity and the ecosystem services that biodiversity 

provides. However, the status of biodiversity is unclear, with reports of both declines 

and recoveries, suggesting a new complex biodiversity change narrative. Large 

carnivores are a perfect example of this complex narrative. On one side, there are 

extensive reports of declines, but more recently, some populations appear to be 

recovering and expanding their range. In this thesis, I use interdisciplinary 

approaches covering evolutionary biology, biodiversity science, data science, and 

social science to explore influences of biodiversity change, specifically understanding 

declines and recoveries in these large carnivore species. I start by introducing the 

current literature on biodiversity change and the status of large carnivores, 

highlighting weaknesses in the available methods and data. In Chapter 2, I review 

one of the methodological weaknesses – approaches for handling missing trait 

values – providing some recommendations and warnings. In Chapter 3, I addressed 

known data biases in large carnivore population trends and build a new dataset 

obtained from an extensive and systematic search of the literature for population 

data. In Chapter 4, I develop a trait-based model exploring environmental and 

anthropogenic factors influencing large carnivore population trends and describe the 

status of the carnivore guild. Findings show diverse factors influence population 

change, but that this guild has and will remain relatively stable between 1970 and 

2050. These results provide optimism for the status of large carnivores, and 

biodiversity more generally. However, I suspect our model failed to capture important 

characteristics on human perceptions and tolerances of carnivores, which could 

impact their population status. As a result, in Chapter 5, I develop a machine learning 

text classifier to measure public opinions of nature from social media. This, or tools 

like it, could be effective at capturing these previously undetected tolerance features 

at a global scale. Finally, chapter 6 summarises the collective thesis findings and 

offers my thoughts on the status of large carnivores and biodiversity change 

research. 
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Chapter 1: Introduction 

Ecosystems offer a wealth of features that sustain human life (Rockström et al., 

2009; Pecl et al., 2017). Biodiversity is a core component of this, underpinning 

support services like photosynthesis and pollination (Hanley et al., 2015), provision of 

services like food and medicine (Nielsen et al., 2018), and cultural services like 

outdoor recreation (Belaire et al., 2015). These biodiversity and nature-related 

services make humans healthier and happier (Díaz et al., 2018). However, with the 

continued expansion of humans into natural spaces and the resulting decline in 

biodiversity, there is a risk that ecosystem services could become degraded 

(Rockström et al., 2009; Newbold et al., 2016; Leclère et al., 2020). 

Whilst the importance of biodiversity for ecosystem services is clear, the current 

status of the biodiversity underpinning these services is less clear. In recent decades, 

a wealth of evidence has been released suggesting biodiversity is experiencing 

declines (Newbold et al., 2015, 2016), with some suggesting declines are reminiscent 

of a mass extinction event (Ceballos et al., 2015). For example, in one analysis, 

wildlife population abundances are reported to have declined by 68% since 1970 

(WWF, 2020b). Whilst this is compelling and alarming, a new biodiversity change 

narrative has developed in recent years casting doubt on this storyline instead 

suggesting that declines are somewhat offset or balanced by recoveries (Dornelas et 

al., 2019). This is perfectly emphasised by a reanalysis of the data showing a 68% 

decline, where removing just 3% of the extremely declining populations switches the 

overall trend into an increase (Leung et al., 2020). In essence, biodiversity change is 

complex, and the status of biodiversity is unclear. 

Large terrestrial carnivores, the focus of this thesis, are a clear representation of the 

complexity of the new biodiversity change narrative. For example, a number of 

studies have reported dramatic population declines in these charismatic megafauna; 

in Africa (Bauer et al., 2015; Riggio et al., 2016), Asia (Harrison et al., 2016), Europe 

(Wolf & Ripple, 2017), North America (Woodroffe, 2000), and South America 

(Altrichter et al., 2006). Furthermore, some species have become extinct in the last 

few hundred years, and others are surviving in less than 10% of their historic range 

(Wolf & Ripple, 2017) – emphasising the precarity of these species’ extinction status. 

Yet, there is also evidence that populations are beginning to recover (Chapron et al., 

2014), and restore their historic distribution (Cimatti et al., 2021). All of this 

considered, the status of these large carnivores and the features influencing their 

population change remains unclear. This lack of clarity is particularly problematic, as 

large carnivores are essential for maintaining community composition through top-

down trophic forcing (Atkins et al., 2019) and the landscape of fear (Suraci et al., 

2016) which regulate prey abundance and movement, respectively. As a result, when 
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the status of large carnivores is uncertain, the status of the entire ecological 

community becomes uncertain. Given their importance in the wider community, large 

carnivores are regularly described as indicator species, as a healthy carnivore 

population implies the lower trophic levels are also healthy, although this is very 

context specific (Sergio et al., 2008a). Moving beyond the ecological value, large 

carnivores are also culturally important to humans, and so there is often a public 

desire to protect these species, which explains why carnivores are the recipients of 

large proportions of the available conservation funding. All things considered, this 

presents a compelling case to improve our understanding of the status of large 

carnivores.  

Understanding biodiversity change 

There are a plethora of reasons for which carnivores should be conserved simply for 

the benefits they provide to humans, over and above their intrinsic value (i.e. they 

deserve not to go extinct). For example, large carnivores are important for 

maintaining ecosystem function as they regulate community composition (Ripple et 

al., 2014), but also provide really tangible cultural benefits e.g. acting as flagship 

species (Clucas et al., 2008). To conserve these species, and the benefits they 

provide, we must understand their population status.  

One of the core challenges in understanding biodiversity change (or the status of a 

population) is overcoming extreme data biases. These biases occur across multiple 

features of the biodiversity change data: temporally e.g. there are fewer records in 

the past; spatially e.g. some countries or regions are underrepresented; 

taxonomically e.g. there are fewer records in some species; or on the influences of 

biodiversity change itself e.g. wildlife population monitoring is less common in areas 

more likely to experience land-use change. All of these biases are present (to some 

degree) in the large publicly available biodiversity change datasets, including in large 

carnivores. For example, population trend and occurrence data are abundant for 

some species, yet completely absent or extremely limited for others (Figure 1). Even 

well-studied carnivore species rarely have trend data for more than one population 

and location, and these are found primarily in wealthy countries (2), where there are 

fewer carnivore species to protect.  
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Figure 1. Frequency of occurrence and population trend records for the 87 species in the families 

Canidae, Felidae, Hyaenidae and Ursidae of the order Carnivora. Occurrence records were pulled 

from GBIF (GBIF.org, 2018), and trend records from the Living Planet Index (WWF, 2020a), and 

PREDICTS (Hudson et al., 2017). 
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Figure 2. National Carnivora records plotted against gross-domestic product (GDP) per capita on 

the log10 scale (a), and spatially (b). Carnivora records are defined as the frequency of occurrence 

and trend records from GBIF (GBIF.org, 2018), Living Planet Index (WWF, 2020a), and PREDICTS 

(Hudson et al., 2017) within each country, which are then scaled by dividing the frequency by the 

countries size (in square kilometres) and the number of extant Carnivora species within the country. 

These Carnivora species include the 87 species in the families Canidae, Felidae, Hyaenidae and 

Ursidae of the order Carnivora. This ‘Carnivora records’ variable is plotted on the log10 scale. 

Even if all biodiversity change data were bias-free, our ability to understand 

biodiversity change is hampered by the availability and representativeness of data 

about drivers of change in biodiversity, especially traits. Traits, which describe the 

life-history characteristics of species (e.g. body mass and gestation length), have 

become pivotal in developing a more mechanistic understanding of ecology (Webb et 

al., 2010). However, traits are plagued with missing data biases (Etard et al., 2020), 

as collecting these life-history trait information is challenging, and much of the 

available data represents the common and more charismatic species (González-

Suárez et al., 2012). This is problematic for inference, as conclusions can only 
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represent this biased subset instead of the full taxonomic array. I address this feature 

in Chapter 2: Handling missing values in trait data.  

Biases can also occur in other types of data (e.g. land-use and climate data). Remote 

sensing has relatively mitigated these biases, albeit only for certain types of data. 

Cryptic data sources, like poaching, persecution, and hunting pressures, can have a 

substantial impact on biodiversity change (Benítez-López et al., 2017) but are hard to 

measure at the global scale e.g. unlike remote sensing. This could be problematic, as 

features like land-use change may not necessarily be driving biodiversity change, but 

instead the cryptic features that come with land-use change could be the ones 

causing impacts. For example, wildlife-vehicle collisions can result in wildlife mortality 

events, but the accompanying threat of poaching access and land encroachment can 

also be important (Laurance et al., 2009). Capturing these cryptic features could be 

essential for understanding biodiversity change, and increasingly, ecologists are 

turning to novel data science technique to gather information about threats to 

biodiversity (Di Minin et al., 2018). I utilise these data science techniques in Chapter 

5 ‘classecol: a text classifier to understand public opinions of nature’ to explore one 

of these cryptic features – a tolerance for nature. 

Addressing data biases (e.g. in traits) and capturing cryptic influences of biodiversity 

change is important, but equally, biodiversity change needs to considered over very 

long timescales. This is important for two core reasons. Firstly, biodiversity change 

estimation is more accurate over longer time periods, capturing the natural fluctuation 

in population and community dynamics (Fournier et al., 2019). Secondly, and 

perhaps more importantly, shorter-term monitoring is more vulnerable to shifting 

baseline syndrome, whereby biodiversity is assessed relative to an already degraded 

baseline, instead of an intact system (Soga & Gaston, 2018). On this point, we are 

constrained by severe limitations in the data, and many previous biodiversity change 

assessments only stretch back to a baseline of 1970 (e.g. Living Planet Index). As 

this data, and the status of biodiversity, is lost beyond the past 50 years, it is 

important to consider proxies that can represent this status. Previous work on large 

carnivores has used range maps to estimate the species current extant relative to 

their historic ones (Wolf & Ripple, 2017). Using these proxies of historic loss 

alongside data for recent losses (e.g. population trends) views the biodiversity 

change narrative more holistically – as explored in Chapter 4: A global assessment of 

large carnivores. 

A further problem with understanding biodiversity change is accounting for the sheer 

complexity and frequency of the features influencing change. These could fall into 

three groups: stressors (i.e. features that stress a population like poaching), 

supporters (i.e. features that support the population like conservation effort), and 
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interactions (i.e. how the impact of features could change depending on the presence 

of other features like conservation effort having greatest value when poaching 

pressure is present). Much of the recent high-profile global biodiversity change 

research has focussed primarily on the stressors, especially climate and land-use 

change (Newbold et al., 2015; Spooner et al., 2018; Daskalova et al., 2020). Whilst 

this work has been important, ignoring the supporter features and the interactions 

could limit the robustness of the inference and any projection. For example, perhaps 

a shift from natural to agricultural land would have less of an impact in places with 

good governance (Amano et al., 2018). Furthermore, it is unlikely that all species will 

respond equally to this land-use change, where some species may decline whilst 

others prosper. Capturing the complexity of the system could be essential for 

understanding biodiversity change. However, capturing this complexity is 

challenging. In large carnivores, there are more than 75 IUCN threats (or stressors) 

expected to influence population change (Figure 3). Accounting for this massive 

array of stressors is simply unfeasible, and even any extensive analyses would 

ignore the presence of the supporters and interactions. This likely explains why much 

of the biodiversity change research has focussed on smaller themes (e.g. climate 

and land-use change). However, to develop accurate projections of biodiversity 

change, it is important to take this more holistic approach, which I explore in Chapter 

4: A global assessment of the status of large predators. 

One problem that could not be addressed within the thesis was capturing interactions 

between carnivores and the wider community. Working at the population level, as in 

Chapter 4, can only provide limited insight as its unclear whether any observed 

population change is driven by external influences (e.g. like climate change), or is a 

consequence of natural fluctuations in prey abundance, or even competition within a 

given trophic level. To better understand these population dynamics in the face of 

external influences, alternate approaches like Lotka-Volterra or network-based 

modelling would be required. However, these approaches require high temporal 

resolution datasets, that are only available for a few sites across the planet, and so 

are unfit for asking large global biodiversity change questions – the focus of this 

thesis. As a result, throughout the thesis, I have compromised a lack of 

understanding about the rest of the ecological community to answer broader 

macroecological questions about the status of large carnivores.  
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Figure 3. Percentage of the 87 species in the families Canidae, Felidae, Hyaenidae and Ursidae of 

the order Carnivora, effected by each of the IUCN threat classifications (IUCN, 2018), and the 

mean severity of the threat across species (high impact = 10, low impact = 1, range in data: 3 - 6). 

Threats specific to only one species were removed.  
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Thesis overview 

Understanding biodiversity change in large carnivores is important, as these species 

are key in maintaining community composition through top-down trophic forcing - 

regulating the populations of prey and smaller carnivores, as well as the ecosystem 

services humanity relies on (Ripple et al., 2014). As indicator species’, understanding 

the status of carnivores could also offer insight into the general status of biodiversity 

(Dalerum et al., 2008). In this work, I take a methodological and research synthesis 

approach to understanding decline and recoveries in the world’s largest carnivores, 

specifically species in the families Canidae, Felidae, Hyaenidae, and Ursidae of the 

order Carnivora. 

Chapter 2: Handling missing values in trait data - As our understanding of biodiversity 

change is hindered by incomplete trait datasets, I explore different approaches for 

handling missing trait data, and determine how missing values can limit inference. 

The aim of this work was to identify recommendations and warnings for handling trait 

values, which could then be used in Chapter 4. 

Chapter 3:  CaPTrends: A global database of population trends in large terrestrial 

Carnivorans – To address the data biases identified in Figure 1 & 2, I conducted a 

systematic search of the literature to bolster the available population trend data for 

our target carnivore species. This produced a dataset with three times more large 

carnivore records than in the Living Planet Database (WWF, 2020a). 

Chapter 4: A global assessment of large carnivores – Utilising the data from Chapter 

3, I conducted a global assessment of the status of large carnivores, identifying how 

intrinsic, extrinsic, and interactive features influence population change. This 

population change model is novel, in that it utilises both quantitative and qualitative 

record of population change to boost the sample size, and the spatio-taxonomic 

coverage. I then use this model to describe status of large carnivores across space, 

time and the phylogeny. 

Chapter 5: classecol - classifiers to understand public opinions of nature – After 

identifying that cryptic features were likely important influences of carnivore 

population trends in Chapter 4, I developed a machine learning tool which can be 

used to assess people’s perceptions of nature (i.e. tolerance of nature and wildlife) at 

a global scale. I anticipate development of tools that can capture cryptic variables like 

‘tolerance’ will be important for improving the socio-ecological scale and predictive 

accuracy of biodiversity change models. 

We close the thesis by discussing the importance of our findings, highlighting 

limitations in the work, and proposing next steps.   
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Abstract 

Aim 

Trait data are widely used in ecological and evolutionary phylogenetic comparative 

studies, but often values are not available for all species of interest. Researchers 

traditionally have excluded species without data from analyses, but estimation of 

missing values using imputation has been proposed as a better approach. However, 

imputation methods have largely been designed for randomly missing data, yet trait 

data are often not missing at random (e.g. more data for bigger species). Here we 

evaluate the performance of approaches for handling missing values considering 

biased datasets.  

Location 

Any 

Time period 

Any 

Major taxa studied 

Any 
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Methods 

We simulated continuous traits and separate response variables to test performance 

of nine imputation methods and complete-case analysis (excluding missing values 

from the dataset) under biased missing data scenarios. We characterized 

performance by estimating error in imputed trait values (deviation from the true value) 

and inferred trait-response relationships (deviation from the true relationship between 

a trait and response).  

Results 

Generally, Rphylopars imputation produced the most accurate estimate of missing 

values and best preserved the response-trait slope. However, estimates of missing 

data were still inaccurate, even with only 5% of values missing. Under severe biases, 

errors were high with every approach. Imputation was not always the best option, 

with complete-case analysis frequently outperforming Mice imputation, and to a 

lesser degree BHPMF imputation. Mice, a popular approach, performed poorly when 

the response variable was excluded from the imputation model.  

Main conclusions 

Imputation can effectively handle missing data under some conditions, but is not 

always the best solution. None of the methods we tested could effectively deal with 

severe biases, which may be common in trait datasets. We recommend rigorous data 

checking for biases before and after imputation and propose variables that can assist 

researchers working with incomplete datasets to detect data biases and minimise 

errors. 

Keywords: BHPMF, Functional trait, Imputation, Life-history trait, MAR, MCAR, MNAR, Missing 

data, Multiple imputation chained equations, Rphylopars. 
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Introduction 

Trait data describe the characteristics of individuals of a population or species (Webb 

et al., 2010). Trait-based analyses have been essential for improving our 

understanding of ecological and evolutionary processes, for example, identifying: 

negative impacts of climate change on biodiversity (Lancaster et al., 2017; Pacifici et 

al., 2017), common life-history strategies among invasive species (González-Suárez 

et al., 2015; Allen et al., 2017), and evolutionary changes in reproductive traits (Baker 

et al., 2020). Large-scale modelling studies like these are increasing in popularity, 

and often require trait data for numerous species and across taxonomic groups 

(Ríos-Saldaña et al., 2018). However, trait datasets can contain many missing values 

and these values can be missing with a bias (Sandel et al., 2015; Roth et al., 2018). 

For example, in a widely used mammalian trait dataset (Jones et al. 2009), species 

with smaller body mass values are more likely to have missing data for other traits, 

and this bias in missing data can impact inferences in comparative analyses 

(González-Suárez, Lucas, & Revilla, 2012).  

The literature recognizes three broad types of missing data mechanisms: missing 

completely at random (MCAR), were there is no bias and records represent a 

random sample; missing at random (MAR), were missing data can be explained by 

available variables e.g. we know about the bias and can account for it statistically; 

and missing not at random (MNAR), were missing data cannot be explained by 

available information e.g. we either do not know about the bias, or lack associated 

information that could account for it statistically (Little & Rubin, 2002). 

Currently there are at least 160 packages for handling missing data available on the 

R-CRAN repository (Josse et al., 2020). A simple, common approach is ‘complete-

case analysis’, i.e. to exclude all observations with any missing values. This 

approach is robust when there is no bias (MCAR missing data); bias in the missing 

values can lead to erroneous inferences. Imputation, estimating missing values, is an 

alternative approach to handle missing data that can bypass this disadvantage (Little 

& Rubin, 2002). Imputation methods range from simple approaches like filling 

missing values with an average, to more complex approaches like estimating missing 

values using statistical models e.g. regression and random forest. Models can also 

be made more complex e.g. adding hierarchical information, allowing censored 

observations and weighting observations. There are also approaches specifically 

designed for handling values with extreme bias (MNAR), as well as methods for 

imputing missing response (sometimes called outcome or dependent variable) values 

-  see Molenberghs, Fitzmaurice, Kenward, Tsiatis, & Verbeke (2015) for a more 

comprehensive description of methods.  

Imputation can be applied to any dataset but is particularly useful for trait data 

because traits are often correlated (e.g. body mass is correlated with body length) 
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and shaped by evolutionary history. Therefore, correlations and phylogenetic 

information can be used to predict missing trait values more accurately (Penone et 

al., 2014; Swenson, 2014). Previous studies have suggested that imputation in 

ecological and evolutionary studies generally outperforms complete-case analysis 

(Little & Rubin, 2002; Penone et al., 2014; Kim et al., 2018). However, imputation can 

only be successful if it accounts for the mechanism by which data are missing. If the 

imputation model cannot account for this mechanism (e.g. under extreme biases like 

MNAR), it is plausible that imputation may in fact amplify error in inference. 

 

In this manuscript, we evaluate the performance of different approaches for handling 

missing trait data, considering the following questions: How effective is imputation at 

estimating missing values and making inference? Which imputation method is best? 

Is imputation better than complete-case analysis? How does the amount of missing 

data and presence of bias affect results? Expanding on previous comparisons of 

imputation methods, we introduce two new bias types, compare six additional 

imputation methods, evaluate the implications of including the response variable 

within the imputation, and propose steps for detecting erroneous imputation. Our 

study is most relevant for phylogenetic comparative studies but still applies to wider 

missing data scenarios. 

Materials and methods 

Data simulation 

We simulated 40 datasets, each with 500 species using the simtraits function 

(Goolsby et al., 2017). Each dataset included four trait-predictor variables (“traits” 

hereafter) and one response variable. The 40 datasets represent 10 replicates 

(seeds 1-10) of four dataset types reflecting the combination of two correlation levels 

among traits (weak Pearson R2= 0.2 or strong R2= 0.6) with two response-trait slopes 

(no relationship ~0 or positive ~0.7). Traits were simulated under a Brownian model 

of evolution, with a gaussian distribution of values ranging from 0 to 10 to mimic the 

distribution of real trait data on a logarithmic scale (a transformation often used in 

comparative studies). The impact of phylogenetic signal strength on imputation 

performance was already tested by Kim et al. (2018) and Molina-Venegas et al. 

(2018), so we standardised Pagels lambda between the phylogeny and traits at ~ 1. 

The response was simulated as a product of a trait, rather than through the 

phylogeny, and has a gaussian distribution ranging from 0 to 10. We aimed to 

represent response variables used in comparative analyses such as extinction risk or 

population trend, rather than allometric relationships.  
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From each of the 40 original datasets, we removed trait values to create scenarios 

reminiscent of real trait datasets. Values were removed from between 5% and 80% 

of the species (in 5% intervals), across 11 distinct bias types (or missing data 

mechanisms) – see Appendix A Table A1.1. As a control, one mechanism was to 

remove trait values completely at random simulating the MCAR category. Two 

mechanisms stratified deletion with trait values removed evenly over the phylogeny 

and trait range. The remaining mechanisms explored four bias types likely to occur in 

trait datasets: Trait – large trait values more likely to be missing; Response – trait 

values more likely to be missing in species with larger responses; Trait & response – 

trait values more likely to be missing in species with large trait and large response 

values; Phylogeny – trait values more likely to be missing in certain clades (Fig 1, 

Table A1.1).  

 

Figure 1. Schematic illustration of the effects of different biases. Panels contain an example 

scatterplot (x: trait, y: response) depicting a positive trend. In each panel there are 20 points each 
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representing a species, of which 50% are missing trait values (shown in red). Dotted lines illustrate 

a removal threshold based on the percentage of missing data (missingness) and bias type, which 

shows a different mechanism by which data are missing: Trait – large trait values more likely to be 

missing; Response – trait values more likely to be missing in species with larger responses; Trait & 

response – trait values more likely to be missing in species with large trait and large response 

values; Phylogeny – trait values more likely to be missing in certain clades. For each bias type we 

illustrate two severities: left panels show weak severity in which species are split into two groups, 

and species in the shaded area are 1.33 times more likely to be removed; right panels show severe 

severity in which values are systematically removed from large to small (all values removed from 

the shaded area). For further descriptions of these biases see Appendix A1. 

 

Within each of these four bias types we tested two bias severity levels: weak – a 

conservative lower-end estimate for how much bias exists in trait data; and severe – 

an upper-end estimate aimed at testing how methods perform under the most 

extreme biases. Under a weak trait bias, the distribution of trait values becomes 

marginally skewed and the central point is shifted, but the range of values is largely 

preserved. Under a severe trait bias the distribution is truncated and the range 

reduced with extreme skew and shift in the central point. The weak and severe 

biases replicate the MAR and MNAR categories respectively. Appendix A1 provides 

a comprehensive description and justification of the bias severities. In total, across all 

dataset types, levels of missing data (missingness), and bias types, we generated 

7040 datasets.  

Data imputation 

Testing all available imputation methods was not feasible; instead we expanded upon 

previous ecological and evolutionary imputation studies (Penone et al., 2014; 

Poyatos et al., 2018) to compare methods already identified as effective with new, 

promising methods. In total, we evaluated the performance of nine imputation 

methods available from three R packages (R 3.5.0, R Core Team, 2018): BHPMF: 

Bayesian hierarchal probabilistic matrix factorization (Schrodt et al., 2015), 

Rphylopars (Goolsby et al., 2017), and Mice: multiple imputation chained equations 

(Van Buuren & Groothuis-Oudshoorn, 2011). We summarize these approaches 

below providing a more detailed description in Appendix A2. 

BHPMF is a machine learning technique that takes a sparse trait matrix and uses 

Bayesian probabilistic matrix factorisation to impute and estimate uncertainty in 

values, but it is not fully Bayesian in that imputation and analysis are not conducted 

simultaneously (Molenberghs et al., 2015). BHPMF provides a multi-level hierarchal 

framework which can control for spatial and taxonomic structures - see Schrodt et al 

(2015) for a comprehensive description of BHPMF. This hierarchical framework, 
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coupled with the overall flexibility of probabilistic matrix factorisation (e.g. can handle 

non-linear relationships and binary categories), makes BHPMF versatile and 

potentially robust. However, unlike other approaches it is unable to make estimates 

for species for which all trait values are missing.  

Rphylopars is a maximum likelihood frequentist method that uses a phylogeny and a 

sparse trait matrix to simultaneously estimate across-species (phylogenetic) and 

within-species (phenotypic) trait covariance (similar to a phylogenetic mixed model) 

to reconstruct the ancestral state and impute missing values (Goolsby et al 2017). 

This method is designed explicitly for phylogenetic imputation and requires a 

phylogenetic tree, which means the success of Rphylopars imputation depends on 

the phylogenetic signal in a trait - with low signal, the phylogeny may just add noise. 

An earlier version of Rphylopars was amongst the most accurate methods examined 

by Penone et al (2014). 

Mice is the most general and flexible of the imputation packages used in this study, 

offering 24 different methods of imputation from which we explored three: 1) 

Predictive mean matching - imputes data by matching observed values between 

traits, then populates missing values in incomplete traits by adopting information from 

the matched species. This is the default Mice approach for continuous data and was 

considered the best overall method in Poyatos et al. (2018). 2) Bayesian linear 

regression – uses a linear model between traits to estimate missing values. This 

method is rarely tested and struggles with non-linear relationships, but is appealing to 

researchers familiar with linear regression. 3) Random forest - uses machine learning 

to produce and aggregate regression trees of the observed data and impute missing 

values. A similar imputation method ‘missForest’ was found to be effective by 

Penone et al (2014) with results comparable to Rphylopars and Mice predictive mean 

matching.  

The three imputation approaches we explore fall into two groups: single imputation 

(BHPMF & Rphylopars) – where each missing value is populated by one estimate 

(but can have an associated variance); and multiple imputation (Mice) – where each 

missing value is assigned multiple estimates from a stochastic draw of the 

distribution (Little & Rubin, 2002). If the objective of the imputation is to produce 

estimates of missing values, e.g. to fill gaps on a dataset, single imputation is 

considered most effective, as the stochastic draws in multiple imputation add error 

(Van Buuren, 2012). However, if the objective is to model imputed values against 

another variable, the added error in the multiple imputation is advantageous, as when 

the trait data are modelled, the within- and among-dataset errors are pooled, inflating 

the standard error and reducing the type-1 error rate (Van Buuren, 2012). Whilst this 

makes multiple imputation more robust to type-1 errors, it does not necessarily mean 
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multiple imputation can more accurately predict the slope within a model, as whilst 

this slope will have a greater standard error, it may still have the wrong direction.  

Phylogenetic imputation 

Imputation has been suggested to improve when phylogenetic information is 

incorporated (Penone et al., 2014; Kim et al., 2018). To test this, we imputed missing 

data with BHPMF and Mice, incorporating and ignoring phylogenetic information (for 

Rphylopars a phylogeny is required). BHPMF is unable to automatically process 

phylogenies, but its hierarchal nature can support taxonomies. We created a 

hierarchical node structure reminiscent of a taxonomy by splitting the phylogeny. For 

Mice we used phylogenetic eigenvectors that described the relationship between the 

phylogeny and traits (Diniz et al., 2015). Eigenvectors that were effective predictors 

of a trait were included as predictors within the imputation. We provide a 

comprehensive description of these approaches in Appendix A3. 

Including a response variable in the imputation 

The standard practice in comparative studies that use imputation is to impute values 

using only the traits and where relevant the phylogeny. However, the medical 

statistics literature recommends including every variable you plan to analyse, 

including the response, within the imputation model (Moons et al., 2006; Sterne et al., 

2009). Including a response within the imputation of traits, which will then be 

modelled against the response in later analyses, appears circular and poor practice. 

However, in the event the trait has a response bias, including it within the imputation 

could control for this bias, and shift data from the MNAR to the MAR category, where 

imputation is more robust. We test this by performing each imputation with the 

response present and absent. 

Error calculation 

Imputation error: Is there a difference between the true and imputed values? 

We compared true to imputed trait values under each of the nine imputation 

approaches (using the mean value across the repeated imputations for Mice) 

estimating the root mean squared error (RMSE): 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑦𝐼𝑚 −  𝑦𝑇𝑟)2

𝑁

𝑖=1

 

Where N is the number of imputed values ranging from 25 (5% of 500) to 400 (80% 

of 500), yIm is the imputed value for a given observation and yTr is its true value. 
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RMSE’s units are the same as the trait (range 0 – 10).  We show alternative error 

metrics (mean absolute error, median absolute error, and R2 between true and 

imputed values) in Appendices A5 and B4.  

Mice guidelines stress that multiple imputation is not effective at solely predicting 

missing values and should be used for inference after model averaging instead. 

However, in the event inference is prone to error (where the imputed response-trait 

relationship deviates from the true relationship), it is important to consider how the 

imputation of missing values influenced this error. Conversely, it is also plausible that 

a method could produce inaccurate estimates of missing values, but still produce 

valid inference. Thus, assessing error in both the imputations and the inference (see 

below) provides a more holistic view of the imputation approach, which can help 

determine the point at which imputation becomes unreliable. 

Slope error: Is there a difference between the true and imputed response-trait slope? 

We fitted linear regressions with the imputed datasets to describe the response-trait 

relationship, recording the slope and associated standard error. We checked 

assumptions (e.g. normality) in a subset of these models, which were acceptable 

regardless of bias or amount of missing data. As Mice repeats the imputation process 

numerous times, we fitted multiple regressions using each of the imputed sets and 

then averaged the slope coefficients. To estimate ‘slope error’, we calculated the 

absolute difference between the imputed slope (or the complete-case slope) and the 

true slope. This ‘slope error’ metric illustrates how wrong the imputed slope could be, 

with the next step showing whether the estimated slope coefficient differed 

significantly from the true slope. Previous studies have considered how imputation 

can alter inference, focusing on allometric relationships between traits (Penone et al., 

2014) and the impact on functional diversity metrics (Kim et al., 2018). Here we 

explored how imputation affects the relationship between traits and a separate 

response variable.  

Slope significance: Is the difference between the true and imputed slope significant? 

We tested if imputed slopes differed significantly from the true slope and the 

complete-case slope using the t statistic (Cohen et al., 2003):  

𝑡 =
𝑆𝑙𝑜𝑝𝑒1 − 𝑆𝑙𝑜𝑝𝑒2

√𝑆𝐸𝑆𝑙𝑜𝑝𝑒1
2 + 𝑆𝐸𝑆𝑙𝑜𝑝𝑒2

2

  

Where Slope1 is the true slope coefficient and Slope 2 is the imputed or complete-

case slope coefficient. SESlope1 is the standard error of the true slope and SESlope2 is 

the standard error of the imputed or complete-case slope. We calculated degrees of 
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freedom as the total sample size from the true relationship dataset plus the imputed 

or complete-case dataset, minus 4. We estimated significance at the 95% level. The 

Mice model slopes were averaged across each of the repeats, and the standard 

errors were pooled by calculating the within- and among-dataset variation, following 

Little and Rubin (2002). Incorporating the within and among-dataset variation inflates 

the standard errors around the slope. This is a key advantage to the Mice 

approaches, as whilst slope error could be high, the inflated standard errors around 

the slope reduce the probability of the imputed slope differing significantly from the 

true slope, and the likelihood of type-1 errors.  

Data analysis 

To understand the factors influencing the different error estimates we fitted 

regression models with various predictors (details below and in Appendix A6) and 

dataset seed as a random intercept effect. We used linear mixed models for numeric-

continuous responses, with a log10 transformation on imputation error and a square-

root transformation on slope error, and logistic mixed models for binary responses 

(e.g. significant or non-significant difference between the imputed relationship and 

the true relationship). In all cases we ensured model assumptions were met. 

Summary statistics display the mean ± standard deviation.  

Modelling imputation error 

We modelled imputation error as a function of six predictors: imputation approach, 

bias type, missingness (percentage of missing values in a dataset), response in 

imputation, initial slope direction (positive or none) and between-trait correlation 

(Table A6.1). We included interaction terms between imputation approach and bias 

type, as well as imputation approach and missingness. We also tested whether 

including the response in the imputation improved accuracy by testing an interaction 

between response in imputation, imputation approach and initial slope direction. In 

some cases, the imputation resulted in implausible values; we removed any records 

with an RMSE greater than 10 to reduce the effect of these outliers.  

Modelling slope error 

We modelled slope errors separately for dataset types with initial positive 

relationships (response-trait slope ~ 0.7) and with no initial relationship (response-

trait slope ~ 0). We tested as predictors: imputation approach, bias type, 

missingness, and between-trait correlation, as well as interactions of imputation 

approach with bias type, and missingness. We ran this model first including 

complete-case as a category within the imputation approach factor to identify 

scenarios where imputation is worse than complete-case analysis. This required 
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excluding response in imputation as a predictor because this variable was not 

applicable for complete-case records. Second, we excluded the complete-case 

records and tested response in imputation as a factor, including an interaction with 

imputation approach. 

Predicting imputation and slope error  

We predicted imputation error using the variables: missingness, phylogenetic 

clustering, and change in mean (difference in mean before and after imputation). To 

predict slope error and significance we used the variables: missingness, phylogenetic 

clustering, change in mean, and change in slope (between imputation and complete-

case). For all models we grouped the datasets with positive and no relationship 

slopes because in a real scenario a user would not know the true relationship. 

Results 

Including phylogenetic information generally improved imputation performance in 

every method (Appendix B1); thus, we focused on phylogenetic imputation methods, 

showing results for non-phylogenetic approaches in Appendix B3. 

Which method performs best? 

Imputed values were most accurate with Rphylopars (Table B2.1), which had 

consistently lower imputation errors in every bias type. However, BHPMF was the 

best approach when missing data exceeded 60% with a severe bias on the trait, and 

Mice random forest, BHPMF and Rphylopars were comparable when missing data 

exceeded 40% with a severe bias on the phylogeny (Fig 2; Fig B4.2). Imputation 

error results are similar regardless of whether the true response-trait slope was 

positive or had no relationship (Fig B4.1), and results are similar across all imputation 

error metrics (Fig B4.2 – B4.5). 
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Figure 2: Difference between imputed and true trait values (RMSE, root mean square error) for five 

phylogenetic imputation approaches under varying percentages of missing data (missingness) and 

bias types. Lines depict the marginal effect of missingness and bias type from a regression model, 

and were averaged across other predictors: seed, response in imputation, between-trait correlation, 

and initial slope direction. For the equivalent plot split based on initial slope direction see Fig B4.1. 

Confidence intervals were derived from 500 bootstrap simulations and depict the upper- and lower-

bounds (95%).  

 

 

Rphylopars was also generally the best approach for preserving a response-trait 

relationship, with a significantly lower slope error than all other imputation 

approaches and complete-case analysis, regardless of whether the true response-

trait slope was positive or there was no relationship (Table B2.2 – B2.3). However, 

for a severe bias on the trait or phylogeny, the best method was dependent on the 

true response-trait relationship: with no relationship, the Mice approaches performed 

best (Fig 3); while when the true slope was positive, complete-case was the best 

approach. Rphylopars was the fastest imputation approach (Table B8.1). 
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Figure 3. Absolute difference between the true response-trait slope coefficient and the slope 

coefficients in datasets with varying percentages of missing trait values (missingness) - removed 

under a series of bias types. Missing values were imputed under five phylogenetic approaches, or 

treated as complete-case analysis. The top row of panels show datasets in which the true slope 

was positive (r ~ 0.7), while the bottom row shows datasets with no relationship (r ~ 0). Lines depict 

the marginal effect of missingness and bias type from a regression model, and were averaged 

across other predictors: seed, response in imputation, and between-trait correlation. For plots split 

based on response in imputation see appendix B6. Confidence intervals were derived from 500 

bootstrap simulations and depict the upper- and lower-bounds (95%). Note that the range in the y-

axis differs between top and bottom panels.  

 

Are imputed values accurate? 

Imputation errors increased with the percentage of missing data: missingness (Est = 

0.33, SE = 0.003, t = 103, p < 0.001) and were affected by bias type (Fig 2). Weak 

and stratified biases were comparable to no bias datasets, but errors were much 

greater when data were missing with severe bias (Appendix B4).  

Imputed values were as likely to be over- as under-estimated, except when there was 

a severe bias on the trait (largest trait values removed), where, as expected, imputed 

values were primarily underestimated (Fig B5.1 – B5.5). Whilst Rphylopars had the 
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smallest imputation errors, imputed values were still inaccurate - at 5% missing data, 

the mean difference between imputed and true values for Rphylopars was 0.56 ± 

0.15 with no bias, 0.56 ± 0.15 in the stratified biases, 0.57 ± 0.16 in the weak biases, 

and 1.39 ± 0.57 in the severe biases, all increasing with missingness (Fig 2). 

Can imputed data preserve response-trait relationships? 

Slope errors increased with missingness (true positive relationship: Est = 0.27, SE = 

0.008, t = 33, p < 0.001; true no relationship: Est = 0.23, SE = 0.004, t = 54, p < 

0.001) and were affected by bias type, with large errors detected when data were 

missing with a severe bias (Fig 3). Imputed slopes were both over- and under-

estimates of the true slope when there was no-true relationship (Fig B5.6 – B5.10). 

When the true relationship was positive, Rphylopars, and BHPMF again resulted in 

both over- and under-estimated slopes, but Mice approaches consistently 

underestimated the true relationship with slopes from the imputed datasets tending 

towards zero (Fig B5.11 – B5.15). 

While imputation errors were often large, imputing missing values did not always 

introduce errors in the response-trait relationship. We observed low slope errors in all 

imputation approaches and all non-severe biases when few data were missing, but 

as missingness increased, slope error increased exponentially (Fig 3). Rphylopars 

was most robust with slope errors less than 0.05 for all levels of missingness in the 

no bias, stratified bias and weak bias datasets, regardless of the true response-trait 

relationship (Fig B4.6 – B4.7). However, Rphylopars, alongside all other approaches, 

had high errors under the severe biases, particularly when the bias acted on both the 

trait and response. 

Missingness and bias type also influence whether slopes were significantly different 

from the true slope in a comparable way to slope error (Fig B4.8 – B4.11). 

Should the response be included in the imputation? 

When the response-trait slope was positive, including the response within the 

imputation decreased imputation error in all approaches and also decreased slope 

error substantially in Mice, to the point it was almost comparable with Rphylopars 

(Fig B6.1 - B6.4). Including the response in the imputation increased slope error in 

Rphylopars and BHPMF. When there was no relationship between the trait and 

response, including the response in the imputation increased imputation and slope 

errors in every approach, but with a small effect (Fig B6.2 - B6.6). 
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Can we predict when the imputed values and response-trait relationships 

become inaccurate? 

Because Rphylopars was found to generally be the best method, we focused on 

predicting errors under this method. Missingness, phylogenetic clustering, and 

change in mean were important predictors of slope error, significant differences in 

slope error, and imputation error. Change in slope was also a relevant predictor for 

slope error and significant differences in slope (Fig B7.1).  

Discussion  

Overall, our results show that there is no single best solution to deal with missing 

data. Rphylopars was generally the best approach for predicting missing values and 

was consistently more accurate than BHPMF and Mice at maintaining the true 

response-trait relationship. However, in some scenarios, all imputation approaches 

were outperformed by complete-case analysis, showing that imputation is not always 

the best option. When using imputation, including phylogenetic information widely 

reduced errors in our phylogenetically derived trait datasets, but including the 

response during imputation had mixed effects: increased accuracy for Mice 

approaches, but decreased it for Rphylopars and BHPMF. Our results suggest 

researchers need to assess the available data and consider the need for imputation 

versus limiting the scope of the study or completing analyses for separate groups. 

Use of data imputation should be scrutinised, checking for changes in the data before 

and after imputation (which may indicate biases and assist in detection of imputation 

and slope errors). Table 1 summarises our findings as warnings and 

recommendations. 
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Table 1. Warnings and recommendations for handling missing trait values. 

Warnings   and recommendations  

 

Carefully select the taxonomic scope of the study, ensuring species are distributed 

across the phylogeny and trait space. If any clades or areas of the trait space are nearly 

or entirely absent, do not draw inference about these and exclude them from the study 

to prevent severe biases. 

 

Report what species/clades are included in the study and what species/clades have 

been removed to limit bias. Provide descriptive statistics or distribution plots for 

analysed trait values. 

 

Every imputation approach produced inaccurate values, even with as little as 5% 

missing data. Slope errors consistently exceeded 0.1 when more than 40% of the 

values were missing, or when a severe bias was present.  

 

Imputation is not always the best approach. Complete-case performs better than the 

tested imputation methods in some cases. 

 

If using imputation, Rphylopars is the best approach for handling missing continuous 

data resulting in smaller overall imputation and slope errors.  

 

If using Rphylopars or BHPMF, do not include the response in the imputation. If using 

Mice, including the response is beneficial. 

 

Include phylogenetic information when using imputation if possible. If a phylogeny is 

unavailable, but a taxonomy is available, use BHPMF. If there is no phylogeny or 

taxonomy information, use Mice random forest or the observation-only BHPMF. 

 

To assist in detecting biases and the subsequently high imputation and slope errors, 

assess phylogenetic clustering, as well as the change in the mean and change in the 

slope before and after imputation. 

 

Report the amount of missing information that was imputed and where this information 

falls on the phylogeny, trait and response (if applicable).  

 



Chapter 2: Handling missing values in trait data 

 

38 
 

Which method performs best? 

Rphylopars was the best overall imputation method in our study. However, we found 

scenarios were complete-case analysis better maintained the response-trait 

relationship, particularly compared to Mice and BHPMF imputation (but also 

outperforming Rphylopars under some severe biases). Our analyses, and others 

from the medical literature (Mukaka et al., 2016), show that imputation is not always 

the best solution to handle missing data. While imputation methods in ecology are 

not yet widely used, the use of imputation has been recommended over complete-

case analysis in recent publications (Penone et al., 2014; Kim et al., 2018). Here, by 

expanding on the scenarios explored in previous studies, we show that imputation 

may lead to errors under some conditions. For example, when there was no true 

relationship between the response and trait, Mice approaches performed well. 

However, when there was a positive relationship, Mice did poorly even after the 

substantial improvement resulting from including the response in the imputation (Fig 

B6.3), with increases in missing data gradually shifting the positive response-trait 

relationship towards zero. Further investigation of Mice is required, as in this scenario 

we may expect inflated noise around the slope in Mice to cause more type-2 errors 

(reporting no relationship when one is present), but we would not expect Mice to 

systematically shift the slope itself.  

This poor performance of Mice is particularly surprising as we made a concerted 

effort to further optimise Mice’s performance – see Appendix A4.  However, the 

issues we have identified may be relevant only to our scenarios (imputing missing 

traits for phylogenetic comparative studies), and not reflect on Mice or multiple 

imputation as a whole - which are considered throughout the literature as the ‘gold-

standard’ imputation approach (Van Buuren, 2012). Furthermore, despite making an 

effort to optimise the performance of Mice, there are a variety of Mice extensions and 

other multiple imputation approaches which may have fared better and could be 

tested in future comparisons e.g. Multilevel Joint Modelling (Quartagno et al., 2019), 

or Mice: Random indicator method for non-ignorable data (Van Buuren & Groothuis-

Oudshoorn, 2011).  

One particular issue with Mice was the way biases interacted with the phylogeny 

during phylogenetic eigenvector selection. As a control, we estimated the number of 

eigenvectors when no values were missing. In this scenario, most datasets had 6 -16 

eigenvectors, but under a severe trait bias the number of eigenvectors frequently 

surpassed 20, and under a response bias, rarely reached 6. This discrepancy in the 

number of eigenvectors likely explains why incorporating phylogenetic information in 

Mice sometimes resulted in greater imputation and slope errors under a severe bias 

(Fig B1.1). Given these findings, we revise the advice of Penone et al. (2014) and 

Kim et al (2018) and suggest to include phylogenetic information in Mice imputation 
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only when bias is weak or use alternate Mice options that allow a hierarchical 

structure similar to that used by BHPMF. Further work is needed to establish how 

different biases alter phylogenetic eigenvector selection and the downstream 

imputation and slope errors. 

Unlike Mice, we suspect BHPMFs performance could be further enhanced (see 

Appendix A4). Most notably, as BHPMF does not allow imputation for species with no 

trait observations, we forced BHPMF to impute values by adding a dummy fully-

populated variable. This allowed us to compare BHPMFs performance across all 

biases and levels of missing data and did not clearly affect BHPMFs performance 

(Fig A2.3). This feature of BHPMF could hinder the generality and taxonomic scale of 

studies but may also be beneficial if it deters researchers from imputing values in 

cases with very high missing data (where imputation errors are greatest). However, 

removing species with no trait values represents a form of complete-case analyses 

that could lead to biases and erroneous inferences.  

Categorical traits are a common data type in ecological and evolutionary research, 

and cannot be imputed using Rphylopars, but can be handled by BHPMF and Mice. 

There has been limited assessment of categorical imputation performance, and 

available evaluations have delivered varied results (Stekhoven & Buhlmann, 2012; 

Akande et al., 2017; Kim et al., 2018). Future work exploring imputation errors and 

biases with categorical data would be valuable to guide researchers confronting 

missing data. Future work could also determine if machine learning approaches like 

Mice random forest and BHPMF would perform better with larger trait datasets (i.e. 

more than the 500 simulated species used in this study). 

Are imputed values and relationships accurate? 

The threshold for deciding whether imputation is accurate depends on the research 

question. For example, in Rphylopars, with 5% of data missing under no bias (best 

possible scenario), the mean imputation error was 0.56. If we assume the trait data 

have been log-transformed (base e), such error would mean that the mass of an 

African Elephant weighting 6,000kg (e8.7) would be imputed with values as low as 

3,430kg (e8.7-0.56) or as high as 10,500kg (e8.7+0.56). This error is worrying, especially 

considering Rphylopars is the most accurate imputation approach and we used the 

most favourable missing data scenario in this example. This finding suggests 

imputation is not accurate enough to estimate trait values for individual species or 

records. As such, any imputed values should be interpreted with great caution. 

Fortunately, trait values are more commonly imputed to establish relationships, in 

which case our results are less concerning. In linear regressions between a response 

and imputed traits, the difference between the Rphylopars slope and true slope was 

less than 0.05 at every level of missing data (except for severe biases). In many 

cases this would be deemed an acceptable amount of error and the same qualitative 
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message, with a trend in the same direction (positive or negative) and not differing 

significantly from the true slope in most cases (Fig B4.8 – B4.11). However, this error 

would be large and could lead to qualitatively different messages in the context of 

debates about the true value of allometric exponents (Isaac & Carbone, 2010). Thus, 

unless the dataset is complete we recommend interpreting results cautiously, 

regardless of whether imputation or complete-case analysis are used for the 

analyses. 

While different errors may be acceptable for different questions, our results show that 

analysing datasets where values are missing with a severe bias (MNAR) can lead to 

very wrong conclusions, especially when the bias acted on both the trait and 

response. This bias type was not tested by Penone et al. (2014), but is likely 

common in ecology and evolution, as both trait databases (González-Suárez et al., 

2012) and response values are biased (Boakes et al., 2010; Troudet et al., 2017). In 

some cases, a severe trait and response bias shifted a positive response-trait 

relationship into no relationship, or even a negative relationship (Fig 3). Overall, the 

methods we tested are unsuitable when a severe bias is present. However, there are 

imputation options, beyond the scope of this study, designed specifically for severely 

biased MNAR data (Molenberghs, Fitzmaurice, Kenward, Tsiatis, & Verbeke, 2015). 

These MNAR options add a term to the imputation model to account for the bias. In 

common methods like selection, pattern-mixture and shared parameter models, this 

term describes a distribution aimed at explaining the mechanism by which data are 

missing. The parameters in these distributions (sometimes informed by expert 

opinion) can have a substantial impact on results, so sensitivity analysis becomes 

increasingly important. If a severe bias is suspected and the missing data 

mechanism cannot be accounted for by incorporating additional data (e.g. other 

traits, phylogeny, or other spatial or temporal information), these MNAR methods 

should be explored. However, the main challenge will be detecting the severe bias in 

the first place. Familiarity with the dataset, accompanied by careful checks of the 

data’s distribution across space, time, the phylogeny, as well as the trait and 

response range, may help. Furthermore, we recommend accounting for biases in 

missing datasets before designing research, especially in phylogenetic comparative 

studies, where severe biases could simply be reduced by trimming the scale of the 

study and its conclusions to better represented groups. 

Should the response be included in the imputation? 

Including the response within the imputation substantially decreased imputation and 

slope errors in Mice (Moons et al., 2006; Sterne et al., 2009), and made its 

performance almost comparable to BHPMF and Rphylopars. However, for BHPMF 

and Rphylopars, including the response had little or a negative effect. We are unsure 

why including the response may negatively affect the performance of BHPMF, but for 
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Rphylopars we hypothesize it is due to how the phylogeny is incorporated. If the 

response is not associated to the phylogeny, including the response may skew the 

phylogenetic-trait covariance matrix affecting the performance of Rphylopars. In 

contrast, the phylogenetic eigenvectors that are appended to the Mice imputation act 

more like weakly correlated traits, so the benefit of adding a highly correlated 

response variable is clear. From this, it seems broadly advisable to include the 

response within Mice imputation and exclude it from Rphylopars and BHPMF. 

However, caution is needed as we suspect that these conclusions may contain 

caveats which warrant further research. For example, under the severe trait and 

response bias when there was no true relationship between the response and trait, 

imputation resulted in a significant negative slope particularly when the response was 

used in the imputation (Fig B6.5 – B6.6). This is evidence that including the response 

in the imputation of trait values, which will then be modelled back against the 

response, can cause a circularity problem. Nevertheless, when using Mice, this 

detrimental effect was small compared to the overall gains from incorporating the 

response in the imputation. 

Can we predict whether imputation is advisable for a given dataset? 

Within our work, we identify four ways in which data should be scrutinised before and 

after imputation to assist with bias detection that consider: missingness, phylogenetic 

clustering, a change in mean, and a change in slope. These metrics should not be 

used as a free-pass to claim the imputation is valid, as no method consistently 

detected bias e.g. finding no change in slope could occur if both imputation and 

complete-case analyses are equally wrong. Instead, these metrics should be used 

alongside careful scrutiny of the data, viewing the imputation process holistically.  

Our proposed protocol includes four steps:  

1) Explore the data to consider representation of the group of interest (both 

in trait and response) and assess the potential for severe bias. 

2) Compare the distribution of trait data before and after imputation. 

3) Use expert opinion and information on closely related species to 

determine if imputed values are plausible. 

4) Use available tools to assess imputation results. Rphylopars and BHPMF 

currently lack imputation exploration functions, but custom checks can be 

created and adapted from the wide range offered in Mice (Van Buuren & 

Groothuis-Oudshoorn, 2011). Rphylopars and BHPMF produce 

uncertainty estimates for each imputed value, which could be scrutinised, 

or potentially added to models to inflate noise and make inference more 

robust in these single imputation approaches. Furthermore, if a 
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phylogenetic imputation approach is used, it is important to consider 

phylogenetic signal and branch length, otherwise the phylogeny may add 

noise (Molina-Venegas et al., 2018). 

Notwithstanding these guidelines, gaps remain in the ecological and evolutionary 

literature on imputation. Three important future steps would be: 1) explore imputation 

methods and errors with categorical traits; 2) validate imputations with non-simulated 

trait datasets as they become increasingly populated; and 3) improving guidance on 

profiling data pre- and post-imputation. Finally, with recent reports of shifts away from 

fieldwork into a more quantitative and modelling based ecology (Ríos-Saldaña et al., 

2018), it is important to note that the foundation for any trait-based analysis are the 

trait values, which can only become available from fieldwork and data compilation. 

There is still a critical need to go out into the field and collect data, particularly on 

poorly studied species, traits and regions.  

Data accessibility 

Code to generate data and repeat all analyses are publicly available at 

https://github.com/GitTFJ/Imputation 

Appendix A - Supplementary methods 

A1. Bias severities 

The amount of bias in actual trait datasets is unknown and the only way to find out 

with any certainty if the data are biased is to collect the missing values – which is 

unfeasible for large-scale comparative studies. Without empirical examples to design 

our simulation we opted to treat weak and severe bias as lower- and upper-

estimates, respectively, for the level of bias that may exist in actual trait datasets. 

The impact of these biases is then influenced by the amount missing data, creating 

an array of scenarios. For example, imputation errors may be similar for a dataset 

with 50% missing data under a weak bias, and a dataset with 10% missing data 

under a severe bias. 

Despite not-knowing how much bias exists in trait datasets, we attempted to create a 

realistic scenario. We identified two parameters which could influence how much 

impact a weak bias may have. Firstly, we had to decide how missing data would vary 

across species. Penone et al. (2014) opted to evenly (50%) split species into two 

groups and delete a different proportion of values from each group. When we 

examined the distribution of missing data in common mammalian traits against a 

reference of body mass (the trait with fewest missing values) using data from 

PanTHERIA (Jones et al., 2009), we also identified that species fell into two groups: 

https://github.com/GitTFJ/Imputation
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low-mass species where traits were likely to be missing, and high-mass species were 

they were likely to be present (Figure A1.1). However, these groups were not evenly 

sized, with more species in the low-mass highly-likely-missing group. In particular, we 

found that the shift from “most species missing data” to “most species having data” 

occurred close to the 75% body mass quantile (Figure A2.1 for an example with two 

traits). We used this information to spilt species into unevenly sized groups (25/75%) 

when imposing the weak bias.  

 

 

Figure A1.1. Distribution of body mass, with colour describing whether each species is missing 

gestation length (top), or maximum longevity (bottom) data.  Red lines indicate quantile levels of the 

body mass distribution: dashed red line = 60%, solid red line = 75%, dotted red line = 90%.  The 

position on the distribution where present values become more common than missing values, 

identifies that two groups of species are exhibiting different missing data patterns.   

 

The second parameter to specify was how disproportionate the deletion should be 

within the 25/75% split. To create the lower-end estimate of bias, we wanted the trait 

distribution to marginally skew and shift the mean, but still contain values from across 

the majority of the trait range e.g. for body mass we would still have a selection of the 

small and large species. In pre-simulation trials we identified that sampling 4/5 of the 
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largest 75% of values, and 1/5 of the smallest 25% of values (e.g. large values are 

1.33 times more likely to be removed) was an effective choice of sampling to produce 

the desired weak-bias distribution. This is marginally lower than Penone et al. (2014), 

where missing values where 1.5 times more likely to be missing in their biased group. 

We also explored a more extreme deletion scenario, sampling 9/10 of the largest 

75% of values, and 1/10 of the smallest 25% of values (e.g. large values are 3 times 

more likely to be removed), but this produced a distribution reminiscent of the severe 

bias scenario, so was undesirable (Figure A1.2). With more computational power, the 

two parameters we discuss could be flexibly adjusted to create this greater range of 

scenarios, but the speed of the imputation approaches was too prohibitive. 

 

Figure A1.2. Distribution of removed trait values (pink), stacked on remaining values (grey), under 

two bias types: weak bias with 80% missing data (missingness) where large values are 1.33 times 

more likely to be missing (left), and the rejected alternative weak bias at 80% missingness where 

large values are 3 times more likely to be missing. The combined distribution (pink stacked on grey) 

represents the true distribution of trait values. 

 

The weak bias groups act on the specific bias type, for example, under a trait bias 

species are split into two groups based on the trait value (e.g. smaller trait value 
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species: 25%, larger trait value species: 75%). Whilst for a response bias, species 

are grouped based off the size of the response value, not the trait (e.g. smaller 

response value species: 25%, larger response value species: 75%).   

In contrast to the weak bias, the severe bias is simpler but also less realistic, creating 

an extreme scenario that could occur if values are imputed without any scrutiny of the 

data. The exact procedure for removing values differs depending on the type of bias, 

but as an example, under a severe trait bias with 20% missing values, the species 

with the largest 20% trait values (in the trait we plan to model against the response) 

will have values deleted creating missing data that truncates the trait distribution. 

Table A1.1 provides additional examples of severe and weak bias. 

Table A1.1. Description of different mechanisms of data deletion. Acronyms in the headings refer to 

the missing data classifications in Little & Rubin (2002). No bias (MCAR): data are ‘missing 

completely at random’. Stratified bias: we used stratified sampling for the trait and phylogeny to 

improve representation of a diverse array of trait values and species. Weak bias (MAR): data are 

not missing at random, but the missing pattern can be explained by other available variables. In this 

weak bias, data are split into two groups, and values in one group are 1.33 times more likely to be 

removed. Severe bias (MNAR) – data are not missing at random and the missing pattern cannot be 

accounted for by the available variables. In this severe bias, values are systematically removed 

from large to small. Acronyms in square brackets [] at the end of each description denote the short-

hand name for each bias type. Response refers to the outcome/dependant variable that is predicted 

by the ‘trait of interest’ which are used as predictors. 

 

Deletion  
Deletion description  

No bias (MCAR) 

Random  Removed values from each trait completely at random. [MCAR]. 

Stratified bias 
 

Phylogeny Tree was collapsed to preserve the earliest 20% of nodes. All other nodes that branched from 

this trimmed selection were removed and the corresponding tips were assigned to the latest 

linked node, creating a clade – see visual of trimming below. The number of clades in each 

tree ranged from 4 - 10. Trait values were deleted proportionally within each clade group, so 

each clade had the same proportion (approximate) of missing values (which is determined by 

the percentage of missing data: missingness). Values were removed randomly from each trait 

in each clade. [MOPP] 

 
 

Trait Data removed from an approximately equal proportion (determined by missingness level) of 

species within each trait tertile (i.e, each of the three parts in an ordered distribution of trait 

values). Within tertiles, species were selected randomly. Proportions are approximate 

because the number of species per tertile was variable. [MOPT]. 
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Weak bias (MAR) 

Phylogeny Species were labelled from 1 to 500 along the phylogeny, such that closely related species 

received sequential number labels. Using these labels we created two groups representing 

25% and 75% of the species (labels 1-125 and labels 126-500, respectively). Within each 

missingness level we then removed 1/5 of the required missing trait values from species with 

labels 1-125 and the remaining 4/5 of trait values from species with label 126 – 500. For 

example, for a 50% missingness level, we removed trait values from 50 species with labels 1-

125, and values from 200 species with labels 126-500. Values were removed randomly within 

each group for each trait [WBP]. 

 

Trait Within each missingness level we removed 1/5 of the required missing trait values from 

species in the lowest trait quartile (i.e., the lowest 25% in an ordered distribution of trait 

values), and the remaining 4/5 missing values from species in the remaining quartiles. For 

example, for 50% missing data, we removed values from 50 species in the lower quartile, and 

200 species in the remaining quartiles. Species were randomly selected within groups (the 

lower and remaining quartiles). [WBTP] 

 

Response Within each missingness level we removed 1/5 of the required missing trait values from 

species in the lowest response quartile (i.e., the lowest 25% in an ordered distribution of 

response values), and the remaining 4/5 missing values from species in the remaining 

quartiles. Species were randomly selected in each group. [WBTR] 

 

Trait*Response For each species we calculated the product of the trait of interest value and the response 

value generating two groups representing the lower quartile (i.e., the lowest 25% in an ordered 

distribution of product values), and the remaining species. Within each missingness level we 

then removed 1/5 of trait values from species in the lowest product quartile and the remaining 

4/5 from species in the remaining quartiles. Species were randomly selected in each group.  

[WBTPR] 

 

  

Severe bias (MNAR) 

Phylogeny Species were labelled from 1 to 500 along the phylogeny, such that closely related species 

received sequential number labels. We removed trait values systematically counting down 

from the species labelled 500. For example, with missingness level 10% species labelled 451-

500 were removed. This approach resulted in situations in which entire clades were missing 

data, while other clades were not missing any values. [SBP] 

 

Trait Species were ranked based on the ordered distribution of values in the trait of interest. Values 

for all traits were then removed systematically down starting at the species with the highest 

trait value. The number of trait values removed depended on the missingness level, for 

example with 25% missing data, trait values were removed from species in the top quartile of 

the distribution. This approach resulted in upper truncated distributions were the largest values 

are missing [SBTP] 

 

Response Species were ranked based on the ordered distribution of values for the response. Values for 

all traits were then removed systematically down starting at the species with the highest 

response value. This approach resulted in distributions were species with the largest response 

values are missing trait data. [SBTR] 

 

Trait*Response For each species we calculated the product of the trait of interest value and the response 

value. Species were then ranked based on the ordered distribution of product values. Values 

for all traits were then removed systematically down starting at the species with the highest 

product value. This approach resulted in distributions were species with the combination of 

largest trait and response values are missing trait data. [SBTPR] 
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A2. Imputation methods 

Mice 

We evaluated the performance of three Mice imputation methods (from 24 available): 

Mice predictive mean matching, Mice Bayesian linear regression, and Mice random 

forest. The default option, Mice predictive mean matching imputes data by matching 

observed values between traits, then populates missing values in incomplete traits by 

adopting information from the matched species. This can be advantageous as it 

preserves non-linear relationships between the traits, and the imputed value is likely 

to be plausible as it falls within the current range of values. However, this does 

prevent trait values from being extrapolated beyond the available range, so should 

only be effective when the data available reflect the true range. One option in Mice 

predictive mean matching is to select the method for detecting matches – we used 

the default match type which predicts observed values and then attempts to minimise 

the distance between predicted values and those drawn from the approximate 

distribution. Mice predictive mean matching delivered accurate results in Penone et 

al. (2014) and Poyatos, Sus, Badiella, Mencuccini, & Martínez-Vilalta (2018) 

Unlike Mice predictive mean matching, Mice Bayesian linear regression develops a 

linear model between the traits (Van Buuren & Groothuis-Oudshoorn, 2011). This 

allows extrapolation beyond the current range of values, but imputed values can then 

extend too far beyond the plausible range, with no option to constrain values without 

developing a customised imputation function. Mice Bayesian linear regression is also 

dependent on a linear relationship between traits, in their original scale or following 

transformation (Van Buuren & Groothuis-Oudshoorn, 2011).  

Mice random forest uses machine learning to produce and aggregate regression 

trees of the observed data. This approach is robust to non-linearities in the observed 

data like Mice predictive mean matching, but can still predict beyond the current 

range of values like Mice Bayesian linear regression (Van Buuren & Groothuis-

Oudshoorn, 2011) – incorporating the advantages of each approach. A previous 

case-study reported more accurate imputation in Mice random forest than Mice 

predictive mean matching (Shah et al., 2014). One option in Mice random forest is to 

specify the number of trees, we used the default of 10.  

An important aspect of the Mice approaches is the ability to alter the number of times 

the imputation is repeated (e.g. number of chains). Repeating the imputation and 

modelling process multiple times, and then pooling these results reduces the type 1 

error rate (Van Buuren & Groothuis-Oudshoorn, 2011). Mice guidelines suggest the 
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imputation should be repeated at least five times (the default value), with more 

repeats as the amount of missing data increases (Van Buuren & Groothuis-

Oudshoorn, 2011). As our missing data increased from 5% to 80%, we increased the 

number of repeats sequentially from 5 to 20. We found repeating the imputation more 

than 20 times was too computationally slow, and thus unfeasible for this study (we 

conducted thousands of separate imputations). We also opted to increase the 

number of iterations (the number of steps in each chain) to 10, as convergence was 

only marginal at the default value of 5 (Figure A2.1), and its recommended to have 

more iterations than variables with missing values (4 in our case) to reduce the effect 

of visit sequence (Van Buuren et al., 2006). We used the default visit sequence 

which reads variables from left to right, the data in this study were structured in the 

following order: response (where relevant), trait 1 (the focus of the study), trait 2 – 4, 

and eigenvectors (where relevant). We set the Mice predictor matrix to use all 

variables in the imputation. More details about the Mice imputation methods are 

available in the package vignette (Van Buuren & Groothuis-Oudshoorn, 2011). 
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Figure A2.1. Convergence plots for Mice imputation methods under a selection of bias types and 

percentage of missing data (missingness). Each line represents a multiple imputation chains over 

ten iterations. Chains show the mean and standard deviation of the target trait. 
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BHPMF 

BHPMF is an extension of probabilistic matrix factorization, a machine learning 

technique that uses the correlation structure of sparse matrices to impute values. 

This approach shares similar advantages to Mice random forest, as it is robust to 

non-linearities in the observed data and can still predict beyond the current range of 

values. However, unlike Mice random forest, BHPMF is a single imputation 

approach. A proposed advantage to using BHPMF is that it incorporates correlations 

between traits as well as the hierarchal structure of the data to impute missing 

values. Incorporating hierarchical information within the imputation allows 

intraspecific variation, taxonomy, and spatial structure to be easily accounted for. 

However, we ignore the hierarchal nature of the trait data in the non-phylogenetic 

version of the method, only using the first level of the hierarchy (species name) within 

the imputation. We used the default values for all other BHPMF parameters.  

On a few occasions, when performing BHPMF, the imputation ran for far longer than 

the average of 22 seconds, sometimes still not finishing after 40 minutes. As we 

needed to repeat the BHPMF imputation over 7000 times, we ceased any 

imputations that ran for longer than 3 minutes and moved onto to the next dataset. 

As a result, a selection of BHPMF imputations were excluded from the study (Figure 

A2.2).  

 

Figure A2.2. Percent of BHPMF imputations that over-ran the time limit across different levels of 

missingness (percentage of missing data) and bias types. SBTR (Severe bias response) and 

SBTPR (Severe bias on trait and response) did not fail on any occasions. 
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One obstacle with the BHPMF approach, is that it refuses to impute values if the 

species has no trait information e.g. it needs at least one trait value per species. 

When the response was present in the imputation, this functioned as a trait and 

allowed BHPMF to perform. However, when the response was absent, species would 

frequently contain no trait information, especially above 30% missing data, and in the 

severe biases (Figure A2.3). To provide a comparison of BHPMF with other 

imputation approaches, which allow imputation (or extrapolation) of species with no 

data, we included a dummy continuous variable within the trait matrix – forcing 

imputation and allowing comparison. This dummy variable had gaussian distribution 

centred at 0, with a standard deviation of 1 and an unknown degree of correlation 

with the other traits. This dummy trait would act as trait data, but provide little 

information to support BHPMF in estimating the missing values, essentially forcing 

BHPMF to estimate values for species with no trait data. To ensure this dummy 

variable did not severely detriment the performance of BHPMF, we compared how 

imputation error changed based on whether the dummy was used or not. Figure A2.3 

depicts that the dummy variable showed a similar trend to the complete data (when 

the response and dummy where both absent). 

 

Figure A2.3. Difference between imputed and true trait values (RMSE, root mean square error) of 

BHPMF imputation when a dummy variable was present in the imputation and absent (complete – 

where each species has at least one trait value). 
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Rphylopars 

Rphylopars calculates a phylogenetic predictor covariance matrix for the observed 

data, estimating the relationship between the traits and the phylogeny, e.g. heritable 

trait values for closely related species should be more similar. This phylogenetic 

predictor covariance matrix is then used to reconstruct the ancestral state, imputing 

the missing values through maximum likelihood. The phylogenetic tree is 

incorporated directly within Rphylopars through the phylogenetic predictor covariance 

matrix. Rphylopars has similar issues to Mice regression, with the possibility of 

extrapolating results too far when outliers exist in the data. Rphylopars does allow 

the user to select a minimum and maximum value, but we opted against constraining 

these values as in a real scenario we may not know what would classify as a 

reasonable boundary.  

A3. Appending phylogenetic information 

There is evidence that including phylogeny information can improve imputation 

accuracy (Penone et al., 2014; Kim et al., 2018). Unlike Rphylopars, which requires a 

phylogeny as part of the imputation, Mice and BHPMF cannot automatically 

incorporate a phylogeny.  

Mice 

For Mice used the MPSEM (Diniz et al., 2015) package in R to produce a selection of 

phylogenetic eigenvectors that best describe the relationship between the trait of 

interest (the trait we later model against the response) and its phylogeny. 

Firstly, we fit a model between the phylogeny and the trait of interest (ignoring other 

traits). This model uses maximum likelihood to estimate what the phylogenies rate of 

evolution and steepness would need to be in order produce the available trait values. 

These evolution and steepness parameters are then used to create an eigenvector 

matrix which describes the phylogenetic distance between each species e.g. with no 

data missing, the matrix would contain estimates of the phylogenetic distance 

between each of the 500 species (500 rows/species by 500 columns/eigenvectors).  

As its unfeasible to include all of these eigenvectors within the imputation model, we 

used forward stepwise selection (which has issues – see below) regressing the trait 

of interest against the eigenvectors. This identifies the eigenvectors that best explain 

the available trait data. When no data is missing the refined eigenvectors covered the 

entire phylogeny – data is available for every tip/species. However, with missing trait 

values, the phylogeny is trimmed and the relationship between the phylogeny and 

trait are based purely on available data. As a result, only species with trait values 
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have eigenvectors. To extend the eigenvectors to every species, we used the 

empirically derived steepness and evolution parameters to build a new phylogenetic 

eigenvector matrix covering all species. From this, we pulled out the eigenvectors 

identified by the forward stepwise selection. This method produces a refined set of 

eigenvectors which describe the entire phylogeny, even in the presence of missing 

values. We characterise the selected eigenvectors at different levels of missingness 

and bias type in Figure A3.1. 

Selecting eigenvectors with forward stepwise selection (significance threshold alpha 

= 0.01) is not desirable, as other approaches, minimising residual autocorrelation and 

Akaike information criterion (AIC), have been shown to be more accurate (Diniz-Filho 

et al., 2012). However, the minimising residual autocorrelation approach is 

unavailable within MPSEM, whilst the AIC approach was leaving too many 

eigenvectors – frequently more than 40 (sometimes up to 80), which at high levels of 

missingness well surpassed the recommended ratio of 1 variable to 3 complete 

cases in Mice imputation (Hardt et al., 2012). As a result, stepwise selection was 

considered the best option to refine the eigenvector matrix. 

 

Figure A3.1. Number of eigenvectors identified as important predictors of phylogenetic signal in 

traits, measured at different percentages of missing data, or missingness (left) and bias type (right). 

 

For the phylogenetic Mice imputations, we appended the selected eigenvectors as 

variables within each of the Mice approaches. On a few occasions we found errors 

within the eigenvector selection and Mice imputation. In three cases (0.04% of total), 

an error occurred when the trait data was modelled against the phylogenetic graph. 

We couldn’t detect the cause of this error and it seemed to derive from a package 

contained within MPSEM. During the analysis, these records were removed. On 

some occasions, Mice produced an error stating the imputation was ‘computationally 

singular’. This was caused by high multi-collinearity between eigenvectors and was 
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particularly common when lots of eigenvectors were present (more than 25). In this 

circumstance, we removed 5 eigenvectors from the imputation and repeated the 

imputation on a loop until the imputation was no longer computationally singular. On 

occasion, Mice also offered a warning that there were too many variables to impute. 

To fix this, we removed the variables that Mice suggested were offering the least 

predictive power, and then repeated the imputation. 

Removing eigenvectors ad-hoc is not-ideal, and in a real-scenario this could be done 

in a more robust way e.g. instead of arbitrarily selecting 5 as a valid number of 

eigenvectors to remove when Mice is computationally singular, we could have 

attempted to identify the specific eigenvectors that were causing the problem. 

However, as these errors and warnings were so frequent under the severe bias 

(Figure S4.2), it was important to implement a general rule for allowing the analysis 

to continue. To ensure our approaches for handling these errors were not impacting 

the overall results in the manuscript, we first assessed how many of the imputations 

required this error handling (Figure S4.2). In the non-severe biases, less than 1% of 

observations required eigenvectors to be removed, but the severe biases required 

proportionally far more error handling, with more than 90% of severe trait biases 

requiring eigenvectors to be trimmed. We also compared imputation error (accuracy 

of imputed values) when eigenvectors were removed or not (Figure A3.2). There was 

a small median increase in imputation error when these eigenvectors were removed, 

but the variance around these estimates suggest this would have little effect.  

 

Figure A3.2. Left - Percentage of observations in Mice imputation methods that required 

eigenvectors to be removed to allow Mice imputations to converge or improve predictive 

performance. This only shows severe biases, as in the non-severe biases, eigenevtors where 

removed in less than 1% of cases. Right – Median Imputation error (root mean square error) with 

upper and lower 95% quantiles, under different imputation approaches and bias types. Grey depcits 

observations where eigenvectors where not removed. Red depicts observations with removed 

eigenvectors. 
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BHPMF 

In BHPMF, there are two options for incorporating phylogenetic information. Firstly, 

the phylogenetic eigenvectors used in Mice could simply appended to the trait data. 

However, this ignores the key advantage of the BHPMF approach, the ability to 

incorporate hierarchical information. Typically, this hierarchy information would be in 

the form of a taxonomy, but as the data were simulated, this was not available. 

Instead, we utilised the phylogeny as a taxonomy, where all species are joined to one 

common node, which is connected to n more nodes, and so forth until you reach the 

species tip. We calculated the minimum number of nodes per species across the 

phylogeny. We then trimmed the tree so each tip was represented by this minimum 

number of nodes, keeping nodes earlier in the phylogeny. For example, if in a 

phylogeny the number of nodes linked to species ranges from 4 – 10, we trimmed the 

phylogeny, so only the four earliest nodes were represented in each species (see 

Figure A3.3 for an example).  

 

Figure A3.3. The approach for trimming a phylogeny into the hierarchal structure which can be 

appended to BHPMF imputation. A, the full phylogeny, with each coloured box representing a node. 

At each tip there is list of nodes that must be passed through to reach the tip. The red line indicates 

the minimum number of nodes across all tips (n = 2). B, the phylogeny is trimmed according to the 

minimum number of nodes, depicted by the red line. C, the phylogeny is described as a hierarchal 

matrix of nodes. 
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A4. Enhancing methods 

Mice 

We made a concerted effort to improve the performance of Mice relative to previous 

imputation comparative studies in ecology and evolution (Penone et al., 2014; 

Poyatos et al., 2018): 1) we used an updated and improved (albeit marginally) 

method for selecting phylogenetic eigenvectors for Mice imputation (Diniz et al., 

2015); 2) included additional Mice imputation types that are predicted to be more 

accurate (Shah et al., 2014); and 3) instead of repeating each Mice imputation ten 

times before averaging, we sequentially increased the number of imputations with 

increased missingness, as recommended by the authors of the Mice package (Van 

Buuren & Groothuis-Oudshoorn, 2011).  

BHPMF 

Unlike Mice, we suspect BHPMFs performance could be further enhanced, as we 

had to deviate from the ideal BHPMF setup to allow comparison with the other 

approaches: 1) BHPMF does not integrate phylogenetic data but can use hierarchical 

taxonomic information. In a real study, taxonomies would likely be available if 

phylogenetic relationships are described, but for our comparison we had to convert 

the simulated phylogeny into a hierarchical structure (Appendix 1 – Imputation 

approaches) potentially adding error (although we note that the performance of 

BHPMF improved when using this phylogenetic hierarchy). 2) in some scenarios, we 

were forced to cease the imputation as it was failing to produce outputs within a 

reasonable time-frame – despite this, at least 70% of replicates were imputed in 

every bias type and level of missingness (Appendix 1 – Fig S5). 3) we note that 

BHPMF, and to a similar extent Mice random forest, are designed for imputing large 

datasets and it is possible increasing the number of species would decrease the 

discrepancy in performance between these machine learning approaches and 

Rphylopars. 
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A5. Alternative measures of imputation error 

We selected root-mean-square-error (RMSE) to display the discrepancy between 

imputed and true values for two reasons: 1, RMSE is widely used and shares the 

same units as the data so can be easily interpreted. 2, RMSE squares the error 

before averaging, and then square roots the averaged error, which penalises values 

with large errors more than simply using the mean or median absolute errors. As a 

result, with RMSE any imputations that produced variable and exceptionally large 

difference between the imputed and true values would result in greater imputation 

errors. However, we also assessed imputation error using three additional metrics: 

mean absolute error MeanAE, median absolute error MedianAE and R2 between 

imputed and true values. 

𝑀𝑒𝑎𝑛𝐴𝐸 =  
1

𝑁
∑(𝑦𝐼𝑚 −  𝑦𝑇𝑟)

𝑁

𝑖=1

  

𝑀𝑒𝑑𝑖𝑎𝑛𝐴𝐸 =  𝑚𝑒𝑑(𝑦𝐼𝑚 −  𝑦𝑇𝑟)  

𝑅2 =  1 −  
∑ (𝑦𝐼𝑚 −  𝑦𝑇𝑟)2𝑁

𝑖=1

∑ (�̅� −  𝑦𝑇𝑟)2𝑁
𝑖=1

   

 

Where N is the number of imputed values to compare, ranging from 5% of 500 (N = 

25) to 80% of 500 (N = 400). yIm is the imputed value for a given observation and yTr 

is its true value. med is the median value.   y̅ is the mean true value. For Mice 

imputation averaged the trait values across the repeats. 
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A6. Variables to model 

Table A6.1. Descriptions of the variables in the models, separated into: Descriptive - all variables 

have been created explicitly by the deletion mechanism/method of imputation e.g. can answer 

which imputation approach is best in severe bias types? These variables are included in the 

imputation and slope error models. Predictive - variables to predict errors by comparing the missing 

values to the imputed values, without knowing anything about the bias type e.g. Can a big change 

in the mean after imputation predict a high error? These variables are included in the models to 

predict when imputation and slope errors might be likely based solely on the structure and 

characteristics of the data. 

Variable 
Description  

Descriptive  

Imputation approach Method of imputation. Categories: Rphylopars, Mice mean matching, Mice mean matching & 

phylogeny, Mice regression, Mice regression & phylogeny, Mice random forest, Mice random forest & 

phylogeny, BHPMF, and BHPMF & phylogeny. 

*Complete-case was included as a category in slope error analysis. 

 

Bias type Categories from Table 1. 

 

Missingness Percentage of missing values, levels varying from 5 – 80% (in 5% intervals). Modelled as a 

continuous variable. 

 

Response in imputation Whether the response was present/absent from the imputation. 

 

Initial slope direction Whether the response-predictor relationship is positive (slope~0.7), or has no relationship (slope~0). 

 

Between-predictor 

correlation 

Whether the predictors were strongly (r = 0.6) or weakly (r = 0.2) correlated. 

 

Predictive  

Phylogenetic clustering Distribution of predictor values across the phylogeny, from evenly distributed across the phylogeny (< 

1), to all predictor values clustered within one clade (> -1). Estimated by calculating the sum of sister-

clade differences (Fritz & Purvis, 2010) 

 

Missingness Percentage of missing values, levels varying from 5 – 80% (in 5% intervals). Modelled as a 

continuous variable. 

 

Change in mean Absolute change in the mean between complete-case analysis and imputation. Formula: Imputation 

mean / Pre-imputation mean. log transformed. 

 

Change in slope  
Absolute change in response-predictor slope between complete-case analysis and imputation. 

Formula: Absolute(Imputation range – Pre-imputation range). Square-root transformed. 

 

 

Appendix B - Supplementary results  

B1. Effect of including phylogeny 

Including phylogenetic information reduced imputation and slope errors in all 

imputation methods across non-severe bias types (Figure B1.1). Under a severe bias 

in the Mice imputations, including the phylogeny had a mixed impact on imputation 
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error, but increased slope error when the true relationship is positive, and decreased 

slope error when there is no relationship. In contrast, BHPMF consistently performs 

better with phylogenetic information across the severe biases. 

 

 

 

Figure B1.1. Performance of four imputation methods when phylogenetic information is present 

(black) or absent (grey) from the imputation. The top chart depicts the difference between imputed 

and true trait values (RMSE, root mean square error). The bottom two charts depict the absolute 

difference between the true slope and the slope after missing values are imputed, where the true 

relationship is positive (middle) or neural (bottom), respectively. Rphylopars is excluded from these 

plots as it was only tested when a phylogeny is present. Points show the mean error and 95% 

confidence intervals, all averaged over model covariates that are not displayed: seed, response in 

imputation, missingness, and between-predictor correlation. Bias type is averaged into the following 

severity levels: No bias – No averaging needed, Controlled bias – MOPT & MOPP averaged, Weak 

bias – WBP, WBTP, WBTR & WBTPR averaged, Severe bias – SBP, SBTP, SBTR & SBTPR 

averaged. In the top plot, values are also averaged over initial-slope direction. The x-axes differ 

between the plots. 
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B2. Model outputs 

Table B2.1. Refined model output from imputation error model, showing the difference between 

Rphylopars and all other imputation approaches. Parameter estimates and confidence intervals are 

back-transformed from a log10 scale.  

Relationship Parameter 

estimate 

Lower 95% 

confidence 

interval 

Upper 95% 

confidence 

interval 

t p 

Rphylopars Vs Mice:      

    regression 2.17 2.13 2.22 77 < 0.001 

    regression + phylogeny 1.66 1.63 1.69 50 < 0.001 

    mean matching 2.24 2.20 2.29 80 < 0.001 

    mean matching + phylogeny 1.70 1.66 1.73 52 < 0.001 

    random forest 2.33 2.29 2.38 84 < 0.001 

    random forest + phylogeny 1.48 1.45 1.51 39 < 0.001 

    BHPMF 2.39 2.34 2.43 87 < 0.001 

    BHPMF + phylogeny 1.86 1.82 1.90 62 < 0.001 

 

 

Table B2.2. Refined model output from slope error model (with a positive response-predictor 

relationship), showing the difference between Rphylopars and all other imputation approaches. 

Parameter estimates and confidence intervals are back-transformed from a square-root scale.  

Relationship Parameter 

estimate 

Lower 95% 

confidence 

interval 

Upper 95% 

confidence 

interval 

t p 

Rphylopars Vs:      

    regression 0.020 0.019 0.022 55 < 0.001 

    regression + phylogeny 0.022 0.020 0.023 56 < 0.001 

    mean matching 0.021 0.020 0.023 56 < 0.001 

    mean matching + phylogeny 0.020 0.019 0.023 54 < 0.001 

    random forest 0.036 0.037 0.038 72 < 0.001 

    random forest + phylogeny 0.023 0.021 0.024 59 < 0.001 

    BHPMF 0.011 0.01 0.012 20 < 0.001 

    BHPMF + phylogeny 0.003 0.002 0.003 40 < 0.001 

    complete-case 0.0001 0.00001 0.0002 4 < 0.001 

 

Table B2.3. Refined model output from slope error model (with no response-predictor relationship), 

showing the difference between Rphylopars and all other imputation approaches. Parameter 

estimates and confidence intervals are back-transformed from a square-root scale.  

Relationship Parameter 

estimate 

Lower 95% 

confidence 

interval 

Upper 95% 

confidence 

interval 

t p 

Rphylopars Vs:      

    regression 0.002 0.002 0.002 31 < 0.001 

    regression + phylogeny 0.0005 0.0007 0.0004 17 < 0.001 

    mean matching 0.002 0.002 0.002 32 < 0.001 

    mean matching + phylogeny 0.0009 0.001 0.0007 22 < 0.001 

    random forest 0.002 0.002 0.001 29 < 0.001 

    random forest + phylogeny 0.0003 0.0004 0.0001 12 < 0.001 

    BHPMF 0.011 0.010 0.012 70 < 0.001 

    BHPMF + phylogeny 0.003 0.0025 0.003 35 < 0.001 

    complete-case 0.005 0.004 0.005 50 < 0.001 

 



Chapter 2: Handling missing values in trait data 

 

61 
 

 

B3. Imputation and slope errors – phylogeny absent 

Imputation error is comparable across all non-phylogenetic imputation methods 

(Figure B3.1). However, there is greater variation in slope error between the 

methods, and these results vary depending on the starting trend (Figure B3.1). When 

the true response-trait relationship is positive (Figure B3.2), complete-case is the 

best option in all but two severe bias scenarios (trait and response, and response), 

regardless of the percentage of missing data (missingness). In these two severe bias 

scenarios, errors are high and no one method performs best. BHPMF is the second-

best option overall, and Mice random forest performs worst in the majority of 

scenarios. These results change dramatically when the response-trait relationship is 

neutral (Figure B3.3), with Mice consistently delivering the best results, followed by 

complete-case analysis, and BHPMF. These results are largely consistent with 

phylogenetic imputation method results. 
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Figure B3.1: Difference between imputed and true trait values (RMSE, root mean square error) for four non-phylogenetic imputation approaches under varying percentages of 

missing data (missingness) and bias types. Lines depict the marginal effect of missingness and bias type from a regression model, and were averaged across other predictors: 

seed, response in imputation, between-trait correlation, and initial slope direction. Confidence intervals were derived from 500 bootstrap simulations and depict the upper- and 

lower-bounds (95%)  
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Figure B3.2. Absolute difference between the true response-trait slope coefficient and the slope coefficients in datasets with varying percentages of missing trait values 

(missingness) - removed under a series of bias types. Missing values were imputed under four non-phylogenetic approaches, or treated as complete-case analysis. The true 

slope has positive relationship between the response and trait (r ~ 0.7). Lines depict the marginal effect of missingness and bias type from a regression model, and were 

averaged across other predictors: seed, response in imputation, and between-trait correlation. Confidence intervals were derived from 500 bootstrap simulations and depict the 

upper- and lower-bounds (95%).  
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Figure B3.3. Absolute difference between the true response-trait slope coefficient and the slope coefficients in datasets with varying percentages of missing trait values 

(missingness) - removed under a series of bias types. Missing values were imputed under four non-phylogenetic approaches, or treated as complete-case analysis. The true 

slope has no relationship between the response and trait (r ~ 0). Lines depict the marginal effect of missingness and bias type from a regression model, and were averaged 

across other predictors: seed, response in imputation, and between-trait correlation. Confidence intervals were derived from 500 bootstrap simulations and depict the upper- 

and lower-bounds (95%).



Chapter 2: Handling missing values in trait data 

 

65 
 

B4. Imputation, slope, and inference errors – phylogeny present 

 

Figure B4.1: Difference between imputed and true trait values (RMSE, root mean square error) for five phylogenetic imputation approaches under varying percentages of 

missing data (missingness) and bias types. The top row of panels show datasets in which the true slope was positive (r ~ 0.7), while the bottom row shows datasets with no 

relationship (r ~ 0). Lines depict the marginal effect of missingness and bias type from a regression model, and were averaged across other predictors: seed, response in 

imputation and between-trait correlation. Confidence intervals were derived from 500 bootstrap simulations and depict the upper- and lower-bounds (95%) 
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Figure B4.2: Difference between imputed and true trait values (RMSE, root mean square error) for five phylogenetic imputation approaches under varying percentages of 

missing data (missingness) and bias types. Lines depict the marginal effect of missingness and bias type from a regression model, and were averaged across other predictors: 

seed, response in imputation, between-trait correlation, and initial slope direction. Confidence intervals were derived from 500 bootstrap simulations and depict the upper- and 

lower-bounds (95%). This plot is an expanded version of Fig 2 in the main text. 



Chapter 2: Handling missing values in trait data 

 

67 
 

 

Figure B4.3: Absolute difference between imputed and true trait values (mean absolute error) for five phylogenetic imputation approaches under varying percentages of 

missing data (missingness) and bias types. Lines depict the marginal effect of missingness and bias type from a regression model, and were averaged across other predictors: 

seed, response in imputation, between-trait correlation, and initial slope direction. Confidence intervals were derived from 500 bootstrap simulations and depict the upper- and 

lower-bounds (95%). 
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Figure B4.4: Absolute difference between imputed and true trait values (median absolute error) for five phylogenetic imputation approaches under varying percentages of 

missing data (missingness) and bias types. Lines depict the marginal effect of missingness and bias type from a regression model, and were averaged across other predictors: 

seed, response in imputation, between-trait correlation, and initial slope direction. Confidence intervals were derived from 500 bootstrap simulations and depict the upper- and 

lower-bounds (95%). 
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Figure B4.5: R2 between imputed and true trait values for five phylogenetic imputation approaches under varying percentages of missing data (missingness) and bias types. 

Lines depict the marginal effect of missingness and bias type from a regression model, and were averaged across other predictors: seed, response in imputation, between-trait 

correlation, and initial slope direction. Confidence intervals were derived from 500 bootstrap simulations and depict the upper- and lower-bounds (95%). 
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Figure B4.6. Absolute difference between the true response-trait slope coefficient and the slope coefficients in datasets with varying percentages of missing trait values 

(missingness) - removed under a series of bias types. Missing values were imputed under five phylogenetic approaches, or treated as complete-case analysis. The true slope 

was positive (r ~ 0.7). Lines depict the marginal effect of missingness and bias type from a regression model, and were averaged across other predictors: seed, response in 

imputation, and between-trait correlation. Confidence intervals were derived from 500 bootstrap simulations and depict the upper- and lower-bounds (95%).  
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Figure B4.7. Absolute difference between the true response-trait slope coefficient and the slope coefficients in datasets with varying percentages of missing trait values 

(missingness) - removed under a series of bias types. Missing values were imputed under five phylogenetic approaches, or treated as complete-case analysis. The true slope 

had no relationship (r ~ 0). Lines depict the marginal effect of missingness and bias type from a regression model, and were averaged across other predictors: seed, response 

in imputation, and between-trait correlation. Confidence intervals were derived from 500 bootstrap simulations and depict the upper- and lower-bounds (95%). 
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Figure B4.8. Difference (represented by the absolute t-statistic) between the true response-trait slope and the slope in datasets with varying percentages of missing trait values 

(missingness) - removed under a series of bias types. Missing values were imputed under nice approaches, or treated as complete-case analysis. Points above the red lines 

(set at 1.96) differ significantly from the true slope at the 95% confidence level. The true slope has a positive relationship (r ~ 0.7) between the response and trait, and the 

standard error of the slope ranges from 0.02 – 0.03. The multiple overlapping points at each level of missingness represent the different bias types within the varying bias 

severities, which include: Controlled bias – MOPT & MOPP, Weak bias – WBP, WBTP, WBTR & WBTPR, Severe bias – SBP, SBTP, SBTR & SBTPR. 
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Figure B4.9. Difference (represented by the absolute t-statistic) between the true response-trait slope and the slope in datasets with varying percentages of missing trait values 

(missingness) - removed under a series of bias types. Missing values were imputed under nine approaches, or treated as complete-case analysis. Points above the red lines 

(set at 1.96) differ significantly from the true slope at the 95% confidence level.  The true slope has no relationship (r ~ 0) between the response and trait, and the standard 

error of the slope ranges from 0.03 – 0.05. The multiple overlapping points at each level of missingness represent the different bias types within the varying bias severities, 

which include: Controlled bias – MOPT & MOPP, Weak bias – WBP, WBTP, WBTR & WBTPR, Severe bias – SBP, SBTP, SBTR & SBTPR. 
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Figure B4.10. Slope coefficients (points) and 95% confidence intervals (vertical lines) under different bias types and levels of missingness for nine imputation approaches as 

well as complete-case analysis. The grey horizontal bar represents the lower and upper 95% confidence intervals for the true response-trait slope coefficient (positive 

relationship; r ~ 0.7). The dotted line indicates a slope coefficient of zero; points beneath this line would suggest the slope has the opposite relationship to the true coefficient. 

Black points and intervals represent an overlap between the true slope confidence intervals and that of the imputed or complete case slope confidence intervals. Red points 

and intervals indicate no overlap, so the imputed or complete case slope is significantly different. Slope coefficients and confidence intervals are averaged over seed, response 

in imputation and between-predictor correlation, but not over bias types, which are represented by the multiple overlapping points at each level of missingness, which include: 

Controlled bias – MOPT & MOPP, Weak bias – WBP, WBTP, WBTR & WBTPR, Severe bias – SBP, SBTP, SBTR & SBTPR. 
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Figure B4.11. Slope coefficients (points) and 95% confidence intervals (vertical lines) under different bias types and levels of missingness for nine imputation approaches as 

well as complete-case analysis. The grey horizontal bar represents the lower and upper 95% confidence intervals for the true response-trait slope coefficient (no relationship; r 

~ 0). Black points and intervals represent an overlap between the true slope confidence intervals and that of the imputed or complete case slope confidence intervals. Red 

points and intervals indicate no overlap, so the imputed or complete case slope is significantly different. Slope coefficients and confidence intervals are averaged over seed, 

response in imputation and between-predictor correlation, but not over bias types, which are represented by the multiple overlapping points at each level of missingness, which 

include: Controlled bias – MOPT & MOPP, Weak bias – WBP, WBTP, WBTR & WBTPR, Severe bias – SBP, SBTP, SBTR & SBTPR. 
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B5. Density plots of imputed values and slopes 

We only depict imputation and slope errors under five bias types (random, and the four severe biases). We do not show the weak or stratified biases 

as their plots are very similar to the random plots. 

 

Figure B5.1. Difference between imputed and true values in nine imputation approaches at different levels of missingness (values removed at random). Values at zero (vertical 

line) have no error. To the left of the line, imputed values are underestimated, and values on the right are overestimated.  
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Figure B5.2. Difference between imputed and true values in nine imputation approaches at different levels of missingness (values removed with a severe phylogenetic bias). 

Values at zero (vertical line) have no error. To the left of the line, imputed values are underestimated, and values on the right are overestimated. Each of the overlapping 

density plots (x10) represent a different seed. 



Chapter 2: Handling missing values in trait data 

 

78 
 

 

Figure B5.3. Difference between imputed and true values in nine imputation approaches at different levels of missingness (values removed with a severe trait bias). Values at 

zero (vertical line) have no error. To the left of the line, imputed values are underestimated, and values on the right are overestimated. Each of the overlapping density plots 

(x10) represent a different seed. 
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Figure B5.4. Difference between imputed and true values in nine imputation approaches at different levels of missingness (values removed with a severe trait and response 

bias). Values at zero (vertical line) have no error. To the left of the line, imputed values are underestimated, and values on the right are overestimated. Each of the overlapping 

density plots (x10) represent a different seed. 
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Figure B5.5. Difference between imputed and true values in nine imputation approaches at different levels of missingness (values removed with a severe response bias). 

Values at zero (vertical line) have no error. To the left of the line, imputed values are underestimated, and values on the right are overestimated. Each of the overlapping 

density plots (x10) represent a different seed. 
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Figure B5.6. Difference between the imputed or complete-case slope, and the true slope (at approximately 0) in nine imputation approaches at different levels of missingness 

(values removed at random). Values at zero (vertical line) have no error. To the left of the line, imputed/complete-case slopes are underestimated (less than zero), and values 

on the right are overestimated (greater than zero). Red density plots indicate imputations with the response present, response is absent in grey density plots. 
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Figure B5.7. Difference between the imputed or complete-case slope, and the true slope (at approximately 0) in nine imputation approaches at different levels of missingness 

(values removed with a severe phylogenetic bias). Values at zero (vertical line) have no error. To the left of the line, imputed/complete-case slopes are underestimated (less 

than zero), and values on the right are overestimated (greater than zero). Red density plots indicate imputations with the response present, response is absent in grey density 

plots. 
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Figure B5.8. Difference between the imputed or complete-case slope, and the true slope (at approximately 0) in nine imputation approaches at different levels of missingness 

(values removed with a severe trait bias). Values at zero (vertical line) have no error. To the left of the line, imputed/complete-case slopes are underestimated (less than zero), 

and values on the right are overestimated (greater than zero). Red density plots indicate imputations with the response present, response is absent in grey density plots. 
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Figure B5.9. Difference between the imputed or complete-case slope, and the true slope (at approximately 0) in nine imputation approaches at different levels of missingness 

(values removed with a severe trait and response bias). Values at zero (vertical line) have no error. To the left of the line, imputed/complete-case slopes are underestimated 

(less than zero), and values on the right are overestimated (greater than zero). Red density plots indicate imputations with the response present, response is absent in grey 

density plots. 
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Figure B5.10. Difference between the imputed or complete-case slope, and the true slope (at approximately 0) in nine imputation approaches at different levels of missingness 

(values removed with a severe response bias). Values at zero (vertical line) have no error. To the left of the line, imputed/complete-case slopes are underestimated (less than 

zero), and values on the right are overestimated (greater than zero). Red density plots indicate imputations with the response present, response is absent in grey density plots. 
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Figure B5.11. Difference between the imputed or complete-case slope, and the true slope (at approximately 0.7) in nine imputation approaches at different levels of 

missingness (values removed at random). Values at 0.7 (vertical line) have no error. To the left of the line, imputed/complete-case slopes are underestimated (less than 0.7), 

and values on the right are overestimated (greater than 0.7). Red density plots indicate imputations with the response present, response is absent in grey density plots. 
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Figure B5.12. Difference between the imputed or complete-case slope, and the true slope (at approximately 0.7) in nine imputation approaches at different levels of 

missingness (values removed with a phylogenetic bias). Values at 0.7 (vertical line) have no error. To the left of the line, imputed/complete-case slopes are underestimated 

(less than 0.7), and values on the right are overestimated (greater than 0.7). Red density plots indicate imputations with the response present, response is absent in grey 

density plots. 



Chapter 2: Handling missing values in trait data 

 

88 
 

 

Figure B5.13. Difference between the imputed or complete-case slope, and the true slope (at approximately 0.7) in nine imputation approaches at different levels of 

missingness (values removed with a trait bias). Values at 0.7 (vertical line) have no error. To the left of the line, imputed/complete-case slopes are underestimated (less than 

0.7), and values on the right are overestimated (greater than 0.7). Red density plots indicate imputations with the response present, response is absent in grey density plots. 
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Figure B5.14. Difference between the imputed or complete-case slope, and the true slope (at approximately 0.7) in nine imputation approaches at different levels of 

missingness (values removed with a trait and response bias). Values at 0.7 (vertical line) have no error. To the left of the line, imputed/complete-case slopes are 

underestimated (less than 0.7), and values on the right are overestimated (greater than 0.7). Red density plots indicate imputations with the response present, response is 

absent in grey density plots. 
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Figure B5.15. Difference between the imputed or complete-case slope, and the true slope (at approximately 0.7) in nine imputation approaches at different levels of 

missingness (values removed with a response bias). Values at 0.7 (vertical line) have no error. To the left of the line, imputed/complete-case slopes are underestimated (less 

than 0.7), and values on the right are overestimated (greater than 0.7). Red density plots indicate imputations with the response present, response is absent in grey density 

plots
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B6. Impact of including the response in imputation 

 

Figure B6.1. Difference between imputed and true trait values (imputation error - root mean square 

error) for four phylogenetic imputation approaches after including the response within the 

imputation. The base of the arrow represents the mean imputation error for each approach when 

the response is absent, and the tip represents the mean imputation error when the response is 

present. Larger arrows indicate a greater effect of including the response. Data is split by response-

trait relationship, where a there is no relationship r~0 (top), or a positive relationship r~0.7 (bottom). 

 

 

Figure B6.2. Slope error (absolute difference between the true response-trait slope and the slope 

after imputation) after including the response within the imputation. The base of the arrow 

represents the mean slope error for each approach when the response is absent, and the tip 

represents the mean slope error when the response is present. Larger arrows indicate a greater 

effect of including the response. Data is split by response-trait relationship, where a there is no 

relationship r~0 (top), or a positive relationship r~0.7 (bottom).
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Figure B6.3. Absolute difference between the true response-trait slope coefficient and the slope coefficients in datasets with varying percentages of missing trait values 

(missingness) - removed under a series of bias types. Missing values were imputed under five phylogenetic approaches, or treated as complete-case analysis. The true slope 

was positive (r ~ 0.7) and the response was included in the imputation. Lines depict the marginal effect of missingness and bias type from a regression model, and were 

averaged across other predictors: seed and between-trait correlation. Confidence intervals were derived from 500 bootstrap simulations and depict the upper- and lower-

bounds (95%). 
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Figure B6.4. Absolute difference between the true response-trait slope coefficient and the slope coefficients in datasets with varying percentages of missing trait values 

(missingness) - removed under a series of bias types. Missing values were imputed under five phylogenetic approaches, or treated as complete-case analysis. The true slope 

was positive (r ~ 0.7) and the response was excluded from the imputation. Lines depict the marginal effect of missingness and bias type from a regression model, and were 

averaged across other predictors: seed and between-trait correlation. Confidence intervals were derived from 500 bootstrap simulations and depict the upper- and lower-

bounds (95%). 
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Figure B6.5. Absolute difference between the true response-trait slope coefficient and the slope coefficients in datasets with varying percentages of missing trait values 

(missingness) - removed under a series of bias types. Missing values were imputed under five phylogenetic approaches, or treated as complete-case analysis. The true slope 

had no relationship (r ~ 0) and the response was included in the imputation. Lines depict the marginal effect of missingness and bias type from a regression model, and were 

averaged across other predictors: seed and between-trait correlation. Confidence intervals were derived from 500 bootstrap simulations and depict the upper- and lower-

bounds (95%). 
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Figure B6.6. Absolute difference between the true response-trait slope coefficient and the slope coefficients in datasets with varying percentages of missing trait values 

(missingness) - removed under a series of bias types. Missing values were imputed under five phylogenetic approaches, or treated as complete-case analysis. The true slope 

had no relationship (r ~ 0) and the response was excluded from the imputation. Lines depict the marginal effect of missingness and bias type from a regression model, and 

were averaged across other predictors: seed and between-trait correlation. Confidence intervals were derived from 500 bootstrap simulations and depict the upper- and lower-

bounds (95%). 
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B7. Predicting errors in imputation 

 

Figure B7.1. Top - Predicting imputation error (different between Rphylopars imputed trait values and true trait values calculated using the root mean square error), middle - 

slope error (difference between the true response-trait slope and the Rphylopars imputed slope), and bottom - the probability of the Rphylopars imputed slope differing 

significantly from the true response-trait slope, using four predictors (3 for imputation error): change in mean, missingness, phylogenetic clustering, and change in slope.  Red-

dotted lines depict 95% confidence intervals. 
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B8. Time taken for imputations 

Table B8.1. Minutes taken to perform each of the phylogenetic imputation approaches. The Mice 

and BHPMF approaches exclude the time taken to develop eigenvectors and the phylogenetic 

hierarchy, respectively. Each mean and standard deviation is based off a sample size of 14080 

imputations. 

Imputation approaches Minutes (mean ± standard deviation) 

Rphylopars 0.12 ± 0.08 

Mice: mean matching + phylogeny 0.32 ± 0.24 

Mice: regression + phylogeny 0.31 ± 0.24 

Mice: random forest + phylogeny 0.55 ± 0.25 

BHPMF + phylogeny 0.37 ± 0.25 
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Abstract  

Motivation 

Population trend information is key for assessing biodiversity change and has been 

used in global syntheses to evidence and understand declines and recoveries in 

wildlife – making population trend information an important indicator. Here, we 

present a global dataset of 1122 population trends describing changes in abundance 

over time in large mammals from the Order Carnivora.  

Main types of variables included 

The key data fields for each record are: species name, geographical location of the 

record, start and end date of the trend estimate, method by which abundance or 

density data were collected, and the approach used to estimate the overall 

population trend value. Population trend values are reported using quantitative 

metrics in 75% of records that collectively represent more than 6,500 population 

abundance or density estimates. The remaining 25% of records qualitatively describe 

population change (e.g. increase, stable, and decrease).  

mailto:Thomas.frederick.johnson@outlook.com
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Spatial location and grain 

Records represent locations across the globe (latitude range: -51.0 to 80.0; longitude 

range: -166.0 to 166.0) but more information was found within the northern temperate 

zone. Coordinates, as reported within the primary literature, are available for 14% of 

records; in the remainder we have estimated the coordinates from the locations 

name. 

Time period and grain 

Records span from 1726 to 2016, but 92% of records represent data collected after 

1950. 

Major taxa and level of measurement 

We searched for population trend data in 87 species from four families in the order 

Carnivora: Canidae, Felidae, Hyaenidae and Ursidae.  

Software format 

.csv 

Keywords: Carnivora, Canidae, Felidae, Hyaenidae, Living Planet Index, Population trends, Ursidae 
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Introduction 

The fate of the world’s biodiversity is becoming more precarious each year, with 

reports of massive population declines (WWF, 2016), range contractions (Wolf & 

Ripple, 2017) and impending extinction events (Díaz et al., 2019). However, these 

biodiversity changes are not happening at the same rate in all places, with the fate of 

populations varying across regions (Fritz et al., 2009; Polaina et al., 2016), levels of 

protection (Amano et al., 2018), and the intrinsic traits of the affected species 

(Cardillo et al., 2005; González-Suárez & Revilla, 2013; Gonzalez-Suarez et al., 

2013). An example of this variability in extinction can be seen in the largest terrestrial 

mammals in the order Carnivora, where there is evidence for population recoveries 

and recolonizations (Chapron et al., 2014), alongside declines and extinctions 

(Ripple et al., 2014).  

Currently, the largest source of mammalian population trend data is within the Living 

Planet Index, which has collated population time-series for more than 3,000 species 

(WWF, 2020a). However, by only incorporating abundance time-series and excluding 

studies in which only the rate of change is available, the Living Planet Index limits the 

available data. Here, we expand upon the Living Planet Index for four families in the 

order Carnivora: Canidae, Felidae, Hyaenidae and Ursidae, which represent some of 

the world’s most charismatic and iconic fauna. For the 87 species in these families, 

following the IUCN taxonomy, we compiled published population trend data, including 

both quantitative metrics and qualitative descriptions of population change. These 

data provide the most comprehensive global overview of population status for these 

species and can be used to evaluate different factors that influence population 

changes. 

Methods 

Locating population trend records 

Between September 2017 and January 2018, six individuals conducted a literature 

search for carnivore population trends in our four target families. The purpose of this 

search was to ensure there was sufficient data for a large data compilation effort, and 

to refine the fields we wished to collect. These semi-structured searches included two 

terms: a reference to the taxon (e.g. common name, scientific name, family, or order) 

and a population trend term (e.g. population trend*, declin*, increase*, recover*, 

conservation status, or population growth rate). These searches were conducted 

within Scopus, Web of Science and Google Scholar. The six individuals identified 80 

peer-reviewed publications containing population trend data. 
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In February 2018, confident data were abundant enough for a large compilation 

effort, we conducted a structured search in Scopus and Web of Science looking for 

terms (see full search query in Supplementary material: Box S1) in the title, abstract 

and keywords discussing population trends in the world’s large terrestrial 

carnivorans. We considered the 87 species recognized in the four target families by 

the IUCN taxonomy (sourced February 2018). We queried the databases in English 

and Spanish. From this structured search, we found 3233 sources in English 

(reduced to 3060 after removing duplicates), and 30 sources in Spanish. Each of the 

Spanish sources were then read in full, but to further refine the English sources, each 

title was screened to remove sources not discussing the target taxa, e.g. references 

to ‘tiger shark’ were removed, this reduced the English sources to 1215.  

In the remaining 1215 English sources, two readers read the same random sample of 

50 abstracts and classified them stating whether a population trend for any of the 87 

species is likely present or absent. Cohen’s kappa agreement between readers was 

substantial (68%), however it was clear some abstracts fell between the lines and 

could not be easily classified as containing a trend, or not. To account for this, one 

reader (TFJ) classified the remaining 1215 sources into five ordinal categories: 1 - 

explicitly mentions population trends of a target species (N = 539); 2 – trends of a 

target species are discussed but are not the primary focus of the manuscript (N = 

155); 3 – trends are mentioned as part of the wider context (N = 164); 4 – population 

status is mentioned but the trend is not (N = 73); 5 – no population information 

mentioned (N = 284). Category 1 sources were then further refined to remove any 

sources discussing captive populations, simulated populations, or cases discussing 

trends in a non-target species (e.g. impact of lynx on hare population trends). This 

refining procedure left 468 category 1 sources, of which 32 had been identified in the 

unstructured search. After including the additional 48 sources identified in the 

unstructured search, we were left with 516 sources very likely to be discussing 

population trends in one of the target taxa. The entire refining process is summarised 

in Figure 1. 
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Figure 1. Data flow diagram specifying steps taken to identify publications which should be read in 

full. Black-arrows indicate sources taken forwards to next refining stage; the associated numbers 

indicate the count of publications brought through each step. The red-arrows indicate sources 

which at different steps were deemed irrelevant and not to be read in full. 
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Each of the highly relevant sources (N = 516) were read in full (no other categories 

were read in full). A selection of these category 1 sources was secondary literature 

providing population trend syntheses or compilations (e.g. van de Kerk, de Kroon, 

Conde, & Jongejans, 2013). In these cases, we located the original primary sources 

described in the secondary source and added them ad-hoc to category 1, increasing 

the overall number of sources to 536 which were to be read in full. Of these 536, we 

were unable to find the full text in ten cases, in five cases the primary data had 

already been captured, and in four cases the text was in language other than English 

or Spanish. After excluding these cases, we read the remaining 517 texts in full 

Extracting information from sources 

When a source contained a population trend, we recorded the trend and additional 

metadata describing taxonomy, location, study period and methodology (Table 1). 

Population changes were reported in a variety of formats, but broadly fall into two 

groups, quantitative where the trend was described numerically (e.g. %change), and 

qualitative where the trend was described categorically (e.g. increase). In the 

quantitative category, we record the trend as presented in the original source. For 

studies that reported trends in multiple formats, we recorded the most informative 

e.g. if raw abundance data were available this would be preferred over any 

population change (%) estimates – see Table S1 for more information. If the 

population values were only reported in a graph or figure, we used a graphic digitiser 

(https://apps.automeris.io/wpd/) to estimate the values (Rohatgi, 2015). For population 

trends calculated from time-series data, we recorded the length of the time series 

(number of individual estimates used to derive the trend). For population trends 

based on matrix models and demographic parameters, we recorded the number of 

sampling years used to estimate the demographic parameters. For estimates of 

annual rates of change (λ and r) derived from three or more data points, we also 

noted any available estimate of dispersion (e.g., variance) and test-statistic values. 

For the qualitative descriptions of trends, we inferred the meaning of each description 

and placed the trend into one of the following 4 categories: increase – the 

populations increased; stable – the populations stable or unchanged; decrease – the 

populations decreased; varied – the population has increased and decreased over 

the monitoring period. 

For each trend we recorded the binomial species name following the IUCN taxonomy 

– we identify discrepancies between the IUCN taxonomy and the Wilson & Reeder 

(2005) reference taxonomy in Table S2. In cases where the species name in the 

primary literature did not match the IUCN taxonomy, we referred to the IUCN 

taxonomy synonyms to locate the accepted IUCN species name. Subspecies names 

https://apps.automeris.io/wpd/
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were also available in some primary sources, and we noted these as recorded in the 

primary source. For location, we recorded the name of the study site given in the 

primary source, whether the site was described as a protected area, and the country 

or countries it overlapped. If provided, we recorded the study site’s coordinates 

(minimum, mid-point and maximum) converted into decimal degrees. Coordinate 

precision was likely variable among studies and is overall unknown. If studies did not 

report coordinates, we used the name given to the study site and location country to 

populate the coordinates using OpenCage (Salmon, 2018). OpenCage provides 

coordinates and a degree of confidence in the estimate, where 1 is low and 9 is high. 

For all coordinates were the confidence level fell below 7, we manually checked and 

if needed amended coordinates. When reported in the primary source, we also 

recorded the area (size) of the study site. For the study period in each record, we 

noted the start and end date of the population monitoring, and if available the 

corresponding population sizes at these dates. We captured the data collection and 

analysis methods from each source using several descriptors (Table 1). For studies 

that combined multiple methods, we precautionarily recorded the least robust 

approach. If we could not identify the method, the record was assigned ‘undefined’. 

Causes of change 

Some sources tested or discussed the role of distinct factors to explain observed 

population changes. We recorded these factors reclassified into a modified version of 

the IUCN standardized classification schemes for Threats (v3.2) and Conservation 

Actions (v2.0), see Table S6. For each recorded factor we noted its effect 

(associated to increase or to decline) and how this influence was determined. It is 

important to note that effects were not always negative for threat scheme or positive 

for the conservation actions scheme. For example, urbanisation is listed under the 

threat scheme but has led to population increases in red fox Vulpes vulpes (Gloor et 

al., 2001). Finally, we note that factors not listed for a given record do not imply a 

threat or conservation action was not important or did not occur in that population, 

but simply that the factor was not mentioned in the source. 

Validating records 

The first author TJF read all sources and entered all data. To validate the records 

and ensure quality control, 31 (10%) of the category one sources TFJ identified as 

having data were also reviewed by an additional author (either PC or MGS). We 

selected the 10% sample with a random stratified approach to ensure each of the 

different formats of trends were reviewed e.g. percentage change, population time-

series, and qualitative descriptions. TFJ then further scrutinised the 31 sources to 
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detect errors in TFJs original work, that of that second readers, and identify causes of 

discrepancies in data entry. 

Results 

From the 542 sources read in full, 232 did not contain the population trend 

information we required and so were excluded from the dataset. Trends were 

excluded for a variety of reasons, examples include: the trend was simulated (N = 

23), the trend referred to primary sources already captured in the dataset (N = 20), 

the trend described range change instead of abundance change (N = 6). 

We identified and recorded 1122 population trends from the remaining 310 sources. 

These represented 50 (57%) of the studied species covering the four taxonomic 

families and 25 (69%) out of 36 genera (Figure 2). Some species had a single trend 

estimate, while we compiled 621 trend estimates for the top five species: gray wolf 

(Canis lupus), brown bear (Ursus arctos), grizzly bear (Ursus americanus), lion 

(Panthera leo) and eurasian lynx (Lynx lynx). Many of the records occurred within the 

northern hemisphere (Figure 3), particularly in Europe (N = 384) and North America 

(N = 415), but there was also a cluster of records in East and Southern Africa (N = 

170) – with records in 86 countries in total. We located very few records in Central, 

North and West Africa, Central and South America, or Northern Asia. The dataset 

includes records extending from 1726-2017 (Figure 4), with the vast majority (90%) 

starting after 1950. 
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Figure 2. Number of population trend records per studied species, shown across the phylogeny. 

The tree represents four taxonomic families: Canidae (light grey – solid line), Ursidae (light grey – 

dotted line), Hyaenidae (dark grey – dotted line) and Felidae (dark grey – solid line). We shows 

records for both quantitative (teal) and qualitative (gold) trends. 

 



Chapter 3: CaPTrends - a global database of population trends in large terrestrial Carnivorans 

 

108 
 

 

Figure 3. Location of study population from which we compiled quantitative (teal) and qualitative 

(gold) population trend records. Density plots indicate the frequency of the data points at varying 

latitudes and longitudes. Coordinates are decimal degrees. 

 

Figure 4. Distribution of qualitative (gold) and quantitative (green) population trend records 

between 1900-2015. Start and end date of each population trend record, ranked in ascending order 

of study start. For the quantitative plot, we display the mean number of years between population 

estimates in each trend as a proxy for sampling effort. 
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Most of the 1122 population trends represent quantitative estimates (N = 845), with a 

quarter (N = 277) providing only qualitative descriptors. The quantitative records 

collectively represent 6597 population size estimates. Most of the quantitative trends 

are recorded as a time-series of abundance values (63.9%), followed by population 

lambdas (17.4%), percentage change (7.5%), fold change (5.8%), and annual slope 

coefficients (5.4%). 

Validating records 

Across the 31 sources that underwent validation, TFJ and the second readers 

identified 46 population trends. The second readers located 40 and missed six. TFJ 

located 45 and missed one, which suggests that across all of the evaluated sources 

TFJ could have failed to detect ~2% of population trends. Further discrepancies were 

identified when TFJ re-scrutinised the 31 sources, and compared the original data 

entry to that of the second readers. Tthe second readers misclassified more of the 

values than TFJ (7.4% vs 0%), produced more missing values (6.4% vs. 0.3%), and 

made more typos (0.5% vs. 0.3%). Despite these discrepancies, the results were 

qualitatively very similar in those trends identified by both TFJ and the second 

readers, with TFJ and the second readers producing the same trend value, same 

species, and similar locations e.g. TFJ and the second readers identified the same 

state or region in all cases. Furthermore, both TFJ and the second readers identified 

the same trends that should be treated cautiously and flagged with a warning in the 

dataset. All of this considered, the classification protocol was considered robust as 

TFJ, who entered the values in the full dataset, produced relatively few errors. 

Discussion 

We searched the literature to retrieve population trend records for 87 species of large 

carnivorans and located 1122 estimates of population change representing 50 

species. These records cover a wide temporal window (1726-2017) and represent 

diverse locations around the globe, although, there is temporal and spatial 

heterogeneity with more records in recent years and temperate areas of the Northern 

hemisphere. Our effort substantially expanded the previous dataset for these species 

(the Living Planet Index includes 367 trends, as of 2019) and thus, CaPTrends 

provides a valuable resource to address ecological questions, complete a more 

comprehensive assessment of population status for these species, and explore 

potential predictors of observed population changes. 

Our dataset located additional time-series records not reported in the Living Planet 

Index, but also added less precise and qualitative descriptors which need to be 

interpreted with caution. For example, we found that studies that provided 
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summarised quantitative metrics (e.g. annual population growth/lambda) did not 

always offer estimates of their error and thus, we could not extract uncertainty around 

the trend in all cases. This issue is even more emphasised in the qualitative 

descriptions (e.g. stable, increase, or decrease), where both the error and magnitude 

of the trend are unknown. However, if used cautiously, the lower resolution metrics 

could be important in addressing data gaps for species and locations for which high 

resolution population trend records are not available (WWF, 2016). This is 

particularly important, as these data gaps are most prevalent in biodiverse regions 

(WWF, 2016), which are experiencing the greatest negative-change in human 

footprint (Venter et al., 2016). Incorporating lower resolution metrics into models of 

biodiversity change could reduce some of these biases - providing a robust modelling 

approach is used.  

Whilst CaPTrends, and especially the inclusion of the qualitative data, increases the 

taxonomic, spatial, and temporal coverage of the publicly available Carnivoran 

population trend data, biases are still present. Across the taxonomy, the Lycalopex 

and Leopardus genera are particularly data poor, and generally, it appears smaller 

species occurring outside of North America and Europe are the most poorly 

represented. These spatial biases do persist for a whole array of species though, 

with records largely absent from South and Central America, West and North Africa, 

Eastern Europe, as well as North and West Asia. For the temporal biases, records 

are very sparse before 1950, and sparse as well as generally lower quality (few 

abundance observations per trend) before 1980, suggesting this data is likely unfit for 

use preceding the 1970 baseline used in the Living Planet index (WWF, 2020b). 

Within the data, there is a risk that the records are prone to publication bias, whereby 

records are more likely to be available within the literature for certain species and 

locations, and even for certain trend types (e.g. perhaps stable trends are less likely 

to be published compared to decreasing trends). Publication bias is likely widespread 

within ecological datasets compiled through systematic reviews (Møllerand & 

Jennions, 2001; Jennions & Møller, 2002), and when this data is analysed, the likely 

publication bias warrants careful consideration and methodological nuance. 

However, relative to many other ecological datasets, we would expect the degree of 

this publication bias to be far smaller, as Carnivorans are often viewed as 

charismatic, and so even stable trends outside of the global north may be viewed as 

attractive by journals, and so would be detected by the systematic search. 

Future work could expand on this dataset by exploring other languages, beyond the 

English and Spanish that are already included, or even capturing qualitative data 

across a wider array of species. However, compilation efforts like this are very time-
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consuming, and so future work could also explore options for automating this data 

collection using text analysis tools (Cornford et al., 2021; Johnson et al., 2021c)  

Usage notes 

CaPTrends is presented as a relational dataset (Figure 5). The main file 

‘captrends.csv’ includes all master data (e.g. unique id, species, location and time-

frame), as well as all population data, except the population time-series. Time-series 

of population abundances and population changes are located in ‘ts_abundance.csv’ 

and ‘ts_change.csv’, respectively, both of which are linked to ‘captrends.csv’ through 

the ‘DataTableID’ field. ‘direction.csv’ also links to ‘captrends.csv’ through 

‘DataTableID’ and describes positive and negative influences of each trend. Finally, 

‘sources.csv’ links to ‘captrends.csv’ through ‘Citation_key’ and contains information 

on where the trend was sourced from e.g. the tile of the publication. Comprehensive 

metadata is available for each of these datasets in the supplementary material. 

 

Figure 5. Diagram depicting relational database, including each datasets contents, and how each 

dataset is linked (arrows). 

To support the use of this dataset, each population trend record has been annotated 

and labelled (Table S1). Much of this information would be helpful in filtering the 

dataset to exclude trends that are deemed of low quality or irrelevant to a given 

research question. For example, for investigating extinction risk, one may opt to 

remove data for invasive populations. 

This dataset may be analysed focusing on different descriptors. Including qualitative 

descriptors provides the most records but highest uncertainty and involves setting 

thresholds to assign quantitative metrics into categories which is not always 

straightforward. Focusing only on quantitative records reduces the scope and 

increase biases (not all species and areas are equally like to have quantitative 

records as shown in figure 2). Approaches like data integration (Isaac et al., 2020) 

which can incorporate both data types are likely to be least biased (spatially, 

temporally, and taxonomically).  
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Another consideration when using this data is to account for differences in population 

sampling effort over time. In the majority of records, abundance estimates are scaled 

relative to effort, or provide an empirically derived abundance or density estimate. 

However, in nearly 30% of observations, the reported trend, or described timeseries 

is either insufficiently described to know whether the population sampling effort has 

been account for in the trend and/or timeseries, or the paper has specifically 

described that the abundance estimates are not relative to effort – see captrends.csv 

metadata for column Modelling_method. When using this dataset, its essential that 

these less robust estimates are treated cautiously. 
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Supplementary material and dataset metadata 

Box S1. Structured search queries in Web of Science and Scopus. Queries were developed and 

searched in both English and Spanish 

 

  
Web of Science (English): TS=(( "carnivor*" OR "felid*" OR "canid*" OR "ursid*" OR "hyaen*" OR "Atelocynus microtis" OR "Canis adustus" OR "Canis aureus" OR "Canis latrans" OR 
"Canis lupus" OR "Canis mesomelas" OR "Canis rufus" OR "Canis simensis" OR "Cerdocyon thous" OR "Chrysocyon brachyurus" OR "Cuon alpinus" OR "Dusicyon australis" OR 
"Dusicyon avus" OR "Lycalopex culpaeus" OR "Lycalopex fulvipes" OR "Lycalopex griseus" OR "Lycalopex gymnocercus" OR "Lycalopex sechurae" OR "Lycalopex vetulus" OR "Lycaon 
pictus" OR "Nyctereutes procyonoides" OR "Otocyon megalotis" OR "Speothos venaticus" OR "Urocyon cinereoargenteus" OR "Urocyon littoralis" OR "Vulpes bengalensis" OR "Vulpes 
cana" OR "Vulpes chama" OR "Vulpes corsac" OR "Vulpes ferrilata" OR "Vulpes lagopus" OR "Vulpes macrotis" OR "Vulpes pallida" OR "Vulpes rueppellii" OR "Vulpes velox" OR 
"Vulpes vulpes" OR "Vulpes zerda" OR "Acinonyx jubatus" OR "Caracal aurata" OR "Caracal caracal" OR "Catopuma badia" OR "Catopuma temminckii" OR "Felis bieti" OR "Felis 
chaus" OR "Felis margarita" OR "Felis nigripes" OR "Felis silvestris" OR "Herpailurus yagouaroundi" OR "Leopardus colocolo" OR "Leopardus geoffroyi" OR "Leopardus guigna" OR 
"Leopardus guttulus" OR "Leopardus jacobita" OR "Leopardus pardalis" OR "Leopardus tigrinus" OR "Leopardus wiedii" OR "Leptailurus serval" OR "Lynx canadensis" OR "Lynx lynx" 
OR "Lynx pardinus" OR "Lynx rufus" OR "Neofelis diardi" OR "Neofelis nebulosa" OR "Otocolobus manul" OR "Panthera leo" OR "Panthera onca" OR "Panthera pardus" OR "Panthera 
tigris" OR "Panthera uncia" OR "Pardofelis marmorata" OR "Prionailurus bengalensis" OR "Prionailurus planiceps" OR "Prionailurus rubiginosus" OR "Prionailurus viverrinus" OR "Puma 
concolor" OR "Crocuta crocuta" OR "Hyaena hyaena" OR "Parahyaena brunnea" OR "Proteles cristata" OR "Ailuropoda melanoleuca" OR "Helarctos malayanus" OR "Melursus ursinus" 
OR "Tremarctos ornatus" OR "Ursus americanus" OR "Ursus arctos" OR "Ursus maritimus" OR "Ursus thibetanus" OR "Canis thous" OR "Canis brachyurus" OR "Canis alpinus" OR 
"Canis australis" OR "Pseudalopex culpaeus" OR "Pseudalopex fulvipes" OR "Pseudalopex griseus" OR "Pseudalopex gymnocercus" OR "Pseudalopex sechurae" OR "Pseudalopex 
vetulus" OR "Canis procyonoides" OR "Canis cinereoargenteus" OR "Vulpes littoralis" OR "Alopex lagopus" OR "Vulpes rueppelli " OR "Canis vulpes" OR "Fennecus zerda" OR "Felis 
jubata" OR "Profelis aurata" OR "Felis badia" OR "Pardofelis badia" OR "Felis temminckii" OR "Pardofelis temminckii" OR "Felis silvestris" OR "Felis yagouaroundi" OR "Herpailurus 
yagouaroundi" OR "Puma yagouaroundi" OR "Lynchailurus colocolo" OR "Oncifelis colocolo" OR "Oncifelis geoffroyi" OR "Oncifelis guigna" OR "Felis jacobita" OR "Oreailurus jacobita" 
OR "Oreailurus jacobitus" OR "Oreailurus jacobitus" OR "Caracal serval" OR "Felis nebulosa" OR "Felis manul" OR "Felis leo" OR "Felis onca" OR "Felis pardus" OR "Felis tigris" OR 
"Felis uncia" OR "Uncia uncia" OR "Felis concolor" OR "Hyaena brunnea" OR "Proteles cristatus" OR "Ursus melanoleucus" OR "Ursus malayanus" OR "Bradypus ursinus" OR "Ursus 
ornatus" OR "Thalarctos maritimus" OR "Aardwolf" OR "Fox" OR "Wolf" OR "Lynx" OR "Lion" OR "Leopard" OR "Caracal" OR "Bear" OR "Jackal" OR "Bobcat" OR "Puma" OR "Cougar" 
OR "Dhole" OR "Hyaena" OR "Cheetah" OR "Fennec" OR "Cat" OR "Dog" OR "Panda" OR "Margay" OR "Ocelot" OR "Tiger" ) AND ( "population trend*" OR "population dec*" OR 
"population increas*" OR "population recover*" OR "conservation status" OR "population growth" ) NOT ( "domestic" OR "marine" OR "plant" OR "sea" OR "ocean" )) 
 
Scopus (English): TITLE-ABS-KEY  ( "carnivor*" OR "felid*" OR "canid*" OR "ursid*" OR "hyaen*" OR "Atelocynus microtis" OR "Canis adustus" OR "Canis aureus" OR "Canis latrans" 
OR "Canis lupus" OR "Canis mesomelas" OR "Canis rufus" OR "Canis simensis" OR "Cerdocyon thous" OR "Chrysocyon brachyurus" OR "Cuon alpinus" OR "Dusicyon australis" OR 
"Dusicyon avus" OR "Lycalopex culpaeus" OR "Lycalopex fulvipes" OR "Lycalopex griseus" OR "Lycalopex gymnocercus" OR "Lycalopex sechurae" OR "Lycalopex vetulus" OR "Lycaon 
pictus" OR "Nyctereutes procyonoides" OR "Otocyon megalotis" OR "Speothos venaticus" OR "Urocyon cinereoargenteus" OR "Urocyon littoralis" OR "Vulpes bengalensis" OR "Vulpes 
cana" OR "Vulpes chama" OR "Vulpes corsac" OR "Vulpes ferrilata" OR "Vulpes lagopus" OR "Vulpes macrotis" OR "Vulpes pallida" OR "Vulpes rueppellii" OR "Vulpes velox" OR 
"Vulpes vulpes" OR "Vulpes zerda" OR "Acinonyx jubatus" OR "Caracal aurata" OR "Caracal caracal" OR "Catopuma badia" OR "Catopuma temminckii" OR "Felis bieti" OR "Felis 
chaus" OR "Felis margarita" OR "Felis nigripes" OR "Felis silvestris" OR "Herpailurus yagouaroundi" OR "Leopardus colocolo" OR "Leopardus geoffroyi" OR "Leopardus guigna" OR 
"Leopardus guttulus" OR "Leopardus jacobita" OR "Leopardus pardalis" OR "Leopardus tigrinus" OR "Leopardus wiedii" OR "Leptailurus serval" OR "Lynx canadensis" OR "Lynx lynx" 
OR "Lynx pardinus" OR "Lynx rufus" OR "Neofelis diardi" OR "Neofelis nebulosa" OR "Otocolobus manul" OR "Panthera leo" OR "Panthera onca" OR "Panthera pardus" OR "Panthera 
tigris" OR "Panthera uncia" OR "Pardofelis marmorata" OR "Prionailurus bengalensis" OR "Prionailurus planiceps" OR "Prionailurus rubiginosus" OR "Prionailurus viverrinus" OR "Puma 
concolor" OR "Crocuta crocuta" OR "Hyaena hyaena" OR "Parahyaena brunnea" OR "Proteles cristata" OR "Ailuropoda melanoleuca" OR "Helarctos malayanus" OR "Melursus ursinus" 
OR "Tremarctos ornatus" OR "Ursus americanus" OR "Ursus arctos" OR "Ursus maritimus" OR "Ursus thibetanus" OR "Canis thous" OR "Canis brachyurus" OR "Canis alpinus" OR 
"Canis australis" OR "Pseudalopex culpaeus" OR "Pseudalopex fulvipes" OR "Pseudalopex griseus" OR "Pseudalopex gymnocercus" OR "Pseudalopex sechurae" OR "Pseudalopex 
vetulus" OR "Canis procyonoides" OR "Canis cinereoargenteus" OR "Vulpes littoralis" OR "Alopex lagopus" OR "Vulpes rueppelli " OR "Canis vulpes" OR "Fennecus zerda" OR "Felis 
jubata" OR "Profelis aurata" OR "Felis badia" OR "Pardofelis badia" OR "Felis temminckii" OR "Pardofelis temminckii" OR "Felis silvestris" OR "Felis yagouaroundi" OR "Herpailurus 
yagouaroundi" OR "Puma yagouaroundi" OR "Lynchailurus colocolo" OR "Oncifelis colocolo" OR "Oncifelis geoffroyi" OR "Oncifelis guigna" OR "Felis jacobita" OR "Oreailurus jacobita" 
OR "Oreailurus jacobitus" OR "Oreailurus jacobitus" OR "Caracal serval" OR "Felis nebulosa" OR "Felis manul" OR "Felis leo" OR "Felis onca" OR "Felis pardus" OR "Felis tigris" OR 
"Felis uncia" OR "Uncia uncia" OR "Felis concolor" OR "Hyaena brunnea" OR "Proteles cristatus" OR "Ursus melanoleucus" OR "Ursus malayanus" OR "Bradypus ursinus" OR "Ursus 
ornatus" OR "Thalarctos maritimus" OR "Aardwolf" OR "Fox" OR "Wolf" OR "Lynx" OR "Lion" OR "Leopard" OR "Caracal" OR "Bear" OR "Jackal" OR "Bobcat" OR "Puma" OR "Cougar" 
OR "Dhole" OR "Hyaena" OR "Cheetah" OR "Fennec" OR "Cat" OR "Dog" OR "Panda" OR "Margay" OR "Ocelot" OR "Tiger" ) AND ( "population trend*" OR "population dec*" OR 
"population increas*" OR "population recover*" OR "conservation status" OR "population growth" ) AND NOT ( "domestic" OR "marine" OR "plant" OR "sea" OR "ocean" )  
 
Web of Science (Spanish): TS = (( "carnivor*" OR "felid*" OR "canid*" OR "ursid*" OR "hyaen*" OR "Atelocynus microtis" OR "Canis adustus" OR "Canis aureus" OR "Canis latrans" OR 
"Canis lupus" OR "Canis mesomelas" OR "Canis rufus" OR "Canis simensis" OR "Cerdocyon thous" OR "Chrysocyon brachyurus" OR "Cuon alpinus" OR "Dusicyon australis" OR 
"Dusicyon avus" OR "Lycalopex culpaeus" OR "Lycalopex fulvipes" OR "Lycalopex griseus" OR "Lycalopex gymnocercus" OR "Lycalopex sechurae" OR "Lycalopex vetulus" OR "Lycaon 
pictus" OR "Nyctereutes procyonoides" OR "Otocyon megalotis" OR "Speothos venaticus" OR "Urocyon cinereoargenteus" OR "Urocyon littoralis" OR "Vulpes bengalensis" OR "Vulpes 
cana" OR "Vulpes chama" OR "Vulpes corsac" OR "Vulpes ferrilata" OR "Vulpes lagopus" OR "Vulpes macrotis" OR "Vulpes pallida" OR "Vulpes rueppellii" OR "Vulpes velox" OR 
"Vulpes vulpes" OR "Vulpes zerda" OR "Acinonyx jubatus" OR "Caracal aurata" OR "Caracal caracal" OR "Catopuma badia" OR "Catopuma temminckii" OR "Felis bieti" OR "Felis 
chaus" OR "Felis margarita" OR "Felis nigripes" OR "Felis silvestris" OR "Herpailurus yagouaroundi" OR "Leopardus colocolo" OR "Leopardus geoffroyi" OR "Leopardus guigna" OR 
"Leopardus guttulus" OR "Leopardus jacobita" OR "Leopardus pardalis" OR "Leopardus tigrinus" OR "Leopardus wiedii" OR "Leptailurus serval" OR "Lynx canadensis" OR "Lynx lynx" 
OR "Lynx pardinus" OR "Lynx rufus" OR "Neofelis diardi" OR "Neofelis nebulosa" OR "Otocolobus manul" OR "Panthera leo" OR "Panthera onca" OR "Panthera pardus" OR "Panthera 
tigris" OR "Panthera uncia" OR "Pardofelis marmorata" OR "Prionailurus bengalensis" OR "Prionailurus planiceps" OR "Prionailurus rubiginosus" OR "Prionailurus viverrinus" OR "Puma 
concolor" OR "Crocuta crocuta" OR "Hyaena hyaena" OR "Parahyaena brunnea" OR "Proteles cristata" OR "Ailuropoda melanoleuca" OR "Helarctos malayanus" OR "Melursus ursinus" 
OR "Tremarctos ornatus" OR "Ursus americanus" OR "Ursus arctos" OR "Ursus maritimus" OR "Ursus thibetanus" OR "Canis thous" OR "Canis brachyurus" OR "Canis alpinus" OR 
"Canis australis" OR "Pseudalopex culpaeus" OR "Pseudalopex fulvipes" OR "Pseudalopex griseus" OR "Pseudalopex gymnocercus" OR "Pseudalopex sechurae" OR "Pseudalopex 
vetulus" OR "Canis procyonoides" OR "Canis cinereoargenteus" OR "Vulpes littoralis" OR "Alopex lagopus" OR "Vulpes rueppelli " OR "Canis vulpes" OR "Fennecus zerda" OR "Felis 
jubata" OR "Profelis aurata" OR "Felis badia" OR "Pardofelis badia" OR "Felis temminckii" OR "Pardofelis temminckii" OR "Felis silvestris" OR "Felis yagouaroundi" OR "Herpailurus 
yagouaroundi" OR "Puma yagouaroundi" OR "Lynchailurus colocolo" OR "Oncifelis colocolo" OR "Oncifelis geoffroyi" OR "Oncifelis guigna" OR "Felis jacobita" OR "Oreailurus jacobita" 
OR "Oreailurus jacobitus" OR "Oreailurus jacobitus" OR "Caracal serval" OR "Felis nebulosa" OR "Felis manul" OR "Felis leo" OR "Felis onca" OR "Felis pardus" OR "Felis tigris" OR 
"Felis uncia" OR "Uncia uncia" OR "Felis concolor" OR "Hyaena brunnea" OR "Proteles cristatus" OR "Ursus melanoleucus" OR "Ursus malayanus" OR "Bradypus ursinus" OR "Ursus 
ornatus" OR "Thalarctos maritimus" OR "Borochi" OR "Chacal" OR "Zorro" OR "Gato" OR "León" OR "Manigordo" OR "Manul" OR "Mitzli" OR "Ocelote" OR "Onza" OR "Oso" OR 
"Pacha" OR "Panda" OR "Pantera" OR "Perro" OR "Renard" OR "Tigre" OR "Tigrillo" OR "Tirica" OR "Umba" OR "Yaguar*" OR "Jaguar" OR "Lince" OR "Lobo" OR "Aguará" ) AND ( 
"tendencia poblacional" OR "declinación poblacional" OR "incremento poblacional" OR "recuperación poblacional" OR "estado de conservación" OR "tasa de incremento poblacional" ) 
NOT ( "Doméstic*" OR "Marin*" OR "Planta" OR "Océano" )) 
 
Scopus (Spanish): TITLE-ABS-KEY  ( "carnivor*"  OR  "felid*"  OR  "canid*"  OR  "ursid*"  OR  "hyaen*"  OR  "Atelocynus microtis"  OR  "Canis adustus"  OR  "Canis aureus"  OR  
"Canis latrans"  OR  "Canis lupus"  OR  "Canis mesomelas"  OR  "Canis rufus"  OR  "Canis simensis"  OR  "Cerdocyon thous"  OR  "Chrysocyon brachyurus"  OR  "Cuon alpinus"  OR  
"Dusicyon australis"  OR  "Dusicyon avus"  OR  "Lycalopex culpaeus"  OR  "Lycalopex fulvipes"  OR  "Lycalopex griseus"  OR  "Lycalopex gymnocercus"  OR  "Lycalopex sechurae"  OR  
"Lycalopex vetulus"  OR  "Lycaon pictus"  OR  "Nyctereutes procyonoides"  OR  "Otocyon megalotis"  OR  "Speothos venaticus"  OR  "Urocyon cinereoargenteus"  OR  "Urocyon 
littoralis"  OR  "Vulpes bengalensis"  OR  "Vulpes cana"  OR  "Vulpes chama"  OR  "Vulpes corsac"  OR  "Vulpes ferrilata"  OR  "Vulpes lagopus"  OR  "Vulpes macrotis"  OR  "Vulpes 
pallida"  OR  "Vulpes rueppellii"  OR  "Vulpes velox"  OR  "Vulpes vulpes"  OR  "Vulpes zerda"  OR  "Acinonyx jubatus"  OR  "Caracal aurata"  OR  "Caracal caracal"  OR  "Catopuma 
badia"  OR  "Catopuma temminckii"  OR  "Felis bieti"  OR  "Felis chaus"  OR  "Felis margarita"  OR  "Felis nigripes"  OR  "Felis silvestris"  OR  "Herpailurus yagouaroundi"  OR  
"Leopardus colocolo"  OR  "Leopardus geoffroyi"  OR  "Leopardus guigna"  OR  "Leopardus guttulus"  OR  "Leopardus jacobita"  OR  "Leopardus pardalis"  OR  "Leopardus tigrinus"  OR  
"Leopardus wiedii"  OR  "Leptailurus serval"  OR  "Lynx canadensis"  OR  "Lynx lynx"  OR  "Lynx pardinus"  OR  "Lynx rufus"  OR  "Neofelis diardi"  OR  "Neofelis nebulosa"  OR  
"Otocolobus manul"  OR  "Panthera leo"  OR  "Panthera onca"  OR  "Panthera pardus"  OR  "Panthera tigris"  OR  "Panthera uncia"  OR  "Pardofelis marmorata"  OR  "Prionailurus 
bengalensis"  OR  "Prionailurus planiceps"  OR  "Prionailurus rubiginosus"  OR  "Prionailurus viverrinus"  OR  "Puma concolor"  OR  "Crocuta crocuta"  OR  "Hyaena hyaena"  OR  
"Parahyaena brunnea"  OR  "Proteles cristata"  OR  "Ailuropoda melanoleuca"  OR  "Helarctos malayanus"  OR  "Melursus ursinus"  OR  "Tremarctos ornatus"  OR  "Ursus americanus"  
OR  "Ursus arctos"  OR  "Ursus maritimus"  OR  "Ursus thibetanus"  OR  "Canis thous"  OR  "Canis brachyurus"  OR  "Canis alpinus"  OR  "Canis australis"  OR  "Pseudalopex culpaeus"  
OR  "Pseudalopex fulvipes"  OR  "Pseudalopex griseus"  OR  "Pseudalopex gymnocercus"  OR  "Pseudalopex sechurae"  OR  "Pseudalopex vetulus"  OR  "Canis procyonoides"  OR  
"Canis cinereoargenteus"  OR  "Vulpes littoralis"  OR  "Alopex lagopus"  OR  "Vulpes rueppelli "  OR  "Canis vulpes"  OR  "Fennecus zerda"  OR  "Felis jubata"  OR  "Profelis aurata"  OR  
"Felis badia"  OR  "Pardofelis badia"  OR  "Felis temminckii"  OR  "Pardofelis temminckii"  OR  "Felis silvestris"  OR  "Felis yagouaroundi"  OR  "Herpailurus yagouaroundi"  OR  "Puma 
yagouaroundi"  OR  "Lynchailurus colocolo"  OR  "Oncifelis colocolo"  OR  "Oncifelis geoffroyi"  OR  "Oncifelis guigna"  OR  "Felis jacobita"  OR  "Oreailurus jacobita"  OR  "Oreailurus 
jacobitus"  OR  "Oreailurus jacobitus"  OR  "Caracal serval"  OR  "Felis nebulosa"  OR  "Felis manul"  OR  "Felis leo"  OR  "Felis onca"  OR  "Felis pardus"  OR  "Felis tigris"  OR  "Felis 
uncia"  OR  "Uncia uncia"  OR  "Felis concolor"  OR  "Hyaena brunnea"  OR  "Proteles cristatus"  OR  "Ursus melanoleucus"  OR  "Ursus malayanus"  OR  "Bradypus ursinus"  OR  
"Ursus ornatus"  OR  "Thalarctos maritimus"  OR  "Borochi"  OR  "Chacal"  OR  "Zorro"  OR  "Gato"  OR  "León"  OR  "Manigordo"  OR  "Manul"  OR  "Mitzli"  OR  "Ocelote"  OR  "Onza"  
OR  "Oso"  OR  "Pacha"  OR  "Panda"  OR  "Pantera"  OR  "Perro"  OR  "Renard"  OR  "Tigre"  OR  "Tigrillo"  OR  "Tirica"  OR  "Umba"  OR  "Yaguar*"  OR  "Jaguar"  OR  "Lince"  OR  
"Lobo"  OR  "Aguará" )  AND  ( "tendencia poblacional"  OR  "declinación poblacional"  OR  "incremento poblacional"  OR  "recuperación poblacional"  OR  "estado de conservación"  OR  
"tasa de incremento poblacional" )  AND NOT  ( "Doméstic*"  OR  "Marin*"  OR  "Planta"  OR  "Océano" )  AND  ( LIMIT-TO ( LANGUAGE ,  "Spanish" )) 
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Table S1. Description of fields in the table captrends.csv. This is the core dataset with all master 

information and is the foundation that links to the other relational databases: timeseries.csv, 

direction.csv, and sources.csv. ‘Data type’ describes the format of the data, for categorical fields the 

selection options are underlined with its description italicised. 

Field Description Data type 

DataTableID Unique numerical code for each population trend record. Matches 
with tables: ts_abundance.csv, ts_change.csv, direction.csv. 

Character 

Species Binomial species name following IUCN taxonomy Character [populated 
from Table S2] 

Sub_species Subspecies as listed within the source Character 

Citation_key Unique alphanumerical code for each source to match with table 
sources.csv 

Character 

Spatial_locality If papers have trends split into different sites, each site is given its 
own spatial unique numerical code 

Numeric 

Temporal_locality If papers have trends split into different time points (e.g. 1980 - 
1990, and 1990 - 2000), each consecutive time series is given its 
own temporal numerical code 

Numeric 

Locality_name Name of study site as described in the primary source Character 

Singular_country Country where studied population occurs following ISO3166 
naming standards as of 2018 (e.g. source mentions Soviet Union 
and coordinates indicate Russia, Russia was recorded). 

Character [populated 
from Table S3] 

Multiple_countries When studied population overlaps multiple countries, each country 
is included in a list separated with semi-colons. Country names 
follow ISO3166 standards. 

Character [populated 
from supplementary: 
Country list] 

Wider_population Further information about the study site e.g. name of the region, 
state or national park. 

Character 

Locality_area Numeric estimate of the study site area  Numeric 

Locality_area_units Units in which area of study site ‘Locality_area’ is reported. 
Categories: 

Hectares: Area where the population was studied (recorded in 
hectares) 

Km2: Area where the population was studied (recorded in square 
kilometres) 

Categorical 
 

Study_year_start Year of first population size estimate  Numeric 

Study_year_end Year of final population size estimate Numeric 

N_observations Number of population size estimates used to derive the trend. For 
quantitative population trends, the minimum value is 2. For records 
which include the complete time-series the value is missing but can 
be extracted from the ts_abundance.csv and ts_change.csv tables. 
For qualitative trends this value regularly equals one or zero, as 
there are many cases in the qualitative trends where only one or 
zero population estimates are made, and the assessment of the 
trend is more subjective. For matrix models, this value represents 
the number of sampling years, rather than the number of population 
size estimates. 

Numeric 

Field_method Field method for deriving population size estimates or demographic 
information. Categories: 

Individuals identified: All individuals of a population were identified.  

Systematic – direct: Monitoring approach is systematic (not-
opportunistic), is not clearly prone to spatial or temporal bias, and 

Categorical 
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involves direct observations of the animal (either alive or dead) e.g. 
through camera-trap grids or road-transects.  

Systematic – indirect: Monitoring approach is systematic (not-
opportunistic), is not clearly prone to spatial or temporal bias, and 
involves indirect observations of the animal e.g. footprint, audio 
calls, fur traps.  

Systematic -undefined: Monitoring approach is systematic (not-
opportunistic) and is not clearly prone to spatial or temporal bias but 
the actual method of making observations is unclear or a mix of 
direct and indirect.  

Unsystematic – direct: Monitoring approach is opportunistic or not 
completely systematic and is at least partially prone to spatial or 
temporal bias; also involves direct observations of the animal 
(either alive or dead) e.g. through camera-trap grids or road-
transects.  

Unsystematic – indirect: Monitoring approach is opportunistic or not 
completely systematic and is at least partially prone to spatial or 
temporal bias; also involves indirect observations of the animal e.g. 
footprint, audio calls, fur traps.  

Unsystematic - undefined: Monitoring approach is opportunistic or 
not completely systematic and is at least partially prone to spatial or 
temporal bias; also the actual method of making observations is 
unclear or a mix of direct and indirect.  

Undefined: Population monitoring method poorly defined or does 
not meet one of the above criteria. 

Modelling_method Analysis method for deriving population estimates or demographic 
information. Categories: 

Model derived abundance/density: Statistical model used to convert 
field data into population abundance or density estimates.  

Model occupancy: Statistical model used to convert occupancy field 
data into population abundance or density estimates.  

Matrix modelling: Statistical model to estimate population change 
using demographic parameters.  

Total count: Total population size is known, no need for statistical 
inference of abundance.  

Relative abundance: Statistical approach to control for different 
sampling effort in detection events e.g. relative abundance.  

Field values: Raw field data presented, no statistical modelling used 
to control for differences in sampling effort, observers etc.  

Undefined: Approach for estimating population size is unclear or not 
explained, or does not clearly fall into any other category. 

Categorical 
 

Population_metric Type of population size measurement. Categories: 

Abundance: Estimates of the number of individuals in the 

population.  

Density: Estimate of the number of individuals per unit of area. 
Units defined by variable 'Density_scale'. 

Other: Estimate of the population size in alternate units e.g. relative 
abundance. 

Categorical  

  

Density_scale Units of population_metric when reported as Density. Character 

Population_start Population size estimate in the first recorded year (as listed in field 
‘Study_year_start’). Type of estimate described in field 
‘Population_metric ‘ 

Numeric 
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PS_dispersion_esti
mate 

Estimate of dispersion or uncertainty in the population size value 
provided in field ‘Population_start’. Values entered here when they 
are provided as single estimate (e.g., SE or SD) Type of estimate 
described in field ‘PS_PE_dispersion_description’ 

Numeric 

PS_dispersion_lowe
r 

Estimate of dispersion or uncertainty in the population size value 
provided in field ‘Population_start’. Values entered here when they 
are provided as a lower bounded estimate (e.g., range or 
confidence intervals) Type of estimate described in field 
‘PS_PE_dispersion_description’ 

Numeric 

PS_dispersion_uppe
r 

Estimate of dispersion or uncertainty in the population size value 
provided in field ‘Population_start’. Values entered here when they 
are provided as an upper bounded estimate (e.g., range or 
confidence intervals) Type of estimate described in field 
‘PS_PE_dispersion_description’ 

Numeric 

Population_end Population size estimate in the last recorded year (as listed in field 
‘Study_year_end’). Type of estimate described in field 
‘Population_metric ‘ 

Numeric 

PE_dispersion_esti
mate 

Estimate of dispersion or uncertainty in the population size value 
provided in field ‘Population_end’. Values entered here when they 
are provided as single estimate (e.g., SE or SD) Type of estimate 
described in field ‘PS_PE_dispersion_description’ 

Numeric 

PE_dispersion_lowe
r 

Estimate of dispersion or uncertainty in the population size value 
provided in field ‘Population_end’. Values entered here when they 
are provided as a lower bounded estimate (e.g., range or 
confidence intervals) Type of estimate described in field 
‘PS_PE_dispersion_description’ 

Numeric 

PE_dispersion_uppe
r 

Estimate of dispersion or uncertainty in the population size value 
provided in field ‘Population_end’. Values entered here when they 
are provided as an upper bounded estimate (e.g., range or 
confidence intervals) Type of estimate described in field 
‘PS_PE_dispersion_description’ 

Numeric 

PS_PE_dispersion_
description 

Type of dispersion or uncertainty estimate(s) in population size 
values. Categories: 

SD: Standard deviation.  

SE: Standard error.  

Range: Minimum and maximum estimates.  

90% CI: 90% confidence intervals.  

95% CI: 95% confidence intervals.  

Bayesian 90% CI: 90% credible intervals derived through Bayesian 
sampling. 

Categorical 

  

Quantitative_trend Numerical estimate of change in population size. Type of estimate 
described in field ‘Quantitative_method’. 

Numeric 

Quantitative_method Type of population trend metric provided in field 
‘Quantitative_trend’. Categories: 

Manual calculation required: complete time series available in the 
table [timeseries.csv]. Data fall into two categories: 1) estimates of 
abundance at different time points. 2) Estimates of change in 
abundance (e.g. population lambda, or percent change) at different 
time points. See metadata: timeseries.csv for more detail.  

Lambda: finite rate of population change (lambda=1 represents a 
stable trend). Lambdas were estimated using different methods 
including ratio of abundance between two time intervals (Nt+1/Nt), 
different demographic models, or as the exponential of an R-trend 
coefficient. 

Categorical 
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R-trend: instantaneous rate of population change. Values were 
calculated with different methods but most frequently using a log-
regression model of population size (R-trend = 0 represents a 
stable trend).  

Percentage change: change in population size between two time 
points (100 is stable) [formula = (Nt+1/Nt) * 100]. 

Qualitative only: only a verbal description of population change was 
available. 

Other_quantitative_d
escriptor 

Additional notes and comments about the quantitative descriptor 
extracted during data compilation to explain less-clear cases. 

Character 

Dispersion_descripti
on 

Type of estimate of dispersion or uncertainty provided for the 
population trend metric. Estimate of dispersion provided in field 
‘Dispersion_estimate’. Categories: 

VAR: Variance.  

SD: Standard deviation.  

SE: Standard error.  

Range: Minimum and maximum estimates.  

90% CI: 90% confidence intervals.  

95% CI: 95% confidence intervals.  

Bayesian 90% CI: 90% credible intervals derived through Bayesian 
sampling. 

Categorical 

  

Dispersion_estimate Estimate of dispersion or uncertainty for population trend (provided 
in field ‘Quantitative_trend field’). Type of uncertainty/dispersion 
described in field ‘PS_PE_dispersion_description’ 

Numeric 

Dispersion_lower Estimate of lower bound dispersion or uncertainty (e.g., confidence 
intervals or range) for population trend (provided in field 
‘Quantitative_trend’). Type of uncertainty/dispersion described in 
field ‘Dispersion_description’ 

Numeric 

Dispersion_upper Estimate of upper bound dispersion or uncertainty (e.g., confidence 
intervals or range) for population trend (provided in field 
‘Quantitative_trend’). Type of uncertainty/dispersion described in 
field ‘Dispersion_description’ 

Numeric 

Significance_reporte
d 

Descriptor of whether statistical significance in population trend was 
tested. Categories: 

NA: not reported or not relevant.  

Yes: test statistic and/or significance level reported. 

Categorical 
 

Test_statistic Value of the statistic (e.g. z, t, or F value) used to describe 
significance in population trend when available.  

Numeric 

Significance P-value associated to the ‘Test_statistic’ used to describe 
significance in population trend when available.  

Numeric 

Significant_trend Binary descriptor of whether, if statistically tested, the population 
trend was found to be significantly increasing or declining. 
Categories:  

TRUE: trend was significant.  

FALSE: trend was not-significant 

Categorical 
 

Time_lapse Timeframe (in years) at which Quantitative_trend should be 
interpreted e.g. a 10-year study may describe the annual finite rate 
of change (lambda), as its annual the Time_lapse would equal 1. 
However, some lambda’s are measured at 0.5 year or 10 year 
scale, so the metric is used to scale the Quanittative_trend to a 

Numeric 
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standard time-frame. This value equals NA when the 
Quantitative_method is Qualitative only or a Manual trend estimate. 

Qualitative Verbal description of population change as provided by the 
sources.  Categories: 

Increase: trend described as increasing, or recovering, or 
something synonymous.  

Stable: trend described as stable or exhibiting no population 
change, or something synonymous.  

Decrease: trend as described decreasing, declining, or reducing, or 
something synonymous.  

Varied: trend described as showing both increases and decreases 

at different time periods, but crucially, the first and the last 
population estimates are similar. 

Category 
 

Other_driver_of_tren
d 

Factors described in source as influencing population trends but 
which could not be captured by threat or conservation actions 
schema  

Character 

Comment Additional notes and comments extracted during data compilation. Character 

Possible_issues Description of issues that may limit use or interpretation of the trend 
e.g. author may describe the trend estimate as inaccurate. 

Character 

Genetic_data Binary descriptor of whether the population trend was derived from 
genetic information. Categories: 

1: yes 

NA: no 

Numeric-binary 
 

Harvest_data Binary descriptor of whether the population trend was derived from 
harvest information e.g. number of individuals hunted. Categories: 

1: yes 

NA: no 

Numeric-binary 
 

Invasive_species Binary descriptor of whether the studied population was non-native 
to the study site. Categories: 

1: yes 

NA: no 

Numeric-binary 
 

Record_labelled_ina
ccurate 

Binary descriptor of whether the population trend was described as 
inaccurate in the source. Categories: 

1: yes 

NA: no 

Numeric-binary 
 

Asymptotic_growth Binary descriptor of whether the population trend described 
asymptotic or observed growth. Categories: 

1: yes 

NA: no 

Numeric-binary 

Metric_unusual Binary descriptor of whether the population trend was reported in 
an unconventional way. Categories: 

1: yes 

NA: no 

Numeric-binary 
 

Peer_review Binary descriptor of whether the source has been published after 
peer-reviewed. Categories: 

1: no 

Numeric-binary 
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NA: yes 

Date_missing Binary descriptor of whether any of the date values are missing 
(Study_year_start or Study_year_end). Categories: 

1: yes 

NA: no 

Numeric-binary 
 

Latitude Latitudinal centroid in decimal degrees of the study site/population Numeric 

Longitude Longitudinal centroid in decimal degrees of the study 
site/population 

Numeric 

Source Source of the coordinates. Categories: 

Georeferenced – automatically: obtained from OpenCage 
georeferencer using locality name and country from the source.  

Georeferenced - manually adjusted: obtained from OpenCage 
georeferencer using locality name and country, but coordinates 
were inaccurate so were manually corrected.  

Within study - calculated centroid: Coordinates included in the 
source as extent ranges from which the centroid was calculated.  

Within study - reported centroid: centroid reported in the source. 

Categorical 
 

Coordinate_commen
t 

Process for reviewing coordinates that were georeferenced. 
Categories: 

Checked - location is approximate: georeferenced coordinates were 
checked and the precise location could not be found. Coordinates 
approximated manually.  

Checked - Location refined: georeferenced coordinates were 
checked and the deemed inaccurate, so were manually adjusted.  

Checked - Original is robust: georeferenced coordinates were 
checked and deemed robust.  

Not checked - Record appears robust: georeferenced coordinates 
had high a confidence value (greater than or equal to 7) and so 
were not checked. 

NA – coordinates not checked as they were extracted from the 
primary source. 

Categorical 
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Table S2. Reference table for captrends.csv ‘Species’ field. Includes binomial species names for 

four target families (Canidae, Felidae, Hyaenidae, and Ursidea) within the order Carnivora. These 

species names follow the IUCN species list/taxonomy (downloaded in 2018), but we also provide 

comparison to the common mammalian reference taxonomy of Wilson & Reeder (2005). The 

comment column describes any discrepancies in these taxonomies to facilitate future dataset use. 

 

Family Species (IUCN) Species (WR2005) Comment 

CANIDAE  Atelocynus microtis Atelocynus microtis 
 

Canis adustus Canis adustus 
 

Canis aureus Canis aureus 
 

Canis latrans Canis latrans 
 

Canis lupus Canis lupus 
 

Canis mesomelas Canis mesomelas 
 

Canis rufus NA Is a sub-species of Canis lupus in 
WR2005 

Canis simensis Canis simensis 
 

Cerdocyon thous Cerdocyon thous 
 

Chrysocyon brachyurus Chrysocyon brachyurus 
 

Cuon alpinus Cuon alpinus 
 

Dusicyon australis Dusicyon australis 
 

Dusicyon avus NA No record in WR2005 

Lycalopex culpaeus Lycalopex culpaeus 
 

Lycalopex fulvipes Lycalopex fulvipes 
 

Lycalopex griseus Lycalopex griseus 
 

Lycalopex gymnocercus Lycalopex gymnocercus 
 

Lycalopex sechurae Lycalopex sechurae 
 

Lycalopex vetulus Lycalopex vetulus 
 

Lycaon pictus Lycaon pictus 
 

Nyctereutes procyonoides Nyctereutes procyonoides 
 

Otocyon megalotis Otocyon megalotis 
 

Speothos venaticus Speothos venaticus 
 

Urocyon cinereoargenteus Urocyon cinereoargenteus 
 

Urocyon littoralis Urocyon littoralis 
 

Vulpes bengalensis Vulpes bengalensis 
 

Vulpes cana Vulpes cana 
 

Vulpes chama Vulpes chama 
 

Vulpes corsac Vulpes corsac 
 

Vulpes ferrilata Vulpes ferrilata 
 

Vulpes lagopus Vulpes lagopus 
 

Vulpes macrotis Vulpes macrotis 
 

Vulpes pallida Vulpes pallida 
 

Vulpes rueppellii Vulpes rueppellii 
 

Vulpes velox Vulpes velox 
 

Vulpes vulpes Vulpes vulpes 
 

Vulpes zerda Vulpes zerda 
 

FELIDAE  Acinonyx jubatus Acinonyx jubatus 
 

Caracal aurata Profelis aurata 
 

Caracal caracal Caracal caracal 
 

Catopuma badia Catopuma badia 
 

Catopuma temminckii Catopuma temminckii 
 

Felis bieti Felis bieti 
 

Felis chaus Felis chaus 
 

Felis margarita Felis margarita 
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Felis nigripes Felis nigripes 
 

Felis silvestris Felis silvestris 
 

Herpailurus yagouaroundi Puma yagouaroundi Assigned genus Puma in WR2005 

Leopardus colocolo Leopardus colocolo 
 

Leopardus geoffroyi Leopardus geoffroyi 
 

Leopardus guigna Leopardus guigna 
 

Leopardus guttulus NA Is a sub-species of Leopardus tigrinus 
in WR2005 

Leopardus jacobita Leopardus jacobita 
 

Leopardus pardalis Leopardus pardalis 
 

Leopardus tigrinus Leopardus tigrinus 
 

Leopardus wiedii Leopardus wiedii 
 

Leptailurus serval Leptailurus serval 
 

Lynx canadensis Lynx canadensis 
 

Lynx lynx Lynx lynx 
 

Lynx pardinus Lynx pardinus 
 

Lynx rufus Lynx rufus 
 

Neofelis diardi NA Is a sub-species of Neofelis nebulosi in 
WR2005 

Neofelis nebulosa Neofelis nebulosa 
 

Otocolobus manul Felis manul Assigned genus Felis in WR2005 

Panthera leo Panthera leo 
 

Panthera onca Panthera onca 
 

Panthera pardus Panthera pardus 
 

Panthera tigris Panthera tigris 
 

Panthera uncia Uncia uncia Assigned genus Uncia in WR2005 

Pardofelis marmorata Pardofelis marmorata 
 

Prionailurus bengalensis Prionailurus bengalensis 
 

Prionailurus planiceps Prionailurus planiceps 
 

Prionailurus rubiginosus Prionailurus rubiginosus 
 

Prionailurus viverrinus Prionailurus viverrinus 
 

Puma concolor Puma concolor 
 

NA Felis catus Not considered species by IUCN 

NA Leopardus braccatus Not considered species by IUCN 

NA Leopardus pajeros Not considered species by IUCN 

NA Prionailurus iriomotensis Not considered species by IUCN 

HYAENIDAE  Crocuta crocuta Crocuta crocuta 
 

Hyaena hyaena Hyaena hyaena 
 

Parahyaena brunnea Hyaena brunnea Assigned genus Hyaena in WR2005 

Proteles cristata Proteles cristata 
 

URSIDAE  Ailuropoda melanoleuca Ailuropoda melanoleuca 
 

Helarctos malayanus Helarctos malayanus 
 

Melursus ursinus Melursus ursinus 
 

Tremarctos ornatus Tremarctos ornatus 
 

Ursus americanus Ursus americanus 
 

Ursus arctos Ursus arctos 
 

Ursus maritimus Ursus maritimus 
 

Ursus thibetanus Ursus thibetanus 
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Table S3 Reference table for captrends.csv ‘Singular_country’ and ‘Multiple_countries’ fields. 

Country names follow ISO 3166 country name and two-character code standards. If sources 

described the global population trend, we added one row titled ‘GLOBAL’ 

Two-character code  Country 

AF Afghanistan 

AX Åland Islands 

AL Albania 

DZ Algeria 

AS American Samoa 

AD Andorra 

AO Angola 

AI Anguilla 

AQ Antarctica 

AG Antigua and Barbuda 

AR Argentina 

AM Armenia 

AW Aruba 

AU Australia 

AT Austria 

AZ Azerbaijan 

BS Bahamas 

BH Bahrain 

BD Bangladesh 

BB Barbados 

BY Belarus 

BE Belgium 

BZ Belize 

BJ Benin 

BM Bermuda 

BT Bhutan 

BO Bolivia, Plurinational State of 

BQ Bonaire, Sint Eustatius and Saba 

BA Bosnia and Herzegovina 

BW Botswana 

BV Bouvet Island 

BR Brazil 

IO British Indian Ocean Territory 

BN Brunei Darussalam 

BG Bulgaria 

BF Burkina Faso 

BI Burundi 

KH Cambodia 

CM Cameroon 

CA Canada 

CV Cape Verde 

KY Cayman Islands 

CF Central African Republic 

TD Chad 

CL Chile 
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CN China 

CX Christmas Island 

CC Cocos (Keeling) Islands 

CO Colombia 

KM Comoros 

CG Congo 

CD Congo, The Democratic Republic of the 

CK Cook Islands 

CR Costa Rica 

CI Côte D'Ivoire 

HR Croatia 

CU Cuba 

CW Curaçao 

CY Cyprus 

CZ Czech Republic 

DK Denmark 

DJ Djibouti 

DM Dominica 

DO Dominican Republic 

EC Ecuador 

EG Egypt 

SV El Salvador 

GQ Equatorial Guinea 

ER Eritrea 

EE Estonia 

ET Ethiopia 

FK Falkland Islands (Malvinas) 

FO Faroe Islands 

FJ Fiji 

FI Finland 

FR France 

GF French Guiana 

PF French Polynesia 

TF French Southern Territories 

GA Gabon 

GM Gambia 

GE Georgia 

DE Germany 

GH Ghana 

GI Gibraltar 

GLOBAL GLOBAL 

GR Greece 

GL Greenland 

GD Grenada 

GP Guadeloupe 

GU Guam 

GT Guatemala 

GG Guernsey 

GN Guinea 
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GW Guinea-Bissau 

GY Guyana 

HT Haiti 

HM Heard Island and McDonald Islands 

VA Holy See (Vatican City State) 

HN Honduras 

HK Hong Kong 

HU Hungary 

IS Iceland 

IN India 

ID Indonesia 

IR Iran, Islamic Republic of 

IQ Iraq 

IE Ireland 

IM Isle of Man 

IL Israel 

IT Italy 

JM Jamaica 

JP Japan 

JE Jersey 

JO Jordan 

KZ Kazakhstan 

KE Kenya 

KI Kiribati 

KP Korea, Democratic People's Republic of 

KR Korea, Republic of 

KW Kuwait 

KG Kyrgyzstan 

LA Lao People's Democratic Republic 

LV Latvia 

LB Lebanon 

LS Lesotho 

LR Liberia 

LY Libya 

LI Liechtenstein 

LT Lithuania 

LU Luxembourg 

MO Macao 

MK Macedonia, The former Yugoslav Republic of 

MG Madagascar 

MW Malawi 

MY Malaysia 

MV Maldives 

ML Mali 

MT Malta 

MH Marshall Islands 

MQ Martinique 

MR Mauritania 

MU Mauritius 
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YT Mayotte 

MX Mexico 

FM Micronesia, Federated States of 

MD Moldova, Republic of 

MC Monaco 

MN Mongolia 

ME Montenegro 

MS Montserrat 

MA Morocco 

MZ Mozambique 

MM Myanmar 

NA Namibia 

NR Nauru 

NP Nepal 

NL Netherlands 

NC New Caledonia 

NZ New Zealand 

NI Nicaragua 

NE Niger 

NG Nigeria 

NU Niue 

NF Norfolk Island 

MP Northern Mariana Islands 

NO Norway 

OM Oman 

PK Pakistan 

PW Palau 

PS Palestine, State of 

PA Panama 

PG Papua New Guinea 

PY Paraguay 

PE Peru 

PH Philippines 

PN Pitcairn 

PL Poland 

PT Portugal 

PR Puerto Rico 

QA Qatar 

RE Reunion 

RO Romania 

RU Russian Federation 

RW Rwanda 

BL Saint Barthélemy 

SH Saint Helena, Ascension and Tristan Da Cunha 

KN Saint Kitts and Nevis 

LC Saint Lucia 

MF Saint Martin (French Part) 

PM Saint Pierre and Miquelon 

VC Saint Vincent and the Grenadines 



Chapter 3: CaPTrends - a global database of population trends in large terrestrial Carnivorans 

 

126 
 

WS Samoa 

SM San Marino 

ST Sao Tome and Principe 

SA Saudi Arabia 

SN Senegal 

RS Serbia 

SC Seychelles 

SL Sierra Leone 

SG Singapore 

SX Sint Maarten (Dutch Part) 

SK Slovakia 

SI Slovenia 

SB Solomon Islands 

SO Somalia 

ZA South Africa 

GS South Georgia and the South Sandwich Islands 

SS South Sudan 

ES Spain 

LK Sri Lanka 

SD Sudan 

SR Suriname 

SJ Svalbard and Jan Mayen 

SZ Swaziland 

SE Sweden 

CH Switzerland 

SY Syrian Arab Republic 

TW Taiwan, Province of China 

TJ Tajikistan 

TZ Tanzania, United Republic of 

TH Thailand 

TL Timor-Leste 

TG Togo 

TK Tokelau 

TO Tonga 

TT Trinidad and Tobago 

TN Tunisia 

TR Turkey 

TM Turkmenistan 

TC Turks and Caicos Islands 

TV Tuvalu 

UG Uganda 

UA Ukraine 

AE United Arab Emirates 

GB United Kingdom 

US United States 

UM United States Minor Outlying Islands 

UY Uruguay 

UZ Uzbekistan 

VU Vanuatu 
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VE Venezuela 

VN Viet Nam 

VG Virgin Islands, British 

VI Virgin Islands, U.S. 

WF Wallis and Futuna 

EH Western Sahara 

YE Yemen 

ZM Zambia 

ZW Zimbabwe 
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Table S4. Description of fields in the ts_abundance.csv table which provides the time series of 

population abundance estimates. The ‘Data type’ column describes the format of the data. 

Field Description Data type 

DataTableID Unique numerical code for each source to match 

with table captrends.csv 

Character 

Value Time-series value representing population 

abundance or density. 

Numeric 

Year Time point of population abundance estimate (in 

years) 

Numeric 

 

Table S5. Description of fields in the ts_change.csv table which provides the time series of 

population change estimates. The ‘Data type’ column describes the format of the data, for 

categorical fields the selection options are underlined and each options description is italicised. 

Field Description Data type 

DataTableID Unique numerical code for each source to match 

with table captrends.csv 

Character 

Type_of_measure Descriptor of the type of estimate in the time 

series, values presented in the ‘Value’ field. 

Categories: 

 

Lambda: estimate of the finite rate of population 

change between two time periods (represented 

by fields Year1 and Year2). 1 is stable   

 

Percentage change: estimate of the percentage 

change in population size between two time 

periods (represented by fields Year1 and Year2). 

100 is stable [formula = (Nt+1/Nt) * 100]. 

 

Categorical 

Value Time-series value representing change in 

populations size. Interpreted alongside the 

Type_of_measure, Year1, and Year2 fields  

Numeric 

Year1 Reference time-point (in years) e.g. date of first 

population estimate.  

Numeric 

Year2 Change time-point (in years) e.g. date of second 

population estimate used to derive population 

change. 

Numeric 
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Table S6. Description of fields in the direction.csv table, which contains information on influences of 

the population trend, including whether the influence is positive or negative. This dataset uses 

existing classification schemes described in Table S6. The ‘Data type’ column describes the format 

of the data, for categorical fields the selection options are underlined and each options description 

is italicised. 

Field Description Data type 

DataTableID Unique numerical code for each source to 

match with table captrends.csv 

Character 

Code Amended threat or conservation action 

category described by the source as 

influencing the population  trend. If an 

influencing factor could not be matched to a 

category, the driver of the trend, as 

described by the primary source, was 

entered as free text in the field 

‘other_drivers_ot_trend’ in table 

captrends.csv 

Categorical [calls on Table 

S7] 

Direction Binary descriptor of whether the factor was 

described by the source as potentially or 

actually having resulted, or being expected 

to result in a population increase (recorded 

as “Positive”) or in a population decline 

(recorded as “Negative”).  

The degree of influence on the trend is 

informed by the Key_driver field.  

Categorical 

 

 

Measured Descriptor of the evidence provided by the 

source to support the link between a named 

factor and changes in population trend. 

Categories: 

 

Not explained: sources mentioned 

potentially important factor but did not 

provide information on how it may affect 

population trend 

 

Speculated: source speculated about a link 

between the factor and the population trend 

 

Proxy-estimate: source provided some 

evidence for how the factor influenced the 

population trend  

 

Quantified: source presented evidence that 

a factor has impacted the population trend 

Categorical 

 

 

Key_driver Descriptor of whether the factor was likely to 

be a strong driver of the observed 

population trend (recorded as “Positive”). 

Categories: 

 

No: Factor not considered an important 

driver of the trend according to primary 

source. 

 

Yes: Factor considered an important driver 

of the trend according to primary source. 

 

Categorical 
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Unknown: Primary source did not describe 

impact of the factor, or described the impact 

as unknown. 

Comment Any additional notes regarding how the 

trend is influenced by the factor 

Character 
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Table S7. Reference table from the ‘Code’ field in the direction.csv file. When entering influences of 

population trends, the most detailed code possible was used. For example, if the source describes 

the trend as being influenced by small-scale fragmentation, 0.2.1 (Small-scale fragmentation) was 

selected. However, if the source describes the trend as being influenced by fragmentation, 0.2 

(General fragmentation) was selected. Each ‘Code’ also falls within a higher level ‘Category’ which 

aggregates codes into broader groups. For each code the ‘Scheme description’ column provide the 

matching classifications in the IUCN Threats (scheme v3.2) and Conservation Actions (scheme 

v2.0) with the scheme specified in the ‘Scheme’ column as Threats or Conservation. Some threats 

and actions listed by sources were not well-matched to existing scheme categories, we created 

new Codes which are briefly described in the ‘Scheme description’ column and labelled as Added in 

the ‘Scheme’ column. Some categories from the IUCN schemes were not mentioned by the 

reviewed sources and were not used in the database. These are indicated with a ‘-‘ in the ‘Code’ 

column, and their scheme name is followed by an ‘X’. 

 

Category Code Scheme description Scheme 
 

 

  

Habitat altered 0.1 (habitat altered - not targeted restoration) 0.1 Habitat alteration but not restoration Added 
 

0.1.1 (Small-scale habitat altered - not 
targeted restoration) 

0.1.1 Small scale alteration Added 

 

0.1.2 (Large-scale habitat altered - not 
targeted restoration) 

0.1.2 Large-scale alteration Added 

 

0.2 (General fragmentation) 0.2 Fragmentation Added 
 

0.2.1 (Small-scale fragmentation) 0.2.1 Little fragmentation Added 
 

0.2.2 (Large-scale fragmentation) 0.2.2 Large-scale fragmentation Added 
 

 

  

Residential & 
commercial 
development 

1.1 (Habitat urbanised) 1.1 Housing & urban areas Threats 

1.2 (Habitat industrialised) 1.2 Commercial & industrial areas Threats 

1.3 (Habitat made available for recreation) 1.3 Tourism & recreation areas Threats 
 

 

  

Agriculture & 
aquaculture  

2.1 (Habitat altered for farming) 2.1 Annual & perennial non-timber crops  Threats 

- 2.1.1 Shifting agriculture Threats X 

2.1.2 (Habitat altered for small-scale farming) 2.1.2 Small-holder farming Threats 
 

2.1.3 (Habitat altered for large-scale farming) 2.1.3 Agro-industry farming Threats 
 

2.2 (Habitat altered for plantations) 2.2 Wood & pulp plantations  Threats 
 

2.2.1 (Habitat altered for small-scale 
plantations) 

2.2.1 Small-holder plantations Threats 

 

2.2.2 (Habitat altered for large-scale 
plantations) 

2.2.2 Agro-industry plantations Threats 

 

- 2.2.3 Scale unknown/Unrecorded Threats X 
 

2.3 (Habitat altered for ranching) 2.3 Livestock farming & ranching  Threats 
 

2.3.1 (Habitat altered for nomadic ranching) 2.3.1 Nomadic grazing Threats 
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2.3.2 (Habitat altered for small-scale 
ranching) 

2.3.2 Small-holder grazing, ranching or 
farming 

Threats 

 

2.3.3 (Habitat altered for large-scale 
ranching) 

2.3.3 Agro-industry grazing, ranching or 
farming 

Threats 

 

- 2.3.4 Scale unknown/Unrecorded Threats X 
 

- 2.4 Marine & freshwater aquaculture Threats X 
 

- 2.4.1 Subsistence/artisanal aquaculture Threats X 
 

- 2.4.2 Industrial aquaculture Threats X 
 

- 2.4.3 Scale unknown/Unrecorded Threats X 
 

 

  

Energy production 
& mining 

- 3.1 Oil & gas drilling Threats X 

- 3.2 Mining & quarrying Threats X 

- 3.3 Renewable energy Threats X 
 

 

  

Transportation & 
service corridors 

4.1 (Road & railroads generally) 4.1 Roads & railroads Threats 

4.1.1 (Developing roads & rails) 4.1.1 Roads & railroads development Added 

4.1.2 (Vehicle collisions) 4.1.2 Roads & railroads vehicle collisions Added 
 

- 4.2 Utility & service lines Threats X 
 

- 4.3 Shipping lanes Threats X 
 

- 4.4 Flight paths Threats X 
 

 

  

Human intrusions 
& disturbance 

6.1 (Disturbance from recreational activities)  6.1 Recreational activities Threats 

6.2 (Disturbance from war) 6.2 War, civil unrest & military exercises Threats 

6.3 (Disturbance from people working)  6.3 Work & other activities Threats 
 

- 6.4 Other disturbance Threats X 
 

 

  

Natural system 
modifications  

7.1 (System altered by excess fire) 7.1 Fire & fire suppression  Threats 

7.1.1 (System altered by fire shortage) 7.1.1 Increase in fire frequency/intensity Threats 
 

- 7.1.2 Suppression in fire frequency/intensity Threats X 
 

- 7.1.3 Trend unknown/Unrecorded Threats X 
 

7.2 (System altered by water shortage/dams) 7.2 Dams & water management/use  Threats 
 

7.3 (System altered by ecosystem 
modifications) 

7.3 Other ecosystem modifications Threats 

 

 

  

Invasive & other 
problematic 
species, genes & 
diseases  

8.1 (Population effected by invasive disease) 

 

8.1 Invasive non-native/alien 
species/diseases  

Threats 

- 8.1.1 Unspecified species Threats X 

- 8.1.2 Named species Threats X 

8.2 (Population effected by native disease) 8.2 Problematic native species/diseases  Threats 
 

- 8.2.1 Unspecified species Threats X 
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- 8.2.2 Named species Threats X 
 

8.3 (Population effected by introduced genes) 8.3 Introduced genetic material Threats 
 

- 8.4 Problematic species/diseases of 
unknown origin 

Threats X 

 

- 8.4.1 Unspecified species Threats X 
 

- 8.4.2 Named species Threats X 
 

- 8.5 Viral/prion-induced diseases Threats X 
 

- 8.5.1 Unspecified species Threats X 
 

- 8.5.2 Named species Threats X 
 

8.6 (Population effected by unknown disease) 8.6 Diseases of unknown cause Threats 
 

- 8.7 General disease Threats X 
 

 

  

Pollution 9.1 (Population/Habitat effected by domestic 
waste) 

9.1 Domestic & urban waste water  Threats 

 

9.2 (Population/Habitat effected by industrial 
waste) 

9.2 Industrial & military effluents  Threats 

 

- 9.3 Agricultural & forestry effluents Threats X 
 

- 9.4 Garbage & solid waste Threats X 
 

- 9.5 Air-borne pollutants Threats X 
 

- 9.6 Excess energy  Threats X 
 

9.6.1 (Population/Habitat effected by light 
pollution) 

9.6.1 Light pollution Threats 

 

9.6.2 (Population/Habitat effected by thermal 
pollution) 

9.6.2 Thermal pollution Threats 

 

9.6.3 (Population/Habitat effected by noise 
pollution) 

9.6.3 Noise pollution Threats 

 

- 9.6.4 Type unknown/unrecorded Threats X 
 

 

  

Geological events  10.1 (Population/Habitat effected by 
volcanoes) 

10.1 Volcanoes Threats 

10.2 (Population/Habitat effected by 
earthquakes/tsunamis) 

10.2 Earthquakes/tsunamis Threats 

 

10.3 (Population/Habitat effected by 
avalanches/landslides) 

10.3 Avalanches/landslides Threats 

 

 

  

Climate change & 
severe weather  

11.1 (Habitat shifts from climate change) 11.1 Habitat shifting & alteration Threats 

11.2 (Population/Habitat effected by drought) 11.2 Droughts Threats 

11.3 (Population/Habitat effected by 
temperature extremes) 

11.3 Temperature extremes Threats 

 

11.4 (Population/Habitat effected by 
storms/flooding) 

11.4 Storms & flooding Threats 

 

11.5 (Population/Habitat effected by 
unspecified climate change) 

11.5 Other impacts Threats 
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Biological 
resource use – 
adapted from 
section 5 of 
threats v3.2 to 
make all actions 
legal  

13.1 (General legal hunting) 5.1 Hunting & collecting terrestrial animals  Threats 

13.1.1 (Legal hunting of carnivore) 5.1.1 Intentional use (species being 
assessed is the target) 

Threats 

13.1.2 (Indirect effect from legal hunting) 5.1.2 Unintentional effects (species being 
assessed is not the target) 

Threats 

13.1.3 (Legal persecution/control of 
carnivore) 

5.1.3 Persecution/control Threats 

- 5.1.4 Motivation unknown/Unrecorded Threats X 
 

13.2 (Indirect effect of gathering plants) 5.2 Gathering terrestrial plants  Threats 
 

- 5.2.1 Intentional use (species being 
assessed is the target) 

Threats X 

 

- 5.2.2 Unintentional effects (species being 
assessed is not the target) 

Threats X 

 

- 5.2.3 Persecution/control Threats X 
 

- 5.2.4 Motivation unknown/Unrecorded Threats X 
 

- 5.3 Logging & wood harvesting Threats X 
 

- 5.3.1 Intentional use: subsistence/small 
scale (species being assessed is the target 
[harvest] 

Threats X 

 

- 5.3.2 Intentional use: large scale (species 
being assessed is the target)[harvest] 

Threats X 

 

- 5.3.3 Unintentional effects: 
subsistence/small scale (species being 
assessed is not the target)[harvest] 

Threats X 

 

- 5.3.4 Unintentional effects: large scale 
(species being assessed is not the 
target)[harvest] 

Threats X 

 

- 5.3.5 Motivation unknown/Unrecorded Threats X 
 

13.4 (Indirect effect of fishing) 5.4 Fishing & harvesting aquatic resources  Threats  
 

- 5.4.1 Intentional use: subsistence/small 
scale (species being assessed is the 
target)[harvest] 

Threats X 

 

- 5.4.2 Intentional use: large scale (species 
being assessed is the target)[harvest] 

Threats X 

 

13.4.3 (Indirect effect of small-scale fishing) 5.4.3 Unintentional effects: 
subsistence/small scale (species being 
assessed is not the target) [harvest] 

Threats 

 

13.4.4 (Indirect effect of large-scale fishing) 5.4.4 Unintentional effects: large scale 
(species being assessed is not the target) 
[harvest] 

Threats 

 

- 5.4.5 Persecution/control Threats X 
 

- 5.4.6 Motivation unknown/Unrecorded Threats X 
 

13.5 (Legal poisoning of carnivore) 5.5 Poisoning  Added 
 

13.5.1 (Legal targeting poison towards 
carnivore) 

5.5.1 Intentional use (species being 
assessed is the target) 

Added 

 

13.5.2 (Legal indirect poison of carnivore) 5.5.2 Unintentional effects (species being 
assessed is not the target) 

Added 

 

 

  

14.1 (General illegal hunting/poaching) 5.1 Hunting & collecting terrestrial animals  Threats 
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Biological 
resource use – 
adapted from 
section 5 of 
threats v3.2 to 
make all actions 
illegal 

14.1.1 (Illegal hunting of carnivore/poaching) 5.1.1 Intentional use (species being 
assessed is the target) 

Threats 

14.1.2 (Indirect effect from illegal 
hunting/poaching) 

5.1.2 Unintentional effects (species being 
assessed is not the target) 

Threats 

14.1.3 (Illegal persecution/control of 
carnivore) 

5.1.3 Persecution/control Threats 

- 5.1.4 Motivation unknown/Unrecorded Threats X 
 

14.2 (Indirect effect of gathering plants) 5.2 Gathering terrestrial plants  Threats 
 

- 5.2.1 Intentional use (species being 
assessed is the target) 

Threats X 

 

- 5.2.2 Unintentional effects (species being 
assessed is not the target) 

Threats X 

 

- 5.2.3 Persecution/control Threats X 
 

- 5.2.4 Motivation unknown/Unrecorded Threats X 
 

- 5.3 Logging & wood harvesting Threats X 
 

- 5.3.1 Intentional use: subsistence/small 
scale (species being assessed is the target 
[harvest] 

Threats X 

 

- 5.3.2 Intentional use: large scale (species 
being assessed is the target)[harvest] 

Threats X 

 

- 5.3.3 Unintentional effects: 
subsistence/small scale (species being 
assessed is not the target)[harvest] 

Threats X 

 

- 5.3.4 Unintentional effects: large scale 
(species being assessed is not the 
target)[harvest] 

Threats X 

 

- 5.3.5 Motivation unknown/Unrecorded Threats X 
 

14.4 (Indirect effect of illegal fishing) 5.4 Fishing & harvesting aquatic resources  Threats 
 

- 5.4.1 Intentional use: subsistence/small 
scale (species being assessed is the 
target)[harvest] 

Threats X 

 

- 5.4.2 Intentional use: large scale (species 
being assessed is the target)[harvest] 

Threats X 

 

14.4.3 (Indirect effect of small-scale illegal 
fishing) 

5.4.3 Unintentional effects: 
subsistence/small scale (species being 
assessed is not the target) [harvest] 

Threats 

 

14.4.4 (Indirect effect of large-scale illegal 
fishing) 

5.4.4 Unintentional effects: large scale 
(species being assessed is not the target) 
[harvest] 

Threats 

 

- 5.4.5 Persecution/control Threats X 
 

- 5.4.6 Motivation unknown/Unrecorded Threats X 
 

14.5 (Illegal poisoning of carnivore) 5.5 Poisoning  Added 
 

14.5.1 (Illegal targeting poison towards 
carnivore) 

5.5.1 Intentional use (species being 
assessed is the target) 

Added 

 

14.5.2 (Illegal indirect poison of carnivore) 5.5.2 Unintentional effects (species being 
assessed is not the target) 

Added 

 

 

  

15.1 (General competition) 15.1 Competition Added 
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Biological 
population drivers 

15.1.1 (Low competition - incomplete guild) 15.1.1 Low inter-specific competition – 
incomplete carnivore guild 

Added 

15.1.2 (Low competition - no reason) 15.1.2 Low competition (reason not 
described) 

Added 

15.1.3 (High competition - within guild) 15.1.3 High inter-specific competition within 
guild 

Added 

 

15.1.5 (High competition - no reason) 15.1.5 High competition (reason not 
described) 

Added 

 

15.1.6 (Low prey availability) 15.1.6 Low prey availability Added 
 

15.1.7 (High prey availability) 15.1.7 High prey availability Added 
 

15.1.8 (Competition from invasive species) 15.1.8 Invasive non-native/alien 
species/diseases  

Added 

 

15.2 (Carnivore predated) 15.2 Predation  Added 
 

15.2.1 (Low predation risk - unbalanced guild 
) 

15.2.1 Low predation risk – unbalanced guild Added 

 

15.2.2 (Low predation risk - no reason) 15.2.2 Low predation risk (reason not 
described 

Added 

 

15.2.3 (High predation risk - unbalanced 
guild) 

15.2.3 High predation risk – unbalanced 
guild 

Added 

 

15.2.4 (High predation risk - no reason) 15.2.4 High predation risk (reason not 
described) 

Added 

 

15.2.5 (Predation from invasive species) 15.2.5 Invasive effects predation Added 
 

15.3 (Below Minimum Viable Population) 15.3 Population at minimum level Added 
 

15.4 (High immigration/emigration) 15.4 Population open Added 
 

15.4.1 (High emigration) 15.4.1 Emigration out of population Added 
 

15.4.2 (High immigration) 15.4.2 Immigration into population present Added 
 

15.4.3 (Population expanding/recolonising 
areas) 

15.4.3 Range expansion/natural 
recolonization. 

Added 

 

15.5 (Population closed/isolated) 15.5 Population closed Added 
 

15.5.1 (Low connectivity in population) 15.5.1 Low connectivity Added 
 

15.5.2 (Low connectivity - Inbreeding 
possible) 

15.5.2 Low connectivity – inbreeding 
possible 

Added 

 

15.5.3 (Low connectivity - Inbreeding 
present) 

15.5.3 Low connectivity – inbreeding present Added 

 

15.5.4 (No connectivity in population) 15.5.4 No connectivity Added 
 

15.5.5 (No connectivity - Inbreeding possible) 15.5.5 No connectivity – inbreeding possible Added 
 

15.5.6 (No connectivity - Inbreeding present) 15.5.6 No connectivity – inbreeding present Added 
 

15.5.7 (Unspecified genetic threat) 

 

15.5.7 Unspecified genetic threat Added 

 

 

  

Land/water 
protection 

1.1 (Protected area) 1.1 Site/area protection Conservation 

1.2 (Protected habitat) 1.2 Resource & habitat protection Conservation 
 

1.3 (Habitat developed over - considering 
sustainability) 

 

1.3 Resource & habitat protection Conservation 
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Land/water 
management 

2.1 (Site managed) 2.1 Site/area management Conservation 

2.2 (Control of problematic species) 2.2 Invasive/problematic species control Conservation 
 

2.3 (Habitat restoration) 2.3 Habitat & natural process restoration Conservation 
 

 

  

Species 
management 

3.1 (Species managed) 3.1 Species management Conservation 

3.1.1 (Harvest managed) 3.1.1 Harvest management Conservation 
 

3.1.2 (Trade managed) 3.1.2 Trade management Conservation 
 

3.1.3 (Population growth managed - culling) 3.1.3 Limiting population growth Conservation 
 

3.2 (Action to enable population recovery) 3.2 Species recovery Conservation 
 

3.3 (Re-introduction) 3.3 Species re-introduction Conservation 
 

- 3.3.1 Reintroduction Conservation X 
 

3.3.2 (Benign introduction) 3.3.2 Benign introduction Conservation 
 

3.4 (Ex-situ - captive breeding/artificial 
propagation) 

3.4 Ex-situ conservation Conservation 

 

- 3.4.1 Captive breeding/artificial propagation Conservation X 
 

- 3.4.2 Genome resource bank Conservation X 
 

 

  

Education & 
awareness 

4.1 (Formal education) 4.1 Formal education Conservation 

4.2 (Train practitioners) 4.2 Training Conservation 
 

4.3 (Educate public) 4.3 Awareness & communications Conservation 
 

 

  

Law & policy 5.1 (General protective legislation) 5.1 Legislation Conservation 
 

5.1.1 (International legislation) 5.1.1 International level Conservation 
 

5.1.2 (National legislation) 5.1.2 National level Conservation 
 

5.1.3 (Regional legislation) 5.1.3 Sub-national level Conservation 
 

- 5.1.4 Scale unspecified Conservation X 
 

5.2 (Protective policy) 5.2 Policies and regulations Conservation 
 

- 5.3 Private Sector Standards & Codes Conservation X 
 

5.4 (Enforcing general policy/legislation) 5.4 Compliance and enforcement Conservation 
 

5.4.1 (Enforcing international 
policy/legislation) 

5.4.1 International level Conservation 

 

5.4.2 (Enforcing National policy/legislation) 5.4.2 National level Conservation 
 

5.4.3 (Enforcing Regional policy/legislation) 5.4.3 Sub-national level Conservation 
 

- 5.4.4 Scale unspecified Conservation X 
 

 

  

Livelihood, 
economic & other 
incentives 

6.1 (Communities livelihood linked to species 
success)) 

6.1 Linked enterprises & livelihood 
alternatives 

Conservation 

6.2 (Substitute carnivore for sustainable 
alternative) 

6.2 Substitution Conservation 
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6.3 (Carnivore market managed e.g. hunting 
levy) 

6.3 Market forces Conservation 

 

6.4 (Compensation schemes) 6.4 Conservation payments Conservation 
 

6.5 (Utilise spiritual/religious connections for 
management) 

6.5 Non-monetary values Conservation 
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Table S8. Description of fields in the sources.csv table, which contains information on all reviewed 

sources. The ‘Data type’ column describes the format of the data, for categorical fields the selection 

options are underlined and each options description is italicised. 

Field Description Data type 

Year Year of source publication  Numeric 

Title Title of source Character 

Citation_key Unique alphanumerical identifier for 

each source which corresponds to 

captrends.csv 

Character 

Category Category describing how the source 

was processed. Categories: 

 

Read – Data available: Population 

trend information was available within 

the source and extracted 

 

Read – No Data available: Population 

trend information was unavailable 

within the source 

 

NA: Source could not be accessed to 

assess if trend information was 

available. 

Categorical 

 

 

From_Syst/Unsyst_search Descriptor of how the source was 

found. Categories: 

 

1: Source identified through the 

unstructured search 

 

2: Source identified through the 

structured search 

 

3: Source identified through other 

sources (e.g. when reading category 

1 or 2 sources, which mentioned other 

population trend values) 

Categorical 

 

 

Comment Any additional information regarding 

the source e.g. why trend data was 

not extracted. 

Character 
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Abstract 

Global assessments of biodiversity change have already identified that stressors like 

land-use and climate change are linked to wildlife population declines. Yet research 

into features that may promote population recoveries, and will help bend the 

biodiversity curve, have been relatively neglected. Here, focussing on 87 terrestrial 

species from the order Carnivora, we explore how a wide variety of features influence 

population declines and recoveries across the planet and further forecast changes by 

2050. Specifically, we investigate how impacts can be magnified or mitigated 

depending on species traits, the quality of national-level governance, and the 

interactions between drivers. We show that populations decline when primary land is 

lost, regardless of what the land is converted into or the species niche breadth. 

Climate change impacts are more complex, with detrimental effects only for large 

species and populations outside protected areas. We also find that societal growth, 

through human development, is linked to sharp population declines, but once human 

development is high, carnivore populations have the potential to recover. Considering 

anticipated changes in human development and environmental stressors, we then 

predict species abundances and the status of the carnivore guild up to 2050. These 

predictions offer a glimpse of hope forecasting likely recoveries of many of these 

culturally and ecologically important large carnivore. 

Main text 

Humans are transforming the planet, driving species to extinction and altering 

ecosystems (IPBES, 2019) - pushing biodiversity closer to its planetary limit 

(Newbold et al., 2016). However, whilst extinction rates suggest biodiversity is 
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extremely threatened, there is a lack of consensus across the biodiversity change 

literature, with recent work showing that many populations are not declining 

(Daskalova et al., 2020; Leung et al., 2020; van Klink et al., 2020). Instead, 

environmental change causes a flux in wildlife population trends across ecological 

communities, with some populations declining whilst others prosper (Dornelas et al., 

2019); reshaping community structure and possibly altering ecosystem functions 

(Zavaleta et al., 2010; Hautier et al., 2018). One challenges for understanding 

biodiversity change, is to identify which species will decline under environmental 

change, and which will prosper. This is not an easy task as data describing 

population trends are often noisy, and the factors that influence population dynamics 

can be numerous and difficult to measure (WWF, 2020b). This, in-part, explains the 

low predictive accuracy of macro-scale biodiversity change models e.g. Soroye et al., 

(2020) & Spooner et al., (2018).  

Previous work has focussed on understanding how land-use change (Newbold et al., 

2015; Polaina et al., 2019), forest-loss (Daskalova et al., 2020), climate change 

(Spooner et al., 2018; Soroye et al., 2020; Trisos et al., 2020), and in some cases a 

combination of all of these, influences biodiversity change. However, focussing 

primarily on environmental change ignores other factors that can mitigate or magnify 

environmental change impacts. For example, populations are more likely to increase 

in areas with strong governance (Amano et al., 2018), and population declines can 

be exacerbated by armed conflicts and species life-history traits (Braga-Pereira et al., 

2020). To effectively detect the signal of environmental change impacts, it is 

important to consider the multidimensional context and diversity of potential factors 

that influence population dynamics. Here, we take this comprehensive approach to 

explore how land-use change, climate change, and governance, impact population 

trends of large terrestrial carnivores globally. We also explore how species life-history 

traits can mitigate or magnify these trends, specifically focussing on species from the 

families Canidae, Felidae, Hyaenidae and Ursidae of the order Carnivora, which 

include the largest terrestrial carnivores on the planet. 

Large carnivores (such as lions, tigers, and wolves) are an important focal group to 

study as they are amongst the most culturally important fauna (Clucas et al., 2008), 

are essential for regulating ecosystem function (Ripple et al., 2014), and can act as 

indicator species of the overall status of biodiversity within an area (Sergio et al., 

2008b). Large carnivores are also generally well-studied taxa with abundant trend 

datasets available from the primary literature across a wide spectrum of 

environmental change and governance scenarios. The morphology, ecology and 

behaviour of these taxa is also generally well described (González-Suárez et al., 

2012), allowing us to evaluate these factors without being impacted by poor inference 
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from missing data (Johnson et al., 2021b). Finally, despite being well-studied, the 

population status of large carnivores is unclear, with reports of devastating declines 

(Ripple et al., 2014) contrasted with remarkable recoveries (Chapron et al., 2014). 

Studying these differences in responses can provide insight beyond these taxa, 

revealing strategies and scenarios that could help bend the biodiversity curve 

(Leclère et al., 2020). 

Influences of population change 

To determine how land-use change, climate change, and governance influence 

population trends in large carnivores, we developed a censored weighted hierarchical 

Bayesian linear model (see Supplementary methods). By using a censored 

response-term in the model, we incorporated two types of response data: 1) 

quantitative estimates of change which be converted into annual rates of change, 

and 2) qualitative descriptions of change which we treated as censored (partially 

known) rates of change. By including these qualitative records, we increased the 

sample size, as well as the taxonomic and spatial representativeness of the trend 

data. In total, we compiled trends for 1127 populations, sourced from 7352 

abundance estimates compiled in the CaPTrends (Johnson et al., 2021a) and Living 

Planet databases (WWF, 2020a). Rates of change were available for 50 of 87 

species in our focal group, with locations representing 75 countries, all human-

inhabited continents, and variable time periods between 1970 – 2015. For each rate 

of change, we estimated several metrics describing land-use, climate, and 

governance features, each of which we expected to influence population trends 

(Figure 1). Models included sixteen covariates, as well as six interactions, which we 

specified as we anticipated the impacts of environmental change could depend on 

species traits (González-Suárez & Revilla, 2013), the quality of national-level 

governance (Amano et al., 2018), and the interactions between different types of 

environmental change. For example, specialist species are likely to experience 

greater declines under land-use and climate change (Pacifici et al., 2017).  

Land-use 

As predicted and shown in other taxa (Newbold et al., 2015), we found that large 

carnivore populations declined when primary land was lost. However, we expected 

declines to be more extreme when land was replaced by people, relatively mitigated 

when replaced by semi-natural land, and highly dependent on the species ecological 

niche breadth (Figure 2), but we found no evidence supporting these interactions. 

Our findings suggest that all populations will decline in the immediate aftermath of 

primary land loss, regardless of the species ecological niche breadth and what the 

land is replaced with. However, these factors could influence responses in the longer 
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term, e.g. a lag may occur before new generalist species are able to colonise an area 

and show increasing population trends. 

 

Figure 1. Sixteen covariates with a proposed effect on carnivore population trends highlighted in 

bold and underlined. Covariates fall in four groups: Traits, Land-use, Climate, and Governance. 

Text alongside covariates briefly explains how the variable was derived, whilst full explanation and 

justifications for inclusion are available in Supplementary methods: Covariates. 
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Figure 2. a) Annual rate of change coefficients for fixed effect parameters in a hierarchical Bayesian regression, with 50%, 80%, and 95% credible intervals. Effects for two primary 

land loss interaction parameters are not shown as they occurred in too few models (via model selection) – see Supplementary methods. All covariates were z-transformed prior to 

modelling and the response was back-scaled from an inverse hyperbolic sine transformation. b-j) Marginal effects for relevant covariates showing median predicted annual rate of 

change (error ribbons represent the 50%, 80%, and 95% credible intervals: mean annual primary land loss over the population monitoring period (b); area of population buffer zone on 

the log10 scale (c); species body mass on the log10 scale (d); mean number of months per year where the average temperature of the population monitoring period exceeded the mean 

plus 1.5 standard deviations of the average temperature of the baseline period (1901 – 1920), interacting with body mass (e); protected area coverage (g); and change in drought (f). 

Change in drought is measured as the mean number of months per year where the average standardised precipitation-evapotranspiration index (spei) of the population monitoring 

period was lower than the mean minus 1.5 standard deviations of the average spei of the baseline period, ‘No change’ equals zero months and ‘Increased’ equals two months. We 

also depict the marginal effect of: protected area coverage as a non-interactive effect (h); annual change in human development over the population monitoring period (i); and human 

development at the final year of population monitoring (j). All covariates were back scaled from any transformations.
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Climate change 

Larger bodied species exhibited greater population growth (Figure 2). The largest 

carnivores have historically been, and continue to be, persecuted and feared for 

carrying a threat to human lives and livelihoods (Broekhuis et al., 2020). Yet, these 

larger species are also amongst the highest profile taxa (Macdonald et al., 2017), 

likely receiving more conservation funds and attention which may explain the greater 

population growth. Similarly, public interest in wildlife is increasing (Millard et al., 

2021), and so its plausible that people may now be more tolerant towards these 

carnivores, and willing to coexist. This change in perceptions could (at least partly) 

explain the population recoveries of the largest carnivores. However, our analyses 

reveal a potential increasing threat to these species, as the rising frequency of 

extreme heat from climate change is associated with population declines in large 

species (and increased growth in smaller carnivores). Prior work has shown that 

large-bodied birds may be more susceptible to rising temperatures from climate 

change (Prokosch et al., 2019), and if this result holds true for other vertebrates, it 

may further threaten large flagship megafauna (e.g. polar bear, tiger and lion). 

However, this was not our only complex climate change result; we also detected a 

positive synergistic effect of heat and drought, with populations showing higher 

growth in the presence of increased extreme heat and drought. This may at first 

appear surprising, but we hypothesize it reflects a trophic effect. Drier and hotter 

conditions could reduce plant biomass (Eziz et al., 2017), and in turn, reduce the 

fitness of the herbivorous species (Duncan et al., 2012) that large carnivores often 

prey on. This decline in prey fitness could be advantageous for large-predatory 

carnivores leading to increased hunting success. However, such benefits would likely 

be short-term; if climate change continues to impact prey fitness and densities, 

carnivore populations would eventually crash. Extreme heat and drought events have 

become increasingly common in recent years, so our data may have captured that 

initial stage of large carnivores benefitting from declines in prey fitness.  

Our results also show another complex synergy between climate change and 

conservation measures, with protected areas potentially mitigating the impacts of 

extreme heat. As protected areas are amongst the least impacted fragments of land 

on the planet, they may naturally offer features that buffer extreme temperatures e.g. 

micro-climates from canopy cover (Suggitt et al., 2018; Davis et al., 2019). Increased 

population densities could also reflect increased use and movement towards these 

protected areas from less suitable habitat in the short term These results support 

previous work on birds (Lehikoinen et al., 2019) and suggest the expansion of 

protected areas could be an effective approach to support future carnivore 

populations in the face of climate change. Although, the size of the protected area is 
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an important consideration here; if individuals do seek refuge in protected areas, we 

would expect wildlife population increases to be greater in smaller protected areas– 

our data is unsuitable for exploring this nuance 

Generally, protected areas cannot promote population growth in the long term, as the 

area and resources inside them are finite. In fact, our results show overall stable 

populations in fully protected areas with population likely at carrying capacity, and 

more positive growth rates outside. These population increases outside protected 

areas could reflect spill-over effects (Di Lorenzo et al., 2020), or the ability of some 

carnivore species to adapt to humanized environments (Santini et al., 2019). Our 

work reveals interesting and complex relationships between climate variables and 

habitat protection that need to be further investigated in other taxa and monitored 

over time to detect and respond to changes. 

Governance 

Beyond land protection, we found no effect of governance on carnivore populations, 

although populations were more likely to increase in areas with high human 

development scores (Figure 2). Human characteristics associated with development 

(i.e. improved quality of human life) appear to be more important for large carnivores, 

than higher-level governance characteristics (i.e. rule of law and legislation). This 

finding differs from previous work that has suggested declines in birds are greatest in 

areas with weak governance (Amano et al., 2018) and has partly attributed the 

recoveries of Europe’s carnivores to the strong governance of the European Union 

(Chapron et al., 2014). Wildlife can receive regulatory protection through governance, 

but protection may also be achieved by improving human quality of life, and in turn, 

tolerance for wildlife. For example, if a carnivore kills livestock, tolerance would be 

likely lower if the owner lives in extreme poverty (low human development) and more 

likely to lead to retaliation and human-wildlife conflict regardless of the species 

regulatory protection.  

Whilst carnivore population increases are most likely in areas with high human 

development, there is a cost to reaching this development level, as we found rapid 

human development growth was associated with carnivore population declines 

(Figure 2).  While initially we may think this relationship could reflect underlying 

factors stimulating human development growth (e.g. detrimental land-use changes, 

or natural resource extraction for economic growth), these factors were directly 

modelled and were less clearly associated (despite being measured at more relevant 

spatial-scales). We hypothesize human development change captures a more 

holistic snapshot of environmental and societal transformation, including underlying 

factors as well as changes in culture and relationships with wildlife. For example, 
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development in Kenya has seen increases in urbanisation and infrastructure as well 

as changes in people’s relationships with nature (Fernández-Llamazares et al., 

2020). While we cannot establish the mechanisms by which rapid human 

development can lead to population declines, a trade-off between healthy carnivore 

populations and human development could lead to conflicts for the achievement of 

the UN sustainable development goals in developing countries. For example, 

improvements in health, education and equality of income (SDG 1-5) could 

negatively impact large carnivores (and biodiversity as a whole), hindering progress 

towards SDG 15.  

Projecting the status of large carnivores 

We produced global projections describing changes in species abundance intactness 

and overall carnivore guild status from 1970 to 2050 (Figure 3). To calculate species 

abundance intactness, we first generated spatially-explicit timeseries of annual rates 

of population change for each species across their current distribution (IUCN, 2020b) 

using a simplified version of our regression model (including effects at the 80% 

credible interval) and raster timeseries’ of covariates. Using these change rates and 

an estimate of 2005 baseline abundance intactness (Newbold et al., 2016), we then 

calculated for each species the spatially-explicit and total (average) estimates of 

yearly abundance relative to that expected in intact habitat (100% equals abundance 

reminiscent of intact areas which we consider a proxy for carrying capacity hereafter, 

0% indicates local extinction). These values were used to estimate historic (1970-

2020) and future (2020-2050) annual rates of change in abundance intactness for 

each species. Second, we calculated guild abundance intactness and completeness 

estimates that combined describe the overall carnivoran carnivore guild status over 

space and time, capturing both distribution and abundance changes. To calculate 

guild abundance intactness we aggregated the spatially-explicit abundance 

intactness of all species co-occurring in each location. Guild completeness was 

calculated as the proportion of currently extant species relative to extant and 

recently, within the past few hundred years, extinct species (Faurby et al., 2018).  
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Figure 3. Procedure for estimating species and guild abundance intactness, as well as guild status. 

Models were developed using a simplified form of the regression model (see Figure 2), as well as 

the baseline abundance intactness from 2005 (Newbold et al., 2016). Current species richness was 

estimated using IUCN current range maps (IUCN, 2020b), and historic species richness was 

derived from counterfactual-natural ranges (Faurby et al., 2018). See the supplementary material 

for a more detailed description. 

 

Species abundance intactness 

Abundance intactness varied substantially across time and the phylogeny (Figure 

4a). In the historical period (1970 – 2020), the average abundance intactness (across 

species) increased (Figure 4b), with a mean annual rate of change of 0.27%, and 

values for the 85 non-extinct species ranging from -1.17% to 2.05%. Thirty species 

were projected to have declined over this period, with others stable or increasing, a 

balance of winners and losers – as found in other taxa (Dornelas et al., 2019). In the 

future (2020 to 2050) average abundance intactness was projected to stabilise with a 

mean annual rate of change of 0.18%, and species values ranging from -0.66% to 

0.78%. Stabilisation occurred as populations approached carrying capacity across 

their range (Figure 4c).  
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Figure 4. Cladogram of 87 species in the orders Canidae, Felidae, Hyaenidae and Ursidae, 

following the IUCN taxonomy and using an amended Nyakatura and Bininda-Emonds (2012) 

phylogeny. From in to out, the rings indicate: A - the annual rate of change in abundance (%) 

between 1970 and 2020; B - the annual rate of change in abundance (%) between 2020 and 2050; 

C - the percentage decrease in the species current range relative to its counterfactual natural 

range, as defined by Faurby et al. (2018). Two species in this ring, Canis latrans and Nyctereutes 

procyonoides, had range expansions instead of losses, but for visualisation, we set range losses to 

0%; D - describes additional future range losses from abundance crashes comparing the current 

range (baseline period of 2005) to 2050. b) Mean abundance intactness between 1970 and 2050). 

c) Mean percentage of species’ current range at or approaching carrying capacity, which we define 

as cases where species abundance intactness is greater than 95% (essentially intact). d) Mean 

percentage of species’ range to become extirpated compared to species’ counterfactual natural 

range. e) Mean percentage of species’ distribution to become extirpated compared to species’ 

current range at the baseline period of 2005. For panels b-e, the thicker lines represent the average 

across all species, with shading showing ± 1 standard deviation. Grey lines show individual 

species.  
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Whilst the projected recoveries in abundance intactness are encouraging for the 

status of large carnivores, it is important to note that these species have already 

experienced large range losses (Figure 4a,d). Specifically, current IUCN range 

extents are approximately half the size of the historic counterfactual-natural ranges. 

Yet, much of these range losses likely occurred before 1970, and our projections 

suggest future range losses will be minimal, relative to their historic ranges (Figure 

4d). Even comparing species current to future ranges, losses are projected to 

average less than 4% across all species by 2050 (Figure 4e). Furthermore, our 

projections do not consider potential range expansions, some of which are already 

happening (Cimatti et al., 2021). If our projections are correct and many of these 

carnivores approach carrying capacity across their range, further expansions seem 

likely.  

Carnivore guild status 

At a global scale, we project that carnivore guild status has been largely stable since 

1970, and stability will continue into the future (Figure 5). However, guild status 

varied across regions, as above we identify winners and losers. Most notably, in 

South America, the region with the most favourable carnivore guild status, we project 

increases from 1980 to 2010, which then plateaus until 2050. In contrast, we project 

guild status has declined in Africa over the last 50 years - driven by the predicted 

rapid rate of human development, primary land loss, and large species suffering 

under extreme heat – but guild status then begins to recover in 2020. By 2050, guild 

status will only be relatively intact in the Amazon, protected areas of Africa, high 

altitude areas (e.g. Himalayas and Andes), and high latitude regions. 

Our approach relies on land-use, climate and human development projection data 

and would be affected if these projections are incorrect. Land-use and climate 

projections are based on well-established sources (Lange, 2019a, 2019b; Cucchi et 

al., 2020) averaged over a variety of shared socioeconomic and relative 

concentration pathways to capture projection uncertainty (see Supplementary 

methods). However, available human development projections are crude and highly 

uncertain, largely assuming development will continue at a similar trajectory. This 

may not be a reasonable assumption: climate catastrophes are expected to slow 

human development growth in low human development countries (UNDP, 2020). 

Less growth could be good news for biodiversity, but countries could attempt to 

escape from the economic toll of a climate catastrophe by extracting natural 

resources and placing added pressure on large carnivores. As improved projections 

of human development become available, we could refine our biodiversity predictions 

evaluating potential scenarios.   
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Figure 5. a) Mean annual carnivore guild status index (± 1 standard deviation) for the entire globe, 

as well as each of the five continents where the study species occur. b) Carnivore guild status index 

displayed at 1-degree resolution across the globe at four time points: 1970, 1995, 2020, and 2050. 

Carnivore guild status index is derived by multiplying the guild-averaged abundance intactness 

(scaled from 0 to 100) by guild completeness (locally extant species divided by extant and recently 

extinct species), where 0 indicates all species have become locally extinct, whilst 100 indicates the 

guild is complete and all species’ populations are at carrying capacity.   

 

Our projections are also limited by the biases and predictive accuracy of our 

population trend model. Whilst we attempted to minimise biases in the trend data by 

using a novel censored and weighted regression, which allowed us to increase the 

taxonomic and spatial scale of the work relative to previous analyses, biases are 

certainly still present and the impact of these on our inference remains unclear. 

Future work could also utilise approaches like state-space trend modelling to better 

capture uncertainty within these trend estimates. Encouragingly, sensitivity analysis 

show the same covariates and interactions were supported across different dataset 
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and model structures (Supplementary results: Sensitivity analysis). The model’s 

predictive accuracy was intermediate (conditional R2 ~0.5). We explored a broader 

array of factors (e.g. climate, land-use, governance and traits) than previous work, 

but we still lack data on likely important aspects (e.g. poaching, persecution, culling, 

and the conservation benefits of being flagship species). Capturing this multitude of 

different influences has also allowed us to make projections of population change, 

but these warrant careful critique. Future work could validate these projections and 

develop more effective solutions for capturing projection uncertainty e.g. hindcasting. 

Until this point, these projections should only be viewed as a possible scenario, 

rather than an actionable piece of evidence. 

Our study offers a new comprehensive analysis of global population trends for large 

mammalian carnivores. We show that abundance trends have been influenced by 

stressors like land-use and climate change and that their effects have been 

magnified and mitigated depending on the species traits, the protected status of the 

land, and some interactions between the stressors. Large carnivores do not conform 

to the biodiversity decline narratives (Díaz et al., 2019), but highlight a scenario of 

winners and losers under environmental change (Dornelas et al., 2019). Our study 

also reveals the importance of accounting for human population characteristics (i.e. 

human development) which call for a wider socio-ecological scope when evaluating 

biodiversity changes. Focussing solely on stressors like land-use and climate change 

may be effective at identifying causes of declines, but provides few opportunities to 

identify the features that support recovery, and these feature may hold the key to 

bending the biodiversity curve. In large carnivores, recoveries could already be 

underway, but new challenges are on the horizon. We predict many large carnivore 

populations could reach carrying capacity within their current ranges in the next 30 

years, which could lead to range expansions. Range expansion will bring political and 

societal challenges: governments and the people living alongside these large 

carnivores will need to decide how willing they are to coexist with these species. 

Decisions like this will shape the future status of large carnivores, and biodiversity 

more generally.  

Code and data availability 

Code and data available upon request and will be made openly available prior to 

publication. 
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Supplementary methods 

Population trends 

We sourced population trend information for all species in the families Canidae, 

Felidae, Hyaenidae, and Ursidae of the order Carnivora from two large trend 

datasets: CaPTrends (Johnson et al., 2021a) and the Living Planet Database (WWF, 

2020a). CaPTrends contributed 1,220 trends, and the Living Planet Database 

contributed 350, combining to produce a cumulative 1,474 unique (non-duplicated) 

trends. In the Living Planet Database, and for most records in CaPTrends, trends are 

reported as a timeseries of abundance (or density) estimates. We modelled these 

timeseries with log-linear regressions, where abundance (the response) was loge 

transformed, and year of abundance estimates was selected as the predictor. We 

extracted the slope coefficient which represents the annual instantaneous rate of 

change, sometimes called the population growth rate (rt). There are also other 

formats of quantitative trends in CaPTrends which fall into three broad datatypes, all 

of which we converted into an annual instantaneous rate of change (rt):  

a) Finite rate of change 

𝑟𝑡 = 𝑙𝑜𝑔𝑒(λ) 

Where λ represents the mean annual finite rate of change. 

b) Estimates of relative abundance change between two points in time (e.g. 

percentage or fold change in the past 10 years) 

𝑟𝑡 =
𝑙𝑜𝑔𝑒(1 + (𝑃/100))

𝑁
 

Where P represents the additive percentage change (e.g. a population doubling in 

size = 100%), and N is the difference in time (in years) between the two estimates of 

abundance. For fold changes, we first converted the fold change into an additive 

percentage change. 

c) Timeseries of population change estimates, reported as either population 

lambdas or percentage changes e.g. in year 1 the population doubled (λ = 2) 

and in year 2 it halved (λ = 0.5). We back-converted the change estimates 

into abundance estimates against a constant value of 100. We then fitted log-

linear regressions with abundance and year, as in the abundance timeseries.  

We converted all annual instantaneous rates of change into an annual rate of change 

percentage to improve interpretability. These rates of change ranged from -75% to 

68%, but the majority of values fell within -10% to 10% (Figure S1a). 
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Figure S1. a) Distribution of quantitative records (represented as annual instantaneous rates of 

change); rates of change range from -75% to 68%, but axes have been trimmed to more clearly 

represent the bulk of the data. b-d) Spatial representation of quantitative (purple) and qualitative 

(orange) records, split into increasing (b), stable (c), and decreasing (d) trends. For the quantitative 

records, trends exceeding an annual rate of change of 5% were classed as increasing, between -

5% and 5% were classed as stable, and less than 5% were classed as decreasing. The qualitative 

records fell naturally into the increasing, stable, and decreasing categories. 

Alongside the quantitative records, 138 populations in the CaPTrends dataset were 

only described qualitatively with categories: increase, stable, and decrease. These 

records were more common for populations located in traditionally poorer-sampled 

countries (e.g. with lower human development), so whilst they are less informative 

(only describing the direction and not the magnitude), we deem them important to 

reduce known biases (Figure S1b-d). As a result, we used a combination of annual 

rate of change (%) and qualitative categories as our responses in our inference 

model – see below. 

Covariates 

Our covariates fall into four categories: land-use, climate, governance, and traits 

(Figure S2). One of the challenges in identifying how covariates impact population 

trends is matching the spatial scale of the covariate with the population i.e. how much 

of the population is affected by the covariate. To tackle this problem, we used data 

on the area of extent of each population to generate a circular distribution zones 

around the population’s coordinate centroid. We refer to this as the ‘population area’ 

hereafter. In populations without a reported extent (N = 347), we searched the locality 
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and location description online to identify the approximate size of the population area. 

For example, the top result in a Google search for ‘Serengeti area’ described the 

location as 30,000km2. If we could not find an area, we assigned the population as 

one of the following categories: small locations (e.g. towns and counties): 1,000km2 

[N = 123], medium locations (e.g. regions and states): 10,000km2 [N = 151], large 

locations (e.g. countries): 100,000km2 [N = 73].  

 

Figure S2. Sixteen covariates with a proposed effect on carnivore population trends highlighted in 

bold and underlined. Covariates fall in four groups: Traits, Land-use, Climate, and Governance. 

Text alongside covariates briefly explains how the variable was derived, whilst full explanation and 

justifications for inclusion are available in Supplementary methods: Covariates. 

Given population areas regularly exceeded 10,000km2 (Figure S3a), it was not 

computationally feasible to extract covariates over the entire area; thus, we sampled 

from a random selection of points within each population area, sampling more 
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frequently in larger areas (range: 13 – 295 sampling points, Figure S3b). Random 

sampling was only used for land-use and climate covariates, as governance 

covariates are measured at the national level, and all traits (except for population 

area itself) are measured at the species level. The population areas and 

corresponding sampling points were developed with a Mollweide equal-area 

projection, but we transformed these areas and points back into a WGS84 projection 

to match all covariate rasters (see below). In all covariates, ‘population monitoring 

period’ refers to the period (start and end year) the population was monitored for. 

 

Figure S3. a) Distribution of population areas, the area of extent of population monitoring, for 1,127 

quantitative population trends extracted from CaPTrends (Johnson et al., 2021a) and the Living 

Planet Database (WWF, 2020a). b) Frequency of covariate sampling points relative to population 

area size, where populations occurring over larger areas receive more covariate sampling. Area, 

the x-axis, is displayed on the log10 scale. 

Land-use 

We extracted three land-use covariates: Primary land loss, Change in natural land, 

and Change in human density. Primary land loss and Change in natural land were 

derived from the land-use harmonization dataset (Hurtt et al., 2020), which reports 

the annual proportional coverage of 11 land-use types between 1850 and 2015AD, at 

a 0.25° spatial resolution. To make the land-use types more biologically relevant to 

predators, we amalgamated a selection of the 11 types into two summary-types: 

primary land – the sum of ‘forested primary’ and ‘non-forested primary’; and natural 

land – the sum of ‘potentially forested secondary’, ‘potentially non-forested 
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secondary’, ‘managed pasture’ and ‘rangeland’. To estimate Primary land loss we 

found the mean primary land across sampling points in each population area for each 

year in the population monitoring period. We then estimated the rate of loss in 

primary land over time by dividing the rate of loss in each year by the previous year, 

and then converted this to a percentage loss. We defined the mean Primary land loss 

(%) for each population area as the average across this timeseries of loss rates. We 

followed an identical procedure for Change in natural land. Importantly, primary land 

cannot be restored, so primary land only decreases or remains stable. Whilst natural 

land can fluctuate up and down. 

We estimated the Change in human density using the Global human settlement 

human population raster (Florczyk et al., 2019), which describes the human density 

per km2 for four years: 1975, 1990, 2000, 2015. For each year, we mean aggregated 

the original data to reduce the spatial resolution to 0.1°. In order to estimate the 

Change in human density for each population area’s monitoring period, we had to 

estimate missing human density values (years) in each population area. To do this, 

we first extracted the mean human density across each population area, in all four of 

the available years. In each population area, we then used a log-linear regression to 

predict human density (base log transformed) by year between 1960 and 2015. As 

human density change was non-linear we modelled year (predictor) with a cubic fit. 

We then extracted the back-transformed predicted values of human density for all 

years in each population area. As we were only working with four data points, model 

predictions were highly uncertain. This uncertainty was included by resampling our 

model with 100 bootstrap iterations. For each population monitoring period and 

iteration, we extracted the predicted human densities and estimated the rate of 

change (%) as calculated for the other land-use covariates. Finally, we calculated the 

mean human density rate of change (%) across all iterations, as well as the standard 

deviation, which was used to represent uncertainty in the values within the inference 

model (see below).  

Climate 

Our two climatic covariates, Change in extreme heat and Change in drought, 

describe how the number of months exceeding an extreme heat or drought threshold 

(respectively) changed between a pre-industrial period (1850 – 1900) and the 

population monitoring period (Figure S2). To derive our Change in extreme 

covariates, we compiled a raster timeseries of bias-corrected daily maximum near-

surface air temperature from 1850 to 2014, at a 0.5° resolution (Lange, 2019a, 

2019b; Cucchi et al., 2020). We then averaged the daily maximum temperature for 

each month, in each year, creating a monthly raster timeseries of the mean 

maximum temperature from 1850 to 2015. From this, we calculated the mean and 
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standard deviation of the monthly maximum temperature in the pre-industrial period, 

and defined the extreme heat threshold as the mean + 1.5 standard deviations of the 

mean in each pixel. We selected 1.5 standard deviations as the measurement of 

noise as this limited the number of months that exceed the threshold to between 5 

and 10% within the pre-industrial period i.e. meaning extreme heat events were rare 

but happened.  Next, we found the mean number of months per year in the pre-

industrial period that exceeded this threshold for every pixel, as well as the number of 

months to exceed this threshold in all years between 1960 and 2015. We then 

subtracted the number of threshold-exceeding months in each year (1960-2015) from 

the mean threshold-exceeding months in the pre-industrial period, creating a raster 

timeseries describing the difference in threshold-exceeding months e.g. how do the 

number of months exceeding the threshold in 1970 differ to the average across the 

pre-industrial period? Finally, for each sampling point in each population area, we 

found the mean difference across the population monitoring period, and then 

averaged this difference across all sampling points to produce a population area 

estimate of the Change in extreme heat. 

To derive our Change in drought covariate, we compiled two raster timeseries’ 

describing the bias-corrected daily near-surface air temperature and daily bias-

corrected precipitation, both from 1850 to 2014, at a 0.5° spatial resolution (Lange, 

2019a, 2019b; Cucchi et al., 2020). We then averaged the daily temperature rasters 

and summed the daily precipitation rasters for each month, in each year, creating two 

monthly raster timeseries, describing monthly mean temperatures and total 

precipitation (in mm) from 1850 to 2015. For temperature, we calculated 

Thornthwaite’s evapotranspiration across the raster timeseries, which uses the mean 

temperature, latitudinal position and number of daylight hours to estimate the 

evapotranspiration rate (Thornthwaite, 1948). Next, we subtracted this monthly 

evapotranspiration estimate from the monthly precipitation (mm) estimate to produce 

Thornthwaite’s standardised precipitation-evapotranspiration index (spei), a standard 

metric used to describe water availability (Vicente Serrano et al., 2010). We then 

proceeded to estimate a spei threshold and the mean difference in months 

overlapping the threshold (pre-industrial vs. population monitoring period) in an 

identical way to how monthly maximum temperature is treated in the Change in 

extreme heat covariate. 

Governance 

We identified five governance covariates that we considered important to large 

predator population trends, four of which were measured at the country-level: War 

present, Governance, Human development, and Change in human development. We 

used three datasets to populate these covariates: 1) For War-present, we used the 
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UCDP/PRIO Armed conflict dataset (Pettersson, 2019), which lists conflicts (between 

1946-2019) where fatalities exceeded 25 per year and at least one of the parties is 

governmental. We summarised this dataset into a timeseries that describes whether 

a war was present in each country’s territory in each year between 1960 and 2016. 2) 

For Governance, we extracted the world governance indicator metrics (Kaufmann et 

al., 2011), which present six annual governance timeseries for each country between 

1996 and 2016. 3) Finally, for Human development we sourced the UN human 

development index (UNDP, 2021), which provides an annual timeseries describing 

life expectancy, education level, and income per capita between 1990 and 2016 for 

189 countries. 

As the governance and human development indicator data only stretch back until 

1996 and 1990, respectively, some of the trend data preceded the indicator values. 

We imputed missing values through a multiple imputation chained equations (MICE) 

framework (Van Buuren & Groothuis-Oudshoorn, 2011). We used a hierarchical 

normal (2l.pan function) imputation model, where observations are nested into the 

different countries, and included: the year of the observation, the six governance 

indicator metrics, the human development index, whether war was present in that 

year (yes or no), as well as the country’s gross domestic product (log 10 

transformed). MICE imputations are stochastic and repeated numerous times, 

creating an approximate distribution for each missing value. We imputed missing 

values for each variable between 1960 and 2016 in each country, and repeated the 

imputation 100 times with a 50 iteration burn in – all variables showed convergence 

(Figure S4).   

Using the imputed datasets, we extracted the mean value across the six governance 

indicators in each country, year, and imputation chain. We then calculated the mean 

and standard deviation of this combined governance across the imputation chains to 

produce an annual governance timeseries (and associated error) for each country. 

For Human development, we averaged over the 50 stored imputation chains to 

calculate the mean and associated standard deviation for each country and year. We 

assessed if imputed values were plausible (Figure S5). 
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Figure S4.  Convergence of mean (left) and standard deviation (right) of variables with missing 

values in the imputation model: HDI – human development index, Corruption – control of corruption, 

GovEffect – government effectiveness, PolStab – political stability and absence of violence, 

RegQual – regulatory quality, RuleOfLaw – rule of law, VoiceAndAcc – voice and accountability, 

and GDP_log10 – gross domestic product (log 10 transformed). Convergence ran with 50 iterations 

and 100 chains. 
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Figure S5. Governance (top) and human development (bottom) index scores for Argentina (ARG), 

India (IND), Tanzania (TZA), and the United States of America (USA). True values are depicted 

with the black line, whilst the mean imputed values (point) and associated 95% confidence intervals 

(bars) are depicted in red. 

After we derived the governance and human development timeseries, we began 

extracting the covariates. For War present, we created a binary variable that 

described whether war(s) had occurred in the country where the population is 

located, at any point during the population monitoring period. For Governance and 

Human development, we extracted the mean scores per country, and associated 

standard deviations from the final year of the population monitoring period. For 

Change in human development, we extracted all human development values across 

the population monitoring period, and divided each value by the value in the previous 

year to produce a timeseries describing the annual changes in human development. 

We then averaged these values and converted the average into a percentage which 

describes the annual rate of change (%) in human development.  

Our only governance covariate not-measured at the country-scale is Protected area 

coverage. For this variable, we compiled the annual timeseries of protected areas 

polygons covering the period 1960 to 2020 from the World Database of Protected 

Areas (UNEP-WCMC & IUCN, 2021). In each year, we converted the polygons into a 

0.1° resolution raster describing the proportional cover of protected areas in each 

pixel. In the final year of the population monitoring period, we calculated the mean 

coverage of protected areas across pixels within the population area. 
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Traits 

We identified five species traits which may influence population trends in large 

predators: Body mass, Maximum longevity, Climatic niche breadth, Ecological niche 

breadth, and Reproductive output. Body mass describes the average body weight of 

an adult of the species in grams (log10 transformed), Maximum longevity describes 

the maximum lifespan of species in years (log 10 transformed), and Climatic niche 

breadth describes the standard deviation of the mean monthly temperatures across 

the species current IUCN range, calculated using WorldClim 2.1 (Fick & Hijmans, 

2017). The other two trait-covariates, Ecological niche breadth and Reproductive 

output, are principal components of a larger array of traits. Specifically, Ecological 

niche breadth captures habitat and diet breadth. Habitat breadth is defined as the 

frequency of different IUCN habitat classifications (IUCN, 2020a) the species occurs 

in. Diet breadth is defined as the number of different food-types the species has been 

recorded consuming (or with evidence of consuming through faecal or stomach 

content analysis), from the following 12 options: mammals, birds, reptiles and 

amphibians, fish, invertebrates, fruit, pollen and nectar, leaves and branches, seeds, 

grass, roost and tubers, and carrion – sourced from an unpublished trait dataset 

(González-Suárez, 2014). Our Reproductive output trait is a principal component of 

the following traits (all log 10 transformed): inter birth interval, gestation length, litter 

size, minimum breeding age, neonatal body mass, and weaning age, each of which 

describe a different characteristic of each species breeding biology, and generally 

highly correlated. As a result, our five traits of interest were reliant on collecting 

values for 12 common traits. 

We sourced values for our traits from three different trait datasets: PanTHERIA 

(Jones et al., 2009) AnAge (De MagalhÃes & Costa, 2009), and an unpublished large 

predator trait dataset (González-Suárez, 2014). We used multiple trait datasets to 

populate missing values at the species level. However, the values sometimes 

differed between the trait datasets, and in these cases, we created multiple records 

for the species to capture this uncertainty in the trait value. As a result, many species 

had more than one value for a given trait. However, despite using multiple trait 

datasets, values were still missing for some species in some traits (Table S1), and so 

we imputed missing trait values with Rphylopars (Goolsby et al., 2017). Rphylopars 

outperforms MICE imputation (as used in the governance covariates above) as it 

uses both the trait values and species’ phylogeny to estimate missing values – 

Rphylopars is considered one of the best imputation methods (Johnson et al., 

2021b). In our Rphylopars model, we trialled the three Nyakatura & Bininda-Emonds 

(2012) Carnivora phylogenies to ensure the imputations did not drastically change 

depending on the phylogeny (Figure S6). Once we confirmed the choice of 
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phylogeny had little impact, we proceeded with the rest of the analysis only using the 

phylogeny considered ‘best’ by Nyakatura & Bininda-Emonds (2012). We also 

included all 12 traits mentioned above in the imputation model, and six other traits to 

attempt to account for biases in the imputation model, specifically: species area of 

occurrence, minimum absolute latitude species occurs at, maximum absolute latitude 

species occurs at, difference in maximum and minimum latitude, maximum mean 

monthly temperature, and minimum mean monthly temperature. As the phylogenies 

we used were not perfectly matched to the CaPTrends and Living Planet Index 

taxonomies, we corrected synonymous species names in the phylogeny, and where 

species included in the taxonomy were absent from the phylogeny, we appended the 

species to a node that could be a close ancestor (based on taxonomy). 

Table S1. Percentage of values missing in each trait. 

Trait Missing trait values (%) 

Body mass 8.0 

Maximum longevity 12.6 

Climatic niche breadth 0.0 

Habitat breadth (part of ecological niche breadth) 0.0 

Diet breadth (part of ecological niche breadth) 23.0 

Age of sexual maturity (part of reproductive output) 24.1 

Litter size (part of reproductive output) 10.3 

Gestation length (part of reproductive output) 9.2 

Weaning age (part of reproductive output) 27.6 

Interbirth interval (part of reproductive output) 12.6 

Neonatal body mass (part of reproductive output) 28.7 
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Figure S6. Trait values represented on the phylogeny; climatic niche breadth is excluded as it had 

no missing values. Error bars represent the 95% confidence around the mean imputed values. If 

observations were complete (i.e. not missing values) the standard deviation around the observation 

was zero and so there are no confidence intervals. We include the three phylogeny types in 

Nyakatura & Bininda-Emonds (2012). 

 

An advantage to using Rphylopars is that it provides an estimate of the standard 

deviation around the missing trait values, which is something we wanted to capture in 

our modelling (see Inference model below). Three of our traits were going to be used 

as covariates directly within the modelling (Body mass, Maximum longevity, and 

Climatic niche breadth), so required no further manipulation as their associated 

standard deviations were available from the imputation. However, Ecological niche 

breadth and Reproductive output required dimension reduction through principal 

component analysis (PCA), with the number of variables shifting from 2 to 1, and 6 to 

1, respectively. Performing PCA on the mean values would fail to capture trait 

uncertainty, and so instead we developed normal distributions for each species’ trait 

value using their mean, and an error of one standard deviation. We then sampled 

from each distribution 100 times, and each time conducted a PCA on the trait to 

develop an eigenvector. We saved the eigenvector values on each of the 100 

repeats, and once the repeats were complete, we calculated the mean and standard 

Hyaenidae 

Felidae 

Canidae 

Ursidae 
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deviation for each species across the eigenvector values. This PCA sampling 

procedure was performed separately on the Ecological niche breadth and 

Reproductive output components. We examined the trait values to ensure they were 

plausible (Figure S6), and also checked between-trait correlations were acceptable 

i.e. sufficient variance in the correlation (Figure S7).  

 

Figure S7. Distributions of traits are represented on the diagonal. The person correlations between 

traits are represented above the diagonal with varying levels of statistical significance (p-value): ‘***’ 

when p<0.001, ‘**’ when p<0.01, ‘*’ when p<0.05, and ‘.’ when p<0.10. The scatter of observations 

(one point per species) below the diagonal graphically represent these correlations 

Temporal lag 

A challenge in identifying how covariates impact population trends, is matching the 

temporal scale of the covariate with the population i.e. how long is the lag between 

the covariates impact and a change in the population. This lag period is likely 
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variable across covariates (i.e. it could be different with land-use and climate 

features) and species traits. For example, recent work has suggested population 

change in large mammals peaks at approximately 10 years after forest loss 

(Daskalova et al., 2020). As a result, we conduct sensitivity analysis (see Sensitivity 

analysis below) to determine how model fit was influenced by lag selection, 

considering three options: 1) No lag, so covariate changes are measured between 

the start and end year of each population monitoring period. 2) Five-year lag, where 

covariate changes are measured between the five-years prior to the start of each 

population monitoring period, and run to the end of each period. 3) Ten-year lag, 

where covariate changes are measured between the ten-years prior to the start of 

each population monitoring period, and run to the end of each period.  

Cleaning data 

We opted to remove a selection of the population trend and covariate data as the 

values were deemed unreliable or unsuitable. Specifically, we removed any 

population trend records beginning before 1970 or after 2016 (N = 11), where 

governance data was largely incomplete. We also removed records overlapping 

multiple countries (N = 10), and any population trends with an excessively large 

population buffer-area (N = 40) – we set the threshold at 2 million km2 which could 

accommodate state and small-country level estimates, but would exclude large 

countries. For example, the largest population area in the dataset covered all of 

Russia (~21 million km2). Any population trends discussing non-native species were 

removed (N = 6), as well as records not overlapping any land (N = 4) e.g. Ursus 

maritimus populations occurring exclusively on sea-ice. We also removed any 

population trends where the population had either recolonised an area or become 

locally extinct (N = 80), which represent an extreme form of population change that 

could skew our inference. After excluding records, we were left with 989 estimates of 

annual rate of change, and 138 qualitative descriptions of change. 

Modelling 

Inference model 

We fitted a hierarchical linear model (Figure S8) to determine the effect of a 

combined 23 covariates and interactive effects on the rate of change in large 

predator populations. Our model development falls into seven compartments: 

censoring, random intercepts, coefficients and covariates, imputation uncertainty, 

weighted error, confirming parameters, and model running. The model was written in 

BUGS language and implanted in JAGS 4.3.0 (Plummer, 2016) via R 4.0.3 (R 

Development Core Team, 2020). 



Chapter 4: A global assessment of large carnivores 

 

169 
 

 1 

Figure S8. Model structure of hierarchical linear model, describing distributions of priors and hyperpriors, as well as the process for incorporating overall error, imputation error, 2 

trend weights, and censoring within the model.  We use five distributions (parameters described in brackets) within the model: normal (μ  = mean, σ = standard deviation), beta 3 

(shape1, shape 2), half-t distribution (μ  = mean, σ = standard deviation, df = degrees of freedom),  U/uniform (minimum, maximum), and Bernoulli (B = probability). 4 
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Censoring 

We included the two different population trend datatypes within the model: 

quantitative annual rates of change and qualitative descriptions of change. We 

modelled both of these datatypes with a normal error prior setting the standard 

deviation of this prior as a half-t (also known as a half-cauchy) distribution hyperprior 

centred at zero, with a standard deviation of 0.001 and one degree of freedom. 

However, to deal with the different data types, and the unknown values of the 

qualitative descriptions, we censored the qualitative records to indicate that the true 

value is unknown, but it occurs within a specified range. We specified these annual 

rate change ranges as -50% to 0%, -2.5 to 2.5%, and 0% to 50% within the 

decrease, stable and increase categories, respectively. Many of these qualitative 

records occur in less-well represented regions, species, and time-periods, so their 

inclusion addresses known data biases (Figure S1). However, these lower quality 

records will also be more prone to error. As a result, we conduct sensitivity analysis 

(see Sensitivity analysis below) to assess how including censored observation 

altered model fit, compared to only using quantitative, and high-quality quantitative 

(derived from at least three abundance observations), trends. Finally, in the 

modelling, we identified that the annual rates of change exhibited a heavy tailed t-

distribution, we transformed our responses into a gaussian distribution with an 

inverse-hyperbolic sine transformation. 

Random intercepts 

We used a hierarchical model structure to account for phylogenetic and spatial non-

independence in the data, including species as a random intercept nested with 

genus, and country as a random intercept nested within sub-regions, as defined by 

the United Nations (https://www.un.org/about-us/member-states). These parameters 

were fit with a normal distribution centred at zero and their error terms were given a 

vague uniform hyper prior, with a standard deviation ranging from 1e-10 to 100.  

Coefficients and covariates 

With a combined 23 covariates and interactive effects, we were conscious of 

overparameterizing the model. As a result, we split these parameters into three 

groups: 1) core parameters – which included main effects that have previously been 

reported as influential, are expected to be influential, or control for other parameters 

and methodological features; 2) optional parameters – which included main effects 

we considered interesting but with little evidence to-date of any influence on trends; 

and 3) interactive parameters – which includes all interactive effects. Core 

https://www.un.org/about-us/member-states
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parameters included: Change in human density, Primary land loss, Population area, 

Body mass, Change in extreme heat, Governance, and Protected area coverage. 

These core parameters were included in every model, but we used Kuo and Mallick 

variable selection (Kuo & Mallick, 1998) to identify important parameters from the 

optional and interactive groups, where variables were only included in an iteration if 

they were selected from Bernoulli priors. Our optional parameter group was assigned 

a Bernoulli prior, which sampled from a beta hyperprior (a = 2, β = 8), such that 

approximately 20% of optional effects would be included in any iteration, on average, 

but this could range from 0 – 100%. The interactive parameter group had an 

identical, but separate prior setup. Crucially, this interaction prior was only activated if 

both main effect parameters were present in the model. For example, for the Change 

in extreme heat and Change in drought interaction to be selected, it would require 

Change in drought to be selected from the optional Bernoulli prior, and then the 

interaction itself would need to be selected from the interactive Bernoulli prior. As 

variable selection can be highly influenced by the standard deviation of the 

parameter slope coefficients, we specified the slope standard deviation as a vague 

uniform hyperprior ranging from 1e-10 to 100. As this variable selection could lead to 

thousands of model combinations, each receiving different levels of support, we only 

selected well supported iterations - specifically, the most frequent parameter 

combinations accounting for up to 80% of all iterations. 

Imputation uncertainty 

Six of the covariates in the model contained missing values that were filled using 

imputation (see Land-use, Traits and Governance within the Covariates section 

above). To improve the robustness of our model inference, we accounted for 

uncertainty in the imputed estimates by treating imputed values of the covariates as 

distributions instead of point estimates, where each imputed value was assigned a 

normal distribution centred at the mean imputed estimate and with an error varying 

by the imputed observation standard deviation. As we z-transformed all of our 

covariates to standardise coefficients, except ‘War present’ which is a categorical 

variable, we also had to rescale the associated imputation standard deviations. As 

standard deviations cannot be rescaled in the same way as the imputed estimates, 

we first converted the standard deviation into confidence intervals, we then z-

transformed the intervals using the mean and standard deviation of the covariate, 

and then back calculated the standard deviation from these intervals.  
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Weighted error 

When developing the model, we were conscious that all not rates of change should 

contribute equally to the fit. For example, whilst including the censored records could 

decrease taxonomic and spatial biases in the data, they may also introduce error, as 

these censored records are unlikely to be as accurate as the quantitative trends. As a 

result, we included a weight term to inflate the uncertainty in these lower quality 

records, where the half-t hyperprior discussed above is multiplied by a weight term: 

the inverse of the estimated error in the rate of change. This weight term was 

developed through simulation (see below), and these simulated error weights inflated 

the variance around the trend in all low-quality observations, not just the qualitative 

ones.  

When simulating the trend weights, we considered our real trend data to be 

estimates of true trends with some degree of error. This error would be influenced by 

the certainty of the population abundance estimates, the sampling intensity (e.g. is 

the population sampled every year or only in 50% of years), and the sampling 

duration (e.g. is the trend based on 2 or 20 years). As a result, we developed a 

simulated trend dataset comprised of ‘true’ trends where abundance values are 

known (not estimates) and complete, and an edited trend dataset where abundances 

are uncertain and missing as expected in a real scenario and observed in our trend 

dataset.  

For the ‘true’ trend dataset, we simulated 6000 timeseries’ of abundances which 

varied in duration (from 2 to 20 years), with an estimate of abundance in all years 

throughout that duration. We then calculated the true trend for each timeseries by 

modelling abundances (response) against year in a log-linear regression, and 

converted the slope estimate into an annual rate of change (%). Abundance values 

exhibit a normal distribution ranging from approximately 0 to 500. 

For the edited trend dataset, we altered two parameters in each of the 6000 

timeseries’ of abundances generated above. Firstly, for each abundance estimate in 

each timeseries, we developed a random normal distribution, centred on the true 

abundance value, but with varying levels of error (coefficient of variation from 0.02 to 

0.2). For example, with a true abundance of 100, a low error of 0.02 would produce a 

range of abundance estimates from approximately c.95 to c.105, whilst the 

abundance would range from c.50 to c.150 with an error of 0.2 (Figure S9). We 

sampled from these newly created abundance distributions to produce new error-

prone abundance estimates, reminiscent of real uncertainty in abundance estimation. 

Secondly, we removed a random sample (between 0% and 90%) of the observations 
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in each timeseries, producing timeseries’ with varying levels of completeness. We 

then re-calculated the annual rate of change (%) as in the true trend to produce the 

estimated trend. The distribution of the estimated trend was largely similar to the true 

trend obtained from the complete dataset (Figure S10).  

 

Figure S9. Impact of adding noise to abundance values and removing abundance values on the 

population trend, with the true trend (derived from known and complete abundance values) in grey, 

and the estimated ones in red. In this example, the coefficient of variation equals 0.2, with a 

sampling intensity of 50% i.e. half the years in the population monitoring period have abundance 

values. 

 

Figure S10. a) Distribution of simulated true trend values (pink) and simulated estimated trend 

values (blue). b) Distribution of simulated estimated trend values (blue) and real trend values 

compiled from CaPTrends (Johnson et al., 2021a) and the Living Planet Index (WWF, 2020a) in 

yellow. 

We extracted the absolute error (difference) in the annual rate of change of the true 

and estimated trends, and modelled this error (as the response) against sampling 

intensity (what percentage of years have observations), the coefficient of variation 
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around the abundance estimates, and the duration of the trend, all in a log-linear 

regression. Trends with a higher sampling intensity (coef = -1.59, CI: -1.72, -1.47), 

lower coefficient of variation (coef = 4.09, CI: 3.68, 4.49), and longer duration of the 

trend (coef = -0.12, CI: -0.13, -0.11), had lower errors (Figure S11). We used this 

model based on simulated data to predict the likely error in the real data. For 

sampling intensity, we calculated the percentage of abundance values used to 

calculate the trend relative to the trend duration. For the trend duration, we calculated 

the number of years in each population monitoring period. Unfortunately, in most 

cases the estimates of uncertainty around the raw abundance values were 

unavailable, so we were unable to directly calculate the coefficient of variation for 

each trend. However, we did have data describing the quality of the sampling and 

modelling which could act as a proxy for the accuracy of the abundance values. 

Specifically, we scored trends separately in three areas (Table S2), where trends 

could only be assigned one category per area; we then added the score across the 

three areas: Sampling – how systematically was the population sampled? Modelling 

– how robust was the approach for modelling abundance values? Low-quality record 

– does the record meet any of the criteria for being considered low quality? For 

example, a trend with systematic population sampling (+0.04), where sampling effort 

is accounted for (+0.04), meeting none of the low-quality criteria (+0), would be given 

a coefficient of variation score of 0.08. For an abundance value of 100, this 

coefficient of variation score would allow the abundance to vary between 75 and 

125.Admittedly, our scoring criteria here is arbitrary, simply deigned to add 

uncertainty around trends that used less robust methods, rather than, say, describe 

the true uncertainty in the trend. However, as these arbitrary values only contribute 

one feature of three in the weighting system, there impact is likely minimal, and is 

tested in sensitivity analysis regardless (see supplementary results).  

After predicting the error in the real trend data using the simulated weight model, we 

scaled and flipped the values so that 1 indicates low error and 0.0001 indicates high 

error. These values had to be flipped, as the weight term in our hierarchical linear 

model (Figure S8) is multiplied by the precision (i.e. uncertainty) around each trend 

observations, in which a precision would then be deflated (i.e. uncertainty inflated) if 

multiplied by a high error trend. For example, for observation A with a low error of 

0.9, a precision of 10 would be deflated to 6, whilst for observation B with a high error 

of 0.1, a precision would be deflated to 1, so A would receive 6 times more weight 

than B. 
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Figure S11. Marginal effect of sampling intensity (a), coefficient of variation around abundance 

values (b), and trend duration (c) on the absolute error in the annual rate of change (%), comparing 

the simulated-true to the estimated trend. Sampling intensity describes the percentage of years with 

abundance values in the population monitoring period. Trend duration describes the length of the 

population monitoring period e.g. 1990 – 1992 equals three years. 

Table S2. Scoring criteria used to define a coefficient of variation (CV), uncertainty, in abundances. 

 Description CV 

 
Sampling 
 Method of population sampling is not described or is unsystematic/biased. 

 
0.08 

 Method of population sampling is systematic. 
 

0.04 

 All individuals in the population identified. 
 

0.01 

   

 
Modelling 
 Method of deriving abundance from population sampling is not described or 

values are just reported in their raw format. 
 

0.08 

 Sampling effort accounted for in abundance estimates. 
 

0.04 

 Abundance derived through complex modelling, or total abundance known. 
 

0.01 

   

 
Low quality record 
 Abundance values derived from genetic or harvest data; or the trend is 

labelled as inaccurate within the primary literature; or trend describes 
asymptotic instead of observed growth; or trend metric is unconventional. 

0.04 

 

To ensure our weight term benefitted the model fit, we conducted sensitivity analysis 

to compare the model fit under four options: 1) the simulated error weight (described 

above); 2) weighting by trend sample size, whereby trends derived from more 

abundance observation are given more weight; and 3) unweighted i.e. all 

observations are treated equally. 
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Sensitivity analysis 

We conducted sensitivity analysis to test how the different weighting, censoring, and 

temporal lag options influenced our model results, with the aim of selecting 

parameters which maximised model marginal and conditional R2, whilst also 

balancing this decision against potential risks. For example, including censored 

observations may reduce model fit but this could still be worthwhile if it reduces 

taxonomic and spatial biases. For weighting, we ran models separately under each of 

the three options, including censored observations and a 5-year lag on all covariates 

in all cases. After identifying the simulated error weighting as the best option for 

maximising fit and minimising bias (see Supplementary results) we tested the 

censoring options, again holding all covariates at the 5-year lag. Including censored 

observations was valuable, so we included the censored observations when 

assessing the different temporal lag models, from which we identified that using a 10-

year lag improved model fit. In each case, we ran the model through two chains, 

each with 10,000 iterations and discarding the first 5,000. We thinned the complete 

chains to store every other iteration (thinning factor of 2). We monitored convergence 

of key parameters within each model, specifically: standard deviation of the model 

intercept, standard deviation of beta coefficients, standard deviation of each random 

effect (regions, countries, genus, and species), standard deviation of the overall 

model error, the optional parameter beta hyperprior, and the interactive parameter 

beta hyperprior. We ensured the multivariate potential scale reduction factor was less 

1.1 across all models in the sensitivity analysis.  

Model running 

After selecting the simulated error weighting, censored observations, and a 10-year 

lag from the from the sensitivity analysis (see Sensitivity analysis in the 

supplementary results), we ran the full model through three chains, each with 

120,000 iterations. The first 20,000 iterations in each chain were discarded, and we 

only stored every 10th iteration along the chain (thinning factor of 10). We opted for a 

large chain and burn-in due to the model complexity, and to allow a broad selection 

of parameter combinations to be tested under variable selection. We assessed 

convergence of the full model on all parameters monitored in the sensitivity analysis, 

as well as the model intercept, and all 23 main and interactive effect slope 

coefficients. We checked the standard assumptions of a mixed effect linear model 

(normal residuals and heterogeneity of variance) and tested the residuals to ensure 

no spatial (Moran’s test) or phylogenetic (Pagel’s lambda) autocorrelation. We also 

conducted posterior predictive checks to ensure independently simulated values 

were broadly reminiscent of model predicted values. 
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After selecting the iterations of the most common (80%) model combinations (see 

Coefficients and covariates above) we calculated how frequently, as a proportion, 

each of the 23 main and interactive effects occurred within the iterations. For the 

optional parameters, this was derived by dividing the frequency of occurrence by the 

total count of iterations. For the interactive parameters, whose inclusion was 

dependent on the frequency by which their derivative main effects were selected, we 

divided the frequency of occurrence by the total count of iterations where both 

derivative main effects were present. Using the selected 80% of iterations, we report 

the median slope coefficient and associated credible intervals for each of the main 

and interactive effects. We also produce marginal effect plots for each parameter 

with an effect either above or below zero at the 80% credible interval threshold. 

These marginal effects hold all other covariates at zero. We also display the 

distribution of the random intercepts e.g. for each region, country, genus, and 

species. Throughout all these plots (but the not the plots in the Projections section 

below), we have propagated uncertainty through the model. For instance, uncertainty 

within the missing trait and governance values, as well as the less robust trend 

values is fed forwards through this analysis and is represented within the model 

posteriors. As a result, all effects and results capture multiple facets of uncertainty 

within the model. 

Projections 

Our inference model (above) describes how the annual rate of change (%) in 

abundance is influenced by a series of covariates, and we endeavoured to use these 

covariate coefficients to project how abundance in large predators had changed in 

the past (from 1970) and will continue to change in the future (up to 2050). We 

developed these projections through six steps: compiling covariates, projecting 

trends, and calculating: abundance intactness, guild abundance intactness, guild 

completeness, and finally, guild status (Figure S12).  
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Figure S12. Procedure for estimating species and guild abundance intactness, as well as guild 

status. Models were developed using a simplified form of the linear regression in the inference 

model, as well as the baseline abundance intactness from 2005 (Newbold et al., 2016). Current 

species richness was estimated using IUCN current range maps (IUCN, 2020b), and historic 

species richness was derived from counterfactual-natural ranges (Faurby et al., 2018). See the 

supplementary material for a more detailed description. 

Compiling covariates 

In order to project trends into the future for each species, we needed to compile an 

annual timeseries of spatially explicit data for all covariates deemed important in the 

inference model, up to the year 2050 - specifically: Primary land loss, Change in 

extreme heat, Change in drought, Human development, Change in human 

development, and Protected area coverage. All this data had already been compiled 

up to 2015 and used in the earlier model, but to project up to 2050, we sourced 

dataset extensions that facilitate future projections. However, as future projections 

are uncertain and influenced by representative concentration pathways (RCP) and 

shared socioeconomic pathways (SSP), amongst other things, we opted to consider 

three different scenarios to capture projection uncertainty. Specifically, for the 

Primary land loss, Change in extreme heat and Change in drought, we downloaded 

the Land-use harmonization and UK Earth system model future projection datasets 
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for SSP1 – RCP2.6, SSP3 – RCP7.0, and SSP5 – RCP8.5 (Lange, 2019a, 2019b; 

Cucchi et al., 2020; Hurtt et al., 2020). The three SSP options propose different 

socioeconomic pathways; the ones we selected describe sustainability (SSP1), 

regional rivalry (SSP3), and fossil-fueled development (SSP5). The RCP options 

describe varying projected increases of greenhouse gas concentrations ranging from 

low (RCP2.6) to high (RCP8.5). Incorporating the new projection scenarios split each 

covariate spatial timeseries into three with pathways diverging from 2015. 

We were unable to find pathway projections, or any future projections at all, for 

Human development, Change in human development and Protected area coverage 

covariates. For the human development variables, we opted to solve this by 

developing our own crude projections up to 2050. We conducted a beta regression 

for each country with the mean human development index (from the imputation) as 

the response and year of the estimate as the predictor (quadratic fit). We then 

rasterised the predicted values for each country to produce a spatial raster timeseries 

of human development index, which we used to describe the Human development 

and Change in human development in each pixel in each year. Our future projections 

of human development are unlikely to be correct, especially as historic growth in 

human development is at risk from environmental disasters (UNDP, 2020), and our 

projections ignore the different SSP and RCP scenarios. However, given the 

substantial influence of human development (and its change) on the model, we 

decided including crude projections was more robust than ignoring both covariates in 

their entirety. 

Similar to human development index, there are no future projections of protected 

area coverage. However, unlike human development index, there is no reasonable 

approach for estimating future protected area coverage. Instead of attempting to 

predict future protected area placement locations and times, we instead opted to 

simply consider that protected areas will remain static from 2020 until 2050.  

All future covariate projections are produced in an identical way to the past 

projections (detailed in the Covariates section above). However, for these projections 

the model did not include the population area covariate and values are reported at 

the raster pixel level each year instead of averaged over the population area and 

population monitoring period. The model used to project annual rates of change in 

each species included the covariate trait Body mass alongside the genus and 

species intercepts, but we note all of these were assumed to remain constant over 

time and space for each species (see Projection trends below). 

Two non-covariate features of our model, the region and country intercept, also 

needed to be represented as spatial rasters, but were assumed to be constant over 
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time. We developed raster projections for the region and country (separately) 

describing how the model intercept changes depending on the where the pixel 

occurs. Regions and countries not captured in the data of our inference model were 

given an intercept value of zero. All of the rasters in included in the model were mean 

aggregated to the same one-degree resolution in a WGS84 projection.  

Projecting trends 

We developed a trend projection for the 85 extant species within the target families 

by running the following projection model for each species in each year between 

1970 and 2050: 

Annual rate of change (%) ~  

Overall model intercept +  

Genus intercept + Species intercept +  

Region intercept + Country intercept +  

β(Body mass)  * Body mass +  

β(Primary land loss)  * Primary land loss +  

β(Change in extreme heat)  * Change in extreme heat +  

β(Change in drought)  * Change in drought +  

β(Human development)  * Human development +  

β(Change in human development)  * Change in human development +  

β(Protected area coverage)  * Protected area coverage + 

β(Change in extreme heat * Body mass)  * Change in extreme heat * Body mass +  

β(Change in extreme heat * Change in drought)  * Change in extreme heat * Change in drought + 

β(Change in extreme heat * Body mass)  * Change in extreme heat * Body mass 

 

Each projection model includes the median overall intercept from the inference 

model, the genus- and species-specific intercepts, and the region and country 

intercepts. The species-specific intercepts were set a zero when species were absent 

from the data in the main model, but these species were influenced by the genus 

intercepts. The projection model also includes all main and interactive effect 

parameters with an effect at the 80% credible interval, where the slope coefficients 

are represented by beta (β) and contained by brackets; the corresponding data are 

adjacent but not contained by brackets. For our beta slope coefficients, we only use 

the median value and ignore coefficient uncertainty within the projections due to long 

computational run times. All datasets were z-transformed using the mean and 

standard deviation of the covariates in the inference model. All other parameters in 

the inference model (the full model containing all parameters) were excluded from 

the projection model. We used a hyperbolic sine transformation to rescale the annual 

rate of change into a percentage – annual rates of change were inverse hyperbolic 

sine transformed in the inference model. This projection model was repeated for 



Chapter 4: A global assessment of large carnivores 

 

181 
 

each of the three SSP/RCP scenarios, so each species had three annual spatial 

raster timeseries extending from 1970 to 2050. For simplicity, projections were 

initially completed for all terrestrial pixels but we only considered values in the area 

currently occupied by each species which was defined by the current extant polygons 

of IUCN distribution maps (IUCN, 2020b).  

Abundance intactness 

Our trend projections describe the rate at which species abundances are predicted to 

change across their current distribution, but they ignore the current abundance status 

i.e. populations cannot grow if they are at carrying capacity. To capture this important 

characteristic, we needed a baseline estimate of the abundance (relative to carrying 

capacity) for each species across space. These abundance estimates are not 

currently available in the literature. However, we found a partial proxy for this 

estimate in the Newbold et al. (2016) abundance intactness index, a spatial raster 

describing the average abundance of biodiversity in 2005, relative to their abundance 

in an intact ecosystem. This index ranges from 0 (local extinction) to 100 (intact 

population) and extends across the entirety of terrestrial planet. This index covers a 

wide array of text, describing the intactness of biodiversity as a whole, instead of 

species-specific estimates of intactness; so in any given pixel, all species would be 

treated as having the same abundance intactness. This may not be a fair assumption 

if species have responded differently to land-use pressures, but in the inference 

model we found no evidence of land-use change effecting species differently. Even if 

species have responded differently, and so would have different abundance 

intactness estimates within the same pixel, this intactness estimate is only being 

used as a baseline to derive abundance trends, instead of directly informing them. As 

a result, we used the abundance intactness index as a baseline period for species in 

2005 and used the trend projections for each species to project the abundance 

backwards (to 1970) and forwards (to 2050). For example, if the abundance in 2005 

was 50, and the rate of change between 2005-2006 was 2%, the abundance in 2006 

would be 51. We capped the abundance at 100, which we considered carrying 

capacity. We also limited the rate of growth in the trend projections so growth in 

raster pixels could not exceed 5% per year. Whilst populations can grow faster than 

5% per year, such high rates would be unlikely for these large carnivoran species at 

a large spatial extent (the one-degree resolution we use). Finally, we averaged 

(mean) the species’ abundance projections across the SSP/RCP scenarios so each 

species only had one timeseries. We opted to average over the SSP/RCP scenarios 

to simplify the findings, and notably, the results were similar regardless of the 

scenario. 
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For each species abundance projection, we calculated three metrics: annual rate of 

change (%) from 1970 to 2020, annual rate of change (%) from 2020 to 2050, and 

future range loss (%). The annual rate of change metrics were derived by finding the 

mean abundance across all species extant in each year, and then modelling this 

abundance (response) in a log-linear regression with year as the predictor. This was 

done separately for the two periods (1970-2020 and 2020-2050). We converted the 

slope from these regressions into a percentage rate of change. We estimated future 

range loss by finding the percentage of pixels where abundance drops to zero 

(extirpated) by 2050, relative to the total number of pixels in the species current 

extant. We also derive one additional metric, Historic range loss (%), to accompany 

these species descriptors, by finding the percentage change in species current IUCN 

extant (IUCN, 2020b) relative to species counterfactual-natural ranges (Faurby et al., 

2018), which we use as a proxy for historical ranges.  

Guild abundance intactness 

After deriving the species metrics from the abundance projection timeseries’, we 

averaged species abundances over space to produce an average estimate of guild 

abundance in each year from 1970 to 2050. 

Guild completeness 

Whilst guild abundance intactness describes the status of species within their current 

distribution, it ignores historic range contractions. As a result, we determined the 

current completeness of the guild, to estimate the change in species richness over 

space. For this, we compiled the distribution maps from the IUCN (IUCN, 2020b) for 

the 85 extant species, and overlayed these to develop a one degree resolution raster 

describing the current species richness across the planet. We then compiled a 

historic species richness estimate over space by overlaying the counterfactual 

natural ranges (Faurby et al., 2018) of the 85 extant species and two extinct species. 

We divided the current estimate by the historic estimate to derive the proportion of 

currently extant species relative to extant and locally extinct species. 

Guild status 

We multiplied each year of the guild abundance intactness index by the proportional 

guild completeness to describe the overall status of large predators between 1970 

and 2050. This guild status index captures abundance and distribution changes to 

describe the status of predators over space and time. 
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Supplementary results 

Sensitivity analysis 

We assessed how trend weighting, including censored observations, and specifying 

a lag period on the covariates influenced model fit and inference, in part to assess if 

results were particularly sensitive to specific parameters, but also to help choose the 

parameters which optimised fit and spatio-taxonomic coverage. Using censored 

observations and a lag period of 5 years on covariates, model fit was greater when 

using the simulated error weights compared to the unweighted model and the model 

weighted by sample size (Table S1). Using simulated error weights and a lag period 

of 5 years on covariates, we then tested the impact of including censored 

observations which showed higher marginal and conditional R2 when censored 

observations were included. Using only high quality timeseries (compared to 

including censored observation) resulted in a higher conditional R2, but at the cost of 

excluding 19 countries and 2 species from the dataset. We considered the gain in 

model fit did not outweigh the added spatial and taxonomic bias. Finally, using 

simulated error weights and the full dataset (including censored observations), we 

tested how the lag period of covariates influenced fit. The 0-year lag had a slightly 

greater overall fit than the 5- and 10-year lags, but also had a slightly lower marginal 

R2. These differences were so minimal that we opted for the lag most supported by 

the literature – 10 years, with suggesting peak population change occurs 8 years 

after environmental change (specifically forest loss) in mammals  

In our final model, we used the simulated error weights, included censored 

observations, and used a 10-year covariate lag. While these decisions optimized fit 

and data coverage, the type of weightings, the data or time lags used had little 

impact on inference, as model coefficients were largely similar across all parameter 

types (Figure S1 – S3).  

Table S1. Fit of nine models tested in the sensitivity analyses split across three categories: 

Weighting – influence of different trend observation weighting options; Censoring – impact of 

including different qualities of trend data; and Lag – fit under different lag periods for covariates 

(e.g. for a predator population monitored between 1995-2000, the Change in human density would 

be measured from 1995-2000, 1990-2000, and 1985-2000, respectively under the 0, 5, and 10-year 

lags. Fit measured as the marginal and conditional R2. There are varying levels of data in each 

model, and we summarise the frequency of countries and species this data occurs in. For the 

weighting models, all quantitative and qualitative-censored trends were included, with a 5-year lag 

on the covariates. For the censoring models, all trend observations were weighted by the simulated 

error, with a 5-year lag on the covariates. For the lag model, all quantitative and qualitative-

censored trends were included and weighted by the simulated error. 
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 Category Marg. R2 Cond. R2 Countries (N) Species (N) 

W
e

ig
h

ti
n

g
 Unweighted 0.09 0.26 75 50 

Weighted by trend sample size 0.10 0.29 75 50 

Weighted by simulated error 0.11 0.29 75 50 

C
e

n
s

o
ri

n
g

 High quality timeseries trends 0.11 0.30 56 48 

All quantitative trends 0.10 0.28 69 49 

All quantitative and qualitative-censored trends 0.11 0.29 75 50 

L
a

g
 

0 years 0.10 0.30 75 50 

5 years 0.11 0.29 75 50 

10 years 0.11 0.29 75 50 

 



Chapter 4: A global assessment of large carnivores 

 

185 
 

 

Figure S1. Standardized slope coefficients for the 23 main effects and interactions on the annual rate of change, comparing three models with different types of trend weighting: 1) 

trend values are unweighted; 2) trend values are weighted by the sample size (frequency of abundance observations used to derive trend); and 3) trend values are weighted by the 

simulated error. The four widths of the error bars represent different credible intervals: 50% (thickest), 80%, 95%, and 97.5% (thinnest) 
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Figure S2. Standardized slope coefficients for the 23 main effects and interactions on the annual rate of change, comparing three models with different levels of inclusion for the trend 

data: 1) all timeseries trends with at least three abundance values are used; 2) all quantitative trend values are used; and 3) all trend values are used. The numbers in brackets 

alongside the facet titles describe the sample size of trends in the model. The four widths of the error bars represent different credible intervals: 50% (thickest), 80%, 95%, and 97.5% 

(thinnest) 



Chapter 4: A global assessment of large carnivores 

 

187 
 

 

 

Figure S3. Standardized slope coefficients for the 23 main effects and interactions on the annual rate of change, comparing three models describing different lags of the model 

covariates: 1) 0 years; 2) 5 years; and 3) 10 years. The different lag periods only effect covariates that measure a change in the covariate over time. For example, for a predator 

population monitored between 1995-2000, the Change in human density would be measured from 1995-2000, 1990-2000, and 1985-2000, respectively under the 0, 5, and 10-year 

lags. The four widths of the error bars represent different credible intervals: 50% (thickest), 80%, 95%, and 97.5% (thinnest).
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Model selection and effects 

We recorded 1967 unique covariate parameter combinations across the 30,000 

stored model iterations. However, 176 combinations accounted for the majority (80%) 

of the iterations (Figure S4). 

 

Figure S4. From the 30,000 stored iterations, we recorded 1967 unique model covariate/parameter 

combinations, most were rare and 80% of the iterations represented just 176 parameter 

combinations. We only report the posterior distributions and effects from this 80% subset. 

Some parameters occurred far more frequently than others. Change in human 

development was the most common optional parameter, occurring in all the selected 

iterations. Whilst Change in extreme heat * Protected area coverage was the most 

common interactive parameter (Figure S5). Two parameters, the interaction of 

Primary land loss with Change in natural land and Ecological niche breadth, were 

present in none of the selected iterations. 
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Figure S5. a) Proportion of iterations where parameter is present in the stored 80% of model runs. 

Core parameters (purple) are present in all models, whilst optional and interactive parameters 

(pink) only occur in models when they are selected from Bernoulli distributions. b) Standardised 

coefficients of parameters main effect and interactive model parameters. Parameters in purple have 

an effect at the 80% credible interval, whilst those in grey do not. The different credible interval 

thresholds are shown for each parameter, with darkest centre representing the 50% credible 

intervals, followed by the 80%, 90%, and 95% thresholds (the maximum and minimum point on 

each bar). 

 

Model assumptions and checks 

The inference model passed all standard linear mixed effect model assumptions, with 

residuals not showing signal of spatial or phylogenetic autocorrelation (Figure S6). 

However, the inference model failed to represent the more extreme observed annual 

rate of change (%) values, with the predicted rates of change largely ranging from -2 

to 2, whilst the observed rates of change range -5 to 5; both on the inverse 

hyperbolic sine scale (Figure S7a). The qualitative-censored predictions largely 

agreed with the observed data, where censored-increasing values where primarily 

predicted to increase, and censored-stable values exhibited small increases and 

decreases (Figure S7b). The only category with reasonably poor alignment was 

censored-decreasing, where populations were predicted to be both increasing and 

decreasing. Our posterior predictive checks suggest the model produced broadly 

plausible values, with the independently simulated values occurring within the 

distribution of the observed trends, albeit failing to represent extreme values (Figure 
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S7c). For the qualitative-censored trends, the quasi-observed values matched the 

simulated values almost identically (Figure S7d), which is to be expected. The 

inference model had a median root mean square error of 9.2%, a median marginal R2 

of 0.2, and a median conditional R2 of 0.5 (Figure S8). 

                

 

Figure S6. a) Median predicted annual rate of change (%) values from the inference model plotted 

against the median residual rates of change (%), both displayed with an inverse hyperbolic sine 

(ihs) transformation – the transformation used on the annual rate of change (%) within the inference 

model. b)  Semivariance and Moran’s autocorrelation of inference model’s median residual annual 

rate of change (%) across distance/space (decimal degrees). c) The median residual annual rate of 

change (%) averaged (mean) across each species, plotted on the species’ phylogeny to test for 

phylogenetic autocorrelation. The annual rate of change (%) is ihs transformed. 
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Figure S7. a) Median predicted annual rate of change (%) values from the inference model plotted 

against the observed rates of change (%), both displayed with an inverse hyperbolic sine (ihs) 

transformation – the transformation used on the annual rate of change (%) within the inference 

model. b)  Median predicted annual rate of change (%) values (and 95% credible intervals) from the 

inference model plotted against each category of qualitative-censored values (median quasi-

observed rates of change) - both displayed with an inverse hyperbolic sine (ihs) transformation. 

Values are quasi-observed as the true observed values are unknown. c) Distribution of observed 

annual rates of change (grey), compared to model simulated median annual rates of change (blue). 

d) Distribution of median quasi-observed annual rates of change (grey), compared to model 

simulated annual rates of change (blue).   
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Figure S8. a) Distribution of the weighted root-mean-square error of the annual rate of change (%) 

in the inference model, comparing true to predicted values. b) Distribution of the inference model’s 

marginal R2. c) Distribution of the inference model’s conditional R2. 
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Abstract 

1) Human perceptions of nature, once the domain of the social sciences, are 

now an important part of environmental research. However, the data and 

tools to tackle this research are lacking or are difficult to apply.  

2) Here, we present a collection of text classifier models to identify text relevant 

to the broad topics of hunting and nature, describing whether opinions are 

pro- or against-hunting, or show interest, concern, or dislike of nature. The 

methods also include a biographical classification – describing whether the 

author of the text is a person, nature expert, nature organisation, or ‘Other’. 

The classifiers were developed using an extensive social media dataset and 

are designed to support qualitative analysis of big data (especially from 

Twitter).  

3) The classifiers accurately identified biographies, text related to hunting and 

nature, and the stance towards hunting and nature (weighted F-scores: 0.79 - 

0.99; 1 indicates perfect accuracy).  

4) These classifiers, alongside an array of other text processing and analysis 

functions, are presented in the form of an R package classecol. classecol 

also acts as a proof of concept that nature related text classifiers can be 

developed with high accuracy.  

 

Keywords: conservation, culturomics, cultural ecosystem services, human-nature relationship, 

human perceptions, text classifier, sentiment analysis. 
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Introduction 

Ecology has become more transdisciplinary to better understand our environment. 

For example, ecosystem services reflect health, economic and cultural values 

(Kareiva et al., 2011), and journals and societies want to study human relationships 

with nature (Gaston et al., 2019; Society for Conservation Biology working groups, 

2020). This transdisciplinary shift has brought the human dimension of nature into 

focus, but the study of human-nature relationships largely falls outside the traditional 

expertise of an ecologist or conservationist, who may be unfamiliar with the available 

methods and data. 

Social media could help us understand human-nature relationships. Historically, 

surveys (or other qualitative approaches) have assessed perceptions, often providing 

detailed understanding of the person’s thoughts. Social media does not offer such 

detail, but is cost-effective, less time-intensive, and offers enormous amounts of 

information (Fox et al., 2020). In 2020, social media has become widely used in most 

countries, with approximately half of the world’s population (and increasing) being 

active users (Clement, 2020). Social media captures many data types (e.g. text, 

photos, videos, sound and interaction networks with other people) with spatial 

representation and temporal timeseries that could allow holistic analyses (Toivonen 

et al., 2019). 

In recent years, the use, and diversity of uses, of social media analysis across the 

environmental sciences has rapidly increased (Ghermandi & Sinclair, 2019). Social 

media has been used to develop species distribution models (August et al., 2020), 

measure aesthetic and recreational ecosystem services (Van Zanten et al., 2016; 

Graham & Eigenbrod, 2019), track illegal wildlife trade (Di Minin et al., 2018), and 

determine the role of wildlife in nature-based tourism (Hausmann et al., 2017). The 

abundance and availability of data on these platforms – many now 15 years old, 

open the door for more research. Analyses of social media could revolutionise our 

understanding of the human-nature relationship and how it impacts the environment, 

but this requires new and improved tools (Toivonen et al., 2019).  

There are many approaches to ‘mine’ opinions and gain insights from text data 

(Aggarwal & Zhai (2013). For example, sentiment analysis aims to understand the 

emotion of a text, often classifying the text’s language-use as negative, neutral, or 

positive (Liu, 2020). This can be done with machine learning approaches, but a more 

readily accessible approach for interested ecologists and conservationists would be 

lexicon-based sentiment analysis. Lexicon-based approaches assign scores to words 

to calculate an average score for a text passage e.g. if more negative words are 

used, the text will be labelled as negative. Overall scores are effective for describing 

sentiment, but meaning may be unclear (Mohammad et al., 2017; Aldayel & Magdy, 
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2019). For example, lexicon-based sentiment analyses would return negative scores 

for these two messages ‘It is sad that Pangolin are vanishing’ and ‘Pangolins are 

bad’ (both use negative language), failing to recognize that only the second message 

indicates a dislike for pangolins. Furthermore, in some lexicons, species names can 

have negative scores (e.g. ‘shark’) which can bias results if we are interested in 

human-nature relationships (Lennox et al., 2020).  

Stance analysis is an alternative approach (Srivastava & Sahami, 2009; Aggarwal & 

Zhai, 2013; Liu, 2020), more targeted towards assessing opinions about topics or 

specific questions. Stance analysis could help recognize the dislike of pangolins in 

the example above, but this method is often time-consuming to develop as it requires 

large training datasets alongside complex machine learning models. Furthermore, 

the generality of the stance analysis models can be low. For example, if a stance 

analysis model was built to detect fondness of pangolins, it may be of limited use for 

other species. So whilst stance analysis gets far closer (relative to lexicon-based 

sentiment analysis) to understanding a user’s opinion, for it to be useful, it would also 

need to be derived from a broad array of training data themes and answer general 

and pertinent questions.  

classecol description 

With the massive growth in social media analysis, and especially in studies using text 

data to look at people’s perceptions of and relationships with nature (Ghermandi & 

Sinclair, 2019), there is a great need for text analysis tools (Toivonen et al., 2019). To 

meet this demand, we present classecol a text cleaning, processing, and 

classification tool to support analysis of public opinions of nature in a big data setting. 

classecol avoids the interpretation issues of sentiment analysis and the specificity 

issues of stance analysis. classecol can identify relevant texts, describe their 

stance, and determine the type of user that produced the text. This provides a proof 

of concept to guide and encourage further text analysis development for ecology, and 

we hope other groups developing classifiers would consider uploading them to our 

package - becoming formal contributors (see package vignette). classecol‘s ten 

text classifiers, have been trained and tested on Twitter data, and fall within three 

topics: 

1. Hunting – Are texts discussing the hunting of wildlife? If so, what’s the user’s 

opinion e.g. pro or against hunting? 

2. Nature – Are texts relevant to nature? If so, what’s the user’s opinion e.g. 

expressing interest, concern, or dislike of nature?  
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3. Biographical (bio hereafter) – Is the author of the text a person? If so, is that 

individual a member of the general public or an individual discussing nature in 

a professional or academic capacity?  

 

Developing classifiers 

Prior to developing the ten classifiers in the classecol collection, we developed 

base classifiers for each of the three topics following eight steps: 1) Defined a 

protocol to describe the criteria text must meet to fall in a category (e.g. What text 

characteristics distinguish pro- and against-hunting?). 2) Ensured the human 

classifiers could accurately and consistently use the protocol. 3) Seven individuals 

classified 1,100 texts for each topic (tweets for hunting and nature, and user provided 

descriptions for bio) creating a training dataset of 7,700 texts per topic. 4) Built six 

text classification models for each topic including multinomial logistic regression, 

support vector machines, naïve Bayes, random forest, K nearest neighbour, and a 

four-layer neural network. A logistic regression was then used to merge the outputs 

from these models generating an ensemble text classifier. 5) Tested the performance 

of the ensemble model and identified cases of misclassification to refine the protocol 

and classification criteria. 6) Corrected misclassified training texts using the refined 

protocol. 7) Finalised the classification protocol. 8) Tested different text cleaning 

options (e.g. from raw text to very clean text – see Table S1) to identify that which 

maximised ensemble model precision and recall (both defined below). These eight 

steps are further detailed in Supplementary material: Developing classifiers. 

In the final protocol there are three categories for the hunting topic and four for the 

nature and bio (one added during the reclassification steps) topics:  

Hunting 

1. Irrelevant – text does not discuss the hunting of animals. 

2. Pro-hunting – text indicates support for hunting. 

3. Against-hunting – text indicates opposition to hunting.  

Nature 

1. Irrelevant – text does not discuss nature or nature related activities. 

2. Pro-nature (positive phrasing) – text endorses nature with positive language 

e.g. interest. 

3. Pro-nature (negative phrasing) – text endorses nature with negative language 

e.g. concern. 

4. Against-nature – text indicates opposition or frustration towards nature e.g. 

fear. 
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 Bio 

1. Expert – user has professional status, or qualifications to indicate expertise, 

in nature or a nature related field. 

2. Person – user is an individual without nature expertise. 

3. Nature org (added) – user is an organisation, company or group working in a 

nature related activity. 

4. Other – user is none of the above.  

 

Classifier accuracy 

We report the F-score (Zhang & Zhang, 2009) accuracy of each category in each 

classifier, and an overall accuracy per classifier (average F-score weighted by the 

proportional abundance of each category). Accuracy was measured on an 

independent data sample i.e. not used to develop the classifiers. F=1 indicates 

perfect classification. 

The hunting classifiers had high overall (0.87 – 0.97) and category accuracies 

(Figure 1), except for Irrelevant, where lower accuracy (0.64 - 0.72) was driven by 

low recall (0.54 – 0.61). Nearly half of the Irrelevant texts were assigned to the wrong 

category. In the nature classifiers, overall accuracies ranged from 0.82 – 0.92, with 

moderate to high accuracy across all categories except Pro-nature (negative 

phrasing) and Against-nature in the ‘full’ model. Against-nature had low model recall 

(0.67) and precision (0.4), probably because this category only represented 1.1% of 

all classifications. This low coverage could make the model unreliable, which may 

explain why Pro-nature (negative phrasing) also had low accuracy in the ‘full’ model, 

despite good accuracy in other models. Given this finding, we removed Against-

nature from the stance and trimmed models and would recommend using the 

trimmed over the full model. Finally, in the bio models, overall accuracies ranged 

from 0.79 – 0.87, with moderate to high accuracy in all categories. All topics are 

characterised in Figures S6-8. 

Using classecol 

Prior to data collection and analyses, any research project involving public opinion 

should consider the legal and ethical requirements – see Data rights and ethics in the 

supplementary material. 

The classecol functions fall into two groups: 1) general text cleaning and analysis 

and 2) text classification. The first group includes five functions of value for anyone 

interested in natural language processing. The clean function provides 
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comprehensive text cleaning options, including the conversion of common 

emoticons, abbreviations, slang, and environmental related hashtags into readable 

text. valence detects the presence of terms that can alter, reverse, or amplify 

meaning. contract performs word stemming and lemmatisation to reduce term 

complexity (e.g. consulting becomes consult). lang_eng detects whether the text 

contains English terms or not. Finally, senti_matrix pulls together 11 popular 

sentiment analysis approaches into one function, to produce a matrix of average 

sentiment scores for each sentence. All of these functions can be used in 

conjunction, for example, to assess sentiment analysis of some text, you may use 

lang_eng to remove non-English terms, then clean and contract the text, before 

running the senti_matrix function. 

Our second group of functions are the most important component of classecol. 

These text classifiers are processed through a Python backend, thus require 

downloading and installing Python (we recommend version 3.6). This can be done 

automatically in R through the addeR::py_download function (Johnson, 2021). 

The load_classecol function then automatically downloads the text classification 

models and Python module dependencies. load_classecol also links R to the 

Python backend and needs to be run every time a new R environment is loaded; the 

text classification models and Python modules will only need to be downloaded once. 

The hun_class, nat_class, and bio_class functions perform the text 

classifications in the hunting, nature and bio topics, respectively. Prior to using the 

classifiers, we recommend running clean(level = “simple”) for hun_class 

and clean(level = “full”)for nat_class, but no cleaning is required before 

using bio_class. nat_class also requires a matrix of valence and language 

indicators, as well as sentiment scores for each text record (see package vignette on 

https://github.com/GitTFJ/classecol). 

The hun_class, nat_class, and bio_class functions each contain multiple text 

classifiers which could be valuable in different scenarios (Figure 1). For hun_class, 

the relevance model identifies whether text is relevant or irrelevant to hunting, stance 

classifies relevant texts as pro- or against-hunting, and full runs both relevance and 

stance. Similarly, for nat_class, relevance identifies whether text is relevant or 

irrelevant to nature, stance identifies whether relevant pro-nature texts are using 

positive or negative phrasing, and the trimmed model combines both. nat_class 

also has a full model which includes the low-accuracy Against-nature category, which 

should be used with caution. Finally, for bio_class, the person model identifies 

whether a user is a person or not, expert classifies persons as nature experts or 

general public, and full combines both, and adds the additional ‘Nature organisation’ 

category. 
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Figure 1. Flowchart to assist in selecting a suitable classecol classifier for each of the hunting, nature and bio topics. Flowchart questions are depicted in dark grey boxes with 

rounded edges, and classifier options are in the lighter shade of grey. The bold text in the classifier boxes describes the classifiers name and overall accuracy. Accuracy (measured 

as the classification F-score, a value of 1 is perfect classification accuracy) is also broken down into each classifier category.  
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Classifiers can be used hierarchically (e.g, use relevance followed by stance) rather 

than using the combined classifiers. This increased computational processing time 

but had little impact on accuracies, except in the bio model, where accuracy is 

improved by using the person classifier, followed by the expert classifier. Classifiers 

can also be stacked. For example, to explore the general public’s stance towards 

hunting in the USA, we could remove non-English texts with lang_eng, identify 

members of the public with bio_class(type = “full”), and then determine 

hunting stance with hun_class(type = “full”). When running any of the text 

classifiers, we recommend manually classifying a sample of your data so 

classification accuracy can be determined. 

classecol’s suite of text processing, analysis, and classifier functions can assist 

academics and policy-makers interested in exploring the human dimensions of 

nature in big data. This research theme, and in-turn classecol’s value, extends far 

beyond the fields of ecology and conservation, with social scientists, human 

geographers, and environmental scientists all working with human-nature relationship 

data. classecol proves that moderate to high accuracies can be achieved from text 

classifiers and we hope this will inspire future classifier development (methods and 

code are openly available). Admittedly, there are time-costs to consider as 

supervised classifiers like classecol require lengthy training datasets, which are 

laborious to compile, and as mentioned earlier, can lack generality. Whilst we have 

designed classecol across a broad array of training data themes, its generality (or 

accuracy) across different data-types is unknown. classecol should be used 

cautiously on non-Twitter data, and a sample of data must always be manually 

classified (by a human) so accuracy can be tested. 

Despite hundreds of studies in environmental sciences using social media analysis, 

there is a scarcity of method comparison and testing which means the accuracy and 

representativeness of these text analysis tools remains largely unknown, and could 

be error-prone. For example, when we measure sentiment analysis scores for texts 

in our human-classified hunting and nature stance data, we may expect sentiment 

analysis to detect the opposing hunting stances, or the opposing language use in 

pro-nature tweets i.e. Against-hunting tweets would primarily have negative scores, 

and Pro-hunting tweets would have positive scores. However, the sentiment scores 

between the categories largely overlap in both the hunting and nature topics (Figure 

2). Sentiment approaches were unable to distinguish the classifications and detect 

our stances (lexicon-based sentiment analysis can only describe the text’s polarity, 

not infer meaning). To ensure social media data is used robustly in the environmental 

sciences, its pivotal that methods are tested and frameworks for analysis are 

developed.  
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Figure 2. Assessment of 11 sentiment approaches ability to distinguish between the hunting and 

nature stances. The points represent the median sentiment score and error bars are the 95% 

quantiles [2.5%, 97.5%], displayed for each approach in each stance. If the sentiment analysis 

approaches were able to distinguish between the stances, we would expect to see little to no 

overlap in the black and grey points.  

Big-data culturomics within the ecological and conservation sciences are already 

reliant on transdisciplinary work involving social science. Transdisciplinary research 

is key to harnessing the data’s massive potential, but requires careful method 

development and testing. This scrutiny extends onto classecol for which next 

steps include further testing of the text classifiers especially on non-Twitter data. The 

full potential of classecol, to our knowledge the first publicly available text classifier 

of opinions on nature, is yet to be explored, but we hope this tool will be the first of 

many in a growing community. 

 

Code and data availability 

Twitter terms and conditions prevent sharing of the training data. Code to develop 

classification models at https://github.com/GitTFJ/classecol_dev and the classecol R 

package is located at https://github.com/GitTFJ/classecol 
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Supplementary material  

Developing classifiers 

Prior to developing the 10 models in the classecol collection, we created base 

models in each topic, with the aim of identifying and addressing possible 

classification issues. These base models attempted to predict every category within 

the topic and were developed following eight steps (Figure S1): 1) Protocol – criteria 

for classifying tweets into categories for each topic; 2) Test classifiers – assess 

accuracy of human classifiers; 3) Classify – assign categories to text to create 

training datasets; 4) Models – build models with training data; 5) Test models – 

assess model accuracies and inadequacies; 6) Reclassify – correct misclassifications 

in the training data; 7) Final protocol – amend protocol to incorporate changes 

identified in steps 4 - 6. 8) Cleaning – improve model accuracy by cleaning text to 

pull out important features. Each of these eight steps are described in detail below. 

 

Figure S1. Eight steps to developing base classifiers. In steps 4-6, the dotted grey arrows indicate 

that these steps are iteratively repeated until no clear errors remained in the training datasets 

classifications. We define ‘clear errors’ as those which wrongly characterise the category according 

to the protocol. 

Protocol 

For each topic, we developed a series of classifications and specified the criteria the 

text must meet to be assigned to each classification. These classifications were 

determined by examining tweets under common hashtags (#hunting and #nature) 

and the associated user biographies to determine how the text could be split. 
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Importantly, this was just an initial criterion which was later amended after identifying 

inconsistencies – see ‘Final protocol’ below. 

In the hunting classifier, tweets were assigned into one of the following classifications 

using only the tweet’s text:  

• Irrelevant – tweet discusses the hunting of something other than animals (e.g. 

#hunting for car keys), or contains insufficient information to determine the 

classification (e.g. text just says ‘#hunting’), or mentions hunting but the 

primary focus is on something else (e.g. bass fishing holiday #fishing 

#hunting). 

• Against-hunting – tweet opposes the hunting of animals (e.g. poor creatures 

#bantrophyhunting). 

• Pro-hunting – tweet describes involvement in the hunting of animals (e.g.  

#hunting for geese), or the support for hunting related activities (e.g. amazing 

lion head #trophy). 

For the nature classifier, tweets were assigned into one of the following 

classifications using only the tweets text:  

• Irrelevant – primary content of the tweet is not nature related (e.g. I love the 

new #Lionking).  

• Against-nature – tweet describes nature as a bad thing (e.g. we need to 

control foxes, they are destroying my garden! #wildlife). 

• Pro-nature (positive phrasing) – tweet describes nature as a good thing and 

primarily uses positive phrasing, showing an interest or curiosity in nature 

(e.g. Planet Earth is so cool, look at these forests #wildlife #nature).  

• Pro-nature (negative phrasing) – tweet describes nature as a good thing and 

primarily uses negative phrasing, showing concern for nature (e.g. The 

destruction of our forests is absurd #nature). Note the use of the term 

primarily in the phrasing aspect of the Pro-nature categories. In some cases, 

nature may be described with both positive and negative phrasing, and in this 

case, the text should be categorised as the most frequent phrasing type (e.g. 

‘I love nature, that’s why I am so devastated by these dreadful wildfires 

#saveourspecies before it is too late’ has both positive and negative phrasing, 

but the negative phrasing is most frequent, and so the text should be 

classified as Pro-nature with negative phrasing). 

For the bio classifier, users were assigned one of the following classifications based 

on their screen name and biographical description:  

• Expert – user labels themselves as having expertise or training in a nature 

related field (e.g. Graduate of nature-related degree), or describes a relevant 

job role (e.g. National park warden), or affiliation (e.g. chair of RSPB). 
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• Person – user appears as a personal account (e.g. Jim Bloggs 26, nurse and 

rock-climber). 

• Other – covers all accounts falling outside the Expert and Person groups, 

including parody and alias accounts, as well as accounts with insufficient 

information.  

Test classifiers 

To ensure the protocol was well understood and human classifiers would judge 

tweets (or users for bio) consistently, each individual conducted a test where they 

had to classify a selection of text passages and describe why they made each 

choice. The test included questions on the hunting (six questions), nature (six 

questions), and bio topics (seven questions), and covered each of the classification 

categories. This test was conducted before individuals classified any text (pre-

classification) and after (post-classification) to assess consistency in individual 

understanding of the protocol over time. After the pre-classification test, each 

individual was given a detailed report of their test results and a description of what 

the correct answers were and how those were obtained. From this test, we identified 

that records did not always fall within one category and sometimes touched on many. 

As a result, we updated the protocol so records were assigned to the most aligned 

category, or left unclassified if not well-aligned to any category. 

Classify 

For each topic, we randomly extracted Twitter records from three existing datasets 

managed by TFJ. The hunting and nature datasets contain millions of tweets which 

were queried through the Twitter API. The hunting dataset compiled all tweets 

mentioning any of the following terms: #Hunting, #TrophyHunting, #StopHunting, or 

#BanTrophyHunting. The nature dataset searched a more broad array of terms, 

including species names, celebrated events, natural and manmade disasters, and 

more specific environmental terms:  #BiodiversityDay, #BigCats, #Biodiversity, 

#Birding, #Cheetah, #ClimateChange, #Conservation, #Ecology, #Elephant, 

#Leopard, #Lion, #Poaching, #PhD, #Nature, #Shark, #Sustainable, 

#SaveTheAnimals, #Tiger, #Wildlife, #WildlifeCrime, #WildlifeTrafficking, 

#WildlifeTrade, #Wildlife, #WWD, and #WorldWildlifeDay. The bio dataset contains a 

list of the name and description of millions of Twitter users. The hunting and nature 

classifications are solely based on tweet content, whilst the bio classification is based 

on the concatenation of the name and biographical description in each user. All 

tweets and user bios were downloaded between March 2018 and July 2019. 

Records were classified by seven assessors (all authors except MGS). Each 

assessor was assigned 1,000 tweets per topic that were only scored by them, and 
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100 tweets per topic that were scored by everyone to check for agreement in 

classification and potential issues in the criteria. In total each assessor classified 

1,100 per topic, resulting in three training datasets, each with 7,700 classified tweets 

and bios. The training datasets included 7,100 unique tweets, but because 100 

tweets had been independently classified by each of the seven assessors, the total 

number of classifications was 7,700. All records were classified between July and 

October 2019. 

Models 

We developed a series of text classification models to predict the defined categories 

from the tweet or bio datasets. The same process was completed for each topic. 

Models had two levels, in the first level we developed multiple text classification 

models, in the second level we pooled the results across the multiple models. Before 

specifying any models, we randomly split the labelled training data into groups: a 

training set for the first level models (71%), an independent set to validate first level 

neural network fit (4%), a training set for the second level models (18%), and an 

independent set to test model accuracy (7%).  

For the first level models, we took the first level training set (71%), conducted a basic 

clean of the text (see ‘Cleaning’ below), and calculated the term-frequency inverse-

document-frequency (tf-idf) for each tweet or bio, where each term represents a 

single word i.e. we only used unigrams. This transformation converts the text string 

into a matrix which described the relative frequency of each word within each text 

passage. The human-classified text label was then modelled against the tf-idf matrix 

under six model types: multinomial naïve Bayes, support vector machine with a 

stochastic gradient descent and hinge loss function, random forest, multinomial 

logistic regression, K nearest neighbour, and a four-layer neural network. All methods 

except the neural network were completed using scikit-learn Python package 

(Pedregosa et al., 2011), the neural network was developed in keras (Chollet, 2015) 

and tensorflow (Abadi et al., 2015). The default options were used for all models 

except for the neural network, where we limited the tf-idf matrix to the 1,000 most 

frequent features (or words). Limiting the number of features substantially reduced 

processing time, and trial runs showed it did not noticeably reduce model accuracy. 

The neural network had four layers: an input with 1,000 nodes, two hidden layers 

with 512 and 128 nodes, and an output layer with nodes equal to the number of 

classification categories. All nodes were linked through a fully connected (dense) 

network. In both hidden layers, we set the dropout at 0.2 to randomly block nodes 

and reduce the effect of overfitting. In the input and both hidden layers, we used a 

rectified linear unit activation function, and in the output layer we used softmax 

activation. Finally, we used a categorical cross-entropy loss function and adam 
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optimizer within the neural network, and specified a batch size of 256 with 30 epochs. 

These epochs were later trimmed to between 3 and 4, to maximise accuracy and 

minimise loss in the 4% model validation set (Figure S2)  

 

Figure S2. Change in base classifier accuracy and loss in the neural network text classifier. 

Accuracy and loss compared for the training set (71%) and an independent validation set (4%), 

across 30 epochs, with a batch size of 256. 

 

There is evidence that using multiple machine learning models and pooling results 

through ensemble modelling can improve predictive accuracy (Thorne et al., 2018). 

As a result, for the second level models, we used a ‘blending’ ensemble approach 

where a new sample of data (18%) was run through the six models, producing a 

matrix of classification probabilities for each tweet or bio. This matrix was then run 

through an additional multinomial logistic regression, with the human-classified 

categories as a response, developing a model which can take a matrix of 

classification probabilities and predict the category. The classification accuracy of the 

six text models and the ensemble are tested on a final independent sample of the 

data (7%). 

Test models 

We examined a word cloud representation of each base model’s testing dataset (7%) 

confusion matrix to assess which terms may be wrongly influencing the category. We 

then searched for these terms in the full dataset to identify incidences where the 

assessor selected the wrong category, and incidences where assessors diverged in 

views on the category because the protocol was insufficient. We iteratively ran the 

models after each reclassification step (see ‘Reclassify’ below) and reviewed 

potential problematic terms.  
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Reclassify 

The purpose of the reclassify step was to remove classification errors and 

inconsistencies, as well as making sure each classification was representative of the 

protocols criteria e.g. the classification should align with the criteria. We addressed 

reclassifications in three ways: 1) searched frequent terms occurring in the 

misclassified categories (e.g. classified Irrelevant, but model predicted as Pro-

hunting); 2) read through categories with a high a frequency of misclassifications to 

detect the root cause of any issues; 3) decided the protocol was insufficient and 

conducted a full review of all texts to amend issues. Finally, in cases where we felt 

there was insufficient data (e.g. the expert category in the bio classifier) to accurately 

characterise any classification, we compiled new records (where possible) that could 

bolster the category. We anticipated that correcting misclassifications may improve 

model accuracies, but this was not the purpose of the reclassifications. As a result, 

we only assessed the change in model accuracy (related to the reclassifications) 

after deciding we were happy the training dataset was aligned and representative of 

each classification and the overall protocol. We repeated the models, test models, 

and reclassify steps until we were content with the protocol. 

Hunting reclassifications: 

1) In the first review, preppers, snares and survival were assigned as Irrelevant 

in some cases and Pro-hunting in other cases. The protocol had no rules 

regarding these terms, which post-hoc were decided they should fall within 

the Pro-hunting category, not Irrelevant. As a result, all records containing 

‘prep’ ,’snar’, or ‘surv’ were reviewed, and reclassified where necessary. 

Outdoor also frequently appeared in the Irrelevant and Pro-hunting 

categories, so we reviewed all tweets mentioning ‘outdoor’, but found no 

large-scale misclassification issues and deemed the classification protocol 

sufficient. In the first review, 1.9% of tweets were re-classified.  

2) In the second review, fishing related terms regularly occurred in the Irrelevant 

and Pro-hunting categories. Following the protocol, these should be classified 

as Irrelevant if the primary focus of tweet is fishing and #hunting is just used 

as a popular hashtag to improve the tweets reach. However, this was 

challenging to distinguish within the tweets. As a result, we reviewed every 

tweet containing ‘fish’, and if the tweet was primarily focussed on fishing, but 

still endorsed hunting, the tweet was re-assigned as Pro-hunting. 

Photography related terms also commonly occurred in the Irrelevant and Pro-

hunting category, so we reviewed all tweets mentioning ‘photo’, but found no 

large-scale misclassification issues and deemed the classification protocol 

sufficient. In the second review, 11.2% of tweets were re-classified. 
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3) In the final review, tweets discussing deer were regularly classified as 

Irrelevant. We reviewed all tweets containing ‘deer’ and reclassified the 0.5% 

of tweets that were deemed to be misclassified under the current protocol. 

We found no additional-obvious causes of misclassification in the dataset. 

Nature reclassifications: 

1) In the first review, tweets discussing hunting activity were classified as 

Against-nature by some individuals. However, hunters may contest this 

classification and state they have an admiration and an interest in nature. As 

a result, we specified in the new protocol that hunting should not 

automatically be considered Against-nature and its classification should be 

dependent on the context e.g. ‘hunting this pesky fox’ would be Against-

nature as nature is deemed pesky, however ‘hunting for natures majestic cat 

today #Lion’ would be deemed pro-nature (appreciation of nature and positive 

phrasing). We reviewed all Against-nature tweets and re-classified text 

following this new protocol. We also reviewed all tweets discussing ‘pest’ and 

‘remov’ to assess if any tweets likely representing an Against-nature stance 

fell in a different category, but found no large-scale issues. In the first review, 

1.4% of tweets were re-classified. 

2) In the second review, we identified an issue in the original protocol, where the 

examples and rules described the classifier as a nature-topic, but when the 

tweets were classified, TFJ set the database label as wildlife, not nature e.g. 

Against-wildlife instead of Against-nature. We were concerned this label may 

have influenced the categories, so TFJ reviewed all tweets to ensure the 

classifier worked across the entire nature topic, not simply within the domain 

of wildlife. In the second review, 21.3% of tweets were re-classified. 

3) In the final review, we did not find any large-scale issues but did identify a 

series of terms to be checked. We reviewed, and reclassified where 

necessary, all tweets containing any of the following: ‘conservation’, ‘sustain’, 

‘water’, ‘pet’, ‘job’, ‘fashion’, ‘jewel’, ‘lion’, or ‘unicode’. In the final stage, 

17.9% of tweets were re-classified. We found no additional-obvious causes of 

misclassification in the dataset. 

Bio reclassifications: 

1) In the first review, many terms were shared between the Expert and Other 

categories, as some ‘Other’ were leading organisations and groups in nature 

and the environment. As a result, we reviewed all users again and added a 

category ‘Nature org – nature organisation’ to capture this middle ground, re-

classifying 17.8% of tweets. However, after splitting the data into these 

categories, we found there were too few experts to accurately predict the 

Expert category. As a result, an additional search was conducted by 
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downloading the biographies of all non-restricted accounts that the first 

author follows (N ~ 1,000). TFJs professional account contains a high 

frequency of Experts, but does not accurately represent all nature related 

disciplines, and so TFJ further sampled the accounts followed by 50 peers 

(accounts TFJ follows). This increased the number of users from 7,700 to 

15,987. TFJ classified all new users and added them to the existing dataset. 

2) In the second review, many of the terms we expected to be associated with 

the Expert or Nature organisation categories occurred in the general Other 

category, so we reviewed all users with the following terms in their name or 

description, and reclassified them where necessary: ‘ecolog’, ‘enviro’, 

‘climate’, ‘biolog’, ‘sustain’, ‘lectur’, or ‘prof’. In the second review, 2.3% of 

users were re-classified. 

3) In the third review, we identified further terms that would likely only belong in 

Expert or Nature organisation, but fell in other categories, so we reviewed all 

users with the following terms in their name or description, and reclassified 

them where necessary: ‘evol’, ‘conserv’, ‘biodiv’, ‘geog’ and ‘bird’. We also 

briefly scanned through the Other category to identify if people’s names (e.g. 

John or Jane) were present, possibly indicating the user is a Person instead, 

and we reclassified these where necessary. Finally, there were a series of 

obvious errors in users where the first letter of their name began with a, b, or 

c. We are unclear what caused the error but reviewed each of the users to 

correct any misclassifications according to the protocol. In this third review, 

4.7% of users were re-classified. 

4) In the final review, we did not find any large-scale issues but did identify a 

series of terms to be checked. We reviewed, and reclassified where 

necessary, all tweets containing any of the following: ‘author’, ‘teacher’, 

‘father’, ‘mother’, ‘dad’, ‘mum’, ‘husband’, ‘wife’, or ‘gamer’. In this final 

review, 0.3% of tweets were re-classified. We found no additional-obvious 

causes of misclassification in the dataset. 

Final protocol 

Here, we represent the changes in the protocol, with removals crossed out and 

coloured red, and additions coloured blue. 

Hunting 

• Irrelevant – tweet discusses the hunting of something other than animals (e.g. 

#hunting for car keys), or contains insufficient information to determine the 

classification (e.g. text just says ‘#hunting’), or mentions hunting but the 
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primary focus is on something else (e.g. bass fishing holiday #fishing 

#hunting). 

• Against-hunting – tweet opposes the hunting of animals (e.g. poor creatures 

#bantrophyhunting). 

• Pro-hunting – tweet describes involvement in the hunting of animals (e.g.  

#hunting for geese), or the support for hunting related activities (e.g. amazing 

lion head #trophy), or the promotion of hunting (e.g. look at this cool knife and 

camo for just $30 #hunting), or the endorsement of hunting for survival (e.g. 

hunt to eat #survival), or support for hunting as an aside to fishing (e.g. bring 

on the #bass catch weekend of #camping #fishing #hunting). 

Nature 

• Irrelevant – primary content of the tweet is not nature related (e.g. I love the 

new #Lionking).  

• Against-nature – tweet describes nature as a bad thing (e.g. we need to 

control foxes, they are destroying my garden! #wildlife). The action of hunting 

is not inherently Against-nature as hunters may appreciate nature e.g. ‘look at 

this majestic lion trophy #hunting’ would be classified as Pro-nature (positive 

phrasing). 

• Pro-nature (positive phrasing) – tweet describes nature as a good thing and 

primarily uses positive phrasing, showing an interest or curiosity in nature 

(e.g. Planet Earth is so cool, look at these forests #wildlife #nature).  

• Pro-nature (negative phrasing) – tweet describes nature as a good thing and 

primarily uses negative phrasing, showing concern for nature (e.g. The 

destruction of our forests is absurd #nature). Note the use of the term 

primarily in the phrasing aspect of the Pro-nature categories. In some cases, 

nature may be described with both positive and negative phrasing, and in this 

case, the text should be categorised as the most frequent phrasing type (e.g. 

‘I love nature, that’s why I am so devastated by these dreadful wildfires 

#saveourspecies before it is too late’ has both positive and negative phrasing, 

but the negative phrasing is most frequent, and so the text should be 

classified as Pro-nature with negative phrasing). 

Bio 

• Expert – user labels themselves as having expertise or training in a nature 

related field (e.g. Graduate of nature-related degree), or describes a relevant 

job role (e.g. National park warden), or affiliation (e.g. chair of RSPB). 

• Person – user appears as a personal account (e.g. Jim Bloggs 26, nurse and 

rock-climber). 



Chapter 5: classecol - classifiers to understand public opinions of nature 

 

212 
 

• Other – covers all accounts falling outside the Expert, Person, and Nature 

organisation groups, including parody and alias accounts, as well as 

accounts with insufficient information.  

• Nature organisation – organisations, companies, or groups with a core 

interest or expertise in nature. 

Cleaning 

Up to this point, all text had been cleaned using the Basic cleaning option (see Table 

S1); however, model accuracy is highly dependent on the quality of the feature 

extraction, and even small gains could be valuable. As a result, in the classecol 

package we have developed a series of cleaning options and assessed their impact 

on model accuracy. These options range from the very simple where text is modelled 

in its rawest form, to the complex - see full+ in Table S1. All of the cleaning options 

except full+ act on the first level text classification models, whereas full+ differs 

because it acts on both model levels by including its sentiment matrix in the second 

level ensembles. This sentiment matrix contains a matrix of 11 lexicon-based 

sentiment analysis approaches describing the polarity of text, a language indicator to 

specify if English terms are detected, and indicators to detect if any valence, negator, 

amplifier, or de-amplifier terms are used which can change the texts meaning (e.g. I 

love foxes… NOT) . We assess the impact of cleaning using only the final 

reclassification data, not the original classified data. 
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Table S1. Different cleaning options tested to assess their impact on model fit. These cleaning 

options are available through the clean function in classecol. Tick indicates the option present 

in the cleaning approach, whilst a cross indicates the option is absent. 

 raw basic simple full full+ 

Text made lowercase 

 
    

Numbers removed 

 
    

Special characters removed 

 
    

URLs removed 

 
    

Text lemmatised e.g. better = good 

 
    

Text stemmed e.g. walking = walk 
 

 
    

Stopwords removed e.g. the, and etc. 

 
    

Hashtags split e.g. ‘#BigCat’ = ‘big cat’ 

  
   

Twitter syntax removed 
e.g. ‘RTs’ 

  
   

Emoticons readable 
e.g.       = happy 

  
   

Abbreviations expanded e.g. lol = laugh 
out loud 

   
  

Slang expanded e.g. bro = brother 

   
  

Grade expanded 
e.g. A = excellent 

   
  

Rating expanded 
e.g. 10 = excellent 

   
  

Sentiment matrix added 

    
 

 

Data rights and ethics 

Before any project is designed and data are collected, it is important to consider the 

legal and ethical components of the work. From a legal perspective, tweets represent 

personal data and often fall under national and international (e.g. EU General data 

protection regulations) law that requires due care to ensure data are processed and 

stored correctly. Furthermore, even if the project meets legal standards, it is 

important to consider who owns the data. For example, tweets remain in the 

stewardship of Twitter and are owned by the users that posted the tweets. As a 

result, Twitter can recall data at any time and forbid its use, and Twitter forbids raw 

data sharing and publication. Finally, it is important to ensure the data use and 
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research questions meet institutional and funding agency ethical requirements. 

However, these may be insufficient for this relatively novel data source, and efforts 

should be made by researchers to fully explore and implement ethical approaches for 

social media research, even in cases where the data are in the public domain, like 

Twitter – see Sula (2016); Ahmed, Bath, & Demartini (2017); Monkman, Kaiser, & 

Hyder (2018); and Toivonen et al., (2019). classecol was built and developed in 

alignment with the terms and conditions of the data provider (Twitter, 2020), the 

ethics guidelines of the lead author’s research institution and funding agency, and 

data protection law (UK Government, 2018). 

Assessing classifiers 

Consistency in human classification 

Within the pre-classification tests, classification accuracy ranged from 51% - 87% 

across the seven human assessors (Figure S3a). We found no significant difference 

between pre- and post-classification accuracies in a paired t-test (mean-difference = -

5.55%, t = -1.62, p = 0.16). There was also no relationship (in a linear model) 

between accuracy and time taken to complete the test (coef = -0.23, t = -0.92, p = 

0.38). 
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Figure S3. a) Pre- and post-classification test accuracy for the seven human assessors. Test 

accuracy was measured by getting each assessor to classify the same 19 (six in hunting, six in 

nature, and seven in the bio topic) passages of text, each compared to correct answers determined 

by TFJ and MGS. b) Change in classification test accuracies related to time taken to complete the 

test. c) Consistency in classifications across the 100 shared texts per topic, represented by Cohen’s 

Kappa statistic, where values above 0.4 indicate moderate agreement, above 0.6 indicates 

substantial agreement, and above 0.8 indicates perfect agreement (Landis & Koch, 1977). The 

error for the kappa statistic was determined through 1000 bootstrap simulations, where the darker 

grey, grey, and lighter grey represent the 50%, 80%, and 95% quantiles, respectively. This 

consistency assessment is based on the original protocol and classification, not the labels 

reclassified by TFJ. 

 

Within the 100 shared records per person per topic, we found substantial variation in 

the classification consistency (measured with Cohen’s Kappa), with high consistency 

in the Against-hunting category and low consistency in the Against-nature and Expert 

categories (Figure S3c). To ensure this low consistency was not driven by poor 

classification from any one individual, we conducted a sensitivity analysis, assessing 

how consistency changes when each individual is removed from the calculation and 

we found that the results did not shift significantly when any one individual was 

removed (Figure S4).   
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Figure S4. Sensitivity analysis in classification consistency across the 100 shared texts per topic, 

represented by Cohen’s Kappa statistic, where values above 0.4 indicate moderate agreement, 

above 0.6 indicates substantial agreement, and above 0.8 indicates perfect agreement (Landis & 

Koch, 1977). Sensitivity analysis removed each human assessor iteratively to assess if any one 

individual had a detrimental effect of consistency e.g. if any one point had a substantially higher 

accuracy consistently across all categories, it would indicate one assessor performed inconsistently 

to the rest of the assessors. The point represents the median consistency and error bars display the 

95% quantiles calculated through 1000 bootstrap simulations. This consistency assessment is 

based on the original protocol and classification, not the labels reclassified by TFJ. 

Improving classifiers 

The ensemble model outperformed each of the single text-classification models 

(Figure S5a). In the hunting and nature topics, each reclassification led to an 

increase in model accuracy, and the weighted F-score increased (respectively) by 

0.05 and 0.09 between the original and final classifications (Figure S5b). However, in 

the bio topic, all reclassifications reduced the model accuracy, although, the 95% 

confidence intervals for the final reclassification overlap the original classification. 

The reclassifications had little impact on the bio topics accuracy but contributed to 

clarify the protocol. Each topic performed best under different levels of cleaning, with 

hunting accuracies greatest when using the Simple cleaning options, the bio 
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accuracy was greatest with no cleaning (‘raw’), and cleaning had little effect on the 

nature topic (Figure S5c). 

 

Figure S5. Model accuracy, represented by the weighted F statistic, under a) different model types, 

b) label reclassifications, and c) cleaning options. Notably, x-axis ranges differ between panels. 
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Figure S6. Confusion matrix indicating correct classifications (black) and misclassifications (red) in 

the hunting topic, with the frequency of misclassification indicated in the upper left of each panel, 

with a total testing dataset sample size of 550 tweets. In each panel, the thirty most frequently used 

words are depicted, and the size of the word determines this frequency. Panels with < 3 tweets in 

the test dataset are not represented by a word cloud (are left blank), as there are essentially zero 

cases of that misclassification combination. 
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Figure S7. Confusion matrix indicating correct classifications (black) and misclassifications (red) in 

the nature topic, with the frequency of misclassification indicated in the upper left of each panel, 

with a total testing dataset sample size of 550 tweets. In each panel, the thirty most frequently used 

words are depicted, and the size of the word determines this frequency. Panels with < 3 tweets in 

the test dataset are not represented by a word cloud (are left blank), as there are essentially zero 

cases of that misclassification combination. The ‘+’ and ‘-‘ in the Pro-nature categories indicate 

positive phrasing and negative phrasing, respectively.  
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Figure S8. Confusion matrix indicating correct classifications (black) and misclassifications (red) in 

the bio topic, with the frequency of misclassification indicated in the upper left of each panel, with a 

total testing dataset sample size of 1142 users. In each panel, the thirty most frequently used words 

are depicted, and the size of the word determines this frequency. Panels with < 3 tweets in the test 

dataset are not represented by a word cloud (are left blank), as there are essentially zero cases of 

that misclassification combination. 
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classecol functions 

Table S2. Description of functions available within the classecol R package. 

Function Description 
clean Cleans social media text converting up to 1000 multi-word nature-related hashtags 

and over 1500 abbreviations into readable text. This function also converts nearly 

150 emoticons and 175 slang-words into readable text using terms sourced from 

the lexicon R package (Rinker, 2019a). 

 

valence Checks for the presence of negator (flips the meaning of the text e.g. I do not like 

it), amplifier (adds intensity to the text e.g. I really like it), de-amplifier (softens the 

text e.g. I hardly like it), and adversative-conjunction terms (overrules the previous 

sentiment e.g. I like it but it’s not worth it), which could alter the meaning of the 

text. Terms and examples sourced from the lexicon (Rinker, 2019a) and sentiment 

(Rinker, 2019b) R packages. 

 

contract Performs stemming (trims word to their simplest form e.g. cars becomes car) and 

lemmatisation (identifies the core theme of a term, bringing synonymous terms into 

one word e.g. automobile becomes car) within R. Function is a wrapper for 

textstem (Rinker, 2018), qdap (Rinker, 2020), and lexicon (Rinker, 2019a) R 

packages. This function is not necessary when running any of the hun_class, 

nat_class, and bio_class models, as the stemming and lemmatisation are 

conducted within the substantially faster Python program.  

 

lang_eng Checks if the language is English or not, the hun_class, nat_class, and 

bio_class models are designed for English text. Function is a wrapper to the 

cld2 (Ooms & Sites, 2018) R package. 

 

senti_matrix Conducts sentiment analysis (assesses polarity of text) using 11 approaches and 

pulls all approaches into a matrix of sentiment. Approaches are drawn from the 

sentimentr (Rinker, 2019b), lexicon (Rinker, 2019a), syuzhet (Jockers, 2017), and 

meanr (Schmidt, 2019) R packages. 

 

Load_classecol Downloads all required hun_class, nat_class, and bio_class models, 

python dependencies, and links R to Python. This function needs to be run before 

any text classifier can be used.. 

 

hun_class Classifies tweets. Can select any of the hunting models in Table 1 using the ‘type’ 

parameter. 

 

nat_class Classifies tweets. Can select any of the nature models in Table 1 using the ‘type’ 

parameter. 

 

bio_class Classifies tweets. Can select any of the bio models in Table 1 using the ‘type’ 

parameter. 
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Chapter 6: Discussion 

In this thesis, I used interdisciplinary approaches covering evolutionary biology, 

biodiversity science, data science, and social science to explore influences of 

biodiversity change, specifically understanding declines and recoveries in large 

carnivores from the order Carnivora. I focussed on a combination of methodological 

development, improving available data, and global-scale modelling to explore this 

biodiversity change and describe the status of these species. However, our results 

are of relevance to more than just the carnivore community, and our developments 

could be applied to the wider biodiversity change research community. 

Thesis overview 

Traits have been essential in improving the mechanistic basis of ecological modelling 

(Webb et al., 2010). However, trait data are plagued with missing values. The impact 

of these missing values has been explored in recent years, with studies proposing 

the uptake of imputation, or gap-filling methods (Penone et al., 2014; Kim et al., 

2018; Molina-Venegas et al., 2018). Yet, there are still a host of scenarios where 

these imputation methods have not been tested. In ‘Chapter 2: Handling missing 

values in trait data’, I evaluated the performance of approaches for handling missing 

values under a variety of these scenarios. Overall, I showed that imputation methods 

can be valuable for filling data, especially using Rphylopars imputation (Goolsby et 

al., 2017; Johnson et al., 2021b). However, I also found cases where imputation was 

not the best method and analysing only the available data (i.e. complete-case 

analysis) would be preferable. Furthermore, in some cases, especially under severe 

biases in the data, none of the approaches for handling missing trait data were 

effective. These findings are important because they stress that no single approach 

is a golden bullet for dealing with missing values, and instead, caution and care 

should be taken when handling trait values, or missing data more generally. Traits 

can provide a means of making biodiversity change modelling more mechanistic, but 

this is only valuable if traits and their missing values are treated with due care. I 

summarised our findings into recommendations and warnings (see Chapter 2 – Table 

1), but more work is required – I identified a series of facets warranting further 

investigation.  

Data compilation efforts have been important in scaling research up to a global 

extent (Hudson et al., 2017; Dornelas et al., 2018), creating more generalisable 

conclusions. This was largely unfeasible for large carnivores using the currently 

available public datasets, as they are plagued with extreme data biases. In ‘Chapter 

3: CaPTrends - a global database of population trends in large terrestrial 

Carnivorans; I conducted an extensive search of the primary literature to increase the 
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availability of large carnivore population trend data. Through this, I tripled the size of 

the already compiled data in the Living Planet Index (WWF, 2020a), and addressed 

taxonomic and spatial biases – to a degree. However, the real strengths of this data 

extend beyond addressing biases, in the CaPTrends database I have compiled an 

extensive array of metadata to accompany each trend, including information on how 

the population trend was determined, as well as the threats and management 

interventions experienced by the population. This information could be used to 

account for important features that limit the effectiveness of large-scale biodiversity 

change models e.g. is the population managed with hunting. Once published, 

CaPTrends will be useful to biodiversity change researchers and people working with 

large carnivores. 

In Chapter 4, I used the data in Chapter 3 and developed a model to explore 

covariates that influence population change in large carnivores (or predators). I found 

that land-use change, the usual suspect (Newbold et al., 2015), was an important 

influence of population change, but less so than human development variables 

(which described the quality of life for the human population), which had a substantial 

impact on both population declines and recoveries. I also found evidence of climate 

and protected area effects, and that many influences of change varied depending on 

species intrinsic traits e.g. large species are more likely to decline under extreme 

heat. Using this model, I determined the status of large carnivores, identifying that 

some species have increased, whilst others have decreased. Overall, the carnivore 

guild is projected to change very little between 1970 and 2050, but there is 

substantial spatial variation – most notably, parts of Africa are projected to 

experience severe population declines and extirpations. This work emphasised the 

value capturing socio-ecological variables in biodiversity change models, but many of 

these variables are cryptic and currently unavailable. Furthermore, the finding that a 

diverse array of features influences population change is also important because 

much of the existing biodiversity change research has focussed on one or two small 

aspects in detail, ignoring the sheer complexity of the drivers influencing change. 

This finding suggests that biodiversity change modelling needs to expand beyond its 

current scope, which focusses primarily on the impacts of land-use and climate 

change, into a broader view of features driving change. 

One of the issues with the analysis in Chapter 4 was that I failed to determine the 

mechanism by which human development influenced population trends. I predict that 

this mechanism, at least in part, explains people’s tolerance for living alongside 

carnivores, and this assumption would be supported by other work (Cimatti et al., 

2021). However, there are currently no datasets on tolerance, or even perceptions of 

nature, at a global scale. This is likely because of challenges in inferring meaning 
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across different cultures and languages. As a result, in Chapter 5, I made the first 

step to try and support this global-scale perception analysis within the environmental 

sciences. Specifically, I developed a machine learning text classifier designed to 

understand public opinions of nature from social media data. This classifier could be 

used to develop variables like ‘tolerance towards wildlife’, something that was 

previously undetectable at a global scale. But it also acts as proof of concept that I 

can extract mass opinions about nature from social media data. However, for this 

classifier, and other classifiers that will likely replace it over time, there are still many 

steps that must be taken if we are to develop this global perception data. Firstly, it is 

important to validate that this data truly represent people’s opinions, and not just their 

online persona. It is also important to expand this to more languages beyond English, 

and ensure social media covers a variety of demographics and lifestyles. 

Improving biodiversity change research 

In this thesis, I endeavoured to make our analysis of large carnivore trends (focussed 

on Chapter 4) as robust as possible, but I propose that more work is still needed if I 

are to fully untangle the complexity of biodiversity change. Firstly, given that missing 

trait values had a substantial impact on inference in Chapter 2, more work is needed 

to collect trait data from the field, and then compile this into trait datasets. In the 

literature, there is a relatively haphazard approach to dealing with these missing 

values, and even though uptake of imputation approaches has increased in recent 

years, there have been no assessments of whether these imputation approaches 

have been used correctly. To avoid erroneous inference, and perhaps a 

reproducibility crisis, a more formalised framework for handling and reporting missing 

values could be developed. Similar has been developed for systematic reviews, e.g. 

PRISMA and Cochrane guidelines (Stewart et al., 2015; Higgins & Green, 2019). 

Lessons could also be learnt from exploring other fields, especially medicine, where 

approaches for handling missing values are more regularly embraced (Van Buuren, 

2012). 

Another area to explore is developing more flexible modelling frameworks to address 

data biases. In Chapter 4, I extended beyond the relatively simple models used in 

other biodiversity change studies (Newbold et al., 2015; Spooner et al., 2018), in an 

attempt to decrease the data biases and capture uncertainties. For example, I 

captured both quantitative and qualitative population trends within our regression by 

treating the qualitative observations as if they were censored quantitative ones i.e. 

increasing records would have an annual rate of change of between 0% and 20%. 

This approach improved our model fit and increased our sample size in poorly 

represented areas e.g. records in South America increased 7-fold. These benefits 

were only achieved by developing a more flexible modelling approach, and this could 
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be applied to a variety of settings. For example, this approach could be used to study 

changes in species distribution ranges where the magnitude of change is unknown, 

but the direction of range change is. 

Large-scale biodiversity change models are becoming more common, but many have 

one fundamental issue – a moderately low predictive accuracy. Our population trend 

model in Chapter 4 is no exception, with a marginal R2 of 0.2 and conditional R2 of 

0.5. This limited predictive capacity occurred despite accounting for a comprehensive 

array of potential trend influences. These models can offer insights into general 

patterns in the data, but the end goal should be to develop better biodiversity change 

models that can be used for high-quality local prediction. To reach this goal, its 

essential to find a means of capturing system (in our case the population trend) 

stochasticity. In large carnivores, an important development would be to capture the 

status of trends of the wider community, as a carnivore population could simply be 

declining as it is depicting a natural predator-prey abundance cycle. However, this 

alone would be insufficient. To fully address this stochasticity, a more holistic 

approach will likely be necessary, focussed on 1) improving population monitoring to 

reduce measurement error; 2) capturing measurement and observation errors more 

explicitly within biodiversity change models; 3) defining and clarifying the 

mechanisms behind biodiversity change; 4) developing new model frameworks for to 

capture stochasticity and mechanisms. 

The status of large carnivores 

Large carnivores are both adored for their charisma, but also feared for the threat 

they carry to lives and livelihoods. This dichotomy makes their population status 

particularly complex, as they are likely host to the extreme benefits of conservation 

management, but also impacted by the extreme costs of persecution, poaching, and 

hunting, to name but a few. This complexity fed forwards into our modelling, which is 

why I made such an effort to capture the multitude of influences on their trends. As a 

result, finding that traits, land-use, climate, and governance features all influenced 

trends is an important result, and future biodiversity change research should 

endeavour to account for these variety of influences. Further, I provide evidence that 

large carnivore populations have experienced substantial declines, and even some 

extinctions, but many are stable, and the future provides hope for these species. 

Specifically, whilst population are projected to decline in some regions and species, 

these declines will be balanced by recoveries in other areas, and these recoveries 

may even present opportunities for range expansions. This finding is encouraging not 

just for large carnivores, but also for wider biodiversity, as large carnivores can act as 

an indicator species.  
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