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1. Introduction
Aerosols continue to be one of the largest sources of uncertainty in quantifying the responses of our climate 
system to human impacts (Bellouin et al., 2020; Forster et al., 2021). Global aerosol observations largely rely 
on daytime satellite reflectance measurements. While aerosol retrievals in the region far from clouds have been 
developed and evaluated extensively, retrieving aerosol properties near clouds remains difficult. The difficulty 
arises, mainly because three-dimensional (3D) cloud radiative effects significantly enhance the observed reflec-
tances and obscure signals from aerosols (e.g., Spencer et al., 2019; Stap et al., 2016; Várnai & Marshak, 2009; 
Wen et  al.,  2006). As a result, ∼20% of observed pixels in the Moderate Resolution Imaging Radiometer 
(MODIS) aerosol products are discarded (Schwarz et  al.,  2017). Since aerosols near clouds can be distinctly 
different from those far from clouds due to hygroscopic growth and other processes (Hoppel et al., 1986; Twohy 
et al., 2002, 2009), characterizing aerosols in the vicinity of clouds is crucial for estimating aerosol radiative 
forcing (Charlson et al., 2007; Koren et al., 2007).

To date, very few studies have attempted to retrieve aerosol properties in the vicinity of clouds and estimate 
the corresponding shortwave (SW) aerosol direct radiative effects (DRE). Using simplified aerosol property 

Abstract There is a lack of satellite-based aerosol retrievals in the vicinity of low-topped clouds, mainly 
because reflectance from aerosols is overwhelmed by three-dimensional cloud radiative effects. To account for 
cloud radiative effects on reflectance observations, we develop a Convolutional Neural Network and retrieve 
aerosol optical depth (AOD) with 100–500 m horizontal resolution for all cloud-free regions regardless of 
their distances to clouds. The retrieval uncertainty is 0.01 + 5%AOD, and the mean bias is approximately 
−2%. In an application to satellite observations, aerosol hygroscopic growth due to humidification near 
clouds enhances AOD by 100% in regions within 1 km of cloud edges. The humidification effect leads to an 
overall 55% increase in the clear-sky aerosol direct radiative effect. Although this increase is based on a case 
study, it highlights the importance of aerosol retrievals in near-cloud regions, and the need to incorporate the 
humidification effect in radiative forcing estimates.

Plain Language Summary The presence of aerosols can heat or cool the atmosphere, depending 
on their interactions with clouds and radiation. These interactions remain one of the primary sources of 
uncertainty in climate change predictions. To understand the role of aerosols in climate and their interactions 
with clouds, reflectance measurements from satellites have been used to retrieve aerosol properties. However, 
these retrievals are typically available in regions far from clouds, but not in the vicinity of clouds, because 
the observed reflectance is dominated by nearby cloud scattering rather than by aerosols. Since more than 
half of cloud-free regions are within 4 km of low clouds, it is crucial to characterize the properties of aerosols 
near clouds. To tackle the issue, we developed a machine-learning based retrieval method. The new method 
characterizes cloud radiative effects, removes them from the observed reflectance, and then retrieves aerosol 
properties even in the vicinity of clouds. The retrieval uncertainty is comparable to benchmark products. This 
newly added capability allows us to fill the critical gap in current aerosol observations and better quantify how 
aerosols influence the Earth's radiation budget.
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clear-sky aerosol direct radiative 
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estimates, Várnai and Marshak  (2014) reported that aerosols near clouds increased instantaneous broadband 
reflected fluxes at the top of the atmosphere (TOA) by 6.4 W m −2 compared to those far from clouds. Addition-
ally, Marshak et al. (2008, 2014) developed a two-layer model to remove reflectance enhancement induced by the 
interactions between clouds and the molecular layer above them. This model was applied to MODIS observations 
by Wen et al. (2013, 2016) for retrieving aerosol properties near clouds. Their method removes the 3D cloud 
radiative enhancements from the mean reflectance over a 10 × 10 km domain, which will require modifications 
to enable extracting near-cloud aerosol properties at higher horizontal resolutions.

Unlike the studies above mainly based on satellite measurements, Twohy et al. (2009) first examined how the 
properties of humidified aerosols vary with distance to clouds using aircraft in-situ measurements. Then, they 
derived the statistics of the fraction of cloud-free pixels that occurred at a given distance to clouds, using observa-
tions of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation. By combining aerosol properties 
with cloud-free fraction statistics, they estimated the overall aerosol SW DRE can be 35%–65% larger if the 
humidification effects on aerosol hygroscopic growth were included. This approach, however, requires in-situ 
measurements, making it difficult to provide a global estimate of DRE of near-cloud aerosols.

To fill this critical gap in current aerosol observations in near-cloud regions, the objective of this study is to 
develop a new method that allows aerosol optical depth (AOD) retrievals in a fully 3D environment. This 
method uses a Convolutional Neural Network (CNN), trained by Large Eddy Simulation (LES) output from 
Jiang et al. (2009) and Yamaguchi et al. (2019), and reflectance calculated from a 3D radiative transfer model 
(Evans, 1998). We focus on cumulus regimes where 3D cloud radiative effects are expected to be most signif-
icant (Hogan & Shonk, 2013; Pincus et al., 2005). In Sections 2 and 3, a proof-of-concept case is presented, 
and an explainable Artificial Intelligence (AI) technique is used to understand how the CNN uses reflectance 
observations for retrievals. In Section 4, we retrieve AOD from MODIS observations and assess the SW DRE 
of near-cloud aerosols, using the same CNN but trained with different aerosol types from that in the proof-of-
concept case.

2. The Convolutional Neural Network
2.1. The Training and the Configuration for the Proof-Of-Concept Case

The goal of our CNN is to predict AOD over a 2.5 × 2.5 km domain at a 100-m horizontal resolution from an 
input scene of reflectances at TOA. Due to 3D radiative effects, reflectances directly above this domain are influ-
enced not only by aerosol and cloud properties underneath, but also by neighboring pixels. To incorporate  infor-
mation on neighboring pixels for appropriate AOD predictions, the input reflectance scene size must be larger 
than the output domain. Following the study of Okamura et al. (2017) for cloud retrievals, we chose an input 
scene of 4.5 × 4.5 km, that is, extending 1 km on all sides compared to the output domain.

Our training and testing datasets contain pairs of AOD fields and TOA reflectance fields; a flowchart is shown 
in Figure S1 in Supporting Information S1. To diversify aerosol conditions and cloud morphology in our train-
ing data set, four sets of LES output were used (see Figure 1 and Table S1 in Supporting Information S1). All 
datasets have a horizontal domain size of 48 × 48 km with a resolution of 100 m. The height of the domain is 
5 km with a resolution of 40 m. Datasets 1 and 2 were generated using the forcing data collected from the Rain 
In Cumulus over Ocean (RICO) campaign (Rauber et al., 2007) with an initial ambient aerosol concentration of 
200 cm −3 (Jiang et al., 2009). In contrast, Datasets 3 and 4 were generated from a cleaner environment with an 
initial aerosol concentration of 35 cm −3, using forcing data from the Seven SouthEast Asian Studies (7SEAS) 
(Yamaguchi et al., 2019).

The aerosol type used in the LES is ammonium sulfate, and we use a cloud water content exceeding or equal to 
0.01 g m −3 to define cloud. Cloud and aerosol optical properties in these snapshots were calculated using Mie 
theory, appropriate for ammonium sulfate (Curtis et al., 2007). With increasing humidity near clouds, the index 
of refraction of ammonium sulfate particles changes, and their effective radius increases due to water uptake. As 
a result, AOD is enhanced near cloud edges (see Figures 1e–1h).

The mean AODs from the 7SEAS and RICO snapshots are distinctly different (0.1 and 0.56, respectively), and 
the variability of AOD within each snapshot is small (Table S1 in Supporting Information S1). This introduces 
a large gap in AOD values in the training data set. Such a gap is not ideal because the CNN would not learn any 

 19448007, 2022, 20, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
098274, W

iley O
nline L

ibrary on [27/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

YANG ET AL.

10.1029/2022GL098274

3 of 10

AOD values in between, which may lead to large errors in predictions. To alleviate this issue, we perturbed the 
aerosol mass concentration fields homogeneously everywhere by a factor ranging between 0.05 and 1.0 in the 
RICO snapshots, and by a factor ranging between 0.5 and 5.0 in the 7SEAS snapshots. These factors were chosen 
to ensure some AOD overlap between RICO and 7SEAS snapshots. These perturbations led to 50 snapshots, 30 
from RICO and 20 from 7SEAS.

From these 50 snapshots at their resolutions of 100 m, we then calculated the corresponding reflectance fields 
at 857 nm wavelength, one of the MODIS bands. The radiative transfer calculations were performed using the 
Spherical Harmonic Discrete Ordinate Method (Evans, 1998) under a 3D environment, assuming a solar zenith 
angle of 50°, a solar azimuth angle of 210° clockwise from the north, and a viewing zenith angle of 0°. Water 
vapor absorption and Rayleigh scattering were included, and ocean surface reflectances were computed with 
an assumed wind speed of 6 m s −1. Once the pairs of AOD and reflectance fields were produced, we randomly 
sampled 4.5 × 4.5 km scenes from each 48 × 48 km snapshot to generate the training data set. For the testing 
data set, we sampled the scenes using a different data set—we rotated the 50 snapshots by 90° clockwise and 
recomputed the corresponding reflectance. The rotation effectively changes the sun-viewing geometry, intro-
duces different 3D cloud radiative effects from the training data set, and ensures no overlapping scenes between 
the training and testing datasets. The final sample size is 185,000 for the training and 46,000 for the testing.

To capture the complexity of the input reflectance scene, we used a CNN that is commonly used to identify 
spatial patterns in images (Okamura et al., 2017; Zeiler & Fergus, 2014). Our CNN has two layers with convo-
lution, followed by two fully connected layers. A schematic of the CNN architecture can be found in Figure S2 
in Supporting Information S1. A Rectified Linear Unit (ReLU; Agarap, 2018) activation function was used at 

Figure 1. Snapshots of liquid water paths (a–d) and aerosol optical depths (e–h) for Datasets 1–4 (left to right, respectively). The boundaries of clouds (defined by 
liquid water path greater than zero) are outlined by black lines in (e–h). Note that the color scales are different between datasets.
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each node across all layers. The input (i.e., reflectance) and output (i.e., AOD) values were scaled using the mean 
normalization method, that is, subtracting the mean and dividing by the full range of the values. Additionally, the 
training of the CNN was performed by the Adam optimizer (Kingma & Ba, 2015), with the loss function defined 
as the mean squared error between the true and the predicted AOD. We used early stopping (Prechelt, 1998) to 
avoid overfitting the training data set.

2.2. Performance Evaluations

Figures 2a and 2b show the ability of our CNN to retrieve AOD at 857 nm in a testing scene. All clear-sky pixels 
(defined as those with zero liquid water path) agree with the true AOD to be better than 0.03, except for seven 
pixels. Importantly, the enhanced AODs near clouds are captured by the CNN. Considering the entire testing data 
set, the mean error is −2% (Figure 2c), and the scatter plot in Figure 2d shows that most data points fall on the 
1:1 line. By binning the AOD and analyzing the standard deviation of the prediction errors in each AOD bin, the 
uncertainty in the CNN retrievals is estimated as 0.01 + 5%AOD. This uncertainty meets the pre-launch expec-
tation for MODIS retrievals, which is 0.03 + 5%AOD (Remer et al., 2020).

3. Explaining the CNN
To understand how the CNN combined input information to predict AOD near clouds, we applied Layer-wise 
Relevance Propagation analyses (Bach et al., 2015), one of the explainable AI methods. Specifically, we used 
the method called LRPz (Montavon et al., 2017), which has shown promising results in regression problems 
(Mamalakis et al., 2022). For a CNN with N layers, let us denote the layer with index 𝐴𝐴 𝐴𝐴 that ranges from 1 (the 
input layer) to N (the output layer). The relevance, a measure of the contribution of a single pixel to the predic-
tion, is calculated starting from the output layer, and then propagated backward, layer-by-layer, to the input layer, 
that  is,

Figure 2. Panel (a) is the true aerosol optical depth (AOD) at 857 nm and (b) is the prediction from the Convolutional Neural 
Network (CNN) for a testing scene. Using the entire testing data set, (c) is the histogram of the corresponding relative errors 
(%), and (d) is the density scatter plot of predicted AOD versus the truth for all cloud-free pixels. In (c), the mean error ± the 
mean absolute deviation (%, using the mean as the center point) are denoted in gray; the 25th, 50th, and 75th percentiles of 
the errors are represented by blue, black, and red dashed lines and numbers, respectively. In (d), the solid line represents the 
1:1 line, while the dotted lines represent ±(0.03 + 5%AOD). The corresponding linear regression equation is listed in the 
upper-left corner.
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𝑅𝑅
(𝑙𝑙)

𝑖𝑖
=

∑

𝑘𝑘 ∶ neurons ∈ (𝑙𝑙 + 1) 𝑎𝑎𝑎𝑎𝑎𝑎

have received input from neuron 𝑖𝑖 ∈ (𝑙𝑙)

𝑅𝑅
(𝑙𝑙𝑙𝑙𝑙+1)

𝑖𝑖←𝑘𝑘
𝑙

 (1)

where 𝐴𝐴 𝐴𝐴
(𝑙𝑙)

𝑖𝑖
 represents the relevance of neuron 𝐴𝐴 𝐴𝐴 at Layer 𝐴𝐴 𝐴𝐴 to the prediction of interest, and 𝐴𝐴 𝐴𝐴

(𝑙𝑙𝑙𝑙𝑙+1)

𝑖𝑖←𝑘𝑘
 represents the 

relevance propagated backward from Layer 𝐴𝐴 𝐴𝐴 + 1 to Layer 𝐴𝐴 𝐴𝐴 , from neuron 𝐴𝐴 𝐴𝐴 to neuron 𝐴𝐴 𝐴𝐴 . At Layer 𝐴𝐴 𝐴𝐴 + 1 , any neuron 

that has received input from neuron 𝐴𝐴 𝐴𝐴 should be counted in calculations of 𝐴𝐴 𝐴𝐴
(𝑙𝑙)

𝑖𝑖
 , which is indicated by the summa-

tion in Equation 1.

Now, let us discuss how to calculate 𝐴𝐴 𝐴𝐴
(𝑙𝑙𝑙𝑙𝑙+1)

𝑖𝑖←𝑘𝑘
 for Equation 1. The information that flows forward from neuron i 

in Layer l to neuron k in Layer l + 1 is the input from i, denoted by xi, times the weight applied to that input at 
neuron k, denoted by wik. The relative contribution of neuron i to neuron k compared to all information flowing 
from Layer l to neuron k is 𝐴𝐴 𝐴𝐴𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖∕

∑

𝑗𝑗∈(𝑙𝑙)
𝐴𝐴𝑗𝑗𝑤𝑤𝑗𝑗𝑖𝑖 . This relative contribution shows how neuron i and neuron k are 

connected. To determine the relevance propagated backward from k to i, we multiply this relative contribution by 
the relevance of neuron k, leading to

𝑅𝑅
(𝑙𝑙𝑙𝑙𝑙+1)

𝑖𝑖←𝑘𝑘
= 𝑅𝑅

(𝑙𝑙+1)

𝑘𝑘

𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖𝑘𝑘
∑

𝑗𝑗∈(𝑙𝑙)
𝑥𝑥𝑗𝑗𝑤𝑤𝑗𝑗𝑘𝑘

. (2)

In short, the relevance can be thought of as the local contribution of in input pixel to the prediction. Since ReLU 
has been used as the activation function, the attribution from LRPz is equivalent to the product of input pixel 
value and the gradient of the CNN at the input pixel (Kindermans et al., 2016). A higher absolute value indicates 
a higher relevance. The sign of the relevance is positive if the local contribution of the neuron has the same sign 
as the sum of the contribution from all input neurons. In contrast, the negative sign indicates that the signs of the 
local contribution and the aggregated contribution are opposite.

Figure 3 shows examples of the relevance heat maps for a few output pixels using the testing scene in Figure 2a. 
For convenience, the input reflectance field for the scene is shown in Figure 3a to relate the pixels of interest to 
cloud locations. The main findings are noted here:

•  Relevance from clouds is evident no matter whether the pixel of interest is near clouds or relatively far from 
clouds. Considering that the optical influence of clouds can enhance the reflectance of cloud-free pixels as 
far as 10–15 km (Várnai & Marshak, 2012), the relevance from clouds found in a 4.5 × 4.5 km domain is 
reasonable.

•  For pixels relatively far from clouds (Figures 3d and 3f), we see strong influence from the local surrounding 
pixels, with a negative sign. Recall that the negative sign indicates that the contribution has an opposite sign 
from that of the aggregated contribution. Since pixels far from clouds typically have lower AOD and reflec-
tance compared to near-cloud pixels that are strongly influenced by humidity and clouds, the local contribu-
tion needs to be of opposite sign to lower the AOD so as to match what has been observed in the training data 
set. The strong negative local relevance fades away when moving the pixel of interest toward clouds (e.g., 
Figures 3b and 3c), since the influence from clouds becomes more significant.

•  Unlike Figures 3b and 3c, the near-cloud pixel in Figure 3e receives strong negative influence from nearby 
cloud-free pixels. This is because those nearby pixels are in the shadow cast by clouds, and thus have low 
input reflectance values. This leads to a lower corresponding relevance compared to other pixels and thus is 
associated with a negative sign.

Although results from LRPz analyses generally match our understanding of radiative transfer, the relatively small 
contributions from cloud-free pixels to predictions at near-cloud pixels are surprising. As explained above, the 
attribution from LRPz can largely depend on the input pixel value. Hence, the generally small contributions from 
cloud-free pixels can be the consequence of the LRPz technique itself, but the role of near-cloud reflectance in 
the CNN remains unclear and needs further investigations as discussed next.

We propose two hypotheses to explain how the CNN predicts AOD. The first hypothesis is that the CNN identifies 
cloud locations, retrieves AOD for pixels far away from clouds, and then interpolates AOD based on the relation-
ships between AOD and distances to nearest clouds. In this hypothesis, the CNN does not need to actively account 
for 3D cloud radiative effects in observed reflectance values and hence the relevance of pixels in near-cloud 
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regions is minimal. The second hypothesis is that the CNN does actively correct the 3D cloud radiative effects in 
observed reflectances and uses the corrected reflectance field to retrieve AOD. To test which hypothesis is valid, 
we conducted the following experiment.

For the scene shown in Figure 2a, we used the same input reflectance field, but manipulated reflectance for 
cloud-free pixels (Figure S3 in Supporting Information S1). A constant reflectance value that corresponds to 
an AOD of 0.44 (the median of the AOD range in Figure 2a) was applied. If the first hypothesis is correct, that 
is, the CNN only minds the cloud locations and the background reflectance value, then the retrieved AOD field 
would still show the enhancement near clouds, even though there is no enhancement in the input reflectance field. 
However, if the second hypothesis is correct, that is, the CNN actively accounts for 3D cloud radiative effects, 
then the CNN will tend to make a larger reflectance correction in near-cloud regions than in regions far from 
clouds. As a result, the trend of AOD versus distance to nearest clouds should disappear or even reverse. Addi-
tionally, since the reflectance on the shadow side is supposed to be lower than the illuminated side for a given 
AOD, the CNN will need to account for the shadowing effect during the prediction process. Hence, if the CNN 
indeed recognizes the sun-viewing geometry, our manipulated constant reflectance field will lead to a higher 
AOD on the shadowing side than the illuminated side, given the same reflectance on both sides.

As shown in Figure S3b in Supporting Information S1, the retrievals from the manipulated reflectance input show 
no clear evidence of AOD enhancement near clouds. Instead, the retrievals on the shadowing side are ∼18% larger 
than those on the illuminated side. These findings suggest that the second hypothesis is more plausible. It appears 
that our CNN actively accounts for 3D cloud radiative effects and corrects them in the input reflectance for 
predicting AOD. In short, it is not surprising that the LRPz technique made a large attribution to cloudy pixels in 
AOD predictions, since the largest contribution in reflectance enhancement comes from clouds. However, caution 
should be exercised in interpreting the small attributions in clear-sky regions. Our experiment with a manipulated 
reflectance field suggests that the reflectances near clouds remain important for the CNN to retrieve AOD.

Figure 3. (a) Input reflectance field for the testing scene used in Figure 2a. (b–f) are the corresponding heat maps of 
relevance based on our Convolutional Neural Network (CNN) for selected pixels marked by black crosses. These pixels 
are near clouds in (b, c) and e), and farther from clouds in (d and f). Dotted boxes represent the output aerosol optical 
depth (AOD) domain. The relevance has been normalized by the corresponding maximum absolute value within each map, 
constraining the range to always fall within ±1. For illustration purposes, we use a color scale of ±0.8.
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4. A Case Study Using MODIS Observations
4.1. Comparison to the MODIS Operational Product

In this section, we apply our CNN approach to an Aqua satellite overpass near Bermuda and compare our predicted 
AOD to MODIS operational Level 2 Collection 6 aerosol products. The operational product (MYD04_3K) has 
a horizontal resolution of 3 km with a pre-launch expected uncertainty of 0.03 + 5%AOD over oceans (Levy 
et al., 2013; Remer et al., 2005, 2013).

We selected a 20-km wide scene over the ocean, away from sun-glint, comprising scattered shallow cumulus (see 
Figure 4a). The solar zenith angles range between 47° and 51°, and the solar azimuth angle is ∼210° clockwise 
from the north. The viewing zenith angle is within 1° from the nadir. Our comparison will focus on regions far 
away from clouds (e.g., at distances of 60–120 km in Figure 4a) because that is the region where the operational 
product performs best.

For this application, we use the same CNN configuration as in Section 2 but trained with a different data set 
to accommodate the difference in ambient aerosol types, pixel resolution, and sun-geometry. We use MODIS 
pre-defined aerosol models to minimize the comparison discrepancy. For the selected scene, most MODIS 
retrievals suggest that the dominant fine mode is wet water-soluble particles, and the dominant coarse mode is 
sea salt. The fine mode fraction varies from 0.3 to 0.7. For simplicity, we used a fine mode fraction of 0.5. We 

Figure 4. A case observed by MODIS onboard the Aqua Satellite at 17:25 UTC on 22 October 2009, showing (a) reflectance 
at 857 nm wavelength, (b) aerosol optical depth (AOD) from the operational product, (c) AOD from the Convolutional 
Neural Network (CNN), and (d) the difference computed by subtracting (b) from (c). White color represents pixels in which 
operational cloud retrieval is available, but operational AOD retrieval is not. Gray color represents pixels in which both 
operational cloud and aerosol retrievals are unavailable. Note that (a and c) are plotted at their native resolution of 500 m, 
while (b and d) are plotted at 3-km resolution. Panel (e) shows the mean retrieved AOD versus distance to clouds; the error 
bar represents one standard deviation. Panel (f) is same as (e), but for the box plot of the instantaneous mean aerosol direct 
radiative effect. The bottom and top of each box represent the 25% and 75% percentiles, and the red line inside the box 
represents the median. The whiskers mark the 5th and 95th percentiles. The black dots represent the means. The fraction (in 
%) of pixel number with respect to the total cloud-free pixels in each bin is listed in the figure.
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then recalculate reflectance for MODIS resolution of 500 m to regenerate our training data set and retrain the 
CNN. More details can be found in Text S1 in Supporting Information S1.

A total of 49 CNNs covered all observed SZAs in Figure 4a were built and applied to cloud-free pixels, based on 
cloud masks in the MODIS Level 2 Collection 6 cloud products. The CNN predictions are averaged from 500 m 
to 3 km to match the resolution of the aerosol operational product. In general, the AOD difference between two 
retrieval sets is within MODIS retrieval uncertainty except for five pixels (see Figure 4d). Considering that these 
two methods are based on different radiative transfer calculations (3D vs. 1D), and that some pixels are based on 
different fine mode fractions, the agreement within the expected MODIS retrieval uncertainty in the far-from-
cloud regions suggests that our CNNs work well.

4.2. Radiative Effects of Near-Cloud Aerosols and Their Impacts

Using retrievals from the CNN in Figure 4c, we investigate how AOD and aerosol DRE at TOA vary with distance 
to nearest clouds. Details for DRE calculations and flux evaluations against observations from the Clouds and the 
Earth's Radiant Energy System can be found in Text S2 and Figure S4 in Supporting Information S1. As shown in 
Figure 4e, when approaching clouds from far away (e.g., further than 20 km) to near clouds (e.g., 𝐴𝐴 ≤ 1 km), AOD at 
857 nm increases from 0.06 to 0.12, which is a 100% enhancement. Similarly, the magnitude of the instantaneous 
DRE at TOA increases by 91%, changing from −11 to −21 W m −2.

The overall radiative effect of near-cloud aerosols in this scene is calculated as:

DRE =
∑

𝑗𝑗

𝑓𝑓𝑗𝑗 ⋅ DRE𝑗𝑗 (3)

where 𝐴𝐴 𝐴𝐴𝑗𝑗 is the fraction of cloud-free pixels that occur at certain distances bin j. Using Equation 3 and results 
in Figure 4f, we found the final mean DRE is −17 W m −2. If aerosols were not humidified, the DRE across 
all distance bins would be close to the value far away from clouds, for example, −11 W m −2. Hence, the DRE 
enhancement due to humidification effects is about 55%, consistent with the (35%–65%) estimate made by Twohy 
et al. (2009). This consistency is encouraging, because their aerosol properties are based on in-situ measurements 
and thus not affected by 3D cloud radiative effects. It provides confidence that the CNN can be further extended 
for global satellite observations over oceans to improve the estimate of aerosol DRE.

5. Summary
We have developed a new CNN for retrieving AOD, with a focus on near-cloud regions in which AOD is enhanced 
due to humidification effects. Our CNN was trained using large-eddy simulations of marine cumuli under vari-
ous atmospheric and aerosol environments, and the reflectance at 857 nm wavelength was computed by a 3D 
radiative transfer model. In the testing data set, the CNN predicts AOD at 100 m resolution with an uncertainty 
of 0.01 + 5%AOD, and the mean relative bias is −2%. For fields of scattered cumuli observed by Aqua satellite 
over Bermuda, the predicted AOD generally agrees with the MODIS operational product within the retrieval 
uncertainty for regions far away from clouds. Importantly, the CNN provides retrievals of near-cloud aerosols. 
For this case, the AOD enhancement due to humidification near clouds leads to a 55% increase in clear-sky aero-
sol radiative effect estimates.

We have also applied an explainable AI method and conducted an additional experiment to understand how the 
CNN uses the reflectance scene for AOD retrievals. Results indicate that the CNN recognizes the sun-viewing 
geometry, actively removes the 3D cloud radiative effects from the input reflectance field, and then retrieves 
AOD from the corrected reflectance. Although the current CNN is designed for marine low clouds, the method 
can be extended to other cloud types and incorporate various sun-viewing geometry, aerosol models, surface 
conditions, and wavelengths of interest. The extensions of the CNN will greatly help improve aerosol radiative 
forcing estimates that include humidification effects near clouds.
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Data Availability Statement
NASA aerosol products are available via http://dx.doi.org/10.5067/MODIS/MYD04_3K.061 (Levy & Hsu, 2015) 
and cloud products are available via http://dx.doi.org/10.5067/MODIS/MYD06_L2.061 (Platnick et al., 2015). 
The LES simulations and the machine learning code can be accessed through the Mountain Scholar data reposi-
tory (http://dx.doi.org/10.25675/10217/235755).

References
Agarap, A. F. (2018). Deep learning using rectified linear units (RELU). arXiv:1803.08375. https://doi.org/10.48550/arXiv.1803.08375
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K. R., & Samek, W. (2015). On pixel-wise explanations for non-linear classifier deci-

sions by layer-wise relevance propagation. PLoS One, 10(7), e0130140. https://doi.org/10.1371/journal.pone.0130140
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., et al. (2020). Bounding global aerosol radiative forcing of climate 

change. Reviews of Geophysics, 58(1), e2019RG000660. https://doi.org/10.1029/2019rg000660
Charlson, R. J., Ackerman, A. S., Bender, F. A. M., Anderson, T. L., & Liu, Z. (2007). On the climate forcing consequences of the albedo contin-

uum between cloudy and clear air. Tellus B: Chemical and Physical Meteorology, 59(4), 715–727. https://doi.org/10.3402/tellusb.v59i4.17051
Curtis, D. B., Aycibin, M., Young, M. A., Grassian, V. H., & Kleiber, P. D. (2007). Simultaneous measurement of light-scattering properties 

and particle size distribution for aerosols: Application to ammonium sulfate and quartz aerosol particles. Atmospheric Environment, 41(22), 
4748–4758. https://doi.org/10.1016/j.atmosenv.2007.03.020

Evans, K. F. (1998). The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. Journal of the Atmos-
pheric Sciences, 55(3), 429–446. https://doi.org/10.1175/1520-0469(1998)055<0429:tshdom>2.0.co;2

Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J. L., Frame, D., et al. (2021). The Earth’s energy budget, climate feedbacks, and 
climate sensitivity. In P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, et al. (Eds.), Climate change 2021: The physical science 
basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [Masson-Delmotte, 
V.]. Cambridge University Press.

Hogan, R. J., & Shonk, J. K. P. (2013). Incorporating the effects of 3D radiative transfer in the presence of clouds into two-stream multilayer 
radiation schemes. Journal of the Atmospheric Sciences, 70(2), 708–724. https://doi.org/10.1175/jas-d-12-041.1

Hoppel, W. A., Frick, G. M., & Larson, R. E. (1986). Effect of nonprecipitating clouds on the aerosol size distribution in the marine boundary 
layer. Geophysical Research Letters, 13(2), 125–128. https://doi.org/10.1029/gl013i002p00125

Jiang, H., Feingold, G., & Koren, I. (2009). Effect of aerosol on trade cumulus cloud morphology. Journal of Geophysical Research, 114(D11), 
D11209. https://doi.org/10.1029/2009JD011750

Kindermans, P. J., Schütt, K., Müller, K. R., & Dähne, S. (2016). Investigating the influence of noise and distractors on the interpretation of neural 
networks. arXiv:1611.07270. https://doi.org/10.48550/arXiv.1611.07270

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. Proceedings of the 3rd international conference for learning 
representations. https://doi.rog/10.48550/arXiv.1412.6980

Koren, I., Remer, L. A., Kaufman, Y. J., Rudich, Y., & Martins, J. V. (2007). On the twilight zone between clouds and aerosols. Geophysical 
Research Letters, 34(8). https://doi.org/10.1029/2007gl029253

Levy, R., & Hsu, C. (2015). MODIS atmosphere L2 aerosol product. In NASA MODIS adaptive processing system. Goddard Space Flight Center. 
https://doi.org/10.5067/MODIS/MYD04_L2.061

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., et al. (2013). The Collection 6 MODIS aerosol products over 
land and ocean. Atmospheric Measurement Techniques, 6(11), 2989–3034. https://doi.org/10.5194/amt-6-2989-2013

Mamalakis, A., Ebert-Uphoff, I., & Barnes, E. A. (2022). Neural network attribution methods for problems in geoscience: A novel synthetic 
benchmark dataset. Environmental Data Science, 1, E8. https://doi.org/10.1017/eds.2022.7

Marshak, A., Evans, K. F., Várnai, T., & Wen, G. (2014). Extending 3D near-cloud corrections from shorter to longer wavelengths. Journal of 
Quantitative Spectroscopy and Radiative Transfer, 147, 79–85. https://doi.org/10.1016/j.jqsrt.2014.05.022

Marshak, A., Wen, G., Coakley, J. A., Jr., Remer, L. A., Loeb, N. G., & Cahalan, R. F. (2008). A simple model for the cloud adjacency effect 
and the apparent bluing of aerosols near clouds. Journal of Geophysical Research, 113(D14), D14S17. https://doi.org/10.1029/2007JD009196

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., & Müller, K. R. (2017). Explaining nonlinear classification decisions with deep Taylor 
decomposition. Pattern recognition, 65, 211–222.

Okamura, R., Iwabuchi, H., & Schmidt, K. S. (2017). Feasibility study of multi-pixel retrieval of optical thickness and droplet effective 
radius of inhomogeneous clouds using deep learning. Atmospheric Measurement Techniques, 10(12), 4747–4759. https://doi.org/10.5194/
amt-10-4747-2017

Pincus, R., Hannay, C., & Evans, K. F. (2005). The accuracy of determining three-dimensional radiative transfer effects in cumulus clouds using 
ground-based profiling instruments. Journal of the atmospheric sciences, 62(7), 2284–2293.

Platnick, S., Ackerman, S. A., King, M. D., Meyer, K., Menzel, W. P., Holz, R. E., et al. (2015). MODIS atmosphere L2 cloud product (06_L2). 
In NASA MODIS adaptive processing system. Goddard Space Flight Center. https://doi.org/10.5067/MODIS/MYD06_L2.061

Prechelt, L. (1998). Early stopping-but when?. In Neural Networks: Tricks of the trade (pp. 55–69). Springer.
Rauber, R. M., Stevens, B., Ochs, H. T., III., Knight, C., Albrecht, B. A., Blyth, A. M., et al. (2007). Rain in shallow cumulus over the ocean: The 

RICO campaign. Bulletin of the American Meteorological Society, 88(12), 1912–1928. https://doi.org/10.1175/bams-88-12-1912
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., et al. (2005). The MODIS aerosol algorithm, products, and vali-

dation. Journal of the Atmospheric Sciences, 62(4), 947–973. https://doi.org/10.1175/jas3385.1
Remer, L. A., Levy, R. C., Mattoo, S., Tanré, D., Gupta, P., Shi, Y., et al. (2020). The dark target algorithm for observing the global aerosol system: 

Past, present, and future. Remote Sensing, 12(18), 2900. https://doi.org/10.3390/rs12182900
Remer, L. A., Mattoo, S., Levy, R. C., & Munchak, L. A. (2013). MODIS 3 km aerosol product: Algorithm and global perspective. Atmospheric 

Measurement Techniques, 6(7), 1829–1844. https://doi.org/10.5194/amt-6-1829-2013
Schwarz, K., Cermak, J., Fuchs, J., & Andersen, H. (2017). Mapping the twilight zone—What we are missing between clouds and aerosols. 

Remote Sensing, 9(6), 577. https://doi.org/10.3390/rs9060577

Acknowledgments
This research is supported by National 
Aeronautics and Space Administra-
tion Projects 80NSSC20K0596 and 
80NSSC20K1719. Yang thanks the 
Cooperative Institute for Research in 
the Atmosphere for support. Feingold 
and Yamaguchi are supported by U.S. 
Department of Energy, Office of Science, 
Atmospheric System Research Program 
Interagency Award 89243020SSC000055. 
Van Leeuwen is supported by the 
European Research Council under the 
Causality relations Using Nonlinear 
Data Assimilation project 694509. The 
authors thank Christian Kummerow, 
Steven Miller and Imme Ebert-Uphoff for 
stimulating discussions on explaining the 
CNN. The authors also thank Sonia Krei-
denweis and Ernie Lewis for discussions 
on aerosol growth factors. The authors 
acknowledge high-performance comput-
ing support from Cheyenne (https://doi.
org/10.5065/D6RX99HX), provided 
by the Computational and Information 
Systems Laboratory at National Center 
for Atmospheric Research and sponsored 
by the National Science Foundation. This 
work also utilized resources from the 
University of Colorado Boulder Research 
Computing Group, which is supported by 
the National Science Foundation (awards 
ACI-1532235 and ACI-1532236), the 
University of Colorado Boulder, and 
Colorado State University.

 19448007, 2022, 20, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
098274, W

iley O
nline L

ibrary on [27/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://dx.doi.org/10.5067/MODIS/MYD04_3K.061
http://dx.doi.org/10.5067/MODIS/MYD06_L2.061
http://dx.doi.org/10.25675/10217/235755
https://doi.org/10.48550/arXiv.1803.08375
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1029/2019rg000660
https://doi.org/10.3402/tellusb.v59i4.17051
https://doi.org/10.1016/j.atmosenv.2007.03.020
https://doi.org/10.1175/1520-0469(1998)055%3C0429:tshdom%3E2.0.co;2
https://doi.org/10.1175/jas-d-12-041.1
https://doi.org/10.1029/gl013i002p00125
https://doi.org/10.1029/2009JD011750
https://doi.org/10.48550/arXiv.1611.07270
https://doi.rog/10.48550/arXiv.1412.6980
https://doi.org/10.1029/2007gl029253
https://doi.org/10.5067/MODIS/MYD04_L2.061
https://doi.org/10.5194/amt-6-2989-2013
https://doi.org/10.1017/eds.2022.7
https://doi.org/10.1016/j.jqsrt.2014.05.022
https://doi.org/10.1029/2007JD009196
https://doi.org/10.5194/amt-10-4747-2017
https://doi.org/10.5194/amt-10-4747-2017
https://doi.org/10.5067/MODIS/MYD06_L2.061
https://doi.org/10.1175/bams-88-12-1912
https://doi.org/10.1175/jas3385.1
https://doi.org/10.3390/rs12182900
https://doi.org/10.5194/amt-6-1829-2013
https://doi.org/10.3390/rs9060577
https://doi.org/10.5065/D6RX99HX
https://doi.org/10.5065/D6RX99HX


Geophysical Research Letters

YANG ET AL.

10.1029/2022GL098274

10 of 10

Spencer, R. S., Levy, R. C., Remer, L. A., Mattoo, S., Arnold, G. T., Hlavka, D. L., et  al. (2019). Exploring aerosols near clouds with 
high-spatial-resolution aircraft remote sensing during SEAC4RS. Journal of Geophysical Research: Atmospheres, 124(4), 2148–2173. https://
doi.org/10.1029/2018jd028989

Stap, F. A., Hasekamp, O. P., Emde, C., & Röckmann, T. (2016). Multiangle photopolarimetric aerosol retrievals in the vicinity of clouds: 
Synthetic study based on a large eddy simulation. Journal of Geophysical Research: Atmospheres, 121(21), 12914–12935. https://doi.
org/10.1002/2016jd024787

Twohy, C. H., Clement, C. F., Gandrud, B. W., Weinheimer, A. J., Campos, T. L., Baumgardner, D., et al. (2002). Deep convection as a source of 
new particles in the midlatitude upper troposphere. Journal of Geophysical Research, 107(D21), 4560. https://doi.org/10.1029/2001JD000323

Twohy, C. H., Coakley, J. A., Jr., & Tahnk, W. R. (2009). Effect of changes in relative humidity on aerosol scattering near clouds. Journal of 
Geophysical Research, 114(D5), D05205. https://doi.org/10.1029/2008JD010991

Várnai, T., & Marshak, A. (2009). MODIS observations of enhanced clear sky reflectance near clouds. Geophysical Research Letters, 36(6), 
L06807. https://doi.org/10.1029/2008GL037089

Várnai, T., & Marshak, A. (2012). Analysis of co-located MODIS and CALIPSO observations near clouds. Atmospheric Measurement Tech-
niques, 5(2), 389–396. https://doi.org/10.5194/amt-5-389-2012

Várnai, T., & Marshak, A. (2014). Near-cloud aerosol properties from the 1 km resolution MODIS ocean product. Journal of Geophysical 
Research: Atmospheres, 119(3), 1546–1554. https://doi.org/10.1002/2013JD020633

Wen, G., Marshak, A., & Cahalan, R. F. (2006). Impact of 3-D clouds on clear-sky reflectance and aerosol retrieval in a biomass burning region 
of Brazil. IEEE Geoscience and Remote Sensing Letters, 3(1), 169–172. https://doi.org/10.1109/lgrs.2005.861386

Wen, G., Marshak, A., Levy, R. C., Remer, L. A., Loeb, N. G., Várnai, T., et al. (2013). Improvement of MODIS aerosol retrievals near clouds. 
Journal of Geophysical Research: Atmospheres, 118(16), 9168–9181. https://doi.org/10.1002/jgrd.50617

Wen, G., Marshak, A., Várnai, T., & Levy, R. (2016). Testing the two-layer model for correcting near-cloud reflectance enhancement using 
LES/SHDOM-simulated radiances. Journal of Geophysical Research: Atmospheres, 121(16), 9661–9674. https://doi.org/10.1002/2016jd025021

Yamaguchi, T., Feingold, G., & Kazil, J. (2019). Aerosol-cloud interactions in trade wind cumulus clouds and the role of vertical wind shear. 
Journal of Geophysical Research: Atmospheres, 124(22), 12244–12261. https://doi.org/10.1029/2019jd031073

Yang, C. K., Chiu, J. C., Marshak, A., Feingold, G., Várnai, T., Wen, G., et al. (2022). Dataset associated with “Near-Cloud Aerosol Retrieval 
Using Machine Learning Techniques, and Implied Direct Radiative Effects”. http://dx.doi.org/10.25675/10217/235755

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In European conference on computer vision 
(pp. 818–833). Springer.

 19448007, 2022, 20, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
098274, W

iley O
nline L

ibrary on [27/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1029/2018jd028989
https://doi.org/10.1029/2018jd028989
https://doi.org/10.1002/2016jd024787
https://doi.org/10.1002/2016jd024787
https://doi.org/10.1029/2001JD000323
https://doi.org/10.1029/2008JD010991
https://doi.org/10.1029/2008GL037089
https://doi.org/10.5194/amt-5-389-2012
https://doi.org/10.1002/2013JD020633
https://doi.org/10.1109/lgrs.2005.861386
https://doi.org/10.1002/jgrd.50617
https://doi.org/10.1002/2016jd025021
https://doi.org/10.1029/2019jd031073
http://dx.doi.org/10.25675/10217/235755

	
          Near-Cloud Aerosol Retrieval Using Machine Learning Techniques, and Implied Direct Radiative Effects
	Abstract
	Plain Language Summary
	1. Introduction
	2. The Convolutional Neural Network
	2.1. The Training and the Configuration for the Proof-Of-Concept Case
	2.2. Performance Evaluations

	3. Explaining the CNN
	4. A Case Study Using MODIS Observations
	4.1. Comparison to the MODIS Operational Product
	4.2. Radiative Effects of Near-Cloud Aerosols and Their Impacts

	5. Summary
	Data Availability Statement
	References


