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Abstract: Phenol-rich foods consumption such as virgin olive oil (VOO) has been shown to have
beneficial effects on cardiovascular diseases. The broader biochemical impact of VOO and phenol-
enriched OOs remains, however, unclear. A randomized, double-blind, cross-over, controlled trial was
performed with thirty-three hypercholesterolemic individuals who ingested for 3-weeks (25 mL/day):
(1) an OO enriched with its own olive oil phenolic compounds (PCs) (500 ppm; FOO); (2) an OO
enriched with its own olive oil PCs (250 ppm) plus thyme PCs (250 ppm; FOOT); and (3) a VOO with
low phenolic content (80 ppm). Serum lipid and glycemic profiles, serum 1H-NMR spectroscopy-
based metabolomics, endothelial function, blood pressure, and cardiovascular risk were measured.
We combined OPLS-DA with machine learning modelling to identify metabolites discrimination of
the treatment groups. Both phenol-enriched OO interventions decreased the levels of glutamine,
creatinine, creatine, dimethylamine, and histidine in comparison to VOO one. In addition, FOOT
decreased the plasma levels of glycine and DMSO2 compared to VOO, while FOO decreased the
circulating alanine concentrations but increased the plasma levels of acetone and 3-HB compared to
VOO. Based on these findings, phenol-enriched OOs were shown to result in a favorable shift in the
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circulating metabolic phenotype, inducing a reduction in metabolites associated with cardiometabolic
diseases.

Keywords: functional olive oil; phenolic compounds; metabonomics; cardiovascular diseases

1. Introduction

Virgin olive oil (VOO) phenolic compounds (PCs) have been reported to possess
antioxidant and anti-inflammatory properties, and exert chemoprotective effects in ex-
perimental studies [1,2]. Moreover, PCs found in VOO produce beneficial changes in the
serum lipid profile and haemostasis, reduce blood pressure, and have anti-thrombotic and
anti-inflammatory activity in humans [3–5]. Data from the EUROLIVE study demonstrated
an increase of HDL cholesterol (HDL-C), and a decrease in in vivo lipid oxidative damage,
in an OOPC dose-dependent manner in healthy humans [6]. Furthermore, an enhancement
in HDL function with virgin olive oil (VOO) in healthy humans has been reported [7]. In
addition, VOO PCs have been reported to exert protection against risk factors for coronary
heart disease, particularly in individuals with high oxidative stress [1,2].

Phenol-enriched foods can display a dual action since antioxidants may revert to
pro-oxidant actors [8–10]. Functional foods with complementary PCs could therefore
have their beneficial effects enhanced. In this regard, enriching OO with PCs, without
increasing the fat content, could be an effective method to raise the intake of PCs and
increase their potential to improve health. Our group have previously demonstrated that
phenol-enriched OO improved endothelial function in pre-/hypertensive subjects [11], and
enhanced endothelial and HDL functions in hypercholesterolemic individuals [12,13]. In
this regard, phenol-enriched OO also increased the expression of cholesterol efflux-related
genes in two transcriptomic sub-studies [14,15].

Nutritional metabolomics, or nutrimetabolomics, is being increasingly employed to
study molecular interactions between diet and the global metabolic system. It allows the
study of metabolic responses to dietary modulations, and permits the inter-individual
variation in responses to the intake of specific nutrients and diets to be established. In
addition, the metabolic phenotype contains signals derived from dietary inputs, as well as
information related to the metabolic activity of the intestinal microbiota and its interactions
with the diet and host. We have previously described interactions between phenol-enriched
OOs and the human microbiota [16].

Food enriched with complementary antioxidants, according to their structure/activity
relationship, may be a possibility to achieve healthy effects avoiding thes harmful ones. The
aim of this study was to measure the serum metabolic phenotypes of hypercholesterolemic
patients, and characterize the biochemical modulations induced by the intake of functional
OOs enriched with their own PCs or with their own PCs plus complementary ones from
thyme.

2. Materials and Methods
2.1. Phenol-Enriched Olive Oil Preparation and Characteristics

A VOO with a low-phenolic content (80 ppm) was used as a control condition and as
a matrix of enrichment to prepare two functional OOs (FOOs; 500 ppm). The first was a
functional VOO (FOO; 500 ppm) enriched with its own PCs by the addition of a phenolic
extract obtained from freeze-dried olive cake. The phenolic profile of the olive cake extract
was comparable to the control VOO, as they were obtained from the same olive variety
(Arbequina cv) and the same olive-growing area. The second FOO was enriched with its
own PCs and complemented with thyme PCs using a phenolic extract obtained from a
mixture of freeze-dried olive cake and dried thyme (Thymus vulgaris) (FOOT; 500 ppm). The
FOOT thus contained 50% OOPCs (some of them were naturally present in VOO and some
of them came from the added olive cake extract) and 50% thyme PCs, which have been
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shown to possess a range of anti-inflammatory and anti-oxidative properties [17]. For the
wash-out period a common OO was used. The procedure to obtain the phenolic extracts and
the phenol-enriched OO has been published elsewhere [18]. Briefly, the phenolic extracts
were obtained using and accelerated solvent extractor as previously optimized [18,19]
obtaining an average of 2 g (1.96 ± 0.16 g) of freeze-dried phenolic extract from 10 g
of raw material (freeze-dried olive cake and dried thyme). Once the phenolic extracts
were obtained, they were used to prepare phenol-enriched OOs in the ratio of 2.5 g of
extract/100 g of VOO with low phenolic content using a dispersion method with water
(2%) until complete homogenization. The phenolic identification and quantification of the
control VOO and the phenol-enriched OOs were analyzed by HPLC coupled with tandem
mass spectrometry (MS/MS) as previously described [18]. As previously reported, the OOs
only differed in their phenolic content, the fat and micronutrient compositions were the
same (Supplementary Table S1).

2.2. Study Design

The VOO and HDL Functionality (VOHF) study was a randomized, double-blind,
crossover, controlled trial including 33 volunteers with cholesterol levels higher than rec-
ommended (total-cholesterol > 200 mg/dL) (19 men/14 women), aged 35 to 80. Exclusion
criteria were body mass index (BMI) > 35 Kg/m2, smokers, athletes with high physical
activity (PA) (>3000 Kcal/day), diabetes, multiple allergies, intestinal or any other dis-
eases/conditions that would worsen adherence to the measurements or treatments. The
study was conducted at IMIM-Hospital del Mar Medical Research Institute (Barcelona,
Spain) from April 2012 to September 2012. Subjects were allocated, by generating random
numbers, to one of 3 sequences of administration of 25 mL/day of raw: (a) VOO; (b) func-
tional OO enriched with its own PC; and (c) functional OO enriched with its own PC plus
complementary phenols from thyme. The statistician was who generated the random
allocation sequence while the researcher was who enrolled participants and the doctor
who assigned participants to interventions according to the random sequence. Because
all participants received each one of the three OOs, restrictions such as blocking were not
necessary. The flow-chart of the study was previously described by Pedret et al. [20]. The
intervention periods lasted 3 weeks with an ingestion of 25 mL/day raw OO distributed
among meals and preceded by 2-week wash-out periods. For the wash-out period, a com-
mercial common OO (blend of refined and a small percentage of VOO) kindly provided by
Borges Mediterranean Group was used.

To avoid an excessive intake of antioxidants and PCs during the clinical trial period,
participants were advised to limit the consumption of polyphenol-rich foods (such as
vegetables, fruit, coffee, and olives). To register the amount of OO consumed, the volunteers
had to return the OO containers to the center after each OO intervention. Participants with
less than 80% of treatment adherence (≥5 full OO containers returned) were considered non-
compliant subjects for this treatment. PA was evaluated by a questionnaire at baseline and
cessation of the study. The trial was conducted in accordance with the Helsinki Declaration
and the Good Clinical Practice for Trials on Medical Products in the European Community.
All participants provided written informed consent, and the local institutional ethics
committees approved the protocol (CEIC-IMAS 2009/3347/I). The protocol was registered
with the International Standard Randomized Controlled Trial register (www.controlled-
trials.com (accessed on 10 August 2022); ISRCTN77500181) and followed CONSORT-
guidelines (Supplementary Table S2).

2.3. Sample Size and Power Analysis

A sample size of 30 individuals allows at least 80% power to detect a statistically
significant difference among groups of 3 mg/dL of HDL cholesterol, assuming a dropout
rate of 15% and a Type I error of 0.05 (2-sided).

www.controlled-trials.com
www.controlled-trials.com
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2.4. Anthropometric and Cardiovascular Clinical Measurements

Blood pressure (BP), BMI, endothelial function (determined by ischemic reactive
hyperaemia (IRH) as previously described [13]), and cardiovascular risk (assessed with the
calibrated Framingham function [21]) were measured before and after each intervention.

2.5. Systemic Biomarkers

Blood samples were collected following fasting for at least 10 h. Plasma samples were
obtained by centrifugation of EDTA whole blood directly after being drawn and were
preserved at −80 ◦C until use. Plasma glucose, total-cholesterol (TC), and triglyceride (TG)
levels were measured using standard enzymatic automated methods and apolipoprotein
A1 (ApoA1) and apolipoprotein B-100 (APOB100) by immunoturbidimetry in a PENTRA-
400 autoanalyzer (ABX-Horiba Diagnostics, Montpellier, France). HDL-C was measured
using an accelerator selective detergent method (ABX-Horiba Diagnostics, Montpellier,
France). LDL-C was calculated by the Friedewald equation whenever TGs were inferior to
300 mg/dL.

2.6. Sample Preparation and 1H-NMR Spectroscopy

Serum samples (200 µL) were combined with 400 µL of saline solution (100% D2O),
mixed by vortexing, and centrifugated at 13,000× g for 10 min. The supernatant (550 µL)
was transferred to a 5 mm internal diameter NMR tube. The metabolic profiles of the serum
samples were then characterized by 1H-NMR spectroscopy using a 500 MHz Bruker NMR
spectrometer operating at 310 K. For each serum sample a water-suppressed Carr-Purcell-
Meiboom-Gill (CPMG) spin-echo spectrum was acquired using 8 dummy scans followed
by 128 scans collected into 64K data points.

2.7. NMR Data Processing
1H-NMR spectra were manually corrected for phase and baseline distortions. Chemi-

cal shifts in the spectra were referenced to the anomeric proton of α-glucose at 5.223 ppm.
Spectra were digitized using an in-house Matlab (version R2009b, The Mathworks, Inc.;
Natwick, MA, USA) script. Resonances arising from imperfect water saturation were
removed to minimize distortions to the spectral baseline.

2.8. NMR Data Analysis
2.8.1. Multilevel-OPLS-DA Analyses

Metabolomics data from human studies are characterized by large variations between
the subjects. Therefore, subtle treatment effects can be easily overlooked due to the con-
siderable variation among participants due to age, disease state, genetics and the like. In
addition, the impact of the treatment effect may differ between the subjects. Cross-over
designed experiments are particularly useful to tackle these problems, since each subject
in the study act as their own controls, making the data paired. A specific limitation of
using typical techniques for metabolomics studies such as PCA, PLS or OPLS in a crossover
experiments is that the net treatment effect is not separated from the biological variation
between the subjects. Therefore, to identify metabolic differences between treatment groups
we used a multilevel orthogonal partial least squares discriminant analysis (M-OPLS-DA)
modelling [22,23]. It combines the variation splitting property of multilevel simultaneous
component analysis (MSCA) with the analysis of the within subjects variation with an
OPLS-DA method.

MSCA decomposes the data into an offset term, a between-subjects part and a within-
subjects part [24,25]. Decomposition of the variation terms is performed in two consecutive
centering steps. The first steps is applied on the entire metabolomic data set X and results
in a offset term and a mean-centered data block:

X = 1LxT
m + Xc

= Xm + Xc
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where L is the total number of spectra, Xc contains the mean-centered data, 1L contains
ones, and xT

m contains the mean values for each column in X. The matrix Xm is defined as
the offset term.

Then, a second mean-centering is performed per subject i over the K interventions:

Xci = 1KxT
bi + Xwi

where Xci contains the mean-centered data for subject i, 1K contains ones, xT
bi contains

the mean for each subject i, and Xwi contains the mean-centered data per subject i. Con-
catenating the matrices for each individual, we can write the mean-centered data matrix
as:

Xc = Xb + Xw

where Xb contains the between-subjects variation and Xw contains the within-subjects vari-
ation. Therefore, the metabolomic data matrix can be written as three terms containing the
offset, the between-subjects variation (biological effect), and the within-subjects variation
(treatment effect):

X = Xm + Xb + Xw

Variation splitting was performed using Matlab with the routines available from van
Velzen et al. [22]: http://www.bdagroup.nl/content/Downloads/software/software.php
(accessed on 1 June 2018).

After variation splitting, OPLS-DA is performed on the within-subject data to find
systematic differences among the treatment groups. The within-subject variation contains
both variation that is equal for all subjects as well as variation different between subjects. An
OPLS-DA on the within-subjects matrix is used to focus on the similarity in the treatment
effect between subjects. The OPLS-DA was introduced as modification of the PLS-DA
method that incorporates orthogonal signal correction (OSC) filters to discriminate between
two or more groups using multivariate data [26,27]. PLS is a multivariate regression method
based on projections that models the relationship between the metabolic data set X and the
response variable Y, but also models the structure of X and Y:

X = TP′ + E
Y = UC′ + F

where T and U are the scores matrices, P and C are the loadings matrices, and E and F are
the matrices of residuals of X and Y, respectively. Conversely, OPLS separates the variation
in T derived from the PLS in two blocks of variation, predictive (Tp) and orthogonal (To)
variation:

X = TpP′p + ToP′o + E
Y = UC′ + F

The predictive block contains the correlated variation between X and Y, whereas the
orthogonal block contains the uncorrelated variation between X and Y. The advantage of
OPLS compared to PLS is that a single component (the predictive component) is used as
a predictor of the response Y, while the other components describe the other variation
that is orthogonal to Y. Therefore, the main advantage of OPLS lies on enhancing model
interpretation by forcing all Y-related information into a single component. However, it is
worth noting that in terms of predictive power, both PLS and OPLS give similar results [26].

OPLS-DA Loading coefficient plots were generated by back-scaling transformation
where covariance is plotted between the Y-response matrix and the signal intensity of
the metabolites in the NMR data (X). These plots are coloured based on the correlation
coefficient (r2) between each metabolite and the Y-response variable, with red indicating
strong significance and blue indicating weak significance. The predictive performance
(Q2Y) of the model was calculated using a 7-fold cross-validation approach and model
validity was established by permutation testing (1000 permutations).

http://www.bdagroup.nl/content/Downloads/software/software.php
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2.8.2. Machine Learning Analyses

Metabolomics datasets are often high-dimensional with non-linear and complex inter-
actions among metabolites. Therefore, we further analysed the metabolomics data using
machine learning (ML) models based on trees: random forest (RF). Unlike classical linear
model-based statistical methods, RF are fully non-parametric model-free methods that
capture complex interaction dependency patterns within predictor features affecting the
phenotype. In addition, they provide several variable importance measures (VIMs) that can
be used to identify relevant features. RF is an ensemble machine learning method based
on “growing” hundreds or thousands of decision trees that uses the average output of
all the trees to predict the Y-response [28]. Randomness in the trees is introduced by two
elements. First, each tree is built from a random subset sample (bootstrap sample), with
replacement, of the original data. Second, at each split in the tree building process, only
a random subset of predictor features (mtry) is considered from all candidate predictors.
Among these variables, the one providing the best split based on a specific criterion is
selected. This has the effect of making a forest with a large number of uncorrelated trees.
Then, although each individual tree may perform poorly when predicting the outcome
and different trees can give different results, the ensemble of trees have better predictive
capability.

The advantage of the RF is that the observations not used for the construction of a
specific tree (termed out-of-bag (OOB) observations) may be used to estimate the VIM. In
particular, we used the mean minimal depth, which is calculated based on the position of
the features in the decision tree. Thus, unlike other VIM such as the permutation variable
importance, it is only based on the structure of the forest and independent of prediction
errors [29]. The RF models and the minimal depth distribution were calculated using the
“ranger” and “randomForestExplainer” R packages.

However, VIMs do not provide the sign of the association with the response variable.
Therefore, to facilitate model interpretation, the contribution and effect of each selected
feature (i.e., metabolite) in predicting the treatment group was determined by the exact
computation of SHapley Additive exPlanations (SHAP) scores by leveraging the internal
structure of RF models [30]. The exact computation of SHAP values guarantees that
explanations are always consistent and locally accurate. SHAP values determine the
importance of a specific value in a specific feature by comparing the model prediction
with and without the feature for each individual. Therefore, the same feature with a
specific value may have different SHAP valued for different individuals depending on the
interactions with other features of that individual. The SHAP scores were calculated and
plotted using the R packages “treeshap” and “SHAPforXGBoost”, respectively.

A drawback of VIMs in RF is that they are not directly related to the statistical signifi-
cance. Therefore, we further applied an all-relevant ML feature selection strategy based on
applying RF iteratively as implemented in the Boruta algorithm [31]. The Boruta approach
has been recently proposed as one of the best-performing RF-based variable selection
methods for high-dimensional omics datasets [32]. It performs variables selection in four
steps: (a) Randomization: by creating a duplicate copy of the original features randomly
permutate across the observations (called shadow features); (b) Model building: build a RF
with the extended data set (original + shadow features) to compute the normalized permu-
tation VIM Z-scores for each feature; (c) Statistical testing: find those relevant features with
a VIM higher than the shadow feature with the maximum VIM (MZSF) using a Bonferroni
corrected two-tailed binomial test (PBonferroni). Predictor features with significantly higher,
significantly lower, or non-significantly different VIM Z-scores than expected at random
compared to the MZSF are deemed important (selected), unimportant (rejected), or tenta-
tive, respectively; and (d) Iteration: Unimportant and shadow features are removed and the
previous steps are repeated until the status of all features is decided or a predefined number
of iterations has been performed. All RF models were calculated using 5000 trees and a
number of features (ntree) randomly sampled at each split given by the rounded down
square root of the number of features (the mtry recommended for classification problems).
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In addition, in the Boruta algorithm we used 500 iterations and a confidence level cut-off of
0.005 for the Bonferroni adjusted p values.

2.9. Statistical Analyses

Normality of continuous variables was assessed by normal probability plots. Non-
normally distributed variables were log transformed when necessary. Non-compliant
volunteers were excluded from the analysis. To compare means (for normal distributed
variables) or medians (for non-normal distributed variables) among groups, ANOVA and
Kruskal-Wallis test were performed, respectively. The χ2 and exact F-test, as appropriate,
were used to compare proportions. A general linear model for repeated measurements was
employed to assess the comparisons of changes in intra- (pre-treatment vs. post-treatment)
and inter-interventions (FOOT vs. FOO vs. VOO). A value of p-value < 0.05 was consid-
ered significant. Spearman correlations were performed and a p < 0.002 was considered
significant due to the assessment of 25 variables (Bonferroni p-value). A PLS model was
also used to represent the associations between metabolites and clinical cardiovascular
measures. Statistical analyses were performed by SPSS 13.0 software (IBM Corp, New York,
NY, USA) and Matlab (version R2009b, The Mathworks, Inc.; Natwick, MA, USA).

3. Results
3.1. General Characteristics, Anthropometric Measurements, and Cardiometabolic Parameters

Participants’ baseline characteristics are shown in Table 1. Order of intervention was
not found to induce any significant effects in any of the variables measured. No changes in
daily energy expenditure in leisure-time PA were observed from the beginning to the end
of the study. No changes were observed in blood pressure, BMI, and cardiovascular risk
throughout the study. IRH improved after FOOT intervention as previously described [13].
No changes were observed in lipid profile and glucose throughout the study. The three OO
interventions were well tolerated by all volunteers who did not reported adverse events.

Table 1. Baseline characteristics of the participants.

Order 1 (n = 11) Order 2 (n = 11) Order 3 (n = 11) p-Value

Anthropometric and Cardiovascular Clinical Measurements

Sex: man 5 (45.6%) 7 (63.6%) 7 (63.6%) 0.742
Age (years) 54.91 ± 12.57 55.27 ± 11.88 55.45 ± 7.84 0.856

BMI (Kg/m2) 25.63 ± 3.68 26.31 ± 5.25 27.85 ± 4.71 0.529
Physical activity (Kcal/week) 3498.75 (1755.00; 8092.50) 1188.75 (742.50; 1687.50) 3322.50 (861.25; 3663.75) 0.094
Ischemic reactive hyperemia

(IRH) 268.95 ± 344.05 60.374 ± 74.63 177.51 ± 174.01 0.159

Cardiovascular risk 4.472 ± 2.424 5.525 ± 2.693 4.970 ± 2.124 0.601

Systemic Lipid Profile and Glycaemia

Total cholesterol (mg/dL) 228 ± 43 232 ± 33 219 ± 31 0.680
Triglycerides (mg/dL) 94 (75; 149) 119 (95; 168) 117 (81; 126) 0.517

Glucose (mg/dL) 89 ± 12 93 ± 13 91 ± 11 0.683
HDL-cholesterol (mg/dL) 53 ± 13 53 ± 13 53 ± 20 0.992
LDL-cholesterol (mg/dL) 150 ± 32 152 ± 28 142 ± 26 0.700
Apolipoprotein-A1 (g/L) 1.4 ± 0.2 1.4 ± 0.2 1.5 ± 0.2 0.458

Apolipoprotein-B100 (g/L) 1.2 ± 0.2 1.2 ± 0.2 1.1 ± 0.2 0.529

Values expressed as mean ± S.D. or median (25th to 75th percentile).

3.2. Serum Metabolic Phenotyping

A significant MSCA model (Q2Y = 0.86; p < 0.001) was obtained comparing the serum
metabolic phenotypes of individuals after receiving the VOO and FOOT interventions
(Figure 1a). Compared to VOO, FOOT ingestion resulted in lower circulating amounts of
valine, alanine, glutamine, histidine, and glycine, and decreased levels of citrate, creatine,
creatinine, glucose, dimethylsulfone, acetoacetate, and dimethylamine (DMA) in serum.
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The model comparing the serum metabolic profiles after FOO and VOO intakes was also
significant (Q2Y = 0.97, p < 0.001) (Figure 1b). Participants supplemented with FOO had
higher amounts of 3-hydroxybutyrate (3-HB), acetate, and acetone in serum. In a similar
manner to FOOT, FOO reduced levels of valine, alanine, glutamine, histidine, creatine,
creatinine, and DMA in serum compared to VOO. In addition, FOO decreased lactate
and isoleucine versus VOO. A significant model was also obtained comparing the serum
profiles after FOOT and FOO intakes (Q2Y = 0.97; p < 0.001) (Figure 1c). Serum collected
after FOO intake contained higher amounts of acetone, acetoacetate, and 3-HB and lower
amounts of glutamine and alanine compared to that after FOOT intake.
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The OPLS-DA results were further validated by ML analyses (Figure 2). Glutamine,
creatine, creatinine, DMA, and histidine were consistently decreased after treatment with
either FOOT (Figure 2a–c) or FOO (Figure 2d–f) compared to VOO. In addition, FOOT
decreased the plasma levels of glycine and DMSO2 compared to VOO (Figure 2c), while
FOO also decreased the circulating alanine concentrations but increased the plasma levels of
acetone and 3-HB compared to VOO (Figure 2f). Glutamine, creatinine and histidine were
the most important metabolites differentiating between the treatments with either FOOT or
FOO and VOO. Finally, ML models identified three relevant metabolites discriminative of
the treatment with the functional OOs (Figure 2g–i). The circulating levels of isoleucine
were increased in the FOOT compared to the FOO, whereas the levels of acetoacetate and
3-HB were increased in the FOO compared to the FOOT.
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comparison FOOT vs. FOO. The minimal depth distribution plot shows the features with their
distribution of minimal depth and its mean, where the importance of a feature increases with decreasing
mean values. In the SHAP summary plot, each dot represents and individual sample. The X-axis
represents the SHAP value: the impact of a specific feature (metabolite) on the treatment group
prediction of a specific individual. Features are sorted in decreasing order based on their overall
importance for final prediction (average SHAP values shown in bold). Colours represent the values of
the metabolites normalized concentrations, ranging from yellow (high concentrations of the specific
metabolite) to purple (low concentrations of the specific lipid). The Boruta results are shown as boxplots
of Variable Importance Measure (VIM) for each selected relevant feature. In the boxplots, the red dot
represents the mean and the colour bar above each plot indicates the sign of the association among the
feature with the treatment group, with red and green indicating a decrease or increase in the FOOT
vs. VOO, FOO vs. VOO, or FOOT vs. FOO, respectively. Significant features were identified using
5000 trees, 500 iterations, and PBonferroni < 0.005. DMA, dimethylamine; DMSO2, dimethylsufone; FOO,
functional OO enriched with its own phenolic compounds; FOOT, functional OO enriched with its own
phenolic compounds plus additional complementary one from thyme; VOO, virgin olive oil; 3-HB,
3-hydroxybutyrate.

3.3. Metabolic Associations with Cardiovascular Parameters

The branched chain amino acids (BCAAs) were moderate positively correlated with
APOB100 (isoleucine) and triglycerides (isoleucine), and moderate negatively correlated
with HDL-C (isoleucine) and APOA1 (valine and isoleucine) (p < 0.002). A number of non-
branched chain amino acids were strong negatively correlated with APOB100 (glutamine),
glucose (glutamine, histidine), triglycerides (glutamine, histidine), cardiovascular risk
(glutamine, histidine), strong positively correlated with HDL-C (glutamine), and APOA1
(glutamine) (p < 0.002). In addition, a moderate postitive correlation between APOA1 and
glycine was observed (p < 0.002) (Table 2 and Figure 3).
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Table 2. Correlations between 1H-NMR significant metabolites and cardiometabolic parameters.

Isoleucine Valine
(1.03 ppm) Glutamine Alanine Histidine

(7.04129 ppm) Glycine DMSO2

Glucose
(4.62975

ppm)

Citrate
(2.66236

ppm)

Lactate
(1.33017

ppm)
DMA Creatine Creatinine Acetone Acetoacetate 3-HB

HDL-C r = −0.271
p = 0.000 NS r = 0.477

p = 0.000 NS NS NS NS r = −0.285
p = 0.000

r = 0.275
p = 0.000 NS NS r = 0.413

p = 0.000 NS NS NS NS

ApoA1 r = −0.303
p = 0.000

r = −0.298
p = 0.000

r = 0.356
p = 0.000 NS NS r = 0.246

p = 0.001 NS r = −0.248
p = 0.001

r = 0.242
p = 0.001 NS NS r = 0.318

p = 0.000 NS NS NS NS

Endothelial
function NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS

Total
cholesterol NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS

LDL-C NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS

ApoB100 r = 0.240
p = 0.001 NS r = −0.304

p = 0.000 NS NS NS NS NS r = −0.283
p = 0.000 NS NS NS NS NS NS NS

Triglycerides r = 0.278
p = 0.000 NS r = −0.545

p = 0.000 NS r = −0.332
p = 0.000 NS r = −0.304

p = 0.000 NS r = −0.247
p = 0.001 NS NS r = −0.406

p = 0.000 NS NS NS NS

Cardiovascular
risk NS NS r = −0.396

p = 0.000 NS r = −0.375
p = 0.000 NS NS r = 0.236

p = 0.0017 NS NS NS NS NS NS NS NS

Glucose NS NS r = −0.438
p = 0.000 NS r = −0.332

p = 0.000 NS NS r = 0.404
p = 0.000 NS NS NS r = −0.301

p = 0.000 NS NS NS NS

Apo, apolipoprotein; DMA, dimethylamine; DMSO2, dimethylsufone; 3-HB, 3-hydroxybutyrate; NS: non-significant.
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4. Discussion

In this work we show that the consumption of an OO enriched with either autologous
PCs (FOO) or a combination of autologous plus complementary thyme PCs (FOOT) altered
the circulating metabolomes of hypercholesterolemic volunteers compared to the con-
sumption of a standard VOO. In particular, reductions were seen in circulating glutamine,
histidine, DMA, creatine, and creatinine after both PC-enriched OOs.

Glutamine has been previously associated with cardiovascular diseases with Shah
et al. reporting higher peripheral blood glutamine concentrations in cardiovascular disease
patients compared to their healthy equivalents [33]. It has also been reported that glutamine
promotes the accumulation of macrophage triglyceride by enhancing the uptake of LDL and
VLDL [34] and this could promote atherosclerotic plaque formation. It has been described
that glutamine could have a positive role reducing oxidative stress, since glutamine is a
precursor of glutathione [35]. Interestingly, the essential amino acid histidine, also has
antioxidant roles. This includes proton buffering, metal ion chelation, and scavenging of
reactive oxygen and nitrogen species [36]. In this study, reductions in these circulating
aminoacids could indicate lower systemic demand due to the enhanced antioxidant content
of the PC-enriched OO.

Alanine was found decreased only after the FOO intervention in comparison with
VOO. The precursors of glutamine and alanine are the BCAA. The initial site of BCAA
catabolism is the skeletal muscle and there is a release of glutamine and alanine to the
blood during this process [37]. In this study, we also observed reductions in the circulat-
ing BCAAs, valine and isoleucine after both PC-enriched OOs. BCAAs have previously
been associated with cardiovascular diseases [38], stroke [39], cancer, type 2 diabetes [40],
and metabolic syndrome [41,42]. Specifically, valine has been linked with metabolic risk
factors [43], insulin resistance [44], incident type 2 diabetes [40], and future cardiovascular
events [33]. Moreover, the BCAAs levels of plasma and tissue have been reported to be
increased in breast cancer [45]. In agreement, the circulating BCAAs in this study were
positively correlated with cardiovascular risk parameters, such as LDL-c, APOB100, triglyc-
erides, and negatively associated with cardiovascular-protective parameters, including
HDL-c and APOA1. Such findings concur with previous studies highlighting the pos-
itive relationships between BCAAs and triglycerides and the negative association with
HDL-c [46]. Collectively, these results suggest that the consumption of a phenol-enriched
OO by hypercholesterolemic individuals could lead to favorable shifts in their circulating
BCAA-related metabolic phenotype towards a more cardio-protective one.

Several studies have observed a relationship between ketone bodies and cardiovascu-
lar risk as they are involved in diabetic ketoacidosis [47]. Conversely, ketone bodies also
have bioenergetic and pleiotropic effects that could induce cardiovascular benefits [47]. In
this study, serum acetoacetate was reduced by FOOT and increased by FOO, compared
to VOO consumption. Furthermore, FOO consumption resulted in higher amounts of
serum 3-HB and acetoacetate, compared to FOOT. These results suggest that FOOT may
induce more favorable metabolic modifications than FOO. In contrast, circulating levels of
isoleucine, a BCAA, were increased in the FOOT compared to the FOO.

Creatinine is a degradation product from creatine, and is a marker of muscle mass,
adverse lipid profiles, and kidney dysfunction. Both creatinine and creatine were decreased
in serum after the two phenol-enriched OOs in comparison to VOO. Creatinine has been
associated with cardiovascular diseases [48,49] and elevations in serum creatinine have
been noted with chronic heart failure, acute myocardial infarction, and chronic ischemic
heart disease patients [50]. Moreover, increased serum creatinine is a predictor for all-cause
mortality [51].

Interestingly, the microbial metabolite DMA was reduced in the circulation after con-
sumption of both phenol-enriched OOs. DMA arises from the bacterial metabolism of
trimethylamine and trimethylamine-N-oxide (TMAO), derived from the microbial break-
down of dietary choline and L-carnitine. TMAO promotes atherosclerosis in animal models
and is associated with CVD and adverse cardiac events in humans [52–54]. The reduction
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of DMA observed after both phenol-enriched OOs could be related to anti-atherosclerotic
properties extensively described in cellular, animal, and human studies.

The similar metabolomic effects observed after both phenol-enriched olive oils in-
take suggest that the complementarity of the antioxidants does not produce additional
beneficial effects in the outcome analyzed in this paper, the metabolome. Nevertheless,
our group reported before that this functional olive oil enriched with complementary
antioxidants showed a capacity to improve HDL-subclass distribution and composition,
and metabolism/antioxidant enzyme activities versus VOO, and the functional olive oil
enriched with only its own antioxidants did not show this capacity [55]. In this sense,
our group also reported before that FVOOT improved the expression of cholesterol efflux
related genes [14].

One strength of our nutritional intervention trial is its randomized and cross-over
design, which permitted the volunteers to consume all OO types and therefore deleted the
inter-individual variability. In addition, the laboratory analyses were centralized and all the
time-series samples from the same participant were measured in the same run. A limitation
of the study was its sample size, which could be responsible for reduced statistical power
in some metabolites with high inter-individual variability. A synergistic effect on serum
metabolome between PC and other OO components is as yet unknown. Another limitation
is the inability to assess potential interactions among the OOs and other diet components
and medication, although the controlled diet and medication followed during all clinical
trial should have limited the aim of these interactions.

In conclusion, dietary supplementation of a regular daily dose (25 mL/day) of phenol-
enriched OOs for three weeks reduced several serum metabolites which were associated
with cardiovascular-risk, in hypercholesterolemic patients. In particular, two different
phenol-enriched OOs reduce the levels of glutamine, histidine, DMA, creatine, and crea-
tinine. Such results highlight the potential of this cost-effective nutritional modification
to reduce the global burden of cardiovascular diseases, and lead to its development as a
nutritional tool for the treatment of cardiometabolic diseases.
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