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ABSTRACT 10 

We develop a statistical method to assess CMIP6 simulations of large-scale surface 11 

temperature change during the historical period (1850-2014), considering all timescales, 12 

allowing for the different unforced variability of each model and the observations, 13 

observational uncertainty, and applicable to ensembles of any size. The generality of this 14 

method, and the fact that it incorporates information about the unforced variability, makes it a 15 

useful model assessment tool. We apply this method to the historical simulations of the 16 

CMIP6 multi-model ensemble. We use three indices which measure different aspects of 17 

large-scale surface-air temperature change: global-mean, hemispheric gradient, and a 18 

recently-developed index that captures the sea-surface temperature (SST) pattern in the 19 

tropics (SST#; Fueglistaler and Silvers, 2021). We use the following observations: 20 

HadCRUT5 for the first two indices, and AMIPII and ERSSTv5 for SST#. In each case, we 21 

test the hypothesis that the model's forced response is compatible with the observations, 22 

accounting for unforced variability in both models and observations as well as measurement 23 

uncertainty. This hypothesis is accepted more often (75% of the models) for the hemispheric 24 

gradient than for the global mean, for which half of the models fail the test. The tropical SST 25 

pattern is poorly simulated in all models. Given that the tropical SST pattern can strongly 26 

modulate the relationship between energy imbalance and global-mean surface temperature 27 

anomalies on annual to decadal time scales (short-term feedback parameter), we suggest this 28 

should be a focus area for future improvements due to its potential implications for the 29 

global-mean temperature evolution in decadal time scales. 30 

1. Introduction 31 

The historical record of near-surface air temperature (SAT) is widely used as a 32 

performance metric for climate models (e.g. Braganza et al., 2003; Reichler and Kim, 2008). 33 

The time series of annual-mean anomalies is a benchmark against which models are tested, 34 

and it has been used to assess the credibility of a model’s ability to provide information on 35 

future changes (e.g. Brunner et al., 2020). Recent research suggests that the later part of the 36 

historical period (1980 onwards) contains information about the sensitivity of the Earth’s 37 

climate to external forcing (Flynn and Mauritsen, 2020; Dittus et al., 2020), although this 38 

relationship may not be as strong as suggested due to common model biases in the simulation 39 

of historical SST patterns (Andrews and Webb, 2018; Ceppi and Gregory, 2017), the 40 

sensitivity to biomass aerosols (Fasullo et al., 2022), or a nonnegligible contribution of 41 
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internal variability on multi-decadal trends (McKinnon and Deser, 2018). The tropical SST 42 

patterns are strongly connected to regional precipitation anomalies, of relevance for the 43 

accurate drought-inducing teleconnections (e.g. Annamalai et al., 2013; Zinke et al., 2021). 44 

Also, the radiative forcing over the historical record is uncertain, mainly due to the role of 45 

aerosols (e.g. Smith et al., 2021), with important implications for the historical warming 46 

shown by models (e.g. Wang et al., 2021; Zhang et al., 2021). Potentially, all this information 47 

can be used to improve the model’s response to external forcing subject to the constraints of 48 

process observations. However, there is no common approach on how to incorporate the 49 

historical record into model development. 50 

For example, several modeling centres have directly “calibrated” or “tuned” historical 51 

simulations (i.e. adjusted them to improve realism of climate change simulation) during the 52 

developments of the models used for the Climate Model Intercomparison Project phase 6 53 

(CMIP6; Eyring et al., 2016). During the development of the Energy Exascale Earth System 54 

Model version 1 (E3SMv1), a historical simulation was performed with a near-final version 55 

of the model, but no action was taken to change the historical performance in the final 56 

version (Golaz et al., 2019). Boucher et al. (2020) describe the developments and 57 

performance of the IPSL‐CM6A‐LR model. Although historical simulations were not used as 58 

part of the development, the r1i1p1f1 simulation was selected qualitatively among the first 59 

∼12 available historical members, based on a few key observables of the historical period. 60 

The historical warming of the MPI-ESM1.2-LR model was tuned by reducing its climate 61 

sensitivity during its development (Mauritsen et al., 2019). 62 

The use of historical runs (or any coupled run with transient forcing) for tuning is not part 63 

of the Met Office Unified Model (UM) development protocol. The Hadley Centre models 64 

submitted to CMIP6 were not tuned to the historical record, although several model 65 

improvements were added to ensure that the total present-day radiative forcing was positive 66 

(Mulcahy et al., 2019). This approach was revised in the 2020 UM Users Workshop, where it 67 

was agreed that one of the key model errors was the simulation of the historical record. As a 68 

result, a Prioritised Evaluation Group (PEG) was created with the objective of improving the 69 

simulation of the historical global-mean surface temperature record. Also, in a recent review 70 

of the UM’s Global Configuration (GC) development protocol, it was agreed that a small 71 

ensemble of historical simulations will be run during the final stage of the development cycle, 72 

opening the option to implement model changes that target the performance of the simulation 73 
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of the historical record before the final configuration is delivered to the users. In this paper 74 

we present the first step towards incorporating historical information into the UM’s 75 

development process. We develop a statistical method to test whether simulations of large-76 

scale surface temperature change are realistic during the historical period (1850-2014). The 77 

method is applied to annual-mean time series of three surface temperature indices: global-78 

mean, hemispheric gradient, and a recently-developed index that captures the sea-surface 79 

temperature (SST) pattern in the tropics (SST#; Fueglistaler and Silvers, 2021). We test the 80 

historical simulations of the CMIP6 ensemble and post-CMIP6 versions of the HadGEM3 81 

and UKESM models. We use the term ‘realistic’ in a relative manner: a model that performs 82 

well against the tests described here can do so due to compensating errors (e.g. between 83 

forcings and feedbacks). Consequently, those models that we label as realistic in the present 84 

study could nonetheless be rejected once other metrics with additional observational evidence 85 

or process understanding are considered. This shortcoming is not specific to this 86 

methodology, and the method we propose here should be used along a wide range of 87 

diagnostics to provide a detailed assessment.The structure of the paper is as follows. Section 88 

2 describes the observational and model data. The statistical methodology is detailed in 89 

Section 3, and Section 4 presents the results of the method applied to the CMIP6 historical 90 

ensemble. Finally, Section 5 discusses the results and conclusions. 91 

2. Model data and observations 92 

We use near-surface air temperature (CMIP variable tas) data from the piControl and 93 

historical experiments of the CMIP6 archive (Table 1), which are atmosphere-ocean coupled 94 

simulations. The piControl are unforced simulations with forcing agents set at pre-industrial 95 

levels (year 1850). After a spin up period, the CMIP6 protocol requests a minimum of 500 96 

simulation years, but not all models fulfil this criterion. We explain how we deal with 97 

different lengths of the piControl time series in the next section. 98 

The CMIP 6 protocol (Eyring et al., 2016) recommended that the historical experiments 99 

are run with the current best estimates of the time-evolving datasets of forcing agents: 100 

atmospheric composition, solar irradiance, natural and anthropogenic aerosols, and land-use 101 

change, but not all institutions followed the protocol. They branch from the piControl 102 

simulation, running from 1850 to 2014 (165 years). The CMIP6 protocol recommends 103 

running at least 3 historical simulations, branching from different points in the piControl 104 

simulations. We use 40 piControl simulations from the CMIP6 ensemble, plus simulations 105 
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from GC4.0-LL and UKESM1.1-LL (Mulcahy et al., submitted), models developed after 106 

CMIP6.  107 

We use three different observational datasets of surface temperature: the Met Office 108 

Hadley Centre/Climatic Research Unit global surface temperature data set version 5 109 

(HadCRUT5.0.1.0; Morice et al., 2021), the Program for Climate Model Diagnosis and 110 

Intercomparison (PCMDI) SST reconstruction (Hurrell et al., 2008; Taylor et al., 2000), and 111 

the Extended Reconstructed Sea Surface Temperatures Version 5 (ERSSTv5; Huang et al., 112 

2017). The baseline period used for all historical datasets is 1880-1919. 113 

HadCRUT5 provides temperature anomalies on a lat-lon rectangular grid. Two variants of 114 

the same dataset are provided: a non-infilled version, with data in gridboxes where 115 

measurements are available; a more spatially complete version. For global and regional time 116 

series, the HadCRUT5 analysis error model contains two terms (Morice et al., 2020): the 117 

analysis error (a), and the coverage error (c). The analysis error combines the errors from 118 

the Gaussian process used in the statistical infilling and the instrumental errors. The analysis 119 

grids are not generally globally complete, particularly in the early observed record. Regions 120 

are omitted where there are insufficient data available to form reliable grid cell estimates. The 121 

coverage error represents the uncertainty in spatial averages arising from these unrepresented 122 

regions. The analysis error is represented by the 200 realizations of the historical record, 123 

whereas the coverage error is reported as a time series of standard deviations. We use the 124 

more spatially complete version, also termed as “HadCRUT5 analysis”. The HadCRUT5 125 

analysis data set uses a statistical method to extend temperature anomaly estimates into 126 

regions for which the underlying measurements are informative. This makes it more suitable 127 

for comparisons of large-scale regional average diagnostics against spatially complete model 128 

data, although variability in "infilled" regions will be lower than where observed 129 

measurement data is present (Jones, 2016). We use the HadCRUT5 analysis as a reference 130 

dataset for two of the indices: global-mean, and hemispheric gradient. We use the global 131 

means calculated by averaging the hemispheric means, as recommended by Morice et al. 132 

(2021). 133 

The SST# index is defined as the difference between the average of the warmest 30% 134 

SSTs (actual values, not anomalies) and the domain average. The domain used for this 135 

particular metric is the Tropics, from 30oS to 30oN. This index represents the difference in 136 

SSTs between the convective regions and the tropical average, and it explains the anomalies 137 
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in low cloud cover (and cloud radiative feedbacks) over the historical record due to changes 138 

in SST patterns (Fueglistaler and Silvers, 2021). The index is calculated using monthly-mean 139 

SSTs, and then annual averages are calculated. The same process is followed for both models 140 

and observations. Since this index cannot be calculated from local anomalies, a dataset that 141 

provides absolute temperature estimates is required. The PCMDI dataset provides monthly 142 

mean sea surface temperature and sea ice concentration data from 1870 to the present on a 143 

regular lat-lon grid. These data are designed to be used as boundary conditions for 144 

atmosphere-only simulations. They use the AMIP-II mid-month calculation (Taylor et al., 145 

2000), which ensures that the monthly mean of the time-interpolated data is identical to the 146 

input monthly mean. Following the convention in other studies, we refer to this dataset as 147 

PCMDI/AMIPII. SST# is subject to a large observational uncertainty (Fueglistaler and 148 

Silvers, 2021), attributed to the different methodologies used to provide information where 149 

observations are not available. Given that the PCMDI/AMIPII dataset doesn’t provide a 150 

comprehensive error characterization, we use the ERSST5 to test the robustness of our results 151 

to the observational uncertainty in SST#. We have chosen the PCMDI/AMIPII and ERSST5 152 

datasets because they fall at opposite ends of the spectrum of SST# anomalies provided by 153 

observational datasets, spanning the range of structural uncertainties in the observational 154 

reconstructions of SST#.There is evidence of differences between near-surface atmosphere 155 

temperature and surface temperature diagnostics (e.g. Richardson et al., 2016). The 156 

Intergovernmental Panel on Climate Change Assessment Report version 6 (IPCC AR6; 157 

Gulev et al., 2021) quantifies the global-mean uncertainty of long-term trends by at most 10% 158 

in either direction, with low confidence in the sign of any difference in long-term trends. 159 

Jones (2020) supports the use of global near-surface air temperature model diagnostics with 160 

blended datasets of observed temperature changes. 161 

3. Methodology 162 

Let Ho(t) be the timeseries of the observed historical record anomalies of any given 163 

surface temperature index. We decompose it as HO(t) = S(t) + UO(t) + EO(t), where S(t) 164 

represents the forced signal, UO(t) is the unforced variability, and EO(t) is the total 165 

observational error. Similarly, for a given model we decompose any historical simulation of 166 

the same index as HM(t) = S(t) + DM(t) + UM(t). DM(t) represents a discrepancy term or error 167 

in the forced response, and UM(t) is the model’s unforced variability.  168 
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If we hypothesize that the model’s forced response is realistic (i.e. DM(t)=0), then HM(t) – 169 

HO(t) = UM(t) – UO(t) – EO(t). We can test this hypothesis by comparing HM(t)-HO(t) with the 170 

expected distribution of UM(t) – UO(t) – EO(t). In general, we have more than one realization 171 

of a model’s historical experiment, each of them with a different realization of the model 172 

unforced variability. Since we only have a single sample of the real world’s unforced 173 

variability, tests on individual ensemble members are not independent. We avoid this 174 

problem by formulating the test for ensemble means noting that S(t) (and DM(t)) are the 175 

same for each ensemble member: 𝐻𝑀(𝑡) − 𝐻𝑂(𝑡) =  𝑈𝑀(𝑡) − 𝑈𝑂(𝑡) − 𝐸𝑂(𝑡). The overbars 176 

represent the ensemble mean. With this formulation, the observations are used only once for 177 

each model ensemble with the contribution of their internal variability remaining constant 178 

with ensemble size (unlike the contribution of the model internal variability which reduces 179 

with ensemble size). 180 

The problem is now reduced to the characterization of the distribution of the right-hand 181 

side of the equation. Ideally, UO should be characterized from a long time series of the real 182 

system under no external forcing. Paleoclimatic proxy reconstructions are available only for 183 

restricted regions, and therefore not representative of the large spatial scales of interest for 184 

this study, as well as having larger errors. They have the additional complication that the 185 

external forcing is not zero during the paleoclimate record. Therefore, we instead assume that 186 

unforced simulations of the multi-model ensemble provide us with a reasonable estimate of 187 

the real world’s unforced variability, an approach that has been used in other studies (e.g. 188 

Gillet et al., 2002). Hence, we characterize 𝑈𝑀 and UO using piControl simulations. 189 

The sub-sections below describe the next steps in the methodology: calculation of the 190 

observational error term; estimation of the distribution of 𝑈𝑀(𝑡) − 𝑈𝑂(𝑡) − 𝐸𝑂(𝑡) using 191 

piControl simulations; definition of the metric and calculation of its control distribution; 192 

testing the historical ensembles; interpreting the tests.  193 

a. Calculation of the observational error 194 

For the HadCRUT5 observations, we combine analysis and coverage errors into a single error 195 

term (Eo) as follows. We add samples of a normally-distributed random variable of zero mean 196 

and variance Var(c(t)) to the residuals of the 200 realizations of the HadCRUT5 analysis. 197 

The total error inherits the autocorrelation characteristics of the analysis error, which is 198 

correlated in time. Eo is then modelled by drawing random samples from this 200-member 199 
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ensemble of realizations. The time-dependence of Eo for the global-mean is shown in Figure 200 

1. The black lines show the 95% confidence interval (comparable to the orange range in 201 

Figure 2 of Morice et al., (2020)). In general, the observational error decreases with time, 202 

apart from periods of international conflicts. The time-dependence of Eo for the hemispheric 203 

difference is very similar to that of the global-mean, but larger in magnitude. 204 

For the SST# index, we don’t include an error term due to lack of error information in the 205 

observational datasets. However, we repeat the analysis with two different observational 206 

datasets to test the robustness of the results. 207 

 208 

Figure 1. Total observational error (Eo) of the global-mean metric. The grey lines show the 209 
residuals of individual realizations of the HadCRUT5 global-mean analysis, including a randomly-210 
generated contribution that accounts for the coverage error. The black lines are the bounds of the 95% 211 
confidence interval. 212 

b. Construction of the unforced distribution of differences 213 

Here we are concerned with the generation of random samples of  𝑈𝑀(𝑡) − 𝑈𝑂(𝑡) −214 

𝐸𝑂(𝑡) using piControl simulations. Although the piControl simulations are started after a 215 

spin-up that is discarded, they are not in complete equilibrium (Eyring et al., 2016). For each 216 

model’s control timeseries, we construct a linearly-detrended time series (X(t)) using the 217 
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entire length of each control simulation. This increases the likelihood of adding noise to the 218 

detrended data (Sen Gupta et al., 2013; Jones et al., 2013), but some models show significant 219 

unforced variability on centennial timescales, which would be spuriously reduced by 220 

detrending shorter segments (Parsons et al., 2020). 221 

We split the detrended control time series X(t) into non-overlapping segments 165 yr 222 

long, equal to the length of the CMIP6 historical simulations. The piControl simulations 223 

differ in length between models, so to give (nearly) equal weight to each model we use up to 224 

3 segments of each piControl simulation. We also decide to retain models with shorter 225 

control time series. With these constraints, we use 41 piControl simulations, 32 of them with 226 

3 segments, 5 with 2 segments, and 4 with only one segment. This gives 110 segments of 227 

piControl simulations of equal length. Then, we subtract the time average of the segment, so 228 

that the mean value of each segment is zero by construction. We call UpiControl(t) to these 229 

detrended, 165 yr long, zero-average piControl samples of the unforced variability, which we 230 

use to generate samples of  𝑈𝑀(𝑡; 𝑁𝑚) − 𝑈𝑂(𝑡) − 𝐸𝑂(𝑡). We sample both UM(t: Nm) and 231 

Uo(t) from the ensemble of 110 UpiControl(t) segments. For instance, for a historical  ensemble 232 

with 10 members, we randomly draw 11 UpiControl(t) segments, and average 10 of them to 233 

calculate 𝑈𝑀(𝑡; 𝑁𝑚), and use the other one as 𝑈𝑂(𝑡). The UpiControl(t) samples are drawn from 234 

the pool of piControl segments of all models, not only of the model whose historical 235 

ensemble is being tested. For GMSAT and hemispheric difference, Eo(t) is randomly sampled 236 

from the ensemble of 200 realizations of the total HadCRUT5 total error as explained above, 237 

and the three timeseries are combined. We repeat this process 10000 times for each historical 238 

ensemble. For constructing the distribution of unforced differences, the only information 239 

extracted from the historical ensemble is its size Nm. 240 

Other approaches for estimating internal variability exist, and a recent study by 241 

Olonscheck and Notz (2017) provide a brief description of the two main avenues and their 242 

caveats. We have used a method that is based on piControl simulations, which may be 243 

unsuitable if the unforced variability is state-dependent. However, Olonscheck and Notz 244 

(2017) show that the variability remains largely unchanged for historical simulations, even 245 

for those variables like sea ice area that show large changes in simulations of future warming. 246 

Therefore, we assume that the variability remains unchanged for the temperature indices used 247 

here and the amount of climate change in the historical period. 248 

c. Definition of the metric: number of exceedances 249 
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Our interest is to characterize the quality of a historical ensemble of simulations against 250 

observations. As a metric of quality, in the next section (3d) we compute 𝐻𝑀(𝑡) − 𝐻𝑂(𝑡), for 251 

each model, and count the number of times that a running mean of the absolute value of this 252 

quantity exceeds a given value. 253 

The samples of 𝑈𝑀(𝑡) − 𝑈𝑂(𝑡) − 𝐸𝑂(𝑡) generated in the previous section (3b) serve as 254 

the basis to construct unforced distributions of this metric. 255 

We define E(, y, Nm), as the number of exceedances above a threshold  (in K) of a 256 

filtered time series of absolute values of |𝑈𝑀(𝑡) − 𝑈𝑂(𝑡) − 𝐸𝑂(𝑡)|. The filter applied is a 257 

running mean with a window length of y years. We define a 2-dimensional rectangular grid in 258 

 and y, ranging between 0 and 0.3K, and between 1 and 10 years, respectively. We then 259 

calculate 10000 values of E for each combination (, y). We use an absolute threshold in 260 

Kelvin, but the method could be easily reformulated in terms of a threshold defined in units 261 

of standard deviations of the unforced variability. 262 

Figure 2 presents a an example of this process for the global-mean surface air temperature 263 

(GMSAT), leading to the calculation of one sample of E(0.1, 10, 5). The blue line shows one 264 

sample of  𝑈𝑀(𝑡) − 𝑈𝑂(𝑡) − 𝐸𝑂(𝑡). The red line is the smoothed time series of the absolute 265 

value of the blue time series, using a y=10 yr running mean. The green line represents the 266 

temperature threshold T=0.1 K. The value of E(0.1, 10, 5) is the number of points from the 267 

red line that lie above the green line. 268 
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 269 

Figure 2. Graphical example of the calculation of the number of exceedances for a given pair of 270 
segments of the piControl simulations. This example is for GMSAT, but the method is the same for 271 
all indices. The blue line shows the difference between the two piControl segments that provides a 272 
sample of UM-UO. The red line is the absolute value of the 10-year running mean of the blue line. The 273 
green line represents the exceedance threshold, 0.1 K in this example. The number of exceedances is 274 
the number of red points above the green line.  275 

 276 

We construct a second metric following the same steps, but using the variance-scaled 277 

samples  𝜎𝑀 𝜎⁄ (𝑈𝑀(𝑡) − 𝑈𝑂(𝑡)) − 𝐸𝑂(𝑡), where M is the model’s standard deviation of the 278 

linearly-detrended piControl anomalies, and  is the multi-model mean standard deviation of 279 

all the linearly-detrended piControl anomalies. This provides a variance-scaled set of samples 280 

of control distributions of exceedances that accounts for differences in the variance of the 281 

unforced variability across different models. We label this second metric as Es(, y, Nm). 282 

From these sets of samples of E(, y, Nm) and Es(, y, Nm), we construct empirical 283 

quantile distribution functions QZ(p;, y, Nm), which give the number of exceedances for a 284 

given cumulative probability p. Z is a generic discrete random variable name that refers to 285 

either E or Es. For simplicity, from now on we omit the dependency with the ensemble size 286 

Nm.  287 
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 288 

 289 

Figure 3. Examples of empirical quantile distribution functions  QZ(p;, y, Nm) for an ensemble 290 
size Nm=3: (a) exceedance threshold set to 0.11K, length of the averaging window as shown in the 291 
legend (years); (b) length of averaging window of 6 years, exceedance threshold as shown in the 292 
legend (in K). 293 

 294 

In summary, for each historical ensemble, we have calculated two (one with variance 295 

scaling and one without) empirical quantile functions in each point of the (, y) grid. Figure 3 296 

shows examples of QE for a historical ensemble of 3 members. For a given T and y, the 297 



13 

File generated with AMS Word template 2.0 

probability is p that the number of exceedances (occurring during a 165-year historical 298 

integration) will be less than QZ(p; T, y). There is zero chance that the number of 299 

exceedances will be less than zero, a small chance that it will be less than a small number, 300 

and we are certain that it will be less than a sufficiently large number (at most 165). Thus, QZ 301 

increases with p (Figures 3a and 3b). For any given p, the expected number of exceedances 302 

QZ is smaller for a longer meaning period y (Figure 3a) or a higher threshold T (Figure 3b). 303 

d. Testing ensembles of historical simulations 304 

We test each historical ensemble by comparing the number of exceedances of the 305 

difference between the ensemble mean and the observations against the expected number of 306 

differences given by the control distribution. First, we calculate  𝐻𝑀(𝑡) − 𝐻𝑂(𝑡), which we 307 

use as input to calculate the number of exceedances for each point in the (T, y) grid, Eh(T, y), 308 

where the subscript h denotes that this is calculated from a historical ensemble, and HO(t) is 309 

the HadCRUT5 analysis ensemble mean. The linear drift of the piControl is subtracted from 310 

the historical time series. We then perform two one-tailed tests, each with a significance level 311 

. This is done by comparing Eh(T,y) against the empirical quantile function QZ(p;,y), 312 

separately for Z=E and Z=Es. In each case, when either Eh(T,y)>QZ(1-;,y) or 313 

Eh(T,y)<QZ(;,y), the historical ensemble is flagged as incompatible in that point of the 314 

(T,y) grid.  That is, we reject the null hypothesis that the difference between the historical 315 

simulation and observations is consistent with unforced variability if the number of times Z 316 

that the difference between them exceeds the threshold T in y-year means is either much 317 

larger than expected (upper-tail test), or much smaller than expected (lower-tail test). 318 

Figure 4 shows an example for the upper tail test applied to the entire (T, y) grid, using a 319 

significance level =0.05. For illustrative purposes, it is helpful to choose a model like EC-320 

Earth3-Veg with large multidecadal unforced variability (Parsons et al., 2020). The filled 321 

contours in Figures 4a and 4c show QZ(p=0.95; T, y) for Z=E in and Z=Es, respectively. The 322 

shape of QZ is very similar for all models and ensemble sizes. As shown also in Figure 3, QZ 323 

gets smaller as T gets larger for a given y (less likely to exceed a higher threshold), and 324 

smaller as y gets larger for a given T (less likely to for a longer time mean to exceed a 325 

threshold), although the dependency on y is much weaker. 326 
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 327 

Figure 4. Tests of the historical ensemble of EC-Earth3-Veg. Tests without and with variance-328 
scaling are shown in (a) and (b), respectively. The filled contours show QZ(p=0.95; T, y) for (a) Z=E,  329 
and (c) Z=Es. These surfaces show the expected number of exceedances normalized by 165 330 
(maximum number of exceedances) for the 95th percentile (p=0.95, as noted in the bottom-left corner) 331 
of the piControl distributions in each point of the (T,y) grid. Observational uncertainty is included 332 
when available. The dots show the points in the (T, y) grid where the historical ensemble fails the test, 333 
i.e. (Eh(T,y))>QZ(p=0.95; T, y). The last 500 years of the piControl simulation of the model tested are 334 
shown in (b). Panel (d) shows the annual-mean historical anomalies of the temperature index being 335 
tested: model’s ensemble mean (black) and range (grey), and the observed anomalies (green). The 336 
historical anomalies in (d) are calculated with respect to the 1880-1919 time-average. The legend in 337 
(d) shows the number of historical realizations used in the calculation of the ensemble mean. 338 

 339 

The dotted regions in the (T, y) grid mark where the null hypothesis is rejected (Eh>QZ). 340 

In this example, the test without variance scaling (Figure 4a) shows many rejections, whereas 341 

the variance-scaled test (Figure 4c) shows none. This contrast implies that the unforced 342 

variance of EC-Earth3-Veg is larger than the multi-model mean variance. The large variance 343 

increases the number of exceedances in the test without variance scaling, whereas variance 344 

scaling raises the control surface QZ(p=0.95; T, y), making it easier for the model to pass the 345 

test. This scaling is trying to penalize those models that pass the non-scaled test due to a very 346 

small unforced variability compared to the multi-model mean variance, which we assume to 347 

be the best estimate of the unforced variability. 348 
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How much of the (T, y) space is needed to fail the statistical test for the model as a whole 349 

to be deemed “incompatible”? We have divided the (T, y) grid into 29×10 points, so we 350 

would expect a good model to fail at 290×10×0.0515 points in the (T, y) grid just by chance 351 

if there was no correlation in the number of exceedances between (T, y) neighbors. Because 352 

the time-scale and the threshold are correlated, if incompatibility occurs it is likely to cover 353 

patches of adjacent points in the (T, y) grid. Given that our main aim is to apply this method 354 

to intercompare models, we do not define a single, strict threshold for labelling a model as 355 

incompatible with the observations. Instead, we use the following guidance: models with less 356 

than 10 failures (dots) pass the test; models that fail between 10 and 20 times are considered 357 

marginal; model with more than 20 failures are labelled as incompatible. 358 

The lower tail test (Eh(T,y)<QZ(p=0.05;,y)) can be presented in a similar way, but only 359 

one of the models tested fails this test (FGOALS-g3, and only marginally). A model fails this 360 

test if its historical simulation deviates less than expected from reality, which can happen 361 

only if it has both a realistic forced response and unrealistically small unforced variability. It 362 

could be that the lower-tail test rarely fails because models in general do not have a realistic 363 

forced response. For the remainder of the paper we discuss the results of the upper-tail test 364 

only. 365 

We have tested the sensitivity of the results to the order of the polynomial used for the 366 

detrending of the piControl time series. The results are largely insensitive to the use of 367 

quadratic instead of linear detrending, so we conclude that our method is robust with respect 368 

to the detrending method. If this test is applied to metrics that require non-linear detrending 369 

we would recommend the use of more flexible methods with better properties (e.g. splines). 370 

4. Results and discussion 371 

In this section we present results for three temperature indices: global mean, hemispheric 372 

difference, and SST#. These three metrics capture important complementary information 373 

about key aspects of temperature change over the historical record. The global mean has been 374 

widely used as the most fundamental metric of climate change. The hemispheric difference 375 

captures the influence of anthropogenic aerosols during the historical period, as emissions are 376 

dominated by sources in the Northern Hemisphere, and it is reasonably independent of the 377 

global mean (Braganza et al., 2003). The changes in tropical SST pattern control the sign and 378 
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strength of low cloud feedbacks in response to CO2 forcing (e.g. Miller, 1997; Gregory and 379 

Andrews, 2016), making it an important metric of the historical record. 380 

a. Global mean 381 

Figure 5 shows the tests without variance scaling. Out of the 40 models analyzed, 20 of 382 

them can be labelled as incompatible with the observed record, according to this test. These 383 

are models that show large, dotted areas. The other 20 models do not fail the test at all or only 384 

in a few instances. Models tend to fail the test for large exceedance thresholds T, with little 385 

dependence in the length of the averaging window y, i.e. they tend to fail along entire 386 

‘columns’ in the contour plot. 387 
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 388 

Figure 5. Multi-model summary of  the test without variance scaling applied to the global-mean 389 
surface air temperature index. The number of exceedances is normalized by 165, the maximum 390 
number of exceedances given by the length of the historical record. 391 

 392 
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When the variance-scaled test is applied (Figure 6), 22 models are labelled as 393 

incompatible with the observed record, and 18 models pass the test. No models are in the 394 

marginal category. The variance-scaled test rejects 5 additional models, and labels as 395 

compatible 3 models that were rejected by the test without variance scaling. This is because 396 

these models have a piControl variance that is very different to the multi-model mean 397 

variance.  398 
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 399 

Figure 6. Multi-model summary of the test with variance scaling applied to the annual global-400 
mean surface air temperature index. The number of exceedances is normalized by 165, the maximum 401 
number of exceedances given by the length of the historical record. 402 

 403 
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We have presented an example of a model with large unforced variability in Figure 4. 404 

Figure 7 shows an example for a model with a small unforced variability: MRI-ESM2-0. The 405 

control surface of the number of exceedances is lowered by the variance scaling, making it 406 

easier for the model to fail the test. Since we are not making any assumption about the quality 407 

of piControl simulations of individual models, the variance scaling method is an attempt to 408 

enable a fair comparison, when using other models with different unforced variability. 409 

 410 

Figure 7. Same as Figure 4, but for model MRI-ESM2-0. 411 

 412 

These two examples show how each model’s characteristics of its unforced variability are 413 

incorporated into the test. This is particularly helpful when the ensemble size of historical 414 

simulations is small, which makes difficult the assessment of the impact of the unforced 415 

variability by visual inspection. It must be emphasized that we treat all piControl simulations 416 

as equally plausible, but the method could be refined by bringing in external information to 417 

better characterize the unforced variability of the real system. We expand on this below when 418 

we discuss the caveats of the methodology. 419 
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 420 

Figure 8. Same as Figure 5, but for the hemispheric gradient surface air temperature index. 421 

 422 
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 423 

Figure 9. Same as Figure 6, but for the hemispheric gradient surface air temperature index. 424 

 425 

 426 

b. Hemispheric gradient 427 
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Figure 8 shows the tests without variance scaling for the hemispheric gradient index. Out 428 

of the 40 models analyzed, 8 are labelled as incompatible with the observed record, 1 is 429 

marginal, and 31 pass the test. If variance scaling is used (Figure 9), the results are very 430 

similar, with 7 models rejected, 3 marginal, and 29 passing the test. As with the global-mean, 431 

failures tend to happen along ‘columns’, i.e. for all averaging window lengths. It is interesting 432 

to note that, contrary to the global-mean, the hemispheric gradient shows more failures for 433 

small exceedance thresholds. 434 

In CESM2 there is a strong sensitivity of the hemispheric gradient to the variability in 435 

biomass emissions from 40oN to 70oN, which leads to spurious warming in the late historical 436 

period (Fasullo et al., 2022). However, this model passes the global and hemispheric tests, 437 

which may suggest the presence of compensating biases. This highlights the importance of 438 

having a large battery of diagnostics capable of assessing model performance from different 439 

angles. 440 

c. SST#  441 

Figures 10 and 11 show the multi-model ensemble results for SST#, without and with 442 

scaling of the unforced variance, respectively. The test without variance scaling rejects all 443 

CMIP6 models. Only one model is not rejected, namely GISS-E2-1-G, when variance scaling 444 

is used. The GISS models are examples of models with large unforced variability (Figure 12). 445 

Unlike in previous examples with large unforced variability on long time scales (Figure 4), 446 

the unforced variability of the GISS models is dominated by high-frequency (annual) 447 

variability. Given that the observational record does not show such a large high-frequency 448 

variability, we conclude that the test without variance scaling is probably a better assessment 449 

of the performance of the GISS models. This conclusion is also supported by Orbe et al. 450 

(2020) who show that GISS-E2-1-G is an outlier in the simulation of ENSO. 451 
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 452 

Figure 10. Same as Figure 5, but for the SST# index. The observational SST# index is calculated 453 
using the PCMDI/AMIPII dataset. 454 

 455 
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 456 

Figure 11. Same as Figure 6, but for the SST# index. The observational SST# index is calculated 457 
using the PCMDI/AMIPII dataset. 458 

 459 

SST# is subject to a large observational uncertainty (Fueglistaler and Silvers, 2021). The 460 

observations show very good agreement during the satellite era (1979 onwards), where the 461 
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spatial coverage is very dense, but they show large discrepancies before satellite data were 462 

available. The differences are attributed to the different methodologies used to provide 463 

information where observations are not available. Given that the PCMDI/AMIPII dataset 464 

doesn’t provide a comprehensive error characterization, we have repeated the tests using the 465 

ERSST5 dataset to test the robustness of our conclusions. We have chosen the 466 

PCMDI/AMIPII and ERSST5 datasets because they fall at opposite ends of the spectrum of 467 

SST# anomalies provided by observational datasets, giving us information about structural 468 

uncertainties in the observational reconstructions of SST#. The results with ERSST5 (not 469 

shown) are similar to the comparisons against PCMDI/AMIPII, all the CMIP6 models are 470 

rejected by both tests, with and without variance scaling. This confirms that the results are 471 

robust with respect to observational uncertainty in SST#. 472 

 473 

Figure 12.Same as Figure 4, but for the SST# index of model GISS-E2-1-G. The green line in (d) 474 
shows the PCMDI/AMIPII observational estimate.. 475 

 476 

The fact that the entire CMIP6 ensemble performs poorly in the SST# index is consistent 477 

with previous studies showing that models in general do not reproduce the Pacific SST trends 478 

of recent decades (Seager et al., 2019; Gregory et al., 2020; Wills et al., 2022), and it has 479 

potential implications beyond the models’ performance over the historical period. 480 
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Unlike for the two other indices, there is no consensus either that SST# should contain a 481 

forced signal or that it is part of the unforced variability of the climate system. Some recent 482 

studies suggest that tropical Pacific SST patterns observed during the recent decades could 483 

arise from internal climate variability (e.g. Olonscheck et al, 2020; Watanabe et al. 2021). 484 

Other studies suggest that the SST patterns are consistent with a forced response to 485 

greenhouse forcing (Seager et al., 2019) that can be explained with simple models (Clement 486 

et al., 1996), or with a potential role for volcanic or anthropogenic aerosols in setting the 487 

recent patterns (Gregory et al., 2020; Heede and Fedorov, 2021; Dittus et al., 2021). If the 488 

observed evolution of SST# is not forced, no model ensemble-mean can be expected to agree 489 

with the observations. In that case, if a model fails the test, it means that its simulation of 490 

SST# variability has the wrong magnitude. On the other hand, if SST# is forced, the rejection 491 

of the test means that the model doesn't replicate the forced response. In this case, if a large 492 

number of models fail the test it could imply a common bias in the forced response. In either 493 

case, a rejection of the test indicates some aspects of the model performanceare wrong 494 

somehow. Additional process-level analysis and physical hypothesis-testing is required to 495 

improve our understanding of the causes behind the model errors. 496 

d. Caveats and interpretation of the tests 497 

The results above show how the methodology presented here can be used to assess 498 

historical simulations during the model development process. We have applied it to surface 499 

temperature indices, but it can be applied to any variable for which observational estimates 500 

over the historical period exist. However, the methodology presents some interpretation 501 

challenges and caveats. How do we interpret a rejection of the null hypothesis that the 502 

model’s forced response is realistic? Can we definitively conclude that there is a problem 503 

with the model’s forced signal? There is a chance that the null hypothesis is wrongly rejected 504 

although true; that is a Type I error, whose probability is the chosen significance level. If we 505 

reject the null hypothesis, we must have an alternative hypothesis. Potential alternatives are: 506 

there is a problem with the model’s forced signal; our model-based unforced variability is 507 

biased; the forcing is wrong. We do not have a statistical means to estimate the probability of 508 

these systematic errors. 509 

It is also worth mentioning that agreement between the observations and simulations 510 

might be due to compensating errors. Potential problems that could contribute to 511 

compensating errors concern the following: aerosol radiative forcing and aerosol-cloud 512 
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interactions (e.g. Paulot et al., 2018; Rieger et al., 2020; Wang et al., 2021; Fasullo et al., 513 

2022); tropical SST patterns and their role on global radiative feedbacks (Ceppi and Gregory, 514 

2017; Andrews and Webb, 2018). The unforced distributions used to define the exceedance 515 

quantile functions are constructed from piControl simulations. This assumes that the multi-516 

model ensemble provides us with a good representation of the unforced variability, which is 517 

not necessarily true. As we have shown above when discussing the results of the variance-518 

scaled results, there exist large discrepancies in the representation of unforced variability 519 

between models (Parsons et al., 2020), which raises questions about the ability of at least 520 

some models to provide a good estimate of unforced variability. If the unforced variability 521 

estimated from the multi-model ensemble is biased, then our method will be biased. One 522 

avenue that could be explored for improving this would be to incorporate information from 523 

proxy temperature reconstructions into a correction of the unforced variability. However, the 524 

use of proxy reconstructions is not free from problems. The reconstructions are for restricted 525 

regions where there are proxies (e.g. PAGES 2k Consortium, 2013), and much of their 526 

variability is forced by volcanoes and solar variability (PAGES 2k Consortium, 2019). In any 527 

case, a failure of this type would imply that the models piControl simulations are wrong 528 

(rather than the forced signal necessarily), so the test would still be highlighting a problem. 529 

Our test with scaled variance is an initial attempt to identify outliers, but more 530 

sophisticated methods could be used. Perhaps a better estimate of the unforced variability 531 

could be achieved by restricting the set of models used to form the distributions of internal 532 

variability. This selection could be based on how models represent observational estimates of 533 

the spectra of some modes of variability (Fasullo et al., 2020). For SST#, basing this selection 534 

on some metric of ENSO could be particularly useful. Screening out models would reduce 535 

the number of piControl simulations, so this would have an impact the robustness of the 536 

unforced distributions. 537 

A second caveat is the differing sizes of the historical ensembles. Out of the 40 models 538 

analyzed here, only 4 have historical ensembles with more than 10 members, and 31 models 539 

have 5 or fewer historical simulations. Large ensembles will provide more robust tests. A 540 

model with a small ensemble will provide a less precise estimate of the ensemble mean, 541 

making the result of the test more likely to be different from the result that would be obtained 542 

with a large ensemble. This is a general problem with statistical hypothesis testing, and it 543 

should be incorporated into the subjective interpretation of the tests. We propose some 544 
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guidance based on the dependence of the variance of the control distribution with the size of 545 

the ensemble. As explained above, the control distribution is constructed from samples of 546 

𝑈𝑀(𝑡; 𝑁𝑚) − 𝑈𝑂(𝑡) − 𝐸𝑂(𝑡). The observational error is typically small compared to the 547 

unforced variability, so we can approximate dependence of the variance as (1 + 1/Nm)*, 548 

where  is the variance of UM(t) and Uo(t). As Nm becomes larger, the total variance 549 

decreases from 2 (in units of ) to its asymptotic value of 1, with the rate of change being 550 

larger for small Nm. For instance, an ensemble of 10 members will reduce the variance to 551 

within 10% of its asymptotic value, which will significantly increase the robustness of the 552 

test. 553 

We do not account for the uncertainty in radiative forcing, which could lead to overtuning 554 

if the only objective is to match the warming over the historical period (e.g. Hourdin et al., 555 

2017). However, we are not advocating making development choices only based on the 556 

approach presented here. A wide range of other metrics, including process-based metrics 557 

need to be considered. The use of a much wider basket of metrics should reduce the risk of 558 

overtuning. 559 

A final caveat is that the variance scaling can't account for differences in models' 560 

piControl variability on different timescales, so while the overall variability of two models 561 

can be scaled to be similar the interannual/multidecadal variability could be still very 562 

different. We have subjectively accounted for this in the discussion of the SST# results for 563 

GISS-E2-1-G, whose variability is dominated by large interannual variability, which can be 564 

confidently assessed with observations of the historical period. However, this is not the case 565 

for variability at much longer timescales, for which the observational record provides much 566 

limited information. A possible approach to look at in the future is to account for this by 567 

applying different variance scaling factors for each p. 568 

5. Conclusions 569 

The historical record of surface temperature is an important metric that climate models 570 

should be able to reproduce. However, it is not consistently used by modelling centres during 571 

model development for two main and quite distinct reasons: first, coupled simulations are 572 

expensive to run, especially because the historical simulation must be preceded by a spin-up 573 

simulation long enough to eliminate drift; second, the observed historical record of surface 574 

temperature is reserved as an out-of-sample validation. It is generally argued that the 575 
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warming during the historical record and emergent properties like equilibrium climate 576 

sensitivity should be used as an a posteriori evaluation and not as a target for model 577 

development, although there is not complete consensus among the modelling community on 578 

this topic (Hourdin et al., 2017). Bock et al. (2020) highlight the risk of tuning models to 579 

reproduce a set of metrics ignoring deficiencies elsewhere. However, this risk is not specific 580 

to metrics based on historical warming. Within the context of emergent constraints, Eyring et 581 

al. (2019) advocate the use of variability metrics or trends during model development. 582 

We develop a statistical method to test whether simulations of large-scale surface 583 

temperature change are consistent with the observed warming of the historical period (1850-584 

2014). The method uses information on a range of time scales. It incorporates information 585 

about unforced variability, and it is designed to test an entire ensemble of simulations of any 586 

size. The method is applied to annual-mean time series of three surface temperature indices: 587 

global-mean, hemispheric gradient, and a recently-developed index that captures the sea-588 

surface temperature (SST) pattern in the tropics (SST#; Fueglistaler and Silvers, 2021). We 589 

test the historical simulations of the CMIP6 ensemble and post-CMIP6 versions of the 590 

HadGEM3 and UKESM models. 591 

Around half the models fail the test for the global-mean time series, approximately a fifth 592 

of the models fail when the hemispheric temperature gradient is analyzed, and all models fail 593 

the SST# test. We note the importance of the characteristics of the models’ unforced 594 

variability (Parsons et al., 2020). Assessment of the quality of the historical simulations by 595 

visual comparison of the time series of a few ensemble members against the observations can 596 

be misleading, being reliable only for models with a large number of historical realisations. 597 

The method presented here complements other statistical approaches that have previously 598 

compared historical model simulations to observations (e.g. Sanderson et al., 2015; Brunner 599 

et al., 2020). Given that most modeling centres only run a small number of historical 600 

simulations, a method like the one presented here that accounts for the unforced variability is 601 

desirable, especially if the aim is to use it during the model development process, where large 602 

ensembles are not affordable. 603 

We show that the method presented here can be used as a tool to assess historical 604 

simulations during the development process. The method is easy to apply and summarises a 605 

large amount of information in two plots, with and without variance-scaling. It accounts for 606 

the unforced variability of the model tested, and it can be applied to an ensemble of historical 607 
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simulations of arbitrary size. We also plan to make this methodology available to the 608 

community by implementing it in ESMValTool (Eyring et al., 2020). 609 

There are several avenues that could be explored to develop this method further. One 610 

potential improvement could be to incorporate information from proxy reconstructions to 611 

improve the estimate of the unforced variability, currently based on control model 612 

simulations. However, this may prove difficult given that many proxies do not resolve annual 613 

variability, and because of the non-stationarity of the magnitude of internal variability. 614 

Perhaps a better estimate of the unforced variability could be achieved by restricting the 615 

model set used to form the distributions of internal variability based on how models represent 616 

observational estimates of annual to decadal modes of variability (Fasullo et al., 2020). 617 

A second area for further developments could be to apply a scaling factor, as it is done in 618 

optimal fingerprinting (e.g. Allen and Tett, 1999). Some of the models that are rejected by 619 

our current methodology could pass the test if they are appropriately scaled. The 620 

interpretation of the test results with the scaled time series is not straight forward, but it may 621 

be useful to know that a model that is rejected could be made realistic by a scaling factor. 622 
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