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Protofibrillar Amyloid Beta Modulation of Recombinant
hCaV2.2 (N-Type) Voltage-Gated Channels
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School of Pharmacy, University of Reading, Reading RG6 6UB, UK
* Correspondence: m.dallas@reading.ac.uk

Abstract: Cav2.2 channels are key regulators of presynaptic Ca2+ influx and their dysfunction
and/or aberrant regulation has been implicated in many disease states; however, the nature of their
involvement in Alzheimer’s disease (AD) is less clear. In this short communication, we show that
recombinant hCav2.2/b1b/a2d1 channels are modulated by human synthetic AD-related protofibrillar
amyloid beta Ab1-42 peptides. Structural studies revealed a time-dependent increase in protofibril
length, with the majority of protofibrils less than 100 nm at 24 h, while at 48 h, the majority were
longer than 100 nm. Cav2.2 modulation by Ab1-42 was different between a ‘low’ (100 nM) and
‘high’ (1 µM) concentration in terms of distinct effects on individual biophysical parameters. A
concentration of 100 nM Ab1-42 caused no significant changes in the measured biophysical properties
of Cav2.2 currents. In contrast, 1 µM Ab1-42 caused an inhibitory decrease in the current density
(pA/pF) and maximum conductance (Gmax), and a depolarizing shift in the slope factor (k). These
data highlight a differential modulation of Cav2.2 channels by the Ab1-42 peptide. Discrete changes
in the presynaptic Ca2+ flux have been reported to occur at an early stage of AD; therefore, this study
reveals a potential mechanistic link between amyloid accumulation and Cav2.2 channel modulation.

Keywords: ion channel; amyloid beta; voltage-gated calcium channel; neurodegeneration; Alzheimer’s
disease

1. Introduction

The amyloid beta (Ab) peptide has been implicated in the pathogenesis of AD, with
the proposal that lowering Ab levels is beneficial to brain health [1,2]. While the evidence
supporting the involvement of Ab in the disease state is robust, there is a growing interest in
the ‘normal’ physiological role that Ab plays [3]. Most notably, the removal of endogenous
Ab using genetic and immunological methodology has a wide range of adverse effects
(see [4]). More targeted approaches have revealed that Ab contributes to physiology
through its antimicrobial activity, tumour suppression, neuroprotection and regulation of
synaptic plasticity [5]. These functions require the interaction of Ab with a wide array of
molecular targets. One superfamily of molecular targets are ion channels, which underpin
a compendium of biological processes. While the Ab-mediated dysfunction of ion channels
has been implicated in disease progression, there is also evidence to support the modulation
of ion channel function in maintaining a healthy CNS [6,7]. Overall, Ab is likely to play a
unique role in modulating brain ionic homeostasis via the regulation of ion channel activity.

Voltage-gated calcium channels (VGCCs) are pivotal molecular entities in regulating
neuronal Ca2+ homeostasis [8]. This has led to several studies investigating the role of Ab
in influencing the activity of VGCCs [9–13]. Preclinical studies have predominantly focused
on the dihydropyridine-sensitive L-type VGCCs [12,14–16], demonstrating increases in
Ca2+ influx through L-type channels mediated by a range of Ab assemblies. In turn, clinical
studies have looked to exploit existing antihypertensive calcium channel blockers as novel
AD therapeutics; however, these data are conflicting. Studies looking at patients with a his-
tory of taking antihypertensives and subsequently developing dementia provide a mixed

Pharmaceuticals 2022, 15, 1459. https://doi.org/10.3390/ph15121459 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph15121459
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-8966-4238
https://orcid.org/0000-0002-5190-0522
https://doi.org/10.3390/ph15121459
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph15121459?type=check_update&version=1


Pharmaceuticals 2022, 15, 1459 2 of 10

picture [17–19]. Moreover, a more targeted intervention using nilvadipine, which inhibits
both L-type VGCCs and spleen tyrosine kinase activity, failed to demonstrate efficacy in
the management of existing dementia in terms of modulating measures of cognition [20].
CaV2.2 (N-type) VGCCs have been somewhat overlooked for their potential contribution to
amyloid pathology. CaV2.2 VGCCs are presynaptic,ω-conotoxin-sensitive and G-protein-
modulated channels that are known targets for pain therapeutics [21]. The link between
dementia and pain is also well established (see [22]); recent research has demonstrated a
temporal profile and indicates that pain could be classified as a prodromal symptom for
dementia [23]. Therefore, further investigation of the Ab modulation of N-type channels is
merited. This study demonstrates that the recombinant human CaV2.2/b1b/a2d channel
complex is a target for human synthetic protofibrillar Ab1-42 and that there is a concen-
tration relationship for the effects on discrete biophysical properties. These findings have
implications for the management of Ca2+ influx in AD in particular, given the presynaptic
localisation of CaV2.2 subunits [24,25].

2. Results
2.1. Protofibrillar Assembly of Amyloid

To verify the Aβ1-42 form used in our functional experiments, an analysis of peptide
aggregation was undertaken. The transmission electron microscope images revealed that
at 0 h, the peptide was largely non-aggregated and was observed as Aβ1-42 globules. At
this time point, no fibril structures were evident (Figure 1a). After 24 h of incubation, the
formation of small protofibrils (defined as <100 nm in length) could be detected (Figure 1b)
and by 48 h, aggregation into longer protofibrils was observed (Figure 1c). In comparison,
no protofibril structures were observed when using the reverse sequence peptide, Aβ1-42
(Figure 1d). A fibril length analysis revealed a time dependency of the formation of Aβ1-42
protofibrils, with a 41.4 ± 7.1% (n = 25) increase in protofibril length from a 24 to 48 h
incubation. After 24 h of incubation, the majority (68.0%) of the amyloid structures analysed
were protofibrils of less than 100 nm in length (average length of 93.2 ± 3.9 nm; n = 25). By
contrast, at 48 h the majority (89.3%) of the protofibrils were greater than 100 nm in length
(average length of 131.8 ± 5.8 nm; n = 28) (Figure 1e).
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Figure 1. Temporal profile of Aβ1-42 fibrillization. Transmission electron microscopy (TEM) was 
used to monitor Aβ1-42 fibrillization. Representative images (from n = 22) using a NH4OH dissolution 
protocol (see Methods) showed that (a) at 0 h, the peptide was largely not aggregated, (b) at 24 h, 
peptide fibrillization had started (protofibrils <100 nm) and (c) by 48 h, the peptide aggregated into 
larger protofibrils (>100 nm in length); (d) as a comparison, Aβ42-1 was analysed, revealing that it 
did not aggregate into protofibrils and it remained as unaggregated clumps. (e) Image J analysis of 
protofibril length revealed that by 48 h, the majority of the protofibrils were over 100 nm in length, 
and at 24 h with the NH4OH protocol the predominant form was <100 nm (n = 22–28). 

2.2. Protofibrillar Amyloid Beta Modulation of CaV2.2 Currents 
The effects of protofibrillar Aβ1-42 on Cav2.2 currents was investigated via population 

experiments using HEK293 cells expressing the CaV2.2/β1b/α2δ1 complex, where cells were 
exposed to either synthetic Aβ1-42 or PBS vehicle control for 24 h prior to recordings. A 
multi-step voltage protocol was applied to CaV2.2 stably transfected HEK293 cells to elicit 
the current density/voltage relationships for the experimental groupings. The 100 nM pro-
tofibrillar Aβ1-42 showed no significant inhibition of the Cav2.2 current density compared 
to the vehicle control (control: −46.4 ± 15.1 pA/pF vs. amyloid treated: −31.7 ± 7.8 pA/pF, p 
= 0.36, n = 8–11; Figures 2 and 3a,b).  
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Figure 1. Temporal profile of Aβ1-42 fibrillization. Transmission electron microscopy (TEM) was
used to monitor Aβ1-42 fibrillization. Representative images (from n = 22) using a NH4OH dissolution
protocol (see Methods) showed that (a) at 0 h, the peptide was largely not aggregated, (b) at 24 h,
peptide fibrillization had started (protofibrils <100 nm) and (c) by 48 h, the peptide aggregated into
larger protofibrils (>100 nm in length); (d) as a comparison, Aβ42-1 was analysed, revealing that it
did not aggregate into protofibrils and it remained as unaggregated clumps. (e) Image J analysis of
protofibril length revealed that by 48 h, the majority of the protofibrils were over 100 nm in length,
and at 24 h with the NH4OH protocol the predominant form was <100 nm (n = 22–28).

2.2. Protofibrillar Amyloid Beta Modulation of CaV2.2 Currents

The effects of protofibrillar Aβ1-42 on Cav2.2 currents was investigated via population
experiments using HEK293 cells expressing the CaV2.2/β1b/α2δ1 complex, where cells
were exposed to either synthetic Aβ1-42 or PBS vehicle control for 24 h prior to record-
ings. A multi-step voltage protocol was applied to CaV2.2 stably transfected HEK293
cells to elicit the current density/voltage relationships for the experimental groupings.
The 100 nM protofibrillar Aβ1-42 showed no significant inhibition of the Cav2.2 current
density compared to the vehicle control (control: −46.4 ± 15.1 pA/pF vs. amyloid treated:
−31.7 ± 7.8 pA/pF, p = 0.36, n = 8–11; Figures 2 and 3a,b).
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The effects of a higher concentration of protofibrillar Aβ1-42 on CaV2.2 were investi-
gated (Figures 4 and 5). A concentration of 1 µM protofibrillar Aβ1-42 (24 hr) caused a 

Figure 2. The 100 nM protofibrillar Aβ1-42 did not affect Cav2.2 currents. (a) Cav2.2 currents
evoked by voltage steps (−70 to +50 mV) following control (PBS) treatment and (b) Cav2.2 currents
evoked by voltage steps (−70 to +50 mV) following 100 nM protofibrillar Aβ1-42 treatment.

In addition, HEK293 cells expressing the CaV2.2/β1b/α2δ1 complex treated with
100 nM protofibrillar Aβ1-42 for 24 h had no effect on the measured biophysical characteris-
tics (Figure 3c–f).

The effects of a higher concentration of protofibrillar Aβ1-42 on CaV2.2 were inves-
tigated (Figures 4 and 5). A concentration of 1 µM protofibrillar Aβ1-42 (24 h) caused a
significant reduction in the current density (vehicle control: −47.1 ± 12.5 pA/pF vs. amy-
loid treated: −17.7 ± 5.4 pA/pF, p = 0.017, n = 8–11; Figures 4 and 5a,b). Correspondingly,
a significant reduction in Gmax was also observed (control: 1.3 ± 0.2 nS/pF vs. amyloid
treated: 0.6 ± 0.1 nS/pF, p = 0., n = 8–11; Figures 4 and 5f). The slope factor (k) was
also altered after exposure to 1 µM protofibrillar Aβ1-42 (vehicle control: −4.5 ± 0.4 vs.
amyloid treated: −7.3 ± 0.7, p = 0.003, n = 8–11; Figure 5e). The other biophysical properties
examined (V0.5 and reversal potential) remained unaffected (Figure 5c–d).
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Figure 3. Effect of protofibrillar 100 nM Aβ1-42 on Cav2.2 kinetics. Whole-cell patch clamp popul-
tion experiments investigating the effect of protofibrillar 100 nM Aβ1-42 vs. vehicle control (PBS) on
Cav2.2 channel kinetics of Cav2.2 stably transfected HEK293 cells; mean ± SEM, n = 8–11 throughout.
(a) Current density–voltage (−70 to +50 mV) relationship; (b) current density of Cav2.2 channels
at +10 mV; (c) reversal potential of Cav2.2 current; (d) half-activation voltage of Cav2.2 channels;
(e) changes in the slope factor (k) of Cav2.2 current; and (f) maximal conductance of Cav2.2 channels.
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Figure 4. 1 µM protofibrillar Aβ1-42 reduced Cav2.2 currents. (a) Cav2.2 currents evoked by voltage
steps (−70 to +50 mV) following control (PBS) treatment and (b) Cav2.2 currents evoked by voltage
steps (−70 to +50 mV) following 1 µM protofibrillar Aβ1-42 treatment.
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Figure 5. Effect of protofibrillar 1 mM Aβ1-42 on Cav2.2 kinetics. Whole-cell patch clamp popula-
tion experiments investigating the effect of protofibrillar 1 µM Aβ1-42 vs. vehicle control (PBS) on
Cav2.2 channel kinetics of Cav2.2 stably transfected HEK293 cells; mean ± SEM, n = 15 throughout.
(a) Current density–voltage (−70 to +50 mV) relationship; (b) current density of Cav2.2 channels
at +10 mV; (c) reversal potential of Cav2.2 current; (d) half-activation voltage of Cav2.2 channels;
(e) changes in the slope factor (k) of Cav2.2 current; and (f) maximal conductance of Cav2.2 channels.
* = p < 0.05, two-tailed unpaired t-test.

3. Discussion

This short communication identifies protofibrillar Aβ, formed using 1% ammonium
hydroxide [26], as an important modulator of recombinant CaV2.2, β1b and α2δ subunits
containing VGCC complexes. The use and verification of protofibrillar Aβ is vital in elu-
cidating the functional effects of disease-relevant Aβ species. It is evident that a lack of
complete biophysical characterisation of Cav2.2 channels with potentially different subunit
compositions may lead to a diverse array of modulatory affects and some apparently
contradictory reports in the literature (see [9,11]). CaV2.2 channels carrying N-type currents
are predominantly involved at presynaptic loci [25]. For example, in the hippocampus, evi-
dence supports a role for CaV2.2 in inhibitory interneuron neurotransmission [27] and the
development of pyramidal neuron synapses [28]. The non-neuronal expression of Cav2.2
has been reported [29,30]; however, there is a lack of functional data to indicate a role for a
fully conducting channel. This has led to VGCCs being investigated as molecular targets
for a range of neurological diseases, including AD. Aβ has been linked to the modulation
of a host of VGCCs and is reported to affect channel function across different physiological
levels (e.g., transcription vs. translation). At the expression level, the Aβ25-35 fragment
has been reported to up-regulate Cav1.2, Cav2.1 and Cav2.2 mRNA and proteins in a
time-dependent manner [31]. This is seen as central to facilitating neurotoxicity through an
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increased Ca2+ influx associated with elevated levels of Aβ. Another potential mechanism
by which Aβ modulates VGCCs is through subunit/protein–protein interactions. Here,
evidence supports the Aβ25-35 modulation of CaV1.2 at the mRNA, protein and functional
levels [32]; in addition, a role of the β3 subunit was proposed to mediate changes in the
functional activity of both Cav1.2- and Cav1.3-containing channels. Aβ has also been
reported to modulate VGCC function through the modulation of biophysical properties
in other studies. An Aβ-mediated reduction in Ca2+ influx was reported to occur via a
reduction in P/Q-type current amplitude and conductance, with the slope factor and V50
remaining unaltered [11]. By contrast, Mezler et al. (2012) showed that the treatment of
Xenopus laevis oocytes with oligomeric synthetic Aβ1-42 peptides increased the amplitude
and caused a hyperpolarized shift in the activation of recombinant Cav2.1 channels [9].
Hermann and colleagues also reported that Aβ1-42 globulomers not only modulated Cav2.1
kinetics, but also increased the activity of Cav2.2 channels via an increase in amplitude
and a shift of V50 towards more hyperpolarized values [10]. Such differences may be
attributed to different forms/aggregation states and/or concentrations of Aβ used. Here,
we have looked at a distinct disease-relevant species of Aβ (protofibrillar) and revealed its
effects on specific Cav2.2 kinetic parameters based on the concentration of the Aβ assembly.
Lower concentrations (100 nM) showed no modulation of Cav2.2 currents, while higher
concentrations (1 µM) caused significant changes in the Cav2.2 biophysical fingerprint.
Here, reductions in current density and maximal conductance were reported alongside a
change in the slope factor (k). Thus, Ab had inhibitory effects on Ca2+ currents. The slope
factor k represents the change in membrane potential required to cause an e-fold change in
the activation of open channels. A reported 5 mV hyperpolarising shift would lead to a
decrease in the voltage sensitivity of the channel, such that larger changes in voltage were
required to cause a similar level of channel activation. This change in the voltage sensitivity
of the Cav2.2 channel could be the result of post-translational modulation, which has been
reported for other Cav channels in neurodegenerative disorders [33].

While protofibrillar Ab is often associated with neuronal toxicity [34], our data indicate
an inhibitory modulation of Cav2.2, which may relate to pain symptoms that manifest
in AD rather than overt toxicity. Pain has previously been linked to AD, but common
signalling pathways have not robustly been identified. For example, chronic pain has been
reported to accelerate AD pathology and initiate cognitive decline earlier in transgenic
mice [35]; this rapid onset was suggested to be due to changes in NMDA receptor subunit
functionality within the hippocampus. In human studies, there is mixed evidence as to
the role of chronic pain and the subsequent development of dementia. Those patients
reporting higher pain scores were observed to have a higher probability of developing
dementia, while others have indicated no relationship between the intensity of pain and
a dementia diagnosis [36–38]. One established mechanism for nociception signalling
is through presynaptic CaV2.2 channels, which has led to the approval of ω-conotoxin
MVIIA as the peptide drug, ziconotide, for chronic severe pain [39]. Therefore, further
research is merited to better understand the role of Cav2.2 channels in AD pathology
and pain. This should include consideration of neuronal and non-neuronal cells, with
evidence indicating that genetic manipulation of Cav2.2 within the microglia can impact
pain signalling [30]. A breakdown of Ca2+ homeostatic mechanisms is implicated in
Aβ-induced neurodegeneration [40], and there is evidence linking disruption in Ca2+

signalling with the development of different pain states [41,42]. Therefore, understanding
the individual molecular targets and their temporal involvement in pathology will aid drug
discovery and support the use of available pharmacological tools in managing individuals.
This will improve strategies for modulating VGCC function, which may be beneficial
during the early synaptic dysfunctional stages of AD progression [43].
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4. Materials and Methods
4.1. Cell Culture

Stably transfected HEK293 cells expressing human CaV2.2 calcium channels (α1B
(Cav2.2), β1b and α2δ1 subunits) [44] were cultured in minimum essential medium (MEM;
Life Technologies, Loughborough, UK) supplemented with 2 mM L-glutamine (Life Tech-
nologies, Loughborough, UK), 0.5 mg/mL geneticin (G418; Sigma Aldrich, Gillingham,
UK), 10% FBS (Life Technologies, Loughborough, UK) and 1% penicillin/streptomycin
(Life Technologies, Loughborough, UK).

4.2. Aβ Assembly and Characterisation

Human synthetic Aβ1-42 peptides (Abcam, Cambridge, UK: Aβ1-42 #ab120301) or
Aβ42-1 peptides (Abcam, Cambridge, UK: Aβ42-1 # ab120481) were dissolved in 1% am-
monium hydroxide (NH4OH; Sigma Aldrich, Gillingham, UK) in PBS, taking into con-
sideration the peptide content, to obtain a 1 mg peptide film as previously described [26].
Following this, Aβ was left at room temperature for 30 min and then placed in a speed-vac
until a peptide film was obtained (~20 min). The peptide film was then dissolved into a
5 mM Aβ stock solution using 10 mM sodium hydroxide in dH2O (NaOH; Sigma Aldrich,
Gillingham, UK). Aβwas sonicated for 10 min to prime the peptide for aggregation. Both
the peptide film and the 5 mM Aβ stock were stored at −20 ◦C until use.

Prior to experimental use, the 5 mM stock was sonicated for a further 10 min and
then further diluted into a 100 µM usable stock over a 48 h incubation period using a
two-step protocol. Firstly, the 5 mM stock was diluted into 400 µM using PBS and 2%
sodium dodecyl sulphate (SDS; Invitrogen, Loughborough, UK), and then incubated over
24 h. Next, 400 µM Aβ was diluted into 100 µM usable stock using PBS and incubated for
another 24 h. For experimental purposes, 100 µM Aβ1-42 or Aβ42-1 was further diluted in
media to achieve various working concentrations that the cells were then exposed to or
that were processed for transmission electron microscopy.

4.3. Transmission Electron Microscopy

The aggregation processes of the Aβ1-42 preparations were investigated using trans-
mission electron microscopy (TEM; Jeol 2100 Plus, 200 kV). Firstly, the Aβ preparations
(30 µL) were loaded onto 300-mesh-sized carbon grids (HC300Cu films, EM Resolutions,
Sheffield, UK). The grids were then stained with 1–2% w/w uranyl acetate (Agar, Stansted,
UK) in dH2O (~1 min) for visualisation purposes. The grids were then washed with dH2O
to remove excess stain (for ~1 min) and then left to dry (~5 min) prior to use. The image
analysis, via measuring protofibril length, was achieved using Image J.

4.4. Electrophysiology

Glass electrodes were filled with an intracellular solution composed of: 120 mM CsCl;
20 mM TEA; 10 mM EGTA; 2 mM MgCl2; 10 mM HEPES; and 2 mM ATP (pH of 7.2 using
CsOH). The extracellular solution was 95 mM NaCl (ThermoFisher Scientific, Loughbor-
ough, UK); 10 mM BaCl2; 2 mM MgCl2; 10 mM HEPES; 10 mM glucose; and 5 mM TEA (pH
of 7.4 using NaOH). To study the VGCC currents, a multi-step protocol was applied from a
holding potential of −70 mV, in 10 mV increments from −70 to +50 mV (for 200 ms). Data
from multi-step recordings were used to plot the current density/voltage relationships.
A single-step protocol to +10 mV from a holding potential of −70 mV was also applied.
The extracellular solution was applied via a continuous tube-perfusion system. Prior to
investigating the VGCC currents, cells were treated for 24 h with Aβ1-42 or the vehicle
control (PBS).

All electrophysiology experiments were carried out at room temperature (~21 ◦C).
Whole-cell patch clamp recordings were acquired at 10 kHz and low-pass-filtered at 2 kHz
using an Axopatch 200B (Axon Instruments) and Digidata 1440A (Axon Instruments) using
Clampex10.3 software. Electrophysiology recordings were analysed using Clampfit10.3.
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4.5. Statistical Analysis

Statistical analyses and the plotting of graphs were performed using GraphPad
Prism 7.0. For statistical analyses, all data were firstly tested for normality (Shapiro–Wilk)
and then examined for outliers (Grubb’s), which were excluded from the analysis. Data
were plotted as an average ± SEM with the number of biological replicates (n) as stated.
Values of p > 0.05 were considered significant.

For the Aβ protofibril length analysis, one-way ANOVA followed by Tukey’s post hoc
test was used.

For electrophysiology experiments, the current density/V relationships were first
fitted with a modified Boltzmann fit equation (Y = (Gmaxx(X − Vrev))/(1 + exp((−(X −
V50)/k)) [45], where Gmax = maximum conductance; Vrev = reversal potential; V50 = half
activation voltage; and k = slope factor. Data obtained from the Boltzmann fit analysis were
then subjected to a two-tailed unpaired t-test [40].
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