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Abstract

This thesis is concerned with Monte Carlo methods for intractable and dou-
bly intractable density estimation. The primary focus is on the likelihood
free method of Approximate Bayesian inference, where the presence of an in-
tractable likelihood term necessitates the need for various approximation pro-
cedures. We propose a novel Sequential Monte Carlo based algorithm and
demonstrate the significant efficiency (computational and statistical) improve-
ments compared to the widely used SMC-ABC, in numerical experiments for
a simple Gaussian model and a more realistic random network model. Fur-
ther, we investigate a recently proposed algorithm, called SAMC-ABC, an
adaptive MCMC algorithm where we also demonstrate some advantages over
ABC-MCMC; primarily in the reduction of variance of the estimated means
although at a cost of increased bias for which we propose a potential correction.
In addition, we provide theoretical guarantees of ergodicity and convergence of
another newly proposed algorithm termed Adaptive Noisy Exchange, that is
aimed at problems of intractable normalising constants where regular MCMC
cannot be employed. Finally, we propose potential improvements and future
research directions for all of the considered algorithms.
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Chapter 1

Introduction

1.1 Introduction and main contributions of this

work

A great deal of problems in the real world amount to processing some kind

of information that we (usually) record from a number of different processes

or occurrences. In statistics we would like to be able to infer something from

that data that would allow us to formulate some pattern or even explain why

it is so and not some other way. We build a priori models in order to make

sense of the data, and of course we modify or completely reconstruct those

models when they don’t agree with what we are observing. Statistical science

has through the centuries tried to make sense of the combination of data and

models through rigorous mathematical formulations and theory. A branch

which is uniquely equipped to deal with the introduction of new information

is that of Bayesian analysis. In that framework, we treat both the data, but

also the unknowns of the model specification as variables and try to perform

inference on those variables in order to generate a model which supports our

data. Equipped with such a model we can then even try to predict future

occurrences given past information (generated or observed), assuming of course

our model is close enough to reality. All these methodologies emanate from the

assumptions that we can explicitly calculate certain integrals of interest, that

15
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naturally come up as ingredients and desired quantities of our models, or at the

very least approximate them. It is exactly this procedure which will occupy us

for the entirety of this thesis. Namely, the approximation of so called posterior

distributions: statistical distributions of the parameters of interest given our

data. There is, nevertheless, already an explicit assumption in all of this;

we have already specified the form and what kind of distribution our model

should have. We are subsequently trying to infer the parameters that define

it and perhaps even try to compare different models. In many scenarios such

an explicit specification is not possible. There is no real functional form for

which we can define our functions and integrals explicitly or such calculation

is be prohibitively expensive in computational terms. It is these scenarios that

we will explore, propose and validate novel algorithms for which we hope will

allow practitioners to utilise in all of the scientific cases they might encounter

for which these algorithms might be of use.

1. In chapter 2 we investigate the recently proposed algorithm by

Richards and Karagiannis [2020] and perform numerical experiments

demonstrating its advantages over standard ABC-MCMC algorithms

as well as suggest improvements based on post-correcting the acquired

MCMC samples.

2. In chapter 3 we give an overview of auxiliary space methods and their

noisy variants that are utilised in cases where one has intractable nor-

malising constants and regular MCMC methods cannot be employed.

Further, we investigate theoretically a recent proposal for a novel algo-

rithm: Adaptive noisy exchange algorithm by Friel and Drovandi [2019]

(and communicated personally through the supervisory team) where we

prove the convergence of the algorithm under very mild assumptions to

the correct ”noisy” target, thus validating its use in practice.

3. In chapter 4 we introduce the novel algorithm termed Rare event ABC-

SMC2. We formulate its structure, perform numerical experiments sug-

gesting a significant improvement over standard ABC SMC and propose

modifications as well as potential expansions on its constituent parts.
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1.2 Motivational examples and purpose of sta-

tistical inference

In the Bayesian framework of statistics we model the observed data as well

as any unknowns as random variables. Taking this approach, we, through

some function f ∈ F , specify the distribution f(y|θ) for the observed data

y = (y1, ..., yn) ∈ Y ⊆ Rn, with dimension n ∈ N, given a vector of unknown

parameters θ = (θ1, ..., θk) ∈ Θ ⊆ Rd of some dimension d ∈ N. By this

statistical model we define the Law 1. We also assume that θ is a random

quantity assigned a prior distribution π(θ|η), where η ∈ E is a vector of

hyperparameters. The goal of our inquiry here is the ”posterior” distribution,

where it is defined as a conditional distribution given the observations and

calculated through Bayes’s theorem as follows:

p(θ|y,η) = p(y,θ|η)
p(y|η) =

p(y,θ|η)
!

p(y,θ|η)dθ =
f(y|θ)π(θ|η)

!

f(y|θ)π(θ|η)dθ
2 (1.1)

For a number of models in various fields the likelihood f(·) is intractable in
the sense that one cannot evaluate f(·) ≈ l(y|θ). For example the majority of

stochastic differential equation models such as the (stochastic) Lotka-Volterra

model Wilkinson [2013a], most individual based models (IBMs) Grimm and

Railsback [2005], and many other models defined through computer simu-

lations. Approximate Bayesian computation (ABC) (Tavaré et al. [1997],

Pritchard et al. [1999], Beaumont [2003]) is a class of likelihood free inference

methods that is utilised to perform approximate inference for the parameters

of such models, as indicated for example in (Toni et al. [2009]). An excellent

review of the ABC in Ecology and Evolution is given by Beaumont [2010], and

its use for IBMs has recently been explored in (van der Vaart et al. [2015],

van der Vaart et al. [2016].

1we will hereafter assume that this always admits a density with respect to some reference
measure dy of the random variables (Yn)

N
n=1, which we usually call the likelihood

2a technical requirement here will be that of the finiteness of the denominator, in order
for this posterior to be well-defined
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The power of Bayesian inference was not embraced immediately for a

number of reasons. It would, nevertheless, be mandatory to say that the

true resuscitation of Bayesianism as a philosophy of inference came from the

rigorous work by de Finetti de Finetti [1974], L. J. Savage Savage [1954],

D. V. Lindley Lindley [1965] and George Box Box and Tiao [1973] between

the 50s and 80s, yet it remained more or less impractical. The advent of

powerful computers and specifically the application of Monte Carlo methods

combined with the well developed theory of Markov chains to certain classes

of models and the work by the brilliant team at Los Alamos, Metropolis et al.

[1953b] kick-started the entire field of computational statistics (although not

for quite some time afterwards-it was the exponential improvement of personal

computers/workstations and specific software suites that made the usage of

these methods extremely widespread).

Since Metropolis et al. [1953b] original paper and especially the more for-

mal treatment and introduction of the Hastings correction by Hastings [1970] in

1970 there has been a rapid expansion of the volume of work on the field of com-

putational statistics. An important milestone for the generality and breadth

of applicability of the methods was the introduction of reversible jump MCMC

Green [1995], where one could transverse different dimensionality models and

do inference on a varying-dimension model space. It is therefore no wonder

that Markov Chain Monte Carlo methods are the most successful methods in

Bayesian practice and inference today. One could argue that this is due to

their (theoretical) ability in enabling inference from arbitrary complex distri-

butions of correspondingly arbitrary large dimensionality. In the same spirit

as regular Monte Carlo methods MCMC produces correlated samples from a

distribution of interest rather than a calculation of the its closed integral form
3. An important question therefore arises given that we are producing a finite

sample estimate (as we will soon explain) of some arbitrary integral; do we

have some notion of approximation in quantitative terms ? In other words,

can we state in some sense exactly how many samples are needed in order to

achieve some arbitrary degree of accuracy for our approximation ? Assume

for example that we would like to estimate some posterior π and through the

3a calculation for which in many if not most real-world scenarios and the integrals of
interest would otherwise be impossible if otherwise completely computationally infeasible;
for example with quadrature methods
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MCMC procedure, which we shall explain in detail in section 1.3.4 and 1.3.5.

we apply some Markov kernel P , n times. We would like to calculate how

close our approximation is to our intended posterior measure in total variation

distance 4:

$P n
x − π$TV =

1

2

"

y

|P n(x, y)− π(y)| = max
A⊆X

|P n(x,A)− π(A)| (1.2)

Which yields the following problem: Given P, π, x and ! > 0, how large n so

$P n
x − π$TV < ! (1.3)

Which for the practitioner equates to the questions of how long should the

algorithm run for and how many samples are sufficient (a thing which itself

needs specification).

Can we formulate a function about the degree for which this approxima-

tion is appropriate/close to the analytical solution based on the number of

samples we have ? There exists a great deal of work on the asymptotics of

these methods, the rate of convergence, dependence on dimensionality and op-

timal rates for acceptance, how one can reduce the variance of the estimator

systematically, what is the optimum of that (if it exists) etc. Theory tells us

that increasing the number of samples, say N , makes the approximation more

accurate (the Monte Carlo error decreases as 1√
N

with N the number of sam-

ples or steps of the algorithm - if a Markov Chain Central Limit theorem exists

with the usual result being Birkhoff’s Ergodic Theorem Geyer [2005]. Despite

getting exact asymptotic results a lot of things are essentially hidden in that

error rate: see Jones [2004], Flegal et al. [2008]Flegal and Jones [2010],Jones

et al. [2006], Vats et al. [2019]). The issue of metastability5 of Markov chains

Beltrán and Landim [2015], Landim [2019] and that of knowing where to stop

the algorithm since in a very rough sense it has sample ”all the important

4Given some measurable space (Ω,F) and probability measures P and Q defined on
(Ω,F). The total variation distance between P and Q is defined as ||(P,Q)||TV =
supA∈F |P (A)−Q(A)|

5essentially the late long time behaviour of the chain and specifically the repeated passage
from areas of low to high probability, for technical definitions albeit applied to continuous
time chains and the substantially developed theory there see Olivieri and Vares [2005]
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areas of density” in the characteristic set sense remains elusive. For a survey

of theoretical results and outstanding issues see Freidlin and Koralov [2017],

Olivieri and Vares [2005], Bovier et al. [2001],

Bovier et al. [2002], Cassandro et al. [1984].

Unfortunately, by construction and the very nature of Markov chain the-

ory and contrary to regular Monte Carlo methods, given the iterative nature of

the algorithm the produced samples are correlated. The method is extremely

well studied and very mature. The existence of the invariant density of the

chain and the convergence of the produced ergodic averages to this density

can be shown to exist for a gigantic range of posterior classes (see Roberts and

Rosenthal [2004] for a general overview, and Roberts and Rosenthal [2016] for

adaptive cases as well as Meyn and Tweedie [2009], especially the concluding

chapters [13-19] for an in depth look at the underlying theory and detailed

commmentary on general convergence) and in that sense it offers a satisfac-

tory explanation of the method’s popularity. Alas, the issue of convergence

remains due the simple fact alluded above: the user has to choose the number

of iterations of the algorithm and perform relevant statistics on the output;

an area of research which considerable effort has been put into. Additionally,

the finite -computational resource constrained- samples make the user wary

of the quality/accuracy of any given output of the chain since they are not

independent and identically distributed samples from the posterior, but rather

correlated ones. Sometimes called the variance estimation problem, this issue

is of considerable practical importance since we would also like to estimate

the Monte Carlo variances (or equivalent standard errors) associated with the

MCMC generated posterior estimates. Nevertheless, at this point it would be

prudent to give a brief tour of how and why Monte Carlo methods have cul-

minated, at least in one of their branches, in this extremely powerful class we

call Markov Chain Monte Carlo. Nevertheless, let us take a step back and see

how these methods came about and go through various levels of sophistication

as far as approximations of integrals are concerned.
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1.3 Monte Carlo

1.3.1 General approximations of integrals

One could consider, very roughly speaking, the idea of Monte Carlo as that of

the approximation of arbitrary integrals. The integrals considered would be

impossible to calculate otherwise both due to the dimensionality but also due

to the functional form and in most cases due to a mixture of both. We are

therefore left with the issue of how one can go about approximating those inte-

grals that escape analytical close-form solutions. Let us then see where Monte

Carlo methods are situated compared to others and why it is in many ways

preferable if not essential. For example see Heinrich and Novak [2002] for an

overview of some interesting results regarding the optimality of deterministic,

randomized and quantum algorithms (the last of which wont be of concern

in the present work) from Hölder or Sobolev6 spaces (see definition in Adams

and Fournier [2003] ). Some of the first results were derived in Bakhvalov

[1959], Bakhvalov [1962]. An important result from these papers is the fact

that randomized algorithms perform better than their deterministic counter-

parts and more importantly a near optimal convergence rate is exhibited by

Monte Carlo methods when then dimension is large or when the integrand ex-

hibits low smoothness (as defined in Heinrich and Novak [2002]). Despite such

results, Monte Carlo methods are not always appropriate. For example using

an MCMC or SMC method wont give us independent samples (in distribution)

from our intended target. Furthermore the approximation will become worse

as the dimensionality increases for a fixed sample size. Further, consider the

fact that the Monte Carlo method error rate is7 1/
√
N , and the dimension d

usually appears in a constant of proportionality that impacts the actual im-

plementation and performance of the algorithms in all real world applications.

The theoretical rates derived in the work above become less useful or relevant.

Results closer to the practical usage of these methods include for example

Roberts and Rosenthal [2001], Neal and Roberts [2006], Yang et al. [2020] for

6Complete normed (as a combination of Lp norms of the functions) vector spaces of func-
tions with weak derivatives (in the sense of no assumption on the availability of differentiable
functions but only integrable)

7always
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the Metropolis-Hastings algorithm and its behaviour as the dimension of the

state space increases and recipes of how the algorithm should be configured

while taking that into account. Also for the pseudo-marginal algorithm An-

drieu and Roberts [2009] which we will explain shortly Sherlock et al. [2015].

For SMC method see Beskos et al. [2014a] and Beskos et al. [2014b], and in

particular for importance sampling which will be directly relevant to one of

the proposed algorithms in this thesis see Agapiou et al. [2017].

1.3.2 Monte Carlo methods

Suppose we would like to compute an integral of the form:

Ig =

#

Y
h(y)dy (1.4)

with h some general function on some space Y , with the condition that the

above integral is finite. Consider a probability density function g and a function

f such that

Eg[f(y)] =

#

Y
f(y)g(y)dy = Ig (1.5)

Assume that we can also obtain samples Y1, ..YN from g, then a Monte

Carlo estimator is the sum defined as :

1

N

N
"

i=1

f (Yi) (1.6)

and by the Law of Large numbers one could get that

1

N

N
"

i=1

f (Yi)
g−→

N→∞
Ig

assuming the integral exists. Assuming further that σ2 = Vg[f(y)] = Eg[f
2(y)]−

I2g is finite, then the Central Limit theorem gives and even stronger result:
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√
N

$

N
"

i=1

f (Yi)− Ig

%

L−→
N→∞

N &

0, σ2
'

(1.7)

where we also know that the estimator above converges to Ig at a rate of

O(N−1/2)

There are various methods one could use to generate the required samples:

transformation of random variables, rejection sampling, importance sampling,

Markov Chain Monte Carlo, Sequential Monte Carlo etc.

1.3.3 Importance sampling

Importance sampling aims to generate samples from a distribution of interest

g by rewriting the expectation of 1.5 by introducing an auxiliary distribution

q and rewriting as :

EG[f(y)] = EQ[f(y)w(y)] (1.8)

with q absolutely continuous with respect to g and where we call w(x) =
dg
dq
(x) the importance weight (which can be easily seen to be a Radon-Nikodym

derivative). By the LLN the integral Ig can be approximated by

1

N

N
"

i=1

f (Yi)w(Yi), (1.9)

where Yi ∼ q. The advantage of such approach is the fact that we can calculate

the weights up to multiplicative constant and estimate them by

1

N

N
"

i=1

w(Yi) (1.10)
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and additionally show that the normalised estimator

(N
i=1 f (Xi)w (Yi)
(N

i=1 w (Yi)
(1.11)

converges to Eg The trick in importance sampling is to notice that once you

can re-express the expectation

Eg[f(y)] =

!

Y f(y)g(y)
q(y)

q(y)µ(dy)
!

Y
g(y)
q(y)

q(y)µ(dy)
=

!
Y f(y)

g(y)
q(y)

q(y)µ(dy)
!
Y q(y)µ(dy)

!
Y

g(y)
q(y)

q(y)µ(dy)
!
Y q(y)µ(dy)

=
Eq

)

g(y)
q(y)

f(y)
*

Eq

)

g(y)
q(y)

* (1.12)

with potentially unnormalised g and q. The expression above demonstrates

that by generating samples Y1, ..YN from some procedure (Monte Carlo simu-

lation or MCMC) we obtain

!Eg [f(Y )] =

!
E
)

g(Y )
q(Y )

f(Y )
*

Eq

)

g(Y )
q(Y

* =

(N
i wif(Yi)
(N

i wi

=

"N
i

g(Yi)

q(Yi)
f(Yi)

N
"N

i
g(Yi)

q(Yi)

N

(1.13)

The ratios wi =
G(yi)
Q(yi)

, i = 1, . . . , N , are called importance weights.

1.3.4 Markov chain Monte Carlo

Markov chain Monte Carlo methods have a long history Metropolis et al.

[1953a], Smith and Gelfand [1992], Tierney [1998], Roberts et al. [1998], Roberts

and Rosenthal [2004] , and the general idea was more or less developed at the

same time as the first Monte Carlo methods. The method works by specifying

a target density measure µ (appropriately defined distribution that is abso-

lutely continuous with respect to some measure ν ) on some space S. The

target one is interested in is usually rather complex, and not really amenable

to the simple Monte Carlo methods. The complexity comes in various forms,

often simultaneously. It can be that the integral we would like to evaluate is

high dimensional and it cannot be solved by quadrature methods for example
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given their exponential scaling. It can also be the case that the size of the

data that one considers or the dimension of the inference target/integral and

general space one is working is particularly high. Finally, a limited compu-

tational budget allows only methods that run within some time frame. It is

therefore obvious that a more efficient methodology than simple Monte Carlo

simulation is needed if we are to tackle all these issues. MCMC methods work

by simulating a Markov Chain that samples more efficiently from the target

space of interest than regular MC methods. The extremely interesting main

idea of the method works by defining an appropriate Markov process that has

as invariant measure given by the target density of interest and specifically for

discrete times, for which our defined Markov chain, say Yn has as its stationary

distribution. Then given certain conditions such as irreducibility and aperiod-

icity8 , Meyn and Tweedie [2009] a limiting distribution exists for that process,

it is unique and is its stationary distribution. Therefore, samples from that

process are asymptotically distributed according to the measure of interest,

and hence we can construct ergodic averages given the number of time steps

or samples , by running the chain for a long period of time. The basic Law of

Large Numbers for the MCMC algorithm informs us about those averages in

the following way:

Theorem 1. (Ergodic Theorem (Robert and Casella [2004] )) If (Yn)n≥0 is

a positive Harris recurrent Markov chain with invariant measure P , then for

every h ∈ L1(P ), we have

1

N

N
"

i=1

h (Yi) −→
N→∞

#

h(y)P (dy) (1.14)

as well as a corresponding Central Limit Theorem:

8aperiodicity is not strictly speaking necessary for the existence of ergodic averages
Roberts and Rosenthal [2004], corollary 6
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Theorem 2. (Markov Functional Central Limit Theorem (Robert and Casella

[2004] )) If (Yn)n≥0 is a positive Harris recurrent and irreducible Markov chain,

geometrically ergodic with invariant measure P , and if the function h satisfies

EP [h(Y )] = 0 and EP [|h(Y )|2+!] < ∞ for some ! > 0, the we have

1

N

N
"

i=1

h (Yi)
L−→

N→∞
N &

0, σ2
h

'

for some finite σ2
h = EP

+

h (Y0)
2,+ 2

(∞
k=1 EP [h (Y0)h (Yk)] < ∞.

Various other conditions such as drift Meyn and Tweedie [2009] also exist

for which if one verifies their presence one could also make statements about

the speed (geometrically fast, although there are other rates of convergence as

well: polynomial, uniform etc Meyn and Tweedie [2009] ) at which the chain

converges in a certain sense to the target density of interest Mengersen and

Tweedie [1996], and more importantly also establish CLT such as the one in

Roberts and Rosenthal [2004].

1.3.5 The Metropolis-Hastings algorithm

The Metropolis-Hastings method is an algorithmic implementation of the the-

oretical idea described above first appearing in Metropolis et al. [1953b] where

the implementation was with a symmetrical proposal distribution (we will see

shortly what that means) and later extended to the more general case by Hast-

ings [1970]. The basic algorithm proceeds as follows: Given a current point

in our sample space Yt a new point gets picked according to some arbitrary

proposal distribution q(y′|yt) (that defines a Markov Kernel), which results in
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a Markov Chain {Yi}∞i=1 that is the result of the following algorithm:

Algorithm 1: Metropolis-Hastings algorithm
Input: starting point Y0, proposal distribution q and number of iterations t

1 for t=1:N do
2 Sample Y ′ ∼ q (· | Yn−1)
3 Calculate the acceptance probability α (Yn−1, Y

′), where

α
!
Yn−1, Y

′" = min

#
1,

p (Y ′) q (Yn−1 | Y ′)

p (Yn−1) q (Y ′ | Yn−1)

$

4 Sample U ∼ U [0, 1]
5 if U < α (Yn−1, Y

′) then
6 then Yn ← Y ′

7 else
8 Yn ← Yn−1

9 end
10 end

One should notice the importance of the accept-reject step in the algo-

rithm above, as given appropriate proposals such chains are irreducible (a

positive probability of visiting every point in the space in some finite number

of iteration) and aperiodic (there is no cyclicity in the moves of the sample

space) and as we mentioned those two conditions result in the chain converging

to the stationary distribution irrespective of the starting point, and further-

more given also an appropriate function of the acceptance probability (for

example MH or barker’s acceptance Barker [1965]) the chains are reversible

with respect to the target density p. It is also worth mentioning that usually

such conditions need to be checked on an individual case basis. It is important

to also note that by definition the algorithm does not produce independent

samples given its Markovian structure, although there are ways one considers

to what extent the samples that are acquired can be considered i.i.d. from

the target of interest. A very large number of iterations might be necessary to

escape the initial point’s neighbourhood and actually sample from the main

mass of the target measure. Usually practitioners refer to this as a burn-in

period where those initial samples (usually chosen to be some percentage of the

total number of samples) are discarded from the final ones. Lastly it is worth

pointing out that there is quite a substantial variability of the performance

characteristics of this general class of algorithms dependent on the choice of

proposal q, the dimensionality of the sample space, the characteristics of the
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target distribution (multimodality, shape) and so on.

1.3.6 Sequential Monte Carlo

Another importance class of algorithms is that of sequential Monte Carlo meth-

ods. As the name implies they were initially conceived for sampling from a

dynamic distribution where new values are added sequentially in the target

distribution, as is for example the case of some stochastic process (for exam-

ple measurement of the position of some object in motion) that is evolving

in real time. MCMC algorithms are by design appropriate for sampling from

static distributions, as is the posterior of some parameter vector for example

p(θ | y1:n) with no new yn+1,··· updated/included later on, and furthermore

are also rather costly as at every iteration one requires to incorporate all the

available observations. We therefore need some sequential algorithm that in-

corporates observations as they come in and is able to produce ergodic averages

while targeting the correct target distribution. This is the case with the issue

of filtering, where one faces in a number of different scenarios such as the need

to track some moving object Brasnett et al. [2005], Gustafsson et al. [2002],

Doucet and Johansen [2011], inferring stock price movements, epidemic track-

ing etc. The main idea of a particle filter is one where we could approximate

the target at every observation time as a collection of point masses, called par-

ticles, weighted appropriately, such that by a process of mutation, correction

and resampling one could take into account new observations and deal with

the sequential nature of the target distribution. These general class of meth-

ods, can therefore allows us to construct the corresponding ergodic averages

by Monte Carlo approximations of the expectations of interest defined with

respect to the target measures one wishes to consider, by a ratio of unbiased

estimators much in the same spirit as importance sampling. In fact as we

shall see at every iteration of these algorithms the weights of these particles

is constructed as such ratios Doucet et al. [2001], Cappe et al. [2006], Doucet

and Johansen [2011], Del Moral [2004]. It is also exceedingly useful in order

to be able to get a sense for the correctness of the samples we have that some

form of CLT is established. Under certain assumptions and conditions on the

filtering model and the mutation step as well as the resampling step the ergodic
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averages do indeed satisfy a form of CLT as provided in Del Moral [2004], Del

Moral and Miclo [2000], Del Moral and Guionnet [1999], Chopin [2004].

Let us now describe how these algorithms operate. Assume that one has

some process Yt generated through some Markovian dynamics. Additionally

assume those have some transition density f(yt+1|yt), and we additionally have

some initial draw from some prior y ∼ f0, for a continuous density f0. Further,

suppose we have some noisy observations (and perhaps partial) of this chain

denoted by X1:∞ which are independent given Y1:∞, and that admit some

observation density g(xt|yt). We would now like to infer at any time (or prior to

that) instance t the posterior of those observations. An immediate calculation

via Bayes theorem gives us the following:

pt(yt) =
gt (xt | yt)

!

Rd ft (yt | yt−1) pt−1 (yt−1) dyt−1
!!

R2d gt (xt | yt) ft (yt | yt−1) pt−1 (yt−1) dyt−1 dyt
(1.15)

and9 therefore we now want to approximate some expectation:

pt[z] =

#

Rd

z(yt)pt(yt)dyt (1.16)

in an online manner through updates in observations (at the time they

arrive).

Particle Filters

We therefore want to approximate integrals like the one shown in 1.16, satisfy-

ing some conditions and having certain properties. Now one can observe that

we can state equation 1.15 equivalently as

9note here we have suppressed the conditioning on the data x1:t
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pt(yt) =
1

βt(Rdt)

#

Rd(t−1)

f0 (y0)
t

-

s=1

fs (ys | ys−1) gs (xs | ys) dy0:t−1 (1.17)

with the expectation pt[z] written alternatively as:

pt[z] =
1

β(Rdt)

#

Rdt

z (yt)
t

-

s=1

fs (ys | ys−1) gs (xs | ys) dx0:t (1.18)

with β() a normalizing measure. We can now view this as a natural dynamic

procedure of the (normalized) importance sampling estimator of the previous

section. Here we have some population of particles y1:Nt that evolve according

to some dynamics f and where their weights ŵ1:N
t

&

y1:Nt

'

are updated sequen-

tially in order to accommodate the evolution of the sequence of target densities

pt

Sequential Importance Sampling

One way of constructing an estimator for pt[z] is to construct a normalized im-

portance sampling estimator of it. Let qt(y0:t) be some proposal density that

can be dependent on the number of observations x1:∞ (although not necessar-

ily) or any subset of those. At any time t, one can calculate the importance

weights as :

wt(y0:t) :=
βt (y0:t)

qt (y0:t)
=

gt (xt | yt) ft (yt | yt−1) qt−1 (y0:t−1)

qt (y0:t)
wt−1 (y0:t−1) . (1.19)

although one notices that using that as a general proposal is fairly inefficient

from a computational standpoint since simulating the path y0:T and calculating

its likelihood through q() will impose a heavy computational burden. Therefore

it would be much preferred if we could decompose q(·) (and we can given the

assumption of Markov Property) and do so sequentially:
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qt (y0:t)
10 = f0 (y0)

t
-

s=1

fs (ys | y0:s−1) (1.20)

as we can then observe that the importance weights w now satisfy a recursion

of the form:

wt (y0:t) =
gt (xt | yt) ft (yt | yt−1)

pt (yt | y0:t−1)
wt−1 (y0:t−1) (1.21)

We can therefore see that the normalised importance weights

N
"

i=1

ŵ
(i)
t

.

Y
(1:N)
0:t

/

z
.

Y
(i)
t

/

(1.22)

and the (normalized) importance sampling estimator

ŵ
(i)
t

.

Y
(1:N)
0:t

/

=
wt

.

Y
(i)
0:t

/

(N
j=1 wt

.

Y
(j)
0:t

/ (1.23)

can be iteratively updated. Assuming one has supp (βt) ⊆ supp (qt), then this

importance sampling estimator has the same properties as the normalized im-

portance sampling one. Of course there is a certain obvious price that we have

to pay for the benefit such algorithm brings: it is evident that the products of

1.21 will result in a rapid increase in variance as one could calculate by taking

the variance of the weights at time t and at time t+1 and therefore estimators

of this nature will exhibit large variance. This is commonly referred to in the

literature as a path degeneracy problem. In order to address this issue Gordon

et al. [1993], Kitagawa [1987] proposed the sequential importance resampling

algorithm and in a more general sense the sequential Monte Carlo algorithm

class as described in the algorithm 2 of the next page. It is essentially a combi-

nation of SIS and resampling. In this algorithmic improvement one resamples

the particles according to their normalised weights ŵ1:N
t resulting in an allevi-

ation of the degeneracy issue, by throwing away particles with small weights

and replicating those with large weights (relative to each other). One could

summarise the improvement here by noting that we essentially propose new

particles through some proposal q by incorporating the information provided

10this is one possible choice of the proposal function q(·). One could of course use the prior
as the proposal q1 = κ(y1), q(yt | yt−1) = f(yt | yt−1) which would result in the simplified
weights being equal to g(xt | yt). This is nonetheless a sub-optimal choice.
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by the empirical measure of the approximation of our target at time t. In other

words we propose from 0γ1 (y1) q2 (y2 | y1), rather than from q1 (y1) q2 (y2 | y1)
as in sequential importance sampling, with 0β the approximation of βt at time

t in algorithm 2. It is worth mentioning that this, nevertheless, does not elim-

inate the issue of particle degeneracy since no original genealogies (or paths)

of the particles are created, just replicated ones. Resampling usually comes

in different flavours, such as stratified, systematic, residual and multinomial.

Residual resampling exhibits lower variance than multinomial Liu and Chen

[1998]. Further, Carpenter J et al. [1999] show that stratified resampling has

minimum variance as an unbiased resampling technique. Any choice of the re-

sampling techniques mentioned above will immediately increase the variance

of the estimator employed, yet since the goal is to decrease the path degener-

acy it can be said that for larger time horizons it will reduce the variance in
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the estimator overall.

Algorithm 2: Sequential Monte Carlo (general) Algorithm

1 if t=1 then
2 for i ∈ {1 : N} do
3 sample Y i

1 ∼ q(·), the compute weights 11:

wi
1 =

γ
!
yi1
"

q
!
yi1
" .

sample the ancestral (at time t− 1) indices ait of the resampled

particles from h(|·) ∈ {1 : N} with jth probability wj
1 ∝ wj

1,
resulting in

%
a1:N1

&
. Set normalised weights = 1/N

4 end
5 t = t+ 1
6 for i ∈ {1 : N} do

7 sample Y i
n | xa(i)1:n−1 ∼ q

'
· | ya(i)1:n−1

(
and compute the weights:

wi
n =

γ
'
yin | ya(i)1:n−1

(

q
'
yin | ya(i)1:n−1

(

sample indices ait of the resampled particles from h(|·) ∈ {1 : N}
with jth probability wj

n ∝ ŵj
n. Set normalised weights = 1/N , and

set n := n+ 1. Return to the start of Step 2
8 end
9 .

10 else

11 end

An added benefit of the SMC sampling scheme is the fact that it provides

estimates of the normalising constants of γt, which are in fact unbiased:

β̂,1:t =
T
-

t=1

1

1

N

N
"

i=1

ŵi
t

&

xi
1:t

'

2

(1.24)

1.3.7 Sequential Monte Carlo Samplers

Given the motivation behind Sequential Monte Carlo, it would perhaps seems

strange to wonder whether one could in fact use SMC like algorithms but not

11unormalised
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for the explicit purpose of sequential inference, but rather for a more general

inference procedure on a rather general space of interest. The authors in Del

Moral et al. [2006], Del Moral and Jasra [2007], Del Moral et al. [2007] propose

one such methodology called Sequential Monte Carlo Samplers. The intention

there is to have some sort of technique that would enable one to perform

inference on some generic sequence of target measures in arbitrary spaces that

have some relation. In general we would like to perform inference on some

general complex target of some form ω(dx). One could try to implement the

algorithms described in the previous section but once the algorithm moves

to the next step no update can be performed retrospectively for the previous

states, only to new updates (and states). In addition, it is obvious that given

the updating nature of the algorithm and incorporation of new observations it

operates on an increasing state space (strictly so) and enjoys the conditional

independence properties that are very much an integral part of its procedure.

It is therefore a critical issue of defining a proper state space where one such

sampling procedure might be effectively carried out. The novel idea of the

aforementioned works is that of defining a sequence of synthetic distributions

that exhibit the required properties.

What we essentially want to do is given our intended target ω(dy) on

some measurable space (A,A), we define a sequence of targets ω1:n(dy) so that

ωn(dy) = ω(dy). An advantage of that is that we have the common measure

space (A,A), where those targets are defined upon, instead of a sequence of

nested spaces

{(En, En) ;En−1 ⊆ En}mn=1 as in the regular approach of the previous sections.

Assume for now that we would like to have ω1:n(dy) as our target with a SMC

scheme. At some iteration t the particle population Y 1:N
t is distributed with

importance density γt−1(dyt−1) and additionally perturbed by some Markov

Kernel Kt(yt−1, dyt) that has as its density kn(yn|yn−1); we then have the parti-

cle population be distributed (marginally) following the proposal distribution:

γt (dyt) =

#

A

γt−1 (dyt−1)Kt (yt−1, dyt) (1.25)

and assume that we can calculate the density γt(yt) pointwise. It is the easy

to see that one can calculate the importance weights and furthermore the ex-
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pections one needs with immediate Importance sampling calculation as before.

Nevertheless, reconsider the integral above in an expanded form:

γt (yt) =

#

At−1

γ1 (y1)

$

t
-

j=2

kj (yj | yj−1)

%

dy1:t−1 (1.26)

It seems like it is impossible to calculate not to mention its high dimensional-

ity. Alternatively, we attempt toe estimate the integral above (1.26) with the

following expression:

γN
t−1kt (yt) :=

1

N

N
"

i=1

kt

.

xt | Y (i)
t−1

/

(1.27)

The issue with that of course is that the cost of that procedure would scale

as O(N2) making the cost prohibitive (since the density γt(Y
j
t ) would have to

be approximated for all j = 1 : T . Additionally, we cannot always calculate

kt(yt|yt−1) pointwise and therefore even if we could tolerate the computation

burden, this makes it completely unfeasible otherwise. It is therefore this

setting that allows the alternative in the form of a SMC sampler thereby

bypassing the need to compute 1.26. The authors then have the idea of an

augmented state space that is being facilitated by the existence of a forward

and backwards Markov Kernel K and L respectively, although the ingenious

idea here is that of the backward kernel taking into account the weakness

we mentioned before about allowing the past states to be incorporated into

the algorithmic setup retrospectively. Del Moral et al. [2006] then use an

importance density γt(y1:t) in order to obtain a sample from the augmented

joint density

ω̂t (y1:t) =
η̃t(y1:t)

Zt

def
=

ηt (yt)
3t

k=2 lk−1 (yk−1 | yk)
Zt

(1.28)

with marginal ωt(yt) and η̃t some artificial distribution, while ηt the artificial

joint distribution at time t when using the reverse Markov kernels lt as ex-

plained in Del Moral et al. [2006]. We can now see that every particle path
4

Y
(i)
1:t−1

5

at iteration t is carried forward with the Markov kernel Kt (yt−1, dyt)

and consequently given weights W
(i)
y ∝ w

.

Y
(i)
1:y

/

, with the function w (y1:y),
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that measures the discrepancy of η̂t (x1:t) and γt (x1:t) :

w (y1:t) =
η̃t (y1:t)

γt (y1:t)

=
η̃t−1 (y1:t−1) ηt (yt) lt−1 (yt−1 | yt)

ηt−1 (yt−1)
· 1

ηt−1 (y1:t−1) kt (yt | yt−1)

= w (y1:t−1) · ηt (yt) lt−1 (yt−1 | yt)
ηt−1 (yt−1) kt (yt | yt−1)

.

(1.29)

Now, given that ω̂t (y1:t) has ωt (yt) as its marginal distribution, the final

weighted sample
4.

Y
(i)
t ,W

(i)
t

/5

then is indeed by construction an approxima-

tion of the target density we started with. Given the weight update described

above we can now see that the algorithm for the SMC sampler 3 would be the

one given below:

Algorithm 3: Sequential Monte Carlo Sampler

1 if t = 1 then
2 for i=1:N do

3 Y
(i)
1 ∼ µ1 with µ1(·) an instrumental distribution

4 Set weights to: W
(i)
1 ∝ dη1

dµ1

'
Y

(i)
1

(

5 end
6 else
7 t ← t+ 1
8 for i = 1 : N do

9 Y
(i)
t ∼ Kt

'
Y

(i)
t−1, ·

(
and

10 W
(i)
t ∝ W

(i)
t−1

ηt
#
Y

(2)
t

$
Lt−1

#
Y

(2)
t ,Y

(i)
t−1

$

ηt−1

#
Y

(i)
t−1

$
Kt

#
Y

(i)
t−1,Y

(i)
t

$

11 end
12 Resampling can be performed at this step by sampling ancestral indices

a ∼ Categorical distribution O(W 1
t , .,W

N
t ) Additonal rejuvenation can

be conducted at this stage by allowing the particles to move by a
Markov kernel of invariant distribution ωt.

13 end

It is worth pointing that since the unknown normalising constants are

proportional to the weights we update the weights with ηt instead of ωt as

indicated in the algorithm with the proportional sign. Furthermore, given that

we get an estimate of the normalising constant from SMC type algorithms as

in (1.24) we can see that we will also be able to estimate in this case the ratio

of them, i.e. ηt and η0 respectively as follows:
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6ηt
η0

N

=
t

-

k=1

N
"

i

wk(y
(i)
1:k) (1.30)

1.3.8 The pseudo-marginal approach to MCMC

It is often the case that in real world applications the density of interest π is

often intractable (in more than one way). Work done for example in Beaumont

[2003], Andrieu and Roberts [2009] inspired by issues in population genetics

has tried to address those issues, with the main assumption that an unbiased

estimate of a point evaluation of the target is in fact available. Explicitly

this means that for ∀x ∈ X we have available the estimates π̂(x) (which are

non-negative) with the unbiasedness condition E[π̂(x)] = π(x) and with the

expectation over all the random variables used (implicitly) to generate the

computed estimate π̂(x) = π̂(x;ψ).

We could of course independently sample N ∈ N∗ estimates
7

π̂(x)(i)
8N

i=1

for every proposal x - taking advantage of the Law of Large Numbers- and

substitute the approximated quantity into the acceptance ratio of the marginal

algorithm by using the estimate N−1Σiπ̂(x)
(i) ≈ π(x). Subsequently we could,

by increasing N , effectively (and mathematically) decrease the discrepancy

between this estimate and the true value to an arbitrary precision. Therefore

by increasing our number of estimates N we could imagine that we are in some

sense running an ”averaged” algorithm that intuitively approaches the exact

one. In fact as shown in Andrieu and Roberts [2009] this intuition is not only

correct but we are in fact despite running a ”noisy” sectional (with respect

to the acceptance ratio) version of some ”exact” algorithm we are marginally

targeting the true posterior (hence the term pseudo-marginal). To see this

consider the case N = 1 without loss of generality.

The analysis of this type of algorithmic framework is given in Andrieu and

Roberts [2009], Andrieu and Vihola [2015]. We will follow their notation for the

time being. Writing the unbiased estimates as their true value multiplied by

some noise, i.e. π̂(x) = Wxπ(x), with Wx ∼ Qx(·) ≥ 0 and E [Wx] = 1, ∀x ∈ X.
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In order to be precise take the collection of probability measures {Qx}x∈X be

defined on some measurable space (R+, B (R+)). Now consider the extended

distribution on a product space such as (X× R+,B(X)× B (R+)), given by

π̃(dx, dω) := π(dx)πx(dω) where πx(dω) := Qx(dω)ω. Clearly we get π̃ having

as marginal distribution π because
!

π̃(x, dω) = π(x).

Consider now the regular MH algorithm having as target π̃ with proposal

q̃(x, w; dy, du) := q(x, dy)Qy( du). The acceptance ratio ends up being:

α̃(x,ω; y, u) = min

9

1,
π̃(dy, du)q̃(y, u; dx, dω)

π̃(dx, dω)q̃(x,ω; dy, du)

:

= min

9

1,
π(dy)Qy( du)uq(y, dx)Qx( dω)

π(dx)Qx( dω)ωq(x, dy)Qy( du)

:

= min

9

1,
π(dy)q(y, dx)

π(dx)q(x, dy)

u

ω

:

= min
4

1, r(x, y)
u

ω

5

(1.31)

By simplifying the acceptance ratio we can see that we have the ”original

ratio” r(x, y) times some factor which translates into a variant of the marginal

algorithm characterised as ”noisy” (since we have altered the target in the nu-

merator and denominator). We call the resulting algorithm pseudo-marginal.

The name refers rather to the idea and intuition behind the construction of

this extended space but we as one can see by careful consideration of the quan-

tities involved we are in fact making use of an ”exact” algorithm, since we are

after all still targeting π. As a last step consider now the Markov kernel used

in the algorithm:

P̃ (x,ω; dy, du) := α̃(x,ω; y, u)q̃(x,ω; dy, du) + δx,ω( dy, du)ρ̃(x,ω) (1.32)

and where, analogously to the marginal algorithm, we reject with probability

ρ̃(x,ω) := 1−
##

α̃(x,ω; y, u)q̃(x,ω; dy, du) (1.33)
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Some complications arise if we wish to extend the argument to the av-

erage of a multiple unbiased estimators. Assume that we average N of those

(unbiased) estimates at each step, thereby obtaining an estimate of our target

∀x ∈ X, of N−1
(

i Wiπ(x) where W1:N := (W1, . . . ,WN) ∼ QN
x , with QN

x

being some probability measure on RN
+ ..

In analogous fashion to the N = 1 scenario, we can think of the pseudo-

marginal algorithm as utilising these averages as a MH algorithm targeting

π̃N ( dx, dw1:N) := π(dx)πN
x ( dw1:N) where

πN
x ( dω1:N) := QN

x ( dω1, . . . , dwN)N
−1Σiωi (1.34)

which admits π as its marginal distribution. Taking (x,ω) to be the current

state, for some x ∈ X and w ∈ R+, consider the following algorithm.

Algorithm 4: General Pseudo-Marginal algorithm

1 begin
2 Input: state at current time: (x,w)
3 get a sample Y ∼ q(x, ·).
4 get a sample U ∼ QN

Y (·).
5 With probability α̃(x,w;Y, U) as given in 1.31 :

set
!
x′, w′" ← (Y, U) (1.35)

otherwise set
6

set
!
x′, w′" ← (x,w) (1.36)

7 Output: new state (x′, w′)
8 end

It is worth mentioning that the acceptance rate of an ”exact” type marginal

(within the appropriate extended space) algorithm is always greater than that

of the pseudo-marginal. The authors in Andrieu and Vihola [2015] do in fact

demonstrate that the asymptotic variance of the pseudo-marginal algorithm is

always greater than that of the exact marginal (see Thorem 7 in Andrieu and

Vihola [2015]).
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1.3.9 Particle MCMC

Given that we now have a framework through which if we could somehow ob-

tain unbiased estimators of some kind of likelihood, the next obvious question

is through what means, and under which algorithmic framework might we do

so. One of the most important applications of pseudo-marginal framework one

could argue is the work of Andrieu et al. [2010].

In that framework we would like to have some augmented space and cor-

responding measure, such that given our target density ω, we will be able to

construct an extended density ωN , that has our target as its marginal. The

main idea here would be to use SMC type algorithms like those of the previous

section. Assume we have a target density denoted ω (θ, y1:n) = ω(θ)ωθ (y1:n).

We can sample from ωθ (y1:n) using some SMC method. In Andrieu et al.

[2010] , the authors propose using an embedded SMC algorithm to generate

the proposal inside an MCMC algorithm that has as invariant target density

an (extended) version of ω(θ, y1:n). Let us follow the same steps as the paper in

developing the idea of the PMCMC methodology. Let us begin by constructing

the extended target ωN . Consider the joint density of (y, a) up to time n (of

the SMC) is

ψθ

&

y1:m1:n , a1:n−1

'

=

$

M
-

i=1

Gθ

&

yi1
'

%$

n
-

j=2

r (aj−1 | wj−1)
M
-

i=1

Gθ

.

yij | ya(i)1:j−1

/

%

(1.37)

without the terminal resampling. Here r (aj−1 | wj−1) =
3M

i=1 w
a(i)
j−1. Here ai,

and for most of the notation, denotes the ancenstral index the ith particle

sampled according to the particle weights wi from some distribution r (for

example multinomial). Given θ, the density of
7

y1:M1:n , a1:M1:n−1

8

conditioned on
&

Y k
1:n = yk1:n, A

k
1:n−1 = ak1:n−1

'

will be

ψθ (y
1:m
1:n , a1:n−1)

Gθ

&

yk1
'

.

3n
j=2 w

a(k)
j−1Gθ

.

ykj | ya(k)1:j−1

// (1.38)
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One can use 1.37 and the expression above to formulate an extended target as

ωN (k, θ, y1:n, a1:n−1) =
ω
&

θ, yk1:n
'

ψθ (y1:n, a1:n−1)

MnGθ

&

yk1
'

.

3n
j=2 w

a(k)
j−1Gθ

.

ykj | ya(k)1:j−1

// (1.39)

with

ω
&

θ, yk1:n
'

Mn
= ωM

&

θ, yk1:n, a
k
1:n−1 | (samples from 1.38)

'

(1.40)

Where by k we denote the RV that represents the index of one sample
&

yk1:n, a
k
1:n−1

'

being resampled from
7

y1:M1:n , a1:M1:n−1

8

. Therefore,
&

yk1:n, a
k
1:n−1

'

and

θ can be accordingly sampled from the marginal ω (θ, y1:n) if one indeed has

{k, θ, y1:n, a1:n−1} from 1.39. Finally, sampling {k, θ, y1:n, a1:n−1}, we can target

1.39 with the (PMMH) algorithm below 5, that has the following proposal

density:

GN (k, θ, y1:n, a1:n−1) = G(θ | θ∗)ψθ (y1:n, a1:n−1)w
k
n (1.41)

where θ ∼ G(· | θ∗) proposes a new value in the parameter space θ∗ ∈ Θ con-

ditional on the current (accepted) one θ and wk
n the probability of resampling

the path
&

yk1:n, a
k
1:n−1

'

. Also notice that if ω (θ, y1:n) = ω (θ, y1:n | x1:n) and

γ (θ, y1:n) = ω (θ, x1:n, y1:n), then we have Zθ,1:n = pθ (y1:n) as the normalising

constant of ωθ (y1:n) = ωθ (y1:n | x1:n). In such a situation, the acceptance prob-

ability of 5 suggests that the target of Particle Marginal Metropolis-Hastings

is ω (θ | x1:n) ∝ ω(θ)pθ (x1:n), that is of course in turn the marginal density of
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ω (θ, x1:n | y1:n).

Algorithm 5: Particle Marginal MC algorithm

1 begin
Input: θt ∼ π, sample the rest of the variables through 1.39

2 :
3 if t = 1 then
4 yt1:n, a

t
1:n−1 | · · · ∼ ψθt(·) from running the SMC in algorithm 2 ,

without terminal resampling step (at iteration tlast).

5 pick kt ∝ W t,kt
n .

6 Calculate the estimate, Ẑt
θt,1:n, by 1.24

7 else
8 t = t+ 1, Set Sample θ∗ ∼ q

!
· | θt−1

"
. similarly to step 1 :

9 sample y∗1:n, a
∗
1:n−1 | · · · ∼ ψθ∗(·) by using algorithm 2 with a

terminal resampling .

10 Choose k∗ ∝ W ∗,k∗
n . Finally, calculate the marginal likelihood

estimate, Ẑ∗
θ∗,1:n, by 1.24

11 With acceptance probability

1 ∧ ωN(k∗,θ∗,y∗1:n,a∗1:n−1)
ωN(kt−1,θt−1,yt−1

1:n ,at−1
1:n−1)

· GN(kt−1,θt−1,yt−1
1:n ,at−1

1:n−1)
GN(k∗,θ∗,y∗1:n,a∗1:n−1)

=

1 ∧ ω(θ∗)
ω(θt−1)

G(θt−1|θ∗)
G(θ∗|θt−1)

Ẑ∗
θ∗,1:n

Ẑt−1

θt−1,1:n

(1.42)

set kl = k∗, θl = θ∗, yl1:n = y∗1:n, and al1:n−1 = a∗1:n−1. Otherwise, set

kl = kl−1, = θl−1, yl1:n = yl−1
1:n , and al1:n−1 = al−1

1:n−1 go to step 1
12 end
13 end

1.3.10 SMC2 algorithm

The SMC2 algorithm Chopin et al. [2013] is an application of the idea behind

PMCMC for inference of Hidden Markov Models with the aim to sample from

π (θ, x1:n | y1:n). More generally it is a noisy version (in the pseudo marginal

sense) of a general SMC algorithm; the IBIS algorithm of Chopin [2002]. In

the IBIS algorithm we have an idealised weight updating since it is often the

case that for the model and problem we are interested in the ratio is not com-

putable and are instead replaced by an auxiliary SMC sampler that provides

an unbiased estimate of the desired measure. In order to justify and prove

the consistency of the algorithm’s estimates (for particle number Nθ → N for

some large N), one could think of it as a reformulation of the SMC algorithm
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on an extended space X ×Θ as the density in the beginning implies. We could

also think of the algorithm as a particle filter type such as the ones described

in Vergé et al. [2015].

Algorithm 6: IBIS algorithm

1 for t=1:T do
2 Sample θi, i ∈ 1 : Nθ

3 compute the weights
4

ω̂t (θ
m) = p (yt | y1:t−1, θ

m) , Lt =
1

)Nθ
m=1 ω

m
×

Nθ*

m=1

ωmω̂t (θ
m) (1.43)

with p (y1 | y1:0, θ) = p (y1 | θ) when t = 1.
5 Update the weights,

ωm ← ωmω̂t (θ
m) (1.44)

given some degeneracy condition (in the ESS 12sense) , sample θ̃m

independently from the mixture

1
)Nθ

m=1 ω
m

Nθ*

m=1

ωmKt (θ
m, ·) (1.45)

replace the current weighted particle system, with the new unweighted
particles:

(θm,ωm) ←
'
θ̃m, 1

(
(1.46)

normalise weights and update
6 end

The author Chopin [2004] proves that one can estimate

E [ψ(θ) | y1:t] =
#

ψ(θ)p (θ | y1:t) dθ (1.47)

consistently and in the asymptotic regime Nθ → ∞ with

(Nθ

i=1 ω
iψ (θm)

(Nθ

i=1 ω
i

(1.48)

for all integrable functions ψ defined appropriately. The Markov kernel K de-

notes an MCMC procedure with which we maintain the invariance of p(θ|y1:t)

12Abbreviation for Effective Sample Size defined as ESS =

!"Nθ
m=1 ωm

#2

"Nθ
m=1(ω

m)2
. The degeneracy

condition is usually something of the form ESS < αNθ with a ∈ [0, 1]
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They also show that the L calculated in 1.44 is a consistent estimator of

p(yt|y1:t−1), as well as asymptotically consistent. A crucial point of the al-

gorithm nonetheless is the realisation that the likelihood steps p(yt|y1:t−1,θ)

used throughout (in the SMC but also in the MCMC step) are intractable (in

general state space model, but also as we will see in chapter 5 in the context of

ABC). The authors then in the seminal paper Chopin et al. [2013] propose a

way to estimate that with a SMC type algorithm. We will revisit SMC2 in the

fourth chapter of this thesis as it will form the basis for our novel algorithm.

1.3.11 Approximate Bayesian Computation

The first idea of an ABC-like algorithm was demonstrated in Rubin [1987]; a

”conceptual experiment” of sort. One could sample different values of θ from

some prior distribution π(θ) and then under some model p(·, θ) a new set of

data y 13 would be simulated. If the observed data points (in a general sense)

were equal to the simulated ones then Rubin argued that the set of the drawn

parameters is a sample from the true posterior π(θ|y). The author went to

point out that this would imply that for continuous high dimensional data one

would need to have an infinite number of steps to obtain just one sample from

the desired posterior. Almost 15 years later and in Pritchard et al. [1999] the

proposed algorithm was implemented, while addressing the infinite iteration

issue and proposing a finite run time resolution. The idea required that the

observed data were not exact matches of the simulated one, but rather ”close”

to them for some pre-defined metric and associated distance !.

A brief overview of approximate Bayesian computation is at hand since

it forms the underlying basis of this project and despite not being part of the

completed novel work presented at the end, it is still used in the stochastic

approximation Markov chain Monte Carlo for which we have some preliminary

results.

13we will denote from here on and for the rest of this section with bold y, the potentially
multidimensional data. Similarly parameter(s) θ can also be assumed to be of an arbitrary
dimension without any change in our elaboration or description of the operation of the
algorithms unless explicitly stated
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The ABC process is as follows:

1. generate parameter values θ from some distribution g(·) (usually the

prior)

2. generate data y from the likelihood p(y|θ) conditional on those parameter

values θ

3. accept the proposed θ if ||y − yobs|| ≤ !, notice the equivalence between

this and drawing a sample (θ,y) from some joint distribution propor-

tional to I(||y − yobs|| ≤ !)p(y|θ)g(θ) with I the indicator function, and

I(S) = 1 if S is true or I(S) = 0 if S is false

If our sample is accepted with probability proportional to π(θ)/g(θ) this means

that our likelihood-free rejection algorithm is sampling from the joint distri-

bution proportional to:

I(||y − yobs|| ≤ !)p(y|θ)g(θ)π(θ)
g(θ)

= I(||y − yobs|| ≤ !)p(y|θ)π(θ) (1.49)

and hence if we have ! = 0 the marginal of θ of 1.49 equals the true posterior

since

lim
!→0

#

I(||y−yobs|| ≤ !)p(y|θ)π(θ)dy =

#

δyobs(y)p(y|θ)π(θ)dy = p(yobs|θ)π(θ)
(1.50)

For ! → 0 , the rejection algorithm produces samples, (θ,y) and by

marginalising over y, one has the distribution of the target posterior, π(θ|yobs).

(The marginal of this auxiliary dataset y is essentially a point mass at {y =

yobs})

The above approach, is termed rejection-ABC due to the fact that if the

simulated observations are not ”close” enough to the real data we reject the

assumption that they came from a likelihood with parameter θ close to the true

parameter. It becomes evident that an algorithm incorporating such method

can be easily implemented by any practitioner of any field (as it has been)

with some success. Of course the reality is that if one is to have any hope in
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simulating data that are close enough to the observation one would need to

simulate for millions and billions of parameters values and most importantly

compare every single observation to every simulated one (in the output vector

of arbitrary dimensionality and size) and taking a simple unweighted) euclidean

distance between them will somehow output a good comparison down to a

single number, !. This seems like a rather poor approximation to the true

posterior target. First, we always reject observation that are further than

some arbitrary chosen !, and in practice this is usually set up after a very large

number of simulations have been performed and we decide we are going to keep

a certain (small) percentage of them. One improvement to this is the fact that

we can set up our process with a different kernel (rather than the uniform)

that will probabilistically accept/reject simulated values depending on how

far/close the simulation data are to observations. Secondly, although not an

”improvement” in a theoretical sense but rather a very sensible computational

consideration, is that we can resort to using not the full simulated output and

observations in the comparison, but rather some summary statistics of those.

The reason is that it is very hard to try and get very high dimensional objects

”close” in some defined metric. The probability of that happening rapidly

decreases as the dimensionality grows. We therefore have two improvements to

rejection ABC: (i) instead of the uniform kernel use some other smooth kernel

that will return a more continuous scaling from 0 to 1 for data that are ”close”

and ”far” from the observation and which makes more sense than an arbitrary

span of the uniform kernel which by construction does not differentiate between

samples that are for example exactly equal to the observed ones and those

that are the furthest away (i.e. the distance being exactly !). (ii) arguably

the first thing a practitioner encounters even before the choice of kernel is

that of the comparison between observations themselves. As we mentioned

an arbitrary distance metric between all observation points will hardly have

any given parameter value be close enough to our true one since they all have

to be close to each other. Suffice to say that this seems very much unlikely

as the dimensionality and size of data grows, until a certain points for which

it truly does not make much sense any more due to high dimensional spaces

and their inherent characteristics not to mention the computational effort. In

order for that to happen we then need to increase the scale parameter ! which

then by construction makes the approximation to the posterior worse. We can

therefore resort to summary statistics for our data and compare those. The
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statistics reside in a much lower dimensional space than the full data obviously,

which allows us to turn the scale parameter ! down in order to achieve a better

approximate posterior.

ABC-MCMC

We will for simplicity of presentation assume it is reasonable to use the uni-

form kernel and the full data (although in any subsequent notation changing

the pseudo-dataset y with some summary statistics S(y) does not alter our

exposition. We should note that for the remainder of the section we will switch

our notation from y to x and from yobs to y for ease of notation ABC uses the

posterior distribution

π! (θ, x | y) ∝ p (θ) f (x | θ) g! (y | x, θ) ,

where g! is the ”ABC kernel”, which we choose to be the usual uniform one

around x, and tends to the Dirac δx (y) as ! → 0, such that, roughly speaking,

π! (θ, x | y) → π (θ | y) as ! → 0.

The reason this posterior distribution is used is that f is intractable in the

sense that it cannot be evaluated pointwise at θ. The idea that is exploited is

then that one can set up a Monte Carlo algorithm to sample from π! (θ, x | y)
by making use of f (x | θ) as a proposal for x. For example, in a step in

an MCMC algorithm, where θ∗ ∼ q (· | θ) and x∗ ∼ f (· | θ∗), we obtain an

acceptance probability of

α ((θ∗, x∗) | (θ, x)) = 1 ∧ p (θ∗) f (x∗ | θ∗) g! (y | x∗, θ∗)

p (θ) f (x | θ) g! (y | x, θ)
q (θ | θ∗) f (x | θ)
q (θ∗ | θ) f (x∗ | θ∗)

= 1 ∧ p (θ∗) g! (y | x∗, θ∗)

p (θ) g! (y | x, θ)
q (θ | θ∗)
q (θ∗ | θ) .

This means that we can implement the algorithm without ever evaluating f at

θ. This is called ABC-MCMC. With this view, we can see that this algorithm

might not explore the space very efficiently - because the proposal for x is not

likely to be very good in a number of cases.
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We can see that this is a pseudo-marginal type algorithm Andrieu and

Roberts [2009] (section 1.5) : f (x | θ) g! (y | x, θ) is used as a crude (but un-

biased) estimate of
!

x
f (x | θ) g! (y | x, θ) dx, see for example Fearnhead and Prangle [2012]. Note

that we could use a number of x samples for each θ, and obtain a more efficient

MCMC (but at increased computational cost).

1.3.12 SMC-ABC

One of the application of SMC sampler is to likelihood free inference prob-

lems and specifically in Approximate Bayesian Computation. They were first

introduced in Sisson et al. [2007] with the idea being that we define similarly

to SMC sampler a sequence of targets, that here are a sequence of ABC pos-

teriors with decreasing tolerance levels !t ≤ !t−1, for t = 1, . . . , T . The initial

tolerance is usually chosen so that samples are drawn from the prior distribu-

tion. We choose the final tolerance level to be some desired !. Here we will

use a variation of the idea by Del Moral et al. [2012], with the sequence of

unormalized targets being π!t(y | x)f(x | θ)p(θ) for t = 1, . . . , T , with initial

distribution f(x | θ). To fix notation we denote the values of the particles in

the SMC sampler to have a (p) superscript to distinguish them from random

variables/vectors. Here we use a form of ABC-SMC that utilises the likelihood

estimates of points drawn from the likelihood given θ: take the nth point to

be the mth particle in θ-space, denoted by xn,m
t,θ . Initialise the algorithm by

sampling each θ
(m)
0 ∼ p setting its unnormalised weight ω

(m)
0 = 1 and for each

m, simulate xn,m
0,θ ∼ f

θ
(m)
0

(·) for 1 ≤ n ≤ Nx. These simulations in x-space

conditional on θ will be used to estimate the ABC likelihood at iteration t

with lt(y | θ) = !

x
π!t(y | H(x, θ))φ(x)dx by using the estimator

l̂ (y | θ) = 1

Nx

Nx
"

n=1

π!t(y | H(xn, θ))φ(xn)). (1.51)
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Then the ABC-SMC sampler is as follows.

Algorithm 7: SMC-ABC algorithm

1 for t = 1 : T do
2 for each 1 ≤ m ≤ Nx do
3 Compute the estimate of the likelihood lt (y | θm) of the ABC

likelihood when using 't
4

l̂t (y | θm) =
1

Nx

Nx*

n=1

π!t

'
y | xn,mt,θ

(
.

- Update the importance weights. If t = 1

ωm ← ωm l̂1 (y | θm)

else if t > 1

ωm ← ωm l̂t (y | θm)

l̂t−1 (y | θm)

- If some degeneracy condition is fulfilled (e.g. the effective sample

size), sample
'
θ̄m, x̄1:Nx,m

t

(
independently from the mixture

distribution
ωm

)Nθ
j=1 ω

j
Kt

+'
θm, x1:Nx,m

t

(
, ·
,

where Kt is an ABC-MCMC kernel with respect to target t in the
SMC.

5 end
6 end

Here we have described a different version of SMC-ABC as given in Del

Moral et al. [2012]. In our case MCMC moves are only utilised given certain

degeneracy criteria. We also write the resampling step and an MCMC moves

as a sampling procedure from a mixture distribution to compare directly to

the SMC2 of Chopin et al. [2013] which will be the base for the novel algorithm

in chapter 4.
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Chapter 2

Stochastic Approximation

Monte Carlo ABC

2.1 Wang-Landau algorithm

An important problem of inference on general target measure ω on some

measurable space (Y ,K, µ) is that of multimodality. Putting aside the issue

with distributions that can have particularly problematic shapes (e.g. banana

shape, funnel etc) the issue of multiple modes presents unique challenges that

are different in a number of ways than those presented by unusually shaped

posterior distributions. Primarily that difficulty lies in the fact that even very

well pre-conditioned and adaptive algorithms can have issues transversing the

very lower probability regions between nodes, especially so in high dimensional

spaces. A number of approaches have been proposed in order to overcome

such issues, such as parallel tempering Geyer [1991], with an adaptive version

in Miasojedow et al. [2013], the Wang-Landau algorithm Wang and Landau

[2001a], Wang and Landau [2001b], the approach of simulated tempering by

Marinari and Parisi [1992], and tempered transition of Neal [1996]. More

recently there have been interesting developments such as the stochastic ap-

proximation Monte Carlo method of Liang [2009],and for an overview Liang

[2014], based on earlier work Liang [2005], with extensions Liang [2007], as

51
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well as more recent work based on the idea of mode jumping in Pompe et al.

[2020]. In this chapter we will focus our attention and provide some encourag-

ing experiments for a derivative work of the stochastic approximation Monte

Carlo method applied to likelihood free inference problems as proposed first in

Richards and Karagiannis [2020] and communicated privately by the second

author to us. First, let us give a brief overview of the basis for stochastic

approximation methods in general: the Wang-Landau algorithm.

Assume a partition of the state space of interest Y into disjoint sets

Y1,Y2, ...Yn:

Y =
n
;

i=1

Yi (2.1)

and assume we can obtain independent and identically distributed samples (by

some procedure, although here the formulation will be for MCMC algorithms),

Y1, ...YT . Then we have that for any j ∈ [1, n]

1

T

T
"

k=1

IYn (Yk)
P−→

T→∞

#

Yj

ω(x)dx =: ψj (2.2)

with IYn denoting the indicator function being equal to 1 when y ∈ Yn and

0 otherwise. If we can generate samples Y1, ...YT from some ergodic chain,

for example one constructed by a Metropolis-Hastings algorithm we then have

convergence in the sense defined on chapter 1, section 2.

In the Wang-Landau algorithm we aim to acquire samples so that any

subsample

{Yk for k ∈ [1, T ] s.t. Yk ∈ Yj} (2.3)

for any i ∈ [1,m] will have distribution based on the restriction of ω to Yi and

consequently for any i ∈ [1,m]

1

T

T
"

k=1

IYi
(Yk)

P−→
T→∞

ξi (2.4)

with ξ= (ξ1, . . . , ξn) some choice of vector (which shall play the role of weights
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or frequency of visit to the different ”levels” that can be chosen to ”slice” our

target distribution, and could be any vector in [0, 1]k. such that
(n

i=1 ξi = 1).

The WL algorithm and its applications and improvements/expansions

over the years have as one of the primary goals the exploration of difficult

multimodal distributions and overcoming the difficulty of moving over areas

of low probability mass. They do so by altering the ”weight” or frequencies

these disjoint n-dimensional (for n-dimensional distribution) sets have in the

sampling rate of the algorithm. One can think of these as a pseudo-geometric

way of modifying the target distribution into some smoother version of it dy-

namically thereby making the inter-modal jumps much easier (with respect to

the acceptance probability).

The algorithm proposed in Liang [2005],Liang [2009], allows to forcefully

alter the sampling from the target ω by giving areas of low probability a higher

proportion of visits (than otherwise) ξi from the n-dimensional set of the target.

We can set these frequencies or weights according to how we view the difficulty

of sampling from a given target (or how aggressive we want the weighting to

be). This approach present some issues. First, the ”splitting” of the posterior

mass of ω over the subsets of Y results in masses, say ψi in 2.2 that are unknown

and consequently there is no automatic way of increasing or decreasing the

weight of each subregion in order to get the sampling frequency ξk that we want.

One can think of the weights ξ as the frequency that we would like each subset

of our state space to be sampled from. The original approach of the algorithm

is to introduce some vector of ratios at each green iteration t of the algorithm

defined as zt = (zt(1), . . . , zt(n)), that we update at every iteration and which

are essentially estimates or approximations of ψ1/ξ1, . . . ,ψn/ξn. Taking into

account 2.2 and 2.4, we have that for the posterior of interest ω and the vector

of corrections zt = (zt(1), . . . , zt(n)), the ”corrected” distribution of interest

can be defined as :

ωh(y) ∝ ω(y)×
n

"

i=1

IYi
(y)

z(i)
(2.5)

In the algorithm one usually defines some function S : Y 0→ {1, .., n} that
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maps values of the state space y ∈ Y and gives the index i of the subspace

Yi such that y ∈ Yi, allowing one to re-write 2.5 as ωh(y) ∝ ω(x)/h(S(y)).

One should think about this process as follows: The functions purpose is to

find where in the subspace of the sliced posterior our proposed new value of

the MCMC chain lives, and accordingly modify the sampling frequency of

that region for future visits, thereby biasing the sampling procedure, and in

essence changing the posterior itself at every iteration. The algorithm switches

between a sample generating step target ωh under some kernel Kh (of the

MCMC algorithm) and an update of the vector z using the sample generated

previously. We can see that the algorithm behaves in an adaptive fashion since

the samples generated previously t − 1 are used in the update of the kernel

at iteration t. This process can be imagined as one where an auxiliary chain

(ht) is created producing a collection of samples that are not drawn from our

intended posterior. It is not immediately obvious what kind of correction is

needed in order to obtain samples from the true posterior since these ones are

clearly generated by an adaptive procedure which itself approximates the true

target (in addition to the MC approximation.

The algorithm has seen considerable usage in the physics world Malakis

et al. [2006], Cunha Netto et al. [2006]. Silva et al. [2006]. It is often used

with a ‘flat histogram criterion’. The convergence properties of this procedure

are nevertheless not fully understood (some results indicate that the afore-

mentioned criterion to be reached in finite time in Jacob and Ryder [2014]).

There exist several variations of the base algorithm with various modification

pandering to the needs of the application at hand and the needs of the practi-

tioner. An important component of the algorithm is that of whether to have

a deterministic or stochastic schedule in updating the z we have defined pre-

viously. Lets define some elementary conditions for this to make sense in the

context of the algorithm.

Define (ζt)t∈N to be some sequence in R+ satisfying the following condi-

tions:
<

(

t≥0 ζt = ∞
(

t≥0 ζ
2
t < ∞

(2.6)

Essentially implying convergence of a certain order. One would use a schedule

such as ζt := t−α with α ∈ [0.5, 1] We see that such schedule deterministi-
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cally decreases and its essential role is to modify how much the adaptation

and weighting of each subset of our space changes over time (and essentially

asymptotically being zero at the end for convergence to the true/intended

posterior). We give the pseudo-code for the general Wang-Landau below in

Algorithm 8. In this form, the schedule γt will iteratively decrease, and we

thus call it ”deterministic”.

Algorithm 8: Wang-Landau algorithm with deterministic schedule

1 begin
2 Initialize ∀i ∈ {1, . . . , n} set h0(i) ← 1/n
3 Initialize Y0 ∈ Y
4 for t = 1 : T do
5 Sample Yt trom Kzt−1 (Yt−1, ·) ,MH kernel targeting ωht−1 .
6 Update the penalties: log ht(i) ← log ht−1(i) + g (IYi (Yt) , ξi, ζt)
7 end
8 end

In the last step of the algorithm we update ht−1 to ht, its value depending

on whether the subspace has been visited before, and therefore increasing

the value, while if it has not been visited, decreasing it. An obvious first

question would be what are the potential choices of the updating function g.

We are only constrained by the fact that the function should be positive when

Yt ∈ Yi and that sufficient conditions are met when it is close to 0 such that the

sequence of ζt decreases, thus hopefully ensuring that the penalties do converge

in the appropriate topology (which for all intents and purposes here it will be

the same throughout). In the literature authors/users (for example see Liang

[2005], and the review in Liang [2014]) seem to perform the step with either

of the following two cases:

log ht(i) ← log ht−1(i) + zt (IYi
(Yt)− ξi) (2.7)

or

log ht(i) ← log ht−1(i) + log [1 + zt (IYi
(Yt)− ξi)] (2.8)

We know that if zt converges to 0 when t increases, and with the first

being the first-order Taylor expansion of the second, we would expect the

results to look similar. According to the authors in Jacob and Ryder [2014]
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this doesn’t seem to be universally the case. There are various convergence

results for the case of the updating schedule and its form shown above. This

deterministic schedule makes sure that ht changes in a diminishing fashion as

the number of iterations grows and therefore the defined kernels Kht do so

accordingly. Studies of adaptive algorithms such as the ones in Andrieu and

Atchadé [2007] Atchadé et al. [2011] Fort et al. [2014] where a condition known

as diminishing adaptation holds include cases of this algorithm but with an

important difference. It is the target itself that changes in every iteration

(recall the form of the posterior in the previous page) and not -usually- the

proposal distribution which is the case for these kinds of adaptive algorithms.

The interested reader can also consult Andrieu and Moulines [2006]. Finally,

let us briefly also mention an improvement of the algorithm where the schedule

decreases at random times only (by using the flat histogram criterion) and is

in fact the version widely used in the physics literature (without a particular

theoretical underpinning of its validity nonetheless), yet since in this chapter

we will not be using that version we only passingly mention it for completeness.

2.1.1 Metropolis-Hasting ABC posterior

Here let us reintroduce the ABC-MCMCM algorithm and recall the invariant

target of the algorithm. It will be useful as a backdrop when we think about

what the newly proposed algorithm is in trying to achieve: ABC uses the

posterior distribution π!(θ, x | y) ∝ p(θ)f(x | θ)g!(y | x, θ) where g! is the

”ABC kernel”, which is usually symmetric around x, and tends to the Dirac

δx(y) as ! → 0, such that, roughly speaking, π!(θ, x | y) → π(θ | y) as ! → 0.

The most widely used choice is to take gθ to be a uniform, U(y | x− !, x + !)

for all θ. However, a more sensible choice in many situations might be to use

N (y | x,√!), with σ :=
√
! which as we will see is in fact almost necessary in

the context of this algorithm. The reason this posterior distribution is used

is that f is intractable in the sense that it cannot be evaluated pointwise at

θ. The idea being exploited here is that one can then set up a Monte Carlo

algorithm to sample from π!(θ, x | y) by making use of f(x | θ) as a proposal

for x. For example, in a step in an MCMC algorithm, where θ∗ ∼ q(· | θ) and
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x∗ ∼ f (· | θ∗) , we obtain an acceptance probability of

α ((θ∗, x∗) | (θ, x)) = 1 ∧ p (θ∗) f (x∗ | θ∗) g! (y | x∗, θ∗)

p(θ)f(x | θ)g!(y | x, θ)
q (θ | θ∗) f(x | θ)
q (θ∗ | θ) f (x∗ | θ∗)

= 1 ∧ p (θ∗) g! (y | x∗, θ∗)

p(θ)g!(y | x, θ)
q (θ | θ∗)
q (θ∗ | θ)

(2.9)

Thus we implement the algorithm without ever evaluating f at θ. With this

view, we can see that this algorithm might not explore the space very efficiently

- because the proposal for x is unlikely to be particularly close to areas of high

mass concentration. It is also worth remembering that in this algorithmic

setup we must make the critical choice of ! from the very beginning thus

immediately restricting what the acceptance rate can be, despite the use of

different kernels which have only a probabilistic effect on this. Furthermore,

it is perhaps worth noting that as we briefly discussed in the introduction

this can be seen as a pseudo-marginal algorithm of the type in Andrieu and

Roberts [2009] : f(x | θ)g!(y | x, θ) is used as a crude (but unbiased) estimate

of
!

x
f(x | θ)g!(y | x, θ)dx.. We should mention here that one could use a

number of x samples for each θ, and obtain a more efficient MCMC (but at

increased computational cost). Consider now the target defined above as:

π!(θ, x | y) = g!(y | x, θ)f(x | θ)π(θ)
!

Θ×Y g!(y | x, θ)f(dx | θ)π(dθ) (2.10)

The MH-ABC algorithm targeting π!(dθ, dx | y) with proposal distribution

q(· | θ) has the form

Algorithm 9: Approximate Bayesian Computation Metropolis-

Hastings algorithm

1 begin
2 draw θ′ from q(· | θ)
3 draw x′ from f(x | θ′)
4 accept θ′ with probability aMHABC = min (1, RMHABC) with

RMHABC =
π!(θ

′, x′ | y)q (θ | θ′) f (x | θ)
π!(θ, x | y)q (θ′ | θ) f (x′ | θ′) =

g! (y | x′, θ′)π (θ′) q (θ | θ′)
g!(y | x, θ)π(θ)q (θ′ | θ)

(2.11)
5 end
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2.1.2 Issues with ABC-MCMC and an idea for the aug-

mentation of space by ! levels

In the introduction to the Wang-Landau algorithm we saw that one of the

main benefits and motivation for its derivation was the idea that by splitting

the target posterior mass over arbitrary levels of the space of interest, and

setting penalties for the visitation of those levels one can overcome very low

probability areas or ”wells” where the chain can get stuck (i.e. tails) in order to

visit complex multimodal target densities. A way to see why our proposal here

might have substantial benefits in the context of ABC-MCMC is to imagine

the Wang-Landau, and more specifically algorithms such as the SAMC of

Liang [2005], Liang [2007], Liang [2010], as algorithms that alter the geometry

of the target space by ”smoothing” out modes, thus making the probability

landscape significantly smoother, thereby allowing the chain to move much

more freely around the parameter space. Here, instead the idea of Richards

and Karagiannis [2020] is for the levels to be the different !i of some arbitrary

target thus augmenting our space. Hence the chain can in fact ”jump” to

higher and lower levels of epsilon at will, allowing the serious limitation of

ABC-MCMC where low values of epsilon cause it to get stuck for very long

periods. Of course one can set a very small epsilon, thus causing the MCMC

algorithm to have a vanishingly small acceptance probability and extremely

low efficiency, or set up a larger than desired value, thus making the estimator

of the ABC posterior worse. In the proposed approach one sets energy ”levels”

over ! (one could also jointly set (!, θ), since multimodality of the posterior

over the parameters of interest might be the case in addition to the issue

being addressed here) within a certain epsilon range !1, .., !k over k different

levels. The user chooses the smallest and largest value as well as how many

different partitions there can be in the algorithm (for both ! or jointly with the

θ space). Wang-Landau is an algorithm that samples from a modified posterior

distribution. Suppose that the marginal is ω (θ | y). Then WL uses the target

π̄ (θ | y) = ω (θ | y) 1
d

d
"

i=1

IΘi
(θ)

ψ (i)

where ψ (i) =
!

Θi
ω (θ | y) dθ. Drawing with equal probability from each of

the Θi regions, should assist us in exploring the space. However, we are not
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drawing from the true posterior, and we need to perform a correction if we

wish to obtain points from the posterior. Combining the ABC posterior and

the WL one, we use the target

π̄!(θ, x | y) ∝ p(θ)f(x | θ)g!(y | x, θ)1
d

d
"

i=1

IEi
(θ, x)

ψ(i)
(2.12)

where the Ei are regions defined by stratifying the Y -space by the distance

from the observed data y, i.e.

Ei = {(θ, x) | δi−1 ≤ d(y, x) < δi} (2.13)

with 0 = δ0 < δ1 < . . . < δd = ∞ and where

ψ(i) =

#

Ei

p(θ)f(x | θ)g!(y | x, θ)dθdx

=

#

θ

p(θ)

=
#

δi−1≤d(y,x)<δi

f(x | θ)g!(y | x, θ)dx
>

dθ

(2.14)

Therefore running the Wang-Landau algorithm our MCMC chain will

target the density 2.12 (asymptotically), and we are in fact, at each iteration,

altering the target (or more precisely targeting a different one at iteration t).

The implication of this is that we aim to to spend an equal amount of time in

each stratum (although it is the case here that since we are not considering the

stratums to be a splicing of the parameter space, rather the epsilon, which itself

defines a different ABC pseudo-posterior, we might want to have a variably,

perhaps biased sampling rate for smaller epsilon levels since this will reward

us with a better estimator 1).

It is also worth pointing out that there is a clear trade-off here. We want

just enough flexibility to avoid the sticky behaviour due to ! but not so much

as to force the algorithm to spend time on large values of epsilon thus sampling

1The main distinction here from the original SAMC algorithm is that instead of parti-
tioning the parameter space we partition the epsilon range into different levels. In the case
of the parameter space we want to spent time that is proportional to the distribution mass
of those parameters so as to not bias the sampling, whereas in the epsilon case we want
to spend time mostly in lower ones (lower epsilon → better posterior approximation), and
therefore we donât want proportional sampling in those partitions but rather biased towards
smaller epsilons
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(and contributing to the mixture) of ”bad” ABC posterior approximations.

Let us consider the role and interpretation of ψ(i) in our implementation

of the Wang-Landau algorithm within the ABC context:

ψ(i) =

#

θ

p(θ)

=
#

δi−1≤d(y,x)<δi

f(x | θ)g!(y | x, θ)dx
>

dθ

=

#

θ

p(θ)

=
#

d(y,x)<δi

f(x | θ)g!(y | x, θ)dx−
#

d(y,x)<δi−1

f(x | θ)g!(y | x, θ)dx
>

dθ

=

#

θ

p(θ)

=
#

d(y,x)<δi

f(x | θ)g!(y | x, θ)dx
>

dθ

−
#

θ

p(θ)

=
#

d(y,x)<δi−1

f(x | θ)g!(y | x, θ)dx
>

dθ

≜ ψ̄(i)− ψ̄(i− 1)

(2.15)

with ψ̄ defined by this equation. This implies that ψ̄(d) =
(d

i=1 ψ(i) is equal

to the ABC marginal likelihood. Furthermore, if we choose g! to be uniform,

then the ψ̄(i), {i = 1, .., d} are related to the ABC marginal likelihood with

the uniform kernel for different values of !. This means that by running ABC

WL, we also get an estimate of the marginal likelihood, although in the present

work we will not be utilising this added benefit.

An important point is to notice that the adaptation introduces a bias

to the target, and in effect we are not really sampling from the true target.

We have points generated from our chain from the biased posterior and if we

treat them as independent points form this posterior we can use importance

sampling to get the points from the true ABC posterior. We could treat

the MCMC points from this ”biased” posterior as independent points from

this posterior, and use importance sampling to get points from the true ABC

posterior. The importance weight for a point from region with index i would

be

w =
p(θ)f(x | θ)g!(y | x, θ)

p(θ)f(x | θ)g!(y | x, θ)1
d

(d
i=1

IEi
(θ,x)

ψ(i)

= dψ(i)

(2.16)

The weight would be w = ψ(i)/ω(i), if we give stratum i desired weight ω(i),

rather than simply 1/d. Suppose that we used a different tolerance !WL in
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the WL, compared to the tolerance ! for which we wanted the posterior. We

would have the weight as being

w =
p(θ)f(x | θ)g!(y | x, θ)

p(θ)f(x | θ)g!WL
(y | x, θ)(d

i=1

ω(i)IEi
(θ,x)

ψ(i)

∝ g!(y | x, θ)
g!WL

(y | x, θ)
ψ(i)

ω(i)

(2.17)

For the uniform kernel, this would boil down to w ∝ I(d(x, y) ≤ !)ψ(i)/ω(i)

The deterministic schedule is defined as :

γt =
1

tb
(2.18)

with b some user defined value and t the time index of the Markov Chain

iteration. A value of t0 is defined initially such that

γt =

<

1, if t0 ≥ 1
tb

1
tb
, otherwise

?

(2.19)

2.2 The (SAMC-ABC) algorithm

We can now define the SAMC-ABC algorithm with the setup being as follows:

Let E = {Ej; j = 1, . . . ,m+ 1} be a partition of the sampling space Y with

subregions

E1 = ((θ, x) ∈ Θ× Y : !0 < U(Θ× Y , x) ≤ !1) , . . . ,

Ej = ((Θ× Y , x) ∈ Θ× Y : !j−1 < U(Θ× Y , x) ≤ !j) , . . . ,

Em+1 = ((Θ× Y , x) ∈ Θ× Y : !m < U(Θ× Y , x) < !m+1) , with grid {!j; !j ∈ R, j = 1 : m} ,
for m > 0, and !0 = 0 and !m+1 = +∞. Here, j(θ, x) indicates the la-

bel of the sub-region of the partition E that corresponds to the value (θ, x).

Let ω := (ωj; j = 1, . . . ,m+ 1) , such that φj = Pr ((θ, x) ∈ Ej) ,ωj > 0 and
(m+1

j=1 φj = 1, denote the vector of desired sampling frequencies of the m

subregions {Ej}. Define the SAMC-ABC posterior distribution as previously



2.2. The (SAMC-ABC) algorithm 62

ω!,ψ(d· | y) := ω (d· | y, g!, E ,ω) with density

ω!,ψ(θ, x | y) =
m+1
"

j=1

φj
1

ψj

ω!(θ, x | y)δEj
(θ, x) (2.20)

at where ψ := (ψj; j = 1 : m) ,ψj =
!

Ej
ω!(dθ, dx | y) < ∞ are the bias

weights. with, ψ unknown. Let z ∈ Rm+1 be vectors such that

ω!,z(θ, x | y) ∝
m+1
"

j=1

φjω!(θ, x | y) exp (−hj) δEj
(θ, x) (2.21)

Note that exp (hj) ∝ ψj/φj, for j = 1, . . . ,m+1. Also note that ψ = φj exp (hj)

iff h ← h − C and C = log
.

(m+1
j=1 φj exp (zj)

/

, for j = 1, . . . ,m + 1. Note

that the reason for those choices are the fact that in Liang et al. [2007] prove

that h in fact converges to the C − log(ψ/ω) − log(φ + µ) with µ equal to
(

j∈{i:Ej=∅} φj/ (m−m0) ,m0 is the number of empty subregions. The SAMC-

ABC algorithm targeting ω!,ψ(θ, x | y) with proposal distribution q(· | θ) has
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the following form:

Algorithm 10: The Stochastic Approximation Monte Carlo ABC

algorithm SAMC-ABC

1 begin
2 Sampling step:
3 Draw

θt+1 ∼ PMH (· | θt; E ,φ,ψ) (2.22)

as
4 (a) draw θ′ from q(d· | θ)
5 (b) draw x′ from f(x | θ)
6 (c) accept θ′ with probability aSAMCABC = min (1, RSAMCABC ) with

RSAMCABC =
ω!,ψ (θ′, x′ | y) q (θ | θ′) f (x | θ′)
ω!,ψ(θ, x | y)q (θ′ | θ) f (x′ | θ′)

=
g! (y | x′, θ′)ω (θ′) exp

!
hj(θ′,x′)

"
q (θ | θ′)

g!(y | x, θ)ω(θ) exp
!
hj(θ,x)

"
q (θ′ | θ)

(2.23)

Update step
7 begin
8 Compute
9

ht+1 = ht + γt+1 (pt+1 − φ)

where pt+1 := pt+1 (θt+1, xt+1) , and [pt+1]j =

#
1 if (θt+1, xt+1) ∈ Ej

0 , if (θt+1, xt+1) /∈ Ej

$

(2.24)
10 end
11 end
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2.2.1 Lotka-Voltera

The Lotka-Voltera model is defined as a Markov jump process where the num-

ber of individuals in a population of animals (prey and predator) is modelled.

It is often used in the ABC literature due to the fact that the likelihood is

unavailable point wise, yet we can have exact simulations from the model by

making use of the Gillespie algorithm Gillespie [1977]. The stochastic version

of the model describes the time evolution of two species, say Y1 (prey) and Y2

(predator) through the following reaction equations:

Y1
r1→ 2Y1

Y1 + Y2
r2−→ 2Y2

Y2
r3→ ∅

(2.25)

with r1, r3 first order and r2 second order reactions. Here r in general repre-

sents a rate constant with rdt being the probability that the population species

Y1 doubles (or a predator dies with rate r2 or a prey dies with rate r3 dur-

ing the time interval [t, t + dt). The observations out of the model are some

y = (y1, . . . , yn) composed of vectors yi = (yi,1, yi,2) ∈ N2, corresponding to

population levels at integer times. We usually let θ = (log r1), log r2, log r3.

This model is Markovian since p (yi | y1:i−1, θ) = p (yi | yi−1, θ). The model is

therefore a good test case for ABC as indicated in Toni et al. [2009]. The

authors in Boys et al. [2008] demonstrate that an MCMC algorithm is feasible

for this model, although as noted in Holestein [2009](chapter 4) the proposed

schemes can be inefficient.

2.2.2 Numerical experiments

The target density of interest here is that of π!(θ | y), with θ = (θ1, θ2, θ3) the

3 parameters of the Lotka-Voltera model specified in the previous section. We

set up the priors for these parameters to be [logθ1, logθ2, logθ2] ∼ U([−6, 2]3).

These range of priors seems to have a good coverage of the posterior of interest

Golightly and Wilkinson [2005],
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Golightly et al. [2015], while our summary statistics are based on the observa-

tions of the model output at discrete times and by taking the autocorrelations

of the Xk = X5k with lag 2 and the mean and variances of Y k = Y5k and

Xk = X5k with initial values of the populations as X1 = 50, X2 = 100. We run

the R packages smfsb from Wilkinson [2011] which is a collection of tools for

building/simulating stochastic kinetic models, and the associated dataset (LV-

data, which consists of observations at integer times), . In order to establish

a baseline we run initially a long chain of particle MCMC as provided in the

package in order to estimate the marginal log-likelihood and calculate through

MCMC the posterior of the parameters. Furthermore, we run again, a long

chain of ABC-MCMC in order to have a baseline for which we can compare

the proposed algorithm against.

The values that generated the output that serves as the observations for

the comparison through the ABC kernel are θ = (1.0, 0.005, 0.6), while the em-

pirical mean values out of the PMCMC run are θ = (0.958[0.032], 0.00486[0.000014],

0.613[0.018) with the standard deviations in brackets. For the distance met-

ric used within ABC we use the Euclidean distance between those summary

statistics given above, normalised by the standard deviations of each obtained

by a very large number ∼ 6 ∗ 108of samples from the prior (and associated

distances). For the ABC-MCMC algorithm we run both the standard Uni-

form kernel I(||S(yobs) − S(ygenerated)|| < !) and the Gaussian N (||S(yobs) −
S(ygenerated)|||0,

@

(!)), although in this case it made little actual difference so

we used the uniform kernel throughout instead. The reference level of epsilon

under which acceptance occurs for all the runs was ! = 0.2. The subset of

the SAMC-ABC algorithm were split into various different sizes with a min-

imum value of !1 = 0 and a maximum value of !Ngrid
= 1.0. We chose this

arrangement in order to have a reasonable comparison between ABC-MCMC

and SAMC-ABC given that the motivation behind this ABC variation of the

SAMC algorithm is to allow a more efficient exploration of the target space,

therefore a somewhat wide enough range of values is chosen in order for the

algorithm to not get stuck in trying to propose values that generate a very

small epsilons, yet not unreasonably wide such that the sample is too biased

towards values that are far from the true ones. The reason for this as we will

see is that given the construction of the algorithm as seen in the previous sec-

tion we are in fact at every time sampling from a different target density and
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in fact the final sample can be though of as a sample from a mixture of ABC

posterior approximations with different tolerances (!). All the chains were run

for 20000 iterations, and each replicated 40 times in order to get an acceptable

variance of the estimated empirical means. Initially we see that for an initial

t0 = 10, in figure 2.1 the effects of the new algorithm are immediate. We get

a good decrease in variance for all three parameters. Interestingly an increase

in the grid size, which essentially gives a finer or coarser stratification of the

epsilon levels seems to always improve the estimates for parameters θ1 and θ3

with the average moving closer to the true value. The exception here being

the θ2 which interestingly seems to become worse as one increases the grid

size. The same behaviour is exhibited when one increases the SAMC schedule

t0 = 50 as seen in 2.2, and for t0 = 100 although slightly diminished.

The behaviour can be seen at large values of t0 = 100 as well where the

effect is slightly more prominent and it seems that the grid size has a diminished

effect compared to values of t0 = 10. Given equation 2.18, we can see that

t0 is controlling when the algorithm will start to diminish the adaptation rate

and in essence larger values (or very large values) depend on the value of the

parameter b and can therefore allow the algorithm to always have a stochastic

schedule coefficient γt that is equal to 1 and thus modify the probability that

a given value will be accepted or rejected fully. The reason for the decreasing

schedule as we explained in the introductory section is that of convergence of

the algorithm as show for general MCMC algorithms in Roberts and Rosenthal

[2007]. In our case, the effect can be explained by the fact that the correction

factors in the SAMC MH ratio keep altering the acceptance rate of regions that

are not visited (by increasing the chance they acceptances are made there) as

well as those that are visited (by decreasing the acceptance rates), therefore

allowing the MCMC to accepts parameter values from larger epsilon levels,

thereby corresponding to worse parameters and therefore resulting in worse

estimates. Of course that is the case for this very particular model. Different

models and scenarios will probably require different approaches in how much

the adaptation needs to keep going. It might be the case that the chain exhibits

particularly sticky behaviour and a longer period of adaptation with factor of

γt = 1 needs to be applied in order to escape problematic areas and overcome

regions of very low probability. One should also notice that this is inextricably

linked with the number of partitions. The more partitions, the finer the grid



2.2. The (SAMC-ABC) algorithm 67

and the ”slicing” over possible energy levels. That granularity allows more fine

tuning of partition updating (of the h)and hence allowable parameter values by

(in this case) permiting only slightly larger values of epsilon to be acceptable

(and to allow parameters that generated sets within those epsilon levels).
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Figure 2.1: Comparison of empirical means of ABC-MCMC and SAMC-ABC
for various grid sizes. The deterministic schedule here has a value of t0 = 10
and b = 0.7. The red line indicates the true values.Top figure is parameter θ1,
middle is θ2, and bottom is θ3. The chains were run for 20000 iterations and
for 40 replications each.
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Figure 2.2: Comparison of empirical means of ABC-MCMC and SAMC-ABC
for various grid sizes. The deterministic schedule here has a value of t0 = 50
and b = 0.7. The red line indicates the true values.Top figure is parameter θ1,
middle is θ2, and bottom is θ3. The chains were run for 20000 iterations and
for 40 replications each.



2.2. The (SAMC-ABC) algorithm 70

q

0.
90

0.
95

1.
00

1.
05

ABC-MCMC
 e = 0.2

SAMC-ABC
 Npart = 10

SAMC-ABC
 Npart = 50

SAMC-ABC
 Npart = 100

SAMC-ABC
 Npart = 200

q

0.
00
44

0.
00
48

0.
00
52

0.
00
56

ABC-MCMC
 e = 0.2

SAMC-ABC
 Npart = 10

SAMC-ABC
 Npart = 50

SAMC-ABC
 Npart = 100

SAMC-ABC
 Npart = 200

q

0.
50

0.
55

0.
60

0.
65

0.
70

ABC-MCMC
 e = 0.2

SAMC-ABC
 Npart = 10

SAMC-ABC
 Npart = 50

SAMC-ABC
 Npart = 100

SAMC-ABC
 Npart = 200

Figure 2.3: Comparison of empirical means of ABC-MCMC and SAMC-ABC
for various grid sizes. The deterministic schedule here has a value of t0 = 100
and b = 0.7. The red line indicates the true values.Top figure is parameter θ1,
middle is θ2, and bottom is θ3. The chains were run for 20000 iterations and
for 40 replications each.
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We see in figure 2.4 the effect of the parameter b is quite prominent. From

equation 2.18 we can see that a very small value (comparatively speaking) of

the parameter results in an increase in bias for two of the parameters θ1, θ2

while still decreasing the relative variance. The opposite is true for larger

values. The choice here was deliberate. Given the form of equation 2.18 we

can easily guess what the effect on the schedule would be. Take for example

a chain with 20000 iterations, a small b, say 0.2, and t0 = 50. In this case

after the first 50 steps, γ50 will be 1 since t0 > 500.2 = 2.186. We would

need more than 3.4108 steps for the condition to be true thereby guaranteeing

that the chain will never stop adapting for practical purposes. On the other

hand for the same value of t0 but for b = 1.5 it would mean that the chain

will experience rapid decrease in the levels of adaptation after the 13th time

step and after a few more time steps practically stop adapting. We therefore

directly observe the important effect our deterministic schedule has on the

estimates. A continuing adaptation procedure that does not diminish as the

algorithm progresses in any significant way, results in estimates that are biased

although albeit with a significantly reduced variance. The tradeoff is clear: the

price to pay for adaptation is that of bias. The algorithm allows larger values

of epsilon to be accepted, thereby biasing the sample towards parameter values

that are further from the true posterior values. Of course there are ways one

might proceed in order to try and account for that bias.

As we described in the introductory sections, an importance sampling

step can be made as a post-processing step in order to try and reduce the bias.

Nevertheless is not exactly clear despite the simple form of equation 2.17 as

we are aiming to estimate the ψs and those estimates come in the form of h as

defined in the end of the previous section. One of the outputs of the algorithm

is a vector of these values h, indicating a value for each sub-region for which we

have sliced our space (here of epsilon). Assuming we want an equal sampling

frequency for each partition we could by calculate these bias weights and then

resample our values form the theta chain with the weights proportional. Of

course that would assume that we would like an equal visit frequency in each

partition. That would be the case if we wanted to partition only the parameter

space θ and hence induce bias by that, or partition depending on log-likelihood

and bias by that or even jointly. In these cases one could see why it would

make sense to have an equal number of samples from each partition. In our



2.2. The (SAMC-ABC) algorithm 72

case the partitioning is on ! space (conditional on θ) and therefore an equal

visit frequency would imply that we want samples from small and larger values

of ! to be treated equally which is unreasonable. In the ABC context (assuming

the correct model) we want the smallest value of epsilon possible for a given

computational effort and therefore we would want more samples to be taken

from the smallest values. We should remember that the entire motivation of

the algorithm is to form such partition in order to aid exploration.
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Figure 2.4: Comparison of empirical means of ABC-MCMC and SAMC-ABC
for various time schedules. The grid size is fixed at Ngrid = 100 while the
decay factor of the schedule is fixed at b = 0.7. The red line indicates the true
values.Top figure is parameter θ1, middle is θ2, and bottom is θ3. The chains
were run for 20000 iterations and for 40 replications each.
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2.2.3 Conclusions

We have performed a comparison between standard ABC-MCMC and the

SAMC-ABC algorithm for a different set of parameters controlling the SAMC-

ABC algorithm. We found that there is a marked reduction in variance com-

pared to ABC-MCMC as the exploration of the space is made more efficient

due to the adaptive nature of the algorithm. Nevertheless, a bias is induced

due to the nature of the algorithm which can be made worse by allowing the

algorithm to adapt for prolonged periods of time. The partition size exhibits

the most significant improvement on the quality of estimates of the parameters,

as a relatively modest increase from 10 to 200 partitions significantly improves

accuracy, and decreases the bias. The aforementioned effect can nonetheless,

get again diminished if the adaptation continues for too long. Given that the-

oretically predicted and experimentally shown the samples are indeed biased

and we propose a importance sampling correction, although it is not clear at

this point in time exactly how this correction should be performed as it de-

pends on the desired sampling frequency for each partition. The estimates

of the bias weights are an output of the algorithm and therefore specifying

a simple 1/d sampling frequency should give us the desired weights, yet that

does not result in improved and reduced biased estimates. It is clear that a

more sophisticated method of post correction should be performed given the

very promising results of the method as the variance reduction has already

demonstrated.



Chapter 3

Adaptive noisy exchange

algorithm

3.1 Intractable and doubly intractable densi-

ties

A considerable amount of effort has been invested in trying to infer parame-

ters of models (in a Bayesian formalism), where the posterior is intractable;

meaning one cannot evaluate

π(θ|y) ≈ p(θ)g(y|θ) (3.1)

pointwise (we have suppressed the dependence on the prior hyperparameters

like those appearing in 1.1 of section 1.2 for the sake of notational conve-

nience, but in a great number of instances sufficiently complex phenomena to

be modelled will require more complex formulation). The intractability of the

likelihood term g(y|θ) can be due to a variety of reasons. For instance, it

might be the case that the data we have available make that likelihood term

completely impractical to calculate as the computational resources to do so

would be extremely large (keeping in mind that the calculation would need

for example to be performed N times during a simple MCMC algorithm of N

75
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steps). Another issue would be that g(y|θ) =
!

X g(y,x|θ)dx due to a very

large number of latent variables x being present, renders it a very high di-

mensional integral, as for example in state space models, where additionally

the formulated transition densities are also unknown. Some other examples

would be the cases where g(y|θ) cannot be evaluated, but we can draw sam-

ples from it, as is the case where {yobs|θ} is given by a complex stochastic

(computer) model, where any value of the parameter θ serves as input in a

forward simulator where the output is yout, yet the likelihood function itself is

not known in an explicitly functional form. Last, but not least we could have

g(y|θ) = 1
Z(θ)

γ(y|θ), with Z(θ) an intractable normalising constant (but the

term γ(y|θ) tractable). This for example occurs in formulation of the Ising

model or a Markov random field.

The last case is where the focus of this chapter lies. In fact we will be

concerned with the case of doubly intractable distributions and the proof of

convergence of one such algorithm for generating draws from π(θ|y). But first,
let us take a brief tour of the development of algorithms that aimed to tackle

such issues.

Consider for example a standard MCMC algorithm targeting some pos-

terior distribution π(θ|y) = γ(y|θ∗)
Z(θ)

p(θ). In this case the MCMC acceptance

probability is equal to

α(θ,θ∗) = min

9

1,
γ(y|θ∗)p(θ∗)q(θ|θ∗)

γ(y|θ)p(θ)q(θ∗|θ)
Z(θ)

Z(θ∗)

:

. (3.2)

with q(·) some arbitrary proposal distribution. This ideal algorithm can-

not be implemented since the ratio Z(θ)
Z(θ∗) is intractable (since the numera-

tor/denominator are). Notice here that is because the normalizing constant is

a function of θ that this intractability arises as this would not be the case in

regular MCMC where their evaluation is not needed. The doubly intractable

term is coined in Murray et al. [2006] due the fact that MCMC algorithms (as

estimators) are approximations (unless one has an infinitely long chain) and

each step requires an infeasible computation. In order to overcome such issues

a number of approaches have been proposed. We will showcase a few since

they provide the history and explain the natural evolution of such approaches
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towards the current problem discussed here.

3.2 Doubly intractable likelihoods and adap-

tive noisy exchange

The authors in Møller et al. [2004], construct a pseudo-marginal MCMC algo-

rithm through the use of an unbiased importance sampling estimator

1

Z(θ)
≈ qu(x|θ,y)

γ(x|θ) (3.3)

where x ∼ g(·|θ), for the numerator in 3.2 (and the analogous in the denomi-

nator, and where qx any normalized distribution, but we often choose one such

as qx(x|θ∗,y) = g
&

x|θ̂', and taking θ̂ by point estimate; for example maxi-

mum pseudo-likelihood estimate etc. The procedure above is best seen as a

single auxiliary variable MCMC, while the estimator can be improved (and re-

main unbiased of course), by the usage of a number of importance points, M ,

and/or using approaches such as annealed importance sampling Neal [2001]

with intermediate target sequence instead of standard IS. For example let:

fi(·|θ, θ̂,y) ≈ γi(·|θ, θ̂,y) = γ(·|θ)(i−1)/(a−1)γ(θ̂)(a−i)/(a−1) (3.4)

be that sequence of intermediate targets, and Ki some MCMC kernel with

target fi. Then for each i, xi ∼ Ki(·|xi+1) the improved estimator is :

Z(θ̂)

Z(θ)
≈ 1

M

M
"

m=1

a
-

i=2

γi−1(x
(m)
i |θ, θ̂,y)

γi(x
(m)
i |θ̂,θ,y)

(3.5)

with the added benefit of the additional Z(θ̂) term cancelling in the acceptance

ratio. This modification (usage of AIS instead of plain IS) was suggested by

Murray et al. [2006], with the approach named ”multiple auxillary variable”

(MAV) method. Building upon the previously mentioned method Murray et al.

[2006] propose an exact approximate MCMC algorithm by making use of an
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unbiased importance sampling estimator

Z(θ)

Z(θ∗)
≈ γ(x|θ)

γ(x|θ∗)
(3.6)

where x ∼ g(·|θ∗), which one notices, it directly approximates the ratio

in equation 3.2 (the equivalent IS approach would not be possible). The afore-

mentioned estimator can arguably be shown to exhibit improved (inferential)

performance using AIS, by using multiple importance points resulting in an

inexact (”noisy”) algorithm Alquier et al. [2016].

All of these approaches of course are based on the requirement of being

able to simulate from the likelihood x ∼ g(·|θ∗) and for most problems with

doubly intractable g it’s impossible to perform that action exactly. Caimo and

Friel [2011] instead propose the idea of using a long MCMC run and taking the

last point to be x, whereas Everitt [2012] demonstrate that the incurred bias

goes to zero as the length of the MCMC chain goes to infinity. Authors refer to

this method as applied to the exchange algorithm as ”approximate exchange

algorithm”. Interestingly Liang [2010], suggest the possibility of using only

one MCMC step for generating x, while also being an approximate exchange

method.
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3.3 Intractable normalising constants and the

augmented space idea

In order to now sample from the target given in 3.1 and approximate the ratio

appearing in 3.2 the approach of Murray et al. [2006] that we have only outlined

so far can be used. The authors introduce an auxiliary variable1 x ∈ X and

consider the following augmented target density

p (θ∗, x, θ | y) ∝ g(y | θ)p(θ)q (θ∗ | θ) p (x | θ∗) (3.7)

which has g(θ | y) as its θ-marginal distribution. An MCMC algorithm with

p (θ∗, x, θ | y) as its target density has the following acceptance probability

α (θ, θ∗, x) =
γ (y | θ∗) p (θ∗) q (θ | θ∗) γ(x | θ)
γ(y | θ)p(θ)q (θ∗ | θ) γ (x | θ∗)

Z(θ)Z (θ∗)

Z (θ∗)Z(θ)
(3.8)

with the intractable normalising constants at the end canceling out. An im-

portant point here is that it is often infeasible to sample perfectly from p(x|θ),
as is the case for example in exponential random graph models. It is nonethe-

less, possible to use the last sample from an MCMC chain as an approximate

sample from p(x|θ). This has been named the approximate exchange algo-

rithm and theoretical guarantees for it are provided in Everitt [2012]. Despite

the fact that the exchange algorithm overcomes the intractable nature of the

standard MH acceptance ratio, there is no guarantee that good mixing is to be

expected. The authors in Alquier et al. [2016] propose a noisy version of the

algorithm with the aim of improving the relative efficiency. Let us give some

details of this algorithm.

The authors in Alquier et al. [2016] view the exchange algorithm as a

replacement of the ratio of normalizing constants in 3.2 with γ(x | θ)/γ(x | θ∗)
present in 3.8. One can show that γ(x | θ)/γ(x | θ∗) is an unbiased estimator

1in the previous section we indicated with x the potential vector character of x; henceforth
we will simply omit the boldface notation while still assuming both data and parameters
can be of arbitrary dimensionality. The majority of arguments carry over to the vectorial
case albeit with more cumbersome calculations. Where that is needed it will be indicated
so.
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of the ratio of normalising constants

Ep(x|θ∗)

=

γ(x | θ)
γ (x | θ∗)

>

=
Z(θ)

Z (θ∗)
(3.9)

A behaviour that occurs in pseudo-marginal style methods is that of poor

mixing due to the simple sample nature of the estimator Andrieu and Roberts

[2009]. It is therefore possible that the relatively poor mixing occuring in the

exchange algorithm is due to the same phenomenon; i.e the single sampler

estimator of the ratio of normalising constant may exhibit high variance. The

authors in Doucet et al. [2015] show that if the pseudo-marginal chain does

not exhibit any stickiness then estimator must have low enough variance. Due

to this reason Alquier et al. [2016] develop the noisy exchange algorithm where

multiple copies of the auxiliary variable are considered, and averaged:

1

N

N
"

n=1

γ (xn | θ)
γ (xn | θ∗) ≈ Z(θ)

Z (θ∗)
(3.10)

Despite the fact that there exists an improvement in mixing of the chain,

the intended target p(θ | y), is no longer the invariant measure of that chain.

Nonetheless, Alquier et al. [2016] prove that the considered algorithm does in

fact converge to the true posterior for increasing N , and additionally provided

bounds on the total variance distance between the approximate and true pos-

teriors (for a geometrically ergodic Markov chain). An additional potential

benefit of the proposed algorithms is when the N simulations one needs for

the noisy exchange version (and assuming one can have perfect sampling of

p(x | θ)), can be generated independently on multi-core machines. Further-

more, an additional approach can be that of the approximate noisy exchange

algorithm where the final N samples from the MCMC procedure can be used

after some burn-in period (in the case where the auxiliary chain is required for

approximate simulation). Of course one could argue that it is always a case

of trade-offs: whether the exchange or the noisy exchange version of the algo-

rithm are better for the task at hand depends on whether one can run a chain

with better mixing characteristics, while dealing with the computational over-

head of generating N model simulations per iteration. It is therefore the case
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that despite the benefits of improved mixing, that is indirectly reducing the

overall computational effort by producing a better approximation, the number

of model simulations one requires is very large (in typical scenarios). This

fact is especially bothersome since a lot of doubly intractable model, some of

which we have mentioned, such as the exponential random graphs and the Ising

model as applied to large images are rather expensive to simulate. It is there-

fore the case that algorithms that will in some way reduce the required model

simulation are very much desirable. The adaptive noisy exchange method aims

to fill that gap.

A first approach in reducing the required number of simulations is that

instead of estimating the ratio Z(θ)/Z(θ∗), we estimate the ratio

!Z (θ∗)

Z(θ)
=

1

N

N
"

n=1

γ (xn | θ∗)
γ (xn | θ) (3.11)

where x1, . . . , xN ∼ p(x | θ). The main thing to notice here is that we can re-

use the values x1, . . . , xN generated at current step θt of the chain. Therefore

we only need to generate new values only when a proposal is accepted. The

Metropolis-Hastings acceptance probability for this approach is given by

α (θ, θ∗) =
γ (y | θ∗) p (θ∗) q (θ | θ∗)
γ(y | θ)p(θ)q (θ∗ | θ)

$

!Z (θ∗)

Z(θ)

%−1

(3.12)

While Friel and Drovandi [2019] have observed that this approach reduces

significantly the number of required model simulations, it has also been the

case that a tendency to give conservative estimates of the posterior distri-

bution is observed. Specifically, the posterior variances seem to be inflated.

Therefore we required an approach that can reduce simulation frequency and

give posterior estimates closer to the noisy exchange algorithm, at the same

time. The authors in Boland et al. [2018] propose an idea of pre-computation

in order to accelerate the noisy exchange algorithm. Initially, they start by

calculating an estimate of the initial point and an estimate of the Hessian of

the log posterior at the same point. Subsequently a grid of θ values is created

over the parameter space and they then generate N simulations at every one
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of those points. Let us denote the collection of precomputing information as
4

θm, {xj
m}Nj=1

5M

m=1
for a total of M grid points. Define θm as support points.

During a run of the noisy exchange algorithm, we obtain for each combination

of θ and θ∗, the ratio Z(θ)/Z (θ∗) can be estimated by initially identifying a

path of support points that connects θ and θ∗ through the parameter space.

Denoting these points as
&

θ(1), θ(2), . . . , θ(C)

'

where θ(1) and θ(C) are the clos-

est support points to θ and θ∗, respectively. Then, the ratio of normalising

constants can be estimated by noting that

Z(θ)

Z (θ∗)
=

Z(θ)

Z
&

θ(1)
' ×

Z
&

θ(1)
'

Z
&

θ(2)
' × · · ·× Z

&

θ(C−1)

'

Z
&

θ(C)

' ×
$

Z (θ∗)

Z
&

θ(C)

'

%−1

(3.13)

We can therefore estimate the first C terms based on 3.10 using the pre-

generated samples at the support points corresponding to those in 3.13. In

general the (n + 1)th term inside the parenthesis can be estimated by the

pre-generated samples at the nth support point. We can therefore see that

after all the pre-computed samples have been generated the noisy exchange

algorithm does not use any model simulation. The authors in Boland et al.

[2018], consider different approaches of constructing such a path, with one

approach being directly linked points (i.e. only 2 support points), the ones

closest to the points θ and θ∗. Another approach is to take the average of

estimates over multiple paths. Friel and Drovandi [2019] focus instead on the

direct path. Finally, one important issue would be how would one know a

priori where should the grid be placed in order to provide proper coverage of

the posterior support, and consequently points may be placed where there is

negligible posterior support.

3.4 Adaptive noisy exchange algorithm and proof

of convergence

Let us reiterate the issue at hand: a characteristic of doubly-intractable prob-

lems is that the likelihood function associated to the model cannot be eval-

uated pointwise due to an intractable normalising constant. Given a set of
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parameters θ ∈ Θ ⊆ Rd, the likelihood function is given by

fθ (y) =
gθ (y)

Zθ

,

where gθ
2is the unnormalised density and Zθ is the intractable constant .

Therefore, given a prior distribution p0, the posterior for θ given some data y

is given by

π (θ | y) ∝ fθ (y) p0 (θ) .

If we were able to compute Zθ, a standard Metropolis-Hastings algorithm

would propose moves according to q and would accept such moves according

to the following acceptance probability

α (θ,ϑ) := min

9

1,
gϑ (y) p0 (ϑ) q(ϑ, θ)Zθ

gθ (y) p0 (θ) q(θ,ϑ)Zϑ

:

. (3.14)

However, since such a method is not feasible a commonly used alternative is

to estimate the ratio R (θ,ϑ) := Zθ/Zϑ via

0RN (θ,ϑ) ≡ 0RU1:N
ϑ

(θ,ϑ) :=
1

N

N
"

i=1

gθ
gϑ

.

U
(i)
ϑ

/

, where U1:N
ϑ :=

4

U
(i)
ϑ

5N

i=1

iid∼ fϑ (·) ,

as in 3.11. Appealing properties of the previous estimator are the following:

for any (θ,ϑ) ∈ Θ2

E
)

0RN (θ,ϑ)
*

= R (θ,ϑ) ,

and lim
N→∞

0RN (θ,ϑ)
as
= R (θ,ϑ) .

Notice that the above estimate requires the ability to draw auxiliary samples

from the likelihood fϑ; this will only be possible in specific scenarios, e.g. using

the coupling from the past algorithm Propp and Wilson [1996]. Alternatively,

2we denote gθ(y) = g(y|θ) and similarly for the rest of the formal treatment, we also drop
the bold vector notation we have used so far for visual ease; it is nonetheless assumed that
all of the parameters and observations can of course be part of a multidimensional space
with arbitrary large vector components
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one can run an MCMC algorithm targeting fϑ (which doesn’t require the

computation of any Zθ) and then use the resulting values after a ”sufficiently

long” run.

However, the downside of plugging in the estimator 0RN into a Metropolis-

Hastings algorithm is that this usually results in a noisy method in the sense

that it does not target the desired posterior distribution. An exception to

this is when N = 1 resulting in the exchange algorithm Murray et al. [2006],

which is an exact method. Nevertheless, the variance of the estimator 0RN=1 is

usually very large, which means the exchange algorithm might be inefficient at

exploring the desired posterior. For this reason, increasing N is not necessarily

a bad idea provided we can control the introduced bias.

Our focus is at reducing the computational cost of implementing a stan-

dard noisy method since at each iteration we would need to simulate the set

of auxiliary variables U1:N
ϑ , which are immediately forgotten after accepting or

rejecting a move. Instead, we aim at reusing (as much as possible) the gen-

erated variables VS,N :=
7

U1:N
θ̄

8

θ̄∈S, where S denotes the set of values θ̄ ∈ Θ

for which we have simulated a set of auxiliary variables U1:N
θ̄

. Reusing these

variables can be done by finding a path Pθ,ϑ =
7

θ̄1, · · · , θ̄mθ,ϑ

8

⊆ S, where

mθ,ϑ ∈ N0 := N ∪ {0}, between the current θ and the proposed ϑ; we then

estimate R (θ,ϑ) using

0R
(1)
S,N (θ,ϑ) ≡ 0RPθ,ϑ,VS,N

(θ,ϑ) :=

mθ,ϑ+1
-

i=1

0RN

&

θ̄i−1, θ̄i
'

,

where θ̄0 = θ and θ̄mθ,ϑ+1 = ϑ. This estimator is once again unbiased and

consistent with respect to R (θ,ϑ) for any (θ,ϑ) ∈ Θ2, and depending on the

chosen path P (m)
θ,ϑ , the variance of 0R

(1)
S,N can be reduced to only a fraction of

the variance of 0RN (Neal [2001], section 4). Finally, notice that in order to

compute the last term in the product of 0Rm,N we need the set of variables U1:N
ϑ ,

implying we still need to simulate auxiliary variables whenever we propose a

state ϑ that has not been visited before. This can be wasteful if the proposed

value ϑ is ”close” to some θ̄ ∈ S. Therefore, we will only generate U1:N
ϑ

whenever the dϑ,S := minθ̄∈S
A

Aϑ− θ̄
A

A > ε, for some metric $·$ on Θ and some

ε > 0. Thus, if dϑ,S < ε we could estimate R (θ,ϑ) using
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0R
(2)
S,N (θ,ϑ) :=

0RPθ,ϑ,VS,N

&

θ, θ̄mθ,ϑ

'

0RN

&

ϑ, θ̄mθ,ϑ

'
.

Note that the numerator 0RPθ,ϑ,VS,N

&

θ, θ̄mθ,ϑ

'

is very similar to 0R
(1)
S,N , but not

precisely the same: it uses the same path as 0R
(1)
S,N , but taking terms in the

product up to the point before the end point ϑ in the path. Despite this esti-

mator being biased, it remains consistent as N → ∞ with respect to R (θ,ϑ)

for any (θ,ϑ) ∈ Θ2, ratios of unbiased estimators for this type of models have

been explored before as in Boland et al. [2018].

We now present the resulting algorithm and the corresponding probability

kernel when using the previous strategies by computing either 0R
(1)
S,N or 0R

(2)
S,N .

We also present comparisons to the ideal algorithm, i.e. the one using the

intractable α (θ,ϑ).

Algorithm 11: Adaptive Noisy Exchange

Input: θ0, S0, VS0,N =
+
U1:N
θ̄

| θ̄ ∈ S0 and U1:N
θ̄

iid∼ fθ̄ (·)
,
.

1 begin
2 Sample ϑ ∼ q (· | θ0).
3 Choose a path Pθ0,ϑ =

+
θ̄1, · · · , θ̄mθ0,ϑ

,
⊆ S0 connecting θ0 and ϑ.

4 if dϑ,S0 = minθ̄∈S0

--ϑ− θ̄
-- ≥ ε then

5 Draw U1:N
ϑ

iid∼ fϑ (·) and compute .R(1)
S0,N

(θ0,ϑ) using Pθ0,ϑ and

VS0,N ; Define S1 := S0
/

{ϑ}, VS1,N := VS0,N
/%

U1:N
ϑ

&
. Set θ1 = ϑ

with probability α̃
(1)
S1,N

(θ0,ϑ), otherwise set θ1 = θ0;

6 else

7 Compute .R(2)
S0,N

(θ0,ϑ) using Pθ0,ϑ and VS0,N ; Define S1 = S0,

VS1,N := VS0,N . Set θ1 = ϑ with probability α̃
(2)
S1,N

(θ0,ϑ),
otherwise set θ1 = θ0

8 end
9 end
Output: θ1, S1, VS1,N

3.5 Algorithm and kernel

Based on the description above, we now define the algorithms to be studied in

this section. Firstly we define the following approximate acceptance probabil-
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ities, for j ∈ {1, 2}

α̃
(j)
S,N (θ,ϑ) = min

9

1,
gϑ (y) p0 (ϑ) q(ϑ, θ)

gθ (y) p0 (θ) q(θ,ϑ)
0R
(j)
S,N (θ,ϑ)

:

.

It is worth noticing that a) we obtain the ideal metropolis-hastings kernel

by replacing α̃
(1)
S,N and α̃

(2)
S,N with α. Furthermore, the algorithm defines a

Markov chain for the variables {(θt, St, VSt,N)}t≥0, with the transition kernel

given by:

P̃ (θ0, S0, VS0,N ; θ1, S1, VS1,N) :=

q (θ0, θ1)1 (dθ1,S0 > ε) f⊗N
θ1

&

U1:N
θ1

'

α̃
(1)
S1,N

(θ0, θ1) δS0∪{θ1},VS0,N
%{U1:N

θ1
} (S1, VS1,N)

+ δθ0 (θ1)

#

{ϑ|dϑ,S0
>ε}

f⊗N
ϑ

&

U1:N
ϑ

'

.

1− α̃
(1)
S1,N

(θ0,ϑ)
/

δS0∪{ϑ},VS0,N
%{U1:N

ϑ } (S1, VS1,N) q (θ0, dϑ)

+ q (θ0, θ1)1 (dθ1,S0 ≤ ε) α̃
(2)
S1,N

(θ0, θ1) δS0,VS0,N
(S1, VS1,N)

+ δθ0,S0,VS0,N
(θ1,S1, VS1,N)

#

{ϑ|dϑ,S0
≤ε}

.

1− α̃
(2)
S1,N

(θ0,ϑ)
/

q (θ0, dϑ) .

(3.15)

The four lines on the right hand side of the expression above correspond,

respectively, to the following four cases:

• ϑ is outside of the currently defined region (the current union of balls

around previously visited points), and the ϑ is accepted;

• ϑ is outside of the currently defined region, and the ϑ is rejected (in this

line there is no integral over θ-space, as there usually is in a rejection,

since we still need to keep track of ϑ through it becoming part of the set

of saved points);

• ϑ is inside of the currently defined region, and the ϑ is accepted;

• ϑ is outside of the currently defined region, and the ϑ is rejected.
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We will study the marginal (on θ-space) kernel of (3.15) , given below. This

kernel is no longer a Markov kernel (unless we use a fixed S and V ).

P̃Sn,VSn,N
(θn; θn+1) = q (θn, θn+1)1

&

dθn+1,Sn > ε
'

EU1:N
θn+1

∼f⊗N
θn+1

)

α̃
(1)
Sn∪{θn+1},N (θn, θn+1)

*

+ δθn (θn+1)

#

{ϑ|dϑ,Sn>ε}
EU1:N

ϑ ∼f⊗N
ϑ

)

1− α̃
(1)
Sn∪{ϑ},N (θn,ϑ)

*

q (θn, dϑ)

+ q (θn, θn+1)1
&

dθn+1,Sn ≤ ε
'

α̃
(2)
Sn,N

(θn, θn+1)

+ δθn (θn+1)

#

{ϑ|dϑ,Sn≤ε}
.

1− α̃
(2)
Sn,N

(θn,ϑ)
/

q (θn,ϑ) dϑ

(3.16)

Let γn,N := {Sn, VSn,N}, we want to show that for any starting point θ0 and

arbitrary δ > 0 the following holds for large enough n and N

$P [θn ∈ · | θ0]− π$TV < δ,

where P [θn ∈ · | θ0] denotes the conditional distribution of θn | θ0. This will

be done in two steps:

• First, we guarantee the existence of a finite stopping time τ ∈ N such

that γn = γτ for any n ≥ τ . This will imply, for n ≥ τ

P [θn ∈ A | θ0] = Eτ,θτ ,γτ,N |θ0

)

P̃ n−τ
γτ,N

(θτ , A)
*

. (3.17)

• Secondly, we show the existence of n (τ, Sτ , δ) ≥ τ and N0 (n) large

enough such that for N ≥ N0

sup
θ,γ

A

A

A
P̃ n−τ
γ,τ (θ, ·)− π

A

A

A

TV
< δ. (3.18)

The desired result will be obtained by the triangle inequality and appli-
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cation of Jensen’s inequality:

$P [θn ∈ · | θ0, γ0,N ]− π$TV =
A

A

A
Eτ,θτ ,γτ,N |θ0,γ0,N

)

P̃ n−τ
γτ,N

(θτ , ·)
*

− π
A

A

A

TV

(3.19)

≤ Eτ,θτ ,γτ,N |θ0,γ0,N

A

A

A
P̃ n−τ
γτ,N

(θτ , ·)− π
A

A

A

TV

(3.20)

< δ. (3.21)

3.5.1 Adaptation

In order to conclude that equation (3.17) is indeed satisfied we will require the

result below:

Proposition 1. If Θ is compact, and for any starting point θ0 ∈ Θ, there

exists an a.s. finite random time τ at which the noisy adaptive chain stops

adapting.

Proof. Without loss of generality assume Θ ⊆ Rd is a hyper-cube of length L,

i.e. vol (Θ) = Ld. Divide Θ into smaller contiguous cubes of volume (ε/2)d ,

implying that Θ is made of H = (2L/ε)d smaller cubes.

Suppose that at time tn the chain is at state θtn = x , and that the grid

Stn , composed of points that are at least distance ε apart, is made of n points,

i.e. Stn = {y1, . . . , yn = x}, where tn ≥ n. This implies that at time tn there

exist at most H−n cubes that are not fully covered by the set spanned by Stn

given by

S̄tn,ε =
n
;

i=1

{z ∈ Θ | d (x, yi) ≤ !} .

Now, denote these H − n remaining cubes by the set {Cr}H−n
r=1 , this means

that for each Cr there exists a set Ar ⊆ Cr such that Ar

B

S̄tn,ε = ∅. Define a

new chain
.

θ̃s

/

s≥0
evolving exactly as the original chain (θt) from time tn, but

without further adaptations, i.e. it evolves using grid Stn and starting point
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θ̃0 = θtn = x; this new chain is Markovian since the chain (θt)t is Markovian.

Define the first time such Markov chain hits the set Ātn :=
CH−n

r=1 Ar as follows

τn+1 := inf
4

s ≥ 0 | θ̃s ∈ Ātn

5

.

By construction τn+1 ≥ 1 a.s. and since eachAr has a positive Lebesgue mea-

sure, assuming the Markov chain is Harris recurrent

P
)

τn+1 < ∞|θ̃0 = x, Stn

*

= 1.

Finally, let tn+1 := tn + τn+1 and notice that θtn+s = θ̃s for all s ∈
{0, . . . , τn+1}. This implies that θtn+1 ∈ Ātn for the first time and the state at

that time (say yn+1) is added to the new grid Stn+1 := Stn

C {yn+1}. Therefore,
at time tn+1 there are at most H − n− 1 squares that are not fully covered by

S̄tn+1,ε. An induction argument completes the proof noting that τ ≤ τ1+ · · ·+
τH < ∞ a.s.

Remark 1. The previous result also implies that |Sτ | ≤ H = (2L/ε)d.

3.6 Convergence

Let P be the Markov kernel associated to the ideal MH algorithm, i.e. the

exact algorithm accepting moves according to α (θ,ϑ) in (3.14), such kernel is

given

P (θ0, θ1) := q (θ0, θ1)α (θ0, θ1) + δθ0 (θ1)

D

1−
#

α (θ0,ϑ) q (θ0, dϑ)

E

.

We will restrict to the case where Θ is compact for which, under mild condi-

tions, the kernel P is uniformly ergodic Roberts and Rosenthal [2004]. Uniform

ergodicity guarantees the existence of C < ∞, ρ ∈ (0, 1) such that

sup
θ∈Θ

$P n (θ, ·)− π$TV ≤ Cρn.

Now, fixing τ , γτ , θ and whenever n ≥ τ we have
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A

A

A
P̃ n−τ
γτ,N

(θ, ·)− π
A

A

A

TV
≤

A

A

A
P̃ n−τ
γτ,N

(θ, ·)− P n−τ (θ, ·)
A

A

A

TV
+
A

AP n−τ (θ, ·)− π
A

A

TV

≤ (n− τ)
A

A

A
P̃γτ,N (θ, ·)− P (θ, ·)

A

A

A

TV
+ Cρn−τ . (3.22)

Notice that the algorithm stops adapting at time τ , this which implies that

any proposed move ϑ ∼ q (· | θ) will lie within ε from some point in Sτ . Hence,

if n ≥ τ the kernel P̃γn,N
as in 3.16 simplifies to

P̃γτ ,N (θn, θn+1) = q (θn+1 | θn) α̃(2)
Sτ ,N

(θn, θn+1)

+ δθn (θn+1)

#

Θ

.

1− α̃
(2)
Sτ ,N

(θn,ϑ)
/

q (ϑ | θn) dϑ.

We will also need a few mild assumptions and lemmas in order to prove

the theorem below. The main result can be now stated: We show that the

limiting distribution for the noisy adaptive chain approaches the desired target

π, in terms of the total variation distance, and assuming that the chain is run

long enough and that N is large.

Assumption 1. The unnormalised likelihood gθ is continuous and differen-

tiable for θ ∈ Θ and satisfies:

1. supϑ,θ∈Θ supu∈U

F

F

F
log

.

gθ
gϑ

(u)
/
F

F

F
< ∞, which implies there exists K < ∞

such that

sup
ϑ,θ

sup
u

gθ
gϑ

(u) ≤ exp (K) and inf
ϑ,θ

inf
u

gθ
gϑ

(u) ≥ exp (−K) ;

2. supθ∈Θ supu∈U
F

F

∂
∂θ
gθ (u)

F

F < ∞.

Theorem 3. Suppose Assumption 1 holds and assume Θ is compact. For any

starting point θ0 ∈ Θ and any δ > 0, there exists n (δ, θ0) sufficiently large such

that

lim
N→∞

$P [θn ∈ · | θ0]− π$TV ≤ δ.
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The first lemma shows how one can bound the total variation distance

between the noisy and exact kernels in terms of their acceptance probabilities.

Lemma 1. For fixed τ , N and γτ,N = {Sτ , VSτ ,N} the kernels P̃γτ,N and P

satisfy for any θ ∈ Θ

A

A

A
P̃γτ,N (θ, ·)− P (θ, ·)

A

A

A

TV
≤ 2 sup

ϑ∈Θ

F

F

F
α̃
(2)
Sτ ,N

(θ,ϑ)− α (θ,ϑ)
F

F

F
. (3.23)

Lemma 1 proof:

Proof. Recalling that $µ$TV = 1
2
supf∈B1

|µ (f)| = supA∈B(Θ) |µ (A)|, we have

F

F

F
P̃γτ,N (θ, A)− P (θ, A)

F

F

F
≤

F

F

F

F

#

A

.

α̃
(2)
Sτ ,N

(θ,ϑ)− α (θ,ϑ)
/

q (θ, dϑ)

F

F

F

F

+

F

F

F

F

#

Θ

.

α̃
(2)
Sτ ,N

(θ,ϑ)− α (θ,ϑ)
/

q (θ, dϑ)

F

F

F

F

≤ 2

#

Θ

F

F

F
α̃
(2)
Sτ ,N

(θ,ϑ)− α (θ,ϑ)
F

F

F
q (θ, dϑ)

≤ 2 sup
ϑ∈Θ

F

F

F
α̃
(2)
Sτ ,N

(θ,ϑ)− α (θ,ϑ)
F

F

F

#

Θ

q (θ, dϑ) .

Taking the supremum over A ∈ B (Θ) on both sides finishes the proof.

Remark 2. The supremum in the previous lemma is random, which could be

problematic in terms of measurability. However, since Θ is some subset of Rd

the resulting supremum is the same as the supremum over a countable set on

Qd.

We now show that the acceptance probabilities α̃
(2)
S,N and α can be bounded

in terms of the estimators 0RN .

Lemma 2. For fixed N and γN = {S, VS,N} the acceptance probabilities α̃
(2)
S,N

and α satisfy

F

F

F
α̃
(2)
S,N (θ,ϑ)− α (θ,ϑ)

F

F

F
≤ (|S|+ 1) sup

θ∈Θ,ϑ∈S

F

F

F

F

F

log

$

0RN (θ,ϑ)

R (θ,ϑ)

%F

F

F

F

F

.
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Lemma 2 proof:

Proof. Notice that the function x 0−→ min {1, exp (x)} is Lipschitz with coef-

ficient 1. Therefore

F

F

F
α̃
(2)
S,N (θ,ϑ)− α (θ,ϑ)

F

F

F
≤

F

F

F
log

.

0R
(2)
S,N (θ,ϑ)

/

− log (R (θ,ϑ))
F

F

F
,

and by repetitively applying the triangle inequality

F

F

F
log

.

0R
(2)
S,N (θ,ϑ)

/

− log (R (θ,ϑ))
F

F

F
=

F

F

F

F

F

log

$

0RPθ,ϑ,VS,N

&

θ, θ̄mθ,ϑ

'

0RN

&

ϑ, θ̄mθ,ϑ

'

%

− log

$

R
&

θ, θ̄mθ,ϑ

'

R
&

ϑ, θ̄mθ,ϑ

'

%F

F

F

F

F

≤
F

F

F
log

.

0RPθ,ϑ,VS,N

&

θ, θ̄mθ,ϑ

'

/

− log
&

R
&

θ, θ̄mθ,ϑ

''

F

F

F

+
F

F

F
log

.

0RN

&

ϑ, θ̄mθ,ϑ

'

/

− log
&

R
&

ϑ, θ̄mθ,ϑ

''

F

F

F

≤
F

F

F
log

.

0RN

&

θ, θ̄1
'

/

− log
&

R
&

θ, θ̄1
''

F

F

F

+

mθ,ϑ
"

i=2

F

F

F
log

.

0RN

&

θ̄i−1, θ̄i
'

/

− log
&

R
&

θ̄i−1, θ̄i
''

F

F

F

+
F

F

F
log

.

0RN

&

ϑ, θ̄mθ,ϑ

'

/

− log
&

R
&

ϑ, θ̄mθ,ϑ

''

F

F

F
.

Since θ̄i ∈ S for each i ∈ {1, . . . ,mθ,ϑ} each term in the middle sum can be

bounded by

F

F

F
log

.

0RN

&

θ̄i−1, θ̄i
'

/

− log
&

R
&

θ̄i−1, θ̄i
''

F

F

F
≤ sup

θ,ϑ∈S

F

F

F

F

F

log

$

0RU1:N
ϑ

(θ,ϑ)

R (θ,ϑ)

%F

F

F

F

F

,

whereas the two remaining terms are each bounded by supθ∈Θ,ϑ∈S

F

F

F
log

.

&RN (θ,ϑ)
R(θ,ϑ)

/F

F

F
.

Therefore

F

F

F
α̃
(2)
S,N (θ,ϑ)− α (θ,ϑ)

F

F

F
≤ 2 sup

θ∈Θ,ϑ∈S

F

F

F

F

F

log

$

0RN (θ,ϑ)

R (θ,ϑ)

%F

F

F

F

F

+ (mθ,ϑ,S − 1) sup
θ,ϑ∈S

F

F

F

F

F

log

$

0RN (θ,ϑ)

R (θ,ϑ)

%F

F

F

F

F

≤ (mθ,ϑ + 1) sup
θ∈Θ,ϑ∈S

F

F

F

F

F

log

$

0RN (θ,ϑ)

R (θ,ϑ)

%F

F

F

F

F

.

Finally, recall that the path Pθ,ϑ ⊆ S which implies mθ,ϑ ≤ |S|, the result
then follows.
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Assumption 1 allows us to show a uniform convergence result for 0RN (θ,ϑ)

towards the intractable R (θ,ϑ) as N → ∞.

Lemma 3. Under Assumption 1, if Θ is compact and for fixed S

sup
θ∈Θ,ϑ∈S

F

F

F

0RU1:N
ϑ

(θ,ϑ)−R (θ,ϑ)
F

F

F

p−→ 0, as N → ∞. (3.24)

This in turn implies

sup
θ∈Θ,ϑ∈S

F

F

F

F

F

log

$

0RN (θ,ϑ)

R (θ,ϑ)

%F

F

F

F

F

p−→ 0, as N → ∞. (3.25)

Lemma 3 proof:

Proof. Let

Gϑ,N (θ) ≡ Gϑ,U1:N
ϑ

(θ) := 0RU1:N
ϑ

(θ,ϑ)−R (θ,ϑ)

=: 0Qϑ,N (θ)−Qϑ (θ)

we first show that for any ϑ ∈ S

sup
θ∈Θ

|Gϑ,N | p−→ 0, as N → ∞.

To show this type of uniform convergence we follow Andrews [1992] (Theorem

1) for obtaining the result we need:

1. Θ to be bounded, which is assumed throughout;

2. Gϑ,N (θ)
p−→ 0 as N → ∞ for all θ ∈ Θ, which follows directly from the

Weak Law of Large Numbers;

3. {Gϑ,N (θ)}N≥1 to be stochastically equicontinuous on Θ.

This last condition is easily shown using Andrews [1992](Lemma 1) by proving

θ 0−→ 0Qϑ,N(θ) is Lipschitz on Θ with bounded random Lipschitz coefficient.
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Indeed, 0Qϑ,N(θ) is continuous and differentiable on θ from Assumption 1, im-

plying there exists a constantK < ∞ such that for any N , and pair (θ,ϑ) ∈ Θ2

and any U1:N
ϑ ∈ UN

F

F

F

F

∂

∂θ
0Qϑ,N(θ)

F

F

F

F

≤ 1

N

N
"

i=1

F

F

F

F

∂

∂θ
gθ

.

U
(i)
ϑ

/

F

F

F

F

< K.

Finally,

P
=

sup
θ∈Θ,ϑ∈S

F

F

F

0RU1:N
ϑ

(θ,ϑ)−R (θ,ϑ)
F

F

F
> δ | S

>

= P

1

;

ϑ∈S

9

sup
θ∈Θ

F

F

F

0RU1:N
ϑ

(θ,ϑ)−R (θ,ϑ)
F

F

F
> δ

:

| S
2

≤
"

ϑ∈S

P
=

sup
θ∈Θ

F

F

F

0RU1:N
ϑ

(θ,ϑ)−R (θ,ϑ)
F

F

F
> δ | S

>

,

which leads to the first convergence in 3.24 since S is a finite set.

The second convergence 3.25 is easily shown using the first claim and the

fact that |log (x)| ≤ x−1/2 |x− 1| for any x > 0.

Remark 3. The first inequality in 3.19 is true since for a signed measure νx,

probability distribution µ and f ∈ B1 := {g : Θ → R | |g| ≤ 1}

|EX∼µνX (f)| ≤ E |νX (f)|

≤ E
D

sup
f∈B1

|νX (f)|
E

= 2E $νX$TV .

Therefore $EνX$TV = 1
2
supf∈B1

|E (νX (f))| ≤ E $νX$TV .

Remark 4. The previous result also implies that |Sτ | ≤ H = (2L/ε)d.

We are now able to show that the limiting behaviour of the noisy chain

approaches to the desired target π, provided that it stops adapting after some

fixed time τ .

Proposition 2. Under Assumption 1 and for any δ > 0 and fixed τ , Sτ there

exists n0 (τ, δ) > τ such that for any n ≥ n0
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lim
N→∞

P
=

sup
θ∈Θ

A

A

A
P̃ n−τ
γτ,N

(θτ , ·)− π
A

A

A

TV
> δ | τ, Sτ

>

= 0.

Proposition 2 proof:

Proof. Using the previous lemmas and Remark 4 we have for any n > τ

sup
θ∈Θ

A

A

A
P̃ n−τ
γτ,N

(θ, ·)− π
A

A

A

TV
≤ 2 (n− τ) (|Sτ |+ 1) sup

θ∈Θ,ϑ∈Sτ

F

F

F

F

F

log

$

0RN (θ,ϑ)

R (θ,ϑ)

%F

F

F

F

F

+ Cρn−τ

≤ 2n

$

D

2L

ε

Ed

+ 1

%

sup
θ∈Θ,ϑ∈Sτ

F

F

F

F

F

log

$

0RN (θ,ϑ)

R (θ,ϑ)

%F

F

F

F

F

+ Cρn−τ .

Take n0 := τ +
G

log(2C)−log(δ)
log(ρ−1)

H

. Then Cρn−τ < δ/2 if n ≥ n0, and

P
=

sup
θ∈Θ

A

A

A
P̃ n−τ
γτ,N

(θτ , ·)− π
A

A

A

TV
> δ | τ, Sτ

>

≤ P

1

2n

$

D

2L

ε

Ed

+ 1

%

sup
θ∈Θ,ϑ∈Sτ

F

F

F

F

F

log

$

0RN (θ,ϑ)

R (θ,ϑ)

%F

F

F

F

F

+
δ

2
> δ | τ, Sτ

2

= P

I

J sup
θ∈Θ,ϑ∈Sτ

F

F

F

F

F

log

$

0RN (θ,ϑ)

R (θ,ϑ)

%F

F

F

F

F

>
δ

4n
.

&

2L
ε

'd
+ 1

/ | τ, Sτ

K

L .

Using Lemma 3 the result is obtained.

Remark 5. Notice that the previous result relies on the fact that τ and Sτ are

fixed. However, we have not been entirely explicit about the dependence of

these variables with the index N . This means that the distribution of τ and Sτ

is likely to be affected for different values of N . Nevertheless, the proposition

will ensure convergence to the true target provided that an initial and fixed

value for N is used up to the time τ . After that, for fixed Sτ one can increase

the number of auxiliary variables used for computing the ratios 0RN in order

to guarantee convergence.

We now address the case in which the distributions of τ and Sτ change
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as N increases. The following technical result ensures convergence in mean

of the term supθ∈Θ,ϑ∈S

F

F

F
log

.

&RN (θ,ϑ)
R(θ,ϑ)

/F

F

F
using the uniform convergence from the

previous lemma.

Lemma 4. Let ZN (S) := supθ∈Θ,ϑ∈S

F

F

F
log

.

&RN (θ,ϑ)
R(θ,ϑ)

/F

F

F
. Then, under Assumption

1 and if Θ is compact, the following holds for any finite set S ∈ P (Θ) for some

lim
N→∞

sup
S∈P(Θ)

E [ZN (S)] = 0.

Proof. Let YN (ϑ) := supθ∈Θ

F

F

F

0RN (θ,ϑ)−R (θ,ϑ)
F

F

F
, using the fact that |log (x)| ≤

x−1/2 |x− 1| for any x > 0, we have for some C > 0

ZN (S) ≤
supθ∈Θ,ϑ∈S

F

F

F

0RN (θ,ϑ)−R (θ,ϑ)
F

F

F

infθ,ϑ∈Θ

M

R (θ,ϑ) 0RN (θ,ϑ)

≤ C sup
ϑ∈S

YN (ϑ) .

Hence,

E [ZN (S)] ≤ CE
"

ϑ∈S

YN (ϑ)

≤ CE

1

"

ϑ∈S

E [YN (ϑ) | S]
2

≤ CE
=

|S| sup
ϑ∈Θ

E [YN (ϑ)]

>

≤ C

D

2L

ε

Ed

sup
ϑ∈Θ

E [YN (ϑ)] ,

leading to supS E [ZN (S)] ≤ C supϑ∈Θ E [YN (ϑ)] for some C > 0.

What is left to show is limN→∞ supϑ∈Θ E [YN (ϑ)] = 0. This is easily

shown by Dini’s theorem since the function fN (ϑ) = E [YN (ϑ)] is defined on

the compact space Θ, is continuous, converges pointwise to zero, and satisfies

fN+1 ≤ fN .
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This last claim is shown by noting that for a collection of i.i.d. random variables
7

X(i)
8

i≥1
with mean zero, the sums

4

ΣN :=
(N

i=1 X
(i)
5

N≥1
and partial sums

4

Σ
(−k)
N :=

(N
i=1 X

(i) −X(k)
5

N≥1,k≤N
satisfy

1

N + 1
E |ΣN+1| = E

1

1

N + 1

F

F

F

F

F

Σ
(−(N−1))
N + Σ

(−N)
N + ...+ Σ

(−1)
N

N

F

F

F

F

F

2

≤ 1

N + 1

$

E

F

F

F

F

F

Σ
(−(N−1))
N

N

F

F

F

F

F

+ ...+ E

F

F

F

F

F

Σ
(−1)
N

N

F

F

F

F

F

%

=
1

N
E |ΣN | .

The final intermediate result concerns the convergence in probability of

the stopping time τ as N → ∞. As shown, this variable converges to the

corresponding stopping time τ ∗ that arises from running the ideal MH chain,

but keeping track of the proposed states (as in the adaptive algorithm) in order

to generate a similar grid of points S∗
τ∗ .

Lemma 5. Let
.

X
(N)
n :=

.

θ
(N)
n , S

(N)
n , V

(N)
Sn,N

//

n≥0
and

.

X∗
n =

.

θ∗n, S
∗
n, V

∗
S∗
n,N

//

n≥0
denote the approximate and ideal Markov chains, respectively. Denote also, re-

spectively by τ (N) and τ ∗ the corresponding times at which the chains have cre-

ated a finite cover of Θ. For any starting point x0 such that X
(N)
0 = X∗

0 = x0,

as N → ∞

τ (N)
p→ τ ∗.

Lemma 5 proof:
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Proof. We have that

P
)

τ (N) ∕= τ ∗ | X(N)
0 = X∗

0 = x0

*

≤ P
)

X
(N)
τ∗ ∕= X∗

τ∗ | X(N)
0 = X∗

0 = x0

*

≤ P
)

X
(N)
t ∕= X∗

t , τ
∗ ≤ t | X(N)

0 = X∗
0 = x0

*

+ P
)

X
(N)
τ∗ ∕= X∗

τ∗ , τ
∗ > t | X(N)

0 = X∗
0 = x0

*

≤
t−1
"

n=0

P
)

X
(N)
n+1 ∕= X∗

n+1, X
(N)
n = X∗

n | X(N)
0 = X∗

0 = x0

*

+ P
)

τ ∗ > t | X(N)
0 = X∗

0 = x0

*

≤
t−1
"

n=0

P
)

X
(N)
n+1 ∕= X∗

n+1 | X(N)
n = X∗

n, X
(N)
0 = X∗

0 = x0

*

+ P
)

τ ∗ > t | X(N)
0 = X∗

0 = x0

*

≤
t−1
"

n=0

#

P
)

X
(N)
n+1 ∕= X∗

n+1 | X(N)
n = X∗

n = xn

*

P n (dxn | x0) + P
)

τ ∗ > t | X(N)
0 = X∗

0 = x0

*

.

For any choice of xn, we have that P
)

X
(N)
n+1 ∕= Xn+1 | X(N)

n = X∗
n = xn

*

→ 0 as

N → ∞. Using the bounded Convergence Theorem and the fact that τ ∗ < ∞
a.s. for any starting point we conclude that τ (N) p→ τ ∗ as N → ∞.

We are now able to prove the main result.

Proof of Theorem 3. Let dTV (n; τ, γτ,N) = supθ∈Θ

A

A

A
P̃ n−τ
γτ,N

(θ, ·)− π
A

A

A

TV
. Con-

sider n ≥ τ , for some C > 0 we have that

E [dTV (n; τ, γτ,N)] = E [dTV (n; τ, γτ,N)1 (τ ≤ τ ∗)] + P [dTV (n; τ, γτ,N)1 (τ > τ ∗)]

≤ CnE

1

sup
θ∈Θ,ϑ∈Sτ

F

F

F

F

F

log

$

0RN (θ,ϑ)

R (θ,ϑ)

%F

F

F

F

F

2

+ CρnE
+

ρ−τ∗
,

+ P [1 (τ > τ ∗)] ,

where the last inequality follows from (3.22), Lemmas 1 and 2, and the fact

that E
+

ρ−τ(N)
,

→ E
+

ρ−τ∗
,

since τ (N)
p→ τ ∗ and Eρ−τ(N) < ∞ for any N ∈ N

Now, let n0 (δ) =
log(δ−1)+log(CE[ρ−τ∗ ])

log(ρ−1)
, then for any n ≥ max {n0, τ

∗ (θ0)}

E [dTV (n; τ, γτ,N)] ≤ Cn sup
S∈P(Θ)

E

1

sup
θ∈Θ,ϑ∈S

F

F

F

F

F

log

$

0RN (θ,ϑ)

R (θ,ϑ)

%F

F

F

F

F

2

+ δ + P [1 (τ > τ ∗)] .

Using Lemma 4, taking N → ∞ guarantees that, for fixed n ≥ max {n0, τ
∗},

the first and third terms on the right hand side of the above inequality go to
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zero. Therefore, since δ was picked arbitrarily, for any n ≥ max {n0, τ
∗} we

have that

lim
N→∞

E [dTV (n; τ, γτ,N)] = 0.

Finally, the result is obtained noting that

$P [θn ∈ · | θ0]− π$TV ≤ E
)A

A

A
P̃ n−τ
γτ,N

(θτ , ·)− π
A

A

A

TV

*

≤ E [dTV (n; τ, γτ,N)] .

3.7 Conclusions

In this chapter we have proved the convergence of adaptive noisy exchange

algorithm. The main assumption that one could reasonably expect to gener-

alise is that of the compact space considered here. The main reason for the

compactness is the space coverage by n-balls. An unbounded space, will result

in a possibly non-finite time in order to cover, depending on the stochastic

process being defined and the integral of the rd being infinite, since otherwise

the space is not almost surely covered (for Rd) Biermé and Estrade [2012] . An

additional issue of importance here is the effect of the size of n-balls of radius

!. For all intents and purposes while theoretical guarantees that the algorithm

will stop adapting in finite time, thus converging to the desired target, prac-

tically speaking the adaptation will be ongoing for the run of the algorithm

even for a very large number of iterations. In simple inference problems with

low dimensionality of the parameter space and large values of ! the space will

have been covered by regions where all the proposals within few iterations will

almost always fall inside and hence have already the precomputed points cal-

culated due to the grid, and therefore no further adaptation might take place

in the regions of high posterior concentration. On unimodal low dimensional
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targets that will most likely be the case. On the other hand, high dimensional,

and multimodal targets (not necessarily at the same time) will leave numer-

ous areas uncovered by the union of balls of radius !, thus leaving regions

where the algorithm still needs to recalculate the newly proposed points and

simulate from the likelihood, and therefore making the probability that the

algorithm will propose on those points increase as the dimensionality grows.

Despite the finite time occurrence of the stopping of adaptation the reality is

that as d → ∞ the number of iterations for that stopping time will increase

exponentially since the scaling of the cubes to cover the space as in Propo-

sition 1 is itself exponential in dimension) thus making the algorithm always

be in the adaptation phase for all practical applications on high dimensional

problems. It is interesting to note that we obviously have not provided rates

of convergence of the algorithm or a kind of Law of Large numbers (usually

weak forms), with the former perhaps not being exactly feasible.



Chapter 4

Rare event ABC-SMC2

algorithm

4.1 Introduction

In chapter 1 of this thesis we highlighted a number of issues one encounters

when dealing with intractable likelihoods, in whichever form they appear and

with regards to how that intractability emerged. In this chapter we will be

dealing with intractability pertaining to the impossibility or impracticality of

pointwise likelihood evaluation (numerically), yet for which direct simulation

from the model of interest is possible (given various parameters). We are

therefore in the setting of approximate Bayesian computation.

More specifically we are interested in tackling one of the issues that arises

in ABC due to the various layers of approximation one resorts to when using

these types of algorithms. It is perhaps instructive to reiterate here that in

the ABC setting we are dealing not only with the regular Monte Carlo error,

but also with the error due to the non-zero tolerance or bandwidth of the

kernel between real and simulated data, as well as with the error due to the

summary statistics (the latter of which can have in certain cases really drastic

effects on the inference Robert et al. [2011]) one uses -dependent on the task

101
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at hand- due to the information loss incurred by this approximation). In this

work of particular interest is the issue of summary statistics and specifically

the exponential dimensionality scaling with regards to how many samples one

needs to maintain a certain level of error in the approximation, and a potential

amelioration of that issue (or perhaps even a complete avoidance of the usage

of such summary statistics, when possible). In ABC we are dealing with two

distinct dimensionality issues: First, one in which the parameter space is of

some fixed dimensionality, say d, for parameters θ ∈ G ⊆ Rd in the continuous

case for simple RV , and for which our arbitrary model, say M, takes as input,

i.e. M(f(θ), x, ...). For example, it can be some likelihood M = f(x|θ) in the

Bayesian setting or if we are using some complex simulator, M = □ , for some

black box □ process, which can be a climate model, a genetic process/model,

a process expressed as some system of stochastic partial differential equations

etc. Secondly, the state space dimension x ∈ X k for some different dimen-

sion k, that is generated and labeled as simulated data and is required to be

compared under some kernel K of choice to the real observation/data (of the

same dimension). Our contributions are aimed towards the second issue; i.e.

that of the state space dimensionality and its effects on the final inference

with respect to the variance of the estimators and the accuracy given specific

tolerance parameters in the ABC context.

Given what we have described so far and taking into account the general

ABC setting, it would be very instructive to view the method as a nearest

neighbours algorithm Cucala et al. [2009], Biau et al. [2015] , with the initially

motivation and nonparametric flavor in Loftsgaarden and Quesenberry [1965],

Cover [1968], Fix and Hodges [1989] . It is well understood that that approach

becomes less effective as the dimension grows, commonly (perhaps overly so)

referred to as ”curse of dimensionality”. It is easy to see why: for some

high dimensional output from the model, we require for a large number of

random components to be matched to an arbitrary precision for some distance

metric/kernel to those components of the real data. It is evident that the

probability of that happening as the number of components increases, decreases

rapidly and at various rates. It is this very issue we are trying to address here.

One of the first steps in this direction, given the aforementioned setting, were

made in Prangle et al. [2018]. The authors suggest using auxiliary variables

u in the pseudo-marginal spirit to estimate the intractable likelihood term
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Andrieu et al. . The explicit assumption is made that the model we will

be dealing with can be written as some form of deterministic transformation

(although not necessarily deterministic, see below) of these variables u and

the parameters of interest H(u, θ). It is easy to see that this then forces the u

variables (since the vector of θs are fixed for each transformation) to encode all

the randomness in the simulation of the model/process. This is of course an

old idea that has appeared in various places over the years (for one instance

see the discussion by Andrieu et al in Fearnhead and Prangle [2012]). The

approach of Prangle et al. [2018] is then to for fixed θ values to use rare event

methods to estimates probabilities of the form:

P(u ∈ A; ||H(u, θ)− yobs||D ≤ !|θ) (4.1)

We have seen in the ABC introductory section (section 1.3.11) that this

is in fact the approximate likelihood of θ used in the ABC methods introduced

previously. The authors proposed the usage of the Rare Event SMC algorithm

by Cérou et al. [2012] for the estimation of these probabilities. It is argued that

the resulting estimates (as shown in the paper) are unbiased or low bias (in

the adaptive version of the algorithm) and can thus be used by various other

inference methods. One of which and the main framework for this construction

is the pseudo-marginal methods.

Before we return to those methods in more detail let us give a more

detailed account of why one would want to use these rare event probabilities

in the framework discussed in these works to estimate the likelihood (or ratio of

likelihood in our case) of interest. Intuitively, thinking about the probability

above one sees that we are potentially and in most practical cases almost

always, dealing with the calculation of very small probabilities, hence the name

rare events. It is highly unlikely that we will draw u (given some vector θ such

that they generate simulated data that fall within some metric distance close to

those of the real data). The relative error of the estimate of Pr (y(θ, x) ≈ yobs)

has high variance when these probabilities are small since we require that the

simulated data are arbitrarily close to the real ones. The rare event idea is to

split this very small probability event into many events of significantly higher
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probability. This can be done by considering nested sets of events for which

the probability of falling within the next nested (smaller) set given the next

largest one is fairly high. In detail consider splitting our event into sets of latent

variablesA1 ⊃ A2 ⊃ A3 ⊃ .. ⊃ At representing a cascade of higher probabilities

of hitting the innermost set. We then need to estimate probabilities of the form

Pr (A1) ,Pr (A2 | A1) ,Pr (A3 | A2) , . . . and since by construction this product

is our original small event probability we are done. Finally, if the probabilities

indicated above are indeed large (relative to each other), then the variance of

the final estimator’s relative error is smaller Prangle et al. [2018] than using a

single state Monte Carlo (Cérou et al. [2012], L’Ecuyer et al. [2007]).

Now of course the fact that these events will have sufficiently higher prob-

ability is not a given, but rather our intention, since it would then make it

much easier to simulate from since we will be trying to sample going from a

larger set to a slightly smaller one At → At−1 and not directly to the smallest

one A1 → An thus having a higher probability of hitting it). It is also easy to

see that one can indeed increase the probability of these events by increasing

the number of nested sets, although a balance is needed since we are always

bound by computational resources and we cannot arbitrarily break down the

problem into so many subparts that we end up with a higher average cost than

the one we originally intended to reduce.

We can therefore estimate P (A1) using N Monte Carlo samples, (which

essentially amounts to running the RE-SMC sampler of Cérou et al. [2012] as

used in Prangle et al. [2018] and given in algorithm 12), then reuse the samples

u ∈ A1, by sampling randomly from that set and to avoid duplicates perturb

them appropriately. The authors in Prangle et al. [2018] used for example a

slice sampler to perform essentially inference on u space. Thus, the resulting

MC sample is used to estimate P (A2|A1) and so on for all the required condi-

tional probabilities. The authors also note that for this approach to perform

well the mappings H must of such nature such that small perturbations in

the random variables u produce small perturbations in the output of the map-

pings y = H(u, θ). In essence we could argue from a dynamical systems point

of view that two very close initial points in some d dimensional space, which

would usually be the seed random variables that go into any kind of simulator

would not produce some nonlinear behaviour when it comes to the output,
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our state space of interest y. In other words sufficiently close points in the

u-random variable space produce sufficiently close points (in the metric that

is appropriate for the application of interest) in the state space. Furthermore,

we should passingly mention the issue of non-identifiability and in general a

small comment on the vast literature of inverse problems:i.e. extremely similar

outputs could well be produced by very dissimilar inputs. It is obvious that if

that is the case of the model being considered, any method based on distance

similarity approach in the ABC context will fail.

At this point it would be pertinent to address the issue of using the SMC

estimator for these rare events Cérou et al. [2012], instead of just a simple

importance sampling one. We can see (as for example in Prangle et al. [2018])

that in order to control the variance of an importance sampling estimator of

the ABC likelihood we need a number of points that is exponential in the

dimension dAgapiou et al. [2017]. Furthermore, note that when ! is small

we need an order of O(!d) points Prangle et al. [2018] to get an acceptance.

It is nevertheless the case that if we use an SMC estimator instead of IS the

required number of points needed to control the variance is quadratic instead of

exponential in the number of dimensions O &

[log!−d]2
'

. (Beskos et al. [2014a],

Agapiou et al. [2017] ) .

Furthermore one should consider the fact that for a fixed number of Monte

Carlo samples N , the choice of kernel scale parameter or bandwidth is repre-

sentative of a typical variance-bias balancing act; assume we have a large

bandwidth h = K(yobs − ysim), which represents the desired metric distance

between real and simulated data. We then draw a greater number of samples

M from the ABC posterior πABC , thus reducing the variance but yet we have

a poorer ABC approximation. On the other hand assuming we decide on a

small h, the posterior approximation is improved but Monte Carlo variance is

increased (as the samples within that bandwidth given fixed total N of sam-

ples are fewer). Furthermore assuming the statistics s(y) are not sufficient1,

we are in fact approximating a different posterior than the one using the full

data (which in real applications is most likely to be the case). We have thus

reduced the variance, yet increased the bias. Similarly, in the extreme case

1Some statistic Γ = f(y1, y2, · · · , yn) is sufficient if for each f , the conditional distribution
of y1, y2, · · · , yn given F = f and θ does not depend on θ.
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where h = 0 the ABC likelihood has resulted in the true posterior although

the variance of this likelihood estimator is maximal. On the other hand for

any h > 0 chosen in a way to control the variance of ABC MCMC estimates

for example, we are again biasing the final estimate.

Given what we have described so far one naturally wonders what is the

justification or benefit for the usage of auxiliary variables and the transfor-

mation from u-space to that of y-space. It would be beneficial to introduce

the issue when one wants to approximate the ABC likelihood by using impor-

tance sampling. Consider for example a simple importance sampling algorithm

where the target is the usual full ABC posterior: πABC (θ, s | sobs) .

Since we are interested in sampling from θ-space we can propose points

by using the proposal g(θ, s) = f(s|θ)g(θ). Explicitly in this proposal we have

used the ”true” ABC likelihood p(s|θ) = !

x
Kh(s, sobs)fθ(s)dx which is by the

very setting of ABC intractable as we showed in the introduction on chapter

1. Nonetheless consider the importance sampling estimator and the resulting

(unnormalized) weights: D(s, sobs)

πABC (θ, s | sobs)
g(θ, s)

∝ Kh (s, sobs) f(s | θ)π(θ)
f(s | θ)g(θ) =

Kh (s, sobs) π(θ)

g(θ)
:= w̃(θ) (4.2)

with h the chosen target distance (which depends on the application domain

and specific model).

We therefore see that the intractable term f has vanished. Similarly

consider the implementation of ABCMCMC with the same target but proposal

distribution defined as:

g [(θ, s), (θ′, s′)] = g (θ, θ′) f (s′ | θ′) (4.3)

and the upper index θ(i) denoting the current time state of the Markov Chain.

The acceptance probability of the proposed move from
&

θ(i), s(i)
'

to (θ′, s′) ∼
g
+&

θ(i), s(i)
'

, (θ′, s′)
,

becomes a
+&

θ(i), s(i)
'

, (θ′, s′)
,

=min
7

1,α
+&

θ(i), s(i)
'

, (θ′, s′)
,8

,
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where

α
+&

θ(i), s(i)
'

, (θ′, s′)
,

=
πABC (θ′, s′ | sobs) g

+

(θ′, s′) ,
&

θ(i), s(i)
',

πABC (θ(i), s(i) | sobs) g [(θ(i), s(i)) , (θ′, s′)]

=
Kh (s, sobs) f (s′ | θ′) π (θ′)

Kh (s, sobs) f (s(i) | θ(i)) π (θ(i))

g
&

θ′, θ(i)
'

f
&

s(i) | θ(i)'

g (θ(i), θ′) f (s′ | θ′)

=
Kh (s, sobs) π (θ′)

Kh (s, sobs) π (θ(i))

g
&

θ′, θ(i)
'

g (θ(i), θ′)
(4.4)

Again, we see that neatly the intractable likelihood term f vanishes. As

we saw in the expository examples of these well known and used algorithms in

the case of a joint space exploration (θ, s) things become much simpler since

the intractable term vanishes. Assume, for example, that one wants to use a

different proposal than the likelihood f , we see that in this case the terms will

not cancel in the importance weights and therefore approaches like importance

sampling or methods based upon Sequential importance sampling become only

theoretical in nature, since implementation is impossible: the weights cannot

be computed due to the appearance of the intractable term f . On the other

hand assume that we do in fact use the likelihood as the proposal and now

consider for example an MCMC update step that would be used inside an

SMC sampler or annealed importance sampling.

We define the sequence of targets for the Rare Event SMC ABC algorithm

as:

πt(x) ∝ K!t(yt | xt)f(xt|θ) (4.5)

with the sequence of !t, t ∈ T ⊂ N being the bandwidth h at every iteration,

i ∈ I ⊂ N denoting the index of the particle. We included the parameter θ

here for notational convenience but remember for now that the parameter here

is fixed for each run of the ”internal” RE-SMC algorithm which we will soon

describe.

We see that ABC-MCMC is necessarily (due to the choice of proposal)

using an IS estimator of the likelihood and we would therefore like to do better



4.1. Introduction 108

than that, yet in order to do so we would require a different proposal. One

could also see that the difference here between this target and the one in the

ABC-MCMC space with the chain targeting the joint θ, y posterior is that

we are dealing with a fixed θ and performing inference on the state space y

by simulating auxiliary variables u. Hence our proposal here would be just

the intractable likelihood itself f , as the only way to propose new x points.

Let us not forget we are trying to estimate the likelihood here by running an

SMC sampler. We can now see that in trying to perform an MCMC move

on the space of y or s(y) would require us to explicitly use the only way we

can propose samples in that space i.e f the intractable likelihood. This thusly,

renders our algorithm impossible to implement. It is worth noticing exactly

why the ”trick” of the cancellation of the intractable term f vanishes in the

ABC MCMC acceptance probability: the MH ratio represents the target at

the proposed parameter value multiplied by a proposal to that value, divided

by the target at the current parameter value multiplied by a proposal with the

inverse move. Therefore the intractable term given this algorithmic symmetry

(θ, y) ↔ (θ′, y′) appears both in the numerator and denominator and conversely

so in the proposal side of things. Thus the terms cancel neatly. This is not

the case here: the absence of the joint space which includes the parameter

of interest doesn’t allow the intractable term to show in some inverse fashion

allowing us to cancel it entirely. Here instead we are proposing new points y

(which we can only do from the model simulations) from a fixed θ thus the

-intractable- likelihood appears in numerator and denominator (which is of

course a proxy from simulator draws, based on the same parameter vector).

Consider, nevertheless, a rewriting of the ABC ”likelihood”

p̃ (y′ | θ) =
#

Y
K (y, y′) p(y | θ)dy (4.6)

Assume now that we can instead decompose the simulator either through some

transformation we can compute analytically or some ”black box” process; here

let us focus on the former. Rewriting this proxy likelihood by using some

transformation H we have:

p̃ (y′ | θ) =
#

U
K {H(θ, u), y′}D(u)du (4.7)
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where D(u) would be some distribution on u-space which makes our posterior

distribution of interest have the form

p̃ (θ | y′) ∝
#

U
K {H(θ, u), y′}D(u)p(θ)du (4.8)

which in turn means we can now write the intractable MH acceptance

probability as :

K!t (y | H (u∗, θ))D (u∗ | θ) q (ut,θ | ·) p(θ)q(θ|θ∗)
K!t (y | H (ut,θ, θ))D (ut,θ | θ) q (u∗ | ·) p(θ)q(θ∗|θ) (4.9)

We now see that provided the distribution of the latent variables u is

tractable we have our usual latent variable scenario 2 . We can now calculate

everything and thus can run some SMC algorithm to evaluate the ratio of ABC

likelihoods, which here will be the Rare Event SMC. This idea was first used

in Prangle et al. [2018] as mentioned, where the authors incoprorate the Rare

Event SMC estimator of Cérou et al. [2012] in a pseudo-marginal setting of

ABC.

2in some latent variables models the ABC posterior is not approximate; communicated
with emphasis on Wilkinson [2013b], and exploited in Fearnhead and Prangle [2012], Dean
et al. [2014]
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4.2 Rare Event estimation and SMC

4.2.1 Estimating the ABC likelihood

As we have seen from the introductory chapter of this thesis, and just re-

iterated in a few expository paragraphs above the likelihood estimate at a

point θ is simply π!(y | x), where x ∼ fθ(·). This is a Monte Carlo estimate of

what we call the ”true” ABC likelihood

l(y | θ) =
#

x

π!(y | x)f(x|θ)dx (4.10)

Let is provide a detailed account on how the RE SMC will be used to

estimate this likelihood and be used within another SMC sampler to estimate

the parameter vector of interest θ with π some Kernel of choice (having pre-

viously used the notation K! for it). As indicated in Del Moral et al. [2012]

the estimated ABC likelihood π!(y | x) is a very high variance estimate of

the true ABC likelihood since it uses only a single Monte Carlo point, and in

certain circumstances it is perhaps more efficient to take the sample average of

πε(y | ·) for several simulations from fθ(·). While that might seem as imposing

an additional computational burden, the decreased variance of the estimator

might lead to a decrease in variance of estimates of another algorithm, within

which it might be embedded. In this case, for Nx points simulated from fθ(·),
the estimated likelihood is:

l̂(y | θ) = 1

Nx

Nz
"

n=1

πε (y | xn) (4.11)

To aid our understanding let us view our Monte Carlo estimator as an im-

portance sampling estimator of the normalising constant
!

X πe(y | x)fθ(x)dx of

the unnormalised target distribution π!(y | x)fθ(x) when using proposal fθ(x).

This importance sampling estimator is unbiased, and its variance depends on

the distance between the proposal and the target Agapiou et al. [2017] . In

Andrieu and Roberts [2009] we learn that the unbiasedness of the estimated
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likelihood will result in ABC-MCMC having the same invariant distribution as

if we had used the true ABC likelihood, thus providing a solid theoretical back-

ground as to why using such an estimated quantity in an MCMC acceptance

probability makes sense. We are therefore in the setting of the pseudo-marginal

algorithm of section 1.3.8. One can observe that a likelihood estimator with

a higher variance usually results in a less efficient MCMC algorithm (not al-

ways the case, see for example Andrieu and Vihola [2016]). For the estimated

ABC likelihood, we have that the distance between the unnormalised target

πe(y | x)fθ(x) and proposal fθ(x) (and hence the variance of the estimator),

will tend to be larger when the dimension of y is higher and when ! is smaller.

Of particular interest, and the main impetus of this work, as originally envi-

sioned in the MCMC scenario in Prangle et al. [2018] is dealing with the cases

of large dimensionality in y-space. The variance of the estimator increases ex-

ponentially with the dimension Agapiou et al. [2017] and consequently the full

-raw- dataset is rarely used in practice. It is, therefore, common practice to

reduce that dimension significantly with one resorting to summary statistics,

thereby reducing variance as we previously saw, but nonetheless introducing

bias thus changing our target. For example consider the decomposition into

the MC error + bias

E

1F

F

F

F

F

N
"

i=1

wi5 (θi)− π (5 | sobs)
F

F

F

F

F

p21/p

# E

1F

F

F

F

F

N
"

i=1

wi5 (θi)− π! (5 | sobs)
F

F

F

F

F

p21/p

+ |π! (5 | sobs)− π (5 | sobs)|
(4.12)

suggested by A.Jasra in Fearnhead et al. [2010]3, see also the proposal of the

error form in Marin et al. [2014]. Additionally and perhaps most importantly

a low dimensional y space (or summary statistics s(y)) due to aforementioned

constraints, limits the available θ-space we can attempt to draw inferences

on since we must have dy > kθ for y ∈ Yd, θ ∈ Gk . In trying to decrease

! we see that a similar trade-off is considered. It is important to remember

that the ABC ”likelihood” will only result in the true posterior when ! = 0,

and consequently the variance of the estimator will be maximal. It is readily

apparent that in practice some value ! > 0 is used in order to reduce in some

3for some test function $ : Θ → R, w normalised weights (i.e. for MCMC they would be
1/N
and π ($ | sobs) :=

!
Θ
$(θ)π (θ | sobs) dθ
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sense the variance, trying to avoid particularly high values. This of course

results in the introduction of bias as we mentioned. It is therefore this very

issue that we are trying to address here by trying to remove the need for the

introduction of summary statistics and hence the reduction in the dimension

of the state space, while at the same time avoiding a high variance likelihood

estimator. We achieve this by adopting the approach of Prangle et al. [2018],

thereby introducing an SMC algorithm for computing this estimator, the main

advantage being the quadratic instead of exponential scaling as we explained

in the introductory section.

4.2.2 Decomposition of the simulator into tractable terms

and rare-event SMC

We have already described the reason for the need for such a transformation of

the state space in order to circumvent the intractable likelihood in an MCMC

update inside the rare event SMC algorithm. Let us see exactly how the rare

event algorithm fits into this picture and how it will being utilized for our

purposes. It might be worth mentioning that a certain number of approaches

operate under the assumption that the parametric or non-parametric nature of

a given model for the joint or conditional distribution of θ, y aiming to reduce

the variance whilst trying to avoid the introduction of bias.

Instead here we make use of the idea of decomposing the simulator as

we outlined previously, replacing the intractable likelihood term f with some

tractable function , D such that we can draw samples from it, and a trans-

formation of those draws, say u to our state space of interest y through H.

We can in principle of course make those u drawn from φ(·|θ) depend on the

vector of θ, in order to achieve sufficient generality.

We will see examples where we operate under two scenarios: one where

both u and the transformation H can depend on θ and one where the u are

drawn from some simple initial distribution with predefined parameters. We

are therefore at the situation of which we aimed at the beginning; namely that

we can now move around (u, θ)-space jointly. An example of this approach has
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been explored in Graham and Storkey [2017] with the usage of Hamiltonian

MCMC where the idea is similar in the sense that we try to now perform

inference jointly in the input space u here, as well as θ. The motivation is

perhaps instructive: we obtain a high variance ABC likelihood since draws

from u space are picked independently at each iteration from some distribution

that does not depend on y. It is therefore natural to try and introduce some

kind of dependence structure (through the transformation and the inference

algorithm on that space) such that we can fine-tune these u to specific y and θ.

We do so by choosing the random vector u such that the likelihood simulations

conditional on θ are sufficiently close to y, thereby increasing the efficiency of

our scheme by successively drawing better values of u at each iteration (in the

sense of minimizing the distance as mentioned).

We are therefore almost forced to adopt the rare event SMC algorithm

since we need a process of simulating from the conditional distribution [u | θ, y],
with the aim of tailoring the u to θ and y. The reason for that, is that

this fine-tuning approach of tailoring the values of u to those of θ, y results

in a decreasing cascade of possible ”good” values, thus motivating further

the use of a rare event algorithm given the inherent nature of ABC and the

explicit dependance on some sequence of decreasing tolerance levels, which

obviously imposes a decreasing chance of accepting such appropriate values

for u. This results in an estimator of the ABC likelihood l(y | θ) = !

u
π!(y |

H(u, θ))D(u)du, as was our original intention, benefiting us additionally with

a lower variance estimator than the standard approach, previously mentioned

as importance sampling. Given what we just described we are exactly in the

scenario of the marginal particle MCMC algorithm of Andrieu et al. [2010],

albeit adapted to the ABC framework.
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4.3 Algorithmic setup

Let us now describe the rare event SMC ABC estimator4:

Assume a sequence of τ ∈ N targets with the final one being π!(y |
H(u, θ))φ(u). The ”0th target” (the proposal) is given by φ(u), and the tth

target (for 1 ≤ t ≤ τ is π!t(y | H(u, θ))φ(u), where ∞ > !1 > . . . > !τ = !.

1. Draw Nu points from the proposal.

2. For t = 1 : T re-weight each point by multiplying its current weight by

π!t(y | H(u, θ))

π!t−1(y | H(u, θ))
(4.13)

3. resample and execute an MCMC move with target π!t(y | H(u, θ))φ(u).

the ABC likelihood can then be estimated by taking the average of the weights

at each step, and subsequently calculating the product of these averages over

SMC iterations. The normalising constant lt(y | θ) = !

u
π!t(y | H(u, θ))φ(u)du

is the ABC likelihood with tolerance !t. When updating to the target at iter-

ation t + 1 the weights can be used to estimate lt+1(y | θ)/lt(y | θ) as we just

described (this is the term needed in the weight update in the external SMC

as we will soon see). Using a tolerance sequence of !1 > . . . > !T we now are

ready to define the rare-event SMC ABC algorithm.

For our method, of course to be efficient we must be careful in how we

actually propose points in u-space and thus explore that space. For our first

toy model where we demonstrate the superiority of our algorithm we adopt

the same algorithm used in Prangle et al. [2018], which is slice sampler that is

observed to be quite efficient in moving around u − space for this particular

problem. It should be noted that it can be quite tedious to design appropriate

MCMC moves on that space, and a bad algorithm design at this level of our

4when one uses the uniform kernel, the work of Cérou et al. [2012], explores such an
example of an SMC algorithm, which can be clearly seen to be a sub-case of more general
rare-event style SMC algorithms
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construction can seriously hinder the performance of the entire edifice, thus

possibly erasing the computational gains we started with at a theoretical level

and for which is the main reason for proposing this approach. The reason for

that hindrance is the fact that the changing epsilon which gets passed down

from the external algorithms to the innermost u-space sampling one results in

a dramatic reduction of the scale of the posterior, and therefore an automatic

or at least semi-automatic way of constructing the MCMC move is needed in

order to have some a degree of efficiency (in an MCMC moves sense), since very

different MCMC moves will be efficient to different epsilons. One can think of

this as somewhat equivalent to the issue of different scales of the dimension on

some general sampling problem, and for which approaches such as HMC Neal

[2011], or MALA-type algorithms Caimo and Friel [2011] come into play (with

their benefits -high dimensionality performance- and issues, such as robustness

to tuning etc).

To get a clear understanding of why the subsequent rare-event ABC SMC

algorithm has the form that it does let us first note the algorithm proposed in

Cérou et al. [2012]:

Algorithm 12: Rare event SMC algorithm, with adaptive ! sequence

Cérou et al. [2012]

Data: Parameters θ, number of particles N, target number to accept Nacc,
map H

Output: P̂ , approximation to ABC likelihood
1 for t = 1 : N do
2 Let 't be the maximum of (a) the Nacc such that the smallest Hθ(u

2
t−1)

value and (b) ' ; // A bisection routine between 't−1 and ' is
run here to calculate the maximum 't such that at least
Nacc particles will be accepted

3 Calculate It =
+
i | H

'
u
(i)
t−1

(
≤ 't

,
and P̂t = |It| /N ; // Here P̂t the

small probability estimate
4 for i = 1 : N do

5 sample u
(i)
t by drawing j uniformly from It and applying a Markov

kernel
6 to u

(j)
t−1 with invariant density π (u | θ, Hθ (u)) ≤ 't−1) (taking

'0 = ∞ ).
7 If 't = ' break loop and go to step 8, setting T = t return

P̂ =
0T

t=1 P̂t

8 end
9 end
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In algorithm 15, we have indicated a generic Markov kernel as originally

defined in Cérou et al. [2012] but we will use initially a slice sampling update

as in Prangle et al. [2018] due to the benefits discussed therein.

The algorithm for the slice sampler is given below:

Algorithm 13: Slice sampling update for rare event SMC Prangle

et al. [2018]

Data: current state x of dimension p, map H(x), threshold ', initial search
width w. It’s assumed that K {Hθ(u)} ≤ '

Output: P̂ , approximation to ABC likelihood
1 while true do
2 Sample v ∼ N (0, Ip)
3 Sample u ∼ Uniform (0, w). Let a = −u, b = w − u
4 Sample z ∼ Uniform (a, b)
5 Define a vector x′ by x′i = r (xi + zvi) using the reflection function:

r(y) =

#
m m < 1
2−m m ≥ 1

(4.14)

6 where m is the remainder of y modulo 2 .
7 If Φ (x′) ≤ ' then return x′

8 If z < 0 let a = z, otherwise let b = z
9 end

We can now formulate the Rare-Event SMC for our case in the ABC
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setting. The algorithm is given below:

Algorithm 14: Rare event SMC algorithm
Data: parameter θ, thresholds '1:t

1 if t = 1 then
2 for 1 ≤ m ≤ Nu, do
3 Sample un0 from φ(u | θ).
4 compute and normalise internal weights
5

w̃1,θ

'
um0,θ

(
=

π$1(y|H(u
m
0,θ,θ))φ(u

m
0,θ|θ)

φ(um
0,θ|θ)

= π!1

'
y | H

'
um0,θ, θ

((

wm
1,θ =

w̃1,θ(um
0,θ)"Nu

i=1 w̃1,θ(un
0,θ)

(4.15)

− sample an1,θ from M
'
w1:Nu
1,θ

(
(the multinomial distribution with

parameters
'
w1:Nu
1,θ

(
, or use another unbiased resampling method).

6 − use an MCMC like the one given below in algorithm 15 move on
θ giving result un1,θ with invariant distribution

π!1(y | H(u, θ))φ(u | θ).
7 end
8 else
9 for 1 ≤ m ≤ Nu, do

10 compute and normalise internal weights

w̃m
t,θ

'
u
amt−1,θ

t−1,θ

(
=

π!t

'
y | H

'
u
amt−1,θ

t−1,θ , θ
((

φ
'
u
amt−1,θ

t−1,θ | θ
(

π!t−1

1
y | H

1
u
amt−1,θ)
t−1,θ

2
φ
'
u
amt−1

t−1,θ | θ
( =

π!t

'
y | H

'
u
amt−1,θ

t−1,θ , θ
((

π!t−1

'
y | H

'
u
at−1,θ
t−1,θ , θ

((

(4.16)

11

wm
t,θ =

w̃t,θ

'
u
ant−1,θ

t−1,θ

(

)Nu
i=1 w̃t,θ

'
u
ant−1,θ

t−1,θ

( (4.17)

Sample ant,θ from M
'
w1:Nu
t,θ

(
(or using another unbiased resampling

method).
12 For each 1 ≤ n ≤ Nu, use an MCMC move given below in algorithm

15 on u
ant,θ
t−1,θ giving result unt,θ with invariant distribution

π!t(y | H(u, θ))φ(u | θ)
13 end
14 end
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Algorithm 15: MCMC moves for Rare-Event ABC SMC

1 for 1 ≤ m ≤ Nu, do

2 - sample u∗ ∼ qt

'
· | umt,θ

(
- let umt,θ = u∗ with probability

π!t (y | H (u∗, θ))φ (u∗ | θ) q
'
u
amt,θ
t−1,θ | u∗

(

π!t

'
y | H

'
u
amt,θ
t−1,θ, θ

((
φ
'
u
amt,θ
t−1,θ | θ

(
q
'
u∗ | u

amt,θ
t−1,θ

( (4.18)

- otherwise let umt.θ = u
ant,θ
t−1,θ.

3 end

For one of our numerical experiments we will make use of the slice sampler

updates as experiments show it performs well given that u ∈ [0, 1]d, and a

general MCMC update depending on the model we are interested in as we will

see in our experiments, since the u-space in each case can be quite different.

The output of algorithm 14 we get an estimate of the ABC ‘likelihood’

l (y | θ) =
T
-

t=1

Nu
"

n=1

w̃n
t . (4.19)

.

Given that we now have an estimator of the ratio of likelihoods 4.13 we

can finally incorporate that into the external parameter space exploration al-

gorithm like in the SMC2 of Chopin et al. [2013], by using rare event ABC

to estimate likelihood ratios. SMC2 is designed for a state space model set-

ting: y1:t are noisy observations of the latent time series x1:t. Our genera-

tive model for this situation is specified in two parts: fθ (x1:t), which models

the dynamics of the latent time series, and gθ (y1:t | x1:t). which models the

distribution of the observations. SMC2 may be used to estimate the poste-

rior distribution on both θ and x1:t. It is set up using an ”external” SMC

on θ-space, and an ”internal” SMC on x-space conditional on θ. The in-

ternal SMC has target fθ (x1:t) gθ (y1:t | x1:t) at iteration t. When updating

to fθ (x1:t+1) gθ (y1:t+1 | x1:t+1) at iteration t + 1, we have added in the terms

fθ (xt+1 | x1:t) gθ (yt+1 | x1:t+1, y1:t), so that the weights at iteration t can be

used to estimate p (yt+1 | y1:t, θ) = p (y1:t+1 | θ) /p (y1:t | θ) (this being the term

needed in the weight update in the external SMC).
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For comparison and ease of understanding given how we have described the

SMC2 algorithm in the introductory chapters, we follow as closely as possible,

the notation in the SMC2 paper, with exceptions pertaining to clarity within

this thesis and overall notation usage, as well as references to specific papers;

we will indicate and alter notation accordingly when the danger for obfuscation

arises. First, note that w̃t,θ

.

u
ant−1,θ

t−1,θ

/

does not depend on un
t,θ (this is always

the case when we use an MCMC move within our SMC). As in that paper,

we can let, for t = 1, ψ1,θ

&

u1:Nu
1 , a1:Nu

1

'

and, for t = 2 : T,ψt,θ

&

u1:Nu
1:t , a1:Nu

1:t

'

,

be the joint distribution of all of the random variables generated up to time t
5. The ”internal” SMC algorithm is the rare event SMC method introduced

5note the notation alteration of sampling at at iteration t
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above. The ”external” SMC algorithm is given below:

Algorithm 16: Rare event ABC-SMC2 algorithm
1 for t = 1 : T do
2 for 1 ≤ m ≤ Nθ do
3 sample θm from p(θ), and set ωm ← 1.
4 if t = 1, then

5 sample
'
u1:Nu,m
1 , a1:Nu,m

1

(
from ψ1,θm , (i.e. run algorithm 14 for

t = 1) and compute the estimate of the ABC likelihood l1
when using '1

l1

'
!y | θm0

(
=

1

Nu

Nu*

n=1

w̃1,θ

'
un,m1,θ

(
(4.20)

6 and update the importance weights
7

ωm ← ωm
0 l1

'
!y | θm0

(
(4.21)

8 else

9 sample
'
u1:Nu,m
t , a1:Nu,m

t

(
from ψt,θm conditional on

'
u1:Nu,m
1:t−1 , a1:Nu,m

1:t−1

(
(i.e. run t algorithm 14 for the tth step))

and compute the estimate of ratio lt/lt−1 of the ABC
likelihoods when using 't and 't−1

lt

'
!y | θmt−1

(

lt−1

!
y | θmt−1

" =
1

Nu

Nu*

n=1

w̃t,θt−1

1
u
ant−1,θt−1

t−1,θt−1

2
(4.22)

10 and update the importance weights
11

ωm ← ωm
t−1

lt

'
!y | θmt−1

(

lt−1

!
y | θmt−1

" (4.23)

12 end
13 end

14 {ωm
t }Nθ

m=1 ← normalise
'
{ω̃m

t }Nθ
m=1

(
;

15 if some degeneracy condition is met then // resample and move
16 for m = 1 : Nθ do

17 Simulate
'
θmt , u1:Nu,m

1:t , a1:Nu,m
1:t−1

(
from the mixture distribution

Nθ*

i=1

ωi
tKt

+
· |

'
θit−1, u

1:Nu,i
t , a1:Nu,i

t

(,
,

where Kt is the MCMC move from Prangle et al. [2018], i.e.:

18 i∗ ∼ M
'%

ωi
t

&Nθ

i=1

(
, then θ∗ ∼ qt

!
· | θi∗t−1

"
, then run algorithm 14

up to 't conditional on θ∗.
19 Set θmt = θ∗ and un,m1:t , an,m1:t−1 and w̃n,m

1:t to be the variables and
unnormalised weights generated when running algorithm 14
with probability

1 ∧ p (θ∗)

p
!
θi

∗
t−1

" q
!
θi

∗
t−1 | θ∗

"

q
!
θ∗ | θi∗t−1

" l (y | θ∗)
0T

t=1

)Nu
n=1 w̃

n,∗

t

,

where l is defined in equation 4.19;

20 Else set θmt = θi
∗
t−1, w̃

n,m
1:t = w̃n,i∗

1:t , un,m1:t = un,i
∗

1:t and

an,m1:t−1 = an,i
∗

1:t−1.
21 end
22 ωm

t = 1/Nθ for m = 1 : Nθ;
23 end
24 end
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4.3.1 Adapting the sequence of tolerances

For the new rare event algorithm, as in ABC-SMC, we can adaptively choose

the sequence of tolerances !t. In order to do that we will need to be careful

about the way we calculate the correct new ! level and the technique used to do

that. In Del Moral et al. [2012] the selection of the new tolerance level ! is done

such that the following condition holds: ESS({W i
n, !n} = αESS({W i

n−1, !n−1}
for some α ∈ (0, 1) with the weights being the approximation of the ratio

of likelihoods as defined in the algorithm above and alpha a percentage of

particles that we want to survive onto the next iteration. Here, let W
(i)
t−1

denote the normalised weight of particle i at time t−1, and let w
(i)
t denote the

unnormalised incremental weight of particle i at iteration t. Then, the ESS is

calculated by using the current weight of each particle as follows:

ESSt =

I

J

N
"

j=1

$

W
(j)
t−1w

(j)
t

(N
k=1 W

(k)
t−1w

(k)
t

%2
K

L

−1

=

.

(N
j=1 W

(j)
t−1w

(j)
t

/2

(N
k=1

.

W
(k)
t−1

/2 .

w
(k)
t

/2 (4.24)

The calculated ESS of the weights at some time t relays the information

of the accumulated mismatch between the proposal distribution and the target

(when one thinks about it as an extended space with the full trajectory of the

sample paths being in it), since the last resampling phase. The authors in Zhou

et al. [2016] note that by either fixing the relative or absolute reduction in the

calculated ESS between the successive distribution of the SMC algorithm does

not result in a common discrepancy measure between them, with the exception

of the case where resampling is performed at every iteration. Therefore the

authors argue it is preferable and does result in the desired common measure if

one instead uses the conditional ESS as defined in their work and given below:

CESSt =

I

J

N
"

j=1

NW
(j)
t−1

$

w
(j)
t

(N
k=1 NW

(k)
t−1w

(k)
t

%2
K

L

−1

=
N

.

(N
j=1 W

(j)
t−1w

(j)
t

/2

(N
k=1 W

(k)
t−1

.

w
(k)
t

/2

(4.25)
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which in our case becomes:

CESSt =

Nθ

$

(Nθ

m=1 w
m
t−1

!lt(y|θmt−1)
lt−1(y|θmt−1)

%2

(Nθ

m=1 w
m
t−1

$

!lt(y|θmt−1)
lt−1(y|θmt−1)

%2 , (4.26)
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4.4 Numerical experiments

4.4.1 High dimensional Gaussian toy model

For our first experiments we consider a high d-dimensional, truncated at zero,

Gaussian example where we draw {xi}i=1:d ∼ Ni(µi, σi) with xi ∈ R+ samples

of dimension d and we would like to infer the variance with the mean known,

i.e. µ = 0 for all components. We will not consider any dependence between

components and therefore the ”multivariate” Normal has zeros in the covari-

ance matrix everywhere except the diagonal and hence we are in a scenario

with i.i.d draws from a product of 1-D Gaussians where we want to infer the

σ (which is the same) for all dimensions. These would be our ”observations”

xi for which we will simulate against.

A few implementation details that are important in the context of infer-

ence here. In early experiments simulating from a Normal distribution resulted

in a subsequence of tolerances for which higher weights were assigned to lower

values (than the known one) of the parameter of interest, resulting in the se-

quence of posteriors being skewed initially towards that area of the parameter

space and thus inhibiting the move of particles towards the true parameter

value6 (the reason being that thinking of the samples as coming from a sym-

metric distribution, here the Normal one, we get that for a large tolerance

level the average euclidean distance between all the xobs and the simulated

ones xm
i for each particle m gives a certain distribution of those distances.

The algorithm at every level chooses a cutoff such that certain percentage of

the particles survive and hence this distance distribution gets truncated at

that level. Initially smaller values of θ which means a Gaussian with smaller

variance constitute most of that initial distribution of distances (despite not

giving the smallest distances) and hence those particles have a higher chance of

propagating forward. But as the algorithm progress and a smaller tolerances

are imposed eventually the algorithm only accepts those proposals of θ that

generate the data with the closest distance to the observed ones). In the re-

6which nonetheless did not affect overall the algorithm but the model exhibited patholog-
ical behaviour and therefore a more appropriate modification was needed in order to ensure
that the algorithm is not inhibited by factors other than its intrinsic ones
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freshment MCMC step of the algorithm we propose new parameter values with

a normal distribution that has variance equal to the variance of the particle

population and centered around the current value (for each particle) , since

the samples become progressively more concentrated and thus some notion of

dynamic scaling of proposal is needed in order to not have most of the sam-

ples rejected. It is worth re-iterating the mechanism of the algorithm: a new

initialisation of the RE-SMC-ABC algorithm is run for each proposed θ, for

the entire adaptively chosen schedule up to current time !1:t, since the inter-

nal algorithms assumes a given theta for which the u are combined with and

through the transformation give new pseudo-data yi and thus new distances.
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Figure 4.1: Comparison of empirical means between ABC-SMC and RE-ABC
SMC2 for different dimensions for the Gaussian model, over 50 replications
of each run. The true value of the parameter is θ = 3.0. The ABC-SMC
algorithm was run for a similar time frame as the RE-ABC SMC2 in order
to provide an accurate representation of inference quality given computational
resources available. Both algorithms adaptively choose the number of the
MCMC refreshment steps after the resampling scheme. The resampling takes
place when ESS drops below half of the current number of particles (on theta
space). The number of internal particles for RE-ABC SMC2 is indicated in
the figure.

In our numerical experiments in order to properly compare the SMC-
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ABC and RE − ABC − SMC2 algorithms we need to equate in some sense

the computational effort required by both since it is obvious that the nested

structure of our algorithm induces a significantly higher computational cost.

As such one approach would be to equate the number of likelihood draws in

total between them since in likelihood free methods such as ABC it is often if

not always the case that the simulator is by far dominating the computational

budget and other operations within the algorithm one uses are orders of mag-

nitude less demanding of the total budget (comparatively speaking; with the

exception perhaps of concurrency issues and communication in largely parallel

algorithms). For example in the SMC-ABC case we have a cost of approxi-

mately [N ]t+ [N ] · kMCMC · [r] whereas in the RE −ABC −SMC2 we have a

cost of Nθ ·Nu ·+[r] ·Nθ ·Nu · k, with N =: number of particles, t the random

number of iterations of the adaptive algorithms, r the resampling times and

k the number of MCMC refreshment steps. Given the adaptive nature of the

algorithms it makes such comparison hard although one could calculate some

minimum values, which is what we did here. For example in order to equate

the RE −ABC − SMC2 sampler of Nθ = 250 and Nu = 250 particles, we are

comparing to an SMC-ABC sampler of Nθ = 600000 particles, since the inter-

nal RE-SMC of our algorithm needs to perform all the time steps up until the

time tr again since a new θ has been proposed. The same is true for the MCMC

moves. In our experiments this heuristic approach is more or less consistent

with the overall computational time measured in CPU seconds, which after all

is the only real metric that a practitioner will be interested in when deciding

which algorithm to use, since in the framework of ABC we are interested in

obtaining the smaller epsilon possible for the computational budget available

(assuming the model is correct) and therefore a better approximation to the

ABC posterior (and consequently the ”true” posterior) with a lower variance

and minimum bias. An important addition to the algorithm that will assist in

ameliorating the issue that persists in all ABC algorithms (even if it performs

much better as in our case) no matter how efficient the acceptance probability

of MCMC moves, is the refreshment stage after resampling. It is evident that

for very small epsilons, the acceptance probability will decrease rapidly, and

such was the case here. Perhaps it is indicative of the limits of our algorithm

given that even with such fine control of the source of randomness as here

through the RE-SMC, there can still be issues with the algorithm proposing

parameters that result in observations being extremely close to the data. In
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order to overcome this issue to a certain degree, all algorithms were run with

an adaptive schedule for the number of MCMC refreshment moves. The modi-

fication is based on South et al. [2019], where the authors propose the following

expression to calculate the number of MCMC steps N .

Nt =

N

log(c)

log (1− p̂tacc)

O

(4.27)

with ⌈·τ⌉ denoting the ceiling function and p̂tacc = 1
N

(N
i=1 α

&

θit, θ
i,∗
t

'

is the

acceptance rate based on the first MCMC iteration on the N particles. The

idea is to have a theoretical probability 1− c that a particle is moved at least

once. At this point we should mention that the reason for stopping at given

epsilon levels for each dimensionality, is that the SMC would indeed collapse

for very small values, and it would be clear by monitoring the acceptance rate

of the MCMC refreshment steps that it would do so as 1 out of N external

particles would be accepted at those very low levels. Consequently the above

adaptive procedure would result in a very large number of MCMC moves in

order to propose particles that would be accepted and since every resampling

and MCMC step at the external SMC level induces the internal RE-SMC to

re-run (since it has sampled a new θ) from the initial !0 up to !t until that

time of resampling t the computational burden would be correspondingly very

large. As such a decision has to be made on the number of maximum MCMC

moves one is allowed to perform, or dynamically save the particle population

and actively monitor the acceptance rate and proposed N of MCMC moves.

If those seem to have plateau for a prolonged period of time, it is best to

terminate the algorithm. This is the procedure we followed here as well. It is

important of course to not let the population be very close to collapsing and

terminate prior to that event.

Given the tuning choices outlined above we can see from our first and

perhaps most important graph for this toy model that the numerical experi-

ments do verify the theoretical motivation and justification for the algorithm.

For a given computational budget we can see that in figure 4.1 the RE-ABC-

SMC2 significantly outperforms SMC-ABC since the latter obtains a worse

estimate of the ABC posterior, by not being able to get to a lower tolerance

level. The discrepancy is moreover increasing as the dimensionality increases
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which is what we expected given the theoretical considerations in the intro-

duction. An increase in state space dimensionality means that the estimate

of the ABC likelihood is carried out by a importance sampling step which as

we know scales exponentially in the number of samples and this requires an

extremely large number of particles to keep up with (or as we previously men-

tioned) more than 1 sample for each estimate which would be equivalent to a

multiplication of particles by that amount, say M (although with a lower cost

since each particle needs to go through a series of steps externally and thus

overall contribute more to the cost than individual exactly similar operations

within particles).

Furthermore, the increase in the number of internal particles Nu for which

the estimate of the ration of ABC likelihoods is carried out, results in a decrease

in variance, consistent with theoretical results.

The point above is demonstrated further by looking at figures 4.2,4.3, 4.4,

for state space dimensions d = 25, 50, 100 respectively, where for a given com-

putational budget the RE-ABC-SMC2 gets down to a much smaller epsilons,

and hence to a lower variance more accurate approximation of the posterior.
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Figure 4.2: Comparison of adaptive schedules for ABC-SMC and RE-ABC
SMC2 in dimension d = 25 The algorithm parameters are the same as in
figure 4.1. The total run time for both algorithms is dictated by the time
it takes for RE-ABC-SMC2 to reach a pre-defined threshold of epsilon. Here
! = 3.
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Figure 4.3: Comparison of adaptive schedules for ABC-SMC and RE-ABC
SMC2 in dimension d = 50 The algorithm parameters are the same as in
figure 4.1. The total run time for both algorithms is dictated by the time
it takes for RE-ABC-SMC2 to reach a pre-defined threshold of epsilon. Here
! = 5.
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Figure 4.4: Comparison of adaptive schedules for ABC-SMC and RE-ABC
SMC2 in dimension d = 100 The algorithm parameters are the same as in
figure 4.1. The total run time for both algorithms is dictated by the time
it takes for RE-ABC-SMC2 to reach a pre-defined threshold of epsilon. Here
! = 10.
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4.4.2 Duplication divergence random graph model

Here we will be dealing with an interesting example of a biologically inspired

network growth model, aptly named duplication-divergence model. The model

has two parameters, call them p and r, with the first representing the proba-

bility that edges are retained when a node is duplicated while the second the

probability that the duplicated node forms an edge to the new node. The pro-

cess repeats by adding nodes to the network, one at a time, and duplicating

an existing node (and potentially its edges).

Take an undirected graph G = (V , E) represented as a set of nodes N and

edges E , at each iteration of the process, we select a node xi ∈ N uniformly at

random to duplicate. To carry out the procedure, we first create a new node

in the network x∗, with no edges. Then we take all nodes xj | (xi, xj) ∈ E
neighbouring xi, and attach them to the new node x∗ forming new edges

(xj, x
∗), each with probability p. Finally the new node x∗ is connected to

the node that was duplicated, xi, forming an edge (xi, x
∗), with probability r.

This process is carried out until the desired number of nodes in the network

is attained. In practice a seed network is regularly used as an initial structure

from which steps of the duplication-divergence process are carried out. In our

test case we will be using an Erdős-Rényi random graph, which is constructed

by forming each of the N(N − 1)/2 possible edges in an undirected graph of

N nodes with probability a.

To see how this fits into our RE ABC-SMC sampler consider the variables

u ∈ U ⊂ [0, 1]d representing the random draws generated when simulating the

model. In certain such models, it is not possible to directly derive an MCMC

algorithm that will draw samples from u-space. In the duplication divergence

model, some of the u will correspond to the binary choice of adding or keeping

the existing number of edges, between a newly created node x∗ and one of the

neighbours xj of the existing node xi that was chosen to be duplicated. It is

however the case that the number of such u will depend on the number of edges

xi has, which in turn could depend on previous values of u used were formed

when node xi was created. Consequently, the dimensionality d of ud will change

dependent on its value in an arbitrary (non-a priori obvious) way. In order to
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overcome this issue, we propose to partition u into two sets, us and ur. We

require that the dimension of us is fixed, and that there possibly a scheme to

performMCMCmoves on us with invariant distribution π!t(y | H(u, θ))φ(u | θ)
where u = (us, ur). The remaining -of random variable length- ur are sampled

from φ (ur | us, θ) which corresponds to the transformation H described in

section 4.2.2 and their dimensionality thus remains fixed as the output of the

simulator (given the samples from the rare event algorithm ur is set from the

user; in our case we set it to d=100 as described below.

In the context of the duplication-divergence model, we take us to be the

set of Bernoulli random variables used to construct the seed graph. For each

pair of nodes in the seed graph of size N , an edge is added with probability

a. For a seed graph of size N , there are M = N(N − 1)/2 possible edges,

and hence us = us
1, ...., u

s
M . Each of these variables encodes the presence

(us
i = 1) or absence (us

i = 0) of an edge in the seed network (with the index

denoting the node number in some arbitrary ordering. We then obviously have

(given the Bernoulli assumption) that the distribution of this RV is φ(us
i |a) =

au
s
i (1− a)1−us

i .

To construct an MCMC kernel P on us, we apply a Metropolis-Hastings

sampler with a proposal that either adds or deletes an edge in the seed network

with equal probability qadd = qdel = 0.5. When an edge addition proposal is

chosen, one of the N(N − 1)/2 − |E| possible pairs of unconnected nodes is

selected uniformly at random, and an edge added between them. For an edge

deletion proposal, one of the |E| edges in the seed network is chosen uniformly

at random and deleted.

To calculate the distance between two unlabelled and undirected graphs

G1 and G2, we employ an approximation to the edit distance between them.

This is defined as the smallest number of edges that would need to either be

added to or deleted from G1 or G2 for the two graphs to become isomorphic.

The edit distance is prohibitively expensive form a computational standpoint

but can be in fact approximated, following Thorne and Stumpf [2012] using

the ordered eigenvalues α1, . . . ,αN and β1, . . . , βN of the adjacency matrices
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of G1 and G2 respectively as

(G1,G2) ≈
"

i

(αi − βi)
2 (4.28)

The influence of the seed network has a strong impact on the structure of

the final one and therefore it is of considerable interest to infer ”good” seed

networks.
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Numerical experiments

We are constructing our seed network by using N = 20 number of nodes

and α = 0.5. The inference of the RE-SMC sampler is performed on the

seed-network space, and in particular we are trying to infer what are ”good”

networks. The seed networks are then fed into the duplication divergence

overall model where the final network has node size of N = 100. Given the

parameters here, and taking into account the number of possible edges for the

seed graph we are in fact dealing with a dimensionality of d = 190 for the

ui
seed, i ∈ [1 : d]. The sample space of u is a discrete space as it can only

take values in {0, 1} and therefore u ∈ {0, 1}d. The numerical experiments

here demonstrate again, the substantially better scaling of the RE-ABC-SMC2

algorithm against SMC-ABC. Here, we run the adaptive version of both algo-

rithms setting a fixed computational budget and terminating them when that

has been reached. In figures 4.5 and 4.6 , we demonstrate the variance over

50 runs of each algorithm for parameters p and r respectively, where we see

the significantly reduced variance of RE-ABC-SMC2. It is the case again, as

in the toy model of the previous section that for a fixed computational effort

the SMC-ABC can get only get to a higher epsilon/tolerance as indicated in

4.7, the resulting posterior is a markedly worse approximation with a larger

variance. It is worth noting that increasing the number of internal particles

in RE-ABC-SMC2 we achieve another important reduction in the variance of

the empirical means.

Additionally, in the case of parameter r, we observe an important im-

provement. It is usually the case that for both the simplest ABC rejection

and also to some extent ABC-SMC that the variance of the r parameter is

much larger and in fact the mean is far from the true value of 0.2 in or case.

Here the internal SMC sampler is providing much better estimates of the like-

lihood. The reason for that is twofold. Before we get into that let us reiterate

and important distinction between this example and the Gaussian one. In the

Gaussian case we did inference on the entirety of u-space, whereas here due

to how the model is constructed and is arguably to be the case for most real

world examples, only a limited number of random seed u-variables are defined

and thus we are able to design a sampler on that space (here a simple RW
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Metropolis). It is therefore the case that we cannot expect the optimal theo-

retical performance of our algorithm in such case since we are in essence going

from the ”perfect” RE-ABC-SMC2 algorithm to a degenerate case, which of

course if we were to use only 1 time step of the internal SMC sampler would

be almost equivalent to SMC-ABC. In conclusion we expect to have an en-

tire spectrum of performance advantages dependant on the complexity of the

model/simulator we are looking at and to what degree we can define the model

appropriately such that we can write down the model or the subset of u-space.

It is important here to note the changing slope of the sequence of ep-

silons, which implies what we theoretically assumed (and hoped) would hap-

pen: Given the fixed number of particles the SMC-ABC algorithm quickly

(compared to our method) start producing a sequence of epsilon of closer and

closer values, indicating an inability to effectively propose and move the sam-

ples that would generate simulations closer to the observations. In fact what

we found in all runs is that if we tried to set a target epsilon similar to that

of the RE-ABC-SMC2 the population of particles in SMC-ABC would always

collapse at a significantly higher epsilon. Therefore, as it is usually done in

practice, the user would either use samples form a worse approximation to the

target of interest, or need to substantially increase the computational effort

(practically embedded in the number of particles or MCMC refreshment steps)

to get a better tolerance level.

We should of course also state that there is no magic bullet. RE-ABC-

SMC2 will itself also collapse if pushed into very small tolerance levels.
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parameter value is 0.2. Both al-
gorithms perform 2 steps of the
MCMC refreshment step after the
resampling scheme. The resam-
pling takes place when ESS drops
below half of the current number of
particles (on theta space).
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Figure 4.7: Duplication divergence random graph model tolerance over time for
ABC-SMC and RE-ABC-SMC2. The algorithms were run for a similar CPU
time with the approximate number of likelihood calls being equal in order to
have a computationally normalised comparison.

4.5 Conclusions

We have combined the nice properties of the rare event approach for simulating

u | θ with the use of an SMC method for exploring θ -space, which adaptively

chooses the tolerance !. Compared to ABC-SMC our algorithm allows us to

deal with considerably higher dimensional data (since the u-space rare event

SMC algorithms tackles that directly but exploring the optimal distribution of

u variables that for a given θ give the lowest !. Furthermore, a longstanding

issue with ABC methods is that very high state space dimensions make any

ABC algorithm prohibitively expensive given the exponential scaling of the

importance sampling estimator used, which in turns inhibits efficient explo-

ration of high dimensional parameter spaces. It is of course worth keeping in

mind that either in the setting of particle MCMC as in Andrieu et al. [2010],

and the rare-event variant in Prangle et al. [2018] or SMC2 Chopin et al. [2013]

and correspondingly our case, the high dimensionality of the parameter space

is still being tackled by the ‘external’ algorithm (MCMC or SMC) and thus

inherits the strengths and weaknesses of each. While the ‘internal’ rare event

sampler as explained before provides a much more efficient estimate (and bet-
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ter given a fixed computational effort) of the ABC ‘likelihood’ to plug in. The

entire benefit lies in the way the external SMC or MCMC algorithm uses this

better estimate of the ‘likelihood’ due to a better exploration of the u-space

and therefore in turn performing a better or more efficient estimate in the pa-

rameter space. Lastly, it is also obvious that poor parameter space estimates

and proposals will in turn inhibit u-space exploration and reduce the benefit

seen otherwise. We have shown here that due to the nature of the rare event

algorithm which scales quadratically instead of exponentially Agapiou et al.

[2017], Prangle et al. [2018], exploration of extremely high dimensional spaces

becomes tractable. The main difficulty here lies in the fact that as we saw for

example in the duplication divergence model it is up to the user to design and

come up with a sampler for the internal u space. Critically, it is important that

one is able to effectively define how the u variables are related to the generated

observations, which is model dependent or if they are only able to be defined

as a subset of the total random seeds, due to complex dependencies such as

the one that inhibited how many of the total u variables we are able to infer

in the network experiments. Moreover, the method has the clear benefit over

RE-ABC-MCMC, inheriting all the usual benefits of SMC-ABC over MCMC-

ABC. Specifically, we can adaptively choose ! and thus for a set tolerance

level target which we set, perform the inference much more efficiently with the

added advantages of Sequential Monte Carlo algorithms compared to MCMC

ones. We should also add that the embarrassingly parallel nature of the in-

ternal and external SMC loops brings a significant computational efficiency

benefit on top of the dimensional scaling benefits, therefore further increase

the overall benefit over other methods, and last but certainly not least allow

us to estimate the marginal likelihood for the model we are dealing with; an

issue of critical importance for many real world applications.
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Chapter 5

Conclusion and future Work

In this thesis we proposed and formulated a novel algorithm called RE-ABC-

SMC2, thereby combing the RE-MCMC of Prangle et al. [2018] and the SMC2

of

Chopin et al. [2013] and observing that it significantly outperforms the cur-

rent state of the art SMC-ABC algorithm both in adaptive and non-adaptive

variants. It is clear that for the toy model and for a slice of a world applica-

tion the algorithm would allow the tolerance of the ABC approximation to go

lower for a given computational budget or perform the inference significantly

faster for the same tolerance level. Overall, it is our hope that it would al-

low practitioners to perform much more efficiently their inference procedures

for the models which this can be applied to. Furthermore, we validated the

correctness of the proposed adaptive noisy exchange algorithm as suggested

in Drovandi and Frial [2017] thus validating its use and correctness in prac-

tice, and hopefully allowing practitioners to use in any real world applications

where the normalising constant cannot be evaluated as we have described in

detail in the introduction to chapter 3. Last but not least, we discovered some

promising results concerning the proposed SAMC-ABC algorithm by Richards

and Karagiannis [2020] that we believe given more work in the future could

be used as an alternative method to ABC-MCMC with significantly greater

flexibility in the choice of tolerance and the robustness with respect to ”sticky”

behaviour of the chain inherent in the ABC-MCMC algorithm for low levels

of tolerance in applications of interest.
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Overall we saw how the inability to have an explicit functional form of

the posterior of interest, either entirely or for the normalising constant, leads

to methods for which a considerable degree of sophistication is required to not

only perform the inference a practitioner would like, but also at a level where

the computational budget is reasonable. From the 2 chapters devoted to the

ABC methods, it is clear that while the basic original algorithm is very simple

and used with success, the requirement of many real world models and sce-

narios require far more computational power than it would be feasible to any

individual or team of researchers. As such through the years a number of im-

provements and integration of different methods have been proposed to more

efficiently approximate the required posteriors. It would not be unreasonable

to expect such significant improvements, as the ones demonstrated here for

the RE-ABC-SMC2 algorithm for example, to be made in the future. While,

depending on the application the improvement may be measured in orders of

magnitude, real world scenarios would still require weeks and months of run-

time for this algorithm, let alone for older ones. In fact, such improvements

would indeed be mandatory if better or more sophisticated models are to be

employed and used in the future, in any field. Currently, models on the scale

of meteorological or climatological models are completely computationally in-

tractable if one wants to run the full model for every iteration of one of those

algorithms for example. Model reduction techniques and emulators have made

great improvements and would allow Monte Carlo techniques to be used effi-

ciently but there is a price to pay for that reduction. Finally, we could argue

in the same spirit for targets where the normalising constants are intractable

either in the functional/approximating or computational sense. As we saw in

chapter 3, a substantial computational burden is imposed in order to get a

good estimate with as low variance as possible, while always taking into ac-

count the induced bias given the ”noisy” nature of the algorithm. As such the

proposed methodology aims to substantially reduce the computational load by

adapting the number of points needed instead of calculating a large grid of

them initially with no real guideline as to what density one would require for

an efficient algorithm. The proof solidifies the validity and trustworthiness of

the experimental data so far in Friel and Drovandi [2019] while pointing to an

interesting compromise between adaptation speed and dimensionality of the

parameter space.
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5.1 Stochastic approximation ABC-MCMC

There is a great deal of work that can be done in order to extend all of the

proposed algorithms. In the SAMC-ABC case, the obvious first improvement

as alluded in the end of chapter 2 is to implement a range of post-processing

in order to reduce the induced bias due to the algorithm. The importance

sampling suggestion is the simplest one, yet even then not exactly clear how

one would perform it in a principled way. Moreover, we can instead use a non-

deterministic schedule for the adaptation, as for example in Wang and Landau

[2001b],Wang and Landau [2001a], that instead decrease only when some cri-

terion is met. This might provide a balance between bias and adaptation for

the purposes of more efficient exploration. In addition, a very important and

arguably significant effect on inference would be that of joint stratification

of not only !-space but that of the (θ, !). The benefits of the WL algorithm

in the cases of multimodality and strange shapes of target densities are well

documented and therefore the combination of both approaches would perhaps

be most beneficial. An obvious hindrance in all of these improvements, and

reflecting back upon the original algorithm is the theoretical guarantees for

the convergence of it to the correct target. We do know that the samples are

biased, but what happens as adaptation decreases and as N → ∞ is poorly

understood. Some work such as Jacob and Ryder [2014] is known about conver-

gence of the stochastic adaptation schedule is known but the assumptions and

the settings are somewhat simple, such that the applications of the theoretical

results in real world examples are dubious.

5.2 Adaptive Noisy Exchange

From a theoretical standpoint, we would like to be able to additionally provide

rates of convergence to the degree that is possible for the algorithm as well as

some perhaps weak form of the Law of Large numbers. That would provide

a better grasp of the performance of the algorithm to users. This is rather

important given the fact that the adaptive nature of the algorithm and its

specific adaptation may result in estimates of the posterior that are perhaps
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poor since for example an extremely slow convergence to equilibrium might

be observed and one should remember that the phases of the algorithm as

utilised in the proof are those of the adaptive noisy chain and the noisy exact

chain. It might be that specific adaptation policies result in a large number of

iterations where the samples acquired are from a very noisy approximation and

thus should be discarded in a more principled way rather than the heuristics

users often employ in standard MCMC algorithms. Furthermore it would be

interesting to perhaps prove certain bounds and note the effect of epsilon on

the adaptation rates and perhaps suggest both optimal epsilons as well as

acceptance rates if at all possible in this context. The latter of which has

seen been worked on by a number of researches on more standard MCMC

algorithms.

5.3 Rare event ABC-SMC2

A number of improvements can be made to the algorithm. First it would

be very interesting to see to what extent a more principled way to propose

MCMC moves in the external SMC, could be developed. As we mentioned in

the numerical experiments section of chapter 4, a more robust MCMC kernel

as ! → 0 is needed if we are to avoid collapse of the SMC algorithm. The

idea proposed in Lee [2012] of some r-hit MCMC kernel, are promising as the

proposal is that the simulations of both proposal and current values of the

parameter are done according to the likelihood until an acceptance, or ”hit” is

observed. The author proposes variations that auxiliary data associated with

the parameters are generated until either 1-hit or r-hits are observed. Given

that those kernels satisfy detailed balance we think that it would be reason-

able to expect that to also be satisfied in the case of the SMC2 algorithm thus

proving a solid theoretical justification for the validity of the approach. Sec-

ondly, we that the way one performs inference on u-space is important in the

performance of the overall algorithm. It would be rather interesting to also

compare more complicated models were the u-variables have more complicated

dependencies and possibly design more efficient methods of sampling on that

space. Admittedly, that would perhaps increase the computational burden

substantially if the dimension is large. We envision running perhaps another
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PMCMC algorithm (inside SMC2) that targets the joint posterior of (u, θ) in

a Metropolis-Gibbs scenario (and particle Gibbs as in Andrieu et al. [2010]).

Furthermore, it would be extremely interesting to compare to what extent,

using all the random seed variables as in the Gaussian case, versus using only

a subset due to intricacies and dependencies of the considered model (as in the

duplication-divergence), this affects the performance of the overall algorithm.

It stands to reason that using all the u variables, is taking full advantage of the

RE-SMC part of the algorithm and therefore is providing the maximum effec-

tiveness overall. Yet, as we saw in the second example of the network model

a substantial improvement of SMC is still observed, thus one could imagine

that incorporating and an even greater number of seed variables would per-

haps result in even further improvements with regards to variance of empirical

estimates, decrease in epsilon speed and overall true posterior accuracy.
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Anton Bovier, Michael Eckhoff, Véronique Gayrard, and Markus Klein.

Metastability in stochastic dynamics of disordered mean-field models. Prob-

ability Theory and Related Fields, 119:99–161, 2001. ISSN 01788051.

doi:10.1007/PL00012740.
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