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Abstract
Storm surges are among the deadliest natural hazards, but understanding and prediction of
year-to-year variability of storm surges is challenging. Here, we demonstrate that the interannual
variability of observed storm surge levels can be explained and further predicted, through a
process-based study in Hong Kong. We find that El Niño-Southern Oscillation (ENSO) exerts a
compound impact on storm surge levels through modulating tropical cyclones (TCs) and other
forcing factors. The occurrence frequencies of local and remote TCs are responsible for the
remaining variability in storm surge levels after removing the ENSO effect. Finally, we show that a
statistical prediction model formed by ENSO and TC indices has good skill for prediction of
extreme storm surge levels. The analysis approach can be applied to other coastal regions where
tropical storms and the climate variability are main contributors to storm surges. Our study gives
new insight into identifying ‘windows of opportunity’ for successful prediction of storm surges on
long-range timescales.

1. Introduction

Extreme sea levels, mostly owing to high tides and
meteorological storminess, pose great risks to coastal
regions. The coasts in the western North Pacific
(WNP) are extraordinarily exposed to the natural
hazards related to tropical cyclones (TCs) (Feng and
Tsimplis 2014, Edmonds et al 2020). Understanding
of the variability and predictability of extreme sea
levels is crucial for coastal management as it may
significantly reduce extreme sea level damage. An
extreme sea level event consists of mean sea level, a
tidal contribution, and a tidal residual that is usu-
ally dominated by storm surge event. On interannual
timescales, mean sea level in the WNP is associated
with large-scale climate variability in the atmosphere

and the ocean (Feng and Cheng 2017, Cha et al 2021),
while the interannual variability in tides can be well
predicted using the equilibrium tidal theory (Feng
et al 2015b). Identifying drivers influencing storm
surge levels on interannual timescales is key to under-
standing and prediction of the year-to-year variability
in extreme sea levels.

Apart from affecting mean sea level, the large-
scale climate variability can also affect the stormi-
ness. The ElNiño-SouthernOscillation (ENSO) is the
most important interannual mode in the WNP (Goh
and Chan 2010). ENSO can affect the genesis, track
and intensity of WNP TCs by altering the amount
of sea surface energy available for TC activity and by
modulating the background steering flow in which
TCs are embedded (Camargo and Sobel 2005, Feng
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et al 2020). However, the teleconnection of ENSO
to TCs that affect the WNP coasts is complicated
and may not be linear (Feng et al 2022). In El Niño
years, WNP TCs tend to form in the central trop-
ical Pacific and become more intense when making
landfall in the west due to the longer lifetime over
the ocean than in La Niña years (Camargo and Sobel
2005). However, these storms are less likely to strike
the WNP coasts (e.g. the southeast Asia and south
China) in El Niño years due to multiple factors, e.g. a
higher possibility of northward recurving tracks and
an eastward shift in the average position of TC gen-
esis associated with a weak North Pacific Subtrop-
ical High (Chan and Liu 2004, Wu et al 2004, Kim
et al 2011, Guo and Tan 2018, Song et al 2020, Zhao
et al 2020, Chu and Murakami 2022). On the other
hand, in the decaying seasons of El Niño events, asso-
ciated with the warm sea surface temperature anom-
alies in the Indian Ocean (Xie et al 2009), the anom-
alous easterly winds in the South China Sea (SCS)
may favourmore TCs to generate locally, thus increas-
ing the storm surge risk on the coasts. Furthermore,
the multiple types of ENSO events, such as Modoki
and mega-ENSO (Ashok et al 2007, Kim et al 2011,
Wang et al 2013a, 2013b) may also alter the ENSO
effect onWNPTCs. Therefore, themodulation of TC-
related storm surges on the WNP coasts by ENSO
is not straightforward due to the complexity of the
TC–ENSO relationship.

Leaving ENSO aside, although TCs play an
important role in extreme sea level events on the
coasts of the tropical and subtropical regions (Feng
andTsimplis 2014, Zhang and Sheng 2015), it remains
a questionwhich TCmetrics are useful to describe the
intensity and occurrence of storm surges on interan-
nual timescales. Storm surges are influenced by mul-
tiple TC factors (e.g. intensity, size, translation speed,
landfalling angle relative to the coast) and non-TC
factors (e.g. local bathymetries). So far, no metrics of
regional TCs have been found to be able to explain the
variability in storm surges between different events
and years (Irish et al 2008, Towey et al 2021). Identi-
fying such TC metrics will help to explain the inter-
annual variation of storm surge and then translate the
TC prediction to storm surge prediction.

In this paper, we will introduce a new analysis
approach to decompose the joint effects of ENSO
and TCs on the interannual variability of extreme
sea levels on the WNP coasts. In this approach, sev-
eral independent predicators are identified to inter-
pret storm surge variability. And then we develop
an empirical model to predict the storm surge levels
for all exceedance probabilities. This framework is
demonstrated in Hong Kong because (a) this is one
of the most vulnerable areas for storm surge hazards
(Hallegatte et al 2013), (b) there are more than 10
TCs affecting Hong Kong each year on average (Feng
and Tsimplis 2014), ensuring sufficient samples of
TC events in our analysis, and (c) Hong Kong has

one of the longest and most reliable sea level records
along the WNP coasts. This method can be applied
to other coastal regions where TCs and large-scale
climate modes play important roles in storm surge
variability.

2. Data andmethods

2.1. Sea level and TC observations
The study is based on the hourly sea level data inHong
Kong over the period 1962–2020. Data were recor-
ded at North Point station from 1962 to 1986, after
which the station moved to Quarry Bay, half a kilo-
metre away. There is an upward offset of 1.02 cm
in the data before 1986. After shifting the data by
1.02 cm, a 59 year sea level record was obtained (Ding
et al 2001, Feng and Tsimplis 2014). Quality con-
trol was carried out prior to the analysis, including
the removal of duplicate records and obvious out-
liers caused by earthquakes and tsunamis. Augmented
Dickey–Fuller test was performed on the tide gauge
records and we confirmed the stationarity of annual
and long-term sea level records. The T-tide Matlab
box (Pawlowicz et al 2002) was used for tidal har-
monic analysis. In the harmonic analysis, 58 tidal con-
stituents (both amplitude and phase) are statistic-
ally fitted from the hourly sea level record for each
year, based on a least square fit. The seasonal cycle
(i.e. annual and semi-annual cycles) is included in the
tidal analysis. The nodal correction in lunar tides is
not applied, to avoid the discrepancy of the theoret-
ically predicted nodal variations against observations
(Feng et al 2015b). Details on the tidal analysis can be
found in Pawlowicz (2002).

The predicted tides and annual mean sea level are
then subtracted from hourly sea level data, yielding
the tidal residuals (TRs), on a yearly basis. TR can be
expressed as:

TR = Hourly sea level − Mean sea level − Tides.
(1)

For 57 out of the 59 years, the complete rate of
hourly TR is above 95%, indicating a good quality for
serial analysis. The exceptions are 1982 and 1984, with
valid data covering 87% and 78% of time. Sensitiv-
ity analysis of data integrity has been performed by
removing the 2 years from the analysis series.

Six-hourly TC track records were obtained from
the Regional Specialized Meteorological Center
Tokyo of Japan Meteorological Agency. Over 1962–
2020, there are 1558 TCs recorded in the WNP basin
(0–40◦ N, 100–180◦ E). TC track data include posi-
tion andminimum sea level pressure, withmaximum
sustained wind speed recorded since 1978.

2.2. ENSO index
Niño 3.4 is used as the ENSO index, with monthly
data obtained from the National Oceanic and Atmo-
spheric Administration (NOAA). The ENSO index
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was defined by the standardized sea surface temper-
ature anomalies in the Niño 3.4 region (5◦ S–5◦ N,
170◦ W–120◦ W) averaged over July–October when
TCs are most active in theWNP.We also tested differ-
ent averaging windows for the 4 month mean values
of Niño 3.4, and found the July–October average has
the best correlation with TRs.

2.3. Data analysis
The TC-influenced area is defined by a moving circle
along the TC track positions with an 8◦ radius (Frank
1977, Feng and Tsimplis 2014). At every hourly time
of the TC lifetime, when Hong Kong is within the
TC-influenced area, TRs at this time are then iden-
tified as TC-related TRs. To make sure the same tem-
poral resolution in TC and TR data, the 6-hourly TC
tracks were linearly interpolated to hourly interval.
We also evaluated the sensitivity of our results to the
choice of the radius for TC-influenced area by chan-
ging the influence radius gradually from 5◦ to 9◦, and
we found the same conclusions.

We used percentile analysis to assess temporal
variations of TRs (Jones et al 1999, Camargo et al
2007, Antunes 2011). For a given year, the hourly val-
ues of TR measurements were sorted into an ascend-
ing order. The largest sample size of hourly TR val-
ues for one year is 8784 in a leap year. The TR value
at each percentile from 1 to 99th was then estimated
based on a linear interpolation. Combining the 99th

value in each year, for example, gets a time series of
TR at the 99th percentile.

Linear correlation coefficient is calculated
between TR at each percentile and ENSO (or TC
metrics). Pearson coefficient is used to evaluate the
correlation. Considering the serial dependence in
geophysical data (Lu et al 2020), an adjustment of
effective sample size is used here for the evaluation of
significant level. Following previous work (Clark and
Chu 2002), the effective sample size is calculated by:

Neff =
N

1+ 2
∑5

1 γixγiy
(2)

where N is the original sample size of serial variables
x, y (e.g. TR and ENSO indices), and γix and γiy are
the autocorrelation coefficients within the serial vari-
ables at lag i, respectively. The reduction of effect-
ive numbers of degrees of freedom due to the serial
dependence may induce an increase in p-value.

We utilized the composite analysis to evaluate the
associated wind circulation at the surface when TCs
approach or affect Hong Kong, to understand the TC
effect on TRs on long-time range. In this analysis, the
satellite era 1979–2020 is chosen considering the reli-
ability of TC tracks (Knaff et al 2010, Torn and Snyder
2012). Land and sea surface pressure, and low-level
winds (at 10 m and 850 hPa), at 6 hourly intervals,
from the ECMWF fifth generation climate reanalysis
(ERA5) (Hersbach et al 2020) were used. To elimin-
ate the effect of the longer-term variability, the daily

climatology and annual mean were removed from the
6 hourly atmospheric data. The 6-hourly anomalies
were finally used as the synoptic-scale fluctuations in
the atmosphere.

3. Results

3.1. Interannual TR variability related to ENSO
Figure 1(a) (red line and shading) shows the means
and interannual variations (standard deviation) of
TRs at different percentiles in Hong Kong through-
out 1979–2020. From the lowest to the highest per-
centiles, the TRmean increases steadily from−28 cm
to 60 cm, with 0 around the median percentiles. The
amplitudes in the year-to-year variation also have lar-
ger values (2–18 cm) in low and high percentiles,
and smaller in median percentiles. In our study, we
include the low percentiles because they are critically
important to inform the coastal activities, for which a
minimum water level is required, such as vessel pas-
sage and water extraction. To understand the role of
TCs in TRs, we confine TR values to the time when
they are associated with landfalling and approach-
ing TCs (figure 1(a), black line and shading), namely
TC-related TRs (see section 2.3 Data analysis for
details). The means and variations of TC-related TRs
are much higher than the overall TRs at each per-
centile, by about 8–21 cm and 3–20 cm, respectively.
The remaining TRs (non-TC-related) (figure 1(a),
blue line and shading) have smaller mean values and
variations than the overall TRs for the high percent-
iles, while for low-to-middle percentiles the difference
between the overall and non-TC-related TRs is small.
This suggests that TCs are an important factor for
high percentiles of TRs.

Now, we investigate the role of ENSO in the inter-
annual variability of TRs. ENSO has significantly (at a
95% confidence level, unless stated otherwise) negat-
ive correlation with high percentiles of TRs (74–99th),
with the strongest correlation (r) at the 90th per-
centile (r = −0.66) (figure 1(b), red line), explain-
ing 44% of the total variability. ENSO has signi-
ficantly positive correlation with the low-to-middle
percentiles of TRs (1–54th), with r = 0.30–0.60. We
find that this ENSO–TR relationship can be partly
explained by the ENSO effect on TC-related TRs
(figure 1(b), black line). The high percentiles (85–
96th) of TC-related TRs have a significant relationship
with ENSO, with r = −0.44 to −0.31. This means
that in El Niño years water level peaks (high per-
centiles) associated with TCs have smaller values than
in La Niña years, suggesting a reduced impact from
TCs.

To test which metrics of local TCs are responsible
for the large interannual variability of TC-related TRs
(figure 1(a), black shading), we calculated the annual
number, the annual accumulated cyclone energy (Bell
et al 2000) and the average intensity of TCs that
are within the area with an 8◦ radius around Hong
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Figure 1. (a) Mean and standard deviation of tidal residuals (TRs) at different percentiles in Hong Kong over 1979–2020.
(b) Correlation coefficients between TRs at different percentiles and the ENSO index over 1979–2020. In (b), thick lines indicate
the correlations that pass the significance test at a 95% confidence level. The red, black and blue lines correspond to original TR,
TC-related TR (TR when TCs approaching or landfalling) and the left non-TC-related TR, respectively.

Kong. We find that none of these metrics of TCs
has significant correlation with TC-related TRs at any
percentile higher than 90th and lower than 20th at the
same time (shown in figure S1 in supplementary).
This is consistent with the previous study on the east
coast of the United States (Towey et al 2021), which
also found that storm surges cannot be straightfor-
ward represented by a proxy of regional TC activity.
The lack of relationship with direct measures of TC
reflects the complexity in the storm surge processes.
We also confirm that ENSO has no significant correl-
ation with any of these metrics of TC either. The large
interannual variability of TC-related TRs in Hong
Kong is likely caused by the nonlinear integration
of different aspects of regional TCs (e.g. frequency,
intensity, translation speed and landfalling position).
We speculate that ENSO is a skilful descriptor captur-
ing the integral effect of TCs on the high percentiles
of TRs.

For non-TC-related TRs, ENSO is negatively cor-
related with high percentiles and positively correl-
ated with low percentiles (figure 1(b), blue line).
The strongest correlation occurs at the 99th percentile
(r = −0.54) and the 36th percentile (r = 0.63). This
confirms that ENSO can also depict other uniden-
tified factors (i.e. non-TC factors) that significantly
affect TRs in Hong Kong. These non-TC factors are
complicated. They may include weak tropical storms,
which have impacts on TRs but are not included in
the TC records (Velden et al 2006, Torn and Snyder
2012), and the monsoons, which can affect TRs via
the river discharge and the barotropic forcing (Feng
et al 2021). The ENSOmodulations of intra-seasonal
climate variability (e.g. the Madden–Julian Oscilla-
tion), which could affect TRs in Hong Kong, may also
be relevant.

3.2. Interannual TR variability unrelated to ENSO
In this subsection, we focus on the part of interan-
nual variability in TRs that is unrelated to ENSO. To
remove the ENSO effect, a linear regression on the
yearly ENSO index with a linear least-square method
is performed on the timeseries of TR andTCdata. The
TR and TC values determined by the ENSO index are
then removed from the original timeseries, to obtain
the timeseries of the non-ENSO-related TR and TC
data. We find that after removing the effect of ENSO,
again, none of themetrics of TCs affectingHongKong
can explain the ENSO-filtered TRs (figure S2). In the
next, we investigate TR indicators based on the spa-
tial patterns of TC tracks, after the ENSO effect is
excluded.

Figure 2(a) shows the correlation between TC
track density and the 90th percentile of TRs. For
the 75–90th percentiles, their correlations with TC
track density share similar patterns. For the lower
(<70th) or larger (>90th) percentiles, the correlations
are insignificant. The 90th percentile of TRs has sig-
nificantly negative correlation with the TC number
in the east of the WNP (10–30◦ N, 130–155◦ E) and
positive correlation with the number of TCs travel-
ing through the northeast of the SCS. This correlation
pattern resembles the TC number–ENSO relation-
ship (Bell et al 2000, Feng et al 2020). After remov-
ing the ENSO effect (figure 2(b)), the positive correl-
ations are restricted to the east part of the SCS, with
r = 0.3–0.5, and the negative correlations are only
seen in the north China coasts, with r=−0.6 to−0.4.

We then choose the number of TCs making
landfall on the East China Coasts (25–39◦ N) and
South China Coasts (10–25◦ N) after removing the
ENSO effect as two descriptors for non-ENSO-related
TRs (shown in figure 2(c)), namely TCE and TCS.
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Figure 2. (a) Correlation coefficients between TC track density and the 90th percentile of TRs over 1979–2020. (b) Same as
(a) but with the ENSO effect removed from the TC track density and TRs. The TC track density is calculated at each grid point as
the number of TCs over an area defined by an 8◦ × 8◦ box around the grid point. Only grids where there are at least 26 years of
valid TC data (∼60% of availability) and where the correlations pass the significance test at a 95% confidence level are plotted.
Black dot shows the location of Hong Kong. (c) The number of TCs making landfall in the South China Coasts (TCS) and East
China Coasts (TCE) over 1979–2020, after the ENSO effect is removed. The South China Coasts and East China Coasts are
highlighted in (a) and (b). (d) Correlation coefficients between TRs and TCS and TCE, after the ENSO effect is removed. Thick
lines indicate the correlations that pass the significance test at a 95% confidence level.

Correlations between the ENSO-filtered TC num-
bers and TRs are shown in figure 2(d). Without the
ENSO effect, the TCE frequency is significantly asso-
ciated with TRs at the 78–99th percentiles, with the
largest correlation r = −0.56 (explaining 32% of
the total variability) at the 90th percentile. For the
low-to-median values of TRs (11–44th percentiles),
they are positively correlated with the TCE frequency
(r= 0.31–0.55). The correlation between the TCS fre-
quency and TRs is positive (r = 0.31–0.43) for the
upper percentiles (84–95th) and negative (r = −0.5
to –0.3) for the low percentiles (1–14th). Neither the
TCE nor TCS frequencies have a significant effect on
themedian values of TRs, related to small interannual
TR variability (figure 1(a)). The correlation between
the TCE and TCS frequencies is not significant, indic-
ating that they are statistically independent.

To further interpret the relationship between the
ENSO-filtered TRs and landfalling TC frequency, we
analyse composite anomalies of surface pressure and
low-level winds when TCs strike the coasts (figure 3).
In figures 3(a) and (b), the composites are based on
the TCs in the neutral years (23 years) of ENSO, to
eliminate the ENSO effect. For the East China Coasts
TCs, an anomalous low-level cyclonic circulation,
related to a low pressure (5–10 hPa lower than clima-
tology), appears in the Taiwan Strait. This is accom-
panied by a weak anti-cyclonic circulation related to a

high pressure around Japan (2–4 hPa higher than cli-
matology) (figure 3(a)). The low-level cyclonic circu-
lation means an offshore wind in Hong Kong, which
pushes water away from coastline, causing TR val-
ues to reduce. The low-pressure anomaly in Hong
Kong associated with the East China Coasts TCs may
increase TRs by around 2 cm via the inverted baro-
meter effect (Feng et al 2015a). However, the negative
effect of the East China Coasts TCs by offshore winds
dominates over the positive effect by low-pressure
(figure 2(d)). The positive correlations at lowpercent-
iles are expected to relate to the onshore wind anom-
alies and/or low-pressure before these TCsmake land-
fall.

For the South China Coasts TCs, a low-level cyc-
lonic circulation anomaly appears in the north part of
the SCS (figure 3(b)). The low pressure and onshore
wind anomalies increase TR values in Hong Kong,
leading to the positive TC–TR correlations at high
percentiles (figure 2(d)). Similarly, before landfall
and/or in the remnant stage, the South China Coasts
TCs have negative correlations with TRs at low per-
centiles. The cyclonic circulation anomaly is stronger
for the East China Coasts TCs than for the South
China Coasts TCs. Figures 3(c) and (d) show com-
posite anomalies in the whole period (1979–2020),
suggesting that the ENSO phases do not substantially
change the relationships between TRs and TCs.
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Figure 3. (a) Composite anomalies of surface pressure (shading) and low-level winds (vectors) when TCs make landfall on the
East China Coasts in the ENSO neutral years over 1979–2020. (b) Same as (a) but when TCs make landfall on the South China
Coasts. (c), (d) Same as (a), (b) but for East China Coasts and South China Coasts TCs over 1979–2020 regardless of the ENSO
phases. Red and green vectors represent the wind velocity (m s−1) at 10 m elevation and 850 hPa, respectively. Black dot shows
the location of Hong Kong. Only composite anomalies that pass the significance test at the 95% confidence level are shown.

3.3. A statistical predictionmodel from ENSO and
TC indices
After identifying the drivers of year-to-year TR vari-
ability, a linear prediction model is devised to
TR values at various percentiles. The ENSO index
(Nino3.4), and the numbers of TCs landfalling on
the south coast (TCS) and on the east coast (TCE)
after removing the ENSO effect, are the three inde-
pendent predictors. Before feeding the prediction
model, the three predictors are normalized and non-
dimensionalized by their standard deviation. In a pre-
diction year t, the predicted TR (TRp) at each percent-
ile (p) can be expressed as:

TRp (t) = a ∗ ENSO(t)+ b ∗TCS (t)+ c ∗TCE (t)+ d
(3)

where a, b, c are regression coefficients between pre-
dictand and predictors, and d is a constant repres-
enting the regression intercept. The regression coef-
ficients are estimated individually for each prediction
year. We use cross-validation to gain the regression
coefficients: for each prediction year, a, b and c are
calculated using 37 (N − 5) years of predictand and

predictors with a 5 year omitted block centred on the
year of prediction. TRp(t) in the prediction year t is
then predicted based on the predictors for this year.
After predicting TR for each year, we get a timeser-
ies of predicted TR(p). Correlation coefficient between
observed TR and TR(p) for each percentile is then cal-
culated to evaluate the performance of the predic-
tion. Note that our statistical model is only utilized
to predict the percentiles of TRs with standard devi-
ation> 1 cm (i.e. this excludes themedian percentiles
as the variability is very small). Different methods of
cross validation are tested in figure S3 and the results
are similar.

We evaluate the performance of both individual
and overall predictors, by calculating the correlations
and root mean square error (RMSE) between the
observed and predicted TR values during 1981–2018
(figures 4(a)–(d)). As expected, ENSO has a signific-
ant skill (r = 0.37–0.64) in predicting the variability
in TRs at low (1–42th) and high (75–99th) percentiles.
The non-ENSO-related TRs can be well predicted by
the frequencies of non-ENSO-related TCS and TCE,
with r = 0.33–0.50. By combing the three predict-
ors, the performance increases up to r = 0.36–0.79
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Figure 4. (a)–(c) Performance of cross-validated individual predictors of ENSO, non-ENSO-related TCS, non-ENSO-related TCE,
over 1981–2018. (d) Performance of cross-validated combined predictors over 1981–2018. Correlation coefficient and root mean
square error (RMSE) are used to evaluate the performance of predictors. (e) Observed (green) and predicted (black) time series of
the 90th percentile TRs over 1962–2018. Dashed lines show the extended prediction for 1962–1978 based on the prediction model
trained over 1981–2018.

for low and high percentiles. The best performance
is achieved at the 90th percentile, with r = 0.79 (pre-
dict 60% of the total variability). RMSE for each
individual and all predictors are less than 1.5 cm
at most percentiles, but increase rapidly at extreme
high percentiles. The largest RMSE occurred at 99th

percentile in all four cases but are still less than
5 cm. Figure 4(e) (solid lines) illustrates the predicted
timeseries of the 90th percentile against the observa-
tions during 1981–2018. At the 99th percentile, the
performance of the prediction model is still signific-
ant (r= 0.57).We also extend the prediction period to
1962–1978 (figure 4(e), dashed lines), with r = 0.70.
The slightly lower performance in the early period is
likely due to the large uncertainty in TC track obser-
vations in the pre-satellite era (Knapp and Kruk 2010,

Feng et al 2021), which reduces the reliability of the
TCpredictors.We tested other cross-validationmeth-
ods (figure S3) by changing the training and valid-
ating periods. We found that the performance of the
predictors is not dependent on the validation meth-
ods. To investigate the effect of data integrity, we
removed TR, ENSO and TC number data in 1982 and
1984, yielding a 40 year timeseries. Model perform-
ance is shown in figure S4 and main results are not
affected.

3.4. Conclusions
In this paper, we first introduce an analysis approach
to identify the effects of ENSO and TCs on the
interannual variability of extreme sea levels on
the WNP coasts. The approach proceeds from the
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42 years of sea level records in Hong Kong which
is one of the most vulnerable areas for storm surge
hazards and has reliable sea level records.We find that
ENSO significantly modulates the high (⩾70th) and
low (⩽50th) percentiles of TRs, through altering TC
and other forcing factors that affect Hong Kong sea
levels. After removing the effect of ENSO, the interan-
nual variability in remaining TRs can be significantly
explained by the frequencies of TCsmaking landfall in
south China and east China. We further confirm that
this relationship is related to the barotropic effect of
TCs on TRs.

In the last part of this paper, based on the signi-
ficant effects of ENSO and TCs, an empirical predic-
tion model for interannual TR variations is construc-
ted. Themodel has good performance for TRs at both
low and high percentiles, with the best skill for the
90th percentile (r= 0.79), i.e. predicting up to 60% of
the variance. The model is also capable of predicting
the most extreme values, such as the 99th percentile.
This indicates the high predictability of annual TRs in
Hong Kong and promises potential of the method for
operational use.

The analysis approach in this paper can be applied
to other coasts where tropical storms and climate
variability are main contributors to storm surges,
such as the Indian coasts and the east coast of the
United States. Useful statistical and dynamical mod-
els have been developed recently to predict the ENSO
and regional TCs in theWNP (Camp et al 2019,Wang
et al 2019, Chu andMurakami 2022, Feng et al 2022).
These offer an unprecedented opportunity to predict
extreme sea levels months or seasons ahead by using
the dynamically produced predictors in the predic-
tion model for storm surges.

Data availability statements

All of the data used in themanuscript is publicly avail-
able. Hourly sea level data inHongKong from 1962 to
2020 (Caldwell et al 2015): http://uhslc.soest.hawaii.
edu/data/?rq, site number UH329. Six-hourly trop-
ical cyclone data since 1962 (Knapp and Kruk 2010):
www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-
pub-eg/besttrack.html. The climate indices Niño3.4
(Rayner et al 2003): https://psl.noaa.gov/gcos_wgsp/
Timeseries/Nino34/. Large-scale wind field and sur-
face pressure data can be find in https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
pressure-levels?tab=form and https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
single-levels?tab=form (Hersbach et al 2020), choos-
ing the specific parameters then the required data
is available. For the former link, parameters are
as follows: product type: reanalysis; variable: U-
component of wind, V-component of wind; pressure
level: 850 hpa; year: 1979–2020; month/day/time:
select all; geographical area: 0–50◦ N, 90–170◦ E. For
the latter link, parameters are as follows: product

type: reanalysis; variable: 10 m U-component of
wind, 10 m V-component of wind, surface pressure;
year: 1979–2020; month/day/time: select all; geo-
graphical area: 0–50◦ N, 90–170◦ E.
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