
A parent-school initiative to assess and 
predict air quality around a heavily 
trafficked school 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Kumar, P., Omidvarborna, H. and Yao, R. ORCID: 
https://orcid.org/0000-0003-4269-7224 (2023) A parent-school 
initiative to assess and predict air quality around a heavily 
trafficked school. Science of the Total Environment, 861. 
160587. ISSN 0048-9697 doi: 10.1016/j.scitotenv.2022.160587
Available at https://centaur.reading.ac.uk/109434/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1016/j.scitotenv.2022.160587 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Science of the Total Environment 861 (2023) 160587

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
A parent-school initiative to assess and predict air quality around a heavily
trafficked school
Prashant Kumar a,b,⁎, Hamid Omidvarborna a, Runming Yao c,d
a Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey,
Guildford GU2 7XH, Surrey, United Kingdom
b Institute for Sustainability, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
c School of The Built Environment, University of Reading, RG6 6DF, United Kingdom
d Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of the Civil Engineering, Chongqing University, Chongqing
400045, China
H I G H L I G H T S G R A P H I C A L A B S T R A C T
Abbreviations: ARIMA, autoregressive integrated moving
Department of Transportation; DW, de-weathered; GCARE, G
NO2, nitrogen dioxide; O3, ozone; PM, particulatematter; PM
an aerodynamic diameter smaller than 10 μm; PR, parents/
integrated moving average; SARS-CoV-2, Severe Acute Resp
WD, wind direction; WHO, World Health Organisation; WS,
⁎ Corresponding author at: Global Centre for Clean Air

University of Surrey, Guildford GU2 7XH, Surrey, United Ki
E-mail addresses: P.Kumar@surrey.ac.uk Prashant.Kuma

http://dx.doi.org/10.1016/j.scitotenv.2022.160587
Received 11 September 2022; Received in revised for
Available online 5 December 2022
0048-9697/© 2022 The Authors. Published by Elsevi
• Year-long monitoring, including during
lockdown, was made at a school gate
next to a busy road.

• Prophet Algorithm was used to predict
NO2 as a proxy to traffic emissions.

• Daily PM2.5 levels increased by three-
times the WHO limit right after the New
Year.

• De-weathering of data showed no major
changes, confirming existence of local
emissions in all phases.

• Wind speed and temperature showed
dominating effect on PM and gaseous pol-
lutants, respectively.
A B S T R A C T
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Many primary schools in the UK are situated in close proximity to heavily-trafficked roads, yet long-term air pollution
monitoring around such schools to establish factors affecting the variability of exposure is limited. We co-designed a
study to monitor particulate matter in different size fractions (PM1, PM2.5, PM10), gaseous pollutants (NO2, O3 and
CO) and meteorological parameters (ambient temperature, relative humidity) over a period of one year. The period
included phases of national COVID-19 lockdown and its subsequent easing and removal. Statistical analysis was
used to assess the diurnal patterns, pollution hotspots and underlying factors driving changes. A pollution episode
was observed early in January 2021, owing to new year celebration fireworks, when the daily average PM2.5 was
around three-times the World Health Organisation limit. PM2.5 and NO2 exceeded the threshold limits on 15 and 10
days, respectively, as the lockdown eased and the school reopened, despite the predominant wind direction often
being away from the school towards the roads. The peak concentration levels for all pollutants occurred during morn-
ing drop-off hours; however, some weekends showed higher or comparable concentrations to those during weekdays.
average; CO, carbon monoxide; COVID-19, SARS-CoV-2 disease; DEFRA, Department for Environment, Food& Rural Affairs; DfT, UK
lobal Centre for Clean Air Research; GLL, Guildford Living Lab; IQR, interquartile range; MAE,mean absolute error; N/A, not available;
1, PMwith an aerodynamic diameter smaller than 1 μm; PM2.5, PMwith an aerodynamic diameter smaller than 2.5 μm; PM10, PMwith
residents; Q, quarter; RH, relative humidity; RMSE, relative mean square error; RS, researchers; SARIMA, seasonal autoregressive
iratory Syndrome Coronavirus-2; SP, school personnel; ToNC, total particle number concentration; TRAP, traffic-related air pollution;
wind speed.
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The strong disproportional Pearson correlation between CO and temperature demonstrated the possible contribution
of local sources through biomass burning. The impact of lifting restrictions after removing the weather impact showed
that the average pollution levelswere low in the beginning and increased by up to 22.7% and4.2% for PM2.5 andNO2,
respectively, with complete easing of lockdown. The Prophet algorithm was implemented to develop a prediction
model using an NO2 dataset that performed moderately (R2, 0.48) for a new monthly dataset. This study was able
to build a local air pollution database at a school gate, which enabled an understanding of the air pollution variability
across the year and allowed evidence-based mitigation strategies to be devised.
1. Introduction

The UK road transport sector accounts for a significant proportion of
traffic-related air pollution (TRAP) such as PM2.5 (particulate matter with
an aerodynamic diameter smaller than 2.5 μm), CO (carbon monoxide)
and NO2 (nitrogen dioxide) emissions (NAEI, 2021). In the UK, many
schools are located adjacent to busy roads for better accessibility (Dowler
and Howard, 2017; Osborne et al., 2021a, 2021b). Furthermore, the use
of personal cars for school journeys in England has doubled over the past
two decades accounting for as many as 1 in 4 cars on the road during morn-
ing peak hours (Perscom, 2018). Hence, infiltration of exhaust emissions
from these roads or idling vehicles during drop-off/pick-up hours may
lead to elevated air pollution exposure in young children (Kumar et al.,
2020a, 2020b). Consequently, children are more likely to suffer from
short- and long-term health conditions (Brumberg et al., 2021; Shier
et al., 2019), including asthma, bronchitis and stunting of their incomplete
lung development as well as exhibiting higher breathing rates and low-
breathing height as compared to adults (Kumar et al., 2020a, 2020b;
Sharma and Kumar, 2018). Reducing car usage, wherever possible, and
prompting active travel can positively impact the reduction of fresh exhaust
emissions and children's exposure to them.

The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2),
which is the responsible agent of SARS-CoV-2 disease (COVID-19), reached
the UK in early 2020. As a result, the UK government announced and en-
couraged the population to stay at home, commonly known as ‘lockdown’,
on 23 March 2020 (GOV.UK, 2020) and brought into force mandatory re-
strictions on non-essential travel across the UK (PHE, 2020). These restric-
tions limited mobility and on-road activities to essential services/travel
causing a significant reduction in on-road vehicles and subsequently
TRAP (Gkatzelis et al., 2021; Kumar et al., 2020c; Lee et al., 2020; Venter
et al., 2020). However, after the step-by-step easing of restrictions, which
led to schools reopening in the UK on 08March 2021, parental concerns re-
lated to children's exposure to elevated TRAP around schools became valid
again.

Due to the advances in low-cost sensing technologies for air quality
monitoring in recent years, multi-sensor units have been introduced to
the market and are widely utilised (Kumar et al., 2015; Omidvarborna
et al., 2021; Rai et al., 2017). Real-time air quality monitoring by schools
can help them to understand the diurnal patterns of air pollution and devise
appropriate mitigation plans to limit school children's exposure. Therefore,
we researchers, parents and the school in this study, co-designed a study to
continuously monitor air pollution during and beyond the lockdown pe-
riods. The de-weather algorithm was used to decouple the weather effects
from the monitored data. We applied simple machine learning forecasting
models to predict the concentrations and identify the forces driving tempo-
ral changes in local air quality. Although there are conventional, but com-
plicated, air quality forecasting models (Deters et al., 2017; Xi et al.,
2015) and machine learning forecasting models (Deters et al., 2017;
Fuller et al., 2002; Li et al., 2015), we utilised a versatile machine-
learning-basedmodel, the Prophet algorithm,which is not complex to oper-
ate and is independent of meteorological factors (Taylor and Letham,
2018). The specific objectives were to (i) measure air pollution concentra-
tions during different phases of lockdown easing and evaluate the extent
to which these changes affected the air quality at a school gate; (ii) under-
stand the influence of meteorological factors on monitored air quality data
after decoupling their effects, (iii) apply a simple but effective machine-
2

learning model to predict air pollution concentrations and hotspots; and
(iv) facilitate discussion among researchers, parents and school staff to de-
sign actions that could raise awareness and reduce children's exposure to air
pollution.

2. Materials and methods

2.1. Study design

Guildford Living Lab (GLL), run by researchers from the University of
Surrey's Global Centre for Clean Air Research (GCARE), is a platform in-
volving researchers, local communities and stakeholders to co-create and
co-design sustainable and evidence-based solutions to tackle air pollution
and to raise awareness about air pollution and climate change through cit-
izen science activities (GLL, 2021; Mahajan et al., 2020; Omidvarborna
et al., 2020). Air quality concerns are brought in to the GLL by community
members, environmental groups or the public through workshops,
webinars or public engagement activities via social media and physical
events such as Car Free Day (CFD, 2021). This allows diverse stakeholders
to interact, discuss and co-design studies on issues related to local air qual-
ity and climate change.

The concepts of inclusion, collaboration and reciprocation were in-
cluded in this co-creation citizen science activity (Mahajan et al., 2020;
Omidvarborna et al., 2020). Inclusion involved the parents of primary
school children and nearby residents (PR) contributing to the scientific
work in conversations with school personnel (SP) and the researchers
(RS) of the GLL to build an understanding of air pollution levels and their
causes. The collaboration was established among PR, SP and RS in mid-
2020 through a series of virtual meetings to co-design the scientific objec-
tives of the study. This step involved site selection (SP and RS), installation
of equipment (SP and RS), overseeing the operation and safety of equip-
ment (SP), data collection and analysis (RS), writing reports and the inter-
pretation of results (RS). During this process, a co-implementation plan of
the strategy and the responsibilities of all three groups for the collaborative
steps outlined above was also agreed upon. During the monitoring period,
the collected data were analysed monthly and interpreted by the RS and
then discussed with others (PR and SP) during monthly meetings in
which all parties addressed the air pollution events, concentration trends,
sources and possible mitigation scenarios. For example, apart from consid-
ering natural green barriers to mitigate air pollution (Abhijith et al., 2017;
Abhijith and Kumar, 2019), the use of aesthetically-pleasing solid messag-
ing boards that can include educational messages (adopted from the gen-
eral and targeted recommendations in Kumar et al., 2020b) was also
considered. Thesemessaging boards can be placed above the green barriers
along school boundaries to limit the ingress of new exhaust emissions to
school premises from adjacent busy roads. An example of a co-designed bar-
rier through this citizen science activity is shown in Fig. S1. The last step,
called reciprocation, involves the dissemination, engagement and conver-
sion of complex science into simple messaging (PR, SP and RS) in the
shape of storytelling (see Fig. 1).

2.2. Site description

Fig. 2 shows the location of the primary school in the town centre of
Guildford, UK. The school is situated near heavily-trafficked roads 1
(East-West direction) and 2 (North-South direction). Guildford is one of
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Fig. 1. The conceptual framework of the citizen science activity at the school site includes the contribution of each partner - RS, SP and PRa. The dissemination and post-
exploitation steps informally start from the beginning of any citizen science activity. This means that the development of public engagement and raising public awareness
require continuous involvement and dissemination across the study period.
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the most populous towns in the County of Surrey in England with a popula-
tion of around 143,600 in 2021 (Office for National Statistics, 2021). As re-
ported by the UK Department for Transport (DfT), four major roads pass
through Guildford (DfT, 2012), which attract about 43,746 to 96,135 vehi-
cles per day to this area (Surrey-i, 2015). This is subject to increase due to
Guildford residents' high personal car ownership rate (72%) (Al-Dabbous
and Kumar, 2014) which makes cars the most preferred mode of transport
(∼97%). Thus, traffic is the primary emission source given the lack of local
industrial or thermal power plants (Surrey-i, 2015). As the roads around the
school connect Guildford town centre to nearby areas, queues of cars are ex-
pected during the peak hours. For example, the routes to the east side of
Guildford via road 1, toWoking via road 2 and vice versa to the town centre
are highly used on a daily basis. In addition to passenger cars, vans, lorries
and other diesel-powered vehicles use these roads to provide support and
deliver goods to local shops/residents.

To capture air pollution from both roads, the monitoring unit was
installed at the breathing zone height of about 1.8m,where the unit can op-
erate safely. The unit was 20 m away from road 1, where a break-type wall
(approximate height = 1.8 m) and partial green infrastructure (see the
image directed by purple lines) were located (Fig. 2). The distance of the
3

unit from road 2 was around 15 m, where a porous wooden fence was in
place (see the image directed by turquoise blue lines). The onsite wind
speed (WS) and wind direction (WD) measurements were unavailable.
However, such data are essential information for de-weathering purposes.
Therefore, meteorological data were obtained from the closest meteorolog-
ical station in Wisley (5062E 1579 N) located about 11 km to the North-
East of the sampling site. This station is run by the Met Office National Me-
teorological Archive and its data has been successfully used in previous
Guildford-based studies (e.g. Goel and Kumar, 2016; Kumar et al., 2022).
The meteorological data have proven to be valid for Guildford (R2, 0.89),
as reported in a recent modelling study by Tiwari et al. (2021).

The colour-codedWD illustrates the number of pollutants that could be
transferred into the school with the red colour representing the highest ex-
posure from the vehicular emissions associated withWD and the green col-
our showing the lowest possible exposure. As shown in Fig. 2, wind towards
the school covering the first quarter (Q1 represented by the red colour cov-
ering 0° to 90°), wind from the school covering the third quarter (Q3 repre-
sented by the green colour covering 180° to 270°), and wind parallel to
Road 1 (Q2 covering 90° to 180°) and Road 2 (Q4 covering 270° to 360°)
coloured yellow were defined accordingly.



Fig. 2. The location of the school (dark blue enclosure) and AQMesh (red location sign in themiddle of the school) concerning roads. TheWDs from/to the school are shown
in red, green, and yellow colours, respectively, as described in Section 2.2.

P. Kumar et al. Science of the Total Environment 861 (2023) 160587
2.3. Instrumentation and data collection

A solar-powered and rechargeable battery-operated AQMesh pod (Envi-
ronmental Instruments Ltd., UK) was utilised to measure particles of differ-
ent size fractions (PM1, PM2.5 and PM10 μg m−3), NO2 (μg m−3), CO (μg
m−3), ozone (O3; μg m−3), temperature (accuracy of 2 °C), and RH (accu-
racy of 5 %). The NO2 sensor is designed to reject O3 and thus minimise
O3–NO2 cross-sensitivity issues. The raw data can be accessed by a secure
login for different time intervals from 15 min to 24 h. The versions of the
AQMesh platform for the Gas Protocol and the Particle Protocol were 5.1
Fig. 3. (a) Easing restriction dates by theUKgovernment during the year 2021. (b) TheU
The sudden reductions in domestic transport use are linked to public holidays. The scho
resumed normal operation to conclude the 2020–21 academic year.
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and 3.0, respectively. The recorded data from the pod were uploaded via
cellular communication to a cloud database held by the provider.

2.4. Data collection

The UK government roadmap for ending all COVID-19 restrictions in-
volved multiple stages in precisely five phases in total, in the year 2021
(Fig. 3a). Since the major source of air pollutants around the school is
from nearby roads, we further elaborated on these five phases in Table 1.
Phase II/III (previous school year 2020–21 after reopening) and phase V
KDfT statistics on domestic transport use during the Covid-19 pandemic (DfT, 2021).
ol considered in this study embraced remote classes until 08 March 2021 and later



Table 1
Easing restrictions details as per the UK government plan and statements by the
Prime Minister's Office (GOV.UK, 2021).

Phase Duration
(from 2021)

Description

I Up to 08 March Stringent lockdown measures in the UK from the beginning of
January 2021, which included:

• Stay at home with limited exceptions.
• School closures.
• Closure of non-essential shops and services.

II Up to 12 April Schools reopened - but other measures remaining in place.
III Up to 17 May Opening of non-essential retailers and hospitality venues

serving outside.
IV Up to 19 July Allowing indoor hospitality and larger outdoor gatherings

like some sporting events with spectators.
V 19 July onwards Getting back to the normal situation with minor restrictions.

30 November onwards: new measures to respond to the
emergence of the Omicron variant come into force at 4 am -
compulsory face coverings in shops and on public transport.
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(ongoing school year 2021–22) represent the time when school children
have been exposed to pollutants as compared to phase I (school closure
and operating online due to the UK national lockdown) and phase IV
(school closure, summertime).

Moving through these phases revealed variations in the number of on-
road vehicles and higher vehicular emissions irrespective of meteorological
and local conditions. As shown in Fig. 3b, the report released by the DfT re-
veals that domestic car usage started to increase when lockdown measures
were eased. For example, from the school reopening date (08 March 2021,
beginning of phase II) and the week commencing mid-May (17 May 2021,
beginning of phase IV) onwards (Table 1), the number of domestic vehicles
increased towards the maximum level and remained constant across the
UK. Since there was no local transport use in place during the periods, we
assumed a similar increase in the number of on-road vehicles around the
school to that shown by DfT statistics.

The pod is adjusted to deliver 15-min averaged data. We used the stan-
dard hourly data averaging merged with the meteorological data to reduce
random noise (Section 2.5). In total, 8760 data entries per hour per moni-
tored variable and meteorological data were obtained during the study do-
main covering a full calendar year from January 2021 until the end of
December 2021.

2.5. Data analysis

Considering the situations, the final dataset was assessed for the differ-
ent phases of lockdown and its subsequent easing and removal during
school hours (08:00 to 16:00 h), non-school hours (<08:00 and >16:00
h) and weekends (00:00 to 23:00) as seen in Table S2. To explore the im-
pact of WD on air pollution, we analysed the dominant winds in three
main directions as described using different colours in Section 2.2 (see
Fig. 2). Following standard practice, a WS < 0.5 m s−1 was used to repre-
sent calm wind conditions.

We assessed the role of weather on the observed data using the de-
weather code in the R package for removing meteorological variation
from the air quality data (Carslaw, 2020; Grange and Carslaw, 2019). The
de-weathering code operates based on an ensemble of decision trees to
de-trend the cleaned dataset and remove the influence of meteorological
variables. The de-weather approach is based on a non-parametric model
using boosted regression trees tomodel the relationship between pollutants
and the explanatory variables (Carslaw and Taylor, 2009). This exercise
allowed us to assess the extent to which changes in ambient pollutant con-
centrations were attributed to changes in emission levels during the differ-
ent phases of lockdown and beyond (Grange and Carslaw, 2019). Apart
from meteorological factors, time variables such as ‘hour’, ‘weekday’, and
‘trend’ were selected as proxies for the determination of diurnal variations
in emissions (Carslaw, 2020). De-weathered data for pollutants was
5

annotated as “dw”. All the codes for in-depth analysis of the plots, for re-
moving the influence of meteorological events and for statistical analysis
were achieved with the help of ‘Openair’ open-source software (Carslaw
and Ropkins, 2012) in RStudio (version 1.1.456) developed under the R
project (R Development Core Team, 2013) for the statistical computation
of air pollution data.

2.6. Quality control and assurance

Past studies, e.g. monitoring at a railway station in Birmingham, UK
(Hickman et al., 2018) and another one in kindergartens in Oslo, Norway
(Castell et al., 2018), have shown the reliable performance of AQMesh
pods in monitoring ambient air quality. Here, we summarised the reported
performance of AQMesh units in comparison with references in Table S1,
where ambient air quality was in focus. In this study, we followed the pro-
cedure proposed by the manufacturer (Environmental Instruments Ltd.,
Stratford-upon-Avon). We deployed a factory-calibrated pod at the school
site. Secondly, the pod was left in operation for up to two weeks for
stabilisation before initiating the campaign. Thirdly, a proprietary algo-
rithm was implemented to post-process the data recorded by the sensors
to resolve the effect of temperature/RH as well as cross-interferences. The
data points obtained from the pod with a valid status tag were retained
and all the negative, not available (N/A) and ‘out-of-spec’ values were re-
moved following the manufacturer's specifications. Lastly, the collected
hourly dataset was combined with the cleaned meteorological data for ap-
plying outlier and/or anomaly detection techniques using the previously
developed sensor toolbox (Mahajan and Kumar, 2019).

2.7. Model description

We used an R-based forecasting model, the Prophet algorithm, which
was supported by the history of temporal relationships during the past 12
months. This algorithm implements machine learning fitting and time se-
ries decomposition methods (Kakoullis et al., 2021) to successfully return
a high accuracy time series forecast to predict future air pollution events
(Nath et al., 2021; Sadhasivam et al., 2021; Topping et al., 2020; Ye,
2019). The Prophet algorithm is a robust model for outliers, missing data
and dramatic/unexpected changes in time series events (Taylor and
Letham, 2018). Even in the presence of numerous outliers ormissing values
(Ye, 2019), the Prophet algorithm requires less time for training and confor-
mity with known predictive models such as autoregressive integrated mov-
ing average (ARIMA) and seasonal autoregressive integrated moving
average (SARIMA), which make it our preferred candidate as a forecasting
model (Ye, 2019; Samal et al., 2019).

We considered the hourly concentration of NO2 for this modelling since
it serves as a good proxy for vehicular emissions. The implementation of the
algorithm was done in R and used to forecast the level of NO2 in the first
month of the year 2022. Theoretically, the model can forecast longer pe-
riods; however, forecasting with better precision using the most recent
data is preferred. To validate the performance of the model in forecasting
air quality around the school, the model was evaluated against the observa-
tions using a set of statistical parameters.

3. Results and discussion

3.1. Impact of lockdown and lockdown eases

To understand school children's exposure to air pollution during differ-
ent phases of lockdown and post-lockdown measures, we divided all the
data into school hours (0800 to 1600 h), non-school hours (<0800 to
>1600 h), and weekends. In the subsequent sections, we will pay most at-
tention to school hours, as the school children are mainly exposed to
TRAP during their presence at the school. It is worth noting that the school
hours also include the school children drop-off time in the morning and the
evening pick-up. Non-school hours are discussed as the second priority to
support the study topic in Section S2 (Figs. S2–S10).
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3.1.1. PM size fractions
During phase I, when the school was closed due to national lockdown,

the diurnal variation of PM2.5 and PM10 showed a noticeable change, espe-
cially duringmorning hours as compared to other times of the day (Fig. S3).
The exposure to PM during morning peak hours is up to 1.5-times higher
than daily off-peak hours. This is due to the traffic associated with essential
workers' schedules. However, the peak traffic in the eveningwas spread out
as the working time schedules might vary. This trend remained in place in
other phases not only because of essential workers but also as a result of
school reopening.

During phase I (Fig. S2 and Table 1), the dominant WD was from the
school to traffic (Q3 followed by Q2 and Q1). Hence, a noticeable dis-
persion was expected (3.16 m s−1; 0.7 % calm) due to a high mean
WS and less calm conditions compared with non-school hours (2.81 m
s−1; 0.9 % calm) and weekends (2.40 m s−1; 1.9 % calm). However,
as shown in Fig. 4, a significant variation in PM covering all size frac-
tions was observed in phase I. The first possible reason would be new-
year fireworks activities, when the daily average PM concentration
reached 27, 40 and 46 μg m−3 levels for PM1, PM2.5 and PM10, respec-
tively. Additionally, the presence of an unexpected source emitter very
near to the pod around 07 January 2021 elevated the daily average con-
centrations of PM1, PM2.5 and PM10 by 11-, 13-, and 18-times with re-
spect to the baseline concentration on preceding days. On this day, the
absolute concentration values for PM1, PM2.5 and PM10 were 29, 54,
and 116 μg m−3, respectively. These extreme events happened during
weather conditions when WS was <2 ms−1 (Fig. S2). All these activities
are also evident in the representative PM2.5 calendar plot (Fig. S5),
when the PM2.5 threshold is set at 15 μg m−3 following the recent
World Health Organisation guideline (WHO, 2021). Likewise, there
were two days in February 2021 (01 and 22) and four consecutive
days in March 2021 (01–04) when the daily levels exceeded the WHO
limits. Exposure to such PM levels could easily put school children
into unhealthy situations since concentration values were within the
moderate and very high bands as defined by the UK Air index (UK Air,
2021). All these events happened during phase I when the school was
not in operation. These events have increased the exposure level of
local residents to PM in different size fractions. Hence, there is a need
for a warning tool to minimise outdoor activities and propose mitigation
actions to reduce the ingress of polluted ambient air into classrooms.

Phase II represents the school reopening period when a higher concen-
tration of PMwas expected. As is evident in Fig. 4, the concentration of PM
notably increased at the junction (Q1 segment) and along Road 2 (North to
South direction), where the distance of the pod from the road is minimum
and the school has no solid barrier (Fig. 2). The traffic associated with
school reopening (phase II) has reflected its impact in elevating the daily
PM2.5 concentrations in March as compared to earlier days. In addition to
the school opening day, the daily PM2.5 concentration level on four school
days in this phase did not meet the recent WHO threshold of 15 μg m−3

(Fig. S5). This indicated the high exposure level during the school
reopening which could impact the children's daily exposure. The air pollu-
tion level in the school could have been even greater if the dominant WD
was not from Q3 (Fig. S2).

Polar plots for phase III also reflected impacts from the junction/road
emissions (Fig. 4). As compared to phase II, the PM concentrations were
lower in phases III and IV (Figs. S4 and S5); however, the average concen-
trations showed a slight increase starting from phase III as described later
(Section 3.2). During the summer break and school closure time, i.e. the
last few weeks of phase IV and the first few weeks of phase V, the
favourable WD (Fig. S2) and no drop-off/pick-up activity reduced the
daily concentrations of PM as represented by Figs. 4 and S5. For example,
Fig. 4.Representative hourly polar plots for all pollutants during different phases of mon
of the plots is assumed to be the placement of themonitoring station. Simply, theWest to
The circular format of each diagram shows the directions (refer to Q1 to Q4 WD segme
segment shows the concentration of pollutants. The colour bars underneath the plot rep
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as shown in Fig. S5, there was no day in August 2021 with a daily PM2.5

concentration >8 μg m−3.
Phase V can be officially called the normal situationwhen all the restric-

tions are lifted and a stable flow of on-road vehicles is established (Fig. 3b).
During this phase, school children attended indoor classes with open win-
dows and/or activities inside the premises to avoid the possible transmis-
sion of infectious diseases due to lack of proper ventilation. However,
leaving windows open or having outdoor activities could expose them to
the TRAP from adjacent roads (Kumar et al., 2021). The polar plot for
phase V illustrates the hourly PM concentration build-up in the school envi-
ronment under low-WS conditions (Figs. 4, S2) as compared to summertime
(i.e. phase IV). As shown in the calendar plot (Fig. S5) and later described in
Section 3.2, the median PM concentration for all size ranges increased to its
maximum level since the beginning of phase III. For example, the number of
days with a daily PM2.5 concentration greater than theWHO threshold limit
increased to 8 weekdays from September onwards. Therefore, leaving win-
dows open or having activities outdoors is not recommended. An alert can
be achieved by deploying an alarm indicator that is capable of monitoring
school-site ambient air quality and feeding the data into a prediction
model to forecast air pollution levels (see Section 3.3).

3.1.2. NO2 and O3

MonitoringNO2 concentration as a traffic indicator could be of great im-
portance in the school environment (GOV.UK, 2018), where diesel-based
lorries/vans are responsible for delivering goods and services to local
shops/residents. NO2 is sourced mainly from the transportation sector, es-
pecially diesel engine emissions, and is a proxy for vehicular emissions.
As seen in Fig. 4, the NO2 and PM2.5 plots follow a very similar pattern
with moderate positive correlations (Fig. S9). The higher concentrations
of NO2 are detected when the wind blows from the direction of intersec-
tions and roads towards the school in all phases (Q1, Q2, and Q4; see the
surge of NO2 in Fig. 4), while a WD from the school (Q3) brought in mini-
mal NO2.

The hour of the day shows the diurnal variation in emissions in which
the NO2 is at its highest level during school hours (see Fig. S3) and remains
high throughout the day until evening with a strong correlation with daily
commutes (Ragettli et al., 2015). The NO2 level was usually low at week-
ends (Figs. 4 and S6) compared to weekdays due to reduced flows of diesel
vehicles (see NO2 Calendar Plot in Fig. S8). After the school reopened in
March 2021, NO2 levels crossed the WHO threshold (25 μg m−3) during
10 weekdays.

As shown in Figs. 4, S6 and S7, the relationships between the secondary
pollutants NO2 and tropospheric O3 and meteorological variables are in
keeping with those expected based on knowledge of the physical conver-
sion process involved (Monks et al., 2015). The reciprocal relationship be-
tween NO2 and O3 was evidenced by strong negative correlations r =
−63,−78 and−89 during the first three phases (Fig. S9), while the corre-
lations became weak in other phases. The increase in O3 levels started in
mid-March, most likely driven by warmer weather through photochemical
reactions and lockdown easing as the potential sources (Mahato et al.,
2020). Furthermore, a higher WS facilitates dilution and atmospheric
mixing, which elevates the formation of O3 through better mixing and/or
physical interactions (Fig. S7). Although the local council is monitoring
NO2 levels across Guilford, but not around the school, using diffusion
tubes, our results indicate that a specific site for NO2 sampling near the
school should be considered.

3.1.3. CO
CO arises from the incomplete combustion of fossil fuels and biomass

(e.g. wood) in vehicle engines and many household appliances e.g. boilers,
itoring and school hours (weekdays from 0800 to 1600). For clarification, the centre
East line can represent Road 1, while the North-South line can be counted as Road 2.
nts as discussed in Section 2.1) from which the winds blew and the colour in each
resent concentration levels in μg m−3.
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central heating systems, gas fires, water heaters, cookers and open fires
(GOV.UK, 2018). Fig. 4 shows variations in CO concentration in all phases
even after easing restrictions as compared to other pollutants, withminimal
variations being observed during non-school hours and weekends
(Fig. S10). Although there is a good correlation between CO and PM2.5/
NO2, the strong disproportional Pearson correlation between CO and ambi-
ent temperature in phases I to V (−72,−70,−70,−51 and−51, respec-
tively; Fig. S10) could suggest that nearby households play a role. Although
themeasured CO levels were below the Department for Environment, Food
& Rural Affairs (DEFRA) guideline (10,000 μgm−3 as an 8-h average), a re-
cent multi-country study (337 cities avoiding potential publication bias) by
Chen et al. (2021) concluded that daily exposure to CO concentrations of
>600 μg m−3 is significantly associated with mortality risk estimates.
Hence, a detailed source apportionment analysis supported by additional
monitoring is required to track the contribution of each factor in the school
environment.

3.2. Weather impact

The dw approach is used to remove the influence of weather (meteorol-
ogy) and detect the timings of discrete changes in PM1, PM2.5, PM10, NO2,
O3, and CO time series (Carslaw, 2020; Grange and Carslaw, 2019). Al-
though complex interactions and nonlinearity effects among air pollutants
have been involved, the statistical model illustrated strong correlations
with the dw model (0.79 ≤ r ≤ 0.92) to reproduce observations as
shown in Table S3 (Emery et al., 2017; Henneman et al., 2017). Using the
dw model, we explored the relative importance and levels of the explana-
tory variables scaled as percentages for specific pollutants (Fig. 5) in
order to understand the relationship between each pollutant and the covar-
iates used in the model while holding the value of other covariates at their
mean level (Carslaw and Taylor, 2009; Friedman, 2001).

As shown in Fig. 5, the time evolution (trend) was the most important
variable in the PM explanation, while temperature mainly controlled the
predicted values for gaseous pollutants. Among the other meteorological
factors, WS (plume dispersion) had a larger impact on both PM and gaseous
Fig. 5. The relative importance and levels of the explanatory variables for each pollutant
the explanatory variables for that specific pollutant in the model. Importance of predicto
(temp), RH, WS, WD, the hour of the day (hour), and day of the year (weekday) in the
explanatory variables throughout.
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pollutants compared with WD. RH can have an appreciable impact on the
growth of PM due to hygroscopic effects. However, a correction for the hy-
groscopic growth of particles is usually required when RH > 85 % (Crilley
et al., 2018; Jayaratne et al., 2018). Although average RH was slightly out-
side the range on a few occasions during school hours (SI Table S2), a built-
in filter (AQMesh proprietary algorithm and PM processing tool (v3.0))
minimised the effects on hygroscopic particles. The diurnal hourly pattern
in the model showed insignificant impacts on PM and medium impacts
on gaseous pollutants.

Observed concentration (dashed grey), noiseless dw (solid black) and
their associated variations are shown in Figs. 6 and 7, respectively, where
the phases are separated by vertical lines. The temporal variations of ob-
served concentrations at the school site (Fig. 6) did not show a smooth
trend because of concentration spikes during pollution events. The O3 and
CO concentrations varied more markedly after phase I, because their varia-
tions are temperature dependent (Fig. 5). The dw trends in Fig. 6 show that
there were no distinguishable sharp increases or sudden drops from one
phase to another, which indicated a more gradual change in dw concentra-
tions (see Fig. 7). For example, the dw plots for PM in different size fractions
showed almost no clear changes over phases which agrees with Shi et al.
(2021)who reported the same trend for PM2.5 by comparing concentrations
during lockdowns and before lockdown in several cities.

Fig. 7 is plotted to better address the dw average values during school
hours. As shown in this figure, all PM followed a trend along with phases,
which decreases from I to IV and then increases in phase V. For example,
the average dw PM2.5 concentration reduced by 22.3 %, 42.7 %, and 0.6
% from phase II to I, phase III to II, and phase IV to III, while the concentra-
tion increased by 22.7 % from phase V to IV, respectively. This is relatively
similar among all size fractions of PM and is probably influenced by the
same factors (see Fig. 5). The concentration of gaseous pollutants started
to decrease from phase I before returning to relatively the same level in
phase V. For example, the change in average dw NO2 concentrations from
phase I to Vwere−7.2,−7.1, 4.0 and 4.2%, respectively. However, O3 be-
haved oppositely toNO2 (30.5, 20.6,−21.5, and−2.2%, accordingly) due
to an increase in the consumption rate of NO2 in the presence of spring and
, where their contribution in percent illustrates the relative importance and levels of
r features: the trend is time variables represented by Unix Epoch time, temperature
random forest model. The trend, temperature, WS and RH terms are the dominant



Fig. 6.Observed (dashed grey) and dw (solid black) hourly PM1, PM2.5, PM10, NO2, O3, and CO concentrations on the school site during different phases of the study. The dw
modelwas constructedwith 80% randomdata for training and20%unseen data for validation. Data is shown fromJanuary to December in 2021, where the vertical red lines
separate the phases. Sample sizes for drawing the time series are 1584, 840, 840, 1512 and2520 for phases I to V, respectively. The hourly time variation of the environmental
parameters and pollution concentrations were also plotted (Fig. S3).
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summer sunlight (influenced by temperature). A closer look shows that the
situation is not going to be optimal for school children as concentration
trends kept increasing in phase V, when the new school year started.

3.3. Forecasting model

Air pollution forecasting can be quite unpredictable, especially given
the knowledge required to consider meteorological factors, emission
sources, local incidents, etc., which require complex formulation with a rig-
orous mathematical underpinning. Here, we explored the possibility of
using the Prophet algorithm to develop a forecast model for the school to
take action by the cancellation of any outdoor activities. It is obvious that
any forecast would be valid upon experiencing the situations it had been
9

trained for. However, altering traffic very near to school, events such as un-
expected loading or unloading, car queuing due to accidents, construction
and road activities and other similar unusual occurrences could possibly
slow down the flow of vehicles. In such situations, the model's accuracy
will be reduced, hence, additional precautions should be taken to cancel
any outdoor activities.

Here,wedeveloped amodel using a dataset covering periods of national
lockdown, a series of loosening restrictions and normal situations (Fig. 8).
The model captures the diurnal trends at the school site; the median points
demonstrate the tendency towards over-prediction and the interquartile
range represents the relatively tighter distribution of the forecasts. Al-
though the model followed the observed NO2 trend during January 2022,
the correlation between observed and predicted values (R2, 0.48; RMSE,



Fig. 7. Box plots of each pollutant show variations in observed and dw concentrations during school hours in different phases. Box plots coloured grey represent observed
concentrations, while the ones in solid black represent the dw concentrations. Lower and upper boundaries of box plots represent the 25th and 75th percentiles,
respectively; line and cross marks inside boxes represent median and average values, respectively; lower and upper error lines represent 1.5 × IQR (interquartile range)
below the 3rd quartile and above the 1st quartile, respectively. The sample sizes for drawing the plots varied from 414, 225, 225, 405, and 675 for phases I to V, respectively.

Fig. 8. Predicted (blue line) against observed NO2 concentrations (black dots) for the entire year of 2021 at the school site. The light blue shaded area represents the
uncertainty interval, which is composed of uncertainty between the trend and observation noise (Taylor and Letham, 2018).
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4.7; MAE, 3.6 μg m−3; Fig. 8) was found to be moderate considering the
basic model inputs (date/time and NO2 concentration) and the number of
uncontrolled/changeable factors. Furthermore, the NO2 dataset in January
2022 represents normal conditions with no lockdown in place, while the
model was not trained for such conditions. Therefore, an extended dataset
covering a longer period is needed to train/asses the model and devise pre-
cautionary actions.

4. Conclusions

Long-term monitoring of ambient air pollutants was carried out at
the main gate of a UK primary school, which was surrounded by
heavily-trafficked roads. The study was co-designed collaboratively by
parents and the school to assess the impact of vehicular emissions
from nearby busy roads on school children's exposure to PM1, PM2.5,
PM10, NO2, O3 and CO during school hours. The sampling period cov-
ered different phases, including national lockdown and different steps
of loosening restrictions. To better understand the impacts of meteoro-
logical factors on the transport of air pollutants, the dw algorithm was
applied to the dataset. Finally, the use of a simple but effective forecast-
ing model to predict local air pollution at the school site was assessed.
The following conclusions are drawn:

• New Year fireworks increased PM2.5 concentration by up to three-times
that of the WHO daily average threshold limit. Additionally, the presence
of an in-school pollution source elevated daily average PM concentrations
by 11–18 times with respect to the baseline concentration on previous
days. Therefore, extra caution should be taken for outdoor activities in
schools on the days when such events happen.

• The school children's exposure to air pollution during morning peak
hours is up to 1.5-times greater as compared to daily off-peak hours.
The use of vehicles should be prohibited very near to school premises
(e.g. playgrounds or school entrances, such as doors/windows) to limit
the build-up of local pollution levels. Also, any new school buildings
should be built away from main roads.

• The level of TRAP after school reopening increased slightly, as seen by the
elevated daily PM2.5 concentrations in March compared with earlier
months. After the re-opening of the school, the daily PM2.5 level exceeded
the 24-hour average (15 μg m−3) limit set by the WHO on several days
due to an increase in the number of on-road cars.

• HighNO2 concentrations were observed duringmorning peak hours. NO2

and O3 showed a strong reciprocal relationship during the first three
phases. Elevated photochemical reactions and lifting restrictions are
found to be the reasons for increased O3 levels frommid-March onwards.

• The CO level at the school site was found to be below the DEFRA guide-
line. However, elevated concentrations of CO were detected, possibly
due to biomass burning activities in nearby houses during cold seasons.
A detailed source apportionment analysis supported by additional moni-
toring is required to track the CO concentrations in the school environ-
ment and apportion them to possible sources during different seasons.

• The dw trends revealed some variations in school hours over all phases.
There were no distinguishable sharp increases or sudden decreases in
dw time-series concentrations of pollutants from one phase to another.
This confirms that the sources of the possible key pollutant emitters
were present during all days and phases. However, the dw average values
specifically during school hours revealed some slight trends, including an
increasing trend from phase III/IV onwards, except for the secondary pol-
lutant O3. This can be a sign of a return to normal conditions after the na-
tional lockdown.

• Combustion of fossil fuels by on-road vehicles is a dominant source of
NO2 near trafficked roads. Therefore, NO2 is a good proxy for vehicular
emissions at the school sites. The Prophet model performed modestly
against the observed data. However, continuous monitoring and feeding
real-time concentration data into a forecastingmodel can improve its per-
formance further and help schools to make evidence-based decisions
ahead of time.
11
The study showed that schools near busy roads are more disproportion-
ately affected by air pollution. Therefore, adopting guidelines and strategies
including applyingmitigation steps such as green barriers in outdoor school
settings (e.g. Kumar et al., 2020a) and school streets (Abhijith et al., 2022)
and toolkits for cleaner air in schools (e.g. GLA, 2018; Global Action Plan,
2020), are important measures to reduce school children's exposure to air
pollution. Their adoption can bemore effectivewhen implemented through
partnerships and by engaging parents and school children through citizen
science initiatives such as creating their own scientific experiments and
eliciting ideas on how to mitigate and improve air quality around their
schools.
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