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W N e

Abstract: Bacteria express different types of hair-like proteinaceous appendages on their cell surface
known as pili or fimbriae. These filamentous structures are primarily involved in the adherence of
bacteria to both abiotic and biotic surfaces for biofilm formation and/or virulence of non-pathogenic
and pathogenic bacteria. In pathogenic bacteria, especially Gram-negative bacteria, fimbriae play a
key role in bacteria-host interactions which are critical for bacterial invasion and infection. Fimbriae
assembled by the Chaperone Usher pathway (CUP) are widespread within the Enterobacteriaceae, and
their expression is tightly regulated by specific environmental stimuli. Genes essential for expression
of CUP fimbriae are organised in small blocks/clusters, which are often located in proximity to other
virulence genes on a pathogenicity island. Since these surface appendages play a crucial role in
bacterial virulence, they have potential to be harnessed in vaccine development. This review covers
the regulation of expression of CUP-assembled fimbriae in Gram-negative bacteria and uses selected
examples to demonstrate both dedicated and global regulatory mechanisms.

Keywords: Gram-negative bacteria; Chaperone Usher Pathway (CUP) fimbriae; FGL & FGS class;
expression regulation mechanisms; lifestyle & pathogenesis; vaccine development

1. Introduction

Fimbriae or pili are hair-like proteinaceous appendages that are present on the surface
of many commensal and pathogenic bacteria [1-3]. They are primarily involved in the
adherence of bacterial cells to both abiotic and biotic surfaces and thus have an important
role in biofilm formation, initiation of infection via specific host cell binding and in some
cases invasion [2,4-7]. Pili have been classified according to the mechanism by which they
are assembled. In Gram-negative bacteria, in addition to conjugative pili, this includes
Chaperone-Usher Pathway (CUP) assembled pili [3,8-10], Type IV (-4) pili [1,3,11,12], Curli
fibres [13,14], pili involved in Type IV secretion system (T4SS) [15] and, in Gram-positive
bacteria, sortase assembled pili [1,3,6]. A consequence of the assembly mechanism and
final structure of these organelles, is that some pili have other functions in addition to
adhesion. Type IV pili are associated with twitching motility via the ability to retract pili
and Type IV pili, conjugative pili and T4SS are all involved in DNA transfer. In addition,
surface pili, also called needles, of T4SS and Type 3 secretion system (T3SS) transfer effector
proteins [1,15-17]. In the Enterobacteriaceae, pili/fimbriae assembled by the CU pathway
are prevalent [8]. While the term pili often refers to more structured, longer hair-like
appendages, and fimbriae to thinner structures, within the CU pathway both terms have
been used. The ubiquitous nature of these fimbriae, and differences in binding specificities
involved, highlight the crucial role that these structures have in the pathogenesis of many
bacterial species [5,8].

Expression of fimbrial operons is generally tightly regulated and fimbriae are often
only expressed under specific environmental conditions [8,18-20]. This is essential to
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ensure effective niche colonisation while optimising immune evasion. This review focuses
on the expression of fimbriae assembled by the CU pathway, highlighting the diversity
of regulatory mechanisms. The review mainly considers the primary level of regulation,
which frequently involves regulatory genes directly linked to the fimbrial cluster but in
some cases involves control by unlinked gene products, global virulence regulators. Based
on sequence analysis and predicted structures, these regulators belong to different families
corresponding to the well-studied regulators, AraC/XylS (A/X), LysR, CRP, and OmpR [21].
In addition to responding to environmental factors, regulatory cross-talk has been identified
between different fimbrial clusters and also between different physiological process, such
as adhesion and swimming. Using selected examples, primarily from the Enferobacteriaceae,
common features of CUP fimbriae and their assembly are briefly introduced (for detailed
reviews see [8,16,22-24] prior to consideration of the diverse mechanisms that control
fimbriae expression.

1.1. Fimbriae: Genetic Clusters and Assembly via the CU Pathway

Assembly of CUP fimbriae has been extensively studied in strains of uropathogenic
Escherichia coli (UPEC), one of the most common causative agents of the urinary tract
infection (UTI) in humans [8,16-19,22]. Type 1 fimbriae bind mannose residues and in
UTI bind to uroplakins in the bladder epithelium. Pap pili bind to the diasaccharide
Galx(1-4)Gal linkage on P blood group cells and are important in kidney colonisation
and infection. The detailed characterisation of assembly of Pap pili and type 1 fimbriae
from these bacteria has highlighted the requirement of a dedicated periplasmic chaperone
and outer membrane usher protein for synthesis of each different fimbriae [16,20,22-32].
Surface assembly of CUP fimbriae requires specific binding of the nascent fimbrial subunits
by the cognate chaperone in the bacterial periplasm via a process known as donor-strand
complementation [23,25-28]. In this step, a chaperone: subunit complex is formed in
which the chaperone G1 f—strand complements a hydrophobic cleft in the partially folded
subunit, thus stabilising an assembly competent intermediate. Subsequent targeting of the
subunit: chaperone complex to the outer membrane usher is followed by polymerisation
of the fimbrial subunits, involving periplasmic domains of the usher protein [23,29-31].
Polymerisation is achieved as the N-terminus of an incoming fimbrial subunit displaces
the chaperone G1 f3—strand to form a non-covalent, but highly stable subunit: subunit
interaction, a process termed donor-strand exchange [23,28-31,33]. Assembly and trans-
fer through the outer membrane usher to form surface located organelles is driven by
these protein-protein interactions [30-33]. With complex pili, such as Pap and type 1 pili,
assembly of adhesin and subunits occurs in a highly ordered fashion [8,23,31].

Genes encoding the CUP fimbriae are organised in operons or gene clusters, which
can be located either on the bacterial chromosome or on a plasmid [8,34,35]. It has been
demonstrated that a single bacterial genome can have multiple fimbrial operons dispersed
throughout the genome [35]. A survey of E. coli strains identified an average of 12 fimbrial
operons per strain [35] and 17 fimbrial operons have been identified in Proteus mirabilis [36].
Functional operons always contain a gene for the major structural subunit, a periplasmic
chaperone, and an outer membrane usher (Figure 1). Most contain additional genes
encoding structural proteins, such as minor subunits and terminal adhesins, a few include
additional chaperones, and genes encoding regulatory proteins have been identified linked
to a number of CUP lodi [8,18,24,37].
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Figure 1. Diversity in gene-cluster of the CUP assembled fimbriae of Gram-negative bacteria. Selected
fimbrial clusters and regulator genes of the structurally and functionally distinct groups, FGL (A)
and FGS (B), where the F1-G; loop of the chaperone is either Long (as in FGL) or Short (as in FGS).
Coloured arrows indicate the orientation of each gene encoding; red (regulator/s where identified),
cyan (periplasmic chaperone), grey (outer membrane usher), apple green (adhesin, FGS), jade green
(major subunit/adhesin, FGL), purple (additional subunit/invasin, FGL), light pink, additional pilin
subunits (FGS) or protein/s of unknown function (FGL). DNA binding regulators belonging to the
A /X family of transcriptional factors are indicated by black (*) asterisk, with blue asterisk indicating
mrp] homologues. Regulation by recombinases/promoter inversion is depicted in enclosed dashed
boxes. Epigenetic regulation, via Dam-methylation, is indicated by beige boxes with solid lines. Gene
clusters are from Escherichia coli, except caf, psa (Yersinia pestis); lpf, sef, stf (Salmonella spp.); mrp, atf
(Proteus mirabilis); hif / haf (Haemophilus influenzae). Gene clusters originally sourced from Zav’yalov
et al. [24], and adapted [8,18,36,38-45].

1.2. Diversity in the CUP-Assembled Fimbriae

The CUP fimbriae operons were broadly divided into two structurally and functionally
distinct groups, FGL and FGS (Figure 1) [46,47]. In the FGL group, fibre assembly is assisted
by a cognate chaperone with an extended donor G1 3-strand that correlates with a longer
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F1—G1 loop (FGL) and high affinity for the subunit. Well-studied examples of the CUP
fimbriae from the FGL group include the F1 capsular antigen [26-30,38,48,49] and Psa
fimbriae of Y. pestis [50,51] and the Afa/Dra family of fimbriae from E. coli [8]. Most of the
FGL-grouped fimbriae assemble into simple, thin (~2-3 nm diameter), and flexible fibres
composed of only one or two subunit types (Figure 1). In contrast, fimbriae (pili) belonging
to the well-defined FGS group are generally thicker (~7 nm diameter) and more rigid.
These fimbriae have a more complex structure with a major structural pilin subunit that
constitutes the shaft of the pilus plus several additional subunits which form a thin, flexible
tip fibrillum capped by a single specialised adhesin. This terminal adhesin typically has
two domains, both a pilin and an adhesin domain and hence is approximately twice the size
of pilin subunits [17,24]. Thus, chaperones of FGS (F1-G; short loop) fimbrial clusters have
a requirement to recognise a number of different subunits and hence a lower specificity of
binding to each subunit. Hence, the subgrouping based on chaperone properties, appears to
correlate with complexity of fimbrial structure. Phylogenetically, based on usher sequence,
the FGS group is subdivided into several clades including, -, y1-, y2-, y4-, k-, and -
fimbriae [37]. Unlike FGS, the FGL group is a small monophyletic group, having only one
clade, v3. The «- clade corresponds to CU systems defined as ‘alternate” CUP, including
colonisation factor CS-1 of enterotoxigenic E. coli (ETEC) [37]. The following sections
of the review, discuss knowledge of the regulatory mechanisms of expression of some
well-characterised examples of CUP fimbriae.

2. Diversity in Regulation: Phase Variation
2.1. Regulation of Type 1 Fimbriae Expression: Promoter Inversion

Type 1 fimbriae of UPEC (FGS-grouped fimbriae) are synthesised from a chromo-
somally encoded gene cluster known as the fim locus. This locus is composed of nine
genes, encoding two regulatory proteins, FimB and FimE; a major subunit pilin, FimA;
two assembly proteins including a periplasmic chaperone, FimC and an outer membrane
usher, FimD; two tip-associated fibrillum subunits, FimF and FimG; a mannose-binding
adhesin, FimH, and finally FimlI, a subunit responsible for anchoring the pilus to the cell
surface (Figure 2) [8,9,25,46,52-54]. Expression of the fim locus is controlled by phase
variation mediated by inversion of the promoter on a 314 bp DNA fragment, known as
fimS, flanked by 9 bp inverted repeats, IRL and IRR (TTGGGGCCA) (Figure 2). When
switched to the ON orientation, the fimA promoter leads to transcription and synthesis of
the major fimbrial subunit, FimA, plus other structural subunits and assembly genes. In the
opposite orientation the fimA promoter is non-functional. Hence, the forward orientation
leads to Phase-ON (piliated state), and reverse orientation leads to Phase-OFF (non-piliated
state). The regulatory proteins, FimB and FimE influence the orientation of fimS. These are
site-specific recombinases, share 48% amino acid identity, and contain a tetrad of conserved
amino acids (Arg47, His141, Argl44 and Tyr176; in FimB and Arg41, His136, Arg139 and
Tyr171; in FimE), which has been shown to be essential for recombinase activity [52-57].
Both bind to regions flanking fimS including the inverted repeats.

FimB can influence the switch of fimS to either Phase-ON or Phase-OFF, while presence
of FimE primarily leads to a switch of fim$S to the Phase-OFF state (Figure 2). The mechanism
and factors influencing the orientation and recombination of the fimS element is not only
influenced by the concentrations of FimB and FimE, but also by other factors. Three
promoters have been identified for fimB expression [58-60], while for fimE a single promoter
has been identified [60].
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Figure 2. Regulation of type 1 fimbriae expression: promoter inversion. The fim operon indicating
key features, promoters and regulatory invertible fimS DNA element. The fim$ is flanked by inverted
repeats IRL and IRR which are responsible for Phase ON/OFF states. Regulation of the fim operon is
illustrated, as pull-out, with FimB- and FimE-mediated inversion of fimS. The FimB influences ON
state and piliated bacteria. FimB and FimE both bind to influence switch to non-piliated bacteria.

At least 20 additional auxiliary genes are known to influence the expression of type
1 fimbriae (Figure 3) [54]. The product of pilG, an allele of the hns gene, was reported to
influence inversion; a mutation in the pilG was shown to increase inversion of fimS up to
100-fold using a fimA-lacZ fusion [61]. The global regulatory protein, H-NS (histone-like
nucleoid-structuring protein) was shown to repress transcription of both fimB and fimE
genes by binding to promoters of both with high specificity [54,58,60]. H-NS may also
directly affect inversion by binding to sequences adjacent to the fimS DNA fragment. In
addition to H-NS, integration host factor (IHF) and leucine-responsive protein (Lrp) also
influence phase variation [62]. Other site-specific recombinases (HbiF, IpuA, IpuB and
IpbA) have been identified as possibly influencing inversion of fimS. There is also crosstalk
between regulators of different pili in E. coli. PapB, a regulatory protein of the Pap pili locus,
and SfaB from the S pili locus can influence the orientation of fimS by inhibiting the Phase-
OFF to the Phase-ON switch, enhancing selective expression of the correct pili at the right
time and place. The alarmone, ppGpp also appears to be required for optimum expression
of type 1 fimbriae, and the ppGpp alarmone, along with RNA polymerase-binding protein,
DksA was shown to stimulate transcription of fimB from the P2 promoter [54]. Moreover,
environmental factors such as temperature and pH also play a crucial role in the expression
of type 1 fimbriae. Several studies have shown that the phase switching from ON to OFF
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state surges at a lower temperature [54,63,64]. Under low pH conditions type 1 fimbriae
production is inhibited and increases at neutral pH. At neutral pH, proteins such as SlyA
or RcsB may promote type 1 fimbriae synthesis by activating fimB and preventing H-NS
binding [54].

HbiF/IpuA/lpuB/IpbA
OmpR v
\\\\\\ »X CRPECAVIP
RcsB--. . :
5
RpoS Lrp IHF PapB/SfaB/SfaX
ppGpp/DskA/SIyA

Figure 3. Auxiliary proteins known to influence the expression of type 1 fimbriae. A schematic of
function/s of key auxiliary proteins in regulation of type 1 fimbriae is depicted. Invertible motifs,
IRL and IRR within the fimS switch are indicated by grey triangles. IHFs (1, 2) and Lrp (1-3) binding
sites are represented as open boxes and grey-coloured balls, respectively. Orientation and location
of the fimB, fimE and fimA genes are also displayed. The identified promoters are shown as bent
red arrows. Confirmed and presumed binding (of auxiliary proteins) associated with stimulatory
effects is presented by solid and dashed green arrows, respectively; whereas confirmed and presumed
binding (of auxiliary proteins) associated with repressing effects are shown by solid and dashed red
arrows, respectively. Diagram is based on information from Schwan [54].

Phase variation via promoter inversion has been shown to control expression of
several other fimbriae, including CS18 fimbriae from enterotoxigenic E. coli (ETEC) and
mannose-resistant pili (MR /P) from Proteus mirabilis (Figure 1). The fot cluster, encoding
CS18 fimbriae, is regulated by a 312 bp inversion driven by the two site-specific recom-
binases, FotS and FotT, that share close to 50% sequence identity with FimB and FimE,
respectively [39]. Similar sequence identity is not shared between other genes of the two
operons. The mrp cluster is controlled by promoter inversion on a 252 bp sequence, flanked
by inverted repeats and located between mrpl and mrpA, which encodes the major subunit
of MR /P fimbriae. Mrpl also shares high homology with FimB and E, but unlike the fim
and fot clusters, Mrpl is the sole recombinase [40,41]. It is specific for the mrp promoter
switch, and can also switch the promoter to either ON or OFF position. Expression of
MR/P fimbriae is strongly upregulated in vivo. MrpJ, a MarR-like transcription factor
and product of the last gene of the mpABCDEFGH] operon (Figure 1) can function as an
auto-activator of the operon [42]. Detail of how promoter inversion, mrp] expression and
environmental factors interact to drive promoter orientation to the ON- phase remain to
be elucidated.

P. mirabilis, a significant pathogen of urinary tract infections, is highly motile and
exhibits characteristic swarming activity. During infection co-ordination between bacterial
swimming and adhesion is critical. In accord with cross-talk between expression of fimbrial
operons, Mrp]J has been shown to decrease flagella production and swimming by repressing
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transcription of the flagellar master regulator, fIhD [36,42]. Recent studies have outlined
an Mrp] regulon, involving cross-talk between fimbrial operons, flagella expression and
the Type-6 secretion system [42]. The mrp] gene is present in 10 of the 17 fimbrial operons
of P. mirabilis, including the atf locus, shown in Figure 1 [36], and homologues have been
identified adjacent to the E. coli sfa locus, encoding S pili associated with infant meningitis,
and also downstream from the pap operon in some E. coli strains (Figure 1). PapX similarly
decreases flagella production by binding to the flhD promoter [43,65].

2.2. Regulation of Pap pili Expression: Methylation/Epigenetic Switch

Like type 1 fimbriae, genes encoding Pap pili are also clustered (pap locus) on the chro-
mosome and controlled by phase variation [18,66] The core pap locus contains 11 genes, plus
the mrp] homologue, papX, located a short distance downstream in some strains [8,43,65].
Transcription of the pap locus is controlled by the papBA promoter and regulated by a
phase variation (ON and OFF) mechanism via the PapB and Papl regulatory proteins [52].
In Pap pili PapA is the major pilin, while Pap], PapK, PapE and PapF constitute the tip
fibrillum. PapG is a galactose-binding adhesin and PapH is the pilus anchor. The other two
gene products, PapD (periplasmic chaperone) and PapC (OM, usher), aid in CUP-based
assembly of the Pap pili (Figure 4) [65].

Phase variable control of expression of the pap locus is different from that of the fim
locus. In the pap locus, the ON-OFF switch is determined by binding of Lrp to two different
Dam methylation sites, within the promoter region. Lrp-binding prevents methylation of
the site leading to either activation (Phase-ON) or repression (Phase-OFF) of transcription
of the pap gene cluster. The regulatory proteins, Papl (8 kDa) and PapB (12 kDa), positively
control the expression of the pap locus in association with the global regulatory proteins,
Lrp, CAP and H-NS, as reviewed [18,52]. The intergenic regulatory region (416 bp) between
papl and papB contains six Lrp-binding sites that control transcription of both papA and
papB (Figure 4). Within this, there are two DNA methylase (Dam) sites, GATCP™* and
GATC! Jocated within Lrp-binding sites 2 and 5, respectively. When accessible, these
sites are methylated at the A base of the GATC motif, but when Lrp is bound, methylation
of the sites is blocked. Lrp-binding proximal to the papBA promoter inhibits transcription
of the pap operon, whereas binding at the distal site permits methylation at site 2 and
activates transcription of papBA (Phase-ON). Lrp binds with higher affinity to sites 1-3
than to sites 4-6 [52]. The regulator, Papl promotes binding of Lrp to sites 46 rather
than 1-3, promoting the ON state (Figure 4). Furthermore, pap locus transcription is also
under the control of catabolite repression, requiring binding of cAMP-CAP complex, 60 bp
upstream of the Lrp-binding site. Similar to regulation of type 1 fimbriae, expression of
pap pili is also controlled by several environmental stimuli [44]. Transcription of pap pili is
significantly repressed during growth at lower temperatures (<26 °C) in Luria broth. In
addition to environmental factors, proteins not belonging to the pap locus have been shown
to contribute to the positive regulation of the Pap pilus transcription. For example, the
two-component sensor-regulator, CpxAR appears to be activated during misfolding of Pap
subunits in the periplasm as well as on binding of Pap pilus to solid surfaces and inhibits
transcription by binding close to the GATC sites [67,68].

A relatively new study identified the role of a small RNA—papR—in the regulation
of pap locus phase variation, during infection of bladder epithelial cell lines with UPEC,
strain UTI89 [69]. Trans-acting papR sRNA acts as a post-transcriptional repressor for papl
and Lrp was shown to act as a transcriptional activator of papR expression. Deletion of
papR increased bacterial adhesion to both kidney and bladder cells in the absence of type 1
fimbriae [69,70]. Involvement of papR sRNA in control of production of Pap pili facilitates
rapid adjustments in response to changing environmental conditions during infection.
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Figure 4. Regulation of Pap pili expression: methylation/epigenetic switch. The pap operon, indi-
cating key features. Genes encoding regulatory proteins, Papl and PapB; pilus assembly proteins,
PapH, PapC and PapD; tip fibrillum proteins, Pap], PapK, PapE and PapF; and adhesin protein,
PapG are indicated by different shaded boxes and labelled as per function, the regulator PapX is
present in some strains downstream from the pap operon and downregulates motility. Regulatory
network of pap operon, as pull-out, depicts the regulatory region of divergently transcribed papBA
and papl promoters. Promoter DNA-methylation states with Dam methylation sites, responsible for
ON (piliated) and OFF (non-piliated) are indicated. DNA methylation is blocked by Lrp-binding at
sites, 4-6 in Phase-ON cells and at sites, 1-3 in Phase-OFF cells.

A role of Dam methylation/LRP control in phase variable expression has been demon-
strated for a number of other fimbrial clusters [18], including E. coli afa/dra family of
fimbriae clusters and the E. coli sfa cluster that encodes S pili (Figure 1) [18,71]. E. coli S
fimbriae are involved in newborn meningitis and Afa family of fimbriae are common in
UPEC strains and form thin surface fibres with an afimbrial appearance [8]. In both cases
homologues of Papl and B are involved, AfaF/ AfaA and SfaC/SfaB respectively, and
LRP-binding to the Papl homologue promotes expression. Interestingly, analysis of the afa
locus in certain clinical strains has identified IS elements of varying length between AfaF
and AfaA, which in the case of IS1 insertion led to a strong hybrid promoter and enhanced
expression [71].
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3. Other DNA Binding Regulators, Dedicated and Global
3.1. pH 6 Antigen, Regulation by a Sensor-Regulator

The FGL-grouped fimbriae are often classified as polyadhesins and show structural
and functional differences compared to the FGS-grouped fimbriae [24,47]. The FGL fimbriae
are linear polymers of one or two protein subunits. In some cases, the polymer possesses
one or two adhesive sites, which are independent of each other and specific to host cell
receptors. Thus, permitting polyvalent fastening of bacterial adhesin and host cell receptors
that may increase the affinity of binding and enhance adhesion. The chromosomally
located psa or myf locus, which encodes the pH 6 antigen in Yersinia spp. is an example of
this [50,72-75]. The pH 6 antigen is expressed at low pH and inside macrophage, hence its
name. The psa locus (Figure 1) is composed of five genes, psaE, psaF, psaA, psaB and psaC
and encodes a single fimbrial subunit Psa which is assembled to form polyadhesive fibres
with two low affinity binding sites for galactosyl residues and phosphatidylcholine [24,50].
Regulation of the psa operon appears to be an unusual example among fimbrial systems.
The regulators, PsaE (24 kDa) and PsaF (18 kDa), which are required for transcription of psa,
are both located within the inner membrane. PsaE also possesses a cytosolic N-terminal
DNA-binding domain with homology to PhoB and OmpR of E. coli, ToxR of Vibrio cholerae
and HilA of Salmonella typhimurium [72]. PsaF appears to be important in stabilising PsaE.
The C-terminal domain of PsaE lies in the periplasm and interacts with the periplasmic
domain of PsaF [72]. Thus PsaE/PsaF regulation has some structural characteristics of a
one component sensor-DNA binding regulator system.

In Y. pestis, maximum expression of Psa occurs at 37 °C at pH 6. Understanding the
mechanism of sensing temperature and pH is limited. There is evidence that the 5UTR
of psaE contributes to temperature sensing by forming a polyU RNA thermometer-like
structure at lower temperature [51]. In addition, the central regulator, RovA (18 kDa),
has been shown to interact with promoter regions of psaE and psaA [73,75]. A study by
Zhang et al. demonstrated that PhoP and RovA recognise the promoter-proximal regions
of psaEF and psaABC [73]. RovA activated psaEF and psaABC, whereas PhoP repressed
both psaEF and psaABC through direct association between RovA /PhoP and the target
promoter regions. It has been suggested that this reciprocal regulation of psa genes by
PhoP and RovA could contribute to the tight regulation of pH 6 antigen expression during
infection [73,74].

3.2. Agg and Aaf Fimbriae, Regulation by A/X Family Regulator, AQgR

Enteroaggregative E. coli (EAEC) is a diarrhoea-causing pathogen in adults and chil-
dren [19,76-78]. The Aaf I/IIl and Aaf II fimbriae, encoded on the clusters agg and aaf
shown in Figure 1, form thin bundled fimbriae that lead to a characteristic stacked-brick
biofilm of these E. coli cells bound to host epithelial cells [76,77]. The operon for the Aaf
fimbriae is located on the pAA plasmid and comprises genes encoding a chaperone, aafC,
an outer membrane usher, aafD, and a major and minor pilin subunit, aafA and aafB, respec-
tively. Expression of Agg and Aaf fimbriae of EAEC is controlled by AggR, an A/X family
transcriptional activator, located 9 kbp upstream from the respective fimbrial locus [79].
AggR dimerizes and binds to an AT rich consensus sequence overlapping the promoter
to regulate transcription of agg fimbrial genes [80]. AggR has also been shown to act as
a global regulator [81,82]. Forty-four additional AggR targets, including genes encoding
dispersin, a surface protein (Aap), dispersin translocator and Aai type-VI secretion system
were identified. AggR was found to activate the expression of Agg fimbriae in response to
temperature, oxygen tension, and osmolarity as well as the growth media composition [79].
Five variants of Aaf (Aaf/I-Aaf/V) are known and these variants show a high degree of
similarity in the CU assembly genes [83]. The differences are mainly in the genes that
encode the major fimbrial structural protein, AggA and AafA. Polymers of these subunits
bind fibronectin, only the Aaf/V variant Agg5A lacks fibronectin-binding capacity due to
changes in pilin structure [83]. Aaf/II from E. coli strain O42 has an unusual cluster organi-
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sation with split operons for aafDA and afaB-aafCB locus that otherwise remain functional
(Figure 1) [80,84].

3.3. CS and Cfal Fimbriae, Regulation by A/X Family Regulator, Rns

CUP fimbriae produced by enterotoxigenic E. coli (ETEC) were initially identified
serologically as major components of Colonisation Factor Antigens (CFA) and further
characterised genetically as a dominant proportion of Coli Surface (CS) antigens [70]. At
least 20 different CUP-assembled CS fimbrial clusters have been identified so far among
ETEC strains, although most strains express only two or three types [70]. Many of these,
CFA/I, CS1, CS2, CS4, CS14, CS17, CS19 and PCF071, belong to the alternate CUP fimbriae,
assigned as the o clade (based on usher phylogeny [37]), and form rigid fimbriae. Both
CS3 and CS6 (Figure 1) belong to the FGL group and y3 clade [24,70]. The most commonly
observed fimbriae are CS1-CS6 and CFA /1, of which the mechanism of regulation of CS1,
CS2 and CFA /I have been studied in some detail [8,18,70].

The gene cluster of CS1 fimbriae, cooBACD, is located on a large plasmid, pCOO
and regulated in trans by an A/X family transcriptional regulator, Rns [84-86]. Rns is
encoded on a distinct plasmid, unlinked to any CU system, and is flanked by a transposase
encoding gene on one side and pseudogenes on the other [87]. Expression of CFA/I
fimbriae is activated by the Rns homolog CfaD/CfaR, which shares 95% amino acid identity
with Rns, is functionally interchangeable with Rns and recognises the same binding sites
as Rns [18,88]. ETEC fimbriae for which expression is known to be activated by Rns
are phylogenetically related and belong to the « clade, CS1, CS2, CS4, CS14, CS17, and
CS19 [18,70,89-92]. There is some evidence that CS3 is under Rns control in a recombinant
strain of Vibrio cholerae but not in ETEC [18,93]. In addition to activating the expression
of fimbrial genes, Rns positively regulates its own gene expression by direct binding
at three sites, centred at —227, +43 and +82 (relative to transcription start site) [86,94].
The involvement of downstream binding sites (at +43 and +82) is often associated with
transcription repression. However, it has been shown that activation of Rns requires at least
one of the two downstream binding sites and the upstream binding site [86]. Rns activates
the expression of several putative virulence genes [95,96]. A DNasel footprinting located
the same Rns binding site immediately upstream of the —35 element of Pcoo promoter
(required for the expression of CfaA, CS1 fimbriae) and the promoters of CS17, CS19 and
PCFO71 fimbriae [85,92], suggesting Rns may activate transcription by direct contact with
RNA polymerase. In addition to the binding site near to —35 promoter element, a second
binding site was identified further upstream in all cases (at —88 in CfaA, at —144 in CS1, at
—109.5 in CS17 and PCFO71 and at —108.5 in CS19). Each site showed an additive effect
on Rns-dependent transcription activation, indicating requirement of the distal site also for
full activation of Rns [85,86,92].

Rns homologs, linked to regulation of virulence factors, have been identified in several
strains of ETEC and other enteropathogenic bacteria. Proteins having strong homology
to Rns are CsvR and FapR from ETEC [97], PerA of enteropathogenic E. coli [98], AggR
of EAEC [79,80], ToxT of Vibrio cholerae [99] and VirF of Shigella spp. [100,101]. Among
these, AggR, CsvR, PerA, and ToxT regulate the expression of fimbrial genes. The VirF of
Shigella spp. activates the expression of icsA and virB genes which have roles in invasion
and cell-to-cell spread of bacteria in the host epithelial cells, respectively [100].

Transcription activation by Rns and its homologs is thermo-sensitive and is repressed
with involvement of H-NS at low temperatures [8,101]. Like most A/X family regulators,
Rns is a two-domain protein, with an N-terminal domain (NTD) and a conserved C-terminal
DNA binding domain (DBD) with two predicted HTH motifs [102]. A mutagenesis study
using pentapeptide insertions demonstrated that Rns uses both HTH motifs to make DNA
contacts and thereby activates the expression of CS1 fimbrial genes [102]. In support of this,
a uracil interference study by Munson et al. showed that Rns contacts two major grooves of
the DNA to activate transcription [85,86]. Like DBD of several A /X family regulators, Rns
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DBD is believed to be involved in making RNAP contacts, although the region involved in
making such contacts has not been identified [85,90].

The role of Rns-NTD was largely unknown. There was no evidence, in vivo, that
Rns responds to any effector molecules [91]. However, N-terminal deletion mutagenesis
showed that Rns-NTD is essential for transcription activation both in vivo and in vitro [91].
A truncated version of Rns (first 61 amino acids deleted) also resulted in the complete loss
of DNA-binding and transcription activation or repression at the corresponding promoter
regions. The Rns-NTD motif from I112-M18 is highly conserved among the closest homologs,
sharing about 74% amino acid identity compared to 26% identity in the overall NTDs,
suggesting a crucial role of this motif in the overall function of Rns. In support of this,
Munson and co-workers isolated two random mutants (I14T and N16D) of Rns-NTD
and found their activities were decreased dramatically at the rns promoter, indicating
the importance of 114 and N16 residues in transcription activation [91]. It was not clear
whether Rns acts primarily as a monomer or dimer with a role of the NTD domain in
dimerisation [91,103] or whether it may be involved in effector ligand binding. Interestingly,
recently Rns has been crystallised as a dimer in the presence of decanoic acid, providing
evidence that Rns-NTD may sense and respond to a fatty acid ligand [45].

3.4. F1 Capsule, Regulation by A/X Family Regulator, CafIR

The F1 capsular antigen from Y. pestis comprises long, linear fibres of a single sub-
unit (Cafl) and represents an example of a non-pilus organelle assembled via the FGL
(v3) ushers [24,28,37]. The thin fibres of Cafl subunit collapse around the bacterial cell
forming a capsule-like structure that contributes to the anti-phagocytic arsenal of the
bacterium [48,104]. Unlike the psa locus, the caf locus is specific to Y. pestis. Initial sequenc-
ing of the caf locus identified the divergently expressed cafIR gene encoding an A/X family
regulator, Caf1R [105], but the mechanism of regulation of this key antigen was only more
recently elucidated, in 2016, by Kumar, D. [38,49]. Kumar confirmed CaflR as an essential
activator for high level expression of the caf operon and capsule formation. Using promoter-
lacZ fusions and Electrophoretic Mobility Shift Assays (EMSA), the CaflR binding site was
identified overlapping the —35 element of the P\ promoter, a characteristic of Class II
transcriptional activators (Figure 5) [38,49]. Structure-modelling of a CafIR-DNA binding
site complex confirmed location of a virtually non-functional spontaneous point mutation
in Caf1R to DNA binding helix6 [38].

Autoregulation is a common feature among A /X family regulators. Examples of
autoactivation include Rns [86,91], PerA [106], MarA [107] and AggR [82]. Unlike cafIR,
these regulators are primarily “unlinked’ to the target operons. Promoter fusion studies also
confirmed autoregulation of cafIR [38]. F1 fibres are expressed at 37°C in the mammalian
host but not at 26 °C in the insect host (Figure 5) [48]. Temperature regulation of expression
has been reported for a number of fimbriae, with involvement of H-NS contributing to
repression at low temperatures [58,64]. The untranslated intergenic region of the caf locus
is known to be required for temperature regulation of CaflR dependent activation of
cafMA1 [38] but the mechanism by which this occurs remains to be elucidated.

Transcription activation by A/X family regulators, as seen by CaflR at Py pro-
moter [38,49], is quite common. In many well studied cases, binding of a small metabolite
is required for activation [99,108-111]. CaflR also possesses a C-terminal ‘sensing’-like
domain, but it remains to be investigated if this binds anything or is involved in dimeri-
sation. Bioinformatic analysis of putative and characterised DBDs of 62 A /X regulators
grouped CaflR DBD with regulators controlling metabolic processes [112]. Unexpectedly,
it was aligned very distantly to AggR and VirF, regulators of virulence factors including
fimbriae. The Caf1R was most closely aligned with the XyIR regulator of E. coli K-12, which
is essential for the transcription of genes required to utilise D-xylose and L-arabinose [111].
Whether this relationship to XyIR and other regulators of metabolic processes is an in-
dication of some metabolic process also controlled by CaflR or is an indication of small
molecule sensing by CafIR remains to be seen.
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dependent and independent transcription-regulation of the caf operon at Py; promoter. It was
suggested that interaction of Caf1R with RNA Polymerase at the R4’ caf DNA motif at 37 °C is vital
to initiate transcription of the cafMA1 operon at the Py promoter. Expression of the cafMA1 leads to
an abundant level of F1 on the cell surface, giving the appearance of encapsulated cells. At 26 °C,
in the absence of CaflR, there is little or no expression of cafMA1 hence giving the appearance of
non-capsulated cells.

CaflR-dependent regulation of divergent expression of the caf locus represents a
good model for studying the regulation of CUP-fimbriae controlled by a ‘linked” A/X
family regulator. No doubt, there will be many other factors controlling the expression
of the caf locus. To fully understand the regulation of F1 expression, it will be important
to map the role of other cellular factors on the proposed models [38,49]. Virulence of Y.
pestis is still not well understood, and regulators involved in global regulation may be
critically important. Hence, even though Caf1R appears to be a dedicated regulator, it is
still important to consider a possible role of CaflR in trans regulation of other virulence or
metabolic factors. Furthermore, there is a lot of interest in the development of attenuated
vaccines and heterologous expression of F1 [113-115]. In this type of vaccine, it is essential
to retain optimum expression of F1. For this reason, a complete understanding of factors
controlling the expression of F1 is crucial.
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4. Conclusions and Perspectives

CUP fimbriae are prevalent in Gram-negative bacteria and are often important viru-
lence determinants, required for adhesion, establishment of colonisation and in some cases
invasion. Their structure, regulation and involvement in urinary tract and gastrointestinal
infections, in particular, have been studied in detail. CUP fimbriae may be complex struc-
tures with a terminal adhesin, or more simple fibres with only one or two subunits which
in some cases appear to function as polyadhesins to enhance binding and in others collapse
around the cell to form an anti-phagocytic capsule-like structure. Enterobacterial genomes
typically include multiple CUP clusters, many of which have different roles during infec-
tion. Hence, controlled expression of fimbriae is important to ensure expression in the
correct niche while repression, when not required, facilitates evasion of the immune system.

Regulation of expression of fimbrial loci is multi-layered. Fundamentally, phase
variation permits a rapid switch from fimbriated cells to non-fimbriated cells, potentially
ensuring a guaranteed source of either type of cell. Extensive studies on the recombinase
dependent promoter switching of type 1 fimbriae and Dam-methylation of Pap pili have
highlighted the significance of global regulator involvement to appropriately moderate
phase variation in response to environmental cues, such as temperature, stress, nutritional
status [8,18,52,54]. Cross-talk during expression of Pap pili has been shown to contribute to
downregulation of type 1 fimbriae. Additionally, an inverse relationship between fimbriae
expression and motility is controlled by an additional regulator (e.g., PapX and Mrp])
encoded close to, or part of, the fimbrial cluster [42]. This knowledge provides a starting
template to understand control of fimbrial expression in other systems or bacteria where
similar regulators of phase variation are identified. But other mechanisms of phase variation
of fimbriae expression also exist. Expression of Hif fimbriae of Haemophilus is controlled by
slipped strand mispairing and variation of the number of residues between the —10 and
—35 elements of the promoter, thus leading to phase variable expression of fimbriae [116].

The v3 clade (FGL group) of fibrillar structures represent a small group assembled by
phylogenetically related chaperones and usher proteins [24,37], but a remarkably diverse
range of mechanisms of regulation. Expression of the Aaf fimbriae of aggregative E. coli,
is regulated by an unlinked A /X regulator, AggR, and the aaf /agg fimbrial clusters are
only one example within the AggR virulence regulon. Further studies will clarify how
commonly fimbrial clusters are controlled by unlinked A /X regulators and involvement
of fimbrial A/X regulators in global regulation. The Afa/Daa/Dra family of fimbriae are
closely related varying primarily in subunit sequence [82]. Regulation of afa and daa loci
are known to be dependent on Dam-methylation in a similar manner to the pap operon [71].
The pH 6 antigen and F1 capsule of Y. pestis also have regulator(s) within the fimbrial
cluster, but that of the psa locus is reminiscent of a one component-like sensor regulator
system [117], while the caf locus is controlled by an A /X family regulator, Caf1R [38,49].
These fimbrial loci, acquired at different times during evolution of Y. pestis [48] have co-
opted different regulatory mechanisms. All of these fimbrial loci are important in infection
and disease. A detailed understanding of the primary mechanism of regulation, how this
is influenced by relevant environmental factors and, importantly, the interplay between
expression of these loci and other virulence determinants during infection and disease
will provide a solid basis for development of new intervention strategies. In addition
to targeting transcription-regulators, adhesins are well documented immunogens with
potential to act as vaccine candidates. In depth understanding of regulatory mechanisms
will aid in optimising expression which in turn is important in development of attenuated
or whole cell killed vaccines.
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