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Numerous occupant behavior (OB) models that simulate occupancy, activity and action at home have
been developed to improve the accuracy and quality of energy demand estimations. Previous studies
have revealed that the consideration of inter-occupant diversity improves the performance of OB models.
However, existing models ignore spatial variation in OBs or partially consider it using a simple method
without evaluating whether it is sufficient. Moreover, the modeling method to reproduce the spatial vari-
ation is missing. This study aims to develop a modeling method that can effectively reproduce spatial
variation in OBs using American time use data. The global Moran’s index test confirmed that spatial vari-
ations exist in OBs; however, they differ by time of day and activities for studied population.
Subsequently, two spatial variation representations were generated using the ordinary kriging and spa-
tial autoregressive methods. Finally, three spatial logistic regression models that consider spatial varia-
tions were developed and evaluated. The developed models generated smaller errors and higher inter-
occupant diversity than the conventional logistic regression models at the state level. The established
method is applicable to any country and region. Using higher spatial resolution and richer time use data-
sets may further improve OB models to model region-specific characteristics of building energy demand.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Over the past few decades, numerous occupant behavior (OB)
models have been established to simulate the occupancy, activity,
and behavior of building residents, to improve the prediction accu-
racy of building energy demands. OB is a major source of uncer-
tainty in building energy demand modeling because energy-
consuming appliances are generally operated to meet people’s
daily needs in response to activities performed by occupants, and
building energy systems and indoor environments are adjusted
by occupants for comfort [1]. Various methods have been applied
to time use data integrated with additional survey data that cover
social, economic, and building aspects, to develop representative
OB models [2]. However, a significant gap exists between simula-
tion and reality [3] owing to (1) the use of oversimplified assump-
tions, such as a fixed schedule rather than a dynamic schedule; (2)
assumptions on when and how residents use appliances and build-
ing systems; and (3) ignorance of inter-occupant diversity [4].
Although some studies have attempted to address the first two
gaps, inter-occupant diversity, particularly in terms of spatial vari-
ation, has not been thoroughly investigated [5,6]. Druckman and
Jackson [7] demonstrated that household energy use and the asso-
ciated carbon emissions vary significantly with household socioe-
conomic conditions and locations. Rural/urban environments are
another important factor in devising policies for a low-carbon soci-
ety. Vega et al. [8] pointed out that although the spatial perspective
has received limited attention in the literature, it is a significant
factor in energy-related policy considerations. They observed that
spatial factors are important, and ignoring them can lead to inaccu-
rate conclusions. Furthermore, spatial variation also exists in time
use. Several studies showed differences in the time use of occu-
pants among countries, which revealed spatial variation existed
in the time spent on OBs [9–11]. Esteban et al. [12] found that
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OBs conducted by people are spatially varied in European coun-
tries, which cannot be effectively explained by economic or demo-
graphic differences. Such spatial variation in OBs may further occur
within a country or even within a region. Studying how people
spend their time over space provides an important perspective
for understanding living conditions, economic opportunities, and
general well-being. However, a consistent approach to empirically
represent spatial variation in OB and to consider it in OB modeling
is currently lacking, but useful spatial analysis and modeling meth-
ods have been developed in other fields.

This study proposes and evaluates various methods learned
from other fields for modeling OB considering spatial variation.
The research gaps were addressed through three research ques-
tions: (1) When does spatial variation exist in OB? (2) How can
spatial variation in OB be represented quantitatively? (3) How
can spatial methods reproduce spatial variations in OB? We
selected a spatial logistic regression model as the spatial method
in this study as it is an extension of one of the most frequently used
OB models. The remainder of this paper presents the methodology,
results, and discussion, followed by our conclusions.
2. Literature review

2.1. Review of methods for considering spatial variation in OB and
energy modeling

Spatial variation essentially refers to the rules or tendencies of
objects of the research exhibited in a given space. Spatial variation
can be represented and considered in the modeling in different
ways. There is a significant development in OB modeling that
addresses space use. These space use studies considered spatial
choice or individual preference based on geo-referenced data to
determine space use [13,14]. Tabak [15] developed a model called
the User Simulation of Space Utilization that simulates space uti-
lization in an office building by calculating the distances between
the locations of different activities based on measured data. In
addition to spatial utilization, the mobility and occupancy patterns
of people can also be estimated based on dynamic spatial choices
or preferences [16–21]. However, the variation of OBs over space
has not been considered in these studies.

Some studies have used spatial factors as independent variables
to consider spatial variation during the modeling process to
enhance the inter-occupant diversity of the model [22]. Vega
et al. [8] assessed various factors, including seven spatial factors
(e.g., urban–rural gradient, city center, and village center), to
develop a suitable policy for increasing the uptake of carbon emis-
sion reduction measures, and highlighted the importance of using
spatial factors for designing energy policy frameworks. Marín-
Restrepo et al. [23] identified OB patterns in office environments
through data analysis and the Chi-squared test based on spatial
(e.g., spatial layout and occupant orientation relative to control ele-
ments) and human factors. Wilke et al. [24] considered an indepen-
dent variable that indicated whether an occupant lives in an
urban/suburban area to simulate the starting probability of activi-
ties through a multinomial logit model. Okada et al. [25] applied
the same method by considering city size as an independent vari-
able to simulate the probability of undertaking activities. Rafiee
et al. [26] revealed through regression analyses that spatial context
(e.g. building density and urban form) is a significant determinant
of household heat consumption. Abbasabadi et al. [27] presented
an urban energy use model that captures both urban building oper-
ational energy and transportation energy consumption by localiz-
ing the energy performance data and considering various urban
socioeconomic factors and spatial contexts (e.g., urban density
and accessibility).
2

Therefore, less focus has been paid to spatial variation in the OB
modeling. Spatial variation has been insufficiently represented
based on the actual data in previous studies. Although some stud-
ies used spatial factors, there is a lack of modeling methods to bet-
ter reproduce spatial variation in OB.
2.2. Review of methods for spatial analysis and modeling

Disciplines associated with the fields of epidemiology, environ-
mental meteorology, and econometrics have applied sound spatial
analysis methods to solve subject-specific problems [28–35]. This
section summarized such methods used to either empirically rep-
resent the spatial variation or simulate the research object with the
consideration of the spatial variation. Fig. 1 shows the summary of
the methods.

Based on the mechanism and data input, the methods used in
these studies can be classified as spatial interpolation and
regression-based methods. Spatial interpolation methods simulate
the spatial autocorrelation of surrounding observations to repre-
sent the spatial trend of the objects or to generate spatial predic-
tions for unmeasured areas. Berke [36] applied the trend surface
analysis and universal kriging to simulate acid-precipitation in
Lower Saxony. Berke [37] also developed the modified median pol-
ish kriging method to generate more robust spatial predictions for
Wolfcamp-Aquifer. Varouchakis [38] applied median polish kriging
and sequential Gaussian simulation to explore the spatial distribu-
tion of source rock data in terms of total organic carbon weight
concentration. In regression-based methods, they incorporate
additional factors, such as sociodemographic variables, into the
modeling process. Chasco et al. [35] analyzed the spatially varying
impacts of some conventional factors, such as unemployment rate
and average housing price, on the per capita household income in
Spanish provinces based on geographically weighted regression.
Xie et al. [39] employed spatial logistic regression to obtain the
development patterns in regions and to assess the prognostic
capacity of the model based on several factors such as population
density and availability of usable sites. Paciorek [40] compared
several models for fitting spatial logistic regression models and
suggested that the spectral basis model is the best to provide a
good compromise between the quality of fit and computational
speed for the estimation of the spatial surface.

These spatial analysis methods may be useful in OB modeling,
however have been sparsely considered and applied in the energy
field.
3. Methodology

3.1. Data

The multiyear American Time Use and Leisure Activity Survey
(ATUS0319) collected the activity diaries and sociodemographic
conditions of the survey participants. These activity diaries were
recorded for a 24-hour period beginning at 4:00 am on the survey
day. The data collected between 2009 and 2019 were used to
ensure the consistent coding of the variables. Although there were
124,941 participants in total, we used those of women aged 30–59
living in mainland U.S. to homogenize the sample and better
observe the effects of spatial variation in time use. This subpopula-
tion was selected because women generally conduct various activ-
ities involving both paid and unpaid work [41–44]. In particular,
these unpaid activities (e.g., housework) may affect the operating
conditions of many home appliances and building systems, thereby
affecting residential energy demand. We checked statistically that
this subpopulation features the highest level of unpaid work in the
ATUS. In addition, this is supported by other empirical research on



Fig. 1. Summary of the methods for spatial analysis and modeling.
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time use showing that women trigger residential peak electricity
demand due to caring activities and unpaid work [45]. We also
selected four typical activities—sleeping, cooking and washing
up, watching television, and commuting—to evaluate the proposed
method. Sleeping is a basic in-home activity while commuting to
work or school is one of the main out-of-home activities. These
two activities had little influence on the use of home appliances.
Watching television, cooking, and washing up are among the main
indoor activities for women [46], and generally involve using appli-
ances. Although the results are not sufficiently comprehensive to
evaluate the applicability and usefulness of the proposed method
to model the entire population and all activities, this design is suf-
ficient to address the research questions described in the
Introduction.

As a result of the selection of the subpopulation, the sample size
was reduced to 36,438. However, this sample size is relatively large
compared to many previous studies because we used the eleven-
year data, whereas single-year time use data have often been used
in previous studies [47]. Notably, the ATUS sample is distributed
approximately proportionally to each state’s population, with the
number of samples varying considerably from state to state, rang-
ing from 55 to 3652. In addition, 70 % of each state’s data were ran-
domly selected as the training dataset and the remaining were
used as the test dataset. The split between percentages for training
dataset and test dataset is in line with modelling practices associ-
ated with models requiring data training. Also, many previous
studies used this split [22,48,49].

We considered the states as the unit for modeling as it was the
only available data with respect to space for the entire nation. The
location of each occupant was defined by the internal point of the
state in which the occupant lived. Therefore, only one location
point was used to represent the entire state to smooth the spatial
variations for the entire U.S. mainland. The cartographic boundary
shapefile of the U.S. of 2018 was used to visualize the spatial dis-
tribution of the probability on the map.

The spatial distribution of the activity probability at each time
interval is referred to as the spatial probability in this study. Note
that the 1 min resolution data in the time use diary were converted
to 1 hourly binary data by assigning 1 when an activity was con-
ducted within a 1-hour interval distinguished by clock times and
0 otherwise. Based on this principle, we quantified the probability
of activity frequency within an hour. In this paper, we refer to this
probability as the ‘‘activity probability”.
3

3.2. Method

When simulating OB, numerous stochastic models use several
modeling parameters (e.g., probability of undertaking an activity,
probability of starting an activity and corresponding duration)
[22]. These modeling parameters were prepared during the pre-
simulation process. Li et al. [22] revealed that many previous stud-
ies conducted segmentation of sample time use data and applied
the logistic regession method to model the modeling parameters
to better enhance the inter-occupant diversity originating from
demographic and other influencing factors. Our developed model-
ing method followed this approach but involved a smooth function
that representative of the spatial variation in the modelling param-
eters. The whole methodology of this study is shown in Fig. 2. Steps
1–3 address the three research questions discussed in Section 1.
Section 3.2.1 describes the segmentation of the time use data.
The following Sections 3.2.2 to 3.2.4 give a more detailed introduc-
tion to each step.
3.2.1. Segmentation
In the presimulation process, six groups were designed to rep-

resent different subpopulations of women. Each group was homog-
enized to avoid the influence of sociodemographic factors in the
spatial variation as shown in Table 1. The conditions for segmenta-
tion were the type of day (i.e., weekdays and weekends) and
employment status—commonly used parameters in previous stud-
ies [19,20,23,24,50]. Groups 1 and 4 represent women with full-
time jobs; Groups 2 and 5 represent women with part-time jobs;
Groups 3 and 6 represent unemployed women. Groups 1–3 and
Groups 4–6 comprise activities performed during weekdays and
weekends, respectively.

Table 1 presents the total sample size for each group. The
national-level sample size for each case satisfies the Whitemore
formula [51] for most of the time intervals. However, some states
did not have a large sample sizes, as shown in Fig. 3. Some states,
such as Delaware, District of Columbia, and Wyoming (numbers
10, 11, and 56) had small sample sizes.

One approach to avoid a decrease in sample size is to use the
group conditions as variables. To evaluate this approach, Group 7
was considered to represent the entire population of women aged
30–59 years, including Groups 1–6, using dummy variables repre-
senting each group in the developed spatial logistic regression
model. The comparison enables the determination of a superior



Fig. 2. Study methodology.

Table 1
Groups and their details.

Group Subpopulation Type of
day

Employment
status

Items of interest Sample
size

1 Women aged
30–59

Weekdays Full-time Survey year, age, presence of children, family income, carer, education, ownership of the housing
unit, number of people in the household, region, and state

8849
2 Part-time 3551
3 Unemployed 5724
4 Weekends Full-time 9041
5 Part-time 3548
6 Unemployed 5725
7 Entire population of women aged 30–59 Items in Groups 1–6, as well as employment status and type of day 36,438

Fig. 3. Sample size of each group for each state.
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approach for OB modeling, using the segmentation [52] or using
grouping conditions as variables. This analysis was conducted by
considering the watching television activity.

3.2.2. Step 1: Existence of spatial variation
We employed the global Moran’s index (Moran’s I) test to con-

firm the time intervals during which the selected four activities
4

exhibited spatial variation. The Moran’s I test is used to verify
the significance of the random distribution of qualitative determi-
nation in the areas of a map [53]. The Z score was calculated to
evaluate the significance of Moran’s I. If the Z score is not statisti-
cally significant (p > 0.05), it is probable that the objectives are ran-
domly distributed in space; if the Z score is positive and significant,
the objectives display a clustered distribution (similar tendency); if
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the Z score is negative and significant, the objectives display a dis-
persed distribution (competitive tendency). The subsequent steps
only considered the time intervals during which spatial variation
existed.

3.2.3. Step 2: Methods to represent spatial variation
Two representations of spatial variation that quantify the aver-

age probability of an activity in each state si at each time interval
were designed using the ordinary kriging and spatial autoregres-
sive (SAR) methods. However, as they measure the probability of
an activity, their values were restricted within 0 and 1. Further-
more, the ordinary kriging and SAR methods can generate repre-
sentations at higher resolutions if detailed location data are
available.

A) Ordinary kriging method.

The ordinary kriging method uses the observations of the sur-
roundings to predict the values of unmeasured locations [54]. Con-
sidering a certain time interval during which spatial variation
exists, the prediction Gs0 for the location s0 u0;v0ð Þ is given by:

G
�
s0 u0 ;v0ð Þ ¼

XN

j¼1
kjGsj uj ;v jð Þ; ð1Þ

where Gsj uj ;v jð Þ is the average probability of an activity in the state sj

represented by the internal points uj; v j
� �

; and kj is the unknown

weight subjected to
PN

j¼1kj ¼ 1, for obtaining an unbiased estima-
tion of Gs0 . We considered the commonly used theoretical semivar-
iogram–spherical model to estimate k.

B) Spatial autoregressive method.

The SAR method is used to examine the impact of the probabil-
ity of an activity in one state on the neighboring states by including
other factors in the modeling process. It is generated based on the
cross-sectional spatial model defined by Equation (2):

G
�
s0 u0 ;v0ð Þ ¼ ys0 ¼ bTxþ kTWys0 þ e; ð2Þ

where G
�
s0 u0 ;v0ð Þ is the average probability of an activity in the state

so; x represents the variables; W is the weighting matrix con-
structed in the form of adjacent edges or points corresponding to
each state; and k is a scalar autoregressive parameter. The variable
Wys0 is the spatial lag of ys0 .

3.2.4. Step 3: Spatial logistic regression
In this study, we developed three spatial logistic regression

models through Equation (3):

logit psi ;t

� �
¼ ln

psi ;t

1� psi ;t
¼ bTxsi ;t þ g si; hð Þ þ e; ð3Þ

where psi ;t
is the probability of the i th individual at a location s at a

time interval t; b is the coefficient of the variable xsi ;t; and g si; hð Þ is a
smooth function parameterized by h over the location si. One spatial

factor G
�
r and two representations of the spatial variation G

�
s,

explained below, were used as g si; hð Þ herein. The conventional
logistic regression model ignoring g si; hð Þ served as the reference

model for comparison. In Model 1, G
�
r is modeled as

G
�
ri;t ¼ c1R1;i;t þ c2R2;i;t þ c3R3;i;t for i th individual, where R1, R2, and

R3 indicate the northeast, mid-west, and west, respectively, with
the southern region being the reference group; c is the correspond-
ing coefficient for each regional dummy variable. In Models 2 and 3,
5

the estimations of G
�
si;t was extracted from the ordinary kriging and

SAR results in Step 2 to represent the spatial variation.
Stepwise analysis was applied to all the models to statistically

test the significance of the considered variables, including the spa-
tial factors and representations.

3.3. Performance assessment

The performance of the models was assessed in terms of the
reproducibility of the spatial variations in OB and the comprehen-
sive performance. The ordinary kriging method was applied to
visualize the spatial probability, thereby assessing the repro-
ducibility of the spatial variation. The comprehensive performance
was evaluated by indicators to assess the error and inter-occupant
diversity considering the training and test datasets.

3.3.1. Error indicators
Total absolute error (TAE) and root mean squared error (RMSE)

were considered to measure the error between the estimations
obtained from the models and the observations. These two indica-
tors were quantified at national and state levels. Previous studies
only considered the national level, which measures the error for
each time interval. At the state level, the errors were quantified
based on the combinations of the time interval and state, thereby
introducing an error because of spatial variations.

3.3.2. Inter-occupant diversity indicators
Inter-occupant diversity indicators assess the ability of the

model to represent the total variations of OB among the simulated
occupants. The indicator RMSE_GA [22] based on the Hosmer–
Lemeshow test [55], which measures the root mean squared error
between the averaged estimated probability and averaged
observed probability of different subdivisions, is provided by Equa-
tion (4):

RMSEGA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼1

PD
d¼1 Meant;d Ppred

� ��Meant;d Pobsð Þ� �2
T � D

s
; ð4Þ

where d denotes the subdivision (D ¼ 10). RMSE_GA was only
quantified at the national level owing to data limitations. To com-
pare the inter-occupant diversity at the state level, another indica-
tor—the mean standard deviation (MSD), was used to measure the
deviation of each estimation from the mean at the national and
state levels.

4. Results

4.1. Confirmation of the existence of spatial variation

Fig. 4 shows the representative probabilities of the women in
Group 4 sleeping, those in Group 3 cooking and washing up, those
in Group 6 watching television, and those in Group 1 commuting.
As shown in Fig. 4, the probability of activities exhibited certain
variation among the states at different times of the day. Such vari-
ation results are obtained from the combination of the differences
in sociodemographic variables, the spatial variation, and sampling
error [56], according to Equation (3). The effect of the first element
was reduced by segmentation.

Spatial variations for each time interval for all combinations of
groups and activities were confirmed using Moran’s I test. Fig. 5
summarizes the results of the Moran’s I tests. The results showed
that spatial variation existed only during limited time intervals
and varied with the type of day (weekdays or weekends), subpop-
ulations with different employment statuses, and activities. For
example, spatial variation in sleep existed at different time inter-



Fig. 4. Probability of activities considering representative groups. The differently colored lines represent the different states and the black line represents the national
estimate.
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vals for different groups because these groups may have different
sleeping styles, containing various sub-activities, such as lying
awake and napping, in the ATUS dataset. As shown in Fig. 5, con-
sidering sleeping, on weekdays, employed women in Group 1
exhibited lesser spatial variation than unemployed women in
Group 3 during the relevant time intervals. On weekends, women
exhibited the same number of spatial variations during the rele-
vant time intervals, irrespective of their employment statuses.
Fig. 5. Results of the Moran’s I test considering the representative activities for each gro
red and green cells indicate clustered and dispersed distribution, respectively. (For interp
web version of this article.)

6

Considering cooking and washing up, unemployed women in
Group 3 exhibited more spatial variation during the weekdays,
whereas women with full-time jobs in Group 4 exhibited more
spatial variation during the weekends. No spatial variations existed
for women with full-time jobs in Group 1 on weekdays, and for
unemployed women in Group 6 on the weekends. Considering
watching television, women with part-time jobs in Group 5 did
not exhibit any spatial variation during the weekends. Women
up. The time intervals filled in red or green are the intervals with spatial variations;
retation of the references to colour in this figure legend, the reader is referred to the



Fig. 6. Spatial probability of the women in Group 6 watching television at 13:00 at
the state level based on observations.

Fig. 7. Spatial probability of the women in Group 6 watching television at 13:00
based on representations of the spatial variation generated by the ordinary kriging
and SAR methods.

Fig. 8. Probability of activity of the women in Group 6 watching television at 13:00 based
of the observations.

Y. Li, Y. Yamaguchi, J. Torriti et al. Energy & Buildings 281 (2023) 112754
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with part-time jobs in Group 2 further exhibited a low spatial vari-
ation during the weekdays. Considering commuting, irrespective of
their employment status, women in Groups 1–3 exhibited more
spatial variation during the weekdays than those in Groups 4–6
during the weekends. Women with part-time jobs in Group 5 did
not exhibit any spatial variation during the weekends.

In most time intervals, the spatial variation exhibited a clus-
tered distribution, with only limited time intervals exhibiting a dis-
persed distribution. Fig. 6 illustrates the probability of the women
in Group 6 watching television at 13:00. An obvious clustered dis-
tribution can be observed at the state level. The observed spatial
probability ranged from 0 to 21 %.
4.2. Representations of spatial variation

Fig. 7 shows the spatial probability of the women in Group 6
watching television at 13:00 based on the representations of the
spatial variation generated by the ordinary kriging and SAR meth-
ods. The kriging-based representation ranges from 6 to 14 %,
whereas SAR-based representation ranges from 4 to 17 %. The vari-
ation was narrower than the observation shown in Fig. 6. The
kriging-based representation can simulate the changing tendencies
of spatial probabilities. However, the clustered pattern was not
identified. The SAR-based representation can provide more accu-
rate estimations for certain states, simultaneously providing a bet-
ter representation of the cluster areas. Furthermore, we also
compared the two representations considering all the combina-
tions of groups, activities, and states. Regarding TAE and RMSE at
the state level, the kriging-based representation was 126.5 and
9.9 %, and the SAR-based representation was 61.2 and 3.0 %
respectively.

To better understand the cause of the error, Fig. 8 show the
observed probability, a 95 % confidence interval, and the estimated
probabilities of each state. Note that the observations of some
states contain large sampling errors because of their small sample
size. Some states had a probability of 0 because activity occurrence
was not observed, which could also be attributed to the small sam-
ple size. As the error indicators were quantified based on the differ-
ence from the observed probabilities, they were at the scale
described above. However, as shown in the figure, the two repre-
sentations are within the 95 % confidence intervals of most states.
on representations and observations. Error bars indicate the 95% confident intervals
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4.3. Spatial logistic regression models

4.3.1. Reproduction of the spatial variation
The reproducibility of the spatial variation by the developed

spatial logistic regression models was evaluated based on four rep-
resentative cases: (a) sleeping at 8:00 in Group 4; (b) cooking and
washing up at 12:00 in Group 3; (c) watching television at 13:00 in
Group 6; and (d) commuting at 10:00 in Group 1. These represen-
tative cases were selected among the time intervals with a spatial
variation to compare the model performance. The four representa-
tive cases were selected based on their high probability compared
to other intervals. Fig. 9 illustrates the spatial probability of activity
in each of the four cases, based on the observations and estima-
tions. The visualization of the spatial variations in all the subfigures
was interpolated using the ordinary kriging method. Considering
the reproduction of the spatial variations in these four cases, the
spatial distributions determined by the three spatial logistic
Fig. 9. Comparison of the spatial probability of activities based on the observations and
logistic regression models for Cases (a)–(d), respectively. The spatial distribution results
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regression models were more consistent with the observations
than those determined by the reference model. However, Model
2 for Case (b) and Model 3 for Case (c) yielded the same results
as that of the reference model. This is because, the spatial repre-
sentations, g si; hð Þ, were eliminated during the stepwise process.
The reference model also showed limited spatial variations (see
subfigures in Fig. 9 for Cases (b) and (c)), which is attributed to
the variations in sociodemographic variables.

As shown in Fig. 9, neither the reference model nor the spatial
logistic regression models were not adequately consistent with
the observations. To understand the reason, Fig. 10 shows the
probabilities of each state. As shown in the figure, most of the esti-
mated probabilities shown by the lines fall within the 95 % confi-
dence intervals of the observations. The observation of states
with a small sample size had either larger error bars or no error
bars (probability = 0). Thus, the estimations were different
from the observations for these states. However, spatial logistic
reproductions of the spatial variation by the reference model and the three spatial
were interpolated by the ordinary kriging method.



Fig. 10. Probability of activity of each state for cases used in Section 4.3.1. Error bar was quantified by the 95% confident intervals.
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models are still more consistent with observations than reference
models.

4.3.2. Comprehensive performance
Fig. 11 shows the stacked values of performance indicators

quantified at the national level, TAEnation, RMSEnation, MSDnation,
and RMSE GAnation, for all the models considering the six groups
in training and test datasets. The indicators are the cumulative val-
ues quantified for each activity and group combination. As shown,
the error indicators exhibited similar performances with all the
models for almost all the combinations of the training and test
datasets. Considering the inter-occupant diversity, Models 3 and
1 exhibited a 7 % higher MSDnation than the reference model. Con-
sidering RMSE GAnation, all the models exhibited similar results
with both the training and test datasets.

Fig. 12 illustrates the TAE, RMSE, and MSD values of the models
for the six groups quantified at the state level. As shown in Fig. 11
and Fig. 12, the magnitudes of the error indicators increased from
the national level; however, MSD exhibited the opposite trend.

Considering the error indicators, improvements were observed
in the spatial logistic regression models compared to the reference
model. Model 3 exhibited the greatest improvement compared to
the reference model, reducing the stacked TAEstate value by 9.9
and the stacked RMSEstate value by 11 % for the training dataset.
This was followed by Model 1 (stacked TAEstate decreased by 4.4
and stacked RMSEstate decreased by 3.6 %) and Model 2 (stacked
TAEstate decreased by 3.2 and stacked RMSEstate decreased by
2.1 %). However, the spatial logistic regression models, particularly
Model 3, did not provide such advantages with the test dataset.
Considering MSD, the spatial logistic regression models, particu-
larly Models 1 and 3, performed better than the reference model
with both the training and test datasets.

The above results are confirmed in Fig. 13, which shows the
accuracy evaluations of each model at the state level. The estima-
tions and observations were obtained using the base-10 logarith-
mic transformation. Two R2 values, with and without logarithmic
transformation, were quantified. All the models exhibited high
accuracies. However, the points in the reference model were rela-
tively scattered compared to those in the spatial logistic regression
models. Considering the values of R2, the spatial logistic regression
models, especially Model 3, exhibited relatively higher R2 values
than the reference model.
9

4.4. Evaluation of spatial logistic regression models applied to the
entire population

4.4.1. Application of Group 7
In this section, the spatial logistic regression model was applied

to Group 7 the entire population of women aged between 30 and
59 years, for watching television. The Moran’s I test results indi-
cated that spatial variation existed during the time intervals
9:00–17:00 and 22:00–0:00. Therefore, the spatial logistic regres-
sion models were developed and assessed only for these time
intervals.

Fig. 14 shows the same visualization maps of the spatial proba-
bility of watching television at 13:00 (Fig. 9) based on the observa-
tions and estimations of Group 7. The range of probability is
narrower than Fig. 9 for Group 6, because Groups 1–6 were com-
bined. The spatial logistic regression models, especially Model 3,
showed a more accurate spatial distribution relative to the obser-
vations than the reference model. Table 2 shows the performance
of all the models evaluated by the indicators, considering all the
time intervals that exhibited spatial variation. The models per-
formed effectively with Group 7. At the national level, all the mod-
els exhibited the same performance in terms of errors and MSD.
However, the reference model showed a relatively lower
RMSE GA compared to the spatial logistic regression models. At
the state level, the spatial logistic regression models exhibited
lower TAE and RMSE values, and similar MSD values to the refer-
ence model.

4.4.2. Comparison approach of segmentation and using grouping
conditions as variables

Fig. 15 depicts the accuracy in the base-10 logarithmic transfor-
mation of Model 3 for watching television, considering Group 7
and different subpopulations at the state level. Only the time inter-
vals that exhibited spatial variation considering Group 7 and the
subpopulations of Groups 1–6 have been considered in this analy-
sis. Model 3 developed for Group 7 was applied to certain subpop-
ulations Group 1–6 corresponding to the different time intervals to
represent estimations based on Group 7. The thick black line
shown in the two subfigures of Fig. 15 represents the fitted line
of the estimations obtained from Model 3 considering Group 7,
which indicates the approach that uses variables, and the thick
dashed line represents the estimations obtained fromModel 3 con-



Fig. 11. Results of indicators at the national level for all the models in the training and test datasets.

Fig. 12. Results of indicators at the state levels considering all the models in the training and test dataset.
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Fig. 13. Accuracy of the spatial logistic regression models at the state level. The horizontal axis shows the observation probabilities of the different combinations of the
groups, states, and activities. The vertical axis shows the estimations. The black line is the reference line y ¼ x. Logarithmic transformation was performed in the range (�4, 0)
� (�4, 0).
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sidering the subpopulations, which indicates the approach using
segmentation. The thin black line is the reference line, y ¼ x. Model
3 considering both the entire population and the subpopulations
fitted significantly with the observations. However, the thick
dashed line was slightly closer to the reference line than the thick
black line, which implies that the estimations obtained fromModel
3 through segmentation were relatively more accurate than those
obtained from the variable-based approach.

Table 3 shows the comprehensive performance comparison
through the statistical indicators of the two approaches for all
models at the state level. According to Table 3, all models per-
formed adequately for both approaches. However, the
segmentation-based approach yielded smaller TAE and RMSE for
all the models. In contrast, for the inter-occupant diversity
assessed by MSD, the variable-based approach showed a relatively
better performance.
5. Discussion

5.1. Discussion of the results

This study demonstrated the existence of spatial variations in
OBs and established a modeling method to consider these spatial
variations in OBs. The established method is an extension of the
existing modeling method (i.e., the logistic regression method
combined with time use data sample segmentation in the pre-
simulation process). We confirmed with women aged 30–59 in
the U.S. for the four representative activities that the method con-
tributes to better reproduction of spatial variation and enhance-
ment of inter-occupant diversity in OB modeling.

The Moran’s I tests in Section 4.1 showed that spatial variation
exists and it differed according to the time of day and activity for
different study populations. Therefore, spatial variation should be
carefully considered in OB modeling. To this end, SAR-based and
11
kriging-based spatial representations were developed to better
represent spatial variation empirically and used in subsequent spa-
tial logistic regression models. The results in Section 4.2 showed
the SAR-based representation to be superior to the kriging-based
representation, because the former accounts for the variation in
other sociodemographic factors. Note that the representations
deviated from the observations of each state, as shown in Fig. 8,
particularly for those with small sample size. However, as the rep-
resentations were within the 95 % confident intervals of the obser-
vations, using two representations contributed to avoiding the
inclusion of the effect of sampling error in the following logistic
regression modeling. If the location data required to develop a spa-
tial representation is insufficient, spatial factors can be used to rep-
resent spatial variation for model development, as in the case of
Model 1.

As discussed in Section 4.3, the developed spatial logistic
regression models improved the inter-occupant diversity, as the
single-activity MSD for subpopulations improved by 0.6 %, and
the stacked MSD for all combinations improved by 12.5 % at the
state level with the training dataset compared to the reference
model. In particular, the developed models better reproduced the
spatial variation of OB, as the error was further reduced (RMSE
decreased by 0.3 %, and stacked RMSE decreased by 5.6 %). How-
ever, as shown in Figs. 10 and 12, the estimated results deviated
significantly from the observed probabilities at the state level,
mainly due to sampling error, as observed for the spatial represen-
tations. Note that the estimated probabilities were close to the
estimation result of the kriging and SAR; TAE and RMSE were
89.5 % and 9.8 % for kriging and 30.2 % and 1.8 % for SAR, respec-
tively. In addition, owing to the influence of sampling errors, the
results for the test dataset showed significant differences com-
pared to the training dataset. This result implies that the segmen-
tation approach is disadvantageous as it involves more sampling
errors. The variable-based approach examined in Group 7 was use-
ful for increasing the number of samples for each location. As dis-



Fig. 14. Spatial probability of the women in Group 7 watching television at 13:00 based on observations and estimations.

Table 2
Results of indicators considering all the models with Group 7 at the national and state levels. RMSE_GA was calculated only at the national level.

Level Indicator Reference model Model 1 Model 2 Model 3

National TAE 0.0 % 0.0 % 0.0 % 0.0 %
RMSE 0.0 % 0.0 % 0.0 % 0.0 %
MSD 0.6 % 0.6 % 0.6 % 0.6 %
RMSE_GA 3.3 % 3.4 % 3.5 % 3.4 %

State TAE 7.6 6.3 6.0 6.1
RMSE 1.7 % 1.5 % 1.4 % 1.4 %
MSD 3.2 % 3.2 % 3.1 % 3.1 %

Y. Li, Y. Yamaguchi, J. Torriti et al. Energy & Buildings 281 (2023) 112754
cussed in Section 4.4, the variable-based approach was effective as
it approximately reflected the inter-occupant diversity, and the
error was only marginally larger than the segmentation-based
approach (the stacked TAE and RMSE increased by 1.3 and 0.1 %,
respectively).

To overcome the sampling error issue, it is important to
ensure that a sufficient number of samples is available for each
study location. The 95 % confidence interval was calculated as

p� 1:96 � SE ¼ p� 1:96 �
ffiffiffiffiffiffiffiffiffiffiffi
p 1�pð Þ

n

q
, where p is the activity proba-

bility, SE is standard error, and n is the sample size. Fig. 16
12
shows the required number of samples for the corresponding
width of the confidence intervals based on the calculation. As
shown, to narrow the width of the confidence interval by 10
times, the required sample size needs to be increased by nearly
100 times. To obtain enough samples, it would be effective to 1)
use a variable-based approach instead of a segmentation
approach, 2) use multiple-year time use data, and 3) merge
neighboring areas. The last method is important when high spa-
tial resolution data are available because considering spatial
variation at a detailed level reduces the sample size per loca-
tion. In this case, using spatial representation methods is effec-



Fig. 15. Accuracy of Model 3 at the state level, considering two approaches (variables and segmentation). The different colors in the figure represent different groups. The
circular and triangular shapes represent the entire population and the subpopulations, respectively. Logarithmic transformation was performed in the range of (�2, �0.5) �
(�2, �0.5).

Table 3
Comparison of the approaches through statistical indicators at the state level.

Approach Group Indicator Reference model Model 1 Model 2 Model 3

Segmentation-based Subpopulation Group 1–6 TAE 17.8 16.4 16.6 15.3
RMSE 3.3 % 3.1 % 3.1 % 2.9 %
MSD 0.4 % 1.1 % 1.0 % 1.3 %

Variable-based Entire population Group 7 TAE 18.8 17.6 17.3 17.4
RMSE 3.4 % 3.2 % 3.1 % 3.1 %
MSD 0.5 % 1.0 % 1.2 % 1.3 %

Fig. 16. Needed sample size for corresponding width of the confidence interval. p is
considered as 0.5, representing the maximum value of p 1� pð Þ.
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tive in obtaining the spatial distribution of the modeling param-
eters of OBs.

5.2. Limitation and future work

As mentioned in Section 3 and dicussed in Section 5.1, a limited
sample extracted from ATUS data representing women from states
of the U.S. mainland for a limited number of activities and the low-
resolution location data were used in this study. Therefore, the
observations used to develop models contain non-negligible sam-
pling errors. Thus, the developed spatial logistic regression models
showed a large-scale error in the observed probabilities, whereas
the developed models showed no significant improvement with
13
the test dataset. However, further studies are required to address
this issue.

Nevertheless, the developed modelling method can generate
better results than traditional logistic regression methods, as
revealed in Section 4.3. As time use data or equivalent datasets
have been collected in many countries, the developed modelling
method can be applied to different regions. For example, it applies
to showing the differences in OBs between the areas in which lock-
downs were implemented and those in which lockdowns were not
implemented after the COVID-19 pandemic, thereby providing
more useful references for relevant institutions. However, detailed
information relevant to housing, households, and the environment
should be supplemented by combining the data collected at the
local level. Similarly, reliable new samples should be generated
to enrich the sample size and represent spatial variation at the
local level. In addition, the advancements in geographic informa-
tion systems allow high-resolution location data to become more
and more available. Thus, if the above conditions are satisfied, spa-
tial representations can be generated with higher accuracy at the
zip code or even household level. Therefore, subsequent spatial
logistic regression methods can facilitate further improvements.
6. Conclusion

Existing OB models lack a comprehensive and systematic con-
sideration of spatial variation. These models were primarily estab-
lished within limited locations based on geo-referenced data to
determine space use or to simulate occupant mobility. Some stud-
ies used spatial factors to insufficiently consider the spatial varia-



Y. Li, Y. Yamaguchi, J. Torriti et al. Energy & Buildings 281 (2023) 112754
tion in OBs or energy demand. However, the real spatial distribu-
tion of OBs has not been comprehensively investigated, and mod-
eling methods that reproduce spatial variation in OBs are yet to be
developed.

This study showed that spatial variation exists in OBs and
developed new OB models that can consider spatial variation.
The developed models significantly enhanced the reproducibility
of spatial variations in OBs and generated smaller errors at the
state level than the conventional logistic regression model. The
developed modelling method is an extension of the exsiting logis-
tic regression method which can be applied in different countries
for any application context (i.e., any spatial scale and population).
However, our results were obtained with limited samples at the
state level from the ATUS data and low-resolution location data.
Model performance may be improved with high resolution loca-
tion data, and behavioral data with richer information and larger
sample sizes. Therefore, with more comprehensive considerations
of spatial variation in the new OB model, location-based OB pat-
terns can be generated, which can be used in future studies to sim-
ulate more realistic energy demand profiles and to develop region-
sensitive energy policies.
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