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Abstract: Non-ionic hydroxyethylcellulose (HEC) has limited mucoadhesive properties for applica-
tion in transmucosal drug delivery. In this study, HEC was chemically modified by reaction with
glycidyl methacrylate. This allowed introducing the methacryloyl groups to HEC structure to make
it capable of forming covalent bonds with the sulfhydryl groups present in the mucin glycoprotein
to achieve enhanced mucoadhesive properties. The results showed a successful modification of
HEC as confirmed by 1H NMR and FTIR spectroscopies. The quantification of methacryloyl moi-
eties was conducted using HPLC. The toxicity studies using in vivo planaria acute toxicity assay,
in vivo planaria fluorescent test, and in vitro MTT assay with Caco-2 cell line confirmed that the
chemical modification of HEC does not result in any toxicological effects. Mucoadhesive wafers
were developed based on parent and modified HEC as a model dosage form for buccal delivery. The
mucoadhesive properties of modified HEC assessed using a tensile test were found to be significantly
better compared to unmodified HEC.

Keywords: hydroxyethylcellulose; mucoadhesion; methacryloyl; transmucosal delivery; wafers

1. Introduction

The delivery of drugs through mucosal membranes lining the body is a non-invasive
option for achieving local and systemic effects. Transmucosal drug delivery offers ad-
vantages such as increased drug residence time, improved bioavailability, and avoidance
of the first-pass effect or pre-systemic metabolism [1–3]. Oromucosal, gastrointestinal,
ocular, vaginal, intravesical, nasal, and rectal routes are among the established routes of
transmucosal drug delivery. In any of the mentioned routes, poor drug retention on the
site of action is usually an issue. Thus, to increase the drug residence on the mucosa,
mucoadhesive materials are commonly used in the formulations as they facilitate dosage
form adhesion to the tissues [4].

Cellulose and its derivatives are biocompatible, renewable, and non-toxic polysac-
charides. They belong to the first generation of mucoadhesive polymers as they may
interact with mucosal surfaces via physical attraction forces such as hydrogen bonding [5,6].
Compared to cationic and anionic polymers, the non-ionic hydroxyethylcellulose (HEC)
exhibits limited mucoadhesive characteristics [7,8].

Blending HEC with other mucoadhesive polymers is one of the methods used for
enhancing mucoadhesive properties of dosage forms. However, the dosage form’s adhe-
siveness may potentially be impacted by the interpolymer complexation between HEC and
other polymers [9]. Therefore, alternative strategy to enhance mucoadhesive properties
of HEC is through its chemical modification to introduce adhesive groups. For example,
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modification of HEC with cationic and thiol groups has been reported previously by other
researchers [10,11]. Previously we demonstrated that introduction of methacryloyl groups
into chitosan [12], gellan gum [13] and poly(2-ethyl-2-oxazoline) [14] leads to a substantial
enhancement in the mucoadhesive properties of these polymers. This modification was
achieved by reacting chitosan, gellan gum and ethylene imine-co-2-ethyl-2-oxazoline with
methacrylic anhydride. The enhancement in mucoadhesive properties is due to the ability
of methacryloyl groups to form covalent bonds with thiol groups present in mucin under
physiological conditions.

In this study, we have modified non-ionic HEC by reaction with glycidyl methacry-
late as a new strategy to introduce mucoadhesion-enhancing groups into polymers. The
resulting derivatives were characterized using 1H NMR and FTIR spectroscopies as well
as hydrolysis with subsequent quantification of methacrylic acid with HPLC. The toxi-
cological properties of these new HEC derivatives were evaluated using acute toxicity
and fluorescence assays in planaria as well as MTT cytotoxicity assay in Caco-2 cells. The
parent as well as the modified polymers were subsequently formulated into the wafers as a
model dosage form for buccal drug delivery. The porosity, mechanical and mucoadhesive
properties of these wafers were evaluated.

2. Materials and Methods
2.1. Materials

HEC (720 kDa), triethylamine (TEA), tributyl ammonium bromide (TAB), glycidyl
methacrylate (GMA), hydrochloric acid, benzalkonium chloride, sulfuric acid, methacrylic
acid and sodium hydroxide were purchased from Sigma Aldrich Co., Ltd., Gillingham, UK.
N,N-dimethylformamide (DMF) was supplied by SLS Supplies Ltd., Nottingham, UK.

Cell culture materials DMEM High Glucose (Capricorn Scientific GMbH, Germany),
foetal calf serum (GE Healthcare Life Sciences, Chicago, IL, USA), penicillin/streptomycin
(Nacalai Tesque Inc., Kyoto, Japan), CellTiter 96 Aqueous MTS reagent powder (Promega
Corporation, Wisconsin, USA) were used for cell viability assay. The Caco-2 cells were
received from Dr. Sharifah Aminah, Faculty of Pharmacy, in UiTM Puncak Alam, Malaysia.

The freshly excised sheep upper and lower lips were sourced from PC Turner Abattoir
(Farnborough, Hampshire, UK).

2.2. Modification of HEC

1% solution of HEC (w/v) was prepared by dissolving HEC in 0.1 M NaOH. Then
TEA was added to HEC solution as a catalyst. GMA was added to these solution mixtures
at different molar ratios, as shown in Table 1, and constantly stirred at 25 ◦C for 24 h. The
reaction products were purified using a dialysis via membranes with molecular weight
cutoff of 12–14 kDa. Deionised water was changed 8 times (4.5 L) a day for over 48 h during
dialysis. The final products were subsequently freeze-dried.

Table 1. Details on HECGMA synthesis.

ID Molar Ratio
[HEC]:[GMA] GMA (µL) TEA (µL)

HECGMA Low [1]:[1] 225 240
HECGMA Medium [1]:[3] 675 240

HECGMA High [1]:[6] 1350 240

2.3. H Nuclear Magnetic Resonance Spectroscopy (1H NMR)

Polymer solutions (20 mg/mL) were prepared in D2O in NMR tubes of 5 mm diameter.
The 1H NMR spectra were recorded using a 400 MHz Ultrashield PlusTM B-ACS 60 spec-
trometer (Bruker UK Ltd., Coventry, UK) and were analysed using MestReNova (Mnova)
Version 6.0.2-5475.
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2.4. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR spectra of freeze-dried samples were recorded using Spectrum 100 FTIR Spec-
trophotometer (Perkin–Elmer UK Ltd., Buckinghampshire, UK) with scanning from 4000
to 650 cm−1 at 4 cm−1 resolution, and accumulation of 16 scans. The data were analysed
using a six-scan average per sample generated by Spectrum One software.

2.5. High-Performance Liquid Chromatography (HPLC)

For the analysis of methacryloyl groups content, 40 mg of polymer samples were
dissolved in 8 mL of 0.01 M sulfuric acid and solutions were refluxed for 4 h at 50 ◦C.
Methacrylic acid formed as a result of this reaction was quantified using HPLC.

The HPLC procedure for the analysis of methacrylic acid was adapted from Paleologos
and Kontaminas [15], and was carried out on an Agilent Infinity 1200 HPLC system with
an Aminex 87H (Biorad, Watford, UK) column at 40 ◦C. Isocratic elution was applied
at 0.6 mL·min−1 with 0.01 M sulfuric acid solution and methacrylic acid detection was
performed in a diode array detector (Agilent Infinity 1200 Series, Didcot, UK) at 200 nm
wavelength.

Methacrylic acid was dissolved in 0.01 M sulfuric acid to form the standard stock
solution, which was diluted with deionised water to form standard solutions with concen-
trations ranging from 0.1 to 59.0 µmol/mL, used for the generation of external calibration
curve and methacrylic acid quantification in the samples.

2.6. Planarian Acute Toxicity Assay

Schmidtea mediterranea planaria were provided by Oxford Brookes University and
were kept in artificial pond water (APW: 5 M NaCl, 1 M CaCl2, 1 M MgSO4, 1 M MgCl2
and 1 M KCl) at room temperature. Planaria were given chicken liver once a week, and
the APW was changed every week following their feeding. Planaria (1.0–1.5 cm long)
were placed each in 24 wells of a plate culture using a slightly modified version of the
procedure [16,17]. Briefly, 1 mL of HEC and HECGMA solutions at various concentrations
(0.05% w/v, 0.10% w/v, 0.25% w/v, 0.50% w/v and 1.00% w/v) were added into each well.
Solution of 1% w/v benzalkonium chloride (BAC) in APW was used as a positive control
that typically causes severe irritation of mucosal membranes [18]. All test materials were
dissolved in APW. The plates were stored at room temperature in the dark. The number of
living and dead planaria was determined after 24, 48, and 72 h of the acute toxicity test.
Planaria that did not move after a gentle agitation were considered dead.

2.7. Planarian Toxicity Fluorescent Assay

Following the experiments on acute toxicity assay, where the worms were exposed to
1.0% w/v polymer solutions for 24 h, these planaria were subsequently exposed to 0.1%
w/v sodium fluorescein solution in APW for 1 min. The worms were then washed in
APW for 15 min to remove residual dye. In order to immobilise the planaria, a glass slide
containing the worms was covered with a few drops of a 2.0% w/v agarose solution and
placed on a flat surface of ice flakes (−0.5 to −0.8 ◦C) until the gel solidified. Leica MZ10F
stereomicroscope (Leica Microsystems Ltd., Wholesaler, UK) equipped with DFC3000G
digital camera at 2.0× magnification, 160 ms exposure duration, and gamma 0.7 were
used to record fluorescence images of the worms. Permeation of sodium fluorescein into
the worms was evaluated using ImageJ software (version 1.8.0_112) as described in Shah
et al. [16]. The acquired mean value was normalised by dividing the fluorescence intensity
by the total area (in cm2) of each planaria.

2.8. In Vitro Cytotoxicity of Polymers

The cytotoxicity of each polymer was evaluated using Caco-2 cells. The cells were
grown in DMEM High Glucose fortified with 10% foetal calf serum and 1% penicillin/
streptomycin. It was kept at 37 ◦C in an incubator with 5% CO2 and 100% relative humidity.
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At a density of 1 × 104 cells per well, cells were seeded in 96-well plates and incubated
for an overnight period at 37 ◦C in humidified air containing 5% CO2 to promote cell
attachment. The cells were then treated with various concentrations of the polymers
(1%, 0.5%, 0.25%, 0.1% and 0.05% w/v) for 24 h. The negative control group consisted of
untreated cells and was considered as 100% of viable cells. The media were changed with
fresh growth medium following the end of every treatment. Each well received 20 µL of
5 mg/mL MTT solution (in the dark). The cells were further incubated for 4 h at 37 ◦C
in a humidified 5% CO2 incubator. 100 µL of DMSO was added, mixed thoroughly and
incubated for 10 min. The absorbance was measured at 540 nm with Infinite 200 PRO
microplate reader (Tecan Group Ltd., Maennedorf, Switzerland).

2.9. Preparation of Wafers

The wafers were prepared from 1% w/v solutions of HEC and its derivatives in
deionised water. 1.5 g of HEC, and HECGMA solutions were poured into each well in
24 well plates. The plate was covered with holed aluminium foil and was left under a fume
hood for an hour. It was then frozen in a freezer at −20 ◦C overnight. The wafers were
prepared by freeze-drying in a Heto Power Dry LL3000 Freeze Dryer (Thermo Scientific
UK Ltd., Leicestershire, UK) over 48 h. The wafers were placed in sealed containers and
stored in a fridge at 4 ◦C.

2.10. Physical Characterisation of Wafers

Wafers were examined for physical features (colour and texture). A digital microbal-
ance was used to weigh the wafers, and their average weight ± standard deviations were
calculated. The wafers were each measured for thickness using an electronic Vernier cal-
liper, and the average thickness ± standard deviations were calculated. SEM analysis of the
wafers provided more information on their porous structure. The wafers were mounted
on an aluminium stud and secured with double-sided carbon tape adhesive. SEM images
were generated using FEI Quanta 600 FEG.

2.11. Ex Vivo Mucoadhesion Study of Wafers

The method was slightly modified from several studies [19–21]. A TA-XT Plus Texture
Analyser (Stable Micro Systems Ltd., Surrey, UK) with a 5 kg load cell was used to study the
mucoadhesive properties of all the formulations. Sheep buccal tissue was cut into squares
and secured onto mucoadhesion rig with 20 mm opening. Upon testing, the device and
tissues were immersed in a 37 ◦C water bath.

The wafers were attached to the 12 mm diameter aluminium probe with sticky adhe-
sive tape and lowered to contact the mucosa. The following test parameters were used:
pre-speed test 0.5 mm/s; test speed 0.5 mm/s; post-speed test 1.0 mm/s; applied force
0.5 N; contact time 60 s; trigger type auto; trigger force auto; and return distance 20 mm.

2.12. Statistical Analysis

SPSS (version 17) was used to perform a two-tailed Student t-test as a statistical tool
with p values < 0.05 considered statistically significant.

3. Results and Discussion
3.1. Synthesis of Methacryloylated HEC

It can be expected that the reaction of GMA with HEC leads to formation of methacry-
loylated derivatives (Figure 1), which is similar to the reactions of this reagent with other
hydroxyl-containing polymers reported in the literature [22,23]. In general there are two
reaction routes possible with the use of GMA in chemical modification, via transesteri-
fication and epoxide ring opening mechanisms [22–26]. We conducted the synthesis in
alkaline protic solvent (containing NaOH and TEA as bases) which resulted in the reaction
favouring epoxide ring opening than transesterification as reported by Fajardo et al. and
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Reis et al. [22,27]. The structure of the resulting derivatives of HEC was evaluated using
1H NMR spectroscopy (Figure 2).
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Figure 2. Structure and 1H NMR spectra of unmodified HEC and HECGMA prepared at various
molar ratios of HEC to GMA.

The 1H NMR spectra of modified HEC show the signals at 5.69 and 6.10 ppm, which
correspond to the protons of methacryloyl groups [12,13]. The signals that appeared in the
spectra of methacryloylated HEC at 1.89 ppm correspond to protons of methyl groups from
methacryloylation [13]. The peaks at 1.22 and 1.82 ppm belong to unidentified structure
within HEC, which was similarly found and reported by Ray et al. [28].

Unfortunately, the extent of HEC methacryloylation cannot be evaluated accurately
using the analysis of 1H NMR spectra. HEC has a complex structure similarly to other
heteropolysaccharides that generates broad signals in the 1H NMR spectra, which overlap
with glyceryl spacer (4.50–3.50 ppm) in methacryloylated derivatives [22,23].

Figure 3 shows the infrared spectra for unmodified HEC and HECGMA. The successful
modification of HEC with GMA was confirmed by the introduction of a new absorbance
band at 1710 cm−1 in the HECGMA High spectrum attributed to the stretching frequency of
C=O, while absorbance band at 1637 cm−1 is due to C=C groups [25]. In Figure 3b, the band
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813 cm−1 is the characteristic of CH out-of-plane vibration present in all HECGMA [24,25].
This band results from the presence of methyls of methacrylol groups. It was observed that
all the above bands mentioned were present following modification of HEC at a high molar
ratio to GMA.
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2000–750 cm−1..

Quantification of methacrylic acid recovered from hydrolysed modified HEC samples
showed that the methacryloyl groups content in HECGMA High, Medium and Low were
173.50 ± 32.84 µmol/g, 72.43 ± 6.16 µmol/g and 64.49 ± 5.98 µmol/g, respectively. The
results for negative control (unmodified HEC) show no presence of methacryloyl groups
(data are shown in Supplementary Information: Figure S1 and Tables S1 and S2).

3.2. Acute Toxicity Assay and Fluorescent Assay in Planaria

Toxicology screening of the HECGMA was performed using fixed-dose procedures
on planaria worms. Planaria were used in toxicology screening of chemicals because
of their permeable epithelia that may absorb low molecular weight compounds from
their environment [29]. The acute toxicity assay using planaria revealed that HECGMA
derivatives at the studied concentrations (0.01% w/v, 0.05% w/v, 0.25% w/v, 0.50% w/v and
1.00% w/v) do not cause death in planaria for 24 h, 48 h and 72 h of exposure. The exception
is the control group of worms exposed to 1% BAC, which resulted in dead planaria, with
no signs of worm movement at all.

Fluorescent assay was previously developed by our research group using planaria
model to evaluate the effect of irritant chemicals on the permeability of their epithelial
membranes [16]. The assay is based on disruption of planaria epithelia caused by irritant
chemicals. When planaria are exposed to an irritant chemical the integrity of their epithe-
lium is disrupted and this facilitates penetration of fluorescein sodium into their body. This
is evaluated through the analysis of fluorescent microphotographs of worms following their
exposure first to a chemical of interest, then to solution of sodium fluorescein. Fluorescent
assay was carried out to evaluate the effect of 1% w/v HEC and HECGMA on planaria
epithelia during 24 h exposure. Figure 4 presents some exemplar fluorescence images as
well as the results of image analysis after 24 h expressed as fluorescence intensity values.
A 24 h exposure of planaria to different polymers indicated that even unmodified HEC
causes a statistically significant enhancement (p < 0.05) of fluorescein penetration into the
worms’ body compared to the negative control with artificial pond water (APW). It is well
known that HEC is widely used in various topical and mucosal formulations and it is a
biocompatible and non-irritant polymer at this concentration [30]. Exposure of planaria
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to HECGMA Low and Medium did not cause a significant increase in the fluorescence
intensity compared to unmodified HEC (p > 0.05); this indicates that these two derivatives
have non-irritant properties like HEC. However, exposure of planaria to HECGMA High
resulted in a 2× times greater fluorescence intensity compared to unmodified HEC, which
indicates that this sample is potentially more irritant.
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Figure 4. Fluorescent assay using planaria. (a) Histograms representing the relative intensity of
fluorescence in planaria after the exposure to 1 % w/v of unmodified HEC, HECGMA Low, HECGMA
Medium and HECGMA High. (b) Images of planaria worms after exposure to APW, 1% w/v of BAC,
HEC, HECGMA Low, HECGMA Medium and 1% HECGMA High. Data show the mean ± SE (n = 3).
* Statistically significant according to t-test; p < 0.05, ns = not significant.

3.3. In Vitro Cytotoxicity

The cytotoxicity of HEC and HECGMA derivatives was studied using the Caco-2 cell
line in a concentration range of 0.05 to 1% w/v. MTT results showed that the cell viabilities
are comparable for HEC and all HECGMA derivatives and all are above 60% after 24 h
(Figure 5). In the majority of cases, the difference between the unmodified HEC and
HECGMA derivatives was not statistically significant (p > 0.05), which indicates that
chemical modification of HEC with methacryloyl groups does not cause an increase in the
polymer toxicity.

3.4. Preparation and Physical Characterisation of Wafers

Lyophilized formulations, containing water-soluble polymers, often form wafers that
are widely reported in the literature for application in buccal drug delivery. In the present
work, the unmodified HEC and new HECGMA derivatives were used to prepare wafers as
model dosage forms. The wafers developed in our work were light, spongy and white with
a soft and smooth texture. The texture of wafers is important as it influences the oral intake
of medicine. Grittiness from the product formulations gives an unpleasant mouthfeel after
intake [31]. All the formulations were easily removed from the mould. Selected images of
these wafers are shown in Figure 6.
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Figure 5. Cell viability evaluated using MTT assay with the percentage of viable cells after the
exposure to: 0%, 0.05%, 0.10%, 0.25%, 0.50%, and 1.00% of HEC and HECGMA derivatives at 24 h.
Data show the mean values ± SD (n = 3). * Statistical significance is shown according to t-test;
p < 0.05.
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Figure 6. Physical appearance of lyophilised wafers based on HEC and HECGMA derivatives.

The average diameter of these wafers was 12 mm. The morphology of the wafers was
examined using SEM (Figure 7). The porosity of wafers was conferred by freeze-drying as
a result of the elimination of ice crystals via the sublimation process [31].

3.5. Ex Vivo Evaluation of Mucoadhesive Properties of Wafers

Adhesion of the wafers to freshly excised sheep buccal mucosa was evaluated using
a tensile test, established in the literature on mucoadhesive dosage forms [1]. This test
provides two main parameters such as the peak force or maximal detachment force and the
total work of adhesion, calculated as the area under the detachment curve. Figure 8 shows
the results of the tensile test evaluating mucoadhesive properties of the wafers, including
the data on the peak force and the total work of adhesion. As expected, the wafers prepared
from unmodified HEC exhibited relatively modest adhesion because of the non-ionic nature
of this polymer [1]. However, a statistically significant improvement in adhesive properties
was observed for the wafers prepared from HECGMA derivatives. The adhesive properties
generally improve for the derivatives with greater content of methacryloyl groups in the
polymer. HECGMA High derivative exhibited the greatest mucoadhesive performance,
whose peak force and the total work of adhesion were 3.27× and 3.79× greater compared
to these parameters recorded for the wafers composed of unmodified HEC.
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Thus, methacryloylated HEC exhibits enhanced mucoadhesive properties and can be
used to formulate dosage forms for buccal drug delivery. The advantage of methacryloy-
lated HEC compared to other mucoadhesive polymers commonly used for buccal delivery
such as chitosan [32], sodium carboxymethylcellulose, poly(acrylic acid) derivatives and
carragennan [33], pectin [34] and alginates [35] is its non-ionic nature. Non-ionic polymers
have better compatibility with ionic drugs as they will not form insoluble complexes that
may affect release characteristics.
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4. Conclusions

The present study demonstrated that poor mucoadhesive properties of HEC could be
significantly improved by introduction of methacryloyl groups into the structure of this
non-ionic polymer. This was achieved by reaction of HEC with glycidol methacrylate. The
structure of resulting HEC derivatives was confirmed using FTIR and 1H NMR spectro-
scopies as well as by HPLC-based assay to quantify the presence of methacrylic acid in
the hydrolysed polymers. The tests performed using planaria and Caco-2 cells indicated
that the new HEC derivatives do not show any adverse toxicological reactions similarly to
unmodified HEC. All these polymers were then prepared as wafers and their mucoadhe-
sive properties were evaluated using a tensile test in freshly excised sheep buccal mucosal
model. All HEC derivatives exhibited superior mucoadhesive properties compared to
unmodified HEC and the greater presence of methacryloyl groups improved adhesiveness
to mucosa. The new excipients based on HECGMA can be easily synthesized and have
solubility in water. Potentially these polymers can be used not only for the preparation of
wafers for buccal drug delivery but also for other solid, liquid and semi-solid dosage forms
for transmucosal administration.

Glycidol methacrylate is a chemically reactive molecule that can potentially be used
for introducing unsaturated functional groups to a variety of hydroxyl-containing water-
soluble polymers to enhance their mucoadhesive properties. Modification of these polymers
with glycidol methacrylate may offer some advantages compared to the use of methacrylic
anhydride as a reagent for derivatisation. Water-soluble polymers modified with glycidol
methacrylate may exhibit better hydrophilic properties because of the possibility of reaction
via epoxide ring opening.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15010093/s1; Table S1: Standard calibration data of
methacrylic acid.; Figure S1: Standard calibration curve of methacrylic acid; Table S2: Calculation of
amount of methacrylic acid in HECGMA samples.
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