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ABSTRACT 

 

The unprecedented progress in ensemble hydro-meteorological modelling and forecasting on a 

range of temporal and spatial scales, raises a variety of new challenges which formed the theme 

of the Joint Virtual Workshop, "Connecting global to local hydrological modelling and forecasting: 

challenges and scientific advances”. Held from 29 June to 1 July 2021, this workshop was co-

organized by the European Centre for Medium-Range Weather Forecasts (ECMWF), the 

Copernicus Emergency Management (CEMS) and Climate Change (C3S) Services, the 

Hydrological Ensemble Prediction EXperiment (HEPEX), and the Global Flood Partnership 

(GFP). This paper aims to summarize the state-of-the-art presented at the workshop and provide 

an early career perspective. Recent advances in hydrological modelling and forecasting, 

reflections on the use of forecasts for decision-making across scales, and means to minimise new 

barriers to communication in the virtual format are also discussed. Thematic foci of the workshop 

included hydrological model development and skill assessment, uncertainty communication, 

forecasts for early action, co-production of services and incorporation of local knowledge, Earth 

Observation, and data assimilation. Connecting hydrological services to societal needs and local 

decision-making through effective communication, capacity-building and co-production was 

identified as critical. Multidisciplinary collaborations emerged as crucial to effectively bring newly 

developed tools to practice.  

 

Keywords: (up to 8) hydrological modelling, forecasting, uncertainty, communication, co-

production, earth observation, Earth System, hydrological services 

 

1. Introduction 

Recent decades have seen unprecedented advances in Earth observation (EO), which has 

helped transition global-scale hydrology from a data-poor to a data-rich science (Di Baldassarre 

and Uhlenbrook, 2011; Bates 2012) and contributed to an enhanced understanding of the water 

cycle. The increased availability of satellite (e.g., EUMETSAT, SMOS, Sentinel-1, GPM, GRACE), 

ground-based remote sensing, weather reanalysis, or crowdsourced datasets, with focus on 

providing global information on the hydrological cycle variables, has given hydrology a more 
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global perspective (Kratzert et al., 2019). However, large-sample hydrology brings additional 

challenges such as processing, handling and storing large data volumes, integrating multiple data 

sources, quantifying uncertainties, and linking global observations to relevant local impacts 

(Nearing et al. 2021). These challenges are particularly important to hydrological modelling and 

forecasting, and the joint virtual workshop discussed in this paper was organised as an effort to 

jointly reflect on these challenges as a community. 

The workshop themed "Connecting global to local hydrological modelling and forecasting: 

challenges and scientific advances” (referred to hereafter as 'workshop') was co-organized by the 

European Centre for Medium-Range Weather Forecasts (ECMWF), the Copernicus Emergency 

Management (CEMS) and Climate Change (C3S) Services, the Hydrological Ensemble 

Prediction EXperiment (HEPEX) and the Global Flood Partnership (GFP) from 29 June to 1 July 

2021 with over one thousand attendees. Calling on the wider hydrological research sphere, it 

aimed to bring together a diverse global community (see Figure 1) of scientists, forecasters, 

disaster managers and stakeholders to discuss recent advances and ongoing water-related 

challenges. Covering broad aspects across the field from hydrological modelling and uncertainty 

communication to forecast-based early action, the workshop revealed the attempts of the 

community to break the boundaries of the state-of-the-art, and to make modelling and forecasting 

more accessible and useful locally. 

 

Figure 1: Map of the average global views of the workshop (over all three days of the workshop, 

29 June to 1 July 2021, where darker shading indicates higher views). Attendance was 

widespread, with 49 countries represented. 
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As the workshop was scheduled during the COVID-19 pandemic, the organisers were aware of 

increasing apathy towards online virtual events and the concept of ‘Zoom-fatigue’ (Shoshan and 

Wehrt, 2021). To combat the ongoing strains of virtual working, the organisers endeavoured to 

create a workshop that would be engaging and exciting for attendees, while also providing unique 

opportunities for networking and knowledge exchange (Keeley et al., 2021). These efforts resulted 

in a hybrid solution; a mix of live-streamed presentations hosted via Zoom, and interactive events 

hosted through the Gather.Town platform (Gather, 2021). Gather.Town is a customisable virtual 

space where participants can move an avatar around the virtual venue and interact with other 

participants nearby through video call. For this workshop, the Gather.Town space was designed 

to be a replica of the ECMWF headquarters in Reading, UK (see Figure 2). The solution proved 

to be a huge success, receiving praise from attendees who admired the ‘real’ human connection 

they were able to achieve on the virtual platform. The workshop also facilitated many interactive 

sessions, such as poster presentations, a Sci-Art (science and art) activity, and various 

information booths on the Climate Data Store (CDS), C3S and CEMS. Informal networking and 

social events were hosted at the virtual ECMWF in Gather.Town. This resulted in spontaneous 

and planned splinter meetings. For example, the Early Career HEPEX (EC-HEPEX) meet-up 

proved to be a popular opportunity to discuss early career perspectives on the state-of-the-art in 

hydrological forecasting. 
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Figure 2: Layout of ECMWF’s Gather.Town environment for the workshop. Participants joined the 

sessions to view posters, attend activities, and meet their peers to foster discussions on global 

hydrological forecasting and how it can be better linked to local scale needs. 

Another example of how a virtual environment does not have to be limiting is how the artwork 

“Hydrological Constellations” was created (Arnal, 2021). Art can be used not only to communicate 

science but also to inspire scientists (Halpine, 2008). Prior to the workshop, a short online 

questionnaire was sent to participants with questions related to their practice and perspectives on 

hydrological modelling and forecasting. The responses were used to create digital art pieces, 

transforming clusters of answers into night sky constellations (Figure 3). The artwork was 

displayed virtually, and participants could form ad-hoc groups, leading to spontaneous 

discussions. These discussions were then added to the digital artwork in the form of storylines 

behind each constellation/art piece. A full discussion of the art pieces is presented in Arnal (2021).  
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Figure 3: The final artwork piece, “Hydrological Constellations”, by Louise Arnal. This science and 

art piece is a metaphor for reading our destiny in the night sky constellations, and how far we 

have advanced as a community in terms of predicting future hydro-meteorological events. This 

art piece was created as part of the interactive virtual sessions of the workshop.  

This paper summarizes and reviews the achievements of the workshop. It places its focus on five 

themes at the forefront of global hydrological forecasting (see Figure 4), which encompass the 

wide variety of topics discussed during the workshop. The 90 posters presented at the workshop 

(see Appendix Table A1) were grouped in virtual rooms according to these themes, with authors 

giving a short pitch (2-minute duration) during the online Zoom sessions ahead of the interactive 

poster sessions in Gather.Town. The poster sessions emulated a conference environment and 

participants were able to move between posters, joining active conversations and discussions 

around the posters, closely emulating an in-person event.. 
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Figure 4: Schematic of the workshop’s topical organization. The five themes acted as the pillars 

of the workshop, while the sixth session, ‘Earth System Modelling’, was threaded throughout the 

five topics. 

 

In this paper, we present the wide range of contributions to the workshop as a microcosm of the 

work being done by the wider hydrological community globally. The following sections provide a 

review of the work presented under each of the five key themes (acknowledging that, in many 

cases, one presentation may contribute to multiple themes). The presentations provide an 

overview of the challenges and advances in global hydrological modelling and forecasting, and of 

the research and applications that endeavour to effectively connect these global efforts to local 
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scale decision-making. The sixth theme, ‘Earth System Modelling’, is woven throughout the five 

subsections. The final section of this paper concludes with a discussion focussing around two 

questions: 

1) How effective was the digital format in representing a broad view and bringing a global 

audience together? 

2) In which direction is the field of global to local hydrological forecasting moving as a 

whole? 

A full list of the contributions is provided in the Appendix (Table A1), detailing the authors of the 

work and indicating the citation codes used throughout this paper. These citation codes follow a 

format providing the initials of the first author followed by a letter indicating whether the work was 

presented as a keynote talk [Author Initials-K] or a poster [Author Initials-P] within square 

brackets. Additionally, where something asserted by a presenter is directly referenced, the citation 

follows the format Author et al. [Author Initials-K/P]. Published work is cited in the usual way. The 

presentations and posters can be viewed online at:  https://events.ecmwf.int/event/222/timetable/ 

2. Forecasting and uncertainty 

2.1 Predictability and uncertainty 

Hydrological forecasting assists many water-related applications in different horizons, helping 

society understand and mitigate the imminent threat posed by water cycle extremes (e.g., floods 

and droughts) and facilitating efficient water resources management. Uncertainty is an inherent 

part of forecasting and can, in hydrology, stem from meteorological forecasts and other input data, 

hydrological model structure and parameters, and the chaotic nature of our atmosphere (Lorenz, 

1969) and Earth system. Uncertainties propagate through the forecasting chain and can degrade 

forecast quality, potentially leading to inadequate decisions if not quantified correctly (Schaake et 

al., 2007; Thiboult et al., 2016). However, as Stephens [ES-K] highlighted, accurately quantifying 

uncertainty is not sufficient if there is not an appropriate understanding and communication of its 

implications (Demeritt et al., 2013). Therefore, forecast products should be accompanied by 

systematic analysis of forecast uncertainty (Boelee et al., 2019; Troin et al., 2021). This comprises 

of identification, classification, quantification, propagation, and communication of uncertainty to 

users.  
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Epistemic uncertainty (lack of knowledge) was the most commonly addressed type of uncertainty 

in the workshop presentations (Figure 5, Table A2). The workshop presented different 

approaches (e.g., machine learning techniques, multi-model studies, and comparison of 

deterministic and probabilistic models) to estimate predictive uncertainty, considering uncertainty 

sources either separately or holistically.  

Understanding the predictive uncertainty of streamflow forecasts, and the sources of forecast skill 

allows forecasts to be benchmarked ([IP-P; FM-P]; Girons Lopez et al. 2021). This information 

provides clues about where and when efforts should be made to improve forecast quality and 

make it valuable for decision-makers ([LA-P]; Pechlivanidis et al., 2020). Several presentations 

contributed to the understanding of streamflow predictability through a focus on the hydrological-

cycle processes [IP-P; LA-P; PD2-P]. Natural processes with high variability have lower 

predictability (larger uncertainty) and are challenging to simulate. For instance, precipitation has 

a higher variability than temperature (whose bias is relatively constant, Hagedorn et al., 2008) 

and was considered as one of the most difficult variables to predict in several studies [PD2-P; FJ-

P; AB1-P; JSL-P2]. Therefore, it is crucial to identify the relationship between forecast quality, 

catchment descriptors, and hydrological signatures [GM-P; MB1-P]. Seasonal forecasts are 

commonly less skillful in flashy basins or when characterising extreme events [TS-P; IP-PA; B1-

P]. In regions where hydrometeorological processes are less dominant (e.g., wet season in 

tropics) [HMS-P2] or are controlled by slow hydrological responses (e.g., snow and baseflow) 

[DR-P; TJ-P], forecasts were shown to have higher streamflow predictability. Therefore, given the 

spatial and temporal variability of streamflow predictability, it is challenging to identify a unique 

model or system that is applicable everywhere and at multiple temporal scales (see Sections 3 

and 5). Nevertheless, operational large-scale models (e.g., GIoFAS) attempt to provide globally 

consistent forecasts, which can be relevant as a tool for global and local decision-making (Section 

6). 
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Figure 5: The main types of uncertainty tackled at the workshop (aleatory, epistemic, 

semantic/linguistic) linked to the applied model (single model, single model + pre/post-processing, 

multi-model). A more detailed description of the types of uncertainty and the specific contributions 

linked to each type can be found in Table A2 in the Appendix.  

 

2.2 The role of automation in fitness-for-purpose modelling 

The usefulness of operational forecasting systems depends not only on the correct representation 

of hydrometeorological processes but also on cultural, social, and political factors (Pagano et al., 

2014). Consequently, the need for operational forecasting services may vary across countries 

and applications. In her keynote talk, Parker [WP-K] explained the advantages of adopting a 

fitness-for-purpose approach to evaluation. In this approach, what matters is not how close a 

model comes to perfectly representing a real system, but whether the model represents the 

system sufficiently well in those respects that are relevant to the purpose at hand, as well as 

whether it has other required pragmatic features, such as being understandable by users or 

computationally efficient (Parker, 2020). This tailored approach suggests building forecast 

systems that are adaptable to individual circumstances and flexible enough to continuously 
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incorporate newly developed techniques, especially for climate adaptation [AB2-P; LN-P; TB-P]. 

Moreover, a high degree of automation may enhance the fitness-for-purpose of a forecast system.  

One of the highlights of the advances presented at the workshop is that operational systems are 

undergoing the "human over-the-loop" approach [AW-P; BvO-P1], i.e., the forecaster is manually 

less involved in some of the more technical forecast stages. This has facilitated the transition from 

deterministic to ensemble approaches [GU-P; DH-P; CPH-P; HN-P; AW-P], since automation 

allows incorporating more sophisticated pre/post-processing (Section 2.3) and data assimilation 

techniques (Section 4), running multiple high spatial resolution models (section 5) and assisting 

in the verification process [BvO-P2]. Furthermore, automation for generating ensemble forecasts, 

whose dispersion comes from many sources of uncertainty, provides a more comprehensive 

estimate of uncertainty about future conditions, facilitating decision-making (Valdez et al., 2022; 

Sharma et al., 2019). For instance, ensemble systems for flood prediction [FF-P2; GU-P; RH-P; 

HH-P; HT-P; TS-P] were characterised by higher accuracy at longer lead times and by providing 

essential spatial information that deterministic approaches might not capture. However, it was 

also highlighted that combining deterministic and ensemble forecasts can provide complementary 

information that may facilitate both resilience to hydrological extremes and optimized flow 

management (e.g.: agricultural activities adaptation under water stress conditions, short-term 

maintenance operations) [LC-P; AB2-P]. 

A high level of automation not only allows forecast verification to assess the system's ability to 

capture uncertainty, but also allows the forecaster to focus on tasks where their expertise is 

paramount—for example, incorporating local knowledge and adapting the system to the user’s 

demands, interpreting model results, and communicating the forecasts with their uncertainties to 

users. 

2.3 Reducing uncertainty via hydrological pre-/post-processing 

Statistical pre- and post-processing techniques characterise the frequency distribution of past 

prediction errors and apply this information to correct model outputs (Li et al., 2017). Their primary 

goal is to reduce the biases resulting from partial quantification of hydrometeorological 

uncertainty. We can differentiate between pre-processing (to reduce meteorological input 

uncertainty) and post-processing (to reduce the hydrologic model output uncertainty). Pre/post-

processing can result in powerful tools for data scarce studies, especially in mountainous regions 

[DH-P; FJ-P], for complex systems with multiple applications [HMS-P1; LC-P; CPH-P], for 
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monitoring urban flooding and droughts [AG-P; HN-P], for reservoir operation [WG-P], and for 

flood risk assessment [AB1-P]. However, their performance is greatly dependent on data 

availability and hence can be constrained by limited data (in general observational data) for 

training the processing techniques [LF-P], especially when extreme events are of interest ([TK-

P]; Hamill et al., 2015).  

Presentations on the advances in pre-processing techniques were centred around increasing the 

skill of precipitation predictions (especially of intense and rare events) at subseasonal and 

seasonal scales [HN-P; YS-P; QY-P]. The main goals of the techniques were to reduce the 

number of model parameters to make them workable with short-term Numerical Weather 

Prediction (NWP) datasets and to preserve statistically significant observed trends for seasonal 

forecasts coming from Global Climate Models (GCMs). Concerning post-processing, new 

techniques were introduced for bias correction [JSL-P1] and error modelling [JB-P]. They provided 

local corrections of global hydrological models and produced statistically reliable long-range 

(annual) forecasts for ephemeral rivers [JB-P].  

In conclusion, the improvements brought by pre/post-processing techniques were conditioned on 

many factors: the catchments’ characteristics ([GM-P]; Matthews et al., 2022), the 

hydrometeorological variable [AC-P], and the method implemented [FJ-P]. In fact, many 

presentations suggested that selecting suitable methods is rather application-dependent [WP-K; 

FT-P; WG-P; AB1-P]. In some cases, applying both pre- and post-processing techniques is not 

feasible in an operational context due to resource limitations; consequently, the selection of only 

one technique is not trivial (Tiwari et al., 2021; Valdez et al., 2022). Matthews et al. [GM-P] 

suggested that, at the medium-range time scale, it should be preferred to correct hydrological 

model errors rather than meteorological forcing errors, if a choice had to be made . However, 

other studies highlighted that seasonal streamflow forecast skill can be improved and extended 

by using pre-processing techniques, as climatology and precipitation biases can limit streamflow 

predictability [LA-P; IP-P; KB2-P]. Bogner et al. (2022) showed that using both pre- and post-

processing techniques can extend the skill of streamflow forecasts (below, above, and under 

normal conditions) up to one week ahead, when compared to using pre-processing alone [KB2-

P]. 
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2.4 Effective uncertainty communication 

Effective communication of forecast uncertainty is needed in order to translate the technical 

improvements of the Hydrologic Ensemble Forecasting Systems (HEFS) into practical benefits 

([ES-K; WP-K]; Spiegelhalter et al., 2017). The complexity lies in delivering user-specific 

information since users typically differ in their background and decision processes, thus requiring 

different types and amounts of information for decision-making [AG-P; ACER-P; AB2-P].  

Uncertainty communication is effective when the information provided to users is simple, clear, 

relevant, and trustworthy (Thielen and Bruen, 2019). Interpreting unnecessary and complex 

information can be time-consuming, posing an obstacle when a quick response is required. 

Additionally, forecast literacy varies since different flood decision makers (e.g. farmers, local 

government officers, civil protection agents) will have different experience and exposure to 

forecasts. Therefore, products that simplify and summarise information may be more appropriate 

and preferred. Many interactive and user-tailored platforms were presented at the workshop. 

Some of them allow the user to choose between different forecast products [DDB-P; CP-P], and 

others provide quantitative forecasts with either verification [BvO-P2] or uncertainty classification 

[RH-P], preparing probabilistic forecasts for operational use. Other platforms are designed to train 

and educate users, representing a valuable tool for operators who lack experience with 

probabilistic forecasts [SH-P; LN-P]. 

The evaluation metrics and the visualisations used play an essential role in this aspect since the 

way in which the information is presented affects the perception of uncertainty ([ES-K]; Demeritt 

et al., 2019; Pappenberger et al., 2013). The choice of metrics used in emergency response and 

hazard warning can influence the decisions made [JSL-P1; DH-P; HH-P]. It is also important to 

use metrics that are appropriate to specific situations (e.g., evaluating event-based flash-flood 

and flood extent maps) [DPR-P; HHP; RH-P] and translating forecast improvement into monetary 

benefits ([HMS-P1; QJW-P; KH-P]; Cloke et al., 2017). However, when emergency actions involve 

the population's cooperation (e.g., evacuations),  how uncertainty is addressed is more important 

than its visualisation [ES-K],  since not the entire population has access to a web forecast or TV 

(e.g.: remote areas or rural communities with only radio communication systems). 

Creating a system in collaboration with end-users can narrow the forecast uncertainty and 

improve decision-making [HMS-P1; QJW-P; KH-P]. This exchange allows forecasters to know 

what information is relevant to users (e.g., data dimensionality, the amount of detail, etc.) and 
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how to represent it to reflect the scientific confidence in the prediction without ambiguity (Stephens 

et al., 2012). Co-production seems to be pivotal to make the forecast quality-value relationship 

more direct and to tailor uncertainty communication to the decision needs (Barnhart et al., 2018). 

 

3. Co-production of hydrological services and incorporation of local 

knowledge 

3.1 The hydrological services value chain 

At the local level, decisions are made based on multiple knowledge sources (e.g., forecasts, 

monitoring information, local experiences and knowledge, and environmental signs). In his 

keynote, Werner [MW-K] argued that building an effective warning service, and providing 

data/information that is actually used, relies on in-depth understanding of users’ knowledge, 

perceptions, motivations to act, and the options available to them.  

 

The hydrological (climate) services value chain (Figure 6) shows the multiple actors that are 

involved in the service provision, from (global) data providers to local users. At each step, value 

is added through contextualising and tailoring data provided, which is purported to lead to better 

decisions for hazards, water resources, and sectoral information provision (see Section 6 for 

further discussion on applications and decision-making). The uptake of forecast information and 

warnings can, however, be limited by challenges in translating scientific information into 

actionable information that matches the local context and experience of intended users. Effective 

communication through translators of scientific information (service purveyors) is then a key 

element of the value chain. Such human-centred services, i.e. communicating science-based 

warnings in the (visual) language that people speak (e.g., using environmental cues, signs that 

people see outside of their windows) could lead to more people taking action [MW-K], and ongoing 

research is exploring this, through the concept of Living Labs (Veeckman and Temmerman, 2021) 

and co-production of research and climate services with the decision-makers and communities 

using them (Contreras et al., 2020). This advances the current state-of-the-art to user-centred 

services that are both useful and usable (Vincent et al., 2018), and requires the integration of the 

knowledge and needs of the users in a reverse direction (Figure 6), ultimately all the way through 

to the providers of climate and hydrological data.  
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Figure 6: Workflow of the “Climate Services Value Chain”, from Werner’s keynote presentation 

[MW-K] and at the core of the EU-H2020 project I-CISK (Innovating Climate services through 

Integrating Scientific and local Knowledge; https://icisk.eu). 

 

Golding et al. (2019) argue that focussing on the entire weather-related hazard warning chain, 

and on its connectivity, is key towards implementing more effective warning systems. The chain 

includes sensor technology, atmospheric, environmental and socio-economic modelling, 

communication science and behavioural psychology. To develop an evidence-based bi-

directional value-add decision-making chain that is fully integrated, multi-disciplinary research and 

trans-disciplinary research, tools, and data are necessary [MW-K]. This includes science, focus 

groups, stakeholder interviews, and creative methods such as serious games and storytelling 

workshops (Van Loon et al., 2020, Crochemore et al., 2021). These interdisciplinary tools can 

help establish jargon-free communication and effectively contribute to building community 

resilience to hazards, alongside more traditional methods (Van Loon et al., 2020). 

 

A relevant example is the use of seasonal forecasts and drought warnings by farmers in Malawi 

([MW-K]; Calvel et al., 2020; Mittal et al., 2020; Streefkerk et al., 2022). Through focus group 

discussions, researchers developed an understanding of the seasonal calendar of local farmers’ 

activities. They show that seasonal forecasts are useful to local farmers when the information 

these forecasts contain focus on environmental cues the farmers recognise locally, such as wind 

and temperature patterns. Another example is the flash flood warning research by Bucherie et al. 
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(2022). Through community engagement (i.e., community walks through the local area, drawing 

exercises, and focus group discussions), they demonstrate that local communities have a good 

understanding of where flash floods happen and their triggers, and that there is a complementarity 

between (global) scientific datasets and local knowledge that should be harnessed. 

 

The following subsections give an overview of the various forms that co-production and 

incorporating local knowledge and information can take, exemplified by case studies presented 

during the workshop. 

3.2 Service co-development 

As technical and scientific capabilities evolve, there are a growing number of large-domain 

forecasting systems available (e.g., the Global Flood Awareness System [GloFAS], the Global 

Flood Forecasting Information System [GLOFFIS], World-wide Hydrological Predictions for the 

Environment [HYPE] and the C3S hydrological prediction system; Emerton et al., 2016). Large-

domain systems can provide information where there is limited existing capacity locally. 

Additionally, international centres have the computational power and resources to provide 

ensemble forecasts for longer lead times, as well as reforecast and reanalysis datasets to support 

forecast evaluation. However, national/local forecasting agencies have a better understanding of 

the local context, the mandates to issue warnings, and links with other national and local agencies 

[ES-K]. In this context, global-local collaboration is vital. A successful example of a global-national 

collaboration is between GloFAS and the Bangladesh Flood Forecasting and Warning Centre 

(FFWC) to develop extended-range forecasting capacity on the Brahmaputra River. In a two-step 

process, 15-day GloFAS forecasts are used for pre-activation and FFWC forecasts are used for 

decision-making on shorter lead times of up to 3 days [ES-K]. 

 

To ensure that forecast products are useful locally, their design should be informed by users’ 

needs and decision-making context, through regular consultations with users during the product 

design phase [CB-P; FW-P; WP-K]. Additionally, Baugh et al. [CB-P] argued that product 

dissemination should be user-tailored so that the most adequate dissemination method (e.g., 

operational web platform, direct integration into the users’ systems) is used. To enhance users’ 

uptake of co-developed products, forecasting centres should complement their operational 

systems with tools such as user guides, wikis, tutorials, FAQs, support portals, facts sheets, 

infographics, and visuals of forecast skill assessment [SH-P; LS-P]. Users with more resources 



18 

 

may wish to actively participate in the service design. This can be enabled by sharing tools and 

methods to allow for easy experimentation and integration of developments by local users [BvO-

P1]. 

 

Predicting usable information (e.g., available water for consumptive use) is a combination of: (1) 

current information (e.g., water available in storage), (2) operational information (e.g., annual 

releases by a reservoir company), and (3) forecasts (e.g., seasonal forecast of inflows into 

storage) [MW-K]. While many operational systems provide (1) and (3), operational information (2) 

is not often incorporated. Several presentations demonstrated the added value of incorporating 

water management requirements into the development of a forecasting system:  

● The use of water supply-demand curves for water allocation in the Murray Darling Basin 

(Australia) [KH-P]. 

● The prediction of inflows into storage to the end of season using seasonal forecasts to 

support decision-making on available water for consumptive use in the Murrumbidgee 

irrigation District, also in the Murray-Darling basin ([MW-K], Kaune et al., 2020) 

● The development of a large-domain modelling framework for ensemble forecasting from 

which to tailor local to regional water management applications and develop risk-based 

strategies for operating reservoir systems in the USA [AW-P]. 

● An assessment of the economic impacts of the implementation of forecast-based 

allocation rules on the Jucar River system (Spain), using agricultural and hydropower 

impact measures and environmental status metrics [HMS-P1].  

● The promotion of the integrated management of droughts and floods by bringing together 

various actors (e.g., water agencies, hydrometeorological institutes, energy and transport 

sectors, civil protection, water users, early warning institutes) in the Madeira River Crisis 

Room [MdM-P]. This was established in 2015 under the coordination of the Brazilian 

Water Agency (ANA), in the aftermath of the 2014 Madeira River Basin summer floods. 

These presentations demonstrated the potential for improving forecasts by combining 

hydroclimatic forecasting expertise with local system knowledge. They also highlighted that 

forecasts are valuable and can lead to economic benefits (Cassagnole et al., 2021), but that there 

is still room for cooperation between water sectors. 

 

Additionally to incorporating local knowledge, local data is a key element of larger-domain hydro-

meteorological systems, yet in many cases there are challenges due to confidentiality, lack of 

standardisation and quality control. Subsequent sections discuss the importance of incorporating 
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local data through, for example, data assimilation (Section 4), model calibration and 

regionalization approaches to upscale local information (Section 5.2). 

3.3 Application and locally relevant evaluation 

There are different perspectives when examining forecast quality (Troin et al., 2021; Anctil and 

Ramos, 2018; Werner et al., 2018). According to Werner [MW-K] and Stephens [ES-K], forecast 

evaluation should be user-defined to demonstrate applicability of the forecasts, based on 

variables of interest and for spatial and temporal scales of interest to users. Several studies 

presented evaluation results for and/or in collaboration with a specific user and are described in 

more detail in Section 6. In order to facilitate decision-making and forecast evaluation locally, 

more international and interdisciplinary data sharing is essential (e.g., through the Copernicus 

Climate Data Store, CDS) [SH-P].  

                                                                                                                                                                                            

Local hydro-climatic conditions are important drivers of forecast performance, as shown by 

Pechlivanidis et al. [IP-P], discussed in Section 2.1. While the availability of global products is vital 

in data-scarce regions, their quality varies greatly locally. It is therefore important to assess their 

suitability over regions of interests (relevant presentations include [MW-P; MB1-P]). Bernhofen et 

al. [MB1-P] assessed the role of global datasets for flood risk management at national and 

catchment scales. They showed that national flood risk estimates calculated using different global 

datasets vary significantly, and encouraged the use of a combination of multiple global datasets 

to report flood risk in order to reduce the uncertainty associated with using a single dataset ([MB1-

P]; Bernhofen et al., 2021, 2022). In addition, global datasets should be benchmarked against 

each other to better understand sources of model bias and uncertainties, and to support their 

informed application by end-users (Hoch and Trigg, 2019). 

 

Several authors compared global with catchment-based models/systems for water sector 

applications in various parts of the world [DM2-P; DR-P; FF-P1]. In their comparison of GloFAS 

and a catchment-based model for flood forecasting in Uganda, Mulangwa et al. [DM2-P] showed 

that the catchment-based model works better overall for smaller basins, while GloFAS performs 

better in larger basins (see Section 5.4.2 for more information). This demonstrates that GloFAS 

can be used as an interim solution for countries without local forecasts, though only for basins 

above a certain size. Similarly, Robertson et al. [DR-P] compared catchment-scale forecasts from 

the Bureau of Meteorology against GloFAS seasonal forecasts for catchments across Australia. 

They showed that catchment-based forecasts tend to be more skillful and reliable for their specific 



20 

 

application, while global forecasts are more skilful when hydrological processes are less important 

(e.g., wet season in the tropics), and are better at discriminating high and low flow seasons in 

comparison to actual flow volumes. 

 

4. Earth Observation and data assimilation 

 

Earth Observation (EO) provides scale-relevant measurements of hydrological variables, 

enabling streamflow modelling and forecasting even in data scarce regions [PD1-P]. Connecting 

EO-based temporally discrete snapshots of dynamic processes, however, requires assimilation 

into process-based models to characterise their temporal evolution (See Figure 7). Hydrological 

data assimilation (DA) is rapidly evolving to match the unprecedented progress in observation 

capabilities. It has been frequently applied for state estimation, dynamic parameter estimation, 

closing the water balance, and uncertainty estimation. The rise of machine learning (ML), big EO 

data, and cloud computing, has unlocked new opportunities for the development of next 

generation hybrid model-data integration methods (Geer, 2021). This section reviews the state-

of-the-art in the field of EO-DA presented at the workshop.  
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Figure 7: Schematic showing the role of Earth Observations and data assimilation in the context 

of modelling and ensemble forecasting. 

4.1 Advances in Earth Observations of the hydrosphere 

Schumann [GS-K] introduced the state-of-the-art in the field of EO and DA, highlighting the 

potential of impact-level forecasting using emerging technologies in EO and big data processing. 

Satellite imagery is constantly improving in terms of spatial and temporal resolutions, making EO 

more useful for local scale applications in hydrology. Rainfall measurement missions on board 

nanosatellites have recently been launched, leveraging novel sensor technology, which can 

improve weather forecasts through model-data-integration (Jales et al., 2020). Recent advances 

in ML have made on-board EO-based flood mapping (Mateo-Garcia et al., 2021), prediction of 

physically consistent flood observations (Lütjens et al. 2021), and real-time water level forecasting 

(Google HydroNets) operationally feasible, as shown in Shalev et al. ([GS-P]; Nevo et al., 2022). 

Lack of appropriate training data for ML and the incorporation of physical principles within ML 

networks were identified as open challenges, requiring routine evaluation, diagnosis, and domain-

knowledge integration to deliver more skillful predictions globally. Furthermore, the large 

quantities of training data necessary for Deep Learning (DL) could additionally be sourced from 

smartphone camera pictures and videos, or from social media, along with leveraging generative 

models, such as Generalised Adversarial Networks or GANs, to produce synthetic data for data-

scarce regions (Bentivoglio et al., 2022). Moreover, Physics Informed Neural Networks (PINNs) 

also hold promise for flood modelling in combination with methods from deep Gaussian processes 

or Bayesian neural networks to evaluate model and data uncertainties through probabilistic 

hazard mapping (Mahesh et al., 2022). 

 

Jurlina et al. [TJ-P] used such domain-knowledge integration, where a Random Forest classifier 

was trained to predict climatological river flow percentiles. They used a variety of static and 

dynamic satellite-based inputs, with surface soil moisture (SSM) emerging as the most important 

feature for shorter lead times. Satellite remote sensing in combination with ML was also used for 

water budgeting using a variety of inputs (Adedeji et al., 2020), with geology and rainfall emerging 

as the dominant controls on groundwater recharge and distribution patterns (Orimoloye et al., 

2021). EO satellites also enable large-scale observation of evapotranspiration (ET), which is 

important for closing the water balance in large basins and is challenging to measure in the field. 

Chen et al. (2021) showcased a new high-resolution multi-source merged satellite ET dataset, 
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prepared by modifying the surface energy balance method, which outperformed existing datasets 

[XC-P].  

 

EO also provides an invaluable resource for the spatial error assessment of ensemble forecasts, 

as shown by Hooker et al. [HH-P]. The authors used a normalised spatial map comparison metric 

to assess the spatial skill of GloFAS forecasts on the Brahmaputra river, providing a 

comprehensive measure of uncertainty at various scales (Hooker et al., 2022a). The Fraction Skill 

Score, a domain averaged score, was then computed to determine the scale at which the forecast 

becomes useful, which could help in presenting model outcomes to end-users, or for model 

development and data assimilation (Hooker et al., 2022b). Such investigations will soon be 

supported by the CEMS Global Flood Monitoring (GFM; CEMS, 2021) product, as demonstrated 

by Hostache [RH-P], which provides near-real time and historical flood maps based on Sentinel-

1 acquisitions. Unrestricted access to high accuracy SAR-based flood extent maps alongside 

estimates of uncertainty will open up new opportunities for model error diagnosis, forecast 

evaluation, and data assimilation. Previously, historical flood risk and discharge were calculated 

using much coarser optical (MODIS) and passive microwave data (AMSR-E/2, TRMM, GPM) by 

the Dartmouth Flood Observatory, which allowed the assessment of flood exposure over several 

decades (e.g., Tellman et al., 2021). Kettner et al. [AK-P] showed that the addition of high 

resolution SAR and optical data, provided by the Copernicus Sentinel satellites, has further 

facilitated examining the relationship between flood extents for flow magnitudes corresponding to 

different return periods.  

 

Despite significant advances in SAR-based flood detection algorithms, the problem of mapping 

inundation dynamics in urban areas, where most people and assets are located, still remains 

challenging due to complex scattering mechanisms (Shen et al., 2019). For instance, the GFM 

product masks these areas out due to the lack of appropriate globally-applicable algorithms to 

detect urban inundation, as discussed in [RH-P]. However, [DM-P] developed a new method for 

detecting flooding in dense urban areas, using globally available datasets including Sentinel-1 

(S1) SAR data, the WorldDEM Digital Surface Model (DSM) and the World Settlement Footprint 

data, which could be promising for applications at local scales. The algorithm based on change 

detection uses pre- and post-flood S1 images to detect flooding in the vicinity of walls aligned 

within 30° of the satellite track. More details on the method can be found in Mason et al. (2021). 

While this approach resulted in useful flood extent detection in urban areas, the estimation of the 
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corresponding inundation depths proved to be non-trivial, especially when street widths equalled 

or exceeded the DSM grid resolution, implying the need for higher resolution datasets. 

 

4.2 Optimising operational forecasting using EO-DA 

It is now well understood that assimilation of satellite-based observations can help to reduce 

forecast spread and uncertainty when utilising ensemble forecasts (see extensive discussions in 

Lahoz et al., 2010; Beven 2009; Cloke & Pappenberger 2009; Walker & Houser 2005). A prime 

example of progress in the field is the European Commission’s DestinE programme presented in 

a keynote by Sandu. This programme aims to develop a highly precise digital model of the Earth 

(Digital Twin) to monitor and simulate natural and human activity [IS-K]. The possibility of a real-

time Earth-system digital twin, which optimally combines simulations and near-real-time 

observations to monitor the evolution of the Earth system, was only made possible through 

advances in DA primarily pioneered by the field of meteorology (Bauer et al., 2021). The transition 

of hydraulic flood modelling from a data-poor to a data-rich science is relatively more recent 

compared to meteorology, and thus the development of the first flood DA algorithms has only 

emerged in the last decade. Dasgupta et al. in [AD-P] proposed the use of mutual information as 

a metric for the assimilation of EO-based flood extents into hydraulic models, and investigated 

the feasibility of targeted observation design for flood observations. The assimilation was shown 

to be keenly sensitive towards coverage with respect to reach morphology and timing relative to 

the flood peak, while the assimilation of one optimal image proved better than the assimilation of 

multiple suboptimal images.  

 

In a similar effort to optimize EO-DA for operational forecasting in catchments facing persistent 

freshwater scarcity, Erlingis et al. [JE-P] proposed a novel land data assimilation system for 

drought monitoring in the Western United States. The assimilation of Leaf Area Index (LAI) was 

proposed to constrain the dynamic vegetation model within Noah-MP, which led to improved 

estimates of ET over agricultural regions, in addition to capturing drought severity. Similarly, the 

Australian Bureau of Meteorology assimilates SSM to forecast the surface water balance in 

Australia at a variety of spatiotemporal scales [CPH-P]. Comprehensive forecast evaluations 

showed positive skill scores for SSM and ET predictions with up to 2 months lead time and for 

runoff with 1 month lead time, resulting from the SSM assimilation. In Germany, the Terrestrial 

Systems Modelling Platform developed by the Forschungszentrum Jülich [HJHF-P] simulates the 
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coupled terrestrial water and energy cycles using data assimilation of multi-source observations, 

through a scalable Parallel Data Assimilation Framework, allowing predictions across scales for 

different applications. 

 

Despite the widespread application of SSM for data assimilation to improve the estimation and 

forecast of a variety of hydrometeorological variables, the resolution requirements cannot be met 

due to scale limitations in passive microwave remote sensing. Given the sensitivity of active 

microwave sensors towards SSM and vegetation water content, SAR backscatter provides a high-

resolution alternative for assimilation into high-resolution Land Surface Models (LSMs) to improve 

state estimation. This novel technique was used for Sentinel-1 (at 1km resolution) by Bechtold et 

al. [MB2-P], and ASCAT (at 25km resolution) backscatter assimilation by Baguis et al. [PB-P]. 

Assimilation requires designing an observation operator which maps the simulated state variables 

(such as SSM and LAI) to the observation space (backscatter predictions). The Water Cloud 

Model was used as the observation operator by these studies, to simulate the backscatter as a 

function of the vegetation and soil backscatter. The backscatter assimilation resulted in both 

positive and negative impacts on forecast skill, especially deteriorating the forecast in areas where 

the LSM simulated erroneous LAI values. However, the approach holds promise for the future by 

providing methods to integrate high-resolution observations into LSMs. High-resolution 

observations of SSM and rainfall have long been identified as gaps in generating more accurate 

hydrological predictions (e.g., Alfieri et al., 2022), and the EO community is constantly working on 

improving the space-time granularity of satellite hydrology datasets (e.g., Filippucci et al., 2022; 

Peng et al., 2021a, Peng et al., 2021b). The development of such high-resolution backscatter 

based assimilation methods is necessary to ensure the quick uptake of these newly produced 

datasets. 

 

For basins where snowmelt processes dominate runoff, operational forecasting presents 

substantial challenges due to the complex catchment response towards snow cover variability. 

To optimize operational streamflow forecasting for Quebec, Canada, Odry et al. [JO-P] proposed 

Bayesian multi-model forecast merging, but limited sensitivity to the prior distribution was 

observed and large differences in the skill of different models resulted in insignificant overall 

improvements from the merging. Yamada et al. [MY-P] showed improvements in water level 

prediction accuracy by incorporating river cross section data into a high-resolution rainfall-runoff-

inundation model for Japan. MODIS snow products were assimilated into the conceptual 

hydrological model HBV by Uysal et al. [GU-P] to improve forecasts and increase prediction 
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horizons for the snow dominated Karasu Basin in Turkey. Similarly, Casson et al. [DC-P] 

assimilated in situ and remotely sensed observations of fractional snow cover and albedo using 

perturbed observation Particle and Ensemble Kalman Filters in the North American Rocky 

Mountains. For Germany, Weier et al. [JW-P] showcased the soon-to-be operational HydPy 

unified modelling and data assimilation framework, based on OpenDA and Python, which is 

capable of assimilating multi-source observations and combines several conceptual models. 

 

Altimetry assimilation for streamflow forecasting is set to be revolutionised by the imminent launch 

of the Surface Water and Ocean Topography (SWOT) satellite mission, which will provide 2D 

water surface elevation grids for all channels across the world >100m in width. Pedinotti et al. 

[VP-P] demonstrated with an application to the Niger and the Congo river basins, the comparative 

performance assessment of water levels derived from SWOT discharge and water levels from the 

HydroWeb database, which contains water levels time series of large rivers based on altimetry 

data. The potential of DA to consistently improve simulated discharge estimates was 

demonstrated, and observation localization in space and time was shown to be critical for SWOT 

data.  

4.3 Limits to predictability of hydrological variables 

Despite the best attempts to capture scale-dependent dynamic process variability in the current 

generation of hydrological models, the intrinsic uncertainty of natural processes nevertheless 

limits predictability. Dimitriadis et al. (2021; [PD2-P]) measured the scale-dependent variability of 

hydrological processes and found that fractal behaviour is exhibited at small-intermittent scales 

and long-range dependence is evident at large scales, which indicates low predictability. 

However, attempts to leverage advances in EO and ML to improve hydrologic predictability 

persist. For instance, Keppler et al. [RK-P] used a Convolutional Long Short Term Memory 

network (ConvLSTM) to assimilate streamflow into a distributed hydrological model. While the 

ConvLSTM improved the forecasts in the absence of input errors, it degraded the forecasts 

otherwise, due to the abridged input sequence and because the model could not capture long-

term soil moisture and snow pack variability. Musuuza et al. [JLM-P] found that the assimilation 

of a variety of EO-based snow cover and ET products, along with in situ flow measurements, was 

unable to increase forecast skill during spring and summer due to incomplete snowmelt 

information and large flow errors. Bahramian et al. [KB1-P] similarly used data assimilation to 

improve SSM forecasts and found that the forecast improvements persisted for a maximum of 9 
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days for SSM and upto 16 weeks for the root zone soil moisture, but did not extend to seasonal 

scales.    

 

5. Improving hydrological simulations 

A key tool for hydrologists is the hydrological model itself. However, no model perfectly replicates 

reality due to limited knowledge of the water cycles processes, and limited computational and 

data resources. The workshop presented a snapshot of the advances made and challenges faced 

in developing hydrological models. 

5.1 Physically-based model development 

Dynamical models are based on the physical laws dictating catchment processes. The increasing 

availability of data and computational resources has allowed for more complex models (Bates, 

2021). Model choice should depend on several factors including intended use, spatiotemporal 

scale, and available computational resources (Horton et al., 2021; Pechlivanidis et al., 2011). 

Hence, several hydrological models were used in the presented studies. However, two separate 

but interlinked pathways for improving physically based model simulations were identified: 

increasing resolution and model coupling. 

Model resolution has been increasing over the past several decades (Wood et al., 2011; Bierkens 

et al., 2015; Melsen et al., 2016; Hoch et al., 2022), largely facilitated by increases in 

computational resources (Bauer et al., 2021) and large observational datasets (Wilby, 2019; 

Beven et al., 2014). Overall, the skill of simulations has improved as a result (Habibi et al., 2019; 

Beven et al., 2014; Magnusson and Källén, 2013). In her keynote, Sandu [IS-K] outlined three 

key benefits of high-resolution (or hyper-resolution, ≲1 km) modelling: 1) more processes are 

resolved at these scales allowing for more realistic simulations, since some processes no longer 

need to be represented via parameterisation schemes (Roberts et al., 2018); 2) model resolution 

will be closer to the scale of observations, which can be both challenging and beneficial for 



27 

 

processes such as data assimilation and verification (Erlingis et al., 2021; Fiddes et al., 2019; 

Crocker et al., 2020); and 3) simulations may be more useful for local decision making on a day 

to day basis (Habibi et al., 2019). Several presenters showed results from high resolution models 

including Munier et al [SM-P], who presented the improved performance of a river routing model 

after an increase in resolution from 1/2˚ to 1/12˚. Belleflamme et al [AB-P] showed the skill of 10-

day and seasonal drought forecasts at a resolution of 600 m for use in the agricultural sector. 

Flash flood modelling [CB-P, MY-P, TS-P] is also a key area that benefits from (and requires) high 

resolution models due to the ability to resolve convection and capture the variability in soil 

moisture (Loval et al., 2019; Hapuarachchi et al., 2011). Sayama et al. [TS-P] showed that a 150 

m resolution national rainfall-runoff model was able to predict two flash flood events reasonably 

well, although with large uncertainty in some locations due to the 5 km meteorological forecast 

being unable to confidently predict the location of the storm (Sayama et al., 2020). 

Sandu [IS-K] noted how high-resolution models made scaling effects and computational efficiency 

key considerations for current and future projects ([GS-P], Bauer et al., 2021; Donahue et al., 

2020; Yepes-Arbós et al., 2022). However, as also noted by Sandu [IS-K], higher resolution may 

not reduce uncertainty (Wedi, 2014; Beven et al., 2014; Costanza and Maxwell, 1994). On the 

other hand, technological advancements could allow for larger ensemble forecasting (Wu et al., 

2020; Cloke and Pappenberger., 2009), providing valuable information regarding prediction 

uncertainty (Section 2). Thus, it may be best to focus on increasing ensemble size rather than 

model resolution in certain applications ([PZ-P]; Scaife et al., 2019). 

Due to the complexity of the Earth system, the coupling of models that replicate different 

components of the water cycle is often required to make realistic simulations (Ning et al., 2019; 

Xu et al., 2005). Models can be coupled sequentially (one-way coupling) with the output of one 

model forcing a second model. For example, the outputs from NWP systems are often (both in 

practice and in many of the workshop presentations) used to drive hydrological models, allowing 

the forecast horizon to be extended (Bartholmes and Todini, 2005; Cloke and Pappenberger, 

2009; Emerton et al., 2016). User-specific models can be coupled to hydrological models in this 

way to make bespoke forecasts. For example, De Vera et al [ADV-P] coupled a rainfall-runoff 
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model (GR4J), a routing model (Muskingum), and an electric system model (SimSEE) to produce 

7-day forecasts of the optimal dispatch of the G. Terra reservoir (De Vera et al., 2021). 

Alternatively, models can be fully coupled (two-way coupling) in an ESM approach, where all 

relevant aspects of the Earth system including atmospheric, ocean (including waves and sea ice), 

and terrestrial energy, water and biogeochemical dynamics are interactively coupled (Clark et al., 

2015; Harrigan et al., 2020; Steffen et al., 2020). Ideally, human activities are also included in 

ESMs (Müller-Hansen et al., 2017; Pokhrel et al., 2016). Several presented studies focused on 

the implementation and evaluation of these fully coupled systems. These highlighted the 

increasing prominence of Earth system modelling at global ([LS-P; IS-K]; Flato, 2011; Prinn, 2013) 

and regional ([BN-P; HL-P; HJHF-P; CPH-P]; Giorgi and Gao, 2018; Elizalde et al., 2010) scales. 

For example, DestinE’s “Digital Twin” (Section 4.2) will combine all parts of the natural 

environment as well as related human activities in an attempt to capture the mutual feedback 

processes involved, and potentially to improve simulations [IS-K]. Additionally, it is expected that 

the hydrological components will be fully coupled to the atmospheric components, made feasible 

by the high resolution of the models. This will allow, for example, large rivers to impact  the surface 

meteorology by feedback mechanisms([IS-K]; Boussetta et al., 2021, Ning et al., 2019). 

Hendricks-Franssen et al [HJHF-P] presented case studies of the coupled Terrestrial Systems 

Modelling Platform, which couples the atmospheric ICON model with the CLM land surface model, 

and the subsurface hydrological model ParFlow. By modelling the coupled terrestrial water and 

energy cycles, the system is able to predict crop yield, soil moisture, and flash floods with a higher 

accuracy. Lewis [HL-P] coupled the UK Met Office Unified Model with the land-surface model 

JULES, and with ocean and marine ecosystem models (NEMO, WWIII, and ERSEM). This 

resulted in an improved simulation of the vertical salinity and temperature profiles in near-coastal 

waters compared to climatology.  

Coupled models are computationally expensive and their verification is complex (Grimaldi et al., 

2019). Additionally, the optimal coupling method is not obvious particularly given the varying 

spatiotemporal scales at which different processes occur (Gentine et al., 2012). Several 

frameworks for coupling models have been developed in recent years (e.g., Hoch et al., 2019). 

Hendricks-Franssen et al [HF-P] used OASIS-MCT, a model coupling library (Valcke, 2013), in 

their study allowing them to model all components of the terrestrial system and include a higher 

resolution sub-domain. Alternatively, Eilander et al [DE-P] presented a new framework, HydroMT, 

for coupled modelling of compound flood simulations (Eilander et al., 2022). This open-access 
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framework allows models to be set-up automatically given the appropriate datasets (Eilander & 

Boisgontier, 2022).  

5.2 Uncertainty in dynamical models  

In this section, we discuss model structure and model parameter uncertainty (Moges et al., 2021). 

Model structure uncertainty may be reduced by increased fidelity of process representation 

(Section 5.1); however, this may not produce more useful forecasts (Section 2.1). An alternative 

method, used in several of the presented studies [LS-P; GU-P; FW-P; LN-P; CP-P], is to use a 

multi-model ensemble (Troin et al., 2021; Dion et al., 2021). In addition to improved forecasts 

(e.g. [LN-P]), multi-model systems offer opportunities for co-production leading to more usable 

forecasts ([FW-P], Section 3). However, construction of a multi-model system has many 

challenges, including the choice of models, communication (Section 2.3) and use of the output 

(Sections 3.2 and 6.1). The combination of multi-model forecasts is not trivial and is an active 

area of research (Wan et al., 2021). 

 

Model calibration is used to reduce model parameter uncertainty (Moges et al., 2021; [TBTP-P]). 

Data scarcity hinders model calibration ([PD1-P]; Beven and Cloke, 2012) at the global [SG-P], 

continental [CM-P], and catchment scales [DH-P; MW-P]. One approach to overcome data 

scarcity is the use of alternative data sources, such as reanalysis [MW-P; DH-P], to calibrate the 

model of interest. However, Wanzala et al. [MW-P] showed that different reanalysis datasets 

resulted in large variation in predictive skill and affected the robustness of the estimated 

parameters. Alternatively, increasing EO data (Section 4) could provide the necessary 

observations for data sparse regions [GS-K]. 

 

In large-scale hydrological modelling, regionalisation methods can transfer knowledge from 

gauged to ungauged basins. Beck et al. (2020; [HB-P]) used transfer equations relating model 

parameters to catchment and climatic characteristics to yield global parameter maps for the 

LISFLOOD hydrological model. Alternatively, Seibert et al. ([JS-P]; Pool and Seibert, 2021) used 

calibrated model parameters of selected gauged catchments for ungauged catchments with 

similar characteristics. Mazzetti et al. [CM-P] overcame temporal data sparsity, where 

observations have different temporal resolution to the model, by aggregating the model output to 

match the daily resolution of the observations.  
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In some flood forecasting systems, model uncertainty can lead to inconsistencies between 

forecasts and observation-based flood thresholds. Therefore, some global flood forecasting 

systems, such as GloFAS, use reanalysis to define the flood threshold to account for these biases. 

However, Zsoter et al. (2020; [EZ-P]) showed that lead-time dependent ensemble reforecast-

based thresholds provide even more reliable and skilful flood forecasts for longer lead-times since 

biases in the forecast due to the use of NWP models rather than meteorological observations are 

also accounted for. 

5.3. Data-driven and hybrid methods  

Machine Learning (ML) techniques have become increasingly common in hydrology over the past 

couple of decades (Shen et al., 2021; Lange et al., 2020; Shen and Lawson, 2021; Mosaffa et al., 

2022; Mosavi et al., 2018; Xu and Liang, 2021). This was accelerated by the progress made in 

developing deep learning algorithms as well as by an increase in the availability of large 

hydrological datasets (Shen, 2018). The Long Short-Term Memory (LSTM) was a popular choice 

of algorithm in the presented studies [YZ-P; GS-P; RK-P]. The LSTM is a type of neural network 

that allows the autocorrelation often seen in hydrological variables to be modelled. It is commonly 

used in hydrology for simulation, forecasting, and hydroclimate predictions (e.g., Kratzert et al., 

2018; Le et al., 2019; Natel de Moura et al., 2022). Both Zhou et al. [YZ-P] and Shalev et al. [GS-

P] used LSTM models to predict water level and flood inundation. Zhou et al. [YZ-P] found that 

their deep-learning water-level simulations showed only minor differences to the output from a 

2d-hydrodynamic model although they were produced much faster with LSTM (Zhou et al., 2021a, 

2021b). The LSTM-generated stage forecasts of Shalev et al. [GS-P] had a high median NSE 

(~0.97) across the tested basins. However, Keppler et al. [RK-P] had varying success using an 

LSTM approach within a data assimilation framework (see Section 4.3). Olusola et al. [AO-P] 

used the simpler, more computationally inexpensive random forest algorithm to predict the spatial 

variability of groundwater. They found that geology and rainfall were the variables with the 

greatest weight in the calculations. Additionally, Forouhar et al. [LF-P] used a Multi-Layer 

Perceptron Artificial Neural Network to forecast short-term irrigation water demand. They found 

that, although the forecasts had a skill comparable to previous studies, the lack of inclusion of 

physical understanding of the system limited the performance of the method. This is a common 

criticism of ML or statistical methods ([LS-K]; Gilpin et al., 2019; Schmidt et al., 2020; Nearing et 

al., 2021). Methods such as physics-informed ML (e.g., Bhasme et al., 2021 and Herath et al., 

2021) have been suggested as potential solutions, although it is acknowledged that more 
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research is needed in this area to constrain ML predictions to physically plausible values ([LS-K]; 

Kratzert et al., 2019). 

Whilst some presentations discussed purely data-driven methods (e.g., [GS-P; AO-P]), there was 

a strong emphasis on hybrid data-driven and physics-based methods throughout the workshop. 

During a keynote talk, Slater [LS-K] discussed how the hybrid methods benefit from state-of-the-

art developments in ML (e.g., increased speed) and physics-based modelling (e.g., physical 

understanding of the system). As discussed by Slater [LS-K], the combination of data-driven 

(particularly ML and deep learning methods) and physics-based methods has the potential to 

solve some of the outstanding challenges in hydrology, such as incorporating human activity into 

hydrological simulations and generating seamless predictions across time scales. Statistical 

methods can be introduced to dynamical systems throughout the forecasting chain (e.g., data 

assimilation [RK-P], ensembling [LS-K], post-processing [KB-P; AC-P], and evaluation [IP-P]) to 

reduce biases, for operational convenience, and to improve nonstationary modelling [LS-K]. 

However, as ML techniques are introduced into systems, they must be evaluated to ensure robust 

and plausible forecasts, and be benchmarked against traditional physics-based systems [LS-K]. 

An example of a hybrid system given by Slater [LS-K] is that of a seasonal streamflow forecast 

generated by driving a statistical model with the basin-average harvested corn and soybean 

acreage, and precipitation forecasts from a GCM (Slater et al., 2019). Due to the short training 

time of the statistical model, these models can be updated regularly to account for changes in 

land use. Driving ML algorithms with the output from physics-based models is a common hybrid 

approach (e.g., Hauswirth et al., 2022; Hunt et al., 2022; Frnda et al., 2022). Two other 

presentations demonstrated the skill of hybrid forecasts created in this way. Jurlina et al [TJ-P] 

created river flow forecasts for up to 10 days ahead by driving a random forest multiclass classifier 

with nine catchment characteristics, SMOS and in-situ observations, and ECMWF forecasts. 

Golina et al [SG-P] compared forecasts of seasonal precipitation for the island of Ireland 

generated by driving a Multiple Linear Regression (MLR) and an Artificial Numerical Network 

(ANN) with predictors based on ECMWF seasonal hindcasts for mean sea level pressure. Whilst 

the skill of these forecasts was season dependent, they consistently performed better than purely 

physics-based forecasts.  
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5.4. Model development for forecasting across scales 

There are currently several global- and continental-scale hydrological forecasting systems in 

operation (Emerton et al., 2016). Additionally, many regions are covered by basin or sub-basin 

scale systems. The benefits and challenges of using systems of both scales are discussed in 

Section 3.2. In particular, there are knowledge gaps in how forecasting systems at a range of 

scales can complement each other, and how global forecasting systems can address local needs 

[DR-P]. To overcome this gap, [BvO-P1] studied how a local forecasting system under 

development can be used with a global dataset that is designed to be executed on a global scale 

while supplemented by local information. Additionally, Eilander et al. [DE-P] presented a new 

framework (HydroMT) to automatically and rapidly set up a flood risk model for compound flooding 

anywhere around the globe. HydroMT is globally applicable and locally relevant as it is based on 

globally available data, with the inclusion of local data where available. Alternatively, Odry et al. 

[JO-P] used Bayesian merging to combine large and local scale forecasts in Quebec, Canada. 

The resulting forecasts performed as well as or better than the individual forecasts, whilst 

removing the need to look at two separate forecasting systems.  

Regardless of forecast accuracy, sufficient lead time is essential to facilitate effective decision-

making and preparedness. The workshop showcased various presentations aiming to improve 

both short- and long-term streamflow forecasts. For example, Uysal et al. [GU-P] provides 

perspectives on advances and developments in improving short-range streamflow forecasts. 

Arnal et al. [LA-P] presented preliminary results for the Bow River at Banff (Canada), using  a 

workflow designed to quantify streamflow predictability on sub-seasonal to seasonal (S2S) 

timescales across North America. Both data-driven and process-based techniques are being 

investigated to produce continental-scale S2S hindcasts and quantify predictability [LA-P]. Such 

investigations can potentially provide useful science-based information for reservoir operations 

and water resource management (Section 6.5). Additionally, some studies showed progress in 

creating temporally seamless forecasts. Caillouet et al. [LC-P] combined deterministic short-range 

and probabilistic medium-range forecasts with expert knowledge to create a seamless forecast 

with the aim to optimise flow management decisions. Alternatively, post-processing (Section 2.2) 

was also utilised to extend the forecast horizon [DM3-P; KB-P]. 

6. Applications and decision-making 
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In this section, we summarise hydrological monitoring and forecasting applications and their use 

in decision making. 

6.1 Anticipatory humanitarian action 

Stephens [ES-K] discussed the use of global flood forecasting for anticipatory humanitarian action 

in her keynote talk. Historically, humanitarian action has typically followed the occurrence of a 

disaster  (Coughlan de Perez et al., 2015). Now, there is a move towards triggering actions based 

on forecast information at a range of lead times (“Forecast-based Financing” www.forecast-

based-financing.org; Stephens et al., 2015; Coughlan de Perez et al., 2017). Stephens discussed 

a set of rationales for this shift, including the potential to reduce impacts by taking mitigating 

actions, a drive to better utilise state-of-the-art forecasting science and an increasing interest in 

bridging the gap between response and adaptation, while improving the cost-effectiveness of aid.  

  

Taking action based on forecasts requires several considerations, including user-driven 

evaluation to understand forecast skill and reliability (see Section 3.3). For example, which 

forecasting system should be used? While global models are available where no other forecasting 

system exists, and although they typically use probabilistic approaches, they may not be equally 

skilful everywhere. It is imperative that forecasts from national services are used first and foremost 

for disaster risk reduction. They can benefit from local knowledge, and typically hold the mandate 

to issue warnings (see also Section 3.2). A combination of models can also be beneficial, 

complementing detailed local forecasts with larger-scale context (for example, transboundary 

information), and often longer lead times from global models (Emerton et al., 2016; Hirpa et al., 

2018; see Section 5.4). Stephens highlighted the decision-led evaluation of GloFAS forecasts for 

the Brahmaputra river system, based on required lead times (e.g. 3 days for evacuation, 18 days 

for agriculture planning), as part of the combined use of GloFAS and local forecasts from the 

Bangladesh FFWC [ES-K]. 

  

Another example where a combination of models can provide complementary information is 

predicting flooding from tropical cyclones (TCs). Global NWP models can capture large-scale 

atmospheric flow patterns that influence TC movement, and other factors that influence flood 

severity (Titley et al., 2021, [HT-P]). Global flood models can add a hydrological perspective to 

complement the meteorological factors associated with flooding from TCs [HT-P]. There have 

been several cases where a combination of information from global, regional and national 

services, and local knowledge from decision-makers, have been used to take humanitarian action 
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ahead of flooding from TCs, such as Idai and Kenneth in Mozambique in 2019 (Emerton et al., 

2020). Flood extent maps can also be useful for rapid flood mapping during and following flood 

events, when humanitarian actors are required to make quick decisions based on knowledge of 

the areas most at risk.  

6.2 Impact, exposure and risk assessment 

A key aspect of improving the application of forecasts across multiple sectors is the move towards 

impact-based forecasting and provision of risk information, which can assist decision-making by 

providing valuable context (e.g. number of people at risk or key infrastructure that may be 

vulnerable including hospitals, access roads, energy infrastructure). An example is the 

development of flash flood impact forecasts presented by Baugh and Hansford et al. [CB-P; EH-

P].  Since flash flood hazard forecasts could highlight a wide area to be at risk of flooding, this 

work intersects flash flood hazard forecasts with exposure information [EH-P] to produce a risk 

matrix [CB-P]. A map is provided, colour coded according to the risk matrix, highlighting areas 

where the greatest impacts might be expected (Figure 8). To ensure applicability, the project 

engages regularly with forecast users on effective design and dissemination [CB-P] (Section 3.2), 

which also allowed identification of the most important exposure data to consider [EH-P]. 

Additionally, Teklesadik et al. [AT-P] combine GloFAS forecasts and flood reports with socio-

economic vulnerability and population density data, demonstrating the ability of a global 

forecasting system to detect flood signals and activate local early action protocols.  

  

While many studies have evaluated differences among global flood models, little research has 

been done to look at differences in the way population exposure is considered in the models. 

Hoch et al. [JH-P] , combined flood maps with WorldPOP (www.worldpop.org) data on the delta 

of the Ganges-Brahmaputra river system. It was found that estimates of the number of people 

affected by flooding differ remarkably depending on the model applied. This was also highlighted 

by Bernhofen et al. (2022; [MB1-P]), who showed that global datasets can vary significantly at 

national levels, and the choice of model has a larger impact on population exposure estimates 

than the choice of the gridded population dataset. They advocate that further work is needed to 

incorporate locally-sourced data and locally-calibrated models to test global datasets, and to 

evaluate which data are most suitable for local use. This highlights a challenge of using global 

information for local decision-making, and the importance of model choice (Section 5).  
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Figure 8: Schematic of the procedure for generating flash flood impact forecasts from flood 

hazard forecasts, exposure information and a risk matrix, as part of the TAMIR project (adapted 

from Baugh et al. [CB-P], Hansford et al. [EH-P]). 

 

6.3 Flood forecasting in challenging  environments 

Several presentations applied global and local data and models for flood forecasting in 

challenging environments, such as those with complex physiography, climatic conditions or 

human impact, for example urban areas or fast-responding mountainous catchments. In such 

catchments, radar data is often applied for short-term forecasting. Imhoff et al. [RI-P], for instance, 

used Commercial Microwave Links (CMLs) as an alternative data source for nowcasting. The 

methods were tested in the Netherlands and it was found that, while radar is better for low rainfall 
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intensities, CML data provided better estimates for more intense rainfall, with the advantage that 

CML could be used in fast-responding and urban catchments worldwide (Imhoff et al., 2022).  

  

In Israel, a new forecasting system based on the GEOGloWS streamflow service (GESS; 

ECMWF, 2020a,b) is being used to predict urban flooding [AG-P]. In Tel Aviv, flooding can occur 

due to a combination of heavy rainfall, poor drainage, and high water levels in the city’s two rivers. 

Givati et al. [AG-P] used GESS data to compute thresholds for different parts of the city. The 

approach has been applied successfully in several cities and is used by the Isreali Fire and 

Rescue Authority and Tel Aviv municipality drainage department, alongside local forecasts, for 

proactive decision-making. The Madeira Crisis Room [MdM-P] also uses global flood forecasts 

for decision-making in urban areas, bringing together a range of institutions and uses research 

with GloFAS to show the importance of a hydrological forecasting system alongside local data for 

contingency planning.  

  

Another example is the work of ICIMOD (the International Centre for Integrated Mountain 

Development) in developing flood forecasts for the Chenab basin in Pakistan [PD1-P]. The 

Chenab is a transboundary tributary of the Indus in a mountainous area vulnerable to flooding 

and landslides, and with limited local data; it is therefore challenging to develop a well-calibrated 

model tuned to local information. As discussed in Section 4, Dangol et al. [PD1-P] used post-

processing of satellite data for assimilation and calibration, exploring the potential of satellite 

rainfall data for flood prediction in transboundary and data sparse regions.  

6.4 Flood and drought monitoring 

Several examples of recent developments using satellite data for flood monitoring were discussed 

during the workshop, highlighting different approaches. The Dartmouth Flood Observatory (DFO, 

n.d.) provides a range of publicly available maps, data, and information on ongoing and past flood 

events (see also Section 4.1). A variety of satellite data can be used to estimate flood extent and 

river flow, and Kettner et al. [AK-P] demonstrated the use of these data to produce flood extent 

maps for specific locations. These methodologies can be used worldwide, including in regions 

with a lack of observations or data sharing. 

  

A different approach, implemented by the CEMS GFM products within GloFAS (CEMS, 2021), 

uses three flood mapping algorithms in parallel, alongside an ensemble algorithm, to create near-

real-time maps of flood extent, including maps representing the uncertainty [RH-P]. This approach 
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can also be used regardless of cloud cover or lack of daylight. The work of Mason et al. [DM1-P], 

also mentioned in Section 4.1, showcases the potential for use of global data for local applications, 

as their development of a state-of-the-art flood detection method uses data that are readily 

available worldwide to detect flooding in urban areas, addressing the issue that many remote 

sensing services are aimed at mapping rural floods due to complicated backscattering 

mechanisms in urban areas. 

  

Two drought monitoring systems were also presented. The Western Land Data Assimilation 

System (WLDAS; Erlingis et al., 2021) aims to provide daily estimates of groundwater recharge, 

soil moisture, snow water equivalent and ET, for applications such as groundwater sustainability 

and agricultural decision-making in the western USA [JE-P]. An extension of the German Drought 

Monitor (UFZ, n.d.) was also developed to combine near-real-time observations with extended-

range forecasts [HN-P]. This new hydroclimatic forecasting system (HS2S) provides soil moisture 

forecasts out to 3 weeks and is used for real-time drought monitoring and planning, and in impact 

assessments for agriculture and energy sectors (UFS MOSES, n.d.).  

6.5 Modelling and forecasting for water-relevant sectors 

An important application of hydrological forecasting is energy and water resource management. 

Several examples were presented at the workshop, using forecasts on a range of time scales. A 

coupled rainfall-runoff and electric system simulation approach for Uruguay’s largest hydroelectric 

reservoir was developed to provide daily forecasts out to 7 days ahead [ADV-P]. In Turkey, a 

multi-model approach is being developed for the upper Euphrates basin, where streamflow 

forecasting is important for reservoir operations due to high upstream snow potential [GU-P]. 

Ensemble forecasting methods are utilized to represent the uncertainty and extend the lead time, 

while two hydrological models with different snow routines are used to reduce the uncertainty. A 

further example was presented for the Compagnie National du Rhône in France [LC-P], where 

two hydrological forecasting tools have been developed; an hourly deterministic forecast with a 

4-day horizon, and a daily probabilistic forecast with a 14-day horizon. Discussions focussed 

around working towards coherence between the different tools. Implementing a seamless 

combined forecast helps to avoid duplication of expertise, eases the work of forecasters and 

optimises operations for river flow management.  

 

For some applications, longer-range forecasts on the scale of months or seasons are essential. 

For example, the Requena-Utiel aquifer in Spain is used for vineyards and olive and nut trees, 
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and suffers from overexploitation. A pumping cap is therefore set, based on the type of year 

(dry/normal/wet). There is a need to predict the type of year expected, to schedule pumping and 

crop production. Macian-Sorribes et al. [HMS-P2] investigated the skill of seasonal meteorological 

forecasts in anticipating the type of year. Similarly, several water management agencies in the 

Murray Darling basin (Australia) use seasonal forecasts for water demand forecasting [KH-P; 

QJW-P]. In Brazil, medium-range to seasonal forecasts are used operationally for the Brazilian 

National Interconnected System with more than 150 hydropower plants and reservoirs [FF-P2]. 

Water users in the Greater Mekong region utilise short and long-term streamflow, sediment and 

reservoir inflow forecasts [DDB-P]. Another example is the transboundary Yacyretá Hydropower 

Facility on the Paraná River, between Argentina and Paraguay. Working with the facility, 

Rodriguez et al. [ACER-P] identified that the main needs for seasonal forecasts are in energy 

generation planning and maintenance scheduling, with lead times up to 15 months required.  

6.6 Climate trends and adaptation 

While most applications focussed on short-range to seasonal timescales, Busker et al. (2021; 

[TB-P]) presented a work that combines forecast and climate adaptation timescales. Green and 

blue infrastructure can decrease urban flood risk by increasing storage capacity (e.g. green roofs, 

permeable pavements, canals, floodplains). The work presented explores the use of blue-green 

roofs, where plant and water storage layers are combined, and the application of weather 

forecasts to trigger release of water from the blue layer ahead of extreme rainfall, or to retain 

water when a dry period is forecast. Such applications can be effective for urban climate 

adaptations to extreme precipitation and heat events (Busker et al., 2021). Kelder et al. (2020; 

[TK-P]) highlighted that relatively short precipitation records may not allow for robust detection of 

short-term (decades, rather than centuries) trends in climate extremes. They applied novel 

techniques pooling ensemble members of seasonal forecasts to increase the historical record 

and study decadal changes in precipitation extremes. Further, Kelder et al. (2022a) also evaluated 

the feasibility of simulated climate extremes outside observed variability. They propose a workflow 

to study rare weather events using the C3S seasonal predictions (Kelder et al., 2022b). An 

example in Western Norway suggests a significant rise in 3-day precipitation extremes for 

Svalbard, “such that the 100-year event estimated in 1981 occurs with a return period of around 

40 years in 2015” (Kelder et al., 2020).  
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7. Discussion 

This paper has presented an outlook on current research related to hydrological modelling and 

forecasting from global to local scales. It provides a reflection on the keynotes and poster 

presentations from the Joint Virtual Workshop on "Connecting global to local hydrological 

modelling and forecasting: challenges and scientific advances” from 29 June to 1 July 2021.  

This section reflects on two points: 

1) How effective was the digital format in representing a broad view and bringing a global 

audience together? 

2) Where is the field of global to local hydrological forecasting moving as a whole? 

7.1 Discussing hydrological science with a virtual global audience 

The number of contributions and participants set the stage for a successful event on paper. 

However, true success of a workshop is measured in engagement. Close to 60% of respondents 

to a follow-up survey of the event rated the Gather.Town platform as ‘excellent’, with one 

participant quoting it as the “best online experience to date!”. It is this overwhelmingly positive 

feedback that shows that there is a future for virtual online workshops if designed well. The 

workshop success can also be quantified in terms of tangible post-workshop outputs. This paper 

is an example of such output, written collaboratively by an international group of young 

professionals who met through this workshop. Additionally, this workshop allowed for hydro-

meteorologists from all around the world to meet and discuss latest scientific advances with no 

travel costs and related carbon-footprint, highlighting the viability and importance of virtual 

workshops to discuss science in the future. 

 

Analysis of the contributions to the workshop show how the study sites are spread over the globe, 

with Europe overrepresented and Africa clearly still underrepresented (Figure 9a). Most 

contributors were from universities and research institutes (Figure 9f), indicating that the outreach 

into the operational domain could be extended. The main application domain was floods (Figure 

9d), showing that hydrological research is still disproportionately leaning towards forecasting 

floods, which may lead to increased drought vulnerability (Bressers et al., 2016), thus, demanding 

a conscious shift towards integrated flood and drought management. All different time scales of 

forecasting were strongly represented except for climate scales (Figure 9e). However, climate 

projections (forecasts on the climate scale) are not typically considered part of the operational 

forecasting time scales and therefore researchers may have been dissuaded from presenting by 
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the workshop title. Last, it is notable that regional forecasting applications are still rare and most 

applications cover the basin scale (Figure 9b). 

 

Figure 9: In depth assessment of the research presented at the Workshop. (a) Distribution of 

study locations (location of study sites in the research presented); (b) Distribution of spatial scales 

by continent (Basin level: Studies conducted for each basin, Regional: Selection of basins within 

a country or a continent, National: for entire countries, Continental: for entire continents; (c) Type 

of study (Development of new system/method/model: Presents or explains a new forecasting 

system, correction method, or hydrological model, Evaluating and benchmarking: Evaluates the 

performance or relative value addition of a new system/database/model/technique, Comparing 

and combining: Combines systems, databases, techniques to improve forecasting performance, 

Others: studies that do not fit into these categories); (d) Application status in terms of 

operationalizability (Research: System/method developed without aiming for operational 

applications, Developmental: System development currently in progress, Pilot: Testing of fully 
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developed systems in operational settings, Operational: System/technique/method operationally 

implemented); (e) Temporal scale; (f) The presenters’ professional sector. 

 

While the free-to-participate digital format lowers barriers to attendance and offers the inclusion 

of a much wider audience, some new barriers to communication are introduced (Shoshan et al., 

2021). Our experience shows that these can be minimised through: 

● Encouraging spontaneous meetings and the meeting of new people through platform 

design and by setting up dedicated activities. Here, the Gather.Town space was designed 

to be a replica of the ECMWF headquarters located in Reading, UK, offering a sense of 

place to attendees. The activities included splinter meetings, art, walk-in demos and poster 

sessions, all of which could be accessed ad-lib and spontaneously. 

● Creating entry points to existing networks, and promoting the creation of follow-up 

initiatives, such as EC-HEPEX for early careers. 

● Ensuring that the technological barrier is as small as possible (e.g. stable internet 

connection and a web browser). 

● Moderating the sessions for an efficient management of time during the presentations and 

an easy-to-follow format for the presentation of the content (e.g., proposing templates for 

slides or guidance for posters). 

● Minimising the mental strain for attendants that comes with organising which link to click 

or where to follow up. 

● Organising the workshop over a limited number of days (here three days) to limit ‘Zoom 

fatigue’ (Shoshan and Wehrt, 2021). 

● Catering to different time zones, with morning and afternoon sessions to increase 

inclusiveness, making available recordings of presentations and offering several 

opportunities to meet the authors. 

● Thinking about the follow-up: which is easier than ever before through the same set of 

virtual communication tools (e.g. Slack). 

● Keeping attendance free of or with low costs. 

 

Some further improvements were suggested by participants, including: 

● The right to be forgotten: be clear on which information will be retained online forever, and 

to whom and why. There is a tendency in online events to record every session and publish 
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online every contribution. This can raise barriers in openly discussing work that is often 

still work-in-progress.   

● More dedicated emphasis on activities that generate new connections: possibly the 

success of this workshop owed to the pre-existing networks of attendees, but equally 

important is to offer room for new networks to be created, bringing new perspectives and 

topics to the community. 

7.2 Outlook on global to local hydrological modelling and forecasting 

research 

 
There is a strong desire amongst the scientific community to contribute to current societal 

challenges associated with disaster risk reduction, climate change adaptation and changing 

societal needs. From discussions at the workshop about fit-for-purpose modelling, co-production, 

local applications and decision making, there seems to be a consensus that the added value of 

global to local forecasting research is in developing stronger inter-connections between research 

institutes, forecast providers and local users. We expect that in the next decade the portion of 

research that is directly related to this challenge will increase. This will make forecasting research 

more multidisciplinary as the research focus shifts from building new technical tools and 

techniques towards how those techniques, tools and products interact with the people who use 

them. Communities such as HEPEX and GFP are volunteer-based and non-funded, but have 

proved to be excellent places for networking and exchanging scientific ideas in combination with 

operational practices.  

 

The importance of hydrology to solve societal challenges, and especially the integration of 

scientific endeavours into operational practice, was recently made clear in the recent efforts on 

hydrology by the WMO (WMO, 2021). In October 2021, the WMO Extraordinary Congress 

adopted the WMO Water Declaration, which, among others, acknowledges the central role of the 

water cycle and hydrology in the water-climate-weather continuum and in the five long-term goals 

of the WMO Strategic Plan (2020-2023); it also endorsed the Water and Climate Coalition which, 

following also the recommendations of the 2021 WMO State of Climate Services: Water report, 

aims to provide tangible action, activities and policy support for an integrated water and climate 

agenda, and to accelerate the implementation of the water-related United Nations Sustainable 

Development Goals (SDGs). Last, it approved the WMO Vision and Strategy for Hydrology and 
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its associated Action Plan, which target eight long-term ambitions for operational hydrology in 

support of the global water agenda: (1) No one is surprised by a flood, (2) Everyone is prepared 

for drought, (3) Hydro-climate and meteorological data support the food security agenda, (4) High-

quality data supports science, (5) Science provides a sound basis for operational hydrology, (6) 

We have a thorough knowledge of the water resources of our world, (7) Sustainable development 

is supported by hydrological information, and (8) Water quality is known. Note that this action plan 

highlights societal needs that are directly related to operational hydrological forecasting and points 

out to the importance of the science-to-operations interface. 

 

 

A key aspect of forecasting is communicating and ensuring understanding of the forecast and 

warning information (Budimir et al., 2020). A crucial part of this is understanding and 

communicating forecast uncertainty (Fundel et al., 2019; Pappenberger et al., 2013; Creton-

Cazanave et al., 2013). There are well established research paths such as forecast verification, 

benchmarking and pre- and post-processing tools, all of which are being explored simultaneously 

by the community. The greatest challenge that remains to operationalizing the recently developed 

tools is that of uncertainty communication. Again this cannot be achieved by technological 

advancement alone, but through engagement with the end-user through system co-design and 

the use of creative methods (e.g., serious games, art). 

 

Technical and scientific advances are enabling the development of global hydrological forecasting 

systems. New data (EO, citizen science, and CML) and data assimilation methods enable the 

continued push to create high resolution forecasts relevant for a wide range of local users. It is 

now that the first systems are truly operational that the question arises: Who can make use of 

these systems? To what extent can our still limited forecasts support decision-making now? Do 

better forecasts necessarily lead to better decisions? Despite great advances, we still have 

difficulty in predicting extreme events. We argue that “waiting for forecasts to be perfect” does not 

guarantee their use by decision-makers (Ramos et al., 2013) and that connections need to be 

made now between global systems and local users (see Becker et al., 2015). 

 

Co-production and the incorporation of local knowledge have been identified as a research track 

that is crucial to study how global forecasting systems can be incorporated into local decision 

making, and how large scale systems and data can better use local knowledge and experiences 

(see Arnal et al., 2020). Part of this process is to identify the ‘user’. ‘Local users’ are a diverse 
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group: Are we talking about single farmers, or are we talking about national hydrometeorological 

services? There is currently limited scope for users (sometimes including national hydrological 

services) to provide feedback and inform scientific developments of global forecasting systems. 

There is a need to: 

 

● consider how national capacity can be supported with internationally-developed 

forecasting systems (interim solutions, longer lead times and support ahead of major 

disasters); 

● explore a seamless integration of local short-term and global longer-term forecasts; 

● build community ownership of global forecasts; 

● learn from and incorporate local knowledge and experiences in the development of large-

scale forecasting systems. 

 

The core engine of hydrological forecasting systems remains the hydrological model(s). The 

established research paths range from ‘classic’ single process-based or conceptual models and 

their calibration, to hybrid methods that combine data-driven methods (ML) to solve shortcomings 

of these classic models, and also multi-model approaches that capture model uncertainties. This 

large range of research pathways requires cooperation and FAIR (Findable, Accessible, 

Interoperable, Reusable) data/models exchange (Hutton et al., 2016; Wilkinson et al., 2016) 

between hydrological modelling groups, large scale forecast providers and local forecasting 

agencies, who have to work closely together to build ensembles of multi-model forecasts. 

Breaking outside of the boundaries of hydrology, ESMs are a way forward not just in hydrology, 

but in many fields that would benefit from coupled ESMs that are born from collaborative efforts, 

and from the move towards less of a split between meteorology and hydrology. 

 

The range of applications presented in the workshop and reported in this paper showed how the 

current generation of hydrological forecasting systems is utilised. Forecasting only hydro-

meteorological variables is not enough; the move towards impact-based and action-based 

forecasting (see Merz et al., 2020), complementing forecasts with impact estimates such as 

expected damage and human consequences, is essential (Merz et al., 2021). Hydrological 

forecasting becomes intertwined with water and energy management, humanitarian action and 

climate adaptation. A concern in the application of large-scale forecasting systems is the 

sustainability of training programs. What happens when a one-off funded project gets 

discontinued? Continuous connections are important for creating meaningful partnerships with 
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local communities, as well as with local providers and purveyors of forecast services. A balance 

between continuing support and new initiatives is needed. 

 

The common theme in all these developments is that the field of hydrological modelling and 

forecasting is becoming increasingly multidisciplinary. Many disciplines are increasingly 

collaborating as we move towards user-centered and/or Earth System modelling approaches 

(e.g., Irrgang et al., 2021). In the next decade the core work of creating new methods and new 

products needs to be equally balanced by multidisciplinary studies. This includes fostering 

connections with social sciences to co-create and bring developed tools to practice and closer to 

users (Hall 2019), as well as to optimise the positive impact that we as a hydrological forecasting 

community have on society (Wesselink et al., 2017; Lavers et al., 2020).  

 

8. Conclusions  

This paper reviewed and synthesised the contributions of the global hydrological prediction 

community to the Joint Virtual Workshop on "Connecting global to local hydrological modelling 

and forecasting: challenges and scientific advances”. Examining the diverse contributions through 

the lens of Early Career researchers, yielded the following conclusions which are conceptualised 

alongside the Workshop themes in Figure 10: 

 

I. Operationalising the Science: The hydrological community is working actively to 

operationalise the science behind cutting edge forecasts, well-aligned with the long-term 

goals of the WMO Strategic Plan (2020-2023), to improve global resilience towards water 

extremes. 

II. (Forecast) Communication is Key: Helping decision-makers and end-users interpret 

forecasts is key in preventing impacts of hydrometeorological disasters, which requires 

creative solutions such as serious games or art to better engage users and effectively 

communicate forecast uncertainty. 

III. Users as the last First Mile: Co-production and co-designing forecasting systems with 

diverse local user groups is necessary to ensure that the forecasts will be used as 

intended, and will be useful to those relying on these for a variety of applications. 
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Figure 10: Conceptual diagram linking key conclusions with the Workshop themes in the context 

of Earth system modelling and predictions for weather/climate/hydrological services as outlined 

in Figure 4. The roman numbers in the figure correspond to similarly numbered conclusions, with 

key thematic advances pictorially represented, with each coloured box corresponding to a 

particular theme. 

 

IV. Data, Data, Everywhere: The concurrent rise of Earth Observation, big data processing 

architectures, data assimilation, and deep learning, provide an opportunity to improve 

current prediction systems as well as investigate scale-relevant hydrological behaviours. 

Incorporating domain expertise and making training data/models available to the 

community by following the FAIR principles could accelerate the pace of advances in the 

field. 

V. Beyond Hydrological Forecasts: Minimizing damage from water extremes requires an 

understanding of expected socioeconomic impacts through impact forecasting, since 

damage depends only partially on hydrometeorological processes and hazards, and are 

strongly controlled by societal vulnerability to climate extremes.  
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VI. Timing is Everything: Anticipatory action triggered based on impact forecasts is the way 

forward to effectively mitigate disaster risk, bridge the gap between forecasting science 

and adaptation, and improve the cost-effectiveness of humanitarian aid. Yet, subjectivity 

remains in choosing the scale and skill of models used for such applications, as well as 

the integration of local knowledge and dissemination systems. Further research on 

adapting global forecasting services for local scale anticipatory action is necessary under 

the current scenario of worsening climate disasters.  

VII. Unified Earth System Modelling: As compound disasters become the new normal in a 

changing climate, understanding their co-occurrence and predicting their unified impacts 

will be crucial to prepare for the unexpected extremes in the future. There is thus an urgent 

need for interdisciplinary collaboration and unification of modelling systems, in order to 

enable forecasting and societal preparedness for such compound and often unexpected 

events. 

 

We expect that the new digital collaboration possibilities highlighted by the necessity of these 

during a global pandemic, as well as the rapidly changing landscape of big data computing will 

enable reaching these goals rapidly in the near future, leading to more skilful and useful 

hydrological predictions for everyone worldwide.  

 

Data Availability Statement 

The insights discussed in this study were derived by systematically reviewing, synthesizing, and 

contextualizing research presented at the Joint Virtual Workshop on “Connecting global to local 

hydrological modelling and forecasting: scientific advances and challenges”, available in the 

public domain at https://hepex.inrae.fr/joint-virtual-workshop-2021/ and 

https://events.ecmwf.int/event/222/.  
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Figures 

 

Figure 1: Map of the average global views (over all three days of the workshop, 29 June to 1 July 

2021, where darker shading indicates higher views) of the workshop. Attendance was 

widespread, with 49 countries represented. 
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Figure 2: Layout of ECMWF’s Gather.Town environment for the workshop. Participants joined the 

Gather.Town sessions to view posters, attend activities, and meet their peers to foster discussions 

on global hydrological forecasting and how it can be better linked to local scale needs. 
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Figure 3: The final artwork piece, “Hydrological Constellations”, by Louise Arnal. This science and 

art piece is a metaphor for reading our destiny in the night sky constellations, and how far we 

have advanced as a community in terms of predicting future hydro-meteorological events. This 

art piece was created as part of the interactive sessions hosted on Gather.Town for the workshop.  
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Figure 4: Schematic of the workshop. The five themes acted as the pillars of the workshop, while 

the sixth session, ‘Earth System Modelling’, was threaded throughout the five topics. 
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Figure 5: The main types of uncertainty tackled at the workshop (aleatory, epistemic, 

semantic/linguistic) linked to the applied model (single model, single model + pre/post-processing, 

multi-model). A more detailed description of the types of uncertainty and the specific contributions 

linked to each type can be found in Table A2 in the Appendix.  

 

Figure 6: Workflow of the “Climate Services Value Chain”, from Werner’s keynote presentation 

[MW-K] and at the core of the EU-H2020 project I-CISK (Innovating Climate services through 

Integrating Scientific and local Knowledge; https://icisk.eu). 
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Figure 7: Schematic showing the role of Earth Observations and data assimilation in the context 

of modelling and ensemble forecasting. 
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Figure 8: Schematic of the procedure for generating flash flood impact forecasts from flood 

hazard forecasts, exposure information and a risk matrix, as part of the TAMIR project (adapted 

from Baugh et al. [CB-P], Hansford et al. [EH-P]). 
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Figure 9: In depth assessment of the research presented at the Workshop. (a) Distribution of 

study locations (location of study sites in the research presented); (b) Distribution of spatial scales 

by continent (Basin level: Studies conducted for each basin, Regional: Selection of basins within 

a country or a continent, National: for entire countries, Continental: for entire continents; (c) Type 

of study (Development of new system/method/model: Presents or explains a new forecasting 

system, correction method, or hydrological model, Evaluating and benchmarking: Evaluates the 

performance or relative value addition of a new system/database/model/technique, Comparing 

and combining: Combines systems, databases, techniques to improve forecasting performance, 

Others: studies that do not fit into these categories); (d) Application status in terms of 

operationalizability (Research: System/method developed without aiming for operational 

applications, Developmental: System development currently in progress, Pilot: Testing of fully 

developed systems in operational settings, Operational: System/technique/method operationally 

implemented); (e) Temporal scale; (f) The presenters’ professional sector. 
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Figure 10: Conceptual diagram linking key conclusions with the Workshop themes in the context 
of Earth system modelling and predictions for weather/climate/hydrological services as outlined 
in Figure 4. The roman numbers in the figure correspond to similarly numbered conclusions, 
with key thematic advances pictorially represented, with each coloured box corresponding to a 
particular theme. 

 
Appendix 
 
Table A1. Abstracts presented at the workshop and cited in this paper. Abstracts have been 
given a citation code based on the initials of the first author, and are listed alphabetically 
according to their first initial (and therefore citation code). -P indicates the abstract was 
presented as a lightning talk and poster, -K indicates the abstract was a keynote talk. Numbers 
are introduced to distinguish between topics when an author presented more than one poster, 
or in instances of multiple authors with the same initials. The theme(s) that each abstract relates 
to is also noted, and indicates the section(s) under which the abstract is discussed in this paper. 
The talks and posters presented at the workshop can be viewed here indefinitely: 
https://events.ecmwf.int/event/222/timetable/  
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Citation 
Code 

Authors Title Theme(s) 
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Bob 
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Applications & 
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Earth observation & 
data assimilation 

AO-P 
Adeyemi 
Olusola, 

Delineating groundwater occurrence and 
patterns within the Free State Province, 

Hydrological model 
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pan-European multimodel simulations. 
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Albrecht 
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Forecasting & 
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production and 
incorporating local 
knowledge; 
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Bart van 
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Jan Verkade 
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uncertainty 

CB-P 

Calum Baugh, 
Eleanor 
Hansford, 
Christel 
Prudhomme, 
Corentin Carton 
de Wiart, Paolo 
Battino, Martin 
Blick, Marc 
Berenguer, 
Shinju Park 

The challenges of making seamless pan-
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Co-production & 
incorporating local 
knowledge; 
applications & 
decision-making 

CM-P Cinzia Mazzetti, Challenges of the European Flood Hydrological model 
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Decremer, 
Christel 
Prudhomme 

Awareness System (EFAS) hydrological 
calibration 

development 

CP-P 

Charles Perrin Integrated chain for the 
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uncertainty; 
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Christopher 
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Khan, Andrew 
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María Ignacia 
Orell, James 
McPhee 

An assessment of raw and post-processed 
GEFS precipitation reforecasts in the 
Maule River basin, Chile 

Forecasting & 
uncertainty 

FM-P 

Francesca 
Moschini, 
Shaun 
Harrigan, 
Ervin Zsoter, 
Christel 
Prudhomme 

Benchmarking hydrological model 
performance of GloFAS v3 against GloFAS 
v2 

Forecasting & 
uncertainty 

FT-P 

Faranak 
Tootoonchi, 
Jan Olaf Mirko 
Haerter, Olle 
Raty, Thomas 
Grabs, 
Claudia 
Teutschbein 

Advances and challenges in the past 
decade: from univariate to multivariate bias 
adjustment of climate models for impact 
studies 

Forecasting & 
uncertainty 

FW-P 
Fredrik 
Wetterhall, 

Challenges in setting up a multi-model 
hydrometeorological forecasting system - 

Co-production & 
incorporating local 
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Umberto 
Modigliani, 
Milan Dacic, 
Sari Lappi 

lessons learned from the SEE-MHEWS-A 
project 

knowledge; 
hydrological model 
development 

GM-P 

Gwyneth 
Matthews, 
Hannah 
Cloke, Sarah 
Dance, 
Christel 
Prudhomme 

Evaluating the post-processing of the 
European Flood Awareness System’s 
continental scale streamflow forecasts 

Forecasting & 
uncertainty 

GS-K 

Guy 
Schumann 

Advances in new EO technologies and 
computer modelling could soon enable 
better flood forecasting at impact-level 
scale 

Earth observation & 
data assimilation; 
hydrological model 
development 

GS-P 

Guy Shalev, 
Morin Efrat, 
Grey Nearing, 
Sella Nevo 

Google’s Flood Forecasting Initiative: 
Globally-Scalable Models for Hyper-Local 
Information 

Earth observation & 
data assimilation; 
hydrological model 
development 

GU-P 

Gokcen 
Uysal, Aynur 
Sensoy 
Sorman, Ali 
Arda Sorman, 
Mustafa 
Cansaran 
Ertas 

Short-Range Streamflow Forecasting Using 
Multi-Models Over Snow Dominated Basin 
In Turkey 

Forecasting & 
uncertainty; Earth 
observation & data 
assimilation; 
hydrological model 
development; 
applications & 
decision-making 

HB-P 

Hylke Beck, 
Stefania 
Grimaldi, 
Peter 
Salamon 

Global high-resolution regionalized 
parameter maps for LISFLOOD based on 
observed streamflow from over 4000 
headwater catchments 
 

Forecasting & 
uncertainty; 
hydrological model 
development 

HH-P 

Helen Hooker, 
Sarah Dance, 
David Mason, 
John 
Bevington, 
Kay Shelton 

An evaluation of ensemble flood inundation 
mapping spatial skill 

Forecasting & 
uncertainty; co-
production & 
incorporating local 
knowledge; Earth 
observation & data 
assimilation 

HJHF-P 

Harrie-Jan 
Hendricks-
Franssen, 
Alexandre 
Belleflamme, 

Predicting the complete coupled terrestrial 
water and energy cycles 
 

Earth observation & 
data assimilation; 
hydrological model 
development 
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Theresa 
Boas, Daniel 
Caviedes-
Voullieme, 
Abouzar 
Ghasemi, 
Klaus 
Goergen, 
Johannes 
Keller, Stefan 
Kollet, Ulrich 
Löhnert, Silke 
Trömel, Niklas 
Wagner 

HL-P 
Huw Lewis A regional coupled approach to water cycle 

prediction during winter 2013/14 in the 
United Kingdom 

Hydrological model 
development 

HMS-P1 

Hector 
Macian-
Sorribes, 
Patricia 
Marcos-
Garcia, Ilias 
Pechlivanidis, 
Louise 
Crochemore, 
Manuel 
Pulido-
Velazquez 

Estimating the benefits brought by 
seasonal forecasts on the management of 
the Water-Energy-Food nexus in the Jucar 
river system 

Forecasting & 
uncertainty; co-
production & 
incorporating local 
knowledge 

HMS-P2 

Hector 
Macian-
Sorribes, 
Esther Lopez-
Perez, Adria 
Rubio-Martin, 
Alberto 
Garcia-Prats, 
Manuel 
Pulido-
Velazquez 

Skill of seasonal meteorological forecasts 
from the Copernicus Climate Change 
Service to foresee groundwater pumping 
allocation in an overexploited 
Mediterranean aquifer 

Forecasting & 
uncertainty; 
applications & 
decision-making 

HN-P 

Husain Najafi, 
Luis 
Samaniego, 
Stephan 
Thober, 
Oldrich 

Ensemble Forecasting of Drought over 
Germany at Sub-seasonal Time Scale 
 

Forecasting & 
uncertainty; 
applications & 
decision-making 
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Rakovec, 
Pallav Kumar 
Shrestha 

HT-P 

Helen Titley, 
Hannah 
Cloke, Liz 
Stephens, 
Ervin Zsoter, 
Shaun 
Harrigan, 
Florian 
Pappenberger
, Christel 
Prudhomme, 
Joanne 
Robbins 

An ensemble-based method for 
investigating the predictability of fluvial 
flooding from tropical cyclones 

Forecasting & 
uncertainty; 
applications & 
decision-making 

IP-P 

Ilias 
Pechlivanidis, 
Louise 
Crochemore, 
Marc Girons 
Lopez 

Seasonal hydrological forecasting across 
scales: similarity patterns and attribution of 
forecast quality 

Forecasting & 
uncertainty; co-
production & 
incorporating local 
knowledge; 
hydrological model 
development 

IS-K 

Irina Sandu The European Commission Destination 
Earth Programme 

Earth observation & 
data assimilation; 
hydrological model 
development 

JB-P 
James 
Bennett 

Error modelling for long-range ensemble 
forecasts of flow in highly ephemeral rivers 

Forecasting & 
uncertainty 

JE-P 

Jessica 
Erlingis, 
Matthew 
Rodell, 
Christa 
Peters-Lidard, 
Bailing Li, 
Sujay Kumar 

A High-Resolution Land Data Assimilation 
System Optimized for Drought Monitoring 
in the Western United States 

Earth observation & 
data assimilation; 
applications & 
decision-making 

JH-P 

Jannis Hoch Unravelling the interplay between flood 
model selection, simulations outcomes, 
and resulting flood risk – a case study in 
the Ganges-Brahmaputra delta 

Applications & 
decision-making 

JLM-P 
Jude Lubega 
Musuuza, 
Louise 

Does the assimilation of earth observations 
and in-situ data affect the seasonal 
hydrological forecast quality? 

Earth observation & 
data assimilation 
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Crochemore, 
Ilias 
Pechlivanidis 

JO-P 

Jean Odry, 
Marie-Amélie 
Boucher, 
Vincent Fortin, 
Simon 
Lachance-
Cloutier, 
Richard 
Turcotte, 
Dominic 
Roussel 

Bayesian merging of large scale and local 
hydrological forecasts 
 

Earth observation & 
data assimilation; 
hydrological model 
development 

JS-P 
Jan Seibert 
and Marc Vis 

A few hundred catchments later – lessons 
from modelling large samples of 
catchments around the globe 

Hydrological model 
development 

JSL-P1 

Jorge 
Sanchez 
Lozano, 
Giovanni 
Romero 
Bustamante, 
Jim Nelson, 
Gustavious 
Williams, 
Alma Meyer, 
Riley Hales, 
Daniel Ames, 
Norm Jones 

From Global to Local: Development of a 
Bias correction method for the GEOGloWS 
ECMWF Streamflow Services global model 

Forecasting & 
uncertainty 

JSL-P2 

Jorge 
Sanchez 
Lozano, 
Angelica 
Gutierrez, Jim 
Nelson, Amir 
Givati, Manuel 
Conda, Alma 
Meyer 

From Global to Local: Validating Forecast 
High Flow Events from GEOGloWS 
ECMWF Streamflow Services 

Forecasting & 
uncertainty 

JW-P 

Julian Weier, 
Christoph 
Tyralla, 
Bastian Klein, 
Gernot 
Belger, 

Applying the hydrological model framework 
HydPy for data assimilation in order to 
improve operational medium-range 
forecasts within the Rhine basin 

Earth observation & 
data assimilation 
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Dennis 
Meißner 

KB1-P 

Katayoon 
Bahramian, 
Ashkan 
Shokri, 
Elisabeth 
Vogel, Siyuan 
Tian, Luigi 
Renzullo, 
Robert C 
Pipunic,Julien 
Lerat, Wendy 
Sharples, 
Chantal 
Donnelly 

Impacts of data assimilation on continental 
seasonal and short-term hydrological 
forecasts 

Earth observation & 
data assimilation 

KB2-P 

Konrad 
Bogner, 
Massimiliano 
Zappa, Luzi 
Bernhard, 
Chang Yuan-
Yuan 

How can we extend the horizon of skillful 
hydrological predictions? 

Forecasting & 
uncertainty 

KH-P 

Kirsti Hakala Forecasting seasonal water demand 
across Australia’s southern Murray Darling 
Basin 

Forecasting & 
uncertainty; co-
production & 
incorporating local 
knowledge; 
applications & 
decision-making 

LA-P 

Louise Arnal, 
Martyn Clark, 
Vincent Fortin, 
Alain 
Pietroniro, 
Vincent 
Vionnet, Andy 
Wood 

Understanding streamflow predictability on 
seasonal timescales across North America 

Forecasting & 
uncertainty; 
hydrological model 
development 

LC-P 

Laurie 
Caillouet, 
Olivier 
Vannier, 
Sabrina Celie 

Seamless combination of short-term 
deterministic with mid-term probabilistic 
hydrological forecasts 

Forecasting & 
uncertainty; 
hydrological model 
development; 
applications & 
decision-making 

LF-P Leila Evaluating the performance of a data- Forecasting & 
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Forouhar, 
Wenjan Wu, 
Quan J. 
Wang, Kirsti 
Hakala 
Assendelft, 
Yating Tang 

driven short-term irrigation demand 
forecasting model under different levels of 
data availability 

uncertainty; 
hydrological model 
development 

LN-P 

Lisanne 
Nauta, 
Christiana 
Photiadou, 
Peter Berg, 
Denica 
Bozhinova, 
Anna Eronn, 
Fulco Ludwig, 
Ilias 
Pechlivanidis 

Operational multi-model hydrological 
seasonal forecasts for Europe: 
development, skill and challenges 

Forecasting & 
uncertainty; 
hydrological model 
development 

LS-K 
Louise Slater Developments in hybrid hydrological 

forecasting 
Hydrological model 
development 

LS-P 

Luis 
Samaniego, 
Kelbling 
Matthias, 
Edwin 
Sutanudjaja, 
Niko 
Wanders, 
Alberto 
Martinez-de la 
Torre, Oldrich 
Rakovec, 
Robert 
Schweppe, 
Stephan 
Thober 

ULYSSES: a global multi-model 
hydrological prediction system 

Co-production & 
incorporating local 
knowledge; 
hydrological model 
development 

MB1-P 

Mark 
Bernhofen, 
Mark Trigg, 
Sarah 
Cooper, Anna 
Mdee 

Assessing the role of global datasets for 
flood risk management at national and 
catchment scales 

Forecasting & 
uncertainty; co-
production & 
incorporating local 
knowledge 

MB2-P 
Michel 
Bechtold 

Updating soil moisture and vegetation by 
assimilating Sentinel-1 backscatter: Impact 
on streamflow simulations 

Earth observations 
& data assimilation 
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MdM-P 

Marcio 
Augusto 
Ernesto de 
Moraes, Peter 
Salamon, 
Jerusa 
Peixoto, 
Rodolfo 
Moreda 
Mendes, 
Eduardo 
Fávero 
Pacheco da 
Luz 

GloFAS as fundamental tool in the Madeira 
River Crisis Room 
 

Co-production & 
incorporating local 
knowledge; 
applications & 
decision-making 

MW-K 

Micha 
Werner, Marc 
van den 
Homberg, 
Agathe 
Bucherie, 
Alexia Calvel, 
Ileen 
Streefkerk, 
Alexander 
Kaune 

Connecting large scale climate services to 
the local context? Look out of the window 

Co-production & 
incorporating local 
knowledge 

MW-P 

Maureen 
Wanzala, 
Andrea Ficchì, 
Hannah 
Cloke, Liz 
Stephens 

Assessment of Global Reanalysis Datasets 
for Catchment modelling Across Kenya 

Co-production & 
incorporating local 
knowledge; 
hydrological model 
development 

MY-P 

Masafumi 
Yamada, 
Takahiro 
Sayama, Dai 
Yamazaki 

Development of nationwide 150m high-
resolution Rainfall-Runoff-Inundation model 
for flood forecasting: Integration of 26,000 
cross-section data to improve flood 
predictions 

Earth observations 
& data assimilation 

PB-P 

Pierre Baguis, 
Emmanuel 
Roulin, Joris 
Van den 
Bergh, 
Stéphane 
Vannitsem, 
Alberto 
Carrassi, 
Gabrielle De 

Assimilation of backscatter radar 
observations in a hydrological model: a 
study for two catchments in Belgium 

Earth observations 
& data assimilation 
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Lannoy, Hans 
Lievens 

PD1-P 

Pradeep 
Dangol, 
Mandira Singh 
Shrestha 

Real time flood forecasting in the Chenab 
basin in Pakistan 

Earth observations 
& data assimilation; 
hydrological model 
development; 
applications & 
decision-making 

PD2-P 

Panayiotis 
Dimitriadis, 
Demetris 
Koutsoyiannis
, Theano 
Iliopoulou, 
Panos 
Papanicolaou 

Limits of predictability: a global-scale 
investigation of distribution and stochastic 
structure of key hydrological-cycle 
processes 

Forecasting & 
uncertainty 

PZ-P 

Pengcheng 
Zhao, Quan J. 
Wang, 
Wenjan Wu, 
Quichun Yang 

Which precipitation forecasts to use? 
Deterministic versus coarser-resolution 
ensemble NWP models 

Hydrological model 
development 

QJW-P 

QJ Wang, 
Yating Tang, 
Kirsti Hakala, 
Guy Ortlipp, 
Mark Bailey, 
Andrew 
Western, 
Senlin Zhou, 
Wenyan Wu, 
Yiliang Du 

Improving irrigation water availability 
forecasting: A case study involving 
Australia’s largest rural water corporation 

Forecasting & 
uncertainty; 
applications & 
decision-making 

QY-P 

Quichun 
Yang, Quan 
Wang, Kirsti 
Hakala 
Assendelft 

Effective calibration of precipitation 
forecasts across Australia using the 
Seasonally Coherent Calibration (SCC) 
model 

Forecasting & 
uncertainty 

RH-P 

Renaud 
Hostache, 
Sandro 
Martinis, 
Bernhard 
Bauer-
Marschallinge
r, Marco 
Chini, 

A first evaluation of the future CEMS 
systematic global flood monitoring product. 

Forecasting & 
uncertainty; Earth 
observation & data 
assimilation; 
applications & 
decision-making 
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Candace 
Chow, 
Senmao Cao, 
Ramona 
Pelich, Yu Li, 
Christian 
Boehnke, Lisa 
Knopp, Marc 
Wieland, 
Florian Roth, 
Wolfgang 
Wagner, 
Patrick 
Matgen, Peter 
Salamon 

RI-P 

Ruben Imhoff, 
Aart 
Overeem, 
Claudia 
Brauer, Hidde 
Leijnse, 
Albrecht 
Weerts, 
Remko 
Uijlenhoet 

Rainfall nowcasting using commercial 
microwave links from cellular 
communication networks 

Applications & 
decision-making 

RK-P 

Robert 
Keppler, Lieke 
Melsen, 
Albrecht 
Weerts 

Assimilation of streamflow into a distributed 
hydrological model using ConvLSTM 

Earth observations 
& data assimilation; 
hydrological model 
development 

SG-P 

Saeed Golian, 
Conor 
Murphy, 
Robert L. 
Wilby, Seán 
Donegan, 
Dáire Foran 
Quinn, Shaun 
Harrigan  

Seasonal forecasts of winter and summer 
precipitation for the Island of Ireland from 
dynamical-statistical methods 

Hydrological model 
development 

SH-P 

Shaun 
Harrigan, 
Iacopo 
Ferrario, Ervin 
Zsoter, 
Christopher 
Barnard, 

Delivering Global Flood Awareness System 
(GloFAS) data operationally to the 
hydrological community 

Forecasting & 
uncertainty; co-
production & 
incorporating local 
knowledge 
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Fredrik 
Wetterhall, 
Christel 
Prudhomme 

TB-P 

Tim Busker Forecast-based operation of blue-green 
roofs as a new solution to decrease the 
impact of extreme weather in cities 

Forecasting & 
uncertainty; 
applications & 
decision-making 

TBTP-P 

Thao Bui Thi 
Phuong, 
Kawamura 
Akira, Thi 
Nuong Bui, 
Tien Thuy Le 
du, Du Duong 
Bui, René 
Capell, 
Amaguchi 
Hideo, 
Leyland 
Julian, Mang 
Hung Le, Thi 
Ngoc Nguyen, 
Kantoush 
SamehAhmed
, Darby 
Stephen, 
Johan 
Strömqvist 

Application of HYPE Model in Simulating 
Streamflow and Suspended Sediment 
Concentration at Upper Srepok River Basin 
in Vietnam 

Forecasting & 
uncertainty; 
hydrological model 
development 

TJ-P 

Toni Jurlina, 
Calum Baugh, 
Hannah 
Cloke, 
Claudia Vitolo, 
Ruth 
Coughlan, 
Christopher 
Barnard, 
Florian 
Pappenberger
, Matthias 
Drusch, 
Christel 
Prudhomme 

Predicting river flow level categories using 
SMOS soil moisture within a machine 
learning approach 
 

Forecasting & 
uncertainty; Earth 
observations & data 
assimilation; 
hydrological model 
development 

TK-P 
Timo Kelder, 
Louise Slater, 

Exploiting SEAS5 (re-)forecasts to support 
risk-based decision making (UNSEEN) 

Forecasting & 
uncertainty; 
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Christel 
Prudhomme, 
Tim 
Marjoribank, 
Rob Wilby, 
Julia 
Wagemann 

applications & 
decision-making 

TS-P 

Takahiro 
Sayama, 
Masafumi 
Yamada, 
Yoshito 
Sugawara, 
Dai Yamazaki 

Ensemble Flash Flood Predictions Using a 
High-Resolution Nationwide Distributed 
Rainfall-Runoff Model: Case Study of the 
Heavy Rain Event of July 2018 and 
Typhoon Hagibis in 2019 

Forecasting & 
uncertainty 

VP-P 

Vanessa 
Pedinotti, 
Rémi Jugier, 
Marielle 
Gosset, 
Adrien Paris, 
Nicolas Picot, 
Gilles 
Larnicol, 
Laetitia Gal, 
Bachir 
Tanimoun, 
Kounge 
Soungalo 

Towards an operational forecasting system 
using altimetry assimilation : two case 
studies on the Niger and the Congo river 
basins. 

Earth observations 
& data assimilation 

WG-P 
Wouter 
Greuell, 
Ronald Hutjes 

The effects of post-processing on the 
performance of reservoir inflow at Itaipu 
(Brazil / Paraguay) 

Forecasting & 
uncertainty 

WP-K 

Wendy Parker From ensembles to uncertainty in 
hydrological prediction 

Forecasting & 
uncertainty; co-
production & 
incorporating local 
knowledge 

XC-P 

Xuelong Chen Remote Sensing of Global Daily 
Evapotranspiration based on Surface 
Energy Balance Method and Reanalysis 
data 

Earth observations 
& data assimilation 

AC-P 

Annie Y.-Y. 
Chang, 
Konrad 
Bogner, 
Daniela 

Post-processing hydro-meteorological 
tercile forecasts with weather regime data 
using machine learning 

Forecasting & 
uncertainty; 
hydrological model 
development 
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Domeisen, 
Massimiliano 
Zappa, 
Christian M. 
Grams, 
Samuel 
Monhart 

YS-P 
Yawen Shao An improved trend-aware post-processing 

method for GCM seasonal precipitation 
forecasts 

Forecasting & 
uncertainty 

YZ-P 

Yuerong 
Zhou, Wenjan 
Wu, Quan 
Wang, Rory 
Nathan 

Emulation of 2D hydrodynamic flood 
inundation model using deep learning with 
spatial reduction and reconstruction 

Hydrological model 
development 

 
 

Table A2. Classification of different types of uncertainty (based on Beven (2016), 
and workshop contributions that specifically address those types of uncertainty.  

Type of 
uncertainty 

Description Models  Workshop 
contributions 

Aleatory Uncertainty with stationary statistical 
characteristics. It may be structured 
(bias, autocorrelation, long term 
persistence), but can be reduced to a 
stationary random distribution 

Single 
model 

 

Single 
model + 
PP 

DM3-P 

Multi-
model 

 

Uncertainty arising from a lack of 
knowledge about how to represent the 

Single 
model 

TS-P, FF-P2 
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Epistemic 
(system 
dynamics) 

catchment system in terms of both 
model structure and parameters Single 

model + 
PP/+ML 

PD-P, TJ-P, DC-P, 
HT-P, CPH-P,  

Multi-
model 

BN-P, LS-P, GU-P, 
LC-P (deterministic 
+ probabilistic), JO-
P,  AW-P,  PZ-P 
(deterministic w/PP 
+ probabilistic), FW-
P, LA-P, FJ-P, GM-P 

Epistemic 
(forcing and 
response 
data) 

Uncertainty arising from lack of 
knowledge about the forcing data or the 
response data with which model outputs 
can be evaluated. This may be because 
of proportionality or interpolation issues 
when not enough information is 
provided by the observational 
techniques to adequately describe 
variables required in the modelling 
process 

Single 
model 

 TS-P, FF-P2, 

Single 
model + 
PP 

PD-P, TJ-P,  DC-P, 
DH-P, 

Multi-
model 

BN-P, GU-P, JO-P, 
LN-P, FW-P, LA-P, 
GM-P 

  

Epistemic 
(disinformati
on) 

  

Uncertainties in either system 
representation or forcing data that are 
known to be inconsistent or wrong. 

Single 
model 

TS-P, 

Single 
model + 
PP 

HT-P,  

Multi-
model 

JO-P 

Semantic/ 
linguistic 

Uncertainty about what statements or 
quantities in the relevant domain 
actually mean depending on the 
contexts or scale (e.g.: storm runoff, 

  HT-P 
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baseflow, hydraulic conductivity, 
stationarity, etc.) 

Ontological Uncertainty associated with different 
belief systems, including what are 
considered the appropriate assumptions 

   

 

 

List of Abbreviations 
 

Abbreviation Description 

C3S Copernicus Climate Change Service 

CDS Climate Data Store 

CEMS Copernicus Emergency Management Service 

CML Commercial microwave links 

ConvLSTM Convolutional Long Short Term Memory 

DA Data Assimilation 

DestinE Destination Earth 

DL Deep Learning 

EC-HEPEX Early Career Hepex 

ECMWF European Centre for Medium-range Weather Forecasts 
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EFAS European Flood Awareness System 

EO Earth Observation 

ESMs Earth System Models 

ET Evapotranspiration 

FAIR Findable, Accessible, Interoperable, Reusable 

GAN Generalized Adversarial Networks 

GCM Global Climate Model 

GFP Global Flood Partnership 

GloFAS Global Flood Awareness System 

GLOFFIS Global Flood Forecasting Information System 

HEFS Hydrologic Ensemble Forecasting System 

HEPEX Hydrologic Ensemble Prediction Experiment 

HEPS Hydrological Ensemble Prediction System 

I-CISK  Innovating Climate services through Integrating Scientific and local 
Knowledge 

LSTM Long Short-Term Memory 

ML Machine Learning 

NWP Numerical Weather Prediction 

PINN Physics Informed Neural Networks 
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SSM Surface soil moisture 

S2S Sub-seasonal to seasonal 

TAMIR Advanced Tools for pro-Active Management of Impacts and Risks 
Induced by Convective Weather, Heavy Rain and Flash floods in Europe 

TC Tropical cyclone 

 
 


