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We consider a class of models describing an ensemble of identical interacting agents subject to mul-
tiplicative noise. In the thermodynamic limit, these systems exhibit continuous and discontinuous
phase transitions in a, generally, nonequilibrium setting. We provide a systematic dimension reduc-
tion methodology for constructing low dimensional, reduced-order dynamics based on the cumulants
of the probability distribution of the infinite system. We show that the low dimensional dynamics
returns the correct diagnostic properties since it produces a quantitatively accurate representation
of the stationary phase diagram of the system that we compare with exact analytical results and
numerical simulations. Moreover, we prove that the reduced order dynamics yields the prognostic,
i.e., time dependent properties too as it provides the correct response of the system to external
perturbations. On one hand, this validates the use of our complexity reduction methodology since
it retains information not only of the invariant measure of the system but also of the transition prob-
abilities and time dependent correlation properties of the stochastic dynamics. On the other hand,
the breakdown of linear response properties is a key signature of a phase transition phenomenon.
We show that the reduced response operators capture the correct diverging resonant behaviour by
quantitatively assessing the singular nature of the susceptibility of the system and the appearance
of a pole for real value of frequencies. Consequently, this methodology can be interpreted as a low
dimensional, reduced order approach to the investigation and detection of critical phenomena in
high dimensional interacting systems in settings where order parameters are not known.

The investigation of dynamical phenomena in complex
networks constructed according to different topologies is
an extremely active research area [1–3]. Interacting agent
based models are commonly employed to model various
phenomena in the natural sciences, social sciences and en-
gineering [4, 5], such as cooperation [6], synchronisation
[7], systemic risk [8] and consensus formation [9]. Sev-
eral algorithms for sampling, optimization and the train-
ing of neural networks can be interpreted as interacting
particle systems [10–12]. In the thermodynamic limit,
such models often exhibit phase transitions as a result of
the complex interplay between the interacting dynamics
and the noise. Clearly, singularities associated to phase
transitions, such as the divergence of correlation proper-
ties [6] and the breakdown of linear response properties
[13, 14], can only be observed in the mean field (ther-
modynamic) limit. Consequently, their investigation in-
volves the study of (nonlinear and nonlocal) mean field
Fokker-Planck equation or a brute force approach, i.e.,
extensive numerical simulations of very large ensemble
of agents. Reduction of complexity can be achieved by
defining collective variables (reaction coordinates) able
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to accurately describe the full dynamics in a low dimen-
sional space. Nonetheless, while order parameters like
magnetization can in many cases easily deduced for equi-
librium systems using, e.g. symmetry arguments, the
definition of reaction coordinates for nonequilibrium sys-
tem is far more challenging [15–17].

The goal of this paper is to present a model reduc-
tion approach for the study of such infinite systems based
on a systematic approximation of the full infinite dimen-
sional dynamics in terms of a low number of ODEs. This
methodology can be applied to any interacting systems
model with mean field polynomial dynamics, with numer-
ous applications including cooperation phenomena [6],
synchronisation of nonlinear, possibly chaotic, oscillators
[18, 19] and emergent phenomena in neural networks and
life sciences [20, 21]. The dimension reduction procedure
we propose is based on a suitable closure method of the
infinite hierarchy of equations for the moments or, equiv-
alently, cumulants of the probability distribution of the
infinite dimensional system. Such closure method results
in a deterministic parametrization of the full dynamics
in terms of a low number of cumulants. One could po-
tentially improve on this by using the Mori-Zwanzig for-
malism [22, 23] to construct a stochastic, possibly non-
Markovian, parametrization [24–26]. From a data-driven
perspective, one could rely on empirical model reduction
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[27] techniques to obtain closures from partial observa-
tions of the system. The resulting closure structure is
given in terms of multilayer stochastic systems whose rel-
evance and robustness has also been highlighted from an
alternative, theory-informed parametrization perspective
[28]. As validation case studies, we apply our dimension
reduction methodology to investigate the nonequilibrium
continuous phase transition in a model featuring noise-
induced stabilisation phenomena [29] and a model fea-
turing an equilibrium discontinuous transition [30].

I. THE CLASS OF MODELS

We consider a system of exchangeable weakly interact-
ing one-dimensional diffusions whose dynamics is gov-
erned by the following Stratonovich SDE

dxi =

Fα(xi)−
θ

N

N∑
j

U ′ (xi − xj)

dt+ σ(xi) ◦ dWi

(1)
with initial condition xi ∼ ρ̂(x) and i = 1, . . . , N .
Each agent undergoes an internal dynamics given by
the vector field Fα(x), depending on a set of parame-
ters α, and is coupled with all the other agents through
a symmetric interaction potential U(x) = U(−x), with
θ denoting the interaction strength. Furthermore, dWi,
i = 1, . . . , N , are independent Brownian motions and
σ(x) > 0 ∀x ∈ R is a multiplicative diffusion coefficient.
The main assumption in this paper is that F (x), U(x)
and the diffusion matrix Σ(x) = σ2(x) all have a poly-
nomial functional form. We consider quadratic interac-

tions, U(x) = x2

2 , corresponding to cooperative interac-
tions among the agents that attempt to synchronise them

towards their common centre of mass x̄(t) = 1
N

∑N
i xi(t).

We are interested in the thermodynamic limit N → +∞
of Eq. (1). It is known that the empirical measure

ρN = 1
N

∑N
i δxi(t) converges (weakly) [31–33] to the one

particle distribution ρ(x, t) satisfying the nonlinear, non-
local Fokker-Planck (McKean-Vlasov) PDE that, accord-
ing to our setting, can be written as

∂ρ

∂t
=

∂

∂x

(
σ2(x)

2
ρ
∂

∂x

(
f〈x〉(x) + ln ρ

))
(2)

where ρ(x, 0) = ρ̂(x) and

f〈x〉(x) = 2

∫ x −F̂α(y) + θ (y − 〈x〉)
σ2(y)

dy + lnσ2(x) (3)

〈x〉 =
∫
R yρ(y, t)dy represents the first moment of the

distribution ρ(x, t) and F̂α(x) = Fα(x) + 1
2σ(x)σ′(x).

Eq. (2) exhibits, at low temperatures, non-uniqueness
of stationary solutions, that correspond to phase transi-
tions [30, 34].
Stationary solutions of Eq. (2) can be written as a one

parameter family of distributions

ρ0(x;m) =
e−fm(x)∫

R e
−fm(x)dx

≡ e−fm(x)

Z(m)
(4)

where the parameter m satisfies the selfconsistency equa-
tion

m = R(m) ≡
∫
R
xρ0(x;m)dx (5)

and Z(m) > 0 denotes the partition function.
Eq. (5) plays a major role in determining the station-
ary properties of the system. Solutions m? of Eq. (5)
correspond to stationary measures ρ0(x;m?) with first
moment 〈x〉 = m?, a suitable order parameter of the sys-
tem for this type of quadratic interactions. Partial infor-
mation on the stability of the invariant measures can be
obtained by the investigation of the slope of the selfcon-

sistency equation R′(m?) = dR(m)
dm |m? . In particular, if

R′(m?) > 1, the stationary solution ρ(x;m?) is unstable.

II. REDUCED ORDER DYNAMICS

In order to construct the reduced order dynamics, we
multiply Eq. (2) by xn, n ∈ N, and integrate over R.
Given our assumptions on the drift and diffusion terms,
this procedure results in an infinite hierarchy of equations
for the moments Mn = 〈xn〉 of ρ, see Appendix B for
more details. In order to elucidate on the above, we will
first consider model A defined by Fα(x) = −V ′α(x) where

Vα(x) = x4

4 −α
x2

2 is a double well potential if α > 0 and

the diffusion matrix is Σ(x) = σ2 + σ2
mx

2. This model
was introduced in [29] to investigate the effect of multi-
plicative noise on spatially extended systems. We men-
tion that, if σm = 0, model A becomes the well-known
Desai-Zwanzig model [35], a paradigmatic example fea-
turing an equilibrium continuous phase transition. The
state dependent noise arises as the parameter α is not
known with infinite precision and is allowed to randomly
fluctuate in time, namely α→ α+ σmdξ where dξ is an-
other uncorrelated Brownian motion. Model A shows a
noise induced stabilisation phenomenon. When σm 6= 0,
the multiplicative noise has a rectifying effect, pushing,
for strong enough coupling θ, the phase transition point
to higher and higher σ, see Appendix A and in particular
figure 3 for more details. We apply the procedure men-
tioned at the beginning of this section to model A and
obtain the following equations for the moments Mn

dMn

dt
= n

(
α− θ +

n

2
σ2
m

)
Mn − nMn+2+

+
n(n− 1)

2
σ2Mn−2 + nθM1Mn−1

(6)

with M0 = 1, M−1 ≡ 0. Firstly, we observe that the
global coupling among the agents gives rise to an inter-
action term between the order parameter 〈x〉 = M1 and
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 (a) (b)

FIG. 1. Phase diagram, 〈x〉 = 〈x〉(σ). The continuous blue line refers to the selfconsistency equation, the red dots to the
reduced order dynamics (n̄ = 4) and the magenta dots (with errorbars) to the numerical integration. Panel (a): continuous
transition given by model A. The inset at the bottom shows the absolute error ∆ between the reduced order dynamics and the
selfconsistency approach. The error ∆ for n̄ = 4 is out of scale and peaks at a value ∆ ≈ 0.1. The vertical dashed line refers
to the critical condition R′(0) = 1. Fixed parameters are (α, θ, σm) = (1, 4, 0.8). Panel (b): discontinuous phase transition
of model B. The insets show the relative error ∆rel between the reduced order dynamics and the selfconsistency approach.
The inset at the top (bottom) refers to the upper (lower) branch of the phase diagram. The vertical dashed line is obtained
numerically through the selfconsistency approach and its value has been consistently checked to yield a slope R′(m) such that
R′(m)− 1 ≈ 10−4. Fixed parameters are (α, θ, µ) = (1, 4, 0.02).

all the other moments Mn, introducing a nonlinear term
in the hierarchy for the moments. Secondly, the nonlin-
ear features of the dynamics given by Vα(x) introduce a
(linear) dependence of lower moments on higher degree
ones. The infinite hierarchy of moment equations (6) is
equivalent to Eq. (2) and no reduction in the level of com-
plexity of the mathematical description has been accom-
plished yet. The necessity of finding appropriate closure
schemes for the hierarchy arises. Were we to truncate the
system of Eqs. (6) at a specific level n̄, a closure scheme
for Mn̄+1, Mn̄+2 in terms of Mn with n < n̄ is needed.
Truncated moment problems and closure schemes are not
easily amenable to a mathematical investigation and are
known to introduce statistical assumptions whose valid-
ity is difficult to justify, if not from an a posteriori per-
spective, see [36–38].
Following [35, 39, 40], we propose to implement a cumu-
lant truncation scheme [40–42]. We introduce the cumu-
lants kn as

∞∑
n=1

kn(t)
λn

n!
= ln

∫
R
ρ(x, t)eλxdx (7)

The truncation scheme consists of imposing the condi-
tion kn̄+1 = kn̄+2 = 0. This procedure provides a
closure relations for M̄n̄+1 = M̄n̄+1(M1, . . . ,Mn̄) and
M̄n̄+2 = M̄n̄+2(M1, . . . ,Mn̄). Alternatively, one can ob-
tain from (7) and (2) an infinite hierarchy of equations
for the cumulants

dkn
dt

= Gn(k1, . . . , kn, kn+1, kn+2) (8)

where the explicit expression of the nonlinear func-
tion Gn(·) is written appendix B. Eq. (8) indicates
that the cumulant truncation scheme corresponds to a
parametrization of the dynamics given by Eq. (1), in
the limit N → +∞, in terms of a finite number n̄ of
cumulants. It is well known that such a scheme is incon-
sistent, since a function with a finite cumulant expansion
cannot be positive if the order of the highest cumulant
is larger than two [43]. Heuristically, a parametrization
in terms of cumulants is expected to perform better than
parametrizations in terms of (central) moments based on
the observation that a Gaussian distribution has van-
ishing cumulants kn = 0 for n > 2, while all (central)
moments are nonzero. For non-Gaussian distributions,
one expects that neglected higher-order cumulants will
be smaller than the corresponding (central) moments.
Moreover, the relevance of cumulants in the description
of statistical properties of complex systems, especially
in settings with athermal noise, has recently been high-
lighted, see [44, 45] and references therein. We refer the
reader to appendix C for the comparison between differ-
ent parametrizations and the validation of the cumulant
truncation scheme for the systems under investigation.
For model A, Eq. (5) predicts that the stable solution
〈x〉 = 0 bifurcates when R′(0) = 1 through a continu-
ous phase transition in two symmetric, competing states
with opposite order parameter. Panel (a) of Fig. 1 shows
the continuous phase diagram for the state with posi-
tive order parameter, obtained with the exact selfcon-
sistency equation and the reduced order dynamics, see
Eq. (8). As soon as n̄ = 4 cumulants (main panel) are
introduced, the reduced dynamics provides a very good
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 (b)(a)

FIG. 2. Green function G(t) (panel (a)) and susceptibility χ(ω) (panel (b)) for model A. The blue (black) lines refer to a
non-critical setting 5% below (above) the transition point. Red lines refer to critical settings. Fixed parameters are as in Panel
(a) of Fig. 1. The red color code and the arrows correspond to increasing values of n̄ = 4, 6, 8, 10, 14, 18, 22. In panel (b) black
and blue lines have been multiplied by a scaling factor for graphical purposes.

approximation of the phase diagram. The reduced dy-
namics converges from below - the true transition point
is underestimated by the reduced dynamics - to the ex-
act phase diagram as higher truncation are considered.
The accuracy of the reduced dynamics has been quantita-
tively assessed in terms of the absolute error ∆ (shown in
the inset) with respect to the selfconsistency approach.
The reduced dynamics has also been compared to nu-
merical simulations of an ensemble of N = 12000 agents
described by Eqs. (1). We have used the Milstein scheme
[46], that has strong order of convergence 1, with time
step ∆t = 0.01 and estimated the order parameter as
the time average, at stationarity, of the center of mass
x̄(t). Moreover, the reduced order dynamics has been
initialised with a Gaussian initial condition, such that
(k1, k2) = (0.1, 0.01) and all others cumulants set to zero.
Very good agreement is observed. Close to the phase
transition, finite size effects arise in the numerical sim-
ulations. Noise-induced transitions among the two sym-
metric solutions become a relevant feature and one should
consider the rectified order parameter (shown in the fig-
ure), obtained as the time average of x̄(t) conditioned on
the fact that the system is in the basin of attraction of
the positive solution. We have also probed the validity
of the cumulant based parametrization by investigating
discontinuous phase transitions. We introduce model B,
characterised by a tilted potential Vα,µ = Vα(x) + µx
and additive noise Σ(x) = σ2. Stationary properties of
the reduced dynamics, with Gaussian initial condition
(k1, k2) = (1, 0.01), are in very good agreement with the
other two approaches, see Panel (b). The insets show the
relative error ∆rel between the reduced dynamics and the
selfconsistency equation. The top one, referring to the
top branch of the phase diagram, shows that in the very
close proximity, represented as a shaded area, of the tran-
sition point, ∆rel jumps to higher values, due to the fact

that the reduced dynamics’ prediction for the transition
point, depending on the level of truncation n̄, underes-
timates the true one and approaches it from below as
n̄ increases. The bottom inset shows that ∆rel for the
bottom branch of the phase diagram is instead a smooth
function that is not affected by the transition. This con-
firms that the reduced dynamics is able to track, as σ is
parametrically changed, the disappearing attractor until
jumping to the other stable, smoothly changing, attrac-
tor. Noise-induced transitions are observed close to the
phase transition in the finite system. Due to the asym-
metry between the two competing states, the metastable
lifetime of the state with 〈x〉 > 0 decreases as the transi-
tion is approached and the system, after a short time, is
driven to the other state of much longer lifetime.
The above results confirm that the reduced order dynam-
ics correctly retains information of the exact invariant
measure of the system. Below, we show that the ap-
proximate dynamics also captures time-dependent prop-
erties, and, specifically, correlations, by investigating its
dynamical response to time-modulated external pertur-
bations. We report linear response properties of the re-
duced dynamics for model A (see appendix A for response
properties of model B). We perturb a stable stationary
state with a homogeneous perturbation in the drift term
F (x) → F (x) + εT (t), where ε is small. Such procedure

results in a one-cumulant perturbation k
(0)
1 → k

(0)
1 +ε for

Eqs. (8), where k
(0)
1 is the unperturbed order parame-

ter. Following [14], we choose as temporal modulation for
the forcing a Dirac’s δ: T (t) = δ(t), which corresponds
to a broad band forcing in frequency space. We then
observe the Green function G(t), associated to the order

parameter, defined by k1(t) = k
(0)
1 +ε

∫∞
0
G(t−τ)T (τ)dτ .

Convergence to the linear regime has been assessed eval-
uating the response for different values of ε. Panel (a) of
Fig. 2 shows that, at the transition point (red lines),
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the Green function has an exponential decay (see in-
set) with an associated timescale that is order of mag-
nitudes greater than what is observed in non-critical set-
tings (blue and black lines). Moreover, such timescale is
an increasing function of the level of truncation n̄ of the
reduced dynamics, whereas no dependence on n̄ is ob-
served for the non-critical Green functions - see panel (a)
of Fig. 2. The critical behaviour is linked to the break-
down of linear response theory at the phase transition
point, in the thermodynamic limit of Eq. (1) due to the
agent-to-agent interactions, thus being associated with
endogenous dynamical processes [13]. As the number of
agents N is increased, one observes an emerging singu-
lar behaviour in the susceptibility χ(ω), defined as the
Fourier Transform of G(t), signalled by a development of
a pole ω0 on the real axis of the frequencies [14]. The
infinite hierarchy (7) corresponds to the thermodynamic
limit of the ensemble of agents and one expects a diverg-
ing response in critical settings. However, we observe
that the truncation scheme introduces a mollifying effect
of the singular behaviour of the reduced response opera-
tors. The resonance of such operators can be investigated
through the susceptibility of the reduced dynamics that
can be written as χ(ω) = κ

ω−ω0+iγ(n̄) +r(ω) where ω0 = 0

and r(ω) is an analytic function in the upper complex ω
plane. As the number of reaction coordinates increases,
n̄ → ∞, the regularising effect vanishes, γ(n̄) → 0, and
the susceptibility develops a singular behaviour given by

limn̄→∞ χ(ω) = −iπκδ(ω − ω0) + κP
(

1
ω−ω0

)
+ r(ω).

Panel (b) confirms the appearance of an emerging pole
with an imaginary residue κ = i|κ|. The real part χRE
(main panel) of the susceptibility clearly shows the reso-
nant δ−like behaviour for ω = ω0. Alternatively, the top
inset shows that the primitive function of χRE close to
the pole (c = −0.01) converges accordingly to a Heaviside
function. We observe that n̄ = 4 does not show a reso-
nant behaviour, even though it is associated with a longer
timescale. The imaginary part χIM (ω) of the suscepti-
bility (bottom inset), behaving like a Cauchy principal
value distribution, yields a quantitative estimate |κ| ≈ 1
for the residue of the pole. It is possible to obtain a
formula for the amplitude of the residue as |κ| = 1

θτx,A

where (see appendix D)

τx,A =

∫ +∞
0
〈x(t) arctan

(
σm

σ x (0)
)
〉0dt

〈x arctan
(
σm

σ x
)
〉0

(9)

Numerical simulations on an ensemble of N = 16000
agents yield a value of τx,A ≈ 0.25 and, since θ = 4,
|κ| ≈ 0.99, validating thus our results. We remark that
the existence of the pole ω0 at the phase transition, as
opposed to its residue κ, depends neither on the forcing
T (t) nor on the choice of the observable and can be re-
lated to spectral properties of suitably defined evolution
operators [14]. This crucial property validates the use of
our cumulant based reduced dynamics to settings where
the order parameter is not known or cannot easily be
written in terms of the cumulants.

III. CONCLUSIONS

In this paper, we considered a class of models describ-
ing an ensemble of N identical interacting agents subject
to multiplicative noise that exhibits phase transitions in
the thermodynamic limit. We derived a reduced low-
dimensional system for the moments of the probability
distribution function of the mean field dynamics. We
showed that such approximate dynamics provides an ac-
curate representation of the stationary phase diagram,
even for a very low number (e.g. 4) of moments. This
indicates that the cumulants act as effective reaction co-
ordinates, which are able to capture the essential prop-
erties of the system with moderate loss of information
due to the cumulant truncation. Additionally, the lin-
ear response properties of the projected dynamics agrees
with that of the full system, and the breakdown of the
corresponding linear response operators can be used to
characterise the phase transition occurring in the system.
Hence, our methodology seems useful for performing lin-
ear stability analysis for a large class of interacting mul-
tiagent systems, and for predicting their response to forc-
ings of general nature. It is worth investigating how our
dimension-reduction methodology compares with what
one would obtain by applying variational autoencoders
[47] to construct a surrogate, low dimensional represen-
tation of the system. On top of the detection of critical
phenomena for high dimensional systems, a further appli-
cation of our methodology relates to the issue of param-
eter estimation for interacting systems. Current param-
eter estimation techniques rely on suitable fitting pro-
cedures of the observational data to the infinite dimen-
sional dynamics [48], whereas one could envision simpler
settings where the reduced order dynamics is taken as
the reference point. We expect that this complex reduc-
tion methodology will not prove to be as effective when
the system does not exhibit a clear separation of time or
phase space scales, see [49] and references therein for a
review of systems that can be “effectively reduced” either
from a theoretical or data-driven perspective.
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Appendix A: The models

In this section we provide further details on the models
we have studied in the paper. As specified in the main
text, we investigate multi agent systems whose dynamics
is given by the following equations

dxi =

Fα(xi)−
θ

N

N∑
j

U ′ (xi − xj)

 dt+ σ(xi)dWi

(A1)
where i = 1, . . . , N . The examples we have provided refer

to a quadratic interaction potential U(x) = x2

2 . This
results in

dxi = [Fα(xi)− θ (xi − x̄)] dt+ σ(xi)dWi (A2)

where x̄(t) = 1
N

∑N
i xi(t) is the common centre of mass

of the system. Given that the interaction potential is

convex, phase transitions of the system arise from non
convexity features of the local vector field F (x).
The first model (model A)we have investigated was intro-
duced in [29] to study the effect of multiplicative noise
on spatially extended systems. We consider the Desai-
Zwanzig model [6, 35, 50] settings where the local dy-
namics F (x) = −V ′α(x) is given by a double well poten-

tial Vα(x) = x4

4 −α
x2

2 and the noise is additive σ(x) = σ.
The equations for motions are given by

dxi =
[
αxi − x3

i − θ (xi − x̄)
]

dt+ σdWi (A3)

where the Ito convention is now used. The above equa-
tions describe a system at equilibrium. In the N → ∞
limit, it is useful to introduce the free energy functional
F [ρ] such that

F [ρ] =

∫
dxVα(x)ρ(x) +

θ

2

∫ ∫
dxdyρ(x)U (x− y) ρ(y) +

σ2

2

∫
dxρ(x) ln ρ(x)

:= V[ρ] + θW[ρ, ρ]− σ2

2
S[ρ]

(A4)

The above equation provides a meaningful interpretation
of the energy balance in the system: V[ρ] represents the
internal energy associated to the local potential Vα(x),
W[ρ, ρ] is the energy given by the interaction among the
agents and, lastly, S[ρ] is an entropic contribution. As
explained in the main text, the empirical measure ρN =
1
N

∑N
i δxi(t) converges in the N →∞ limit to a one agent

distribution ρ(x, t) satisfying a non linear and non local
Fokker Planck Equation. The corresponding non linear
Fokker Planck Equation of equations (A3) can be written
in terms of the Free Energy as

∂tρ =
∂

∂x

(
ρ
∂

∂x

δF

δρ

)
(A5)

Remarkably, this equation belongs to a rich class of dis-
sipative PDEs, including the heat equation, the porous
medium equation and the diffusion-aggregation equation,
that are gradient flows with respect to the Wasserstein
metric on the space of probability measure with finite
second moment, see [51] and references therein. The free
energy F [ρ] is a Lyapunov function for the dynamics and
stationary solutions of the McKean Vlasov equation are
critical points of the free energy functional. In fact, the
time derivative of F [ρ] along solutions of equation (A5)
is [51, 52]

dF [ρ]

dt
= −

∫
dyρ(y)

(
∂

∂y

δF

δρ

)2

≤ 0 (A6)

If an unique minimiser of the free energy exists, the dy-

namics converge exponentially fast, in relative entropy, to
the unique stationary state and the rate of convergence
to equilibrium can be established [53]. However, the min-
imiser is not necessarily unique and multiple stationary
solutions can coexist. Furthermore, convexity properties
of the free energy functional provide a one-to-one char-
acterisation of the stability properties of the stationary
solutions.
The model we have investigated in the main text arises
from the assumption that the parameter α is not known
exactly but rather erratically fluctuates in time, that is
α→ α+ σmdξ where dξ is another, uncorrelated, Brow-
nian motion. This results in a set of equations for the N
interacting agents that reads

dxi = [−V ′(xi)− θ (xi − x̄)] dt+σmxi◦dξ+σdWi (A7)

where the symbol ◦ stands for a generic (not necessarily
Ito) prescription for the equations. It is convenient to
write the above set of equations in the equivalent, in law,
form

dxi = [−V ′(xi)− θ (xi − x̄)] dt+ σ(xi) ◦ν dWi (A8)

where σ(x) =
√
σ2 + σ2

mx
2 is a state dependent stochas-

tic term. It is well known that the presence of multi-
plicative noise introduce a modelling issue, since it is not
clear, a priori, what prescription should be given to the
stochastic integral defining the stochastic equation [54–
56]; see also discussion in [57]. We interpret Equations
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FIG. 3. Order parameter 〈x〉 as a function of (σ, θ) obtained via the self consistency equation analysis. The red dashed line and
the continuous red line represent the exact transition curve for σm = 0 and σm 6= 0, see equation (A11). The other parameters
of the model are fixed and equal to α = 1, σm = 1.5, ν = 1/2.

(A8) as a generic one parameter family of stochastic in-
tegrals parametrised by a parameter ν ∈ [0, 1]. Differ-
ent values of ν correspond to different prescription of
the SDEs. In particular, α = 0, 1/2, 1 correspond to
the Ito, Stratonovich and Klimontovich prescription re-
spectively. Different conventions of the stochastic inte-
gral lead to different stability properties of the SDE. Re-
markably, the convention for a given system might also
vary depending on the operational conditions [58]. In
the main text of the paper we always choose ν = 1

2 . It
is known that a generic SDE can be transformed into
an Ito-SDE by suitably modifying the drift coefficient as
Fα(x) → Fα,ν(x) = Fα(x) + νσ(x)σ′(x) [54]. Since it
is more convenient to work with the Ito prescription, we
apply this transformation to equations (A8) and obtain

dxi = [−Vν(xi)− θ (xi − x̄)] dt+ σ(xi)dWi (A9)

where Vα,ν(x) = Vα(x) + νσ2
m
x2

2 = x4

4 −
(
α+ νσ2

m

)
x2

2 .
The introduction of a fluctuating parameter in the
drift term corresponds to applying an external, state-
dependent noise that breaks the detailed balance condi-
tion, thus driving the N−particle system to an out of
equilibrium state. Equation (3) in the main text yields
in this setting

f〈x〉(x) = −
α− θ + (ν − 1)σ2

m + σ2

σ2
m

σ2
m

ln

(
1 +

(σm
σ
x
)2
)

+

+
x2

σ2
m

− 2
θ〈x〉
σσm

arctan
(σm
σ
x
)

(A10)

The analysis of the self consistency equation (5) (main
text) provides insightful information on the stationary
phase diagram of the model. In particular, symmetries
of the problem force the system to always have the triv-
ial solution m? = 0, corresponding to disordered state

ρ0(x; 0) of vanishing order parameter. This can be easily
shown by observing that R(−m) = −R(m) since sta-
tionary distributions satisfy ρ0(x;m) = ρ0(−x;−m), see
equation (3) and (4) in the main text. Moreover, if m?

is a solution of the self consistency equation, so is −m?.
We thus expect that two symmetric branches of stable
solutions will arise as soon as the disordered state loses
stability. The disordered state becomes unstable as soon
as R′(0) = 1 which reads

θ

σσm
〈x arctan

(σm
σ
x
)
〉0 =

1

2
(A11)

where the expectation value 〈·〉0 is taken with respect
to the stationary distribution ρ0(x; 0). Since the order
parameter vanishes at the transition point, the above
equation yields, fixed all the other parameters, the
critical value σc = σc(α, θ, σm) of the strength of the
additive noise. Figure 3 shows the multiplicative noise
induced stabilisation phenomenon we mentioned in
the main text. Indeed, the multiplicative noise has a
rectifying effect, pushing, for strong enough coupling
θ, the transition point to higher and higher values of
σ. Moreover, the amplitude of the order parameter
gets magnified, since it exceeds the maximum value√
α, the minimum point of the potential Vα(x), that

is attained in the low noise regime (σ → 0) when σm = 0.

The second model (model B) we have investi-
gated features a discontinuous phase transition and is
obtained by breaking the symmetry x → −x through a
tilted potential as Vα,k = Vα+µx, with µ > 0. Moreover,
the system is subject to thermal noise σ(x) = σ. The
pitchfork bifurcation of invariant solutions one obtains
for µ = 0 disappears. In particular, there exists a
smooth, stable branch of negative order parameter 〈x〉
for all values of the strength of the noise σ. However,
decreasing σ, a pair of solutions appear through a saddle
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FIG. 4. Green Function G(t) as a function of time for model B. δ represents the relative distance from the phase transition
point.

node bifurcation, yielding another branch of stable
〈x〉 > 0, with the other one being unstable, see Figure
1 in the main text. The saddle node bifurcation is
characterised by the condition R′(mc) = 1 that reads

θ

σ2
〈(x−mc)

2〉0 =
1

2
(A12)

where mc is the value of the positive order parameter at
the transition point and the expectation value is taken
with respect to the stationary distribution ρ0(x;mc).
Since mc is not known a priori and has to be evalu-
ated numerically by solving the self consistency equation,
the above equation does not directly provide the value of
the critical noise σc at which the saddle node bifurca-
tion takes place. Nevertheless, it provides a criterion to
assess how close the critical point evaluated numerically
is to the exact one by evaluating the slope R′(mc) and
comparing it to the exact value 1.
The most interesting feature of model B is represented
by the discontinuous phase transition and the jump from
the top branch to the bottom one as the parameter σ is
changed. Such analysis has been performed in the main
text. Nevertheless one could study the dynamical re-
sponse of the system as the transition point is approached
from below on the top branch. Since it is associated with
the loss of stability of the invariant measure, we expect
similar results to hold for this model as well. We refer to
the main text and to appendix D for the explanation (and
for the notations) of the linear response investigation we
have performed. Figure 4 shows that the Green function
associated to the order parameter 〈x〉 and a time delta
δ(t) homogeneous perturbation develops a timescale, for
settings near the phase transition, that is orders of magni-

tude bigger than the timescale associated to non critical
settings. We remark that such behaviour does not de-
pend on the specific form of the forcing [13]. The figure
refers to a level of truncation of n̄ = 22. One could also
perform an analysis by looking at different values of n̄.
We expect to obtain similar results to what is reported
in the main text. However, such analysis is more compli-
cated here by the discontinuous feature of the transition.
Firstly, the reduced dynamics transition point depends
on n̄ and the analysis becomes increasingly hard very
close to the transition point, see shaded area in panel (b)
of Figure 1 in the main text. Secondly, Figure 4, clearly
shows that the timescale associated to the Green function
is highly sensitive to small deviations, such as δ = 0.1%,
from the transition point.

Appendix B: Hierarchy of equations for the
moments and cumulants

In this section we will provide a few more details on
how to obtain the dynamical evolution of the moments
and cumulants of the distribution of the infinite system
ρ(x, t). As explained in the main text, ρ(x, t) satisfies a
non linear and non local Fokker Planck equation that we
write here in an alternative way as

∂ρ

∂t
=

∂

∂x

((
F̂α(x) + θ (x− 〈x〉)

)
ρ
)

+
1

2

∂2

∂x2

(
σ2(x)ρ

)
(B1)

where F̂α = Fα + 1
2σ(x)σ′(x). If we multiply (B1) by

xn and integrate on the phase space R, we obtain after
performing some integration by parts
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dMn

dt
= n

(
〈F̂αxn−1〉 − θ〈(x− 〈x〉)xn−1〉

)
+
n (n− 1)

2
〈xn−2σ2(x)〉 =

= n
(
〈F̂αxn−1〉 − θ (Mn −M1Mn−1)

)
+
n (n− 1)

2
〈xn−2σ2(x)〉

(B2)

where 〈·〉 represents the expectation value with respect
to the probability distribution ρ and we have introduced
the moments Mn = 〈xn〉. We observe that the main as-
sumption in this paper, namely the fact that we assume
that the local drift Fα and the diffusion coefficient σ2(x)
have a polynomial functional form, implies that both

〈F̂αxn−1〉 and 〈xn−2σ2(x)〉 can be written in a closed
form in terms of the moments Mn. Indeed, let us ex-
plicitly carry out these calculations for model A. Similar
results hold for model B. We recall that model A is de-
fined by a diffusion coefficient is σ2(x) = σ2 + σ2

mx
2 and

a local drift Fα(x) = αx− x3, hence

〈xn−2σ2〉 = 〈xn−2
(
σ2 + σ2

mx
2
)
〉 = σ2Mn−2 + σ2

mMn

〈F̂αxn−1〉 = 〈
(
Fα +

1

2
σ2x

)
xn−1〉 = αMn −Mn+2 +

1

2
σ2
mMn

(B3)

From (B2) one then obtains an infinite hierarchy of equa-
tions for the moments as

dMn

dt
= n

(
α− θ + n

σ2
m

2

)
Mn −Mn+2+

+
n (n− 1)

2
σ2Mn−2 + θM1Mn−1

(B4)

The above calculations have been obtained for a
quadratic interaction potential U(x) = x2

2 , but we
remark that infinite hierarchies of equations for the
moments such as (B4) can be obtained for any poly-
nomial interaction potential U(x). If the functions
describing the dynamics are generic, as opposed to
polynomials, it is not possible to find close equations
for the moments. However, one could potentially
recur to a Taylor expansion to approximate, in a

controlled way, these functions as polynomials and
then construct the corresponding approximate hierarchy
of equations for the moments. Of course, this would
introduce another source of approximation on top of the
one deriving from the truncation scheme of the hierarchy.

Following [35] one can alternatively obtain an infi-
nite hierarchy of equations for the cumulants of the
probability distribution ρ. We remark that the cumu-
lants kn are defined through the cumulant generating
function G(λ, t) = ln g(λ, t) as

∞∑
n=1

kn(t)
λn

n!
= ln

∫
ρ(x, t)eλxdx ≡ ln g(λ, t) (B5)

Equation (B1) yields an evolution equation for the cu-
mulant generating function

dG

dt
=

1

g

dg

dt
=

1

g

∫
∂ρ

∂t
eλxdx =− λ

g

∫
dx
(
x3 −

(
α− θ + νσ2x2

)
− θ〈x〉

)
ρeλx+

+
λ2

2g

∫
dx
(
σ2 + σ2

mx
2
)
ρeλx

(B6)

By separating the different powers of the variable x we can write the above equation in terms of G, its derivative
G′(λ, t) = ∂G

∂λ and higher order derivatives as

dG

dt
= λθ〈x〉+

λ2σ2

2
+ λ(α− θ + νσ2)G′ +

λ2σ2
m

2

(
G′2 +G′′

)
−

− λ
(
G′G′2 + 3G′G′′ +G′′′

) (B7)

Using the definition of the cumulants given in equation (B5) and comparing same powers of λ one finally obtains
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the equations for the cumulants

1

n

dkn
dt

= θk1δ1n +
σ2

2
δn2 +

(
α− θ + σ2

m

(
ν +

n− 1

2

))
kn − kn+2+

+ σ2
m(1− δn1)

(n− 1)!

2

n−1∑
i=1

kikn−i
(i− 1)!(n− i− 1)!

−

− 3(n− 1)!

n∑
i=1

kikn−i+2

(i− 1)!(n− i)!
−

− (n− 1)!

n∑
i=1

n−i+1∑
j=1

kikjkn+2−i−j

(i− 1)!(j − 1)!(n− i− j + 1)!

(B8)

Appendix C: Truncation Schemes

This section is divided in two parts. In the first, we
provide the algebra to perform a cumulant truncation
scheme at any generic order n for the hierarchy of equa-
tions for the moments (B4). Secondly, we compare the
performances of multiple truncation schemes and assess
that the cumulant truncation scheme correspond to the
best parametrisation choice for the thermodynamic limit
of the interacting agents system.

1. Cumulant Truncation Scheme

Firstly, we observe that the relationship between cu-
mulants and moments of a probability distribution is

kn =

n∑
l=1

(−1)l−1(l − 1)!Bnl(M1, . . . ,Mn−l+1) (C1)

where Bnl(M1, . . . ,Mn−l+1) are partial (incomplete) Bell
polynomials. In particular, these polynomials are given
by

Bnl(M1, . . . ,Mn−l+1) =
∑ n!

j1!j2! . . . jn−l+1!

(
M1

1!

)j1 (M2

2!

)j2
. . .

(
Mn−l+1

(n− l + 1)!

)j1
(C2)

where the sum is taken over all the sequences
j1j2 . . . jn−l+1 of non negative integers such that the fol-
lowing two conditions hold

j1 + j2 + . . . jn−l+1 = l

j1 + 2j2 + · · ·+ (n− l + 1)jn−l+1 = n

Moreover, we will make extensive use of the following two
properties of the Bell polynomials

Bn1(M1, . . . ,Mn) = Mn (C3)

Bn2(M1, . . . ,Mn−1) =
1

2

n−1∑
k=1

(
n

k

)
MkMn−k (C4)

The closure approximation M̄n̄+1 can be easily found by
separating the term l = 1 from equation (C1) and using
(C3),

kn = Mn+

n∑
l=2

(−1)l−1(l−1)!Bnl(M1, . . . ,Mn−l+1) (C5)

In fact, evaluating the above equation for n = n̄+ 1 and
imposing the condition kn̄+1 = 0 results in

M̄n̄+1 = −
n̄+1∑
l=2

(−1)l−1(l − 1)!Bn̄+1,l(M1, . . . ,Mn̄+2−l)

(C6)
The evaluation of M̄n̄+2 requires more care since it in-
volves M̄n̄+1 as well. Let us first observe that the cumu-
lant kn̄+2 can be written as, see equation (C1),

kn̄+2 = Mn̄+2 −Bn̄+2,2(M1, . . . ,Mn̄+1)+

+

n∑
l=1

(−1)l−1(l − 1)!Bn̄+2,l(M1, . . . ,Mn̄+3−l)

(C7)

Using equation (C4) we can write

Bn̄+2,2(M1, . . . ,Mn̄+1) = (n̄+ 2)Mn̄+1M1+

+

n̄∑
k=2

(
n̄+ 2

k

)
MkMn̄+2−k

(C8)
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where we have separated the term k = 1 and k = n̄ + 1
from the total sum.
Finally, by imposing the condition kn̄+2 = 0 and consis-
tently estimating Mn̄+1 as M̄n̄+1 we obtain the approxi-
mated value for Mn̄+2 as

M̄n̄+2 = (n̄+ 2)M̄n̄+1M1 +
1

2

n̄∑
k=2

(
n̄+ 2

k

)
MkMn̄+2−k−

−
n̄+2∑
l=3

(−1)(l−1)(l − 1)!Bn̄+2,l(M1, . . . ,Mn̄+3−l)

(C9)

In conclusion, the cumulant truncation scheme consists
in the finite set of equations (6) with n = 1, . . . , n̄ along
with the boundary conditions M0 = 1 andMn̄+1 = M̄n̄+1

, Mn̄+2 = M̄n̄+2 as given by equations (C6) and (C9)
respectively.

2. Comparison between different truncation
schemes

The infinite hierarchy of equation for the moments
(B4) or cumulants (B8) are equivalent to the McKean
Vlasov equation (B1) describing the thermodynamic
limit of the interacting agents system. For obvious
practical reasons, it is necessary to find appropriate
truncation schemes to the hierarchy resulting in a
finite, preferably small, number of ordinary differential
equations for the moments or cumulants. In partic-
ular, common truncation schemes include a moment
truncation scheme (MT), a central moment truncation
scheme (cMT) and a cumulant truncation scheme (CT).
These schemes correspond to imposing ad hoc boundary
conditions to the hierarchy of moments or cumulants.
Following [35, 40] we have implemented in the main text
the CT scheme and proved that the cumulants act as
effective reaction coordinates for the system. The low
dimensional reduced order dynamics for a small number
of cumulants, resulting from the CT scheme, is able to
capture both stationary and time dependent properties
of the thermodynamic limit of the interacting agents
system. We recall that the CT scheme of order n̄ is
equivalent to imposing the condition kn̄+1 = kn̄+2 = 0 in
equations (B8). This is equivalent, as explained in the
previous section, to imposing the boundary conditions
(C6) and (C9) to the hierarchy of equations for the
moments (B4). Instead, the MT scheme at level n̄ is
obtained by imposing the condition Mn̄+1 = Mn̄+2 = 0
for equations (B4). Similarly, when the above vanishing
condition is applied to the central moments one obtains
the cMT scheme. Figure 5 provides a quantitative
comparison between the three approaches and clarifies
why the CT is preferable in our settings. Panel (a)
shows the phase diagram of the system. The black solid
line derives from solving numerically the self consistency
equation and provides a reference point for the ap-

proximate results stemming from the reduced dynamics
obtained from the CT (red dots) and the MT (lines with
markers) schemes. It is clear that a parametrisation in
terms of cumulants provides a better approximation,
fixed the order n̄, of the dynamics of the system than
a parametrisation in terms of moments. As shown in
the main text too, a parametrisation in terms of as low
as n̄ = 4 cumulants yields a good approximation of
the stationary dynamics, see also the bottom left inset
showing the absolute error ∆ between the CT and the
self consistency equation. In particular, as explained in
the main text, near the phase transition point one needs
to include a higher number of reaction coordinates to
achieve a better performance. On the contrary, the MT
scheme yields a reduced order dynamics that does not
capture the stationary properties of the system in most
of the range of values spanned by the strength of the
noise σ.

In order to investigate in a quantitative way the
difference between the three truncation schemes we in-
troduce the metrics δ1 = |Mn|−|kn| and δ2 = |M ′n|−|kn|,
where we have denoted with M ′n the central moment of
order n. These metrics provide a measure, at each order
of truncation n, of the difference of the magnitudes
of the moments and central moments with respect to
the corresponding cumulant. Panel (b) shows that δ1
and δ2 are positive meaning that the cumulants kn are,
in magnitude, always smaller than the corresponding
(central) moments, validating a posteriori our choice of
using a CT scheme.

Appendix D: Linear Response Theory for
McKean-Vlasov Equation: Singularities of the

susceptibility

In this section we will provide more details about the
linear response properties of model A. The ultimate goal
of this section is to prove the formula for the residue of
the singular part of the susceptibility χ(ω) at the phase
transition.
Invariant measures ρ0(x) of the McKean Vlasov equation,
see equation (2) in the main text, satisfy the eigenvalue
problem L〈x〉0ρ0(x) = 0, where the linear differential op-
erator L〈x〉0 is defined by

L〈x〉0ψ(x) =
∂

∂x

(
σ2(x)

2
ψ
∂

∂x

(
f〈x〉0(x) + lnψ

))
(D1)

where ψ(x) is a smooth function and f〈x〉0(x) is defined
in equation (3) in the main text. We now perturb the
stationary state by applying a perturbation to the drift
Fα(x) → Fα(x) + εX(x)T (t), where ε � 1. We can ob-
serve the effect of the perturbation in terms of the mea-
sure of the system as ρ(x, t) = ρ0(x)+ερ1(x, t)+ . . . . Al-
ternatively, we can investigate the time dependent prop-
erties of any observable of the system after the perturba-
tion. In the following we will observe the response of the
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FIG. 5. Panel (a): phase diagram for model A. The continuous black line corresponds to the phase diagram as obtained from
the self consistency equation, see main text. The red dots correspond to the CT scheme of order n̄ = 4. The continuous lines
with markers correspond instead to a MT schemes of increasing order. The bottom left inset shows the absolute error ∆ between
the self consistency equation and the CT scheme. Panel (b): the top (bottom) panel shows the difference in magnitude between
moments (central moments) and cumulants for increasing order of truncation. Moments, central moments and cumulants have
been obtained from the known expression of the invariant distribution ρ0(x;m) where m has been evaluated through the self
consistency equation, see main text. Here the parameters are (α, θ, σm, ν) = (1, 4, 0.2, 0.5). Moreover, in panel (b), σ ≈ 1.

order parameter 〈x〉 and write 〈x〉 = 〈x〉0+ε〈x〉1(t) where
〈·〉1 represents the expectation value with respect to the
measure ρ1(x, t). We define the Fourier Transform of any
function f(t) as f(ω) =

∫
f(t)eiωtdt. The response of the

order parameter in frequency space is given by [13, 14]

〈x〉1(ω) = χ(ω)T (ω) (D2)

where the susceptibility χ(ω) is written as

χ(ω) =
Γ(ω)

1− θΓ(ω)
(D3)

The microscopic susceptibility Γ(ω) is related to micro-
scopic correlation properties of the system in the unper-
turbed state described by ρ0. In particular, Γ(ω) is the
Fourier Transform of the microscopic response function
Γ(t) that can be written as a suitable correlation function
as [13]

Γ(t) = −Θ(t)〈 1

ρ0(x)

∂

∂x
(ρ0X(x)) exp

(
L†〈x〉0t

)
x〉0 (D4)

where the operator L†〈x〉0 is the adjoint of L〈x〉0 and can

be interpreted as the generator of the Koopman operator
of the stationary dynamics described by ρ0(x). For gradi-
ent systems with thermal noise, it is possible to write Γ(t)
as a time derivative of suitable correlation properties. We
remark that for general non equilibrium systems this is
not always possible. However, given the structure of the
problem, we are able find an analogous formula for Γ(t).
As described in the main text, we evaluate the response
of the system to a homogeneous perturbation X(x) = 1.
The microscopic response function, see equation (D4), is

Γ(t) = −Θ(t)

∫
dx
∂ρ0

∂x
exp

(
L†〈x〉0t

)
x =

= −Θ(t)

∫
dxx exp

(
L〈x〉0t

) ∂ρ0

∂x
=

= +Θ(t)

∫
dxx exp

(
L〈x〉0t

)
ρ0(x)

∂

∂x
f〈x〉0(x)

(D5)

where we have used the definition of the adjoint of an
operator and equation (4) in the main text to evaluate
the derivative of the stationary distribution. We now
define the function g(x) = − 1

σσm
arctan

(
σm

σ x
)

such that

its derivative is ∂g(x)
∂x = − 1

σ2(x) . We then evaluate the

following expression

L〈x〉0 (gρ0) =
∂

∂x

(
σ(x)2

2
gρ0

∂

∂x

(
f〈x〉0(x) + ln ρ0 + ln g

))
=

=
∂

∂x

(
σ(x)2

2
gρ0

∂

∂x
ln g

)
=

∂

∂x

(
σ(x)2

2
ρ0

∂

∂x
g

)
=

= −1

2

∂

∂x
ρ0 = +

1

2
ρ
∂

∂x
f〈x〉0(x)

(D6)
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where we have used the fact that f〈x〉0(x) + ln ρ0 = Z =
constant.

The microscopic response function can thus be written
as

Γ(t) = − 2

σσm
Θ(t)

∫
dxx exp

(
L〈x〉0t

)
L〈x〉0 arctan

(σm
σ
x
)
ρ0(x) =

= − 2

σσm
Θ(t)

d

dt

∫
dxx exp

(
L〈x〉0t

)
arctan

(σm
σ
x
)
ρ0(x) =

= − 2

σσm
Θ(t)

d

dt
Cx,A(t)

(D7)

FIG. 6. Correlation function Cx,A(t) as a function of time.
The orange line in the inset corresponds to an exponentially
decaying function y = 0.1e−t/τ where τ = 0.25. The param-
eters of the model are the same as in Figure 2 of the main
text.

where in the last line we have introduced the correla-
tion function between observable x and observable A =
arctan

(
σm

σ x
)

defined as

Cx,A(t) = 〈x(t)A (x (0))〉0 − 〈x〉0〈A〉0

=

∫
dxx exp

(
L〈x〉0t

)
A(x)ρ0(x)− 〈x〉0〈A〉0

(D8)

The microscopic susceptibility can thus be written as

Γ(ω) =

∫ +∞

−∞
dteiωtΓ(t) =

2

σσm

(
Cx,A(0) + iωĈx,A(ω)

)
(D9)

where Ĉx,A(ω) =
∫ +∞

0
eiωtCx,A(t) is the (one-sided)

Fourier transform of the correlation function Cx,A(t).
We can then show that the macroscopic susceptibility
χ(ω) develops a singular behaviour for a real frequency

ω0 = 0 at the phase transition. Let us observe that equa-
tion (A11), that characterises the phase transition line,
can be written as

θ

σσm
Cx,A(0) =

1

2
(D10)

since 〈x〉0 = 0 at the transition point. In conclusion,
using all the above results, the susceptibility χ(ω) of the
system is

χ(ω) = −1

θ
+i

1

ω

σσm

θ2Ĉx,A(ω)
= −1

θ
+i

1

ω

Cx,A(0)

θĈx,A(ω)
(D11)

Being related to the spectral properties of the operator
L〈x〉0 , the quantity Ĉx,A(ω) is an analytical function at
the phase transition [13, 14, 50]. Consequently, the above
equation shows that linear response theory breaks down
at the phase transition, with the susceptibility χ(ω) de-
veloping a simple pole in ω = ω0 = 0 with residue

κ = Res
ω=ω0

χ(ω) =
i

θ

Cx,A(0)

Ĉx,A(0)
=

i

θτx,A
(D12)

where τx,A is the integrated auto-correlation time defined
by

τx,A =
Ĉx,A(0)

Cx,A(0)
=

∫ +∞
0

Cx,A(t)dt

Cx,A(0)
(D13)

Let us observe that, as σm → 0, the above equations
are compatible with the results of [50]. We have nu-
merically estimated the correlation function Cx,A(t) by
evaluating the one-agent correlation function ci(t) be-
tween xi and A(xi) and then averaging over the whole
ensemble of agents (N = 16000), thus yielding Cx,A(t) =
1
N

∑N
i=1 ci(t). The integrated correlation time τx,A has

been estimated by imposing a cut off T = 1.5 on the
time integral corresponding to the moment after which
the noisy signal takes over the exponential decay of the
correlation function (see inset of Figure 6). The result-
ing value is τ = 0.25091 with corresponding amplitude
of the residue k = 0.99636, which agrees with what has
been obtained through the reduced order dynamics, see
Figure 2 in the main text.
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