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A B S T R A C T

A principal objective in agriculture is to maximise food production; this is particularly relevant with the
added demands of an ever increasing population, coupled with the unpredictability that climate change brings.
Further improvements in productivity can only be achieved with an increased understanding of plant and crop
processes. In this respect, mathematical modelling of plants and crops plays an important role. In this paper we
present a two-scale mathematical model of crop yield that accounts for plant growth and canopy interactions.
A system of nonlinear ordinary differential equations (ODEs) is formulated to describe the growth of each
individual plant, where equations are coupled via a term that describes plant competition via canopy–canopy
interactions. A crop of greenhouse plants is then modelled via an agent based modelling approach in which
the growth of each plant is described via our system of ODEs. The model is formulated for the African drought
tolerant legume bambara groundnut (Vigna subterranea), which is currently being investigated as a food source
in light of climate change and food insecurity challenges. Our model allows us to account for plant diversity
and also investigate the effect of individual plant traits (e.g. plant canopy size and planting distance) on the
yield of the overall crop. Informed with greenhouse data, model results show that plant positioning relative to
other plants has a large impact on individual plant yield. Variation in physiological plant traits from genetic
diversity and the environmental effects lead to experimentally observed variations in crop yield. These traits
include plant height, plant carrying capacity, leaf accumulation rate and canopy spread. Of these traits plant
height and ground cover growth rates are found to have the greatest impact on crop yield. We also consider a
range of different planting arrangements (uniform grid, staggered grid, circular rings and random allocation)
and find that the staggered grid leads to the greatest crop yield (6% more compared to uniform grid). Whilst
formulated specifically for bambara groundnut, the generic formulation of our model means that with changes
to certain parameter’s, it may be extended to other crop species that form a canopy.
1. Introduction

A changing climate and the ever increasing demands for food pro-
duction in a growing world population require further improvements
in agricultural productivity, which can only be achieved with an in-
creased understanding of plant and crop processes. In this respect,
mathematical modelling of plants and crops plays an important role.
There has been a large amount of work undertaken in this area with
two fundamental aims, firstly, to investigate and develop understanding
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of plant processes and secondly, to make predictions. The majority of
this work, for either aim, focuses either on describing processes within
a plant such as genetic regulatory networks (Hammer et al., 2002),
descriptions of an entire plant in isolation (Yan et al., 2004) or the
growth of many plants simultaneously, i.e. crop growth (Li et al., 2009).

Crop models provide a quantitative means of predicting growth,
development and yield of a crop (Monteith et al., 1980). They are useful
in modelling the interactions between crop growth and environmental
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factors; enabling an evaluation of growth limitation caused by climate
factors (Aggarwal and Kalra, 1994). Even for one particular purpose
there are many variations in the approaches used. Beyond crop models
(those that deal with the aggregate plant scale), plant models (those
that consider the single plant scale) are tools that can be used to better
understand the underlying processes of crop development. The process
of plant growth can be studied at several levels of detail, ranging from
sub-plant to the multi-plant level.

At the crop scale, physiological processes at the plant scale are
often taken for granted leaving biomass formation and food yield to
be typically taken as a function of management factors, such as water
irrigation and soil tillage (Goudriaan and Van Laar, 1994). It is a
challenge in science to explain findings at the crop scale in terms of
the physiological processes at the plant scale.

In this work we are concerned with understanding the effect that in-
dividual plant behaviour, in particular growth and plant–plant canopy
interactions, has on the overall growth and development of the crop.
We are interested in developing a mathematical framework that is
computationally practicable and provides insight on the impact plant-
ing arrangements and genetic variability (between plants) has on the
overall crop yield. Our mathematical model is constructed using the
test crop of bambara groundnut (Vigna subterranea), an underutilised
African legume which is currently being investigated for its ability to
become a staple food crop in more arid areas of the world and in the
context of a changing climate. Our mathematical model is developed
in a way that it may be applied to other crop species, provided crop
species form a plant canopy. Before detailing the physiological char-
acteristics of bambara groundnut, we provide a brief overview of the
mathematical modelling of individual plants to date.

Many models that work on the individual plant scale examine
the allocation of assimilated nutrients for cell reproduction, hereby
referred to as assimilates. Ma et al. (2010) discusses the growth of
an individual plant in regards to its source–sink relationships, paying
specific attention to competition between assimilates within the plant
and plant topology, but do not discuss competition between plants.
More examples of models of this nature can be found in Cieslak et al.
(2011), Marcelis et al. (1998) and Zhang and DeAngelis (2020).

There has been an ever increasing importance placed on includ-
ing plant architecture within models (Fourcaud et al., 2008). Godin
Godin (1999) provides us with several methods of representing plant
architecture with a range of complexities to be used in functional–
structural models. More recently, Zhang and DeAngelis (2020) has
reviewed Agent Based Models (ABMs) applied to the plant science,
where both the individual and multi-plant level is considered. In both
Godin (1999) and Zhang and DeAngelis (2020), complexity of the plant
architecture ranges from coarse level representations such as modelling
an entire plant structure as a single module to much finer levels where
a tree’s structure is split into many repeated components (e.g. branches,
stems and leaves). At the most basic level, geometric representations of
tree crowns can be used efficiently to model light interception. These
geometric representations can take the form of a cylinder or sphere,
but can also take more flexible and complex representations that come
at an ‘intermediate’ computational cost between simpler geometric
shapes and more elaborate computational representations. Models that
investigate the more precise aspects of canopy structure are useful in
examining processes such as the optimisation of photosynthesis. The
application of these detailed architectural models to predicting whole
crop yield is less obvious but it is clear such architectural features are
important (Burgess et al., 2015). Limitations of these models include
a limit to the number of possible individuals within the model. Addi-
tionally, the spatial locations of individuals relative to neighbours are
not taken into account. Instead, shadowing is expressed as a function
of available light.

In the cases where all plants within the crop are not treated as a
single entity, an individual-based approach is used where the growth
2

of each plant is described. Bauer et al. (2002) discusses the importance
of including spatial positioning and a zone of influence where inter-
actions with neighbours occur in individual-based methods. The aim
of this work was to investigate the cyclic dynamics in perennial plant
populations. The growth rate of individual plant size is determined
using non-linear mathematical functions. In addition to the growth of
individual plants, Bauer et al. model the change in population of a
field of plants. Here, plant reproduction rate is determined by a linear
relationship between individual plant size and the spatial positioning
of newly introduced plants, using a two-dimensional exponential prob-
ability function. Plant mortality is determined by plant age and the
degree of competition so that once the combined effect of these two
variables meets a certain threshold, the plant is assumed to die.

The zone of influence model described by Cournede et al. (2008) is
another individual-based model that describes crop scale growth. The
zone of influence take the shape of a circle and is the area a single plant
impacts upon. The growth of individual plants and the interactions
between them is aggregated to the many plant level. The growth of a
population of plants is simulated by coupling individual plants using
the neighbour–neighbour competition for light. Here, competition is
calculated as a function of spatial overlap between two plant canopies.
Plant shadowing is calculated using a Poisson probability model that
determines whether an infinitesimally small element of a plant’s surface
area is shadowed by a neighbouring plant. The model assumes strictly
vertical irradiance and canopy foliage is uniformly distributed amongst
the zone of influence. Despite these generalisations, the method gives
a good general approach and applications of this methodology are far
reaching.

In contrast to the generalised approach of Cournede et al. (2008)
and Godin and Caraglio (1997) describes a more detailed topological
method. In this case the plant is divided into its individual components
and interactions between these are modelled using tree-graph struc-
tures. The components can be divided into spatial or mechanical ones.
These models can be allowed to vary in time, however the process
of doing this is somewhat arbitrary and consists of piecing together
separate ‘snap-shots’ of the plants’ topological structure.

The way in which competition is included in an individual-based
model can vary. Schneider et al. (2006) explores a number of meth-
ods of incorporating inter-plant competition, which are referred to as
competition kernels. These kernels include, but were not limited to,
spatial overlap between two circular canopies, where canopy area was
taken to be a function of biomass. The inter-plant competition for all
kernels is limited to pairs of plants and does not explore the case of
multiple plants overlapping at the same point. The interactions that
one plant has with others is summed over all neighbouring plants. It
was found in this work that zone of influence models were significantly
more efficient at capturing crop behaviour and that there exists a
large amount of asymmetry in competition, whereby if one of the two
competing plants is significantly larger than the other, the smaller plant
experiences the majority of competition.

Gaudio et al. (2021) discusses the importance of combining mod-
elling approaches in order to best represent within and between plant
process. In particular, the importance of recognising how traits that
have been measured under fluctuating conditions are best charac-
terised by functional models. For example, crop response to plant
density and water-stress dynamics. In this same work, Gaudio et al.
(2021) also provides examples where applying a simplified approach to
modelling a certain process is appropriate. For example, applying the
turbid-medium approach and Beer–Lambert law when modelling light
partitioning among plants is sufficient and accuracy is only marginally
improved by more complex models.

1.1. Bambara groundnut

Bambara groundnut is an underutilised crop species that has been
recognised for its considerable ability to produce high yields in drought

conditions (Aliyu et al., 2015). It is an annual herb that grows to
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Fig. 1. The bambara groundnut plant. Here (a) is a schematic of a typical plant canopy whilst (b) is a birds-eye view of a single plant 51 days after sowing.
approximately 30 cm high and is similar to the groundnut (peanut)
in morphology in that it grows leaves on lateral stems just above
ground level and develops pods containing seeds underground. Each
pod contains between one and four seeds that are used for human and
animal consumption. It can be categorised into three types; bunched,
semi-bunched and spreading with the internode length determining
which category it lies in. Seeds are variable in their shape, colour and
hardness and it is the appearance of the pods along with the plants
spreading type which determine which cultivar (plant variety) they
belong to Linnemann and Azam-Ali (1993).

As an underutilised crop, there has been no rigorous breeding pro-
grammes as often occurs for established varieties (Aliyu et al., 2015).
Instead it is landraces, defined as a locally adapted variety of a species,
that are grown by farmers (Karunaratne, 2009). In this work, two such
landraces are investigated namely, Uniswa Red and S19-3. Of these,
S19-3 is considered to have been evolved for hot, dry climates causing
it to have a faster life cycle, which minimises the potential damage
caused by droughts. Uniswa Red is more adapted to wetter, colder
climates and has a longer life cycle. For both landraces, germination
occurs generally between seven and fifteen days depending on water
availability, temperature and genetic variety (Cornelissen, 2005; Mwale
et al., 2007). Plants begin to produce flowers between 30–55 days after
sowing and fertilised flowers produce pods underground approximately
30 days after fertilisation (Linnemann and Azam-Ali, 1993). It has been
found that the time from sowing to flowering is not always affected by
the number of daylight hours in a day, however the time to podding
is Azam-Ali et al. (2001). Leaves grow on multiple lateral stems that
spread along the ground, as illustrated in Fig. 1.

There has been much work done in quantifying external (e.g.
weather) and crop management effects on the yield of bambara ground-
nut (Alshareef, 2010; Mabhaudhi and Modi, 2013), but to date there
has been little mathematical modelling of bambara as a crop. Work
has not examined in detail the effect of canopy interactions on biomass
production. Instead the total number of crops is treated as a single
entity and competition is incorporated using a density factor (Cor-
nelissen, 2005; Karunaratne et al., 2011). Current bambara groundnut
mathematical models show reasonable similarities between simulations
and experimental data, however these simulations are often site spe-
cific and underestimate above ground dry matter production in the
3

greenhouse. It is theorised that this could be due to underestimating
the photosynthetic potential of the plant (Cornelissen, 2005).

Karunaratne et al. (2011) discusses the importance of temperature
in modelling bambara groundnut. Like many of the major crops such
as wheat, cowpea and rice, bambara groundnut has been shown to
be strongly affected by extremes in temperature. The BAMGRO model
(Karunaratne, 2009) uses a system of dynamical deterministic equa-
tions to simulate the leaf development, plant biomass and pod mass of
the entire crop. It operates between two interconnected processes: the
progress through developmental phases and the rate of biomass acquisi-
tion. This work pays particular attention to the effect that temperature
and drought have on growth at the crop level. Brink et al. (1999)
recognises the strong link between photo-period and temperature on
phenological development but applies it in a different way. Here a
relatively simple method is applied to modelling bambara groundnut.
The rate of progress towards a phenological stage is calculated using
a combination of three linear equations that depend on temperature
and photo-period. A benefit of this method is that the interaction of
photoperiod and temperature on the influence on the crop disappears.
This is beneficial as Brink et al. (1999) demonstrates that not all of the
plants are affected by long photo-periods. The method has been applied
to several types of annual crops such as soya bean, cowpea, chickpea,
lentil and barley in the work of Summerfield et al. (1991).

In this paper we formulate, parameterise and analyse a multi-
scale mathematical model describing the growth of bambara groundnut
plants from the individual to many plant (crop) scale. The growth and
development of each individual plant, which is assumed to consist of an
individual stem and canopy, is described using the theory of nonlinear
ordinary differential equations (ODEs). The individual plant model is
parameterised using greenhouse data, analysed mathematically and
model simulations compared with experimental data. A crop scale
model is then generated by considering planted arrays of individual
plants, whereby the growth and development of each plant is described
by our governing system of ODEs. Interactions between plants occur via
their canopies. The effect of canopy–canopy interactions is investigated
in the context of the yield of individual plants as well as that of the
overall crop. Our manuscript is organised as follows. In Section 2 we
present our individual plant model. This is extended in Section 3 to the

crop scale where we describe how canopy–canopy interactions between
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Fig. 2. Two competing plants, whose primary canopies we consider in this work
comprises those parts of the canopy which receive direct sunlight. We assume each
plant consists of a single stem and canopy. In this scenario Plant 2 has grown higher
than Plant 1 thus overshadowing part of its canopy.

a plant and its neighbours are calculated, introduce our agent based
algorithm and non-dimensionalise our governing ODEs. Steady-states of
the individual plant model are analysed in Section 4 and model param-
eterisation discussed in Section 5. Numerical simulations of the crop
scale model are presented in Section 6 and compared with experimental
data. The model is numerically investigated further in Section 7, where
key mechanisms responsible for affecting crop yield are identified via a
sensitivity analysis, and how different planting layouts impact overall
crop yield is considered in Section 7.2. Section 7.3 extends this analysis
to consider the effect genetic variation between plants has on total
yield. Our paper closes with a discussion and summary of our main
findings in Section 8.

2. Individual plant model

For the purposes of this model, the plant canopy is simplified
to a disc representing the upper most layer of leaves, raised above
the ground by a core stem as shown in Fig. 2. This simplification
assumes that the areas of the canopy that gain energy from direct
sunlight are those that contribute most significantly to plant growth and
development. It is likewise a restriction of sunlight to these areas of the
canopy, via interaction with other plant canopies that diminishes the
energy received. This approximation also simplifies the mathematical
model allowing us to capture the effects of interplant competition
without being computationally burdensome on the many plant scale. In
addition, this simplified plant geometry is transferable to many other
plants.

Like BAMGRO (Karunaratne et al., 2011), our model incorporates
two interconnected processes: the crop maturation rate and the rate
of biomass acquisition. Crop maturation rate, or crop phenology, are
the different developmental phases of crop growth. Movement through
these phases is considered non-reversible and strongly dependent on
temperature. The developmental stages consist of two main phases,
namely vegetative and reproductive. Unlike many grains used for food,
where the change between vegetative and reproductive acts like a
switch, these phases overlap for bambara groundnut. Thus the plant
continues to develop new leaves in the reproductive stage.

The rate of leaf appearance is measured as a function of cumulative
thermal time where thermal time is the sum of the average daily
temperature above the critical value (Cornelissen, 2005; Karunaratne
et al., 2011). This can be done in a number of ways, either the leaves
per cumulative thermal time can be measured as a series of piecewise
linear relationships (Cornelissen, 2005) or a Gaussian relationship can
be used to model the new leaf rate (Karunaratne et al., 2011). This
Gaussian approach has also been used in mathematical models of other
plant species (Esnal and Lopez-Fernandez, 2010). The advancement in
developmental (phenological) age, i.e. the stages of growth, is also
4

measured in terms of thermal time. This is one of the most widely
used approaches in crop models (Alm et al., 1988; Granier et al., 2002;
Gramig and Stoltenberg, 2007; Karunaratne et al., 2011). It has been
shown that phenological stages such as emergence, leaf initiation and
leaf appearance rate occur at a precise thermal time after germination
(Granier et al., 2002). In the BAMGRO model (Karunaratne et al.,
2011), the leaf appearance rate and hence the leaf number and leaf area
are calculated as a function of thermal time. This is then incorporated
into the biomass acquisition equation to simulate the green biomass and
crop yield. The method has been adopted in this work and the process
is described in more detail in Section 2.2.

In what follows we describe the formulation of our mathematical
model for one plant which includes a description of plant height, leaf
area, ground cover, canopy and pod growth.

2.1. Plant height

The height of each plant is assumed to grow logistically and decay
exponentially so that

𝑑ℎ(𝑡)
𝑑𝑡

= 𝛼ℎℎ(𝑡)
(

1 −
ℎ(𝑡)
𝑘ℎ

)

− 𝑑ℎℎ(𝑡), (1)

where 𝛼ℎ is the growth rate, 𝑘ℎ is the maximum height and 𝑑ℎ is the
height decay rate.

2.2. Leaf area

To describe the growth in total leaf area over time, we first intro-
duce a concept known as cumulative thermal time. Consider a critical
temperature 𝑇𝑐𝑟𝑖𝑡 above which the plant will grow and below which
it will not. The daily effective temperature 𝑇𝑒𝑓𝑓 (𝑇𝑎𝑣𝑔 , 𝑡) is then the
average difference between the temperature and critical temperature
over the day, subject to the temperature being greater than the critical
temperature and below a maximum temperature 𝑇𝑐𝑒𝑖𝑙. For convenience,
a piecewise linear function for temperature is applied, whereby samples
taken each hour are assumed to describe the behaviour over the day.
We then have

𝑇𝑒𝑓𝑓 (𝑇𝑎𝑣𝑔 , 𝑡) =
1
24

24
∑

𝑗=1

(

𝑇𝑗 (𝑡) − 𝑇𝑐𝑟𝑖𝑡
)

, (2)

where 𝑇𝑗 (𝑡) is the sampled hourly temperature in one day, 𝑇𝑐𝑟𝑖𝑡 is the
critical temperature required for growth, and 𝑗 refers to the hour of the
day. The average hourly temperature is given by 𝑇𝑎𝑣𝑔(𝑡) =

∑

𝑇𝑗 (𝑡)∕24,
which for convenience will be treated as constant for each day, but may
change between days. By doing so, 𝑇𝑎𝑣𝑔(𝑡) becomes the daily average
temperature. Cumulative thermal time 𝑇𝐶 (𝑇𝑎𝑣𝑔 , 𝑡) is the daily effective
temperature integrated over a given period of time so that

𝑇𝐶 (𝑇 , 𝑡) = ∫

DAS

0
𝑇𝑒𝑓𝑓 (𝑇 , 𝑡)𝑑𝑡,

where DAS are the number of days after sowing. This concept is some-
times referred to as the thermal time or temperature sum (Karunaratne,
2009). The cumulative thermal time can be thought of as the number
of temperature units that are required for plant growth and is measured
in units known as ‘degree days’, thus the daily effective temperature is
measured in ‘degree days per day’.

During the vegetative phase, the rate of leaf development for bam-
bara groundnut differs over time for different temperatures. However,
when measured in degree days leaf production is constant for all
temperatures (Karunaratne, 2009). When bambara groundnut passes
from the vegetative to flowering and podding stages, leaf production
continues but decreases significantly (Mkandawire, 2007).

Literature data indicates that leaf accumulation exhibits Gaussian
like behaviour in relation to cumulative thermal time (Karunaratne,
2009), with a maximum growth rate 𝑎 (𝑡), a time of peak growth 𝑏 (𝑡),
𝐿 𝐿
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and a time window where significant leaf growth occurs 𝑐𝐿(𝑡). Thus leaf
area 𝐴(𝑡) growth rate can be described by

Leaf area growth rate = 𝐿𝐴𝑎𝐿(𝑇𝑎𝑣𝑔 , 𝑡)𝑒𝑥𝑝

(

−
(𝑇𝐶 (𝑡) − 𝑏𝐿(𝑇𝑎𝑣𝑔 , 𝑡)

𝑐𝐿(𝑇𝑎𝑣𝑔 , 𝑡)

)2)

,

(3)

where 𝐿𝐴 is the leaf area per leaf and 𝑎𝐿(𝑇𝑎𝑣𝑔 , 𝑡), 𝑏𝐿(𝑇𝑎𝑣𝑔 , 𝑡), and
𝑐𝐿(𝑇𝑎𝑣𝑔 , 𝑡) are all species specific parameters that depend on the daily
effective temperature 𝑇𝑒𝑓𝑓 (𝑇𝑎𝑣𝑔 , 𝑡). Here we assume for simplicity that
𝑎𝐿(𝑇𝑎𝑣𝑔 , 𝑡) = 𝑎𝑇𝑒𝑓𝑓 (𝑇𝑎𝑣𝑔 , 𝑡), 𝑏𝐿(𝑇𝑎𝑣𝑔 , 𝑡) = 𝑏𝑇𝑒𝑓𝑓 (𝑇𝑎𝑣𝑔 , 𝑡) and 𝑐𝐿(𝑇𝑎𝑣𝑔 , 𝑡) =
𝑐𝑇𝑒𝑓𝑓 (𝑇𝑎𝑣𝑔 , 𝑡), where 𝑎, 𝑏 and 𝑐 are positive constants.

Once the plant shifts from the vegetative stage to the flowering
and podding phases, the primary sink in energy is no longer leaf
development but is instead pod development. When this occurs, and
to what degree, is subject to various stresses on the plant, the most
critical of which is temperature. For high temperatures, pod growth is
decreased, but leaf mass continues to increase, meaning that although
the plant is producing pods, leaf production continues at a higher rate
compared to lower temperatures. We account for this in our model by
defining a temperature dependent degradation rate that decreases for
high temperatures causing more biomass to be partitioned to the leaves.
Thus, when the temperature is high the majority of absorbed energy is
partitioned to leaf maintenance. Leaf degradation is thus described by

Leaf area degradation rate = 𝑑𝑙𝑇𝑠𝑙(𝑇𝑎𝑣𝑔 , 𝑡)𝐴(𝑡), (4)

where 𝑑𝑙 is a degradation rate constant and

𝑇𝑠𝑙(𝑇 , 𝑡) =
𝑇𝑜𝑝𝑡 − 𝑇𝑐𝑟𝑖𝑡

𝑇𝑎𝑣𝑔(𝑡) − 𝑇𝑐𝑟𝑖𝑡
. (5)

Thus if the temperature is below the optimum growth value of 𝑇𝑜𝑝𝑡,
leaf area degradation increases and for temperatures above optimum
leaf area degradation decreases. The further temperature deviates from
the optimum, the further 𝑇𝑠𝑙(𝑇𝑎𝑣𝑔 , 𝑡) is from 1. Similarly to the daily
effective temperature, a piecewise function can be used to model the
temperature over time, making use of sampled or predicted data. It is
not necessary that the sampled temperature points be equal to that used
for the daily thermal temperature.

Bringing all this together, the rate of change of leaf area per plant
𝐴(𝑡) over time is given by

𝑑𝐴(𝑡)
𝑑𝑡

= 𝐿𝐴𝑎𝐿(𝑇𝑎𝑣𝑔 , 𝑡) exp

(

−
(𝑇𝐶 (𝑡) − 𝑏𝐿(𝑇𝑎𝑣𝑔 , 𝑡)

𝑐𝐿(𝑇𝑎𝑣𝑔 , 𝑡)

)2)

−𝑑𝑙𝑇𝑠𝑙(𝑇𝑎𝑣𝑔 , 𝑡)𝐴(𝑡),

(6)

here 𝑇𝑠𝑙(𝑇𝑎𝑣𝑔) is given by Eq. (5).
The data used to formulate this work has been collected from

reenhouse experiments where temperature has been kept constant. As
uch, Eq. (2) need no longer be dependent on time at all and becomes

𝑒𝑓𝑓 (𝑇 ) = 𝑇𝑎𝑣𝑔 − 𝑇𝑐𝑟𝑖𝑡, (7)

here 𝑇𝑎𝑣𝑔 is the imposed average daily temperature. Note, the tem-
erature is constant over time but different between experiments.

Cumulative thermal time can then be described by

𝐶 (𝑇 , 𝑡) = 𝑡 × 𝑇𝑒𝑓𝑓 (𝑇 ). (8)

ubstituting Eqs. (7) and (8) into Eq. (6) gives

𝑑𝐴(𝑡)
𝑑𝑡

= 𝐿𝐴𝑎𝑇𝑒𝑓𝑓 (𝑇 ) exp
(

−
( 𝑡 − 𝑏

𝑐

)2)

− 𝑑𝑙𝑇𝑠𝑙(𝑇 )𝐴(𝑡). (9)

Hereafter, temperature will be assumed constant and the impact of
temperature changing with time will not be considered.
5

2.3. Ground cover

Whilst we have calculated the total leaf area of our canopy, not all
of this area will be affected directly by light. In order to approximate
how much of the canopy is intercepted by light radiation, we first need
to calculate the canopy shadowing or ground cover the plant exhibits.
Data was not available for the size of individual canopies and so as part
of the development of this project, we conducted a study measuring
canopy size over time for two different planting densities. The details
and respective data of this study are described in Section 5. It was found
that a Gaussian relationship similar to that devised for leaf area best
describes the evolution of ground cover. This relationship allows us to
determine when peak growth of the ground cover occurs, how wide the
window of peak growth is and the maximum growth rate. We assume
the maximum growth rate of the ground cover 𝐺(𝑡) will be a function
of leaf area such that

𝑑𝐺(𝑡)
𝑑𝑡

= 𝛼𝑔𝐴(𝑡) exp

(

−
( 𝑡 − 𝑏𝑔

𝑐𝑔

)2)

, (10)

where 𝛼𝑔 is the ground cover growth rate, 𝑏𝑔 determines the time of
eak growth and 𝑐𝑔 determines the range of time for which peak growth
ccurs.

.4. Canopy growth

Now that leaf area and ground cover have been determined, the
rowth rate of the canopy can be calculated. The intercepted radiation
plant canopy is able to absorb 𝑅 = 𝑅(𝑡) through a canopy decreases

exponentially in terms of intensity from those areas closest to sunlight.
A well-established approximation for a plant’s radiation absorption is
given by the Beer–Lambert law (de Wit, 1965)

𝑅(𝑡) = 𝑅0(1 − exp(−𝜅𝛾(𝑡))). (11)

Here 𝑅0 is the available photosynthetically active radiation above the
canopy, 𝛾(𝑡) denotes the leaf area index, which is the leaf area per unit
ground surface area and 𝜅 is the extinction coefficient. The extinction
coefficient is determined by the leaf orientation and the angle of the
light source with respect to the leaves, so it would be 1 for horizontal
flat leaves with light incident from directly overhead; for other light
directions, the extinction coefficient will no longer be 1 for such leaves.
This method of calculating the absorbed radiation is common in plant
models and typically 𝛾(𝑡) is calculated so that the total leaf area of all
plants is divided by the total plot area. In this case, we are considering
a single plant and hence we adapt the local area index such that it is
defined as the ratio between plant leaf area and ground area per plant

𝛾(𝑡) =
𝐴(𝑡)
𝐺(𝑡)

, (12)

where 𝐴(𝑡) is the total leaf area of the canopy (given by the solution
f Eq. (3)) and 𝐺(𝑡) is the ground cover of the plant’s canopy (given
y the solution of Eq. (10)) (Cournede et al., 2008). Here, 𝛾(𝑡) can be

thought of as the thickness of the disc that represents a plant canopy;
𝛾(𝑡) > 1 would imply that the leaf area is greater than the ground
cover with multiple layers of leaves and thus a thicker disc. Conversely,
𝛾(𝑡) < 1 implies that the leaf area is less than the ground cover area
which would indicating spread out leaves in a single layer.

To find the total radiation that has been absorbed by a plant, the
total radiation per area 𝑅(𝑡), given by Eq. (11), needs to be multiplied
by the surface area of the plant’s canopy which intercepts the radiation
i.e. the ground cover 𝐺(𝑡). After absorbing the photosynthetically active
radiation, the plant must then convert that energy into biomass. This
is incorporated into the model by including an efficiency coefficient 𝑐𝑒,
which describes the mass gained per unit of radiation. In addition, no
matter how much radiation the plant is exposed to, there is a maximum
size the plant can reach. This limiting factor is incorporated via the
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inclusion of a carrying capacity 𝑘𝑐 , so that as biomass approaches 𝑘𝑐 ,
the growth rate decreases.

Combining the total incoming radiation with the plant’s ability to
convert radiation into mass gives the canopy biomass (𝑐(𝑡)) growth rate

Canopy growth rate = 𝑐𝑒𝑅(𝑡)𝐺(𝑡)
(

1 −
𝑐(𝑡)
𝑘𝑐

)

. (13)

There is also some amount of canopy decay due to leaf senescence and
pests. This is assumed proportional to the size of the canopy and is
given by

Canopy decay rate = 𝑑𝑐𝑐(𝑡), (14)

where 𝑑𝑐 is the biomass decay rate and is assumed constant. By com-
bining the relationships described in Eqs. (13) and (14) the change in
canopy biomass over time can be written as

𝑑𝑐(𝑡)
𝑑𝑡

= 𝑐𝑒𝑅0𝐺(𝑡)
(

1 − 𝑒−𝜅𝛾(𝑡)
)

(

1 −
𝑐(𝑡)
𝑘𝑐

)

− 𝑑𝑐𝑐(𝑡), (15)

where 𝑅(𝑡) has been substituted for as given by Eq. (11).

2.5. Pod growth

We derive an equation describing pod growth on an individual
plant. Using pod mass experimental data for S19-3 and Uniswa Red
(Karunaratne, 2009) the time at which podding commences can be
extracted. It was found that for all three temperatures 63 and 75
days were indicative of pod initiation for S19-3 and Uniswa Red,
respectively.

It is assumed here that the increase in pod mass 𝑃 (𝑡) is a proportion
of the increase in canopy biomass 𝑐(𝑡). Hence the growth rate of 𝑃 (𝑡)
is a function of the growth rate of 𝑐(𝑡). We further assume that as
pod mass increases it becomes a stronger sink for absorbed energy and
hence acquires a larger proportion of canopy biomass growth as it itself
becomes larger. Thus, the change in 𝑃 (𝑡) in time depends on both the
rate of canopy biomass growth and the mass of the pod itself. We finally
assume that pod mass cannot be larger than the canopy biomass and
so 𝑐(𝑡) is the carrying capacity for pod mass. Thus the change in pod
mass over time is given by

𝑑𝑃 (𝑡)
𝑑𝑡

= 𝛼𝑃 𝑇𝑠𝑝(𝑇 )
𝑑𝑐(𝑡)
𝑑𝑡

𝑃 (𝑡)
(

1 −
𝑃 (𝑡)
𝑐(𝑡)

)

− 𝑑𝑝𝑃 (𝑡), (16)

here 𝛼𝑝 is a growth rate for pod mass, 𝑇𝑠𝑝(𝑇 ) is a temperature stress
nd 𝑑𝑝 is the pod decay rate.

The temperature stress is only in effect for high temperatures and is
parameter that ranges between 0 and 1, where 1 indicates no stress.
ence 𝑇𝑠𝑝 is given by

𝑠𝑝(𝑇𝑎𝑣𝑔) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, 𝑇𝑎𝑣𝑔 ≤ 𝑇𝑜𝑝𝑡,
1 −

|

|

|

|

1 − 𝜔
𝑇𝑎𝑣𝑔−𝑇𝑐𝑟𝑖𝑡
𝑇𝑜𝑝𝑡−𝑇𝑐𝑟𝑖𝑡

|

|

|

|

𝑇𝑜𝑝𝑡 < 𝑇𝑎𝑣𝑔 < 𝑇𝑐𝑒𝑖𝑙 ,

0 𝑇𝑎𝑣𝑔 ≥ 𝑇𝑐𝑒𝑖𝑙 ,

(17)

here 𝜔 is a species specific parameter to be determined and controls
ow far temperature stress decreases from 1 as temperature increases
rom the optimum.

.6. Single plant model summary

To summarise, the system of equations that simulate the growth of
single plant is described by

𝑑ℎ(𝑡)
𝑑𝑡

= 𝛼ℎℎ(𝑡)
(

1 −
ℎ(𝑡)
𝑘ℎ

)

− 𝑑ℎℎ(𝑡), (18)

𝑑𝑇𝐶 (𝑡)
𝑑𝑡

= 𝑇𝑒𝑓𝑓 (𝑇𝑎𝑣𝑔), (19)

𝑑𝐴(𝑡)
= 𝐿𝐴𝑎𝑇𝑒𝑓𝑓 (𝑇𝑎𝑣𝑔) exp

(

−
( 𝑡 − 𝑏)2)

− 𝑑𝑙𝑇𝑠𝑙(𝑇𝑎𝑣𝑔)𝐴(𝑡), (20)
6

𝑑𝑡 𝑐
𝑑𝐺(𝑡)
𝑑𝑡

= 𝛼𝑔𝐴(𝑡) exp

(

−
( 𝑡 − 𝑏𝑔

𝑐𝑔

)2)

, (21)

𝑑𝑐(𝑡)
𝑑𝑡

= 𝑐𝑒𝑅0𝐺(𝑡)
(

1 − 𝑒−𝜅𝛾(𝑡)
)

(

1 −
𝑐(𝑡)
𝑘𝑐

)

− 𝑑𝑐𝑐(𝑡), (22)

𝑑𝑃 (𝑡)
𝑑𝑡

= 𝛼𝑃 𝑇𝑠𝑝
𝑑𝑐(𝑡)
𝑑𝑡

𝑃 (𝑡)
(

1 −
𝑃 (𝑡)
𝑐(𝑡)

)

− 𝑑𝑝𝑃 (𝑡), (23)

here

𝑒𝑓𝑓 (𝑇𝑎𝑣𝑔) = 𝑇𝑎𝑣𝑔 − 𝑇𝑐𝑟𝑖𝑡, 𝑇𝑠𝑙(𝑇𝑎𝑣𝑔) =
𝑇𝑜𝑝𝑡 − 𝑇𝑐𝑟𝑖𝑡
𝑇𝑎𝑣𝑔 − 𝑇𝑐𝑟𝑖𝑡

and 𝛾(𝑡) =
𝐴(𝑡)
𝐺(𝑡)

,

(24)

ith the initial conditions

𝐶 (0) = 14𝑇𝐷(0), 𝐴(0) = 𝐿𝐴, 𝐺(0) = 𝐿𝐴, 𝑐(0) = 𝑐0 and 𝑃 (0) = 0.

hese conditions assume the plant has emerged (around day 14 follow-
ng germination for bambara groundnut), with the leaf area equivalent
o one fully emerged leaf denoted 𝐿𝐴 which leads to a canopy size of
0, and pods have yet to form.

Eq. (18) decouples from the remaining equations and can be solved
n closed form to yield

(𝑡) =
ℎ0(𝛼ℎ − 𝑑ℎ) exp((𝛼ℎ − 𝑑ℎ)𝑡)

𝛼ℎ − 𝑑ℎ − 𝛼ℎ𝐾ℎℎ0 + 𝛼ℎ𝐾ℎ exp((𝛼ℎ − 𝑑ℎ)𝑡)ℎ0
(25)

here 𝐾ℎ = 1∕𝑘ℎ Whilst plant height is somewhat superfluous in
he context of modelling a single plant, it will become critical when
onsidering the difference in height between two or more plants and
hus the effect of intercanopy competition as discussed in Section 3.1.

. Crop scale model

To scale from the single plant to many plant scale, we need to
onsider competition between the plants for resources. It was stated in
ection 2 that plant canopies are assumed to be circular discs raised
bove the ground by a central stem. The disc represents the layers
f leaves within the canopy which are directly affected by sunlight.
imilarly, it has been stated that light and temperature are the only
imiting growth factors. Since temperature is not a competitive re-
ource, the only form of competition we are interested in is that for
ight as a result of canopy–canopy shadowing. A plant that shadows
nother plant blocks sunlight from reaching the shorter plant’s canopy
o that competition for sunlight between plants will depend on which
lant is taller. The inter-plant competition can then be described by the
roportion of the lower canopy that is shadowed by the taller one. In
rder to account for the effect of canopy–canopy interactions on plant
rowth we proceed as follows.

.1. Inter-plant competition

Determining the proportion of dynamically varying canopy–canopy
nteractions can be challenging as the following example illustrates.
onsider the case of three intersecting plant canopies illustrated in
ig. 3. The proportion of area that canopy 1 (𝑐1) shares with canopy
and 3 (𝑐2 and 𝑐3), cannot be found by summing the intersection of

anopies 1 and 2 (𝐼12) and the intersection of canopies 1 and 3 (𝐼13).
nstead, it is necessary to find the area that all three canopies share
𝐼123). Finding this area analytically is challenging and thus a numerical
ethod for calculating canopy overlap was devised. This method is
escribed in what follows.

We consider the competition any canopy 𝑐𝑖 experiences with neigh-
ouring canopies denoted 𝑐𝑘. Let canopy 𝑖 be filled with 𝑛 uniformly

allocated points, a distance 𝑑 apart. Sampling points are arranged in a
series of increasing rings within the canopy where 𝑑 is the distance
between rings and the distance between points within a ring. Each

point, labelled with a 𝑗, is allocated an 𝑥 and 𝑦 coordinate denoted
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Fig. 3. Three intersecting canopies (𝑐1 , 𝑐2 , 𝑐3) that represent three neighbouring plants,
where the areas of intersection are labelled as 𝐼1,2 , 𝐼1,3 , 𝐼2,3 and 𝐼1,2,3.

𝑥𝑗 and 𝑦𝑗 , respectively. Each point within canopy 𝑖 can now be tested
to determine which canopies, other than canopy 𝑖, it lies within.

Let the centre point of canopy 𝑘 have coordinates 𝑐𝑘𝑥 and 𝑐𝑘𝑦 and
radius 𝑟𝑘. Then a sampling point within canopy 𝑖 that is also within
canopy 𝑘 holds according to the condition that
√

(𝑥𝑗 − 𝑐𝑘𝑥)2 + (𝑦𝑗 − 𝑐𝑘𝑦)2 < 𝑟𝑘.

Then an 𝑛 ×𝑁 array 𝐴 can be defined such that

𝐴𝑗,𝑘 =

⎧

⎪

⎨

⎪

⎩

1, if
√

(𝑥𝑗 − 𝑐𝑘𝑥)2 + (𝑦𝑗 − 𝑐𝑘𝑦)2 < 𝑟𝑘,

0, otherwise,

where 𝑁 is the number of neighbouring circles and 𝑛 is the number of
sampling points within canopy 𝑖. An element 𝐴𝑗,𝑘 equals 1 if sampling
point 𝑗 is within canopy 𝑘, but is otherwise zero. Summing the elements
of each row of 𝐴 gives a column vector 𝐵 such that

𝐵𝑗 =
𝑁
∑

𝑘=1
𝐴𝑗,𝑘.

Each element of vector 𝐵 gives the number of circles that each sampling
point 𝑗 is contained in. All sampling points are contained within at least
canopy 𝑖 and so the minimum value of 𝐵𝑗 is 1.

To find the proportion of area canopy 𝑖 shares with neighbouring
circles we must find the number of points that are contained within
canopy 𝑖 only, and so we define a 1 × 𝑛 vector 𝐶 such that

𝐶𝑗 =

{

1, if 𝐵𝑗 = 1
0, otherwise.

(26)

Then the proportion of canopy 𝑖 that is shared with adjacent canopies
𝑗 is given by

𝑂𝑖 = 1 −

∑𝑛
𝑗=1(𝐶𝑗 )

𝑛
. (27)

The arrays 𝐴, 𝐵 and 𝐶 are calculated for each circle in turn to find 𝑂𝑖,
𝑖 ∈ [1, 𝑁]. Hence 𝐎 will be a vector of length 𝑁 .

Clearly the accuracy of the numerical method depends on the
number of sampling points 𝑛 contained within the given canopy. It
was found that there was little improvement between 5000 and 10 000
sampling points, however using 10 000 sampling points instead of 5000
increases computational time by approximately 24%. When calculating
the area of intersection for many plants at multiple time points, the
increase to computational time will add up considerably and so using
7

5000 sampling points is preferable. The error decreases for larger
intersection areas but there is no obvious change in error for increased
circle sizes. There was no obvious bias for the method to underestimate
or overestimate the area of intersection. From this investigation we
conclude 5000 sampling points will give a good approximation of 𝐎.

We now consider how this method transfers to measuring the
amount of shadowing between plant canopies. Plant canopies are
represented using circular discs, however in the method devised for
calculating overlap described in this section the intersection area has
only been considered in a 2-D space. By doing this we have neglected to
consider the heights of the plants. The area we wish to calculate is the
proportion of plant canopy that is being shadowed by its neighbours
and to do this, the plant height plays a key role in the calculation. To
account for this we define an 𝑁 × 1 vector such that

𝜔1𝑘 = 𝐻1(ℎ𝑘 − ℎ𝑖),

where ℎ𝑖 is the height of Plant 𝑖, ℎ𝑘 is the height of a neighbouring
Plant 𝑘 and 𝐻1 is a Heaviside function such that

𝐻1(𝑥) =

{

1, if 𝑥 > 0,
0, otherwise.

Thus

𝜔1𝑘 =

{

1, if Plant 𝑘 is taller than Plant 𝑖,
0, otherwise.

Let 𝑃1 be an 𝑁 × 1 vector such that

𝑃1𝑗 =
𝑁
∑

𝑘=1
𝐴𝑗,𝑘𝜔1𝑘,

then 𝑃1 will give a list of the sampling points that are overlapped by
plants that are strictly taller than Plant 𝑖. If 𝑆𝑈𝑀(𝑃1) > 1 then several
plants overlap point 𝑗. Since we are not currently considering the case
of light penetrating the canopy we do not need to concern ourselves
with how many plants overlap point 𝑗 only that some do. Therefore we
let

𝐶2𝑗 =

{

1, if 𝑃1𝑗 = 0,
0, otherwise.

(28)

The proportion of area that plant 𝑖 shares with taller plants can then
be found as

𝑂𝑇𝑖 = 1 −

∑𝑛
𝑗=1(𝐶2𝑗 )

𝑛
. (29)

For plants of the same height we assume that the leaves of the plant
canopies intermingle and that overlap is distributed evenly over the
competing canopies. Hence we assume each canopy receives half the
amount of shadowing within the area of intersection. We define 𝜔2 such
that

𝜔2𝑘 = 𝐻2(ℎ𝑘 − ℎ𝑖),

where 𝐻2 is a Heaviside function defined such that

𝐻2(𝑥) =

{

0.5, if 𝑥 = 0,
0, otherwise.

Thus

𝜔2𝑘 =

{

0.5, if Plant 𝑘 is the same height as Plant 𝑖
0 otherwise.

A value of 𝜔2𝑘 = 0.5 indicates that Plant 𝑖 is competing with a plant
of the same height and so the competition is split evenly between both
plants. The case of 𝜔2𝑘 = 0 refers to any other scenario. Now let 𝑃2 be
an 𝑁 × 1 vector such that

𝑃2𝑗 =
𝑁
∑

𝐴𝑗,𝑘𝜔2𝑘.

𝑘=1
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The minimum value that an element of 𝑃2 can take is 0.5 as each
oint is at least contained within canopy 𝑖, which is the same height
s itself. When 𝑃2𝑗 > 1 the point 𝑗 is sharing the space with more than
other plant. Since competition is shared evenly among plants in the

ame spatial location we must take into account the number of plants
oint 𝑗 is contained within. Then the proportion of Plant 𝑖 shared with
lants of the same height is

𝑆𝑖 = 1 −

∑𝑛
𝑗=1

(

0.5
𝑃2𝑗

)

𝑛
. (30)

The total proportion of plant canopy 𝑖 that is shadowed is then the sum
of that shadowed by taller plants and those of the same height such that

𝑂𝑖 = 𝑂𝑇𝑖 + 𝑂𝑆𝑖. (31)

The impact that canopy shadowing has on the growth of a single
plant needs to be accounted for in Eqs. (18)–(23). It is applied by
including a shadowing factor (1 − 𝑂𝑖), where 𝑂𝑖(ℎ1, ℎ2,… , ℎ𝑁 ) is the
proportion of an individual canopy that is shadowed. Shadowing affects
different plant growth processes and it is thus included in several parts
of the model.

The leaf area and canopy biomass growth rates are affected as
accumulation is affected by reduced sunlight caused by competition.
The combined effects of lack of space, competition for nutrients and
lack of sunlight prevent the plant reaching its maximum size. Therefore,
in addition to the growth rate a varying carrying capacity has been
included so that the plant is unable to grow unencumbered into a space
occupied by another plant. The true carrying capacity, 𝑘𝑚𝑎𝑥, remains
constant.

The morphology of bambara groundnut is such that it grows leaves
on lateral stems above ground. Thus when bambara groundnut plants
start overlapping, their canopies begin to intertwine. This causes a
physical obstacle for plants when spreading and hence the window
of peak ground cover spreading is affected. This prevents a plant
continuing to spread into a space occupied by another plant.

Due to the morphology of bambara groundnut, we assume that
the plant reaches its full height very quickly and then spreads. We
therefore have excluded competition effects on height. Differences in
height between plants are a consequence of their carrying capacity
and so a plant with the potential for a greater height, reaches this
height before its neighbours. If the model was to be extended to crops
of different species where this assumption does not hold, it would be
necessary to include the effects of competition in the height equation
also.

To summarise, in this model competition affects:

• the maximum leaf area growth rate;
• the maximum ground cover growth rate via the leaf area term;
• the window of peak ground cover spreading;
• the growth rate of canopy biomass; and
• the carrying capacity of canopy biomass.

This also implies that overlap also affects the growth rate and carrying
capacity of pod mass as these are functions of canopy biomass.

Eqs. (18)–(23) are thus revised to incorporate these effects for a crop
of up to 𝑁 plants, so that for any plant 𝑖

ℎ𝑖(𝑡) =
ℎ𝑖0(𝛼ℎ − 𝑑ℎ) exp((𝛼ℎ − 𝑑ℎ)𝑡)

𝛼ℎ − 𝑑ℎ − 𝛼ℎ𝐾ℎ𝑖ℎ𝑖0 + 𝛼ℎ𝐾ℎ𝑖 exp((𝛼ℎ − 𝑑ℎ)𝑡)ℎ𝑖0
, (32)

𝑑𝑇𝐶𝑖(𝑡)
𝑑𝑡

= 𝑇𝑒𝑓𝑓 ,𝑖(𝑇𝑎𝑣𝑔), (33)

𝑑𝐴𝑖(𝑡)
𝑑𝑡

= 𝐿𝐴𝑎𝑖𝑇𝑒𝑓𝑓 ,𝑖(𝑇𝑎𝑣𝑔)(1 − 𝑂𝑖(ℎ1, ℎ2,… , ℎ𝑁 )) exp

(

−
(

𝑡 − 𝑏𝑖
𝑐𝑖

)2
)

− 𝑑𝐿𝑖𝑇𝑠𝑙,𝑖(𝑇𝑎𝑣𝑔)𝐴𝑖(𝑡), (34)

𝑑𝐺𝑖(𝑡) = 𝛼𝑔𝑖𝐴𝑖(𝑡) exp

(

−
( 𝑡 − 𝑏𝑔𝑖

)2)

, (35)
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𝑑𝑡 𝑐𝑔𝑖(1 − 𝑂𝑖(ℎ1, ℎ2...ℎ𝑁 ))
𝑑𝑐𝑖(𝑡)
𝑑𝑡

= 𝑐𝑒𝑖𝑅0𝐺𝑖(𝑡)
(

1 − 𝑒−𝜅𝛾𝑖(𝑡)
)

(1 − 𝑂𝑖(ℎ1, ℎ2,… , ℎ𝑁 ))

×
(

1 −
𝑐𝑖(𝑡)

𝑘𝑐𝑖(1 − 𝑂𝑖(ℎ1, ℎ2,… , ℎ𝑁 ))

)

− 𝑑𝑐𝑖𝑐𝑖(𝑡), (36)
𝑑𝑃𝑖(𝑡)
𝑑𝑡

= 𝛼𝑃 𝑖𝑇𝑠𝑝𝑃𝑖(𝑡)
𝑑𝑐𝑖(𝑡)
𝑑𝑡

(

1 −
𝑃𝑖(𝑡)
𝑐𝑖(𝑡)

)

− 𝑑𝑝𝑖𝑃𝑖(𝑡), (37)

here

𝑒𝑓𝑓 ,𝑖(𝑇𝑎𝑣𝑔) = 𝑇𝑎𝑣𝑔 − 𝑇𝑖,𝑐𝑟𝑖𝑡, 𝑇𝑠𝑙,𝑖(𝑇𝑎𝑣𝑔) =
𝑇𝑜𝑝𝑡 − 𝑇𝑖,𝑐𝑟𝑖𝑡
𝑇𝑎𝑣𝑔 − 𝑇𝑖,𝑐𝑟𝑖𝑡

and

𝛾𝑖(𝑡) =
𝐴𝑖(𝑡)
𝐺𝑖(𝑡)

,
(38)

with the initial conditions
𝑇𝐶𝑖(0) = 14𝑇𝑒𝑓𝑓 , 𝐴𝑖(0) = 𝐿𝐴, 𝐺𝑖(0) = 𝐿𝐴, 𝑐𝑖(0) = 𝑐0 and
𝑃𝑖(0) = 0,

(39)

and 𝑂𝑖(ℎ1, ℎ2,… , ℎ𝑁 ) is the overlap effect as a result of the canopy of
plant 𝑖 being affected by neighbouring plants of height ℎ1, ℎ2 …ℎ𝑁 .

3.2. Non-dimensionalisation

Eqs. (32) to (39) are non-dimensionalised according to the following
rescaling’s

ℎ𝑖(𝑡) = ℎ0ℎ̂𝑖(𝑡), 𝑇𝐶𝑖(𝑡) =
𝑇𝑒𝑓𝑓
𝛼ℎ

�̂�𝐶𝑖(𝜏), 𝑐𝑖(𝑡) = 𝑐0𝑐𝑖(𝜏),

𝑖(𝑡) = 𝐿𝐴�̂�𝑖(𝜏), 𝐴𝑖(𝑡) = 𝐿𝐴�̂�𝑖(𝜏), 𝑃𝑖(𝑡) = 𝑐0𝑃𝑖(𝜏), and 𝑡 = 𝜏
𝛼ℎ

,

where a hat signifies a non-dimensional physical variable and 𝜏 denotes
on-dimensional time. Then the non-dimensional system of equations
s given by

ℎ̂𝑖(𝜏) =
ℎ0(1 − 𝑑ℎ) exp((1 − 𝑑ℎ)𝜏)

1 − 𝑑ℎ −𝐾ℎ𝑖ℎ0 +𝐾ℎ𝑖 exp((1 − 𝑑ℎ)𝜏)ℎ0
, (40)

𝑑�̂�𝐶𝑖(𝜏)
𝑑𝜏

= 1, (41)

𝑑�̂�𝑖(𝜏)
𝑑𝜏

= �̄�𝐿𝑖
(

1 − 𝑂𝑖(ℎ̂1, ℎ̂2,… ℎ̂𝑁 , 𝜏)
)

𝑒𝑥𝑝

(

−
(

𝜏 − 𝑏𝑖
𝑐𝑖

)2)

−𝑑𝐿𝑖𝑇𝑠𝑝�̂�𝑖(𝜏), (42)

𝑑�̂�𝑖(𝜏)
𝑑𝜏

= �̄�𝑔𝑖�̂�𝑖(𝜏)𝑒𝑥𝑝
⎛

⎜

⎜

⎝

−

(

𝜏 − ̄𝑏𝑔𝑖
𝑐𝑔𝑖(1 − 𝑂𝑖(ℎ̂1, ℎ̂2,… ℎ̂𝑁 , 𝜏))

)2
⎞

⎟

⎟

⎠

, (43)

𝑑𝑐𝑖(𝜏)
𝑑𝜏

= �̄�𝑐𝑖
(

1 − 𝑒𝑥𝑝(−𝜅𝑖�̂�𝑖(𝜏))
)

�̂�𝑖(𝜏)
(

1 − �̄�𝑐𝑖(𝑂𝑖, 𝜏)𝑐𝑖(𝜏)
)

×
(

1 − 𝑂𝑖(ℎ̂1, ℎ̂2,… ℎ̂𝑁 , 𝜏)
)

− 𝑑𝑐𝑖𝑐𝑖(𝜏), (44)

𝑑𝑃𝑖(𝜏)
𝑑𝜏

= �̄�𝑃 𝑖𝑇𝑠𝑝𝑃𝑖(𝜏)
𝑑𝑐𝑖(𝜏)
𝑑𝜏

(

1 −
𝑃𝑖(𝜏)
𝑐𝑖(𝜏)

)

− 𝑑𝑝𝑖𝑃𝑖(𝜏), (45)

here

𝑠𝑙,𝑖(𝑇 ) =
𝑇𝑜𝑝𝑡 − 𝑇𝑖,𝑐𝑟𝑖𝑡
𝑇𝑎𝑣𝑔 − 𝑇𝑖,𝑐𝑟𝑖𝑡

and �̂�(𝑡) =
�̂�(𝜏)
�̂�(𝜏)

, (46)

with the initial conditions

�̂�𝐶𝑖(0) = 14, �̂�𝑖(0) = 1, �̂�𝑖(0) = 1, 𝑐𝑖(0) = 1 and 𝑃𝑖(0) = 0, (47)

The non-dimensional parameters are stated in Table 3. Hereafter, hats
and bars will be omitted for notational convenience.

3.3. Crop scale model algorithm

We now outline our algorithm for determining the growth and
development of a crop of 𝑁 plants, planted in a predefined spatial
arrangement. To summarise our mathematical model comprises a sys-

tem of 6 nonlinear equations per plant as given by Eqs. (32)–(39);
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Fig. 4. A schematic overview of the key steps in the crop scale model algorithm.
one equation describing plant height and 5 ODEs detailing cumulative
thermal time, leaf area, ground cover, canopy biomass and pod mass.
This gives a total of 6 ×𝑁 equations per plant where 𝑁 is the number
of plants in a simulation.

In order to model a crop of 𝑁 plants, we detail an algorithm
where each plant is treated as an individual entity arranged on a
two-dimensional spatial grid with varying layouts (uniform, indented,
circular and random) as shown in Fig. 14, henceforth referred to as
the planting layout. The competition between neighbouring plants is
described by canopy–canopy shadowing where the respective heights
of each plant determine the competition they experience.

The steps of our algorithm are summarised in Fig. 4 and are as
follows.

1 Input parameters for the chosen landrace of bambara groundnut
as described in Section 4.

2 Input temperature and solar radiation data 𝑅0 as described in
Section 4.

3 Choose planting layout (uniform grid, partially indented grid,
circular pattern and random) illustrated in Fig. 14.

4 Input the distance between plants.
5 Enter the initial conditions describing height, thermal time, leaf

area, ground cover, canopy biomass and pod mass per plant.
6 Calculate LAI from leaf area and ground cover.
7 Calculate plant height from Eq. (40).
9

8 Calculate the inter-plant competition experienced by each plant
using its ground cover, height and position as detailed in Sec-
tion 3.1.

9 Calculate the rates/derivatives for height, cumulative thermal
time, leaf area, ground cover, canopy biomass and pod mass per
plant defined by Eqs. (40) to (47).

10 Set 𝑡 = 𝑡 + 𝛿𝑡 where 𝛿𝑡 is the internal time step chosen by the
Matlab ODE solving algorithm ODE15s so that the absolute and
relative error tolerances are met.

11 Repeat steps 3–7 until the plant reaches maturity [assumed to
be 150 days after sowing for bambara groundnut] at 𝑡 = 𝑇𝑒𝑛𝑑 .

This algorithm was implemented in Matlab R2015b in Windows 10.

4. Steady-state analysis

It is difficult to obtain a closed form analytical solution to the system
of Eqs. (41)–(47). However, we wish to check that the model exhibits
bounded behaviour which is biologically consistent. One relatively
straightforward check is to determine the system steady-states which
we do so as follows.

We first observe that Eq. (42) is non-autonomous. As such, a steady-
state would not exist as any solution to 𝑑𝐴𝑖(𝜏)

𝑑𝜏 = 0 would depend on 𝜏.
Therefore, we need to examine the behaviour of 𝑑𝐴𝑖(𝜏) as 𝜏 → ∞. Doing
𝑑𝜏
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Fig. 5. Planting layout of the two experiments that have provided data used to parameterise the model. Here (a) is for the TCRU experimental data and (b) is for the FCG
experiments.
so leads to

lim
𝜏→∞

𝑑𝐴𝑖(𝜏)
𝑑𝜏

= lim
𝜏→∞

(−𝑑𝐿𝐴𝑖(𝜏)),

and thus

lim
𝜏→∞

𝐴𝑖(𝜏) = lim
𝜏→∞

𝑒−𝑑𝐿𝜏 = 0,

providing 𝑑𝐿 > 0, which it is by definition. From Eqs. (44) and (45) it
can be seen that if 𝑑𝑐 > 0 and 𝑑𝑝 > 0 then 𝑐𝑖 → 0 and 𝑃𝑖 → 0 as 𝜏 → ∞,
since the growth rate of 𝑐𝑖(𝜏) and therefore 𝑃𝑖(𝜏) depend on 𝐴𝑖(𝜏). Thus
our asymptotic system of equations for 𝑁 plants goes to

lim
𝜏→∞

ℎ(𝜏) =
(1 − 𝑑ℎ)
𝐾ℎ𝑖

, lim
𝜏→∞

𝐴(𝜏) = 0, lim
𝜏→∞

𝐺(𝜏) = 0 (48)

lim
𝜏→∞

𝑐(𝜏) = 0 and lim
𝜏→∞

𝑃 (𝜏) = 0. (49)

Clearly this is non-physical since it is impossible for a plant without
any biomass to have an associated height. However, as the height is
only of interest when comparing the heights of neighbouring plants,
we are able to satisfy ourselves with the result. As an annual crop,
bambara groundnut completes its life cycle. Thus, by tending to zero,
the long term growth behaviour of leaf area and canopy biomass is
being correctly captured by the model equations.

5. Model parameterisation

The model has been parameterised using a range of techniques
including values sourced from the literature, informed estimates of
unknown parameters and model-data fitting of experimental data. The
values of all dimensional parameters are given in Table 2. Parameters
values were determined as follows.

The parameters 𝑇𝑜𝑝𝑡, 𝑇𝑐𝑟𝑖𝑡, 𝑘𝑚𝑎𝑥, 𝑃𝐴𝑅, 𝑒 and 𝑘𝑖 have all been taken
directly from the literature, the values and sources of which can be
found in Table 2. Experimental data has shown that plant height
reaches steady-state at a much faster rate when compared to leaf area,
canopy biomass, ground cover and pod mass. The parameters 𝛼ℎ and
𝑑ℎ have been approximated using a ‘best-guess’ approach, to simulate
this behaviour.

The remaining parameters, 𝐿𝐴, 𝑘𝑚𝑎𝑥, 𝑎, 𝑏, 𝑐, 𝑑𝐿, 𝑐𝑒, 𝑑𝑐 , 𝑘ℎ, 𝛼𝑔 , 𝑏𝑔 and
𝑐𝑔 have been informed using data collected from a series of greenhouse
experiments. The first of the two sets of greenhouse experiments were
conducted in the Tropical Crops Research Unit (TCRU) located in
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the Sutton Bonington campus of the University of Nottingham, UK
(Karunaratne, 2009). This data consists of two species: Uniswa Red and
S19-3, grown at temperatures of 23 ◦C, 28 ◦C, and 33 ◦C, respectively.
Leaf number, leaf area, leaf mass, stem mass, root mass, pod mass
and total biomass were monitored over sixteen day intervals starting
at thirty three days post seed sowing. Data were collected using a
destructive process and so details regarding the growth of one plant
in isolation cannot be retained. Plants were planted with an initial
distance of 35 cm between columns 𝐷𝑐 and 10 cm between rows 𝐷𝑟,
with plants being removed at germination so that the distance between
rows became 20 cm. The supply of water was non-limiting. A more
detailed description of the experimental methodology can be found
in Karunaratne (2009). Shutters were applied onto the greenhouse to
impose day lengths of no longer than 12 h. This is because previous
experiments have found that longer day lengths affect phenological
development and have a negative impact on yield.

The leaf area per leaf 𝐿𝐴 and the carrying capacity for the canopy
biomass 𝑘𝑚𝑎𝑥 is extracted directly from the TCRU experimental data.
The leaf area per leaf for one plant of 𝑁 at one sampling time of 𝐽 is
given by the ratio between leaf area 𝐴𝑖,𝑗 and leaf number 𝐿𝑖,𝑗 , where 𝑖
indicates the plant and 𝑗 the sampling time. The leaf area per leaf for
this model 𝐿𝐴 was found by averaging this ratio for all sampled plants
such that

𝐿𝐴 = 1
𝑁𝐽

𝐽
∑

𝑗=1

𝑁
∑

𝑖=1

𝐴𝑖,𝑗

𝐿𝑖,𝑗
.

The carrying capacity has been taken to be the largest observed
biomass in the experiment.

The values of 𝑎, 𝑏, 𝑐, 𝑑𝐿, 𝑐𝑒 and 𝑑𝑐 were further refined by taking
least-squares fit of the TCRU experimental greenhouse data against a
model simulation for a temperature of 28 ◦C. Since plant position is an
important feature in this model framework, the positions of simulated
plants have been set to match the arrangement in the experiments; the
layouts for both experiments and the corresponding simulations is given
in Fig. 5. The inbuilt MATLAB function lsqcurvefit, which is a non-
linear least-squares solver, was then used to conduct the least-squares
fit.

A second set of greenhouse experiments were conducted for this
study at the Future Crops Greenhouses (FCG) located in the Sutton
Bonnington campus of the University of Nottingham. The aim of these
experiments was to provide data on individual plant size and the
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Fig. 6. The simulated (a) leaf area, (b) canopy biomass and (c) pod mass compared with the experimental data for the species Uniswa Red, using the data-fitted case of a
temperature of 28 ◦C. Red bars indicate the upper and lower bounds of the experimental data.
magnitude of inter-canopy plant competition. This data allows us to
inform and investigate how changes in planting density affect yield. All
plants were transplanted 10 days after emergence and harvested after
a further 132 days. The collected data comprised the diameter of the
plant canopy measured at the widest point every two weeks, the dry
canopy biomass per plant at harvest and the dry pod mass per plant at
harvest. On harvest the number of pods per plant were recorded and
separated from the remaining above ground biomass. Above ground
biomass was then dried at a temperature of 84 ◦C for 48 h and pods
were dried at a temperature of 37 ◦C for two weeks. Canopy biomass
and pod mass were then weighed and recorded.

Due to limitations on available space, the experiments were con-
fined to a 2 m2 plot, measuring 1 m × 2 m. The area was split into two
plots, where high density and low density experiments were conducted.
In each case plants were planted in uniform grid type arrangements and
planting distances chosen to ensure interactions between each plant
and its neighbours occurred in each case. In the low density experiment,
the 1 m2 was filled with 9 plants arranged in a 3 × 3 arrangement with
11
𝐷𝑟 = 0.4 m and 𝐷𝑐 = 0.3 m. In the high density experiment, another
1 m2 was filled with 16 plants arranged in a 4 × 4 arrangement with
𝐷𝑟 = 0.25 m and 𝐷𝑐 = 0.25 m.

This data was used to inform the carrying capacity 𝑘ℎ by taking
the maximum plant height of all plants in the experiments. The pa-
rameters 𝛼𝑔 , 𝑏𝑔 and 𝑐𝑔 were determined by taking least-squares fits
of the experimental data against model simulations. The average dry
canopy biomass and pod mass at harvest for the high and low density
arrangements can be found in Table 1. There is a clear difference in
both average pod mass and canopy biomass at harvest between the two
planting densities.

To apply the model described in this paper to other crop species that
form a canopy, it would be necessary to provide values for all of the
parameters in Table 2, (except for 𝑘𝑖, which is the incoming radiation
and is fixed). For plants that do not reach full height early in their
development, it may also be necessary to adapt the height equation
to include the effect of competition on height.
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Fig. 7. The simulated (a) leaf area, (b) canopy biomass and (c) pod mass compared with the experimental data for the species Uniswa Red, using the non data-fitted case of a
temperature of 23 ◦C. Red bars indicate the upper and lower bounds of the experimental data.
Table 1
The average canopy biomass and pod mass for plants of the species Uniswa Red grown at the temperature 28 ◦C for planting densities of 9 plants per square metre and 16 plants
per square metre for the FCG experiments.

Canopy Biomass (g) Pod Mass (g) Total biomass

Plants per
square metre

Average mass Standard
deviation

Average mass Standard
deviation

Average mass Standard
deviation

9 65.82 15.64 36.71 10.77 102.53 24.06
16 33.46 9.75 20.43 4.60 53.89 13.22
6. Numerical simulations

We now compare the mathematical model described by Eqs. (41) to
(45) for a greenhouse crop of 9 plants with the available experimental
data detailed in Section 5. For these comparisons, parameters for all
plants are considered equal and the only difference between plants is
the overlap incurred by their position. Leaf area, canopy biomass and
pod mass are available for the TCRU experimental data, and ground
12
cover data is provided with the FCG experiments. These two exper-
iments have different planting layouts, both of which are illustrated
in Fig. 5. For each case, simulated data is averaged over all 𝑁 plants
and compared to the corresponding mean average of the experimental
data. Temperature was constant for each simulation and a range of
temperatures were investigated, corresponding to those in the TCRU
experiments (23 ◦C, 28 ◦C and 33 ◦C).
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Fig. 8. The simulated (a) leaf area, (b) canopy biomass and (c) pod mass compared with the experimental data for the species Uniswa Red, using the non data-fitted case of a
temperature of 33 ◦C. Red bars indicate the upper and lower bounds of the experimental data.
A simulation of leaf area, canopy biomass and pod mass compared
to experimental data for Uniswa Red at 28 ◦C is shown in Fig. 6. This
is the data set used to fit the model parameters for Uniswa Red and is
hereby referred to as the ‘fitting case’. The two non-fitted cases of 23 ◦C
and 33 ◦C are given in Figs. 7 and 8, respectively. A comparison of the
evolution of ground cover over time and experimental data is given in
Fig. 9. Plants are arranged as in Fig. 5(b) for a temperature of 28 ◦C
and parameters given in Table 2.

The simulations of Uniswa Red show a good fit to the experimental
data for all three temperatures, with the average pod mass being
within the minimum and maximum of the experimental data for all
8 data points. Although not shown here, we also find a good fit to the
experimental data for S19-3, which can be found in Appendix.

The mean absolute error (MAE) and the Nash–Sutcliffe efficiency
(NSE) value (Nash and Sutcliffe, 1970) for these simulations are given
in Tables 4 and 5 for both Uniswa Red and S19-3. The NSE indicates
how well a plot of the experimental versus the simulated data fits the
1:1 line; where NSE ∈ [−∞, 1] (Nash and Sutcliffe, 1970). A value of
1 would indicate a perfect model and a value equal to or less than 0
would indicate that the model is no better at predicting plant growth
than taking an average of the experimental data. The results mostly
show a very good fit to data, with NSE values close to 1. The exception
is S19-3 leaf area at 23 ◦C with an NSE value of 0.13. It should be noted
13
that for this case, experimental data is fairly flat, and so the low NSE
value is an indication that taking the average of all data gives a good
fit, rather than indicating that our model gives a bad fit. In fact, the
MAE is low compared to S19-3 leaf area at 33 ◦C.

7. Model exploration

In this and subsequent sections we explore the behaviour of our
multiscale mathematical model. We begin with a sensitivity analysis
in Section 7.1, where we focus on the sensitivity of ground cover
to variations in the magnitude of key mechanisms. It is found that
increasing the size of a canopy can benefit overall plant growth until
a critical point is reached at which increased competition for light
outweighs the benefits of increased sunlight capture. We then consider
how individual plant position impacts the yield of an individual plant
in Section 7.2. Finally, the impact that variation in model parameters
between plants has on total yield is discussed in Section 7.3.

7.1. Sensitivity analysis

We conducted a local sensitivity analysis, varying each parameter in
turn, up to 10-fold above and below the values reported in Table 3. We
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Table 2
Table of dimensional parameter values. For parameters that are species specific, ∗ denotes the species S19-3 and † denotes Uniswa Red.

Parameter Value Unit Description Source

𝛼ℎ 0.75 d−1 Plant height growth rate This study
𝑘ℎ 30∗, 25† m Plant height carrying capacity This study
𝑑ℎ 0.02 d−1 Plant height decay rate This study
𝑇𝑜𝑝𝑡 30∗, 28† ◦C Optimum growth temperature Karunaratne (2009)
𝑇𝑐𝑟𝑖𝑡 12∗, 8.5† ◦C Critical temperature for growth Karunaratne (2009)
𝑇𝑐𝑒𝑖𝑙 45∗, 38† ◦C Maximum temperature for plant growth Karunaratne (2009)
𝜔 0.7∗, 1† – Temperature Stress This study
𝑎 0.19∗, 0.21† d−1 Maximum leaf growth rate Data fitted
𝑏 67.74∗, 92.0† d Time of peak leaf accumulation Data fitted
𝑐 28.78∗, 38.00† d Time window of significant leaf accumulation Data fitted
𝑑𝐿 1.37 × 10−2∗, 1.6 × 10−2† d−1 Leaf decay rate Data fitted
𝐿𝐴 3.9 × 10−3∗, 3.0 × 10−3† m2 Leaf area per leaf TCRU experimental data (Karunaratne, 2009)
𝑃𝐴𝑅 0.5 – Fraction of photosynthetically active radiation Cornelissen (2005)
𝑘𝑖 16 MJ m−2 d−1 Incoming radiation Met office (2016)
𝑐𝑒 1.87∗, 2.04† gMJ−1 Mass accumulation efficiency rate Data fitted
𝜅 0.6 – Extinction coefficient Karunaratne (2009)
𝑘𝑚𝑎𝑥 180.66∗, 161† g Canopy biomass carrying capacity TCRU experimental data (Karunaratne, 2009)
𝑑𝑐 1 × 10−3∗, 5 × 10−4† d−1 Canopy biomass decay rate Data fitted
𝛼𝑔 53.85∗, 103.33† d−1 Ground cover growth rate Data fitted
𝑏𝑔 17.04∗, 14.00† d Time of peak ground cover growth Data fitted
𝑐𝑔 21.67∗, 30.00† d Window of significant ground cover growth Data fitted
ℎ0 0.05 m Plant height at emergence This study
𝐿0 1 – Leaf number at emergence This study
𝐺0 𝐿𝐴 m2 Ground cover at emergence This study
𝑐0 0.24∗, 0.19† g Canopy biomass at emergence This study
Fig. 9. The simulated canopy radius of two density treatments of 9 plants per square metre and 16 plants per square metre. Here ground cover is described by Eq. (10), temperature
is 28 ◦C and individual plant arrangements with respect to each other and plant borders can be found in Fig. 5(b). The parameter values for this simulation are given in Table 2.
Table 3
Table of non-dimensional parameters and the corresponding expressions.

Parameter Expression

𝑑ℎ 𝑑ℎ∕𝛼ℎ
�̄�𝐿 𝑎𝑇𝑒𝑓𝑓 ∕𝐿𝐴𝛼ℎ
�̄� 𝛼ℎ𝑏
𝑐 𝛼ℎ𝑐
𝑑𝐿 𝑑𝐿𝑇𝑠𝑙/𝛼ℎ
�̄�𝑔 𝛼𝑔/𝛼ℎ
�̄�𝑔 𝛼ℎ𝑏𝑔
𝑐𝑔 𝛼ℎ𝑐𝑔
�̄�𝑐 𝑅0𝑐𝑒𝐿𝐴/𝑐0𝛼ℎ
𝜅 𝜅
𝐾𝑐 𝑐0/𝑘𝑚𝑎𝑥
𝑑𝑐 𝑑𝑐𝑇𝑠𝑐/𝛼ℎ
�̄�𝑃 𝛼𝑃 𝑐0
𝑑𝑃 𝑑𝑃 /𝛼ℎ
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Table 4
The mean absolute error (MAE) and the Nash–Sutcliffe efficiency (NSE) value for the
leaf accumulation model’s prediction of canopy biomass and leaf area for Uniswa Red
and S19-3 when compared to the TCRU experimental data.

Temperature Canopy biomass (g) Leaf Area (cm2)

Uniswa Red S19-3 Uniswa Red S19-3

MAE N-S MAE N-S MAE N-S MAE N-S

23 ◦C 2.83 0.85 4.57 0.73 168.05 0.84 366.33 0.13
28 ◦C 3.05 0.97 2.67 0.95 101.80 0.99 39.79 0.996
33 ◦C 2.78 0.92 2.95 0.94 160.94 0.97 499.74 0.74

quantitatively measured, primarily, the effect of parameter variation
on the leaf area, canopy biomass and pod mass at the expected time
of harvest (i.e. 150 days), whilst also looking for significant variations
in growth behaviour over time for leaf area, ground cover, canopy
biomass and pod mass. Varying the model parameters up to 10-fold
allows us to explore the robustness of the model to changes greater
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Fig. 10. Development of leaf area over time with a tenfold increase and tenfold decrease to each non-dimensional parameter in turn. The base-case parameters of this analysis
were for Uniswa Red at 28 ◦C.
Fig. 11. Development of ground cover over time with a tenfold increase and tenfold decrease to each non-dimensional parameter in turn. The base-case parameters of this analysis
were for Uniswa Red at 28 ◦C.
Table 5
The mean absolute error and the Nash–Sutcliffe value for the prediction of pod mass
for Uniswa Red and S19-3 when compared to the TCRU experimental data.

Temperature Uniswa Red S19-3

MAE N-S MAE N-S

23 ◦C 0.65 0.95 0.86 0.92
28 ◦C 0.56 0.995 1.05 0.98
33 ◦C 0.2 0.96 0.84 0.99
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than those biologically feasible thereby ensuring all possible effects
have been explored. The base-case parameters of this analysis were
for Uniswa Red at 28 ◦C. Variations in parameters were applied to
all plants equally and so in every simulation that follows, the only
difference between plants is that incurred by its position. This analysis
is only valid for the planting distance used in this study of 0.2 m and
0.35 m for rows and columns, respectively.

Figs. 10 to 13 shows the development of leaf area, ground cover,
canopy biomass and pod mass for a tenfold increase and tenfold de-
crease to each non-dimensional parameter in turn.

Changes to parameters ascertaining to plant height, namely 𝛼ℎ, 𝐾ℎ,
and 𝑑 , do not change leaf area, canopy biomass and pod mass. This
ℎ
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Fig. 12. Development of canopy biomass over time with a tenfold increase and tenfold decrease to each non-dimensional parameter in turn. The base-case parameters of this
analysis were for Uniswa Red at 28 ◦C.
Fig. 13. Development of pod mass over time with a tenfold increase and tenfold decrease to each non-dimensional parameter in turn. The base-case parameters of this analysis
were for Uniswa Red at 28 ◦C.
is because relative height, not absolute height affects these variables.
Since changes to plant parameters impacts all plants equally then all
plants remain at the same height.

Changes to maximum growth rate for leaf area 𝛼 affects leaf area
(Fig. 10) as expected; a tenfold increase will increase the maximum
leaf area and a tenfold decrease will decrease maximum leaf area. This
in turn will impact ground cover (Fig. 11) so that increases to 𝛼 will
increase ground cover and decreases to 𝛼 will decrease ground cover.
The canopy biomass (Fig. 12) growth rate is a function of 𝛼. An increase
in 𝛼 will allow canopy biomass to reach its carrying capacity faster.
Conversely, decreasing 𝛼 will prevent canopy biomass reaching the
16
carrying capacity in the window of peak leaf growth. Both of these
cases cause a decrease to pod mass (Fig. 13), since the canopy growth
rate within the podding phase impacts the pod growth rate. For an
increase in 𝛼 the plant is already very close to carrying capacity when
the podding phase is initiated and therefore more resource is being
partitioned to canopy growth to the detriment to pod development. A
decrease in 𝛼 causes the leaf area to decrease and so too the canopy
biomass growth rate and therefore total pod mass.

The time of maximum leaf accumulation is given by 𝑏. A reduction
in 𝑏 causes a larger leaf area (Fig. 10) at the initial stages of growth,
this is behaviour to be expected intuitively, however overall leaf area
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Fig. 14. A birds-eye schematic of five planting layouts in a 1 m2 plot with planting distance D = 0.225 m. (a) Uniform Grid (plants are evenly spaced). (b) Indented Grid 1 (every
other row is indented by the amount of excess space between the row end and 1 m2 boundary (0.1 m)). (c) Indented Grid 2 (every other row is indented by half the planting
distance (0.1125 m) where this amount of indentation causes one plant of every other row to be excluded) (d) Circular Layout (plants are arranged in rings of increasing diameter
around a central plant). (e) Random Layout (here the number of plants is fixed so that 𝑁 would be equal to the number of plants in the Uniform Grid case).
reduces for both, increases and decreases to 𝑏. Decreasing the time of
peak growth by as much as tenfold causes a large part of the signifi-
cant growth window, to occur before germination. Similarly, a tenfold
increase in 𝑏 will cause the window of peak growth to occur after
the plant has reached maturity. Thus, the plant will not accumulate
as much total leaf area in the 150 days for which we are observing.
Regarding ground cover (Fig. 11), a reduction in 𝑏 will cause a larger
leaf at the initial stages of growth, which incidentally is the peak
growth time of ground cover. This would cause the plant to spread
17
wider, faster. This has the knock on effect that there is more overlap,
and so canopy biomass (Fig. 12) are detrimentally affected. When it
comes to pod development (Fig. 13), its growth rate is dependent on
the canopy biomass growth rate. Therefore, once canopy biomass has
reached its carrying capacity, pod development stops. A decrease in
𝑏 causes canopy biomass to reach its competition-dependent carrying
capacity faster.

This analysis was repeated with a tenfold increase in planting
distance. This allows us to see the impact of changing 𝑏 in a system
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Fig. 15. Simulations of fifteen plants of the species Uniswa Red grown at a temperature of 28 ◦C compared with the TCRU and FCG experimental data. Here (a) is the leaf
area, (b) is the canopy biomass and (c) is the pod mass. The system is described by Eqs. (41)–(45) and parameters are assumed equal between plants as stated in Table 2. Each
simulated plant is initiated at day 14 (the estimated time of emergence) and assumed to have a canopy comprising of one leaf at this point. Plants are arranged in a five by three
grid, where the distance between plants in a row is 0.2 m and the distance between rows is 0.35 m. Red bars indicate the upper and lower bounds of the experimental data.
with less competition. When 𝑏 is decreased tenfold, the canopy biomass
decreases by 53.9% for the default planting arrangement compared to
23.2% for the less dense planting arrangement. This clearly demon-
strates the negative impact of increased spreading on biomass, caused
by the earlier onset of leaf development. It also shows that when both
planting distance and 𝑏 are increased tenfold, some competition still
occurs.

Pod mass decreases by 99.4% with a tenfold increase to 𝑏 compared
to 99.97%, when planting distance is increased tenfold. Increasing 𝑏
means that the peak leaf development occurs much later and severely
impacts biomass and therefore pod development. Whilst it appears
it affects the less dense layout more, the pod mass (using default
parameters) gives a larger yield for the less dense arrangement. The
pod mass for increased 𝑏 is exactly the same for both arrangements,
because no competition occurs in either arrangement.
18
A reduction in 𝑐 causes the window of peak growth to shorten.
Intuitively, this implies that total leaf growth reduces. This can be seen
in Fig. 10, however we also see a sudden bump in growth at approxi-
mately 90 days. This is because, shortening the window of significant
growth by tenfold causes all growth to occur almost instantaneously
when time is approximately equal to 𝑏 (in this case at 92 days). The
reduced leaf area causes reductions to ground cover (Fig. 11), canopy
biomass (Fig. 12) and pod mass (Fig. 13). An increase to 𝑐 causes the
window of peak growth to increase and so it could be expected that
total leaf area would increase. In Fig. 10 we see that there is a more
leaf growth at the initial stages, however closer to maturation, the
maximum leaf area for the original parameter values is larger than for
a tenfold increase in 𝑐. By observing Fig. 11 we can see that the larger
leaf area at the initial stages of growth causes a larger ground cover
and thus more overlap. The additional overlap is what prevents the
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plant increasing its maximum leaf area to more than for the original
parameters. We also find, that although increasing leaf area increases
biomass and pod mass growth, the detrimental impact of the added
overlap decreases overall canopy biomass and pod mass values. When
we increase the planting distance we find that this behaviour changes.
Canopy biomass decreases by 23.7% with a tenfold increase in 𝑐, this is
ompared to an increase of 24.1% when planting distance is increased.
his is because with reduced competition, a longer period of leaf
evelopment is beneficial for canopy biomass. Podding mass decreases
y 84.6% for the default planting density and by only 1.6% for the
educed planting density. This shows that although canopy biomass has
ncreased, because it is reaching steady state earlier with the original 𝑐
alue, pod mass is negatively affected.

A reduction in 𝑑𝐿 causes an increase to leaf area (Fig. 10), which
ould have been intuitively predicted as a reduction to 𝑑𝐿 would imply

a reduction to leaf senescence. Conversely an increase in 𝑑𝐿 causes a
decrease in leaf area. The impact that increasing 𝑑𝐿 has on ground
cover (Fig. 11) is significantly larger than when decreasing 𝑑𝐿.

Leaf area is unaffected by parameters relating to canopy biomass
and pod mass, i.e. 𝛼𝑐 , 𝜅, 𝐾𝑐 , 𝑑𝑐 , 𝛼𝑃 and 𝑑𝑃 , therefore when discussing
these parameters we will only consider canopy biomass and pod mass.

Changes to 𝛼𝑐 impact the time it takes the canopy to reach its carry-
ing capacity. Thus a tenfold increase causes canopy biomass (Fig. 12)
to reach carrying capacity at 100 days, whereas a tenfold decrease will
mean that canopy growth increases so slowly that it does not reach
carrying capacity before leaf growth ceases. This means that if the plant
reaches carrying capacity before podding initiates then no biomass will
be partitioned to pods (Fig. 13). This is for a tenfold increase in 𝛼𝑐 . If
there are smaller increases, pod mass will increase until a critical point
at which it will begin to be negatively affected. For a decrease in 𝛼𝑐
pod mass decreases.

The leaf position is determined by 𝜅, which ranges between 0 and
1. Therefore instead of applying a tenfold increase, we set 𝜅 = 1.
Increasing 𝜅 implies a plant with horizontally positioned leaves that
are more efficient at capturing sunlight, thus an increase in biomass can
be seen (Fig. 12). The increase in biomass acquisition has not caused
the plant to reach a carrying capacity before maturation and so pod
accumulation has not decreased (Fig. 13). We instead see an increase
in pod mass demonstrating the previous conviction that for some
amount of increase to biomass growth rate, there will be an increase
in pod mass until a critical point when pod growth will be negatively
impacted. A decrease in 𝜅 implies vertically positioned leaves. Since our
model only considers radiation from a stationary source directly above
the canopy, vertically positioned leaves implies less sunlight capture.
This leads to a decrease in biomass accumulation and also pod mass
growth.

An increase in 𝐾𝑐 is equivalent to decreasing canopy biomass carry-
ing capacity, for which we see a decrease in canopy biomass (Fig. 12)
and therefore pod mass (Fig. 13). Due to the magnitude that the
carrying capacity is decreased, canopy biomass meets the carrying
capacity before pod initiation and therefore there is no pod growth for
a tenfold increase to 𝐾𝑐 . A decrease in 𝐾𝑐 is equivalent to an increase
in canopy biomass carrying capacity, for which we see an increase to
canopy biomass and therefore pod mass.

A decrease in 𝑑𝑐 would imply a decrease in biomass senescence,
which causes as increase to biomass (Fig. 12) and therefore pod mass
(Fig. 13). An increase to 𝑑𝑐 would imply more biomass decay and
therefore causes a decrease to biomass and pod mass.

An increase in the maximum ground cover spreading rate, 𝛼𝑔 , causes
the plant to occupy a larger space and therefore cause a larger amount
of competition. This decreases leaf area (Fig. 10), canopy biomass
(Fig. 12) and pod mass (Fig. 13). If 𝛼𝑔 was to increase a little, leaf
area will always decrease when plants are arranged at this density, as
the only relationship ground cover has on leaf area is via competition.
With an increased planting distance, small changes to 𝛼𝑔 will have
19

no effect. The effect increased ground cover has on canopy biomass h
can be both positive and negative. A large surface area means more
canopy can absorb radiation, which has a positive impact, however
more competition has a negative impact. Therefore, increases to 𝛼𝑔 are
beneficial to yield until a critical point where further increases has a
detrimental impact. Clearly, at this planting density a tenfold increase
to 𝛼𝑔 exceeds the critical point causing canopy biomass to decrease
by 46.6%. If planting distance increases tenfold, we find that canopy
biomass increases by 3%. Decreases to 𝛼𝑔 causes less competition and
so increases leaf area, however decreases canopy and pod growth.

Pod mass growth and decay rate, denoted by 𝛼𝑃 and 𝑑𝑃 , respectively
relate only to pod mass. An increase to pod growth rate 𝛼𝑃 causes an
increase in pod mass (Fig. 13). An increase to 𝑑𝑃 causes a decrease
to pod mass. Conversely, decreases to 𝛼𝑃 implies a decrease to canopy
biomass and a decrease to 𝑑𝑃 causes an increase to pod mass.

Changes to 𝑇𝑒𝑓𝑓 equate to changes in the number of degreedays
accumulated in one day. By increasing 𝑇𝑒𝑓𝑓 , a similar impact to de-
creasing 𝑏𝐿 can be seen in that the time of peak growth occurs so
early that a large proportion of the growth window is cut off. Similarly,
decreasing 𝑇𝑒𝑓𝑓 causes the time in days to reach peak growth to
increase. In the case of a tenfold increase, this implies that it does not
reach peak growth in the 150 day time window.

Changes to 𝑏𝑔 causes the time at which peak canopy spreading
occurs. An increase causes peak spreading to occur when leaf area is
larger causing ground cover to become much larger (Fig. 11). This
would only be the case until a certain point after leaves start senes-
cencing faster than they accumulate. Although ground cover becomes
larger, it is significantly smaller for the duration of the simulation
window. We then find that there is less overlap before 100 days and
so leaf area is larger (Fig. 10). Canopy biomass is much smaller, as
although there is less competition, there is also less canopy to absorb
radiation (Fig. 12). Pod mass is then similarly reduced. By decreasing 𝑏𝑔
peak canopy spreading occurs at a much lower leaf area and so grows to
a much smaller final size (Fig. 13). Thus, there is less competition and
so leaf area is increased. In this case the trade off between increased
canopy size and increased competition is such that canopy biomass, and
therefore pod mass, has increased.

Increasing the time window of peak canopy spreading significantly
increases ground cover. The extent is such that competition is increased
so dramatically that leaf area, canopy biomass and pod mass are
significantly affected. Decreasing 𝑐𝑔 causes ground cover to be much
smaller and thus decreasing competition causing an increase to leaf
area. In this case the trade off between canopy size and competition
is such that canopy biomass, and therefore pod mass, are also reduced.
However in this case, the trade off is opposite for increases to 𝑏𝑔 .

A summary of this investigation is given in Table 6. Here the
ualitative impact of a tenfold change to parameter values is given for a
lanting distance of 0.2 m and 0.35 m between rows and columns and a
lanting distance of 2 m and 3.5 m between rows and columns. Changes
o plant parameters have a predictable qualitative and quantitative
ffect on plant growth. In addition, this investigation has demon-
trated the sensitivity between the plant and the crop, whereby in-
reases to specific individual plant traits (increasing canopy size) has a
etrimental effect on the total crop yield if competition occurs.

.2. The effect of planting arrangement on crop yield

The form of our model allows us to investigate the effect that
ndividual plant size and position has on the overall population. In this
ection we begin by investigating the impact of plant position on the
ield of an individual plant, at a temperature of 28 ◦C although the
esults also apply at 23 ◦C and 33 ◦C. In order to do this we consider the
lanting arrangement given in Fig. 5(a) before proceeding to consider
he effect of different planting arrangements, as shown in Fig. 14. In
ach case variation in leaf area, canopy biomass and pod mass of each
lant is used to examine the effect that different planting arrangements

ave.



Journal of Theoretical Biology 560 (2023) 111373J. Dodd et al.
Table 6
Summary of local sensitivity analysis results after a tenfold increase and tenfold decrease to parameter values. Results for the
simulations using the default planting distance are shown in addition to results with a tenfold increase to planting distance.
Parameter % change to total crop yield

Default planting distance Increased planting distance

Tenfold decrease Tenfold increase Tenfold decrease Tenfold increase

𝛼ℎ 0 0 0 0
𝛼 −97.6 −87.1 −98.7 −99.4
𝑏 −99.4 −99.9 −93.9 −100
𝑐 −96.3 −84.6 −99.1 −1.6
𝑑𝐿 28.8 −97.4 15 −96.4
𝛼𝑐 −99.6 −97.3 −99.1 −98.8
𝜅 −99.3 29.6 −98.1 12.6
𝐾𝑐 134.6 −99.8 94.6 −100
𝑑𝑐 5.5 −44.2 1.8 −15.8
𝛼𝑔 −32.5 −59.5 −75.3 1.9
𝛼𝑃 −99.7 102.8 −99.8 11.3
𝑑𝑝 31.6 −99.9 6.7 −80.3
𝑇𝑒𝑓𝑓 −99.7 −99.5 −99.2 −99.9
𝑏𝑔 36.5 −33.1 −16.7 −36.9
𝑐𝑔 −99.5 −96.3 −99.9 −14.8
Fig. 16. Twenty simulations of the mean total: (a) leaf area; (b) canopy biomass; and (c) pod mass of a crop of 15 plants grown according to the Uniform Grid arrangement of
Fig. 1(a), at a temperature of 28 ◦C compared with experimental data for Uniswa Red. All plant parameters have been randomly varied following that of a normal distribution.
Red bars indicate the upper and lower bounds of the experimental data.
20
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Fig. 17. Twenty simulations of the mean (a) leaf area (b) canopy biomass and (c) pod mass compared with the experimental data for Uniswa Red. All plant parameters, but those
ascertaining to height and ground cover growth rate, are randomly varied. Red bars indicate the upper and lower bounds of the experimental data.
7.2.1. Uniform grid arrangement
The simulated growth of fifteen plants arranged as in Fig. 5(a) is

compared to experimental data (TCRU and FCG) in Fig. 15. In both the
TCRU and FCG experiments plants were arranged in a uniform grid.
Due to the destructive nature of the data collection, the experimental
data collected from the TCRU greenhouses could not be assigned to
one particular plant over the duration of the experiment. As such,
a specific plant position cannot be assigned to a piece of data and
so the relationship between plant position and yield cannot be easily
extracted. Instead, a simulation of the same layout has been conducted
to investigate this relationship.

Parameters for all plants are assumed equal and so any difference
between plants is incurred by the individual plant position. From
Fig. 15 we can see that plant position has a clear impact on both leaf
area and canopy biomass. Although not shown explicitly in Fig. 15, it
21
can be found that, as one might expect, the inner three plants (those
which interact with 9 neighbouring plants) have the lowest pod yield
and the plants positioned on the corners (those which interact with
three other plants) have the highest yield.

For leaf area the range of simulation data for the fifteen plants
is within the bounds of the experimental data. For canopy and pod
biomass however, the data for individual plants are not within the
bounds of the experimental data, although the average of the data set
is. Although the canopy biomass of individual plants is not necessarily
within the upper and lower bounds of the data, we do see a similar
magnitude of variation.

7.2.2. Different planting arrangements
The method of simulating plant growth described here also allows

us to investigate how plant layout can affect total canopy biomass. Five
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Fig. 18. Histograms showing yield modelling in 100 simulations with random variation to plant parameters. Figure (a) shows the distribution using the default planting density,
whereas (b) shows the distribution with planting distance increased tenfold.
different planting layouts have been chosen, with a schematic of each
layout given in Fig. 14. The layouts are as follows:

• Fig. 14(a) is a Uniform Grid, where plants are evenly spaced
throughout the plot area;

• Fig. 14(b) is similar to the Uniform Grid, however here every
other row is indented by the amount of excess space between the
row ends and the edge of the plot area (Indented grid 1);

• Fig. 14(c) is another form of indented grid, where every other row
is indented by half the planting distance (Indented Grid 2). The
difference between this layout and the one shown in Fig. 14(b)
is the extent of the indent. In this layout the amount of indent
may cause plants at the end of indented rows to not fit in the
plot area and are therefore excluded. In the previous layout, the
indentation is such that plants are never excluded;

• Fig. 14(d) is a Circular layout where plants are arranged in rings
with planting distance 𝐷 between and within each ring; and

• Fig. 14(e) is a Random planting layout.

These five layouts have been chosen as they provide a good range of
physically feasible examples.

To demonstrate the effect various planting arrangements have on
the total canopy biomass we consider the case of planting in a 1 m2 plot
with an initial planting distance of 𝐷 = 0.225 m. A planting distance
of 0.225 m would cause a 0.1 m indent in Indented Grid 1 and an
indent of 0.1125 m for Indented Grid 2. This allows a clear difference
between the three grid arrangements. In contrast, a distance of 0.25 m
would not allow any indentation in Indented Grid 1 and so there would
be no visible difference between the Uniform Grid and Indented Grid
1. For the Random layout, plants are not restricted to a set planting
distance and so instead, the number of plants is fixed so that 𝑁 would
be equal to the number of plants in the Uniform Grid Layout with
planting distance 𝐷. The inbuilt MATLAB function randn is used to
generate 𝑁 random numbers from a uniform distribution for both the
horizontal and vertical position of each plant within the plot area.

The species Uniswa Red has been chosen since canopy size data
is available. A temperature of 28 ◦C is used as it is the optimum
growth temperature for Uniswa Red. All plant parameters, including
plant height parameters, are equal. This means that any difference in
plant growth is incurred by the position in relation to other plants. We
later investigate how variation in plant parameters affect yield. The
simulations are run to 150 days for each layout illustrated in Fig. 14
and the total and average pod mass for all 𝑁 plants can be found in
Table 7.

We see that the Circular Layout gives the highest average pod mass
per plant, but since the amount of plants that fit within the plot area
22
Table 7
The average and total pod mass of 𝑁 plants within a 1 m2 plot with a distance between
plants of 0.225 m.

Layout Pod mass (g) N

Average Total

Uniform grid 22.78 569.51 25
Indented grid 1 24.17 604.28 25
Indented grid 2 25.57 562.67 22
Circular 26.84 483.05 18
Random 16.56 413.98 25

is significantly fewer when compared to the other layouts, the total
pod mass is less. The Random layout gives the worst average and
total pod mass. The arrangement that maximises pod mass per square
metre is Indented Grid 1, followed closely by the Uniform Grid. This
is because these layouts have the most plants, whilst making the best
use of the available space. This is particularly true for Indented Grid
1 which makes use of the empty space between row ends and the plot
boundary. For this layout there is a 2.67 g pod mass deficit per plant
when compared to the Circular Layout, but an extra seven plants. In
contrast, the Random layout, which does not make good use of the
available space has a 10.28 g pod mass deficit, so although there are
seven more plants than the Circular Layout, it does not make up for
the loss of biomass to the first eighteen plants. In a similar way, the
increase in average canopy biomass does not make up for the decrease
in 𝑁 in Indented Grid 2.

7.3. Investigating the effect of genetic diversity between plants

In addition to different planting positions, plants may also vary in
their physiological behaviour, which is directly linked to their genetic
makeup. In our model this diversity is directly linked to the model
parameter values. In order to investigate the effect of such diversity,
we now consider how variation in parameter values affects the average
total leaf area, canopy biomass and pod mass of the crop. We assume
that each plant parameter can be described by a normal distribution
with the mean being the original value given in Table 2 and a variance
being 10% of the mean. Without data, it is unclear if this level of
variation is realistic and we find imposing just 10% variation has a
significant effect.

A value is randomly selected from the distribution using the inbuilt
MATLAB function randn and applied to each plant. Simulations were
run twenty times for different random selections of each parameter. The
results of all twenty simulations are given in Fig. 16.



Journal of Theoretical Biology 560 (2023) 111373J. Dodd et al.
Fig. A.19. The simulated (a) leaf area, (b) canopy biomass and (c) pod mass compared with the experimental data for the species S19-3, using the data-fitted case of a temperature
of 28 ◦C. Red bars indicate the upper and lower bounds of the experimental data.
There is some considerable amount of variation to be seen in leaf
area, canopy biomass and pod mass with random variation of 10% to
plant parameters. It can be seen that this variation generally causes a
decrease in leaf area, canopy biomass and pod mass. The driver of this
variation is the differences to plant height and the size of ground cover
and it is clear that the system is especially sensitive to these parameters
(see Fig. 17).

Our results show that the system is particularly impacted by vari-
ation in plant height. If all plants are the same height, then all plants
experience the incurred competition equally. If plants differ in height
then some plants will experience considerable competition and others
none at all. Each set of randomly selected parameters will impact which
plants experience competition. When coupled with the impact that
plant position has on competition, we find that the impact of height
is considerable.

In regards to ground cover, it can be seen that small changes in
𝛼 , 𝑏 and 𝑐 exhibit large changes to yield. It can then be inferred
23

𝐺 𝑔 𝑔
that variation up to 10% is too large to accurately describe the experi-
mental data. It must be stipulated however that the experimental data
considers a much smaller sample size than what would be found in the
field.

If random variation is removed from parameters ascertaining to
height and ground cover growth rates, then we see a considerable
decrease in overall variation, however we still see a decrease to overall
plant yield. This is because at this fixed planting distance changes in
parameter are more likely to have a detrimental effect on yield than a
positive effect; this is summarised in Table 6. In the majority of cases,
a tenfold change in parameter that increases yield causes a smaller
change than the reciprocal change.

To understand the interplay between competition and random vari-
ation of plant parameters, we ran the simulation 100 times for using
the default planting arrangement and again with planting distances
increased tenfold. The resulting histograms are shown in Fig. 18. There
is a clear increase in yield when planting distance is increased, with an
average yield of 373.2 g using the default planting distance compared
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Fig. A.20. The simulated (a) leaf area, (b) canopy biomass and (c) pod mass compared with the experimental data for the species S19-3, using the non data-fitted case of a
temperature of 23 ◦C. Red bars indicate the upper and lower bounds of the experimental data.
to 1703.2 g when planting distance is increased. We can also see
that for decreased planting density the distribution is narrower and
appears more ‘normal’, meaning that without the confounding affect
of competition yield is more predictable.

8. Summary and conclusions

The purpose of this work was to develop a multi-scale mathe-
matical model of bambara groundnut development that takes account
of canopy–canopy competition for light in the context of glass-house
growth. The model combines ODE’s describing the height, leaf area,
canopy biomass, canopy size and yield of each individual plant with
that of an agent based approach used to specify plant position. Of
particular importance in this modelling approach was modelling the
plant ground cover and the overlap between neighbouring plants as
this is fundamental for describing competition for light.

In this model overlap affects the maximum leaf area growth rate, the
maximum ground cover growth rate via the leaf area term, the window
of peak ground cover spreading, the growth rate of canopy biomass and
24
the carrying capacity of canopy biomass. The plant canopy is assumed
symmetrical and the presence of overlap prevents a plant from growing
unencumbered into a space occupied by another plant. It would be an
interesting addition to the model to consider asymmetry in the plant
spreading. Then, a plant that is unable to spread in one direction,
may continue to spread in another. This investigation is beyond the
scope of this work, however would be an interesting area of further
investigation.

In other crop models it is common to include competition in the
form of a density factor that decreases growth as a proportion of the
planting density. This approach can provide a reasonable prediction
of yield, however it does not provide the full story. The approach
described in this paper provides an insight into the effect that plant
position, arrangement and varying planting distances have on the total
crop yield. Additionally, parameterising a density factor can be difficult
as it requires multiple studies to provide a realistic estimate. Modelling
competition by modelling plant canopy size can be parameterised using
fewer studies comprising of multiple plants.

To calibrate the model, additional data was required. This led to
the design and completion of additional glasshouse experiments. By
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Fig. A.21. The simulated (a) leaf area, (b) canopy biomass and (c) pod mass compared with the experimental data for the species S19-3, using the non data-fitted case of a
temperature of 33 ◦C. Red bars indicate the upper and lower bounds of the experimental data.
providing a more accurate insight into the size of the canopy, a more
thorough picture of canopy–canopy interactions was attained. Individ-
ual plants are modelled as discs on a raised central stem. This approach
allows for a tractable calculation that describes the general physiology
of the plant. The model was evaluated against experimental data and
it was demonstrated, that with this simple approach to modelling plant
physiology, a good likeness to the real plant behaviour was achieved;
the simulated data being within the upper and lower bounds of the
observed glasshouse data.

Our agent based approach describes plant growth at the single plant
level. By doing so, the mathematical model can be used to investigate
the impact of individual plant physiology and planting in relation
to other plants on the overall crop yield. As mentioned above, this
includes different arrangements and planting distance; but also by
modelling plant growth in terms of its phenomenological components
it is possible to determine how individual plant parameters affect yield
and therefore give insight into the effect of genetic diversity. Whilst
phenomenological in nature, the multiscale framework introduced here
is ripe for including further detailed processes at the sub-plant scale
describing, for instance sub-cellular protein–protein interaction cas-
cades and how these affect plant growth and development as well as
inter-plant competition.
25
It was found that plant position has considerable impact on its
growth. Predictably, plants on the corners of the plot area give the
highest yield as they experience the least competition by neighbours.
This is followed by plants along the edge and then the interior plants.
Plant layout has a considerable impact on plants also, it was found that
a circular arrangement gave the highest yield per plant, but since this
layout allowed fewer plants to fit into the plot area, there was a smaller
yield overall. Indented Grid 2 gave the largest overall crop yield.

Genetic diversity, modelled by including random variation in model
parameter values, caused a decrease to overall yield. This is because
increases in parameters that can potentially increase the yield also
increase the competition between plants. If planting distance was to
increase this would not necessarily continue to be the case. This in-
sight is particularly relevant to underutilised crops, such as bambara
groundnut, as comparatively large amounts of variation exists between
plants.

In conclusion, this novel approach has been able to provide insight
into how the qualities of individual plants have on the total crop. This
is counter to the common approach of averaging plants properties over
the many plant crop scale. It has been found that modelling with the
inclusion of variation between plants indicates that a larger planting
distance is more appropriate to increase yield. This conclusion could
not have been drawn if all plant parameters were treated as identical.
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Appendix. Supplementary information

We now compare the mathematical model described by Eqs. (41) to
(45) to greenhouse data for S19–3 as described in Section 5. For these
comparisons a crop of 9 plants were arranged in the layout illustrated
in Fig. 5(a). Parameters for all plants were considered equal, the only
difference between plants being the overlap incurred by their position.
Simulated leaf area, canopy biomass and pod mass were averaged over
all 𝑁 plants and compared to the corresponding mean average of the
experimental data. Temperature was constant for each simulation and
a range of temperatures were investigated, corresponding to those in
the TCRU experiments (23 ◦C, 28 ◦C and 33 ◦C).

A simulation of leaf area, canopy biomass and pod mass compared
to experimental data for S19–3 at 28 ◦C is shown in Fig. A.19. This is
the data set used to fit the model parameters for S19-3 and is hereby
referred to as the ’fitting case’. The two non-fitted cases of 23 ◦C
nd 33 ◦C are given in Figs. A.20 and A.21, respectively. There is no
xperimental data for ground cover and so no visual fits are available.

The simulations of S19-3 show a good fit to the experimental data
or all three temperatures, with the average pod mass being within the
inimum and maximum of the experimental data for all 8 time points.
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