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Abstract: Extreme precipitation events have caused serious impacts on natural ecosystem and human
society and have attracted increasing attention in recent years. IPCC AR6 WG I report highlighted a
lack of conclusive consensus on the change trend of extreme precipitation in some basins and variation
(increase or decrease) between regions. Based on seven precipitation indexes de�ned by ETCCDI,
using daily precipitation data observed by 18 national reference meteorological stations in China
during 1959�2018, this study analysed spatiotemporal variation trend of extreme precipitation in the
Beijiang River Basin, Southern Coastal China, in recent 60 years, using Mann�Kendall (M-K) trend test,
coef�cient of variation, and continuous wavelet transformation. M-K test results showed that there
were mutations in all seven precipitation indexes, and mutation points were mainly concentrated
in two periods (1986�1991 and 2005�2010). The change range of each index after mutation was
generally greater than that before mutation. Continuous wavelet transformation showed that each
indicator had a signi�cant oscillation period of 2�4 year in most time domains. The southeastern
part of the basin (Fogang and Qingyuan) was the center of extremely heavy precipitation, and most
precipitation indexes decreased from this area to the surrounding area. As far as the basin as a whole
was concerned, consecutive wet days (CWD) declined signi�cantly (passing 0.05 of con�dence test),
and there was a signi�cantly positive correlation between annual distribution of R95ds and monthly
precipitation (p < 0.001). The research results expand our understanding of regional water cycle and
extreme climate change, guide the allocation and management of water resources related to regional
industrial and agricultural activities, and provide reference for disaster prevention and mitigation.

Keywords: extreme precipitation; spatiotemporal variation; Mann�Kendall test; Beijiang River Basin;
South China

1. Introduction
Intergovernmental Panel on Climate Change (IPCC) working group I the sixth assess-

ment report Climate Change 2021: Foundation of Natural Science (hereinafter referred
to as the AR6 WG I report) pointed out that climate change caused by human activities
has affected extreme weather and climate events in various regions on the Earth since the
1950s [1]. Although extreme weather events belong to small probability events, they are
often sudden and harmful and easy to cause other natural disasters, thus posing serious
threats to the natural ecosystem and human society [2�5]. In order to facilitate the study
of extreme climate, Expert Team on Climate Change Detection and Index (ETCCDI) es-
tablished jointly by World Meteorological Organization (WMO), World Climate Research
Program (WCRP), the Joint WMO/IOC Technical Commission for Oceanography and
Marine Meteorology (JCOMM) de�ne 27 representative and globally applicable extreme
climate indexes [6�8].
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In view of the serious impact on economic development and people’s lives, extreme
precipitation events have become the research focus of global scholars in recent years [9�11].
Studies have found that the extreme precipitation events in the middle and high latitudes
had an overall increasing trend over the past 50 years [12], with complex changes and
obvious regional differences [13]. Speci�cally, the extreme precipitation events in North
America, south part of South America, northwest Europe, and east part of Asia showed
an increasing trend; the change was not obvious in north South America, Africa and
central Oceania; however, the extreme precipitation events indicated a decreasing trend in
other regions [12,14,15].

In many areas of China, the frequency and intensity of heavy rainfall and extremely
heavy rainfall events have increased, while light rain decreased [16�19]. In general, there
are signi�cant regional differences in the changes of extreme precipitation in China. Most
extreme precipitation indexes showed an increasing trend in Northwest China, Southeast
China and the middle and lower reaches of the Yangtze River, while they indicated a
decreasing trend in North China, Northeast China and Southwest China [20�25]. Some
scholars have also studied the changes of extreme precipitation in large river basins [26],
such as the Yangtze River Basin [27�29], the Yellow River Basin [30,31], the Pearl River
Basin [32,33], the Huaihe River Basin [34,35], and the Song-liao River Basin [36]. However,
studies in different basins are mostly based on different methods and various precipitation
indexces, and the time periods concerned are also different, so the results cannot be
compared directly. The above research results indicated obvious spatial and temporal
variations in extreme precipitation. Therefore, for the better management of local water
resource, the study of extreme precipitation from a smaller spatial scale is an important
supplement to the large-scale regional research. Some scholars have also pointed out
that the change rates of extreme precipitation in some areas are faster than the average
precipitation in the region as a whole, which brings more challenges to local water resources
management [37]. Scholars have also highlighted a lack of conclusive consensus on the
change trend of extreme precipitation in some basins, and big variations in the changes
(increase or decrease) between areas [38].

Beijiang River is the second largest tributary of the Pearl River in Southern Coastal
China, playing an important role in society and ecosystem in the region. Despite some
studies on precipitation in the Beijiang River Basin in recent decades [39,40], the systematic
research on extreme precipitation in the whole basin is still lacking. Considering the length
and consistency of the data, 18 meteorological stations that were established earlier in
the region were selected for this study. Based on seven precipitation indexes de�ned by
ETCCDI and daily precipitation data observed in 18 national reference meteorological
station of China during 1959�2018, this paper analysed the spatiotemporal variation of
extreme precipitation in the Beijiang River Basin in recent 60 years, using Mann�Kendall M-
K trend test, coef�cient of variation, and continuous wavelet transformation. The following
scienti�c questions were addressed: (1) How did the average precipitation and extreme
precipitation change in the Beijiang River Basin in the past 60 years? (2) What are the
spatial variations in the change trend within the basin? (3) What are the differences of the
long-term changes of extreme precipitation indexes in the Beijiang River Basin?

The research results will increase our knowledge of regional water cycle and extreme
climate change, guide the allocation and management of water resources required for
regional industrial and agricultural production, and provide reference for �oods prevention
and mitigation.

2. Materials and Methods
2.1. Study Area

The Beijiang River runs through the north central part of Guangdong Province, one
of the important rivers in Southern Coastal China. The total length of the river is 582 km
(Figure 1). The Beijiang River Basin (23.12�25.69� N, 111.82�114.97� E) belongs to transi-
tion region from central subtropical zone to south subtropical zone, with the total area
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of 43,000 km2 and total population of 9.1 million by the end of 2021. Due to complex
topography and extreme climate, natural disasters such as �ood and drought have oc-
curred frequently in the basin in recent decades, causing serious casualties and property
losses. According to statistics, in the summers of 1968, 1982, 1994, 1997, 1998 and 2005, the
Beijiang River Basin was hit by heavy rainstorms and �oods [41]. In the middle of July
2006, the middle and upper reaches of the Beijiang River were hit by heavy rain, which
caused serious �ood disaster in some areas. In Shaoguan, 1.08 million people were affected,
53 people died, 87,520 houses collapsed, more than 42,000 hm2 of crops were affected, more
than 76,000 head of livestock were killed, 41 reservoirs were damaged, 316 industrial and
mining enterprises were suspended, most of the communication, transportation, power
and water supply were interrupted, and the direct economic losses amounted to 15.2 billion
RMB Yuan [42]. From 21�23 June 2012, heavy rain and �oods occurred in the middle
and lower reaches of Lianjiang River (a tributary of Beijiang River), which affected about
312,800 people in northern Guangdong, displaced about 22,300 people, killed 2 people and
left 3 people missing, and caused direct economic losses of 728 million RMB Yuan [43].
In northern Guangdong, where the Beijiang River Basin is located, more than 60% of the
cultivated land suffers from droughts in autumn and winter [44].
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Figure 1. The location of the Beijiang River Basin in South China and 18 rain-gauge stations in this area.

2.2. Data Source and Precipitation Indexes
The precipitation data were collected from 18 national standard meteorological ob-

servation stations in the Beijiang River Basin (Figure 1). All of the stations continuously
collected daily precipitation data from 1959 to 2018. The precipitation datasets were ob-
tained from the National Climate Center (NCC) of the China Meteorological Administration
(CMA). There are three stations containing missing data. At all of stations, the missing
values are less than 0.3% of all data. The durations of continuous gaps were mainly in one
day. The missing data were replaced by the average values of neighbouring days. This gap
�lling method has little in�uence on the result [45]. The datasets were checked with strict
quality control, and three aspects inspection (reliability, consistency, and representativeness)
showed good integrity. Then, seven precipitation indexes de�ned by ETCCDI (Table 1)
were calculated based on daily precipitation data.
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Table 1. Information for seven precipitation indexes de�ned by ETCCDI.

Indexes De�nitions Units

PRCPTOT Annual total precipitation. mm

SDII
The ratio of annual precipitation to the number of precipitation
days. The precipitation day is de�ned as the day with
precipitation � 1 mm.

mm/d

Rx1day Maximum 1-day precipitation in a year. mm
Rx5day Maximum consecutive 5-day precipitation in a year. mm

CDD Maximum number of consecutive dry days of a year.
The dry day is de�ned as the day with precipitation < 1 mm. d

CWD Maximum number of consecutive wet days of a year.
The wet day is de�ned as the day with precipitation � 1 mm. d

R95ds

Annual number of days with daily precipitation exceeding the
95th percentile threshold. The 95th percentile threshold is
calculated based on the precipitation series of all wet days at
each station.

d

2.3. Data Processing Method
2.3.1. The Mann�Kendall Trend Test

The Mann�Kendall method (M-K), developed by Mann and Kendall [46], is a nonpara-
metric statistical method based on rank. The advantage of M-K method is no requirement
for sample following a certain distribution and without interference by several outliers.
As one of the effective methods for analysing time series trend, the M-K method performs
well to identify overall trend of time series evolution and abrupt changes [47,48]. It has
been recommended by the WMO and widely applied in the research of the time series of
hydrological and meteorological variables [49].

(1) Inspection statistics

Inspection statistics (S) is defined by non-parametric Mann�Kendall trend test as follows:

S = ån
i=2 åi�1

j=1 Sign (Di � Dj) (1)

where: i 6= j, and i, j � n. Sign ( ) is a Sign function. When Di � Dj is >, =, or < 0, Sign (Di � Dj)
is 1, 0, or�1, respectively. For the long time series (n > 10), the statistic Z is estimated as follows:

Z =

8
<

:

(S� 1)/
p

n(n� 1)(2n + 5)/18 S > 0
0 S = 0

(S + 1)/
p

n(n� 1)(2n + 5)/18 S < 0
(2)

When Z > 0 and Z < 0, the time series shows an increasing and decreasing trends,
respectively. When | Z | � 1.28, 1.64, or 2.32, it indicates that the discriminant results have
passed the signi�cance test with the reliability of 90%, 95%, or 99%, respectively [47,48].

(2) Detection of Mann�Kendall mutation

Time series (D2, D3, . . . , and Dn) construct an orderly column ri, which represents
the sample accumulation number of Di > Dj (1 � j � i). The rank series (Sk) is calculated
as follows:

Sk = åk
i=1 ri(k = 2, 3, . . . , n) (3)

When Di > Dj, ri = 1; when Di � Dj, ri = 0 (j = 1, 2, . . . , i). The expected value E(Sk) of
Sk and its sequence variance Var(Sk) are calculated as follows:

E(Sk) = n(n + 1)/4 (4)

Var(Sk) = n(n� 1) (2n + 5)/72 (5)
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The data sequence is considered independent, and the test statistics (UFk) is calculated
as follows:

UFk =
Sk � E(Sk)p

Var(Sk)
(k = 1, 2, . . . , n) (6)

UFk obeys the standard normal distribution and provides a signi�cance level a. The
critical value Ua can be obtained from the standard normal distribution table. For instance,
when a is 0.05, its critical value Ua is � 1.96; when | UFk | > | Ua |, the time series has a
signi�cant decrease or increase trend. The UFk points over the study period are plotted
as a curve to analyse if they have a decreasing or increasing trend. The calculation of the
above steps was conducted again in a reverse sequence. The result was multiplied by �1 to
obtain the new time series UBk. UFk and UBk sequence diagrams were drawn. UFk > 0 and
UFk < 0 mean the sequences are an increasing and decreasing trend, respectively. When
UFk exceeds the critical value, the decreasing or increasing trend reaches the signi�cant
level. When the two curves of UFk and UBk intersect, the intersection point is the beginning
of mutation [47,48].

This study found that the autocorrelation of the time series of hydrological and meteo-
rological elements had an impact on the M-K test results. Therefore, the autocorrelation
of the relative humidity time series was tested before the M-K test, and the in�uence of
signi�cant correlation was eliminated by the means of variance correction [50,51].

2.3.2. The Linear Trend Estimation
In the analysis of precipitation index series variation trend, this study also used the

linear trend method (using the least square method to estimate parameters) [52].

2.3.3. Coef�cient of Variation (CV)
If the dimensions of the two groups of data are different, the standard deviation should

not be used when comparing the degree of dispersion, and the in�uence of the dimension
should be eliminated. This can be achieved by CV, which is the ratio of the standard
deviation of the data series to the average of the data series [53]. CV is dimensionless and
can be compared directly.

2.3.4. Continuous Wavelet Transform (CWT)
CWT was adopted to analyze the multi-scale periodic characteristics of precipitation

index series [54�56]. Morlet wavelet was selected as the basic wavelet and calculated
as follows:

Y(t) = eiw0te�t2/2 (7)

where i is the imaginary number, w0 is the dimensionless frequency, and t is the time
variable. When w0 is � 5, Morlet wavelet satis�es the permissibility condition.

To eliminate the effect of internal circulation, low-pass �ltering was applied to �lter
out the variability less than two years before wavelet transform of precipitation index
time series [57].

The data analyses were conducted using Matlab 2016a (MathWorks, Natick, MA,
USA), the maps were created using ArcGIS 10.3 (ESRI Inc., Redlands, CA, USA), and
Kriging interpolation was applied for the interpolation of the spatial distribution of
precipitation indexes [58,59].

3. Results
3.1. Annual Average and Spatial Variation

The averages of all precipitation indexes in the basin were shown in Table 2, while
there were spatial variations in all indicators within the basin (Figure 2). For PRCPTOT
(Figure 2a), the high-values appeared in the southeastern basin, particularly 2185.3 and
2138.8 mm in Fogang and Qingyuan, respectively. The low-values were observed in
northeast part (Lechang, Renhua, Nanxiong, and Shixing), between 1400 and 1600 mm. The
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middle values, between 1600 and 1900 mm, appeared in other areas. Overall, PRCPTOT
gradually decreased from Fogang and Qingyuan to the periphery.
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Table 2. Annual mean of precipitation indexes in Beijiang River Basin.

Indexes PRCPTOT
(mm)

SDII
(mm/d)

Rx1day
(mm)

Rx5day
(mm)

CDD
(d)

CWD
(d)

R95ds
(d)

Annual
mean 1696.8 14.02 107.4 191.8 33 15 6

SDII (Figure 2b), Rx1day (Figure 2c) and Rx5day (Figure 2d) showed similar spa-
tial patterns to PRCPTOT. High-values were observed in southeast part, and low-values
appeared mainly in northeast and northwest parts.

In terms of CDD (Figure 2e), they were 35�37 d in the south of the basin (Sanshui,
Sihui and Qingyuan), 30�31 d in the west (Lianzhou, Liannan, and Lianshan) and northeast
(Shixing), and 32�34 d in other regions. Overall, it gradually decreased from south to north.

For CWD (Figure 2f), they were 16�17 d in southeast part (Yingde, Qingyuan and
Fogang), 12�13 d in Nanxiong, Shixing and Sanshui, and 14�16 d in other regions. Its
spatial pattern showed an overall gradual decrease from southeast to the periphery.

Regarding R95ds (Figure 2g), they were 7 d in the west (Lianzhou, Lianshan, and
Yangshan) and the southeast (Fogang and Qingyuan), 5 d in the northeast (Wengyuan,
Shixing, and Nanxiong) and the south (Sanshui and Guangning) and 6 d in other regions.
Overall, it gradually decreased from southeast-northwest strip area to both sides.

3.2. Analysis of Mutation Point and Change Trend
3.2.1. Analysis of Mutation Point and Linear Trend

As shown in Figure 3a and Table 3, PRCPTOT mutated in 2006. According to the
linear �tting and M-K test before and after mutation, PRCPTOT showed an increasing
trend before and after mutation, but increasing trend after mutation was larger than that
before mutation. Seen from coef�cients of variation (CV) before and after mutation, change
amplitude after mutation was larger than that before mutation. In contrast, the mean
values before (1737.5 mm, 1959�2005) and after (1549.5 mm, 2006�2018) the mutation were
signi�cantly different. The overall trend decreased from 1959 to 2018.

As shown in Figure 3b and Table 3, there were two mutations in SDII during 1959�2018:
1990 and 2007. In 1959�1989, the mean, CV, and change trend were 13.8 mm/d, 0.087,
and decreasing, respectively; during 1990�2006, the mean, CV, and change trend were
14.8 mm/d, 0.081, and decreasing, respectively; from 2007 to 2018, the mean, CV, and
change trend were 13.6 mm/d, 0.078, and rising, respectively. Obviously, the mean during
1990�2006 was the maximum. On the whole, it decreased from 1959 to 2018.

As indicated in Figure 3c and Table 3, there were two mutations in Rx1day during
1959�2018: 1982 and 2007. In 1959�1981, the mean, CV, and change trend were 105.9 mm,
0.149, and decreasing, respectively; during 1982�2006, the mean, CV, and change trend were
113.0 mm, 0.137, and rising, respectively; from 2007 to 2018, the mean, CV, and change trend
were 98.6 mm, 0.137, and rising, respectively. The largest change rate appeared during
1959�1981, while the smallest change rate happened in 2007�2018. Overall, it declined from
1959 to 2018.

Seen from Figure 3d and Table 3, there were two mutations in Rx5day during 1959�2018:
1991 and 2009. In 1959�1990, the mean, CV, and change trend were 190.1 mm, 0.150, and
decreasing, respectively; during 1991�2008, the mean, CV, and change trend were 203.8 mm,
0.181, and decreasing, respectively; from 2009 to 2018, the mean, CV, and change trend were
176.0 mm, 0.160, and rising, respectively. The change velocity was the fastest during 1959�1990,
while it was slowest in 2009�2018. The overall trend decreased from 1959 to 2018.

As shown in Figure 3e and Table 3, CDD mutated in 1986. It showed a decreasing trend
before and after mutation, but the decreasing trend after mutation was greater than that before
mutation. The change amplitude after mutation was larger than that before mutation. In
contrast, the mean values before (30.8 d, 1959�1985) and after (34.8 d, 1986�2018) the mutation
were significantly different. On the whole, the change trend rose from 1959 to 2018.
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As indicated in Figure 3f and Table 3, CWD mutated in 2000. It showed a decreasing
trend before and after mutation, but the decreasing trend after mutation was slightly greater
than that before mutation. The change amplitude after mutation was larger than that before
mutation. The means were 15.7 d before mutation (1959�1999) and 13.1 d after mutation
(2000�2018), respectively. The statistical value of MK trend test during 1959�2018 was
�2.54, a signi�cant decrease (passed the 95% level of signi�cance test).

Seen from Figure 3g and Table 3, R95ds mutated in 2005. It showed a rising trend before
mutation and a decreasing trend after mutation. The change amplitude after mutation was
larger than that before mutation. In contrast, the mean values before (6.2 d, 1959�2005) and
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after (5.3 d, 2006�2018) the mutation were signi�cantly different. The overall change trend
decreased from 1959 to 2018.

Table 3. Test results of change trend before and after the mutation points.

Indexes Mutation
Year

Before the Mutation After the Mutation The Overall Trend

M-K
Statistics Trend Annual

Mean CV M-K
Statistics Trend Annual

Mean CV M-K
Statistics Trend

PRCPTOT 2006 0.08 " 1737.5 0.153 0.37 " 1549.5 0.174 �1.27 #

SDII
1990 �1.43 # 13.83 0.087 �0.64 # 14.75 0.080

�0.28 #
2007 �0.64 # 14.75 0.080 0.82 " 13.60 0.080

Rx1day
1982 �1.72 # 105.9 0.149 0.02 " 113.0 0.137

�0.81 #
2007 0.02 " 113.0 0.137 0.82 " 98.6 0.138

Rx5day
1991 �1.14 # 190.1 0.150 �0.42 # 203.8 0.181

�0.60 #
2009 �0.42 # 203.8 0.181 0.98 " 176.0 0.160

CDD 1986 �0.23 # 30.8 0.272 �0.31 # 34.8 0.282 1.20 "

CWD 2001 �0.36 # 15.7 0.177 �0.34 # 13.1 0.188 �2.54 #

R95ds 2005 0.29 " 6.2 0.258 �0.18 # 5.3 0.321 �1.06 #

Note: �"� denotes an increasing trend, and �#� indicates a decreasing trend.

3.2.2. Analysis of Spatial Difference of Change Trend
As shown in Figure 3 and Table 3, in the entire basin, CDD showed a rising trend,

while other indicators illustrated decreasing trends. However, there were spatial differences
within the basin (Figure 4). Only sites with signi�cant change trend (passed the 95% level of
signi�cance test) were further analyzed here. As indicated in Figure 4a, PRCPTOT declined
signi�cantly in Wengyuan, and southwest part of the basin (Huaiji, Sihui, and Sanshui).
SDII rose signi�cantly in Shaoguan and Lianzhou (Figure 4b). For Rx1day (Figure 4c), it
showed a signi�cant rising and decreasing trend in Shaoguan and Ruoyuan, respectively.
In terms of Rx5day (Figure 4d), it signi�cantly rose in Lianzhou and decreased in Renhua
and Huaiji, respectively. Regarding CWD (Figure 4f), 13 stations (accounting for more than
2/3 of all) showed a signi�cant decline trend, which were distributed in all regions of the
basin. For R95ds (Figure 4g), there were seven stations with signi�cant decrease trend, four
in the south and three in the northeast.
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3.3. Analysis of Continuous Wavelet Transformation
To analyze the main oscillation cycle and corresponding period, continuous wavelet

transform of annual mean RH in each subarea was conducted (Figure 5). To eliminate the
effect of internal circulation, low-pass �ltering was applied to �lter out the variability less
than two years before wavelet transform of each time series.
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To explore distribution rule of R95ds within the year, the statistics on distribution 
situation of R95ds in each month during 1959–2018 was conducted, namely the proportion 
of R95ds in each month (R95dsp). As shown in Figure 6, R95dsp distribution within the 
year was generally unimodal, with peak (22.43%) in May. It was 10–20% in April, June, 
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November and December. Although R95ds appeared less, it produced a large amount of 
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Figure 5. Continuous wavelet transform of PRCPTOT (a), SDII (b), Rx1day (c), Rx5day (d), CDD (e),
CWD (f), and R95ds (g). The closed areas of the black thick coils passed the standard red noise test
at 95% con�dence level. The square cone areas below the black thin solid lines were the cone of
in�uence (COI) areas, and they were the areas where the edge effect of the wavelet transform data
were more signi�cant.
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As shown in Figure 5 and Table 4, each index had a signi�cant oscillation period of
2�4 a, while there were different time domains corresponding to the signi�cant period of
different scales. According to the change of signi�cant period, it can be divided into the
following three categories: (1) PRCPTOT, Rx1day, and Rx5day. They were roughly divided
into two parts based on 1990; the periodic scale was smaller before 1990 but larger after
1990. (2) SDII and R95ds. They were roughly divided into two parts based on 1984; the
periodic scale was smaller before 1984 but larger after 1984. Compared with other indexes,
the time domain corresponding to their signi�cant periods was relatively continuous.
(3) CDD and CWD. The signi�cant periodic scales had large changes. They were roughly
divided into two parts based on 1985; the periodic scale was larger before 1985 but smaller
after 1985.

Table 4. Signi�cant oscillation cycles and corresponding periods of continuous wavelet transforms of
precipitation indexes in Beijiang River Basin.

Indexes Signi�cant
Cycles (a)

Corresponding
Periods Indexes Signi�cant

Cycles (a)
Corresponding

Periods

PRCPTOT
2.1~3.8

2~3
2.7~5.2

1959�1965
1969�1992
1992�2009

SDII
2~4
2~6

2.2~3.8

1959�1982
1983�2009
2010�2018

Rx1day 2~3
2~4.5

1961�1989
1999�2011 Rx5day

2~2.5
2~3
2~6

1960�1970
1976�1985
1992�2012

CDD
2~2.3
2~4

2.2~4

1965�1968
1973�1999
2000�2012

CWD 2~7
2.3~4.5

1961�1980
1984�2008

R95ds
2~3.7
2~3
2~5

1959�1966
1970�1994
1987�2009

3.4. Correlation Analysis between R95ds Distribution within the Year and Monthly Precipitation
To explore distribution rule of R95ds within the year, the statistics on distribution

situation of R95ds in each month during 1959�2018 was conducted, namely the proportion
of R95ds in each month (R95dsp). As shown in Figure 6, R95dsp distribution within the
year was generally unimodal, with peak (22.43%) in May. It was 10�20% in April, June, July,
and August; 6�7% in March and September; 1�4% in January, February, October, November
and December. Although R95ds appeared less, it produced a large amount of precipitation.
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Monthly precipitation in the Beijiang River Basin was shown in Figure 6. Monthly
precipitation during March�September was more than 100 mm. Among them, monthly
precipitation during April�June was more than 200 mm, and the maximum was in May
(295.1 mm). Monthly precipitation from October to next February was between 40 and
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100 mm. Similar to R95dsp, monthly precipitation showed unimodal. Moreover, the
highest value and the lowest value appeared at the same time, both in May and December.
Correlation analysis showed the signi�cantly positive correlation between R95dsp and
monthly precipitation (R2 = 0.9577, p < 0.001).

4. Discussion
4.1. Spatial Variation in Annual Average Values

In the Beijiang River Basin, PRCPTOT, SDII, Rx1day, Rx5day, and CWD had similar
spatial change trend, and the overall performance decreased from the southeast to the
periphery (Figure 2a�d,f). The high values appeared in the southeast, including mainly
Fogang and Qingyuan. Similarly, previous studies found that Fogang and Qingyuan were
the main areas affected by frontal rain [40,60]. Under the comprehensive in�uence of
various weather systems (subtropical high pressure, subtropical jet, frontal or shear line
position change, etc.), continuous precipitation often happens in this area, and extreme
heavy precipitation occurs frequently. This area is also one of the three rainstorm centers in
Guangdong Province. Our results con�rmed this precipitation pattern.

4.2. Mutation Point
In Beijiang River Basin, all precipitation sequences had a mutation phenomenon,

and some sequences even had multiple mutation points (Figure 3 and Table 3). Under
the complex impacts from both climate change and human activities, the consistency hy-
pothesis of precipitation sequence has been questioned [61�63], while the non-consistency
was supported by more and more observation facts [64�67]. In our research area, the
occurrence time of mutation point was mainly concentrated in two periods: 2005�2010
(Figure 3(a1,b1,c1,d1,g1)) and 1986�1991 (Figure 3(b1,d1,e1)). The mutations of precipi-
tation were caused by several possible reasons, mainly related to human activities in the
basin. In last four decades, Guangdong Province, where the Beijiang River Basin is located,
has been the forefront of China’s reform and opening up [68,69]. With the rapid industrial-
ization and urbanization, the impact of human activities on the surface environment has
become much stronger than before [70�72]. The change trend of each time period before
and after the mutation may be the same, but the mean value, change speed and change
range were signi�cantly different. Among them, change amplitude after mutation was
generally larger than that before mutation, indicating the increased uncertainty of extreme
precipitation change.

4.3. Signi�cant Decline of CWD
The Beijiang River Bain experienced significant decrease of CWD (Table 3 and Figure 4f).

The correlation analysis indicated the signi�cantly positive correlation between R95ds
distribution within the year and monthly precipitation. It showed that although the number
of extremely heavy precipitation was small, the precipitation intensity was large in Beijiang
River Basin. Therefore, the precipitation produced by extremely heavy rainfall accounted for a
large proportion of the monthly precipitation in the long term. The significant decline of CWD
in the Beijing River Basin was also related to the anthropogenic activities in the region. With
both the national and local policies, Beijiang River Basin has experienced a series of large-scale
industry and mining development and rapid urbanization in recent decades [73]. Vegetation
destruction and surface hardening have changed the regional microclimate, resulting in a
decrease in the number of light rain and drizzle days [40,70,74]. Our research highlighted
the big change of precipitation in this region and other parts of China, causing risks to the
industrial and agricultural water use [75]. In the last decade, China has paid more attention
to environmental protection, along economic development [76,77]. To mitigate the extreme
weather in the future, reducing carbon emission and achieving zero emission, along with
other ecological conservation measures, will be indispensable [78].

The Beijiang River Basin is an important drinking water source and ecological security
barrier in the Guangdong Province. There are 26 drinking water source protection areas in
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the Beijiang River basin, providing drinking water for nearly 30 million people in the basin
and the northern part of the Pearl River Delta, especially for Guangzhou and Foshan [40].
Due to the serious shortage of water storage projects in the basin, more than 80% of the
precipitation in the �ood season �ows into the main stream of the Beijiang River in the
form of surface runoff, with the maximum �ow of 14 900 m3/s. This increases not only the
�ood control burden along the river, but also a large amount of fresh water �owing into
the sea. In the dry season, however, the water volume of main stream is very small, and
the minimum �ow is only 130 m3/s [79].

The Beijiang River Basin is rich in mineral resources. At present, more than 100 kinds
of minerals with proven reserves have been found in the basin. There are a large number of
small and medium-sized mining sites, quarries and metallurgical plants in the basin. The
mining activities have caused a series of problems such as vegetation destruction, debris
exposure, soil and water loss, and water environment pollution [80,81].

There are more mountains and less cropland in the basin, and the con�ict between
people and land is prominent. For example, the area of slope farmland planted with dry
crops accounted for about 52% of the total cultivated area in the basin [82]. Due to the large
proportion of sloping farmland, many areas are suffered from the large threat of soil and
water loss [83].

In the context of tackling global climate change, the Chinese government announced
the �Double Carbon Target� in 2020, �it strives to reach the peak of carbon dioxide emissions
by 2030 and strives to achieve carbon neutrality by 2060� [78]. China’s CO2 emissions
from energy consumption accounted for about 88% of the total emissions in 2020, of
which the electricity industry accounted for about 42.5% of the total CO2 emissions of
the energy industry [84,85]. Therefore, one of the important ways to achieve the �Double
Carbon Target� is to optimize the energy structure and promote the develop of renewable
energy [86�88]. Hydropower plays an important role in China’s renewable energy system,
an indispensable part for achieving the �Double Carbon Target� [89�94]. Considering
the possible impacts of hydropower dams on ecosystem, care planning, construction and
operation of hydropower in Beijiang River Basin is crucial. For example, pumped storage
hydropower may enhance the regulation and storage capacity of water resources in the
basin, thereby mitigating drought and �ood hazards [95�97].

4.4. Oscillating Periods of Extreme Precipitation
Climate change, including the extreme weather, is in�uenced by many factors. The

weather systems, affecting the precipitation in the Beijiang River Basin, mainly include the
location and intensity of subtropical high [98], the intensity of monsoon [99], mesoscale
convective system [100], low-frequency weather system [101], El Niæo and La Niæa (ENSO)
and other teleconnecting phenomena [102�105]. However, precipitation is often affected
by multiple factors, and it is not easy to quantify the in�uence degree of each factor [106].
Despite the progress, many studies are still needed to determine the in�uence of ENSO
and other teleconnecting phenomena on extreme precipitation cycle.

4.5. Limitations and Future Research
Similar to many studies, there are some limitations in the current study. The precip-

itation data used in this paper were observation data from meteorological stations. Due
to long data sequence, there may be some bias in the early observation data. Especially
in the 1950s, the 1960s, and even the 1970s, the whole area was underdeveloped, and the
observation equipment, observation methods, data recording and storage of the meteoro-
logical stations were not as advanced as they are now. However, after inspection, correction
and re-evaluation by professionals of China Meteorological Administration (CMA) and
National Climate Center (NCC), the data are still robust and reliable [45,74].

Under the comprehensive in�uence from both global warming and anthropogenic
activities in recent years, the non-uniformity of hydrological series has been increasingly
con�rmed and has gradually become a new research direction. On the basis of this study, it
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is necessary to further explore the inconsistency of extreme precipitation in this region and
other regions experiencing the similar changes in the future.

5. Conclusions
Due to the large impact of extreme weathers, increasing attention has been paid the

extreme precipitation in regions experiencing climate change and anthropogenic distur-
bance. This study researched the spatiotemporal variation trend of extreme precipitation
in the Beijiang River Basin in Southern Coastal China in the recent six decades. The main
conclusions are as follows:

(1) The spatial variations in annual average PRCPTOT, SDII, Rx1day, Rx5day, and CWD
were similar, and the values decreased from the southeast (Fogang and Qingyuan)
to the periphery. CDD values decreased from south to north, while R95ds roughly
showed a decreasing trend from the southeast-northwest strip to both sides.

(2) M-K trend tests showed that there were mutations in all precipitation index sequences,
and mutation points were mainly concentrated in 1986�1991 and 2005�2010. Change
amplitude after mutation was generally larger than that before mutation. Continuous
wavelet transformation results showed that each precipitation index had a signi�cant
oscillation period of 2�4 year in most of the time domain.

(3) There were some spatial differences in the temporal changes of each precipitation
index, and CWD declined signi�cantly. R95ds distribution within the year showed a
signi�cantly positive correlation with monthly precipitation.
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